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Metaheuristic methods have become increasingly popular approaches in solving global
optimization problems. From a practical viewpoint, it is often desirable to perform
multimodal optimization which, enables the search of more than one optimal solution
to the task at hand. Population-based metaheuristic methods offer a natural basis for
multimodal optimization. The topic has received increasing interest especially in the
evolutionary computation community. Several niching approaches have been suggested
to allow multimodal optimization using evolutionary algorithms.

Most global optimization approaches, including metaheuristics, contain global and lo-
cal search phases. The requirement to locate several optima sets additional requirements
for the design of algorithms to be effective in both respects in the context of multimodal
optimization. In this thesis, several different multimodal optimization algorithms are
studied in regard to how their implementation in the global and local search phases
affect their performance in different problems. The study concentrates especially on
variations of the Differential Evolution algorithm and their capabilities in multimodal
optimization. To separate the global and local search search phases, three multimodal
optimization algorithms are proposed, two of which hybridize the Differential Evolution
with a local search method.

As the theoretical background behind the operation of metaheuristics is not generally
thoroughly understood, the research relies heavily on experimental studies in finding
out the properties of different approaches. To achieve reliable experimental informa-
tion, the experimental environment must be carefully chosen to contain appropriate and
adequately varying problems. The available selection of multimodal test problems is,
however, rather limited, and no general framework exists. As a part of this thesis, such a
framework for generating tunable test functions for evaluating different methods of multi-
modal optimization experimentally is provided and used for testing the algorithms. The
results demonstrate that an efficient local phase is essential for creating efficient multi-
modal optimization algorithms. Adding a suitable global phase has the potential to boost



the performance significantly, but the weak local phase may invalidate the advantages
gained from the global phase.

Keywords: global optimization, metaheuristics, evolutionary computation, evolution-
ary algorithms, Differential Evolution, mutation, multimodal optimization,
niching, crowding, test function generator, hybrid methods, memetic algo-
rithms, local optimization, gradient descent

UDC 519.863 : 004.021



SYMBOLS AND ABBREVIATIONS

® Component-wise multiplication of vectors

o* Optimal value for o, where o can be a parameter or a performance measure
« Amplitude of the sampling function in the cosine family

Qscale  Scaling factor for sharing function

16} Shape of the optimum slope (hump family)

5 Generic vector

) Initial bracketing length for GD

n Scaling used in estimating the gradient with GD

€ Precision used to define optima

K Capacity of each niche with clearing

A Number of offspring generated

1 Number of parents

v Degree of the Bezier curve, defines the number of the control points for P
o Parameter controlling the standard deviation in dither, jitter and ajitter

mutation operators
Orad Radius parameter in different niching methods
o¢,0,  Standard deviations for we and wy,
we,wy  Zero-mean normally distributed variables used by the G3-PCX algorithm

A Generic matrix

B Rotated symmetric matrix corresponding to C

b Rotated point corresponding to &

c Number of niches or subpopulations maintained by a niching method

C Symmetric matrix (quadratic family)

cver Expected effect of the variation operators of DE to the variance of the
population

CF Crowding factor

CR Crossover rate in DE

D Dimensionality of a problem

D Average of perpendicular distances used by the G3-PCX algorithm
d Distance measure

dnc Dynamic niche count

€ Orthonormal bases used by G3-PCX algorithm

F Mutation scale factor in the DE

et Mutation scaling vector for DE using additive jitter

Fdith Nutation scaling factor for DE using dither

FJitt Mutation scaling vector for DE using jitter

I’ First order derivative

Nid Second order derivative
fe Clustered shared fitness
fé Dynamic shared fitness

fe Shared fitness
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AJIT
AJIG
AOA
CG
CMA-ES
CPT
CRDE
DE
DEGS
DECG
DELG
DELL

Generation

Vector of positive integers defining the number of global minima in the
cosine family

Generic enumeration variables

Number of constraints an optimum sits on

Vector of positive integers defining the number of local minima in the
cosine family

Minimum number of members in each species of SDE

Generic variable defining a count or a number

Random number drawn from normal distribution with expectation e and
standard deviation o

Maximum allowed number of function evaluations

Slope of the curve representing the convergence speed in the function of
population size

Population size inside a single niche

Population size

Randomly generated angle preserving orthogonal linear transformation
matrix

Control point vector for a Bezier curve

Probability to select the first operator in either/or algorithm

Vector for defining an optimum location (quadratic family)

Index for a randomly selected population member in DE

Real numbers

Basin radius of an optimum (hump family)

Uniformly distributed random number in the range [0,1]

Sharing function

Trial solution vector

Mutated vector in DE

Population member vector

Vector of lower box constraints

Vector of upper box constraints

Stretched point corresponding to b

f(&*) for one optimum

DELL using ajitter global mutation
DELG using ajitter global mutation
Area of attraction

Conjugate gradient

Covariance matrix adaptation evolution strategy
Complexity per trial

Crowding DE

Differential Evolution

DE using global selection

CRDE hybridized with gradient descent
DELS hybridized with gradient descent
DELS with local mutation
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DITG
DITH
EA

EP

ES
FPS
G3

GA
GD
GO
GRGD
HCRDE
HDECG
HM
JITG
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LOVR
LS
MCMC
MCDE
MMDE
MSG
NFE
NFL
NGO
NLO
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PN
PR
PSO
RE

RS
RSGD
SA
SDE
SHDE
SLS
SN

SP

SR

std

TS
URE
XLS

DE using local selection

DELG using dither global mutation
DELL using dither global mutation
Evolutionary algorithm
Evolutionary programming
Evolution strategy

Fitness proportional selection
Generalized generation gap
Genetic algorithm

Gradient Descent

Global optimization

Grid-based gradient descent
CRDE using hill-valley detection
DECG using hill-valley detection
Harmony Memory

DELG using jitter global mutation
DELL using jitter global mutation
Local optima value range

Local search

Markov chain Monte Carlo
Multipopulation crowding DE
Multiresolution multipopulation DE
Max Set of Gaussians

Number of function evaluations
No free lunch (theorems)

Number of global optima

Number of local optima
Parent-centric recombination
Parallel niching

Peak ratio

Particle swarm optimization
Replacement error

Ranking selection

Random start gradient descent
Simulated annealing
Speciation-based DE

Sharing DE

Stochastic local search

Sequential niching

Success performance

Success rate

Standard deviation

Tabu search

Unwanted replacement error
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CHAPTER 1

Introduction

Global optimization is an important field of study, as the methods can be applied to a
wide variety of applications from industrial design to creating art. Often only limited
information is available for the problem to be optimized. Additionally, real-world prob-
lems are often high-dimensional, contain a large number of optima, and may contain
discontinuities. These features pose a severe challenge for global optimization methods.

As a response for this challenge, a class of global optimization algorithms called meta-
heuristics have emerged. They aim to solve problems by using heuristic procedures
which capture and exploit the essential information of the problem without the need
for making a priori assumptions of the problem. Metaheuristic methods have become a
popular choice as global optimization algorithms, as they have demonstrated an ability
to solve difficult real-world problems in a wide variety of applications (see for example
(17, 125, 12)).

Evolutionary algorithms (EA) are one of the most popular classes of metaheuristics.
Their foundation is in mimicking the evolution process of a population of solutions, which
evolves through genetic variation and natural selection. Basic EAs are typically designed
for locating a single global optimum. Real-world optimization problems, however, often
contain multiple optima. From a practical viewpoint it is often desirable to be able to
locate more than one good solution to offer the decision maker options to choose from.
In this thesis, the term multimodal optimization refers to the attempt to locate all global
optima and optionally also good local optima of a multimodal function. The use of the
population makes EAs an interesting candidate for multimodal optimization. To employ
this potential, techniques called niching methods have been developed. The general idea
of niching is to somehow prevent the whole population from converging to a single area
of the search space and thus allow multimodal optimization.

Most global optimization approaches, including metaheuristics, contain global and local
search phases. These are especially visible in hybrid methods, which aim to combine
different optimization approaches in a way that allows the hybrid to employ the strengths
of all parent algorithms, and minimizes their weaknesses. In principle, any combination

17



18 1. Introduction

of algorithms can be hybridized, but usually the best results are achieved by combining
algorithms which can offer different strengths to the hybrid. Especially interesting are
the combinations of local and global optimizers. The term memetic algorithms refers to
methods that combine EAs with local search methods.

As the theoretical background behind the operation of metaheuristics is not generally
thoroughly understood, the research relies heavily on experimental studies in learning the
properties of different approaches. To achieve reliable experimental information, testing
environment must be carefully chosen to contain appropriate and adequately varying
problems. Various test function setups and function generators have been presented to
allow quality comparisons to be performed. At the moment, most of these are designed for
measuring the capability to locate a single optimum, which leaves the present selection
of test problems for multimodal optimization approaches quite limited. This hinders
experimental studies with such approaches.

1.1 Objectives

This thesis concentrates on studying the features essential for successful multimodal
optimization algorithms in the context of continuous optimization, where the problems
are represented as a function whose parameter space is real. The main objective is to
study the different implementations of global and local search phases, and to clarify their
effect on the performance of the algorithms. Additionally, relevant features of the used
test problems and their effects on the performance of different approaches are studied.
The objective is to identify the reasons behind good or poor performance, and to use
this information to develop multimodal optimization algorithms further.

Among the EAs, the Differential Evolution (DE) algorithm has been selected and studied
in detail. DE has demonstrated a good performance in a variety of applications [125, 23],
it has been designed for continuous optimization, and it is simple to implement. The use
of a single base algorithm allows more detailed analysis of the algorithm features, as well
as reliable comparison of the niching approaches. Especially the suitability of global and
local selection-based DE approaches for multimodal optimization are studied. One of
the objectives is to identify the strengths and weaknesses of local selection as a niching
method, compared to other selection schemes. Additionally, the possible advantages of
using randomization in the mutation operation of the DE algorithm are studied.

To be able to evaluate the multimodal optimization algorithms experimentally, an ex-
tended testing environment is required. One of the objectives is also to provide such an
environment for the public use, in addition to using it to provide the testing environ-
ment for this study. The idea is that by providing a standard environment, comparable
studies can be performed by other researchers, allowing a wider comparison of different
multimodal approaches.

1.2 Contributions and publications

The main contribution of this thesis is the increased understanding of the roles of global
and local search phases in the performance of multimodal optimization algorithms: An
algorithm able to do both effectively, will potentially gain advantage over algorithms
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which excel only in one or the other. As a result, hybridization offers a promising course
for increasing the performance of multimodal optimization algorithms. While hybridiza-
tion has been studied in the context of locating a single optimum, studies concentrating
on multimodal optimization are remarkably rare. Additionally, new understanding is
gained about the properties of the DE algorithm in the context of multimodal optimiza-
tion and different niching methods. Especially the ability of DE to exploit regularity and
the effects to performance are revealed. The findings have been partially published in
[136, 138].

On a more practical level, three novel DE-based multimodal optimization approaches
based on the idea of separating the global and local search phases are proposed. A com-
parative study performed in [133] demonstrates the potential of DE in solving multimodal
problems. However, the parameter study performed in [124] reveals a dependence be-
tween the population size (NP) and mutation step length, as well as a drift-bias towards
the better population members for the traditional global selection-based DE. The paper
also demonstrates that no such biases exist for a version of DE based on a local selection.
These findings, along with the results of a study of using randomization in the mutation
of DE [134] have been used as a basis for designing the local selection-based DE algorithm
capable of multimodal optimization in [135]. The algorithm has been developed further,
and two hybrid approaches for multimodal optimization are proposed in [138].

Another important contribution is the framework for generating multimodal test func-
tions, which has been published in [137, 138]. As the selection of test functions for eval-
uating multimodal optimization algorithms experimentally has been very limited, the
introduction of the generator framework allows for more versatile experimental studies
to be performed.

In the above mentioned publications, the author has made the majority of the devel-
opment, writing and and experimental work in all but [134, 124], in which the author
performed the implementation and experimental study and had a minor contribution in
writing.

1.3 Outline of the thesis

The thesis consists of seven chapters. Chapter 2 provides an overview of continuous global
optimization. The chapter is divided into five parts, reflecting the chosen classification
of the optimization methods. Chapter 3 offers an overview of the topic of multimodal
global optimization and of the related concept of niching. A rarely used way of measuring
the computational complexity of the niching methods is used, and the rational behind
that is explained. A classification into sequential and parallel niching methods is used.
The chapter presents the most important niching methods belonging to both categories,
especially concentrating on the parallel niching methods.

The topic of Chapter 4 is experimental evaluation of continuous global optimization
algorithms. First, some important exploitable problem features are described, followed
by the definition of relevant performance measures. Then an experimental study between
two optimization algorithms, Differential Evolution and Generalized Generation Gap
is reported. The study fulfills two purposes: It demonstrates the potential of DE in
solving multimodal problems, and demonstrates the difficulties related to comparing
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optimization algorithms through experimental results. Finally, the chapter describes a
proposed framework for generating multimodal test functions.

Chapter 5 concentrates on the DE algorithm, describing the basic algorithm and a brief
history. A discussion about using a randomized scale factor on the mutation operation
follows. Then the focus moves to considering the selection pressure of the algorithm,
and the concept of local selection is introduced. The differences between the local and
traditional global selection concepts are highlighted and the local selection is generalized
to multimodal optimization. Additionally, the chapter presents an overview of niching
techniques used with the DE algorithm. Finally, a brief overview of hybridizing the DE
algorithm is presented, and two novel hybrid algorithms for multimodal optimization are
proposed.

Chapter 6 presents the main experimental setup and results in two parts: In the first
part eight multimodal optimization approaches, including the proposed approaches, are
compared by using a set of functions generated by the test function framework presented
in Chapter 4. The first part concentrates on determining the ability of each approach
to locate multiple global optima in different functions and to explain the reasons behind
good or poor performance. In the second part, the ability of the most interesting methods
to locate and maintain also local optima is studied. Chapter 7 concludes the thesis.



CHAPTER II

Continuous global optimization

Optimization algorithms (optimizers) can be classified to methods that solely perform
local search (LS) and methods designed for global optimization (GO). Global opti-
mization is the practice of searching for the global optimum point Z* = {z1,...,zp}
which produces an optimal value for a fitness function f(Z) subject to box constraints
xZL <z < x? . While the optimization task may be either minimization or maximiza-
tion of the fitness function, in this thesis all experimental work assumes minimization.
Additionally, only functions having a real parameter space (£ € R”) are considered in
the context of this thesis. The term fitness value or simply fitness is used to refer to
the value of f(Z) for a particular solution candidate Z. Local searchers aim to efficiently
locate a local optimum residing near the starting point. A local optimum is a point which
can not be improved by a slight move in the neighborhood but is not necessarily a global
optimum. More formally, a local optimum is a point for which the first order derivative
f'(Z) = 0 and the second order derivative (&) > 0 (minimum) or f”(#) < 0 (maxi-
mum). In contrast, global optimizers aim to explore the search space extensively enough
to locate the actual global optimum. While for some functions, the optima are not well
defined due to points of discontinuity, this work focuses on numerical optimization where
such limitations are not an issue, as the optimum is then simply the nearest point from
the point of discontinuity within the desired numerical precision.

In practice, most, but not all, global optimizers can be considered to consist of a local
and a global search phase [141]. The global phase is responsible for the exploration of
the search space and aims to identify the potentially promising areas where the global
optimum could be located. For this, information from previous iterations is used through
the population or some other memory structure. The local phase aims to increase the
efficiency of locating the actual optima on the promising areas. In many algorithms these
phases are blended together and are not easily distinguishable.

21



22 2. Continuous global optimization

2.1 Pure global optimization methods

Pure global optimization methods rely on the global search phase and do not contain
any local improvement phase. The exhaustive search algorithm is the most fundamental
of the GO approaches. The idea is simply to go through all points of the search space in
a predetermined order. While theoretically the number of points for real coded problems
is infinite, in practice it is always possible to implement such an approach by defining the
limits in numerical precision. Exhaustive search, as all pure GO methods, is theoretically
convergent, i.e. it guarantees convergence to a global optimum in finite time. While finite,
the time to find the global optimum is still typically too long for practical use. When
all possible problems are considered in the sense of the no free lunch (NFL) theorems
[179, 180], exhaustive search is an optimal GO approach, because it never searches the
same point more than once. This is the only possible assumption which can be made
to improve the performance of an optimization algorithm over all possible problems. In
this sense the order in which the points are searched is irrelevant.

Typically, however, an optimization algorithm is designed for a small subset of all possible
problems. For example, the real-life optimization problems of interest have typically
some meaningful structure, so that neighboring points are somehow related and some
assumptions can be made from the value of the function in most points on the basis
of nearby points. By selecting a subset of problems, the performance of exhaustive
search can be improved through modifying the sampling order in which the points are
searched. Grid search aims to maximize the coverage of each part of the search phase by
generating the points in a predetermined grid. First a coarse search is performed, and
at each generation the grid gets denser.

Another option to cover the search space is to use pure random search, which simply
generates random points uniformly from the search space. Compared to exhaustive
search, pure random search is not optimal in the sense of NFL theorems, because the
same points can be generated multiple times. While the method is also convergent
like exhaustive search, the ending condition can not be similarly decided, because the
information about when all points have been considered does not exist. The advantage of
generating points randomly instead of using a grid or some other predetermined order is,
that it offers an unbiased (assuming uniform distribution is used) sample distribution over
the search space regardless of the ending condition. If exhaustive search is ended before
sampling through all points, the searched points are determined by the used sampling
strategy, which is always biased.

Branch and bound methods [160] improve the performance of exhaustive search by an-
alyzing and reducing the search phase during the optimization process. To achieve the
reduction, they divide the search space to sub regions and decide the lower bound for
any optima inside. Now any region having worse lower bound than the current optimum
can be discarded. The performance depends heavily on the accuracy of the lower bound-
approximating function. To generate the approximating function, some characteristics
of the fitness function must be known. This limits the usability of the branch and bound
methods to problems for which the generation of lower bound approximating function is
possible. Without the function, branch and bound reduces to exhaustive search.
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2.2 Methods for local search

The local search methods aim at locating a local optimum from a given starting point,
and they do not contain the global search phase. The idea is to generate a sequence of
points which leads to the local optimum as fast as possible. Basically LS algorithms need
to devise a strategy for deciding the length of each step and its direction, which decide
the efficiency of the algorithm. This section introduces some of the most important LS
methods briefly.

The LS methods can be classified to derivative-based methods and direct search meth-
ods, according to the method used to decide the search direction. As the name implies,
derivative-based methods require derivatives and are very efficient in differentiable func-
tions. Direct search methods do not require derivatives, and sample points from the local
neighborhood instead deciding the search direction based on the fitness function values
on these points. While the direct search methods are applicable to broader sets of prob-
lems, they converge typically significantly slower compared to derivative-based methods
in problems where both are applicable. As the derivatives can often be approximated
numerically, the set of meaningful problems for which the derivative-based methods are
completely inapplicable is small, and thus the direct search LS methods are often the
less attractive choice.

2.2.1 Derivative-based methods

Derivative-based methods can be classified further to methods using gradients (first order
derivatives) and methods using higher order derivatives. The advantage of using second
order derivatives is that step length can be estimated in addition to the direction, in
contrast to the gradient which contains only directional information. However, the ap-
plicability of derivative-based methods can be extended to a broader set of problems by
approximating the gradient numerically. The precision of the approximation then decides
the success of the algorithm. Typically the gradient can be estimated accurately enough
for continuous functions, but the second order derivative is already much more sensitive
and difficult to approximate. This limits the usability of methods based on higher order
derivatives severely in functions for which exact derivatives are not available.

Gradient descent (GD), also called steepest descent, algorithms simply descend downhill
in the direction of the steepest slope, i.e. the negative gradient direction. Using the
gradient direction directly tends to oscillate when the optima shape is a narrow valley
[146], which decreases the efficiency of the algorithm. Conjugate gradient (CG) methods
[146] [121, p. 420] construct the direction as the conjugate to the previous gradient
which is closest to the current gradient direction. This decreases the oscillation, and CG
is typically more efficient than GD. The (usually minor) downsize of using CG is the
requirement to store the previous search direction.

GD and CG refer to the method of deciding the direction, and they leave open the
decision of the jump length, which is typically decided by a line search procedure. Once
the search direction is decided by GD or CG, the line search finds the optimal solution
along that search line. The line search procedure typically uses first a bracketing method
for bounding the area where an optimum is located, and then a fine-tuning method for
locating the actual optimum inside the bounded area.
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In this thesis, the bracketing routine described in [121, p. 400] is adopted. The idea is
simply to locate three points along the search line where the middle one has better fitness
value compared to the other two. This means that an optimum is located somewhere
between the two outermost points. The bracketing uses the initial point and another
point generated along the search line to a distance of the initial bracketing length. The
third point is generated in the direction of improving fitness by using the distance of the
two points multiplied by the golden ratio (1 + \/5)/2 The process is repeated as long as
the new point increases the fitness value by using the differential of the two latest points
and replacing the oldest point (which has the worst fitness value) with the generated
point. In this thesis, the value of 1073 is always used for the initial bracketing length §.
Because the step length increases with each step, the selected value has only a limited
effect on the efficiency and does not decide the success of the bracketing, as long as an
appropriately small value is used.

Brent’s method [121, p. 402] is an efficient method for locating the actual optima inside
the bracketed area of the search line. The method starts from the three points located
by bracketing and alternates inverse parabolic interpolation and golden section search
until the optimum is located with a required precision. The golden section search is
a reversed version of the bracketing procedure: the longer of the differentials between
the middle point and either of the border points is divided by the golden ratio and the
points are updated to form a new set of three bracketing points, which now bound the
optimum tighter. By repeating this procedure, the actual optimum is eventually found
with required precision. The inverse parabolic interpolation fits a parabola through the
three points, and the location of the minimum of the parabola is used to approximate
the location of the optimum. As parabolic interpolation is very efficient in functions
whose area near the optimum is parabolic, the parabolic fit is attempted first. If it fails
to produce an acceptable point, Brent’s method uses the golden section search instead.
The described combination of bracketing and Brent’s method is used as a line search
operator for all related experimental results in this thesis.

Newton’s (or Newton-Rhapson) method [26, p. 155] [3, p. 216] has originally been
designed for locating roots of equations, but it can be used for function optimization.
The method uses a Hessian matrix which contains the second order partial derivatives
and describes the local curvature of the function. The matrix is used in generating a
quadratic approximation of the function to be optimized, which matches the first and
second order derivatives of the initial point. This approximation is then used to decide
the direction and length of the local search step. If the local neighborhood of the optimum
forms a quadratic shape, the algorithm jumps directly to the optimum. Newton’s method
is typically considerably faster for functions which offer reliable second order derivative
information, i.e. allow the Hessian matrix to be reliably generated compared to CG
methods. Of course the use of the second order derivative also limits severely the set of
functions for which Newton’s method is applicable.

Quasi-Newton (or variable metric) methods [26, p. 187] [121, p. 425] aim to extend the
usability of Newton’s method by building an estimate of the Hessian matrix iteratively
and using the current estimate at each iteration in conjunction with Newton’s method.
The Hessian is approximated by analyzing the history of gradient vectors, and as a con-
sequence, quasi-Newton methods do not require the second order derivatives. However,
they require storing the accumulated information, which is of a higher order of magni-
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tude than CG methods. Several slightly different variations of the general Quasi-Newton
concept exist [26, 121].

2.2.2 Direct search methods

The Nelder-Mead simplez (or downhill simplex) algorithm [109] [121, p. 408] uses a
simplex, which is a geometrical figure consisting of D+1 points called vertices, D referring
to the number of dimensions of the search space. In two-dimensional cases, the shape
of the simplex is a triangle. Unlike most LS methods, the Nelder-Mead simplex requires
not one, but D + 1 starting points to form the initial simplex. The idea is to use the
vertices of the simplex to estimate moves that increase the fitness and replace the worst
by the improved point. A reflection step takes the worst vertice and reflects it to the
opposite side of the simplex in the hope of finding an improved solution. An expansion
step, where the reflection step length is increased, is performed if the reflected point is
better than any of the current vertices to exploit a promising direction. The expanded
point is then used instead of the reflected point if it has better fitness to replace the
worst vertice. If the expanded point does not improve the fitness value, a contraction
step is taken, where the worst point is drawn towards the centroid of the simplex. If the
contracted point is able to improve the fitness, it replaces the worst vertice; otherwise all
vertices are moved towards the best vertice, resulting in a smaller but similarly shaped
simplex. Through these steps, the simplex is able to adapt itself to the function to be
optimized and converge to a local minimum.

Pattern search procedures search the neighborhood of an initial point according to a
predetermined pattern. The Hooke-Jeeves [67] algorithm is a pattern search method
which decides the search direction through explorative step attempts for each dimension
separately. An explorative move is performed by copying the current base point (initial
point is the first base point) first to 4. A predetermined positive number determining
the step length is then added for the first parameter of the ¥ and the fitness is calculated
for the resulting point. If the fitness is improved, the new point replaces 4. Otherwise a
similar step is attempted in the opposite direction. If neither one of the step attempts
improves the fitness, 4 remains unaltered. Similar explorative axial moves are attempted
for all D dimensions, and then the 7 is set as a new base point. A pattern move is then
performed by adding the differential between the two latest base points to the newest
base point. This point is added as a new base point if it improves the fitness. If all the
axial move attempts fail, i.e. the new base point is identical to the previous one, the step
length of the axial moves is reduced. The procedure is then repeated. Minimum step
length can be used as the end condition for the search.

Another pattern search procedure, the Rosenbrock method [129] similarly starts the
search in axial directions. Search steps for each parameter are performed in turn, so
that if the previous step in that direction increases the fitness, the step length for the
next jump for the same parameter is increased. Respectively, for a failed step attempt,
the step length is decreased and the direction is set to the opposite. The procedure is
repeated until the algorithm has recorded both successful and failed steps in all possible
2D search directions. At this point, the coordinate system is rotated in regard to the
direction from the initial point to the final point, and the process is repeated using the
rotated axial directions. The rotated direction approximates the gradient and allows the
algorithm to adapt to the shape of the optimum.
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A simple way of acquiring LS-like behavior is to simply generate a sample of points in
the neighborhood of a point, to select the best point, and repeat the process. The term
stochastic local search (SLS) [68] is used in this work when referring to methods which
use a specific distribution to generate the set of points for the LS randomly. Generally,
however, the term is often used for referring to a wide variety of algorithms based on
random sampling, many of which are not limited purely to local search. The classification
for stochastic methods in general to LS and GO methods is difficult, because increasing
the area in which the random points are generated allows such algorithms to jump to
different optima (and decreases the local search capacity). When the area in which the
points are generated is small compared to the whole search space, such algorithms work
as local searchers. At the other extreme is pure random search, where random points are
generated for the whole search space. For this reason, the term extended local search is
used in this thesis to refer to methods or operators which can not be strictly classified to
belong to either LS or GO groups. Methods doing extended local search concentrate their
efforts on a part of the search space, inside which they aim to locate the best optima.
They are able to escape local optima locally, but do not consider the whole search space
at once, like GO methods. Crossover-based local search (XLS) operators [91] are extended
local search operators used in the context of evolutionary algorithms, which acquire the
local sample points by performing crossover operation between population members.

2.3 Local search-based global optimization methods

The most straightforward way of implementing a GO method which contains both the
local and global search phases, is to keep restarting a local search algorithm from different
starting points and storing the best found optima until an end condition is reached. Such
strategies are referred to as multistart methods. The success of such methods depends
directly on the selection of the initial points. It is not trivial how the points should be
selected to achieve good exploration power in a general case. A simple solution is to select
the starting points using a pure global search method, like grid search or pure random
search, and use the generated points as starting points for a local search procedure.
Such methods retain the feature of being theoretically convergent but are more useful in
practice, compared to pure random search, due to their ability to locate optima faster.

In this work, two multistart approaches are used, both of which use the gradient descent
as the local search method adopting the line search procedure described in Section 2.2.1.
Random start gradient descent (RSGD) uses uniform random starting points, while grid-
based gradient descent (GRGD) uses a predetermined grid for generating the starting
points. The gradient vector is always approximated with a central difference estimate,
using the largest absolute value of a box constraint for any of the dimensions of the
problem, scaled with 7 = 10~ as the distances from the central point.

A grid for GRGD is generated to maximize coverage. First a single point is generated
at the middle of the search space in regard to all dimensions. Then, new points are
generated between existing points and the box constraints at each subsequent generation
such that all distances are halved. Finally any remaining gaps are filled, such that
the acquired points are evenly distributed in the form of a hypercube. The number of
points generated at the end of generation g is (3-7_2")P. As can be seen, each new
generation will contain more starting points than all previous the generations combined.
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Especially with higher dimensions, the number of generations completed will be low, and
the search typically stops short of completing a generation. Using the starting points
in a predetermined order would create a strong bias in the search. For this reason,
the points inside each generation are used in a random order to minimize the bias. Of
course, bias can not be completely eliminated from the grid-based approach. The chosen
method of generating grid makes the algorithm inefficient in searching optima located
on the constraints. Generating starting points on the constraints at the beginning would
improve the performance on locating optima which are at the constraints. Such a strategy
would be problematic in a more general setup, however, because it would strongly bias
the search to the constraints, as 3P points would be required to achieve an initial coverage
of the constraints. While this works in low-dimensional cases, in problems with higher
dimensionality the algorithm would only generate points on the constraints. Algorithm
1 presents the RSGD and GRGD algorithms.

Algorithm 1 Gradient descent algorithm

1: while termination criterion not met do

2:  Pick Z, randomly (RSGD) or using grid (GRGD)

3:  while the optimum has not been found with required precision do

4 Calculate normalized gradient g,, = §/|g]

5 Perform bracketing using method presented in [121, p. 400], using initial points
Ty and Zp = —S - gn + Za

6: Perform line search using method presented in [121, p. 404]

7. end while

8: end while

One drawback of the multistart methods is the fact that they tend to locate the same
optima repeatedly. The effort allocated for locating an already found optimum is wasted.
Clustering methods aim to select the starting points for a multistart method so that the
number of wasted local searches is minimized. Schoen [141] defines a generic clustering
framework for generating the starting points for a multistart method. The process starts
from a uniformly distributed set of points. Then a sample concentration is performed to
change the distribution of points to reflect the shape of the function. Sample concentra-
tion can be done for example by simply discarding a predefined percentage of the points
with worst fitness. Another typical method is to run an LS algorithm a few steps for
each point of the sample. A clustering method is then used for the concentrated sample
dividing the points into clusters, which estimate the locations of different local optima.
The LS procedure is then run for only one representative point from each cluster, as it
is assumed that points belonging to the same cluster belong to the area of attraction
(AOA) of the same optimum, i.e. LS started from any point would lead to the same
optimum. The procedure can be repeated several times if necessary. A wide variety of
different clustering methods have been suggested for the general framework. For more
information see for example [141, 70, 71, 167].

The multistart methods presented above aim at locating the global optimum by finding a
way to place the starting point of the LS method inside the AOA of the global optimum.
Another approach for implementing the multistart approach is to modify the function
between restarts in such a way that the original starting point has only little impact on
the final solution. One way to perform the modifications is to use direct elimination of
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local optima [108]. The idea is to simply eliminate each found optimum from the search
space by modifying the function locally, so that the next iteration will not end up in
the same optimum. The main difficulty of such methods is determining the size of the
neighborhood to be eliminated: choosing too small a neighborhood will create new false
local optima, while too large neighborhood value may remove other real optima.

Local smoothing refers to methods which modify the original function by smoothing
the function to get rid of poor local optima. The idea is to start from a very smooth
function, whose optimum can be easily located, and gradually decrease the degree of
smoothness. The solution from the previous round is used as the initial point for the
next round. Moré and Wu [105] for example use a Gaussian transform for generating
the smoothed approximations of the function. A single numeric parameter controls the
level of smoothing. The limitation of local smoothing is that the approximation does not
necessarily correspond to the original function and can draw the search towards a local
optimum instead of the global one. The Gaussian transform biases the search towards
the middle of the search space, which may lead the method to ignore the global optimum
close to the box constraints even in very simple functions [108]. For this reason, local
smoothing is most useful for removing local noise.

Global smoothing adds a convex function to the original problem, and the fitness is
calculated as a sum of these. The idea resembles local smoothing, and the aim is to
similarly eliminate poor local optima. A multiplier term defines the smoothing effect
the convex function has to the original function, and similarly to local smoothing, the
optimization starts with a high value and decreases between the runs. The main difference
between local and global smoothing is that global smoothing guarantees the function to
become unimodal with a large enough multiplier. Local smoothing methods can not
make such a guarantee. The initial point for the LS has no effect on the outcome of the
search for global smoothing. The optimum location of the added convex function decides
the outcome of the search: if it is close to an existing optimum of the original function, it
will direct the search that way, although the optimum may not be global. For this reason
the task of finding good initial points for LS is transformed to finding good optimum
locations for the added convex function.

Shang [144] uses a space filling curve to explore the search space, coupled with an LS
method. The fitness is calculated by taking into account the distance to the space filling
curve in addition to the actual fitness of the optimized function. The search thus only
deviates from the curve when a good attractor is spotted, whose pulling force is able to
overcome the penalty of straying away from the curve. The penalty has a smoothing effect
to the fitness, like local smoothing. An obvious difficulty with the method is defining
a suitable penalty for straying from the curve. Another problem is that the used space
filling curve biases the search in the same way as using a grid to decide the starting points
of LS if the whole curve is not searched. Space filling curves will become very long in
higher-dimensional problems.

2.4 Metaheuristic methods

Metaheuristic methods are stochastic and heuristic (do not guarantee exact solution)
general global optimization algorithms using black-box procedures. The term black-box
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refers to the fact that the algorithm does not make any assumptions on the optimized
problem. The only required information is the fitness value with a given input. As
the metaheuristic algorithms are general optimizers, they are rarely the most efficient
methods for problems for which an efficient problem-specific algorithm exists. Thus
metaheuristic methods are best used for problems for which problem-specific algorithms
are too hard or even impossible to construct. Typically metaheuristic algorithms require
a set of user-specified parameters, whose values determine the success of the algorithm
in the given task. Thus the user may provide problem-specific information through
the selection of suitable parameters. On the other hand, if such information is not
readily available, finding a good parameter setup may become a difficult task by itself.
Often metaheuristic methods are further tailored for a specific problem by taking a
general framework and importing some problem specific-data to the algorithm through
modifications.

To be able to solve a black-box problem, metaheuristic algorithms need to be able to
capture and exploit problem-specific characteristics. To do this, some form of a genera-
tional memory is required, which stores important information and allows it to be used to
guide the search. This can be a memory structure which stores information of previously
visited points, or a population, which simultaneously contains a set of solutions for the
problem. The reasoning on using the population is that it can capture useful information
of the problem at hand, which can be used to direct the search on a global scale. This
section introduces well known metaheuristic approaches.

2.4.1 Non-population based methods

Simulated annealing (SA) [76, 90] was first introduced for combinatorial optimization,
but has been later generalized for real coded functions. The algorithm simulates the
cooling of molecules to a state of minimum energy (optimum). The general framework
of the algorithm requires the definition of three main parts: distribution for sampling
new points, acceptance function, and cooling schedule. The idea is to start from a
random initial point (state) and generate a new random point according to the sampling
distribution. The acceptance function is then used to decide whether the algorithm moves
to the new state or not. To allow the algorithm to escape local optima, the acceptance
function typically allows moves to worse points sometimes. The cooling schedule controls
the probability, so that at the beginning, moves to worse points are more likely, and the
probability decreases as the system cools down and the algorithm converges. The basic
idea of SA falls to the category of extended local search, as it actually performs stochastic
local search in the neighborhood of the current state. The global information is limited
to the cooling schedule, as the framework does not implement a generational memory.
The framework, however, leaves the three main parts open, and variations using the
history of sampled points to direct the search have been presented [90]. For example,
some simulated annealing methods try to scale the probability distribution based on the
previously visited points.

Tabu (or taboo) search (TS) [51, 52, 53] was also initially designed for combinatorial
problems, and later extended for real coded functions [29]. Similarly to SA, it uses a
single point, which moves around the search space. Different methods for generating
the sequence of points can be used, and usually LS methods are used as a part of the
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approach. The essential idea behind TS is the use of tabu lists, which are used as the
generational memory to direct the search globally. Tabu lists define some areas of the
search space as taboo and direct the search away from these areas. Different rules for
the lists can be used. Typically areas around the already found solutions are excluded
to prevent the algorithm from searching the same areas multiple times. Essentially, the
algorithm implements an advanced “direct elimination of optima”-principle, as the taboo
lists are often temporary and also exceptions can be specified.

2.4.2 Evolutionary algorithms

Evolutionary algorithms [40, 17, 18] are a class of metaheuristics, which aim to use the
concepts of natural evolution in optimization. The underlying idea of EAs is to use a
population of candidate solutions which evolves through genetic variations and natural
selection. The selection realizes the “survival of the fittest” principle: population mem-
bers with higher fitness are more likely to survive and participate in generating offspring.
This creates a convergence pressure for the population towards better solutions. New
candidate solutions are created through stochastic variation operators, which use the pop-
ulation information to direct the search to promising regions. The selection and variation
operators are the two fundamental forces driving the evolution process. The selection
procedure is often seen as being exploitative by nature, while the variation operators
are responsible for exploring the search space. Such a straightforward connection may
be misleading, however, as pointed out by Eiben and Schippers [39]. In this thesis the
term exploitation is used in the context of defining the ability of an algorithm to exploit
specific function features. Such abilities are rarely related to the selection procedure, but
rather to the used variation operations.

REPRESENTATION

In order to solve a problem by using an EA, the representation must be decided upon.
The term phenotype refers to the actual candidate solutions of the optimization problem,
while genotype refers to the representation of population members which correspond to
the phenotypes. While sometimes EAs work directly using genotypes like real coded
EAs solving real number problems, the phenotype must often be encoded to form a
genotype. The used codings are an important topic especially in the context of combi-
natorial optimization, but as this thesis is limited to continuous optimization, the topic
is not considered further. An exception is binary coding, which is widely used in solving
different types of problems including functions with real parameter spaces. The idea is
to simply represent each parameter of the solution by a binary number of a fixed length.
These numbers are often called genes, and a chromosome (individual) is formed by com-
bining these genes. When real numbers are encoded to binary coding, the length of the
gene decides the achievable precision, as the encoding is done from a continuous to a
discrete set. Gray coding [21] is sometimes used instead of raw binary numbers to avoid
the forming of Hamming cliffs.

VARIATION OPERATORS

Variation operators are typically classified to mutation and recombination (crossover) op-
erators. The defining feature of mutation operations is that they are unary operators, i.e.
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they are applied to a single population member. Heuristic unary operators are typically
not classified as mutation, as a mutation operator should cause random changes which
are not biased by any predetermined decisions. The population information, however, is
often used for biasing the mutation distribution. In binary coded representation, muta-
tion is typically done by simply flipping random bits of a chromosome. For real coding,
the mutation typically generates a random vector from a suitable distribution and adds
that to a population member. The role of mutation is to allow access in completely new
areas of the search space, but mutation can also work as an SLS operator, if small step
length is used. Self-adaptive methods are able to adapt some of their parameters, like
the mutation step length or the shape of mutation distribution, during the optimization
process. Thus the same mutation operator may perform longer, explorative jumps at the
beginning and then become an SLS operator when the jump length decreases.

The idea behind recombination is to merge information from two or more population
members. The reasoning behind the use of recombination is the building-block hypothesis
[65], which assumes that better solutions can be constructed by combining good partial
solutions. The idea is simply to take parts from two already good parents in the hope of
generating even better solutions. One-point crossover is the simplest of the recombination
operators. The idea is to simply split two parent individuals from a randomly selected
location and switch the tails. The process creates two offspring. The n-point crossover
is a generalization of the one-point crossover. Now instead of splitting the parents to
half, they are split to n parts, and offspring are created by taking alternative parts from
both parents. Uniform crossover treats each variable independently, using a predefined
probability when deciding which parent it is inherited from. All the listed methods can
be applied to both binary and real coded representations. However, the splitting for
real coded representation can be done only between the variables and not between bits,
as in the binary coded version. This means that the recombination for real coding can
only create new combinations of existing variables, i.e. the created points are biased
to the axial directions and allow only a fixed number of different possible jumps. For
this reason arithmetic (intermediate) recombination is often used with real coding. The
basic idea is to create the offspring between the parents through an averaging process.
Such averaging operators create a bias towards the center of the population. This is
often not desirable, provided that no problem specific information is available to indicate
that the search should concentrate on the middle of the search space rather than the
borders. Due to the difficulties of applying recombination, real coded algorithms tend to
use mutation as their main operator, while binary coded algorithms typically rely mainly
on recombination.

SELECTION OPERATORS

Two types of selection are used in EAs: parent (or mating) selection and survivor (or
environmental) selection. Both types of selection are always present in any EA, but
often an EA emphasizes one and the other is implemented in a straightforward way.
Parent selection is performed prior to the variation operators and decides which of the
population members participate in the breeding process. Survivor selection is performed
after the variation operators are applied and decides which of the created offspring are
granted entry to the population.
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EAs can be classified to two different categories on the basis of how the selection opera-
tors are divided into periods: generational and steady state algorithms. In generational
algorithms, a large pool of offspring is first created through parent selection and variation
operations. Then survivor selection is applied, and the whole population is replaced at
once. Often generational algorithms emphasize parent selection and survivor selection
simply discards the old population and replaces it with the population of the offspring.
An important concept, especially with generational algorithms, is elitism. An algorithm
is elitist, if it guarantees to never lose the best solution found thus far. Generational
algorithms are typically non-elitist if special precaution is not taken to ensure the sur-
vival of the best solution between generations. In contrast, steady state algorithms use
survival selection to replace only a part of the population at a time. Typically steady
state algorithms emphasize the survival selection and use the fitness or sometimes age
information to decide if the offspring are allowed to enter the population and which
population members are replaced.

The simplest way of implementing parent selection is to simply allocate the population
members as parents randomly without considering their fitness. Another method is
to allocate each population member in turn as a parent in a predetermined order. A
more sophisticated selection method is fitness proportional selection (FPS). The selection
works so that the probability of each individual to be selected for breeding is directly
proportional to its absolute fitness. FPS constitutes three main problems: individuals
that are significantly better compared to the rest of the population will be selected for
breeding very often, and as a consequence will fill the population with their offspring very
quickly, which can lead to premature convergence, i.e. convergence to a local optimum.
On the other hand, if the fitness values of the population are almost equal, FPS degrades
to uniform random selection constituting no real selection pressure. Finally, the behavior
of FPS changes if the coordinate values of the function are shifted. Ranking selection (RS)
has been developed to fix the problems of FPS. The idea is to use ranked fitness instead
of absolute fitness. Individuals are first sorted according to their fitness, and each is then
allocated a predetermined probability for being selected for breeding, based on their rank.
Tournament selection differs from FPS and RS in the way that it does not consider the
whole population at once, but rather picks a sample of n random population members
and arranges a tournament between these. Depending on the implementation, the winner
is either directly the individual with the highest fitness, or it is randomly selected, by
giving a higher probability to the ones with better fitness. The selection pressure can be
controlled through tournament size n. FPS, RS and tournament selection can be used in
the survivor selection phase as well by combining the current population members and
offspring. Alternately, some methods use deterministic selection by simply combining
the parent and offspring populations and keeping the best n solutions.

CLASSIFICATION

Historically, EAs suitable for continuous optimization are classified into three main cate-
gories: genetic algorithms (GA) [65], evolution strategies (ES) [9, 142] and evolutionary
programming (EP) [43, 44]. Genetic algorithms are the most well known, and they are
characterized by the use of binary coding and recombination as the main operator. ES
and EP, on the other hand, have initially been designed for real coding and use mutation
based on normally distributed random numbers as the main operator. Both typically use
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self-adaptation by including some of the control parameters to the population vectors,
and they evolve along with the solutions. The main difference between ES and EP is
that ES allows the use of recombination while EP methods are purely mutation-based.
Additionally, ES conceptually uses deterministic survivor selection while EP applies tour-
nament selection. Several real coded variants of GA have also been presented [63]. Such
methods, however, often resemble ES or EP more than binary coded GA. As the clas-
sification to GA, ES and EP is based on history and not directly on the properties of
algorithms, it is becoming increasingly difficult to define a certain method to belong to
a particular category, especially because the methods of each group have been further
developed and have adopted ideas from each other. Additionally, some EA methods,
such as Differential Evolution [125], do not fit well to any of the three categories.

Deb [34] presents an interesting idea of a population-based algorithm generator by defin-
ing four basic plans which define an optimization algorithm. The selection plan describes
the parent selection method. The generational plan describes how the selected parents
are used to generate offspring. The replacement plan describes which solutions of the
population will be subjects to replacement, and the update plan is used to decide which
individuals among the offspring, parents and the solutions selected for replacement will
actually enter the population. Deb demonstrates that such a generator is able to rep-
resent different types of EAs, as well as other types of optimization algorithms, and
generate new algorithms by using different combinations of the plans.

2.4.3 Other approaches

In addition to EAs, another group of metaheuristics, which takes its inspiration from
biology, are the methods based on swarm intelligence [75]. Among these, particle swarm
optimization (PSO) [74] is best suited for continuous optimization. The method models
the swarm behavior of animals or insects. Population members are referred to as particles,
which fly through the search space and evaluate the fitness values of visited points. The
direction and velocity (step size) of each particle is affected by two attractors: the best
location the particle has personally visited this far, and the best known point located by
any particle in a certain neighborhood. Gbest PSO methods refer to variants for which
the neighborhood is defined as the whole search space, while lbest PSO refers to methods
for which the neighborhood is defined in a more limited manner.

Harmony search [49, 82] mimics the inspiration of music players to search for the perfect
state of harmony. Harmony memory (HM), which imitates a population and acts as the
generational memory, is initialized with random values. New harmonies are improvised by
using a procedure resembling recombination. The value for each variable is independently
chosen from a member residing in the HM, or generated randomly. The probability of
either is controlled through a predetermined control parameter. If the variable was taken
from HM, it may be pitch-adjusted. Pitch adjusting simply adds a small value to the
variable providing SLS to the algorithm, comparable to a mutation operator in an EA.
The created harmony replaces the worst harmony in the HM, if it was able to improve
the fitness.



34 2. Continuous global optimization

2.5 Hybrid methods

Hybrid methods aim to combine different optimization approaches in a way that allows
the hybrid to employ the strengths of parent algorithms and to minimize their weak-
nesses. In principle any combination of algorithms can be hybridized, but usually the
best results are achieved by combining algorithms which can offer different strengths to
the hybrid. Especially interesting are combinations of local and global optimizers. The
term memetic algorithms [61] refers to methods that combine EA with local search meth-
ods in an effort to increase the local convergence speed without losing the advantages of
adaptive generational memory. Pradeeb and Ranjan [120] divide such methods in three
main categories according to when the local search is applied: pre-, post- and organic
hybridization.

Pre-hybridization uses a local optimizer for generating the initial population for EA. The
methods are mainly useful for directing the search to user-defined areas and increasing the
convergence speed (compares to seeding the population with already known solutions).
While such approaches may offer increased performance in specific cases, like in [83],
they generally tend to decrease the diversity of the initial population and thus hinder the
exploration capabilities of the EA part, increasing the risk of premature convergence.

Post-hybridization methods run EA first to achieve a starting setup for a local search.
The aim is to achieve good exploration of the search space by first running an EA and
then switching to local search to speed up the final convergence. The main difficulty
in such approaches is determining when to perform the switch. For example a method
presented by Chelouah and Sierra [24], starts with GA and switches to a Nelder-Mead
simplex when the progress of GA starts to fall, or a fixed number of generations is
reached. The hybrid genetic-conjugate gradient algorithm presented by Pradeep and
Ranjan [120] runs GA multiple times and uses the best points obtained for the starting
points to conjugate gradient local search.

Organic hybridization methods use local search to improve the solutions during the EA
run. A typical approach is to use local search to improve the individuals produced by the
EA. A lot of research has been done on organic hybridization of GA and a good outlook
of the field, as well as an example of one such approach, can be found in [91]. Organic
hybridization methods are historically divided to Lamarckian and Baldwinian ones [177].
Lamarckian methods directly use the individual improved by the local search, while
Baldwinian methods attach the fitness value of the improved individual to the original
produced by the EA. For this reason, Baldwinian methods are able to keep up the
diversity longer, leaving more time for the evolutionary algorithm to explore the search
space. On the other hand, Lamarckian methods tend to converge faster, but typically
include a higher risk of premature convergence.

2.6 Summary

This chapter has presented an overview of continuous global optimization. GO methods
consider the whole search space and aim at locating the global optimum. Pure GO
methods do not contain any local improvement phase, which induces slow convergence
properties, unless problem-specific information is used to direct the search. Local search
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methods, on the other hand, aim at locating an optimum residing near the starting point
of search efficiently without worrying whether the found optimum is global or only local.
Derivative-based LS methods are efficient, but require at least numerical approximation
of the derivative to be available. Direct search methods are typically less efficient, but
do not require derivative information and are thus applicable to a wider selection of
problems. LS methods can be used for global optimization by using a pure GO method
for generating starting points for the LS method. Such multistart methods are able
to improve the convergence speed of pure GO methods. Another way of implementing
multistart methods is to modify the function between restarts so that the initial starting
point has only little impact on the final solution.

Metaheuristic algorithms are general black-box GO algorithms. They often draw in-
spiration from natural or physical processes, such as evolution. They aim to capture
and exploit problem characteristics through a generational memory, which is often im-
plemented as a population of solution candidates. Hybrid methods combine different
algorithms to employ their strengths and minimize the weaknesses. Especially combi-
nations of metaheuristics and LS methods offer a potential to achieve algorithms with
superior cababilities in many optimization problems.

This chapter has concentrated on analyzing methods for locating a single solution for a
given optimization problem. In the next chapter, methods for locating multiple solutions
simultaneously are considered.
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CHAPTER III

Multimodal global optimization by niching

An optimization problem is considered to be multimodal, when it contains more than one
locally optimal solution. The goal of global optimization is typically to find the solution
having the best fitness value among the optima - the global optimum. Of course, a
multimodal problem may also contain multiple globally optimal solutions. Examples
of real world problems with multiple global optima include locating the DC operating
points of a nonlinear electronic circuit [28], or power system planning [38].

In multimodal global optimization, the goal is to locate several optima. Typically the
task is to locate at least all global optima. However, which of the optima are considered
global depends in practice on the used precision. Decreased precision may make local
optima, which have a fitness value close to the global optimum, indistinguishable from
the global optimum. Additionally, some of the locally optimal solutions, while being
inferior to the global optimum in terms of their fitness value, may provide other inter-
esting qualities which are not included in the model being optimized. From a practical
viewpoint, multimodal optimization gives the decision maker options to choose from by
offering multiple possible solutions. Thus the goal of multimodal global optimization
may be defined as locating the best n optima of a multimodal problem, so that n is
not smaller than the number of global optima (NGO) of the problem. The best optima
may be defined purely by the fitness function value. Typically, however, also a distance
component is taken into account: in a rugged landscape, local optima near a global opti-
mum are often not interesting, even though they typically have good fitness value. More
interesting is locating the locally global optima: solutions that are optimal in promising
regions of the search space.

3.1 Niching

The term niching refers to natural ecosystems, where different species survive by evolving
to fill different niches. These niches can be seen as stable subpopulations, each covering
a single promising region of the search space. Niching methods can be broadly classified
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into two categories: sequential niching (SN) and parallel niching (PN) methods [96]. Es-
pecially the parallel niching methods are closely related to population-based optimization
methods, like evolutionary algorithms. Sequential niching methods rely on running an
optimizer repeatedly, and do not necessarily require a population.

The main purpose of niching is to allow an algorithm to locate and maintain multiple so-
lutions. In algorithms using population, this typically means maintaining the population
diversity, i.e. preventing or at least significantly slowing the population from converging
to a single region of the search space. This potentially decreases the chance of premature
convergence, and thus niching methods are often used even when the goal is only to lo-
cate a single global optimum. In the context of this thesis, however, the most interesting
feature of the niching methods is their ability to allow optimizers to perform effective
multimodal optimization.

3.2 Complexity

It is customary to define the computational complexity of niching methods on genera-
tional basis [104, 140, 46, 84, 27, 85, 151, 113]. In one generation (the term iteration
is often used interchangeably), a population-based optimizer typically produces NP new
individuals (trials), i.e. searches for NP new locations of the search space, which is usu-
ally also the number of required fitness function evaluations. Niching methods do not
typically require excess function evaluations, and complexity increase comes through the
calculations required to decide the similarity of population members. The generational
complexity for a niching method is defined so that if the method does not add additional
computational complexity on top of the complexity of an optimizer (like preselection),
the complexity is defined to be O(NP), based on the number of generated trials in one
generation. For a method which requires a similarity measurement calculation between
each trial and each existing population member (like sharing), complexity is defined
as O(NP?), because the total number of required similarity measurements in a single
generation is NP2.

While generation-based complexity measurements give a measure of proportionate com-
plexity between most niching methods, they are limited to algorithms for which the
concept of generation can be applied. They can also be misleading: defining complexity
as O(NP) suggests that the complexity of the niching should increase with the popu-
lation. However, increasing the population size also increases the number of trials, and
as a result the number of fitness function evaluations performed inside one generation.
Thus the complexity per generated trial stays constant. The progress of the search of
an algorithm is proportional to the number of generated trials, not to the definition of a
generation, and the complexity measure should reflect that.

Defining the average added complexity of the niching method for a single trial gives a
more useful measurement of the complexity of different niching methods. This also allows
direct comparison to non-generational methods. Using the complexity per trial (CPT)
measure, the complexity of preselection is O(1) and the CPT of sharing is O(NP). Now
it is instantly clear that the complexity of preselection is independent of the population
size, and the complexity of sharing requires NP extra operations for each generated trial,
i.e. each search step the algorithm makes. A similar representation for complexity has
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been used by Menczer and Belew [98]. CPT is used for the rest of this thesis as a default
complexity measure of niching methods.

3.3 Sequential niching

Multimodal optimization can be performed simply by running any optimization algorithm
multiple times with varying initial configuration and recording the found optima. The
problem of such approaches is that they typically waste a lot of time by searching the
same regions over and over again. For local optimizers, various methods have been
suggested for minimizing excessive search on regions already visited, like constructing
the starting points in a grid or using clustering to eliminate processes which seem to be
heading towards the same optimum. The aim of SN methods is to use the information
from previous steps to guide the search away from already explored areas. They may
modify the optimization landscape by removing already found attractors, for example
using direct elimination or local smoothing techniques. Another approach is to add
additional constraints to prevent access to certain regions of the search space. Tabu
search, for example, memorizes the already visited locations and uses the information to
direct the search to more promising areas.

The derating technique presented by Beasley et al. [7] runs GA repeatedly and records
the best found solution for each run. The derating function is used to penalize the fitness
value around the already found optima within a niching radius. Vitela and Castanos
[172] have modified the original method by extending the effect of the derating function
outside the niche radius and using a clearing procedure to eliminate solutions within the
radius. The adaptive isolation model of Ando et al. [2] uses deration in conjunction with
clustering during a GA run to isolate subpopulations. The procedure is applied recur-
sively for the subpopulations. Zhang et al. [187] use the derating concept in conjunction
with particle swarm optimization to achieve multimodal optimization. A related method
proposed by Parsapoulos and Vrathis [114] modifies the search space during a particle
swarm run. The aim is to remove the tendency of the swarm to oscillate between several
attractors by isolating and searching them independently by a small subswarm.

Mahfoud [96, 94] has compared niching methods in combination with GA, using the
derating technique as an example of sequential niching. His experiments demonstrate a
better performance for PN both in terms of speed and number of located optima, and
he concludes that PN outperforms SN for the following reasons: deration is unable to
completely eliminate the problem of locating the same solutions repeatedly, but it can
transplant or destroy optima of interest or create false optima around the already found
solutions. These effects increase the difficulty of locating the remaining optima, as the
problem turns to "multiple needles in a haystack” [94, p. 209]. Derating may thus
actually make the problem harder and not easier, as was the original idea. Additionally,
PN allows parallelization and can be used to maintain diversity also when locating only
a single solution, unlike SN. While there may be ways around some of the shortcomings
of SN, the attention for the remaining of this thesis is restricted to parallel niching
techniques, which are seen to hold greater potential for multimodal optimization.
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3.4 Parallel niching

A population forms a natural foundation for multimodal optimization algorithms, be-
cause it allows multiple solutions to exist simultaneously. Population-based global opti-
mizers in their basic form, however, are typically designed to eventually converge towards
a single solution, i.e. they will eventually lose population diversity. Parallel niching meth-
ods aim to prevent this. To understand the concept of PN, the concept of population
diversity must be understood first. According to Mahfoud, ” Diversity is a general term
that describes variation or lack of similarity among a collection of objects” [94, p. 51].
Depending on the coding of the population, several numerical measures may be used for
estimating the population diversity. For example the sum of Euclidean distances between
all real valued population members is one such estimate. As numerical diversity mea-
sures are not used in this thesis, their exact definitions are outside its scope. A general
framework for defining diversity measures and several examples can be found in [94].
Regardless of the exact measurement used, the diversity is high when the population
is evenly spread throughout the search space and diminishes when population members
start to form groups around good solutions and is at minimum level when the whole
population has converged to a single point. In population-based optimizers, initializa-
tion is often done by using uniformly distributed random numbers over the search space.
Thus population diversity is typically at maximum level at the start of the optimization
process and diminishes as the population converges.

Simply maintaining a high level of population diversity is not itself the goal of an effective
PN method. As the diversity is high when the population members are just random
points, an effective way of keeping the diversity would be to simply prevent the optimizer
from converging. Of course this kind of an optimizer would be useless, as it would not
be able to locate optima effectively. Thus the goal of a PN method is to maintain useful
diversity, not to completely prevent convergence. Mahfoud states that “... diversity is
useful if it helps in achieving some purpose or goal” [94, p. 60]. In case of multimodal
optimization this means that the niching method must allow convergence locally to the
desired solutions, but at the same time be able to maintain diversity between different
regions of the search space.

3.4.1 Implicit parallel niching

Zaharie [183] divides parallel niching methods to implicit and explicit ones. Methods
using implicit PN work with a single population. Niching is achieved by modifying the
optimizer itself to favor solutions that keep the population diverse. Explicit PN, on the
other hand, divides the population into subpopulations explicitly and runs the optimizer
for each of these independently. Implicit PN methods are the most well known group
of niching methods. Most of the methods have originally been developed to work in the
context of genetic algorithms and later generalized for other population-based optimizers.

RESTRICTED REPLACEMENT

One way of achieving implicit PN is through restricted replacement. The basic idea
is to allow competition only between similar population members, which can be seen
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as belonging to the same niche. One of the earliest studies of restricted replacement
in the context of GAs are the three preselection schemes by Cavicchio [22]. Scheme
3 demonstrated superior performance compared to the other two. It pits an offspring
against its weaker parent, decided by the fitness value. The offspring replaces the parent,
if it has a superior fitness value. The reasoning is that the offspring inherits a lot of
features from the parents. Thus the differences between the parents and the offspring are
typically smaller than between the offspring and the other population members. When
the offspring replaces a parent, which is one of the most similar population members,
the population will not lose a lot of useful diversity, but still allows the population to
converge locally. The main advantages of preselection are low CPT of O(1) and the lack
of need to define control parameters, or even a formal measure for similarity between the
population members.

De Jong has introduced the crowding scheme in his thesis [33]. The concept was initially
designed for maintaining population diversity to prevent premature convergence, not to
actually enable multimodal optimization. In crowding, an offspring is compared to a
random sample taken from the current population, and the most similar individual in
the sample is replaced. Crowding factor parameter CF' is used to determine the size of the
sample. To define the similarity, a difference measurement must be defined. Typically
the difference is seen as a distance between two population members. De Jong measured
the distance by using genotypic matching (Hamming distance), by performing a bitwise
comparison between the population members. The problem with this measure is the
fact that it does not distinguish between more and less significant bits. A more recent
distance metric for binary strings, phenotypic similarity [56], decodes the parameters
before comparison to overcome this. A typical similarity measure between real coded
population members is the Euclidean distance.

Harik [60] suggests a restricted tournament selection, which modifies tournament selec-
tion to achieve niching cababilities. The method resembles De Jong’s crowding. Two
individuals are first selected from the population to produce two offspring through mu-
tation and crossover. A binary tournament is then run between each offspring and the
most similar individual from a random sample of individuals taken from the population.
Restricted tournament selection also requires a user to specify the sample size equal to
the CF parameter of De Jong’s crowding.

Mahfoud [95, 94] has examined both crowding and preselection. He defines a replacement
error (RE) to happen, when a population member residing inside the AOA of one op-
timum gets replaced by a member from another. While this definition fits for problems
where the goal is to locate all the optima, a more general definition is required when the
goal is to locate only n best optima among a large number of optima. For such cases, the
ability of the algorithm to lose unwanted optima is essential for success, and an algorithm
achieving zero replacement error according to Mahfoud’s definition will achieve a poor
performance, because population members will be stuck in the initial optima. This will
be demonstrated in the experimental part of this thesis. Unwanted replacement error
(URE) is defined to happen when a trial replaces a population member which is not the
most similar according to the used similarity measure.

Mahfoud’s results demonstrate that while using small values for CF, replacement errors
decrease the ability of crowding to maintain multiple optima. Increasing CF decreases
the frequency of REs up to value CF = NP, which eliminates the UREs. The downside
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of this is increased computational complexity: as CF' distance measurements are required
between each trial solution and the population, the CPT of crowding is O(CF'). UREs
are an issue also with preselection, due to the fact that the algorithm always replaces the
worse parent: because an offspring may inherit a varying number of features from the
parents, a parent contributing less may be very dissimilar to the offspring. If this parent
has a worse fitness value compared to the other parent, it is likely that the offspring,
which resembles the better parent, will also have superior fitness. Replacing the worse
parent thus often causes UREs.

Based on his findings, Mahfoud suggests a deterministic crowding [95] method, which
aims to overcome the replacement error problem of preselection by using the idea of
similarity measurements from crowding to decide which of the parents is closer to the
offspring. The algorithm divides the population randomly into NP/2 pairs at each gen-
eration. Fach pair undergoes crossover and mutation to produce two offspring. Now
one of the children competes against one parent and the other child competes against
the remaining parent, the survivor being decided by the fitness and a tie favoring the
parent. The order is decided by minimizing the combined phenotypic similarity between
both child-parent groups. This fixes the main RE problem of preselection, because now
the offspring will compete against the more similar parent. This virtually eliminated
the REs in Mahfoud’s test cases. However, deterministic crowding can not completely
eliminate UREs (like crowding using CF' = NP), because the population may contain
even more similar individuals compared to the most similar parent. As deterministic
crowding requires only two distance measurements for each trial solution, it shares the
advantages of preselection, the low CPT of O(1) and no additional control parameters,
but requires a similarity measure.

Mengsheol and Goldberg [99] have modified the deterministic crowding by suggesting
a probabilistic acceptance rule. The modified algorithm is called probabilistic crowding.
The idea is remove elitism, which may eventually lead to loss of niches due to the presence
of UREs. A tournament between two individuals by the probabilistic acceptance rule
gives both participants a probability to win, proportional to their fitness. Therefore, the
less fit individual may be selected over the other with a higher fitness, but the probability
for this to happen decreases when the difference between the fitness values increases. The
authors [99] claim that this provides restorative pressure to the algorithm and prevents
the loss of niches with lower fitness. However, the lack of elitism means that the algorithm
may lose already found global optima.

SHARING

The concept of limiting the number of individuals of a niche not to exceed its carrying
capacity was originally introduced by Holland [65, 66]. The idea is to force the individuals
to share the payoff (fitness value) of each niche equally, spurring solutions away from
overcrowded niches in search of new promising regions from the less populated areas.
This should lead to a stable situation, where each niche contains a number of solutions
proportional to its fitness. This is the foundation behind the sharing methods. In
practice the methods modify the fitness of each individual based on its proximity to
other population members.

The fitness sharing method of Goldberg and Richardson [56] uses the sharing concept
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to acquire implicit PN. The algorithm uses a sharing function to calculate a niche count
between an individual and other population members.

1— (M)ascaze if di,j < Orad

Sh(diﬁ') = { Irad

3.1
0 otherwise (3.1)

where d; ; is a distance between population members #; and z; defined by an appropriate
distance measure, such as FEuclidean distance. ascqre is a scaling factor to define the
shape of the sharing function, often set to 1. 0,44 is a sharing radius, which defines
the maximum distance an individual shares its fitness with others. While the presented
sharing function is the most commonly used, it is possible to use other functions as well.
The shared fitness f*® of an individual #; is calculated by dividing the actual fitness f
by the sum of the sharing function values between the individual and other population
members: &)
() = — ) 3.2
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As the sharing function must be calculated between each generated individual and all
population members, the CPT of sharing is high, O(NP), equal to crowding with CF =
NP.

A more serious drawback for sharing is the difficulty to define the sharing radius param-
eter [140], which is highly problem-dependent. To set the o,.4 properly, problem-specific
information is required, which is often unavailable. For example the criterion for estimat-
ing the 0,44 suggested by Deb and Goldberg [36] requires information of the distances
between optima, as well as their fitness values. Setting a single good value for the o,.q4
may be very hard in problems with irregularly distributed optima. Sharing works best
when the optima are approximately equally distributed in the search space, because op-
tima within the o,,q4 from each other become indistinguishable. Thus desired optima
residing close to each other will force a small value for the o,4,4. Diminishing the o,q4
requires an increase in the population size, and the required NP may grow excessively
large [55].

Mahfoud [93] demonstrates a connection between the used population size and the ability
of sharing to retain optima of different fitness. An effect called genetic drift causes niches
with higher fitness to draw members from other niches having lower fitness, until an
equilibrium is achieved. The bigger the difference in fitness, the larger the NP required
to maintain the niches with lower fitness. Sharing often requires fitness scaling [55] to
emphasize the optima. Darwen and Yao [30] demonstrate that without scaling, sharing
tends to create false optima around the actual optima, which prevent the algorithm from
converging. On the other hand, using higher scaling power also increases the genetic
drift. Too high scaling power may create super individuals, which draw the rest of the
population to them too fast for sharing to work, without using excessive population sizes.
This may happen even if the niches have equal fitness. Thus problem-specific information
is also required to select a suitable scaling function and NP.

Cioppa et al. [27] present an iterative method to estimate optimal values for 6,44 and NP
by using the mean and standard deviation (std) of niches found during the evolution.
The method does not require a priori information of the fitness landscape. However,
to achieve the optimal values, the optimization process must be run several times with
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varying parameter setups, which is time consuming and not practical when the goal is
just to solve the optimization problem and not to analyze it further. While looking for
a single good value for 0,4, the method can not overcome the shortcomings of sharing
in problems with closely situated optima.

Smith et al. suggest implicit fitness sharing [152] to overcome the difficulty of defining
the 0,44 in a context of pattern matching. They use an immune system model, which
attempts to evolve a population of antibodies to match a set of antigens. The sharing
is achieved through sample-and-match procedures, which have resemblances to classi-
fier systems. However, the method is not directly applicable to multimodal function
optimization.

Menczer and Belew [98] suggest a local selection scheme. The scheme should not be
confused with the similarly named selection scheme in section 5.3 below. The two schemes
have no direct relation to each other. The local selection is not based on comparing the
fitness values of individuals to each other like EAs typically work, but instead each
individual competes against a fixed threshold. The population members are modeled as
agents with their own energy resources. Each action an agent makes, depletes its energy
resources. Agents replenish their energy resources by intaking finite resources of the
environment. When an agent’s energy level drops below a fixed lower threshold, it dies.
On the other hand, if an agent reaches the upper energy threshold, it reproduces and
shares its energy with the offspring. Competition of the resources leads to sharing-like
behavior, as agents in crowded regions will run out of energy and die. Local selection is
effective in maintaining the population diversity but having very low selection pressure,
which prevents the algorithm from achieving convergence on some problems. The CPT of
local selection is O(1) for problems which allow easy maintaining of resources associated
with fitness, like graph search problems. However, for continuous optimization problems
the environment needs to be discretized, which increases the CPT to at least O(NP).

CLEARING

Another implicit PN method inspired by Holland’s sharing concept is clearing, proposed
by Pétrowski [116]. Also the restricted competition selection suggested by Lee et al. [81]
in effect implements the clearing procedure. Clearing uses a pre-specified fixed clearing
radius 0,44 parameter, which is similar to the sharing radius in fitness sharing. However,
in clearing the 0,4 defines a range inside which all but the x population members having
the highest fitness are cleared. The fitness of the cleared individual is set to zero, which
in the context of GA using FPS or RS prevents them from participating in the crossover
and mutation operations. Contrary to sharing, which forces the population members
belonging in same niche to share the resources, clearing gives all the resources to the s
best individuals of a niche.

In practice the population is first sorted in a descending order according to their fitness
values. Now the first individual of the list which has the best fitness value is dominating
individual of a niche. The remaining members of the list are compared to the dominating
individual. The members outside the o,.,4 range from the dominating individual do not
belong to the same niche and remain unchanged. Among the members residing within
the 0,.4q from the dominating individual, the x next remain unchanged and the rest are
cleared. The process is then repeated for the rest of the population, excluding the cleared
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individuals and individuals which have already acted as dominating individuals until each
population member has been either cleared or acted as the dominating individual.

Clearing reduces the minimum required population size compared to fitness sharing,
because each niche can be maintained with only x population members. Typically k = 1
is used. However, defining the value for the 0,4 is similarly difficult as in fitness sharing.
The value is problem-dependent and as sharing, clearing works best when the optima
are about equally distributed in the search space. The clearing procedure is not able to
maintain optima residing within the o0,,4 range from each other. While using a small
0rad does not lead to similar population explosion as in sharing, the efficiency of clearing
is dependent on the value. The smaller the o,4,q4 value, the less solutions will be cleared
until in an extreme case with a very small 0,44, all population members will form their
own niche and none will be cleared. Too small niches are inefficient in capturing the main
function structure, as the AOA of a single optimum may contain several separate niches.
The CPT of clearing is O(c), where ¢ is the number of niches maintained by clearing.
In the extreme case when all population members form their own niche, ¢ = NP and
the complexity is equal to sharing. However, typically ¢ is considerably smaller than
the population size, and thus clearing is less complex than sharing. While the CPT is
not independent of the population size, it typically grows at a considerable slower rate,
depending on the used 0,.4 value.

Singh and Deb [151] propose a modified clearing approach. The idea is to reallocate
the cleared solutions outside the o,,4 range to prevent wasting population slots and to
advance the exploration of the search space. After the clearing procedure, each cleared
solution which belongs to the AOA of any not cleared solution within 1.5-0,44¢ is randomly
shifted to the region between 1.5 - 0,49 and 3 - 0,44 and the fitness is recalculated. After
all cleared points have been considered, the clearing procedure is performed again. These
additional calculations increase the CPT of modified clearing to O(NP).

Im et al. [69] propose a clearing approach for ES called restricted evolution. They use
clearing until a set of n elite solutions has been identified. Each member of the elite set is
associated with its own evolution range, which corresponds to the 0,,4 parameter. Each
have similar value at the beginning, but the values change during the evolution, based
on the observed improvement of fitness values inside the evolution ranges.

CLUSTERING

Using clustering techniques for identifying niches in the population has been proposed in
several studies. In implicit PN, clustering is typically used alongside with other niching
techniques, like sharing or clearing, to improve their performance. For example Miller
and Shaw [104] suggest a dynamic niche sharing method to reduce the computational
complexity of sharing and increase the accuracy of identifying the niches. They use
a dynamic peak identification algorithm to cluster the population to ¢ dynamic niches,
based on the condensations in population, which should correspond to peaks. Population
members are classified either as a part of a dynamic niche or as non-peak individuals
based on a o,,q parameter, which defines the minimum distance between the peaks.
Dynamic niche count

(3.3)

d { nnp; if individual i is within dynamic niche j
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where nnp; is the niche population size of jth dynamic niche, is used to calculate the
dynamic shared fitness
L
fiay) = ( ) (3.4)

dnc;

The CPT of dynamic niche sharing starts with O(/NP) as most of the peaks are in the
non-peak category, and reduces to O(c) as the dynamic niches begin to formulate.

Various sources have suggested using clustering techniques with sharing or clearing to
circumvent the difficulty of defining the sharing or clearing radius. Another advantage
of such methods is that they allow varying o,,4, which increases the applicability of the
methods for cases with irregularly distributed optima. Yin and Germay [181] employ K-
means clustering [88] prior to sharing to divide the population into niches dynamically.
Sharing is only applied within the niches. The clustered shared fitness is calculated as

f()

f(@) = 01 - (o) 2omag )i’

(3.5)

where d; . is the distance between individual 7 and the centroid of its niche, nnp; is the
number of individuals in the niche j to which individual ¢ belongs, and d,,q. is the maxi-
mum allowed distance between an individual and its niche centroid. While the clustering
method removes the need to define o,,4 explicitly, it is replaced by parameter d,qz,
which is not necessarily easier to specify. The CPT of the method is O(c), comparable
to the dynamic niche sharing method.

Gan and Warwick [46] propose a fuzzy variable niching technique, which maintains a
separate population of overlapping fuzzy niches. Sharing is limited to individuals within
a single niche. However, a single population member may belong to several niches simul-
taneously. Pétrowski [117] suggests the use of a clustering technique prior to the clearing.
The method resembles the approach of Yin and Germay [181], the main difference being
that the fitness function information is included in the clustering process to improve the
ability to identify niches. The method may also be used with fitness sharing.

Clustering is sometimes also used independently of other niching methods. For example
Hanagandi and Nikolaou [58] use clustering on renewing the population at regular inter-
vals to maintain population diversity. The renewal process clusters the population. In
each cluster only, the best member is saved and the rest are randomly divided into the
search space.

Li et al. [84] suggest a species conservation technique. They cluster the population
to species by using a procedure similar to clearing. However, instead of clearing the
individuals residing inside o,.,q4 distance from the dominant individuals, they are marked
as belonging to the same niche. The dominant individuals of each niche are called
species seeds. GA is then run normally to form the population of the next generation.
The species seeds are copied to the population to prevent the algorithm from losing the
niches. For this, a restricted replacement is used so that the replaced individuals are the
worst belonging to the same species. As the species are identified each generation, and
the species seeds must be matched again in restricted replacement, the CPT of species
conservation is similar to fitness sharing, O(NP).
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3.4.2 Explicit parallel niching

While implicit PN works with a single population, explicit PN explicitly divides the
population into subpopulations and runs an optimizer for each of these independently.
However, also the explicit PN methods include some degree of communication between
the subpopulations. If no communication exists, explicit PN becomes equivalent to SN.
Because of the interaction between the subpopulations, the boundary between implicit
and explicit PN is somewhat indefinite. However, the defining feature for explicit PN
methods is that they perform parallel extended local search. This means that by defi-
nition methods using explicit PN do not implement a global search phase, i.e. a search
phase where the whole population information would be available for the algorithm at
once. Instead, each subpopulation has only the information contained within the subpop-
ulation at their disposal. This means that each subpopulation will concentrate its search
efforts on a limited region of the whole search space, i.e. they perform an extended local
search in the region defined by their subpopulation. While the lack of a global phase
allows easy parallelization, it also means that the algorithms using explicit PN are not
as effective as implicit PN methods in identifying and exploiting the global features of a
problem.

MATING RESTRICTION

Deb and Goldberg [36] suggest a mating restriction concept to prevent mating between
individuals from different niches, to improve the fitness sharing algorithm. The reasoning
is that such pairing often produces lethals, i.e. poor quality offspring. The 7,44 is used in
defining the range inside which mating partners are searched. Mahfoud [94] claims that
the original mating restriction concept, however, is not sufficient by itself in maintaining
the population diversity to offer niching capability. Explicit PN methods implement the
mating restriction principle by definition. Adding a mating restriction to a method using
implicit PN effectively changes it to an explicit PN method, because the global search
phase is removed. Mating restriction has been suggested to be used especially with the
clustering methods, which already have the population clustered as subpopulations. Yin
and Germay [181] suggest a version using mating restriction to their clustering approach,
using the clusters to define suitable mating partners. Similarly, Miller and Shaw [104]
suggest the use of mating restriction with their dynamic niche sharing approach.

Shir and Béck [147, 148, 149] have adopted the concept of dynamic niches for their
dynamic niching algorithm in the context of ES. The niches are used to force the mating
restriction so that each niche produces a fixed number of offspring. Shir and Béack
also propose another version of the dynamic niching based on the Covariance matrix
adaptation evolution strategy (CMA-ES), which has the mating restriction as a built-in
feature. Both versions require the user to define the expected number of niches ¢ and the
niche radius 0,44, which defines the fixed radius of each niche and should correspond to
the minimum distance between desired peaks. However, a method for adapting the o,.44
for each niche separately has also been suggested by Shir and Béck [147, 150]. The idea
is to make the 0,44 self-adaptive by coupling it to the dynamic step size of the CMA-ES
algorithm. The approach also reduces the importance of the ¢ parameter. However, it
introduces two new parameters for the function of learning coefficients.
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Aicholzer et al. [1] propose the use of hierarchical clustering prior to recombination in
ES. Higher probability is given for both participants of a recombination to come from the
same cluster than from remote clusters. The approach thus implements a probability-
based mating restriction, which does not completely prevent mating between different
clusters.

Stoean et al. [154] suggest an elitist generational genetic chromodynamics algorithm.
Basically they combine the concepts of mating restriction, clearing and restricted re-
placement inside one algorithm. For each of these concepts, a region is defined by an
appropriate radius parameter. Mating restriction is applied in the way that each individ-
ual performs crossover within the mating region. If the mating region is empty, mutation
is used instead. The offspring is then pitted against the worst found solution inside a re-
placement region, a procedure implementing the restricted replacement concept. Finally
a merging procedure, similar to clearing, is run once per generation using the merging
radius. An obvious drawback of the method is the need to define three separate radius
parameters. Additionally, the distance calculations mean high CPT of O(NP).

Spears [153] implements the mating restriction by using tagging. Each population mem-
ber is tagged to belong to a certain subpopulation. The subpopulations are thus not
based on distance between the population members but to the genetic inheritance of an
individual. Crossover is performed only between members of the same tagged subpop-
ulation. Sharing is achieved by dividing the fitness of each individual by the number
of members in its subpopulation. This removes the requirement to define the ¢,,q4 pa-
rameter and the CPT of the method is O(1), as no distance calculations are required.
However, the number and initial distribution of labeled subpopulations must be defined
instead. As the approach does not classify the subpopulation according to a distance,
a potential problem arises with the small population sizes and sharing: because shar-
ing requires a large enough population size to preserve several niches stably, dividing
the population to several subpopulations decreases the effectiveness of sharing. A single
optimum may draw a significant portion of individuals from several subpopulations, as
sharing is not implemented between individuals belonging to different niches. This in-
creases the already high population size requirement for sharing methods considerably.
Spears notes this and suggests a modified scheme with an even tighter mating restriction
as a solution, which allows mating only with the closest neighbors. The obvious risk
in such an approach is that the algorithm reduces to a parallel local searcher, as the
population information is only minimally used.

ISLAND MODELS

Island models [97] are based on the concept of punctuated equilibria, which assumes that
species experience little change for most of their history and the rare evolutionary jumps
happen rapidly. This is realized in algorithms using island models by separate subpopula-
tions (islands) which evolve in isolation. After predetermined times (epochs), information
is exchanged between the islands through migration. Several different variations of the
island model for niching have been presented. Typically the methods require several
excess parameters related to the implementation of the migration and the topology of
the island structure. Lin et al. [87] categorize different approaches for the migration and
island topologies. Additionally, they suggest an injection island GA model in which the
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subpopulations represent different resolution levels. Different levels in the hierarchy use
different coding and the migration is one-way: from a low resolution level to a high one,
which can be done without loss of information.

Bessaou et al. [8] use a speciation tree method [118] for dividing the population into sub-
populations. GA is then run separately for each subpopulation, and migration is used
between the subpopulations. Potter and De Jong [119] suggest cooperative coevolution.
Species are evolved inside separate subpopulations. Interaction between the subpopula-
tions is implemented through a domain model, which is used for calculating the fitness
of an individual. Each subpopulation contributes to the domain model by sending repre-
sentatives which collaborate to define the fitness. This creates an evolutionary pressure
to increase the overall fitness of the population. Gustafson and Burke [57] propose a
speciating island model, which detects solutions with a good fitness that are dissimilar to
the rest of the population (outlier solutions). New subpopulations are allocated on the
basis of these outlier solutions, and an EA is run concurrently for each subpopulation.

Ursem [169, 170] has adopted the island model concept for multinational EA. The search
space (world) is divided into subpopulations (nations) which are optimized individually.
A government is a subset of each nation, which consists of the nation’s leading individuals.
A policy is a single point calculated as a mean of the government, representing the peak
the nation is approaching. A hill-valley algorithm samples points between a line drawn
between two points to determine if they belong to the same peak. Two nations are merged
if no valley is detected between their policies. Hill-valley detection is also used between
each individual and the policy of its nation. If a valley is detected, the individual migrates
to another nation whose policy is within the same peak. If no such nation is found, the
individual founds a new nation. A significant downside of using the hill-valley function is
the increased number of function evaluations. Each hill-valley detection requires several
function evaluations. Thus each generated trial actually requires n function evaluations
instead of, one as in most other population-based methods. The value of n is dependent
on the accuracy used in the hill-valley detection. These extra evaluations may severely
increase the complexity of the algorithm in cases where the calculation of the fitness
function is time consuming, as in many real world problems. A somewhat similar idea
of emerging and merging subpopulations has been presented by Streichert et al. [159].
However, instead of the hill-valley detection, they use density-based clustering [41]. This
removes the need for the additional function evaluations of the multinational approach.

NICHING WITH PSO

PSO already contains the idea of niching through the use of the best particles in the
neighborhood as attractors. However, because the neighborhoods are allowed to over-
lap, the search will eventually converge to a single optimum [16]. To allow multimodal
optimization with PSO, several different methods have been proposed. As PSO is based
on independent particles which have only local interactions (except the gbest version,
in which the globally best fitness is used), PN methods associated with PSO naturally
belong to the category of explicit parallel niching.

Kennedy [73] and Brits et al. [16] suggest clustering with PSO. They use the cluster
centers instead of the best particles in the neighborhood or the best encountered solutions
located by the particle itself as attractors to encourage the formation of subswarms.
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Parrot and Li [113] state that the cluster centers are not always the best performing
members of the cluster, and their use as attractors may lead to poor performance. They
suggest species-based PSO to eliminate the problem. The algorithm uses a similar method
as the species conservation GA [84] for identifying the species. The species seeds are
used as the neighborhood attractors for each particle belonging to the niche. The 7,44
parameter is required to define the niches. The CPT of the method is O(c), comparable
to the clearing, where ¢ is the number of niches maintained.

Another PSO niching technique, proposed by Brit et al.[15] removes the interaction
between particles by using a cognition-only model [72]. Thus each particle of the main
swarm performs an independent local search. The change of the fitness of each particle
is monitored, and when no improvement is noticed, a subswarm is created by combining
the non-improving particle with its closest neighbor. The radius of a swarm is defined
as the maximum distance between the best particle of the subswarm and any other
member of the subswarm. Any main swarm member is absorbed to the subswarm if it
moves inside the subswarm region. Similarly, two subswarms are merged if they intersect.
A guaranteed convergence PSO [171] is run for the subswarms to achieve convergence
locally.

3.5 Summary

This chapter has presented an overview of different niching methods for enabling evolu-
tionary algorithms to perform multimodal optimization. The idea of sequential niching
is to keep on restarting an optimization algorithm and to modify or constrain the search
space between runs to allow the algorithms to locate different optima. The multistart
methods which modify the search space between runs use sequential niching, but often
GO methods are used instead of LS with SN. The main challenge of the SN methods is
defining how the search space should be modified between the runs not to lose desired
optima but also not to create new false optima.

Parallel niching methods have been designed to be used along with population-based
optimizers. Explicit PN methods divide the search space into subpopulations and run
the optimizer for each subpopulation independently. This allows easy parallelization,
but forbids the algorithms from identifying and exploiting global information efficiently.
Implicit PN methods change the optimization algorithm, encouraging the preservation
of population diversity. As the whole search space is considered at once, implicit PN
methods potentially allow identification and exploitation of global information.

In this thesis, the complexity of the niching methods is estimated using complexity per
trial, which offers a more intuitive complexity measure compared to the often used gen-
erational complexity. The next chapter concentrates on issues related to evaluating op-
timization algorithms experimentally especially in the context of continuous multimodal
optimization.



CHAPTER IV

Evaluating optimization algorithms

Achieving a reliable comparison between two global optimization algorithms is not an
easy task. The first challenge is the definition of end condition for the search. A typical
end condition is the mazimum allowed number of function evaluations, N F E,, 4., which
is defined for each tested problem. Using too low N F E,,,, compared to the difficulty of
the function favors greedy methods: a greedy algorithm may occasionally find the global
optimum very fast, while a less greedy approach fails to achieve convergence within the
given time frame. Increasing the value of NFFE,,,, may change the situation so that
the greedy approach still fails a majority of the runs due to premature convergence, but
the less greedy approach has now enough time to converge and is always able to locate
the global optimum. The downside of increasing N F E,, ., is that it will increase the
running time of the tests. Thus a rather low NFFE,,,, has to be often chosen due to
practical reasons, which limits how difficult test functions can be used. Also the used
performance measures must be considered carefully, so that the achieved results display
all the important characteristics of the compared algorithms.

Another difficulty in comparing the algorithms is the definition of control parameters.
Each method has typically a specific set of control parameters, which have a great effect
on the performance of the algorithm. Good values for these parameters are often problem-
dependent. Running the same algorithm with two different control parameter setups may
produce a greater difference in performance than comparing two different algorithms
with certain parameter setups. For this reason, a comprehensive parameter study is
an essential part of evaluating algorithms experimentally. Simply comparing algorithms
using only one or few parameter setups is likely to reveal little relevant information
of the properties of the algorithms and can be misleading, if one method happens to
have a clearly more suitable parameter setup for the problem at hand. Searching at
least coarsely a good parameter setup for each problem algorithm pair reveals the true
potential of the algorithm in connection with such problems. The parameter study also
reveals the sensitiveness of an algorithm to its control parameters. Unfortunately, such
studies are time consuming and thus often neglected.

Most importantly, the features of the test problems should be known to make a useful
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conclusion on the performance of the algorithm. The no free lunch theorems [179, 180]
state that no optimization algorithm can outperform another over the set of all possible
problems, unless one of the algorithms is able to reduce the number of redundant points
searched. So, to be able to claim that an algorithm outperforms another, also the subset
of problems for which this holds must be defined. In order to compare algorithms, their
ability to identify and exploit different problem features must be compared. For instance,
Whitley [175] has demonstrated the ability of different optimization algorithms to exploit
different problem features.

4.1 Important problem features

This section details the most important problem features in the context of this thesis,
emphasizing especially features related to multimodal optimization. Features and issues
related to multiobjective optimization or the optimization of problems containing con-
straint functions other than simple box constraints are outside the scope of this thesis
and not considered. Additionally, the listed features present coding-independent char-
acteristics for continuous optimization and coding-related issues (see for example [174])
are not considered.

4.1.1 Dimensionality and the number of optima

When the dimensionality of the search space increases, its size grows exponentially. While
it is possible to cover the search space extensively in low dimensional functions, this be-
comes increasingly difficult as the dimensionality increases. Typically for the multimodal
test functions used in the literature, the number of optima increases along with the num-
ber of dimensions, although exceptions exist, like the Griewangk function [176]. The
number of optima is one of the most important features of a function, especially in the
context of multimodal optimization, as it affects also the goal of the optimization. Low
dimensionality and a low number of optima favor methods that rely heavily on extensive
coverage of the search space.

4.1.2 Relative area of attraction sizes

The size of the area of attraction of an optimum directly indicates the probability for
a sample to be placed there by random placement. Once a point is successfully placed
inside the AOA of each interesting optimum, running a local optimization algorithm from
each of the sample points produces the solution. When the differences in the relative
AOA between the optima increase, the optima with smaller AOAs will become harder to
find.

4.1.3 Relative fitness of optima

The differences between the fitnesses of the optima are important for niching methods,
especially when the goal is to locate local optima as well. Typically the chance of a niching
method to maintain a local optimum is proportional to the fitness of the optimum. For
example, Mahfoud [93] explains that for methods using fitness sharing, the minimum
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population size required to maintain a local optimum of certain fitness is proportional to
the relative fitness as well as the number of optima with better fitness.

4.1.4 Separability

Separability is a synonym for decomposability. In separable functions the parameters are
independent of each other, i.e. “there are no nonlinear interactions between variables”
[176, p. 246]. A separable function can be optimized by optimizing each parameter
individually. A nonseparable function is naturally the opposite of a separable function,
meaning that parameters are not independent, and optimizing parameters individually
no longer works. A separable function can be made nonseparable by rotation. Salomon
[139] demonstrates that the complexity of finding optima of separable functions increases
linearly along with the increase in dimensionality. For nonseparable functions, the in-
crease is typically exponential.

Epistasis [6] is a measure of separability. It measures the number of nonlinear interactions
between the variables. A separable function has minimal epistasis, and the amount of
epistasis increases with the number of nonlinear interactions. Typically evolutionary
algorithms using crossover operators are capable of exploiting separability (low epistasis).

4.1.5 Directional bias and regularity

Directional bias [92] in multimodal problems means that the optima are located in direct
lines. If these lines correspond to the axis directions, the problem becomes separable.
While rotation can be used to remove the separability, the directional bias will remain.
While not as readily exploitable as separability, an algorithm that is able to adapt itself
to the rotation can still benefit from the directional bias.

A function is regular if in addition to having a directional bias, all the optima are of
equal distance from each other. Thus for each dimension, only a single distance between
the optimum points exists. Partially regular functions have several different distances
along a single dimension between optima, at least in some of the dimensions. In irregular
functions, all the distances between each two optima are unique. The degree of regularity
represents the proportion of identical distances along each dimension from the total
number of such distances. The degree of regularity is maximal in regular functions which
only contain a single distance for each dimension and minimal in irregular functions
where the number of identical distances is zero.

4.1.6 Symmetry

A two-dimensional function is symmetric if F(z1,22) = F(x2,21) [176]. Such equiva-
lences may exist for a D dimensional function up to D! . Symmetry can be exploited
by exchanging the variables of a solution to locate symmetrically positioned solutions.
Rotationally symmetric functions remain symmetric regardless of rotation. For example
Schaffer’s F6 function [92, 163] is rotationally symmetric.
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4.1.7 Continuity and differentiability

A continuous function does not contain points of discontinuity. Classical optimization
methods often require the function to be differentiable, meaning that a meaningful value
for a derivative can be calculated for any point. Thus in addition to being continuous,
the function must not have discontinuities in the slope.

4.1.8 Global structure

An important characteristic of a function is the overall global structure. For example,
the Rosenbrock function (eq. 4.8) is characterized by a banana shaped valley which leads
to the optima at [1,1,...,1]. Many traditional test functions, like Rastrigin (eq. 4.9)
or Griewangk, have the global optimum at origin in the middle of a parabolic valley in
the center of the search space. This allows a global optimization algorithm to estimate
the direction to the global optimum by exploiting the global structure of the function.
Additionally, methods based on averaging have typically a search bias towards the center,
which allows the algorithm to exploit the centered global optimum. Another way of
exploiting the location of an optimum is by copying parameter values from one dimension
to another in cases where all the parameters are of equal value in the global optimum,
as in the example functions above.

4.1.9 Optima on constraints

Optima located on constraints may pose a problem for some optimization methods,
like the grid-based gradient descent (GRGD) implementation used in this thesis. On the
other hand, the location of optima on constraints is exploitable because the points on the
constraints represent only a part of the whole search space. Any algorithm concentrating
its efforts on the constraints will thus have an advantage locating such optima.

4.2 Performance measures

The performance of a global optimization algorithm can be experimentally evaluated
using several different performance measures. Selecting a suitable performance mea-
sure is also important for high quality experimental studies. Poorly chosen performance
measures may concentrate in features of secondary importance and produce misleading
results, similarly as a poorly chosen test setup. The term effectiveness is typically asso-
ciated with solution quality, while efficiency refers to the speed of the algorithm. Typi-
cally for stochastic methods, the results are reported as averages from a certain number
of independent runs. Statistical tests should be used in conjunction to demonstrate the
significance of the results.

4.2.1 Locating a single optimum

Usually either the progress of an algorithm as a function of time, or the quality of a
solution obtained within a fixed time frame is measured. While the execution time can
be used directly, it is more common to use the performed number of function evaluations
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(NFE) as the measure of time. The problem of using actual time is that the measure
is then dependent on the implementation as well as the system where the experiments
were performed, and the results become difficult to reproduce and compare to by other
researchers. NFE, on the other hand, does not take into account the complexity of the
used optimizers and thus results using actual time can be used to complement results
attained with a measure using NFE. Using solely the actual time can be misleading,
however, because typically functions used to test the performance of an optimizer have
low evaluation cost, and the evaluation time plays often a minor role compared to the
complexity of the algorithm itself. In real-world problems the situation often changes,
and the cost of function evaluations becomes the dominating factor. In such situations
an algorithm which requires a low number of function evaluations but has otherwise high
computational complexity is preferable to one which has low complexity, but requires
more function evaluations.

A simple way of demonstrating the performance is to plot the progress of an algorithm as a
function of time, or record the best achieved value after a termination condition is fulfilled.
This is especially useful when using problems for which the actual global optimum is not
known beforehand. Often, in addition to reporting the average performance, also the
worst and best performing runs are documented.

Success rate (SR) defines the fraction of the test runs which are able to locate the global
optimum with precision € within the given time frame

number of successful runs
R= . (4.1)
total number of test runs

The measure is often used in test problems with a known global optimum. ¢ states the
maximum allowed difference in fitness value compared to the known globally optimal
value, but the location can also be defined by coordinates. Additionally, the NFE to
achieve the globally optimal solution is typically recorded to measure the speed of an
algorithm.

Success performance (SP) was used in the CEC 2005 contest for real parameter opti-
mization. It aims to combine both the speed and reliability of an algorithm into a single
performance measure. It is calculated by dividing the average NFE by SR

average NFE
SR

SP is independent of NFE,,,, with assumption that large enough value is used not
to halt potentially successful runs. The measure considers two methods to be equally
effective if, for example, one method finds the solution half as often but twice as fast as
the other.

SP = (4.2)

Another important, but qualitative performance measure is the difficulty of defining good
values for the control parameters of an algorithm. High number of control parameters
does not necessarily mean that an algorithm is difficult to tune for different problems.
More important is the existence of problem dependent parameters, for which general
recommendations can not be given without problem-specific information. Additionally
the sensitiveness of the algorithm for slight changes in parameter values should be mea-
sured. Highly sensitive parameters which in addition are problem dependent are very
hard to tune correctly. An example of such an difficult parameter is the o,,q4 used by
many niching methods.
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4.2.2 Multimodal optimization

Before being able to measure the performance of a multimodal optimization algorithm,
the exact goal must be defined: which of the optima is the algorithm supposed to find?
Typically all global optima are of interest. In test problems with only a few optima, the
goal is often defined to locate them all. In more complex problems, the locally global
optima are typically of interest, in addition to the global ones. Once the desired set of
optima is defined, the performance of an algorithm on locating them can be measured.

Success rate is often used also in multimodal optimization, where it defines the fraction
of test runs which were able to locate the full set of desired optima. Peak ratio (PR)
[163]

number of optima found

R = 4.3
total number of optima (4.3)

defines the fraction of found optima from the total number of optima in the desired set.
PR is often drawn as a function of time to see how the number of found optima develops
and whether the algorithm will start to lose already found optima eventually. The NFE
to locate a certain number of optima is typically also recorded to measure speed. Drawing
the NFE to locate the i:th optimum as a function of the number of desired optima is
a good way to evaluate the progress of a multimodal optimization algorithm. For an
example, see Figure 6.2.

In simple one or two-dimensional functions, the population can be drawn on top of the
function graph to demonstrate the distribution. Several such snapshots taken during the
search can be used to demonstrate the progress of population. Deb and Goldberg [36]
have introduced a chi-square like performance measure for comparing the population
distribution to an ideal proportionally populated distribution. The measure indicates
the ability of an algorithm to populate niches proportionally to their fitness, which is
important for niching methods based on the sharing principle.

4.3 Experimental study of DE and G3-PCX

The difficulties in comparing optimizers, as well as the importance of selecting a test
set properly to exhibit the desired features for comparing algorithms are demonstrated
by using the results originally published by the author in [133] as an example. Deb et
al. [35, 34] propose a real-parameter genetic algorithm called the generalized generation
gap (G3) using the generic parent-centric recombination (PCX) operator. The PCX
operator is shown to outperform previous unimodal normal distribution crossover and
simplex crossover operators. Most interestingly, the G3-PCX algorithm is compared to
several optimization algorithms, including Differential Evolution. The reported results
suggest the G3-PCX to be able to outperform DE by an order of magnitude in a test
setup comnsisting of three differentiable test functions, two of which were unimodal and
the last consisting up to two optima. Typically such problems can be efficiently solved
by using local optimization algorithms, as good performance in unimodal functions often
requires a particularly greedy algorithm. Typically, however, greedy methods have a
tendency for premature convergence in multimodal problems. While the multimodal
Rastrigin function (eq. 4.9) was briefly studied with the G3-PCX, no comparisons to
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the other algorithms were reported. This experimental study adds to the investigation of
Deb et al. [35, 34] by extending the comparison of G3-PCX and DE on highly multimodal
problems, and demonstrates that the features of selected test problems play a crucial role
in determining the outcome of such comparisons between different algorithms.

4.3.1 The algorithms

Differential Evolution [125] is a population-based evolutionary algorithm designed for
global optimization. The particular strategy used in this comparison is the DE/rand/1/bin.
The algorithm uses vector differentials scaled by parameter F' to determine a mutation
step length. This makes the algorithm exhibit self-adaptive behavior, as the average
mutation step length decreases as the population converges. The algorithm also uses
a uniform crossover, whose frequency is controlled by parameter CR so that CR = 1
disables the crossover. Small values for CR allow the algorithm to exploit low epistasis
of a function efficiently. DE is described in detail in Chapter 5 of this thesis.

The G3-PCX algorithm is a steady state EA described as follows [35]:

1. From a population of individuals, select the best individual and g — 1 other indi-
viduals randomly to be parents.

2. Generate A\ offspring from the chosen p parents using the PCX recombination
scheme.

3. Select one individual #; at random from the population and combine this with A
offspring to make a subpopulation.

4. Select the best solution of the subpopulation and replace the selected individual &;
with this.

In the PCX recombination scheme the offspring # is calculated as

"
i =& +wed,+ Y wyDE;, (4.4)
1=1,i#p

where Z, is the best individual from the current population, as also in [35], to achieve fast
convergence, d:, is a direction vector from the mean of y parents to 7, D is an average of
perpendicular distances to the line defined by CZ;, from p — 1 other parents than 2, and
€; are . — 1 orthonormal bases that span the subspace perpendicular to cfp. Coefficients

w¢ and w, are zero-mean normally distributed random variables with variances a? and

2

0'77.

PCX creates an offspring that has a greater probability of being closer to parent &, than
far from it. Parameters ag and 072] control how much the offspring vary from ), in the

direction of J;D and the direction perpendicular to cz;, The dependence of D and length

of d; on mutual distances between selected p parents, makes PCX self-adaptive similarly
as DE.
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4.3.2 Function setup

A set of 12 test functions were used in comparing the algorithms including four unimodal,
three separable multimodal and five nonseparable multimodal functions.

UNIMODAL FUNCTIONS
The sphere function [33]
fsph Z 5171 (4,5)

is the simplest quadratic function to minimize. The function is unimodal and separable.

The ellipse function [35]
fell Z ?- .’)31 (46)

tests the ability of a method to optimize a function whose parameters have disparate
magnitudes. The function is unimodal and separable.

The rotated ellipsoid function (fscp, in [35]), also known as Schwefel’s ridge

2

fra(Z Z Z x; (4.7)

=1 j=1

rotates the ellipse and tests the ability of an algorithm to optimize an unimodal, non-
separable function.

The generalized Rosenbrock function [35]

D—-1
Fros(@) = (100(x;® = mi41)” + (1 — 3)?) (4.8)
i=1

is a fourth order polynomial whose basin is non-convex and often referred to as being
unimodal. Shang and Qiu [145] have proved that there exists one local minimum in
addition to the global minimum with 4 < D < 30 and leaves open the possibility of
additional local minima with higher dimensions. The function is characterized by a
banana-shaped valley which leads to the global optimum.

SEPARABLE MULTIMODAL FUNCTIONS

The generalized Rastrigin function [168]

D
fras(ZT) = Z — 10cos 27mc7)) (4.9)

is a highly multimodal regular function with a global minimum in the origin.
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The normalized Schwefel function [143]

D L\ .
L2l —wisin(y/[w) (4.10)

fsch ((E) D
is a constrained (—512 < x; < 512, i =1,..., D) regular multimodal problem with a
global minimum close to the constraints.
The Ackley function [185]
D-1
fack(®) = (670‘2\/ 2% + w12 + 3 (cos(2z;) + Sin(2$1:+1))) (4.11)
i=1

is a highly multimodal regular function with two global minima close to the origin.

NONSEPARABLE MULTIMODAL FUNCTIONS

The Salomon function [125]

fsal(Z) = (4.12)

is a rotationally symmetric function with a circular cosine wave around the global min-
imum in the center and the local optima forming circles around the global optimum in
the middle.

The Whitley function [125]

D D 2 2 12)2
Funi@ =323 ( (100(=/ - xj4)00:)r A =e))” cos (100(1‘? —a)? (- l‘j)z) + 1) (4.13)

i=1j=1

combines a very steep overall slope with a highly multimodal area around the global
minimum located at z; =1, i=1,...,D.

The modified Langerman function [125]

5 D
1 D 2
— —= ~ o (rj—aqy 2
Jian(Z) = — E e~ 7 2= (@) oog | E (xj —aiy) |, (4.14)
i=1 j=1
where
9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020
9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374
A= | 8025 9152 5114 7.621 4.564 4.711 2.996 6.126 0.734 4.982
2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426
8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567
and

g = ( 0.806 0.517 0.100 0.908 0.965 ),

has three condensations of minima in an otherwise flat surface.
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The modified Shekel Foxholes function [125]

30

1
fshe(@) = — , 4.15
el ; Yl (@ — ai)? + (419)

where

9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020
9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374
8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982
2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426
8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567
7.650 5.658 0.720 2.764 3.278 5.283 T7.474 6.274 1.409 8.208
1.256 3.605 8.623 6.905 4.584 8.133 6.071 6.888 4.187 5.448
8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762
0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637
7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247
0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016
2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789
8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109
2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564
_ 4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670
A= 8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826
8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591
4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740
2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675
6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258
0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070
5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234
3.352  7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027
8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064
1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224
0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644
0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229
4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506
9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732
4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500

and

0.806 0.517 0.100 0.908 0.965 0.669 0.524 0.902 0.531 0.876 0.462
0.491 0.463 0.714 0.352 0.869 0.813 0.811 0.828 0.964 0.789 0.360
0.369 0.992 0.332 0.817 0.632 0.883 0.608 0.326 ),

=2
Il
~

has a narrow minimum peak in a corner of optima condensation in an otherwise flat
surface.

The normalized Rana function extended with a diagonal wrap [125]

D

Frana(®) = (Z (isin (ks + 1= a1l) cos (y/lz; + 1+ i) +

i=1

(zj + 1) cos (y/|z; + 1 — i) sin (y/]o; + 1+ x,\)))/D (4.16)

where j = (i +1) mod D is a particularly difficult constrained (—520 < z; < 520, =
1,...,D) problem with the global minimum close to the border. The exact function
descriptions and figures of two-dimensional versions are available in http://www.it.
lut.fi/ip/evo/functions/.
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4.3.3 Test setup

A set of test runs was conducted with different control parameter settings for both
algorithms. With DE, all combinations of 0.2, 0.5, and 0.9 were used for F' and CR
to compare how the algorithm performs with small, medium, and large values for both
parameters in different problems, while NP was varied.

For the G3-PCX algorithm, the first test set was done by fixing o¢ = 0.1 and 0, = 0.1
, as suggested by the authors [35]. For A, values of 2, 4, and 10 and for p, values of 3,
6, and 10 were used. Because the algorithm could not solve some of the problems with
any of these combinations, a second test set was conducted, fixing A = 2 and p = 3, and
varying the values for o¢ and o, from 0.1 to 1.

With each NP, 10-1000 independent runs were conducted according to the problem.
The convergence speed and percentage of failed executions of the DE algorithm were
compared to the G3-PCX model. Two-dimensional versions were used for all problems.
The effect of increasing the dimensionality to five was studied with all, but fiun, fshe
and frana~

SR was calculated using ¢ = 107°. In some cases also ¢ = 1072° was used to make the
results comparable to the ones presented in [35]. The value for NFE,,,, (Table 4.1)
was experimentally selected to be considerably larger compared to the typical number of
function evaluations required to solve the problem. Such a large value was selected to
acquire a good estimate of the percentage of runs that really converge prematurely rather
than favoring the settings that lead to fast convergence. The algorithms were prevented
from expanding their search outside the constraints used for initializing the population
by using boundary constraints in all problems, except for tests with skewed initialization
with the Rastrigin function. The constraints were handled simply by replacing the faulty
variable with a randomly selected value inside the constrained area.

Table 4.1: Settings for different problems.

Function Dimension NFUFE,,,. Used constraints

fsph,cll,rcl,ros 2 and 5 D % 105 —5.12 < Zj < 5.12 j = 17 ey D
fras.whi 2 5% 10° —512<x; <512 j=1,...,D
Fras.whi 5 2% 106 —512<%; <512 j=1,...,D
fsch 2 5% 10° —512<2; <512 j=1,...,D
Fseh 5 2 % 106 —512<x; <512 j=1,...,D
fack.sal 2 5% 10° -30<2;<30 j=1,....,D
Fack 5 2 % 106 -30<2;<30 j=1,...,D
Fsal 5 107 -30<z;<30 j=1,...,D
fran.she 2 5% 10° —-5<z;<15 j=1,...,D
frana 2 2% 106 —520<2; <520 j=1,...,D

4.3.4 Results

The full set of results is available in http://www.it.lut.fi/ip/evo/, including stan-
dard deviations. The deviations are typically rather small, suggesting the results to be
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considerably stable.

UNIMODAL PROBLEMS

Very similar behavior was observed in all convex unimodal functions. Both algorithms
were able to find the global optimum without error with reasonable population sizes,
regardless of the control parameter setup. An example of typical performance in unimodal
problems is shown in Figure 4.1. G3-PCX was clearly faster when the slope of the curve
representing the convergence speed in the function of NP (NF Ejgpe) is considered.
Increasing the dimensionality of problems from two to five or using ¢ = 10720 instead of
€ = 107° decreased the convergence speed. The relative performance difference between
the algorithms and the best performing parameter settings did not change significantly.

Function evaluations Percentage of failed executions
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Figure 4.1: Average number of function evaluations required to reach the global
optimum, and the percentage of failed runs for f.; with D = 5 and ¢ = 107°.
DE, F=02,CR=02 (‘-"); DE, F =0.5,CR=0.2 (‘—="); G3-PCX, A = 2,4 =
3,00 =0.1,0,=0.1("—0—").

For the f,os, the results of the two-dimensional version were in line with the results
acquired with the convex unimodal problems. The situation changed when the dimen-
sionality was increased to five (Figure 4.2), and the function gained the second minimum.
While DE was again able to reach zero in error with most control parameter settings,
G3-PCX was not able to solve the problem without failed runs with any of the tested
control parameter settings. The increase in NP did not clearly decrease the percentage
of failures. DE had serious problems with solving the function with a small value for F.
For runs with small CR, NFE,,... = 5 * 10° was not large enough with large population
sizes. For successful runs, NF Egope for G3-PCX was still clearly gentler compared to
DE.

G3-PCX achieved the best performance with the control parameter setup A = 2,4 =
3,0¢ = 0.1,0,, = 0.1 in all unimodal cases. However, using larger values for o¢ and o,
slightly decreased the failed runs with the five-dimensional Rosenbrock, but the price was
clearly decreased convergence speed. Almost identical behavior in fe;; and f.; confirmed
that G3-PCX is rotationally invariant and does not exploit the possible separability of a
function.
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Figure 4.2: Average number of function evaluations required to reach the global
optimum, and the percentage of failed runs for fros with D = 5 and ¢ = 107°.
DE, F=09,CR=09 (‘-’); DE, F =05,CR=09 (‘——"); G3-PCX, A =2,u =
3,0¢=01,0,=01(“—0-"); G3-PCX, A=2,p=3,0¢ =10y =1 (" -+-)

For DE, small CR worked well with the separable fs,n and fe; functions, while the
nonseparable f..; and f,,s benefited from large CR. This was expected, as small CR
allows DE to exploit the low epistasis of separable functions. A larger F' enabled the
algorithm to find the optimum reliable with a smaller population size, but the NF Eg,pe
was then higher. This means that with overly large NP, the algorithm works faster with
smaller F'. Interestingly, using small CR seemed to allow the use of smaller NP in both
separable and nonseparable functions. The effect was especially visible with a small F.

SEPARABLE MULTIMODAL PROBLEMS

DE was able to solve all separable multimodal problems without error with all the tested
control parameter setups, provided that NP was large enough. G3-PCX, however, had
serious problems with all the problems. In two-dimensional cases, G3-PCX was able
to achieve zero failure rate (failure rate means the percentage of failures which stays
constant as NP increases) with most parameter setups, but rather large population sizes
were needed. G3-PCX was still able to achieve gentler NF Egop, but the increased NP
requirement made the convergence speeds rather comparable (Figure 4.3(a)).

When the dimensionality was increased to five, G3-PCX was no longer capable to solve
the problems reliably. A maximum population of 10* was not enough for G3-PCX to
come even close to zero failure rate in f.,s and fsc,. Especially in function f,.,s G3-PCX
had difficulty in finding the optimum at all, as can be seen in figure 4.3(b). In f,ck, G3-
PCX demonstrated somewhat better results (Figure 4.4), probably because of the two

global optima which increased the chances of locating either one, compared to Rastrigin,
which is otherwise rather similar.

The increase of values o¢ and oy, clearly increased the percentage of successful runs,
but still not enough to reach zero failure rates, and the convergence speed decreased
significantly. The NF Egope for DE was steeper but G3-PCX required a very large NP
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Figure 4.3: Average number of function evaluations required to reach the global
optimum, and the percentage of failed runs for frqs with e = 107°. DE, F =
0.5,CR=0.2 (‘="); DE, F =0.5,CR=0.9 (‘—-—="); G3-PCX, A = 2,4 = 3,0, =
01,00 =05 (“—o0—"); G3PCX, A=2pn=3,0¢=1,09 = 1(-+-).

to reach even a reasonable percentage of successful runs. DE thus found the optimum
with fewer function evaluations compared to G3-PCX. Parameters A and p appeared to
have only a negligible effect on the failure rate in this type of problems, but larger values
decreased the convergence speed significantly.

As expected, small CR again worked best with DE. The advantage compared to using
large CR increased with dimensionality, as can be seen in Figure 4.3. Parameter F
behaved similarly as in unimodal functions: a smaller value produced gentler N F Egpe
but required larger NP to solve the problem reliably. The connection between smaller
CR and a smaller minimum usable population size was seen also with the separable
multimodal problems. The combination of large CR and small F' required larger NP to
find the optimum reliably compared to other control parameter setups.

A limited test setup with DE on f,,s without constraints and using skewed initialization
z; € [—10,—5] not including a global optimum, was conducted as in [35]. Dimensions
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Figure 4.4: Average number of function evaluations required to reach the global
optimum, and the percentage of failed runs for faer with D = 5 and ¢ = 107°.
DE, F =05,CR=02 (‘-"); DE, F =0.5,CR=0.9 (‘—="); G3-PCX, A = 2,4 =
3,06=01,0,=01("—0—"); G3-PCX, A=2,p=3,0¢ =105, =1("-+-").

2, 5, and 20 were tested. The number of required function evaluations increased in
two- and five-dimensional cases compared to a similar control parameter setup with
normal initialization, but the relative differences between different control parameter
setups remained similar. The failure rates did not change much with large F', but when

F decreased, the requirement for a minimum population size increased and small values

kept DE from solving the problem at all. This is logical, because with a too small

mutation step length, the population is unable to move to the new area where the global
optimum is. DE was also able to solve the 20-dimensional version rather easily. The best
results were acquired using small CR and large F. Using parameter setup CR = 0.2,
F = 0.9, and NP = 100, for example, global optimum with ¢ = 107° was found each
time in 100 independent runs with average NFE of 166040. For comparison, G3-PCX
was reported to fail to solve the 20-dimensional Rastrigin using a similar setup in [35].

However, also DE had difficulties with large CR as it could not exploit the separability
efficiently.

NONSEPARABLE MULTIMODAL PROBLEMS

DE attained the zero failure rate with proper parameter settings in most nonseparable
multimodal problems. The five-dimensional Salomon function, however, caused the algo-
rithm some difficulties. As seen in Figure 4.5(b), the optimization process requires a large
number of function evaluations to reach the global optimum. Values of NFE, 4, = 107
and the maximum population size of 400 were apparently not enough for the problem
with all control parameter setups. A rather small failure rate (below 10%) was achieved
using parameters ' = 0.2 and CR = 0.5. Another difficult function was Rana (Fig-
ure 4.6). The failure rate, however, approached zero steadily with all control parameter
settings, and using a larger NP would be likely to result in reaching the zero.

G3-PCX had again difficulties in achieving low failure rates. In functions fsai, fwni, and
fshe with D = 2, the algorithm reached the zero failure rate and acquired performance
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Figure 4.5: Average number of function evaluations required to reach the global
optimum, and the percentage of failed runs for fsq with ¢ = 1075, DE, F =
0.2,CR=0.5 (‘—"); DE, F =0.9,CR=0.9 (‘—="); G3-PCX, A =2, = 3,0¢ =
0.1,0p=01(“—0—");G3-PCX, A\=2,u=3,0¢=1,0p =1("-+--).

comparable to DE (Figure 4.5(a)). With fi4,,, NP = 10* was not enough for the algorithm
to solve the problem without failure. However, the failure rate steadily approached
zero, so it should reach zero with an increase in NP. In f,qn, and the five-dimensional
versions of feq and fyni, the failure rate was again far from zero even with NP = 10%.
With function f,qna, changes in control parameter setup only had a clear effect on the
convergence speed of the algorithm but not on the failure rate (Figure 4.6). The best
choice for parameters seemed to be A = 2,u = 3,0¢ = 0.1,0,, = 0.1, which led to the
fastest convergence. With this setup, N F Ey,pe was gentle compared to DE and suggests
that a considerably larger population size could be used with reasonable convergence
speed. Still, increase in NP did not clearly improve the number of successful runs and
thus the advantage gained for increasing NP even further is questionable. The situation
was similar with the five-dimensional version of function f,,p;, even though slightly better
success rate was achieved using larger o¢ and o0,,. The five-dimensional fy,; was difficult
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Figure 4.6: Average number of function evaluations required to reach the global
optimum, and the percentage of failed runs for frana with D = 2 and ¢ = 107°.
DE, F=09,CR=02 (‘-"); DE, F =0.9,CR=0.9 (‘—="); G3-PCX, A =2, =
3,0=01,0p=01(—0—-"); G3-PCX, A=2,u=3,0¢ =L, 0y =1("-+- ).

also for the G3-PCX algorithm (Figure 4.5(b)). Only the parameter setup of A = 2, u =
3,0 = 1,0, = 1 was able to produce solutions regularly. With this setup, G3-PCX
found the optimum somewhat faster, but the failure rate was greater compared to the
best case with DE. In all other tested cases, G3-PCX produced failures in almost 100%
of the cases.

Most nonseparable functions benefited from large CR in convergence speed. The connec-
tion between smaller CR and a smaller minimum usable population size could be observed
also in this kind of problems, with the exception of five-dimensional f,,5;, where, CR = 0.5
produced a poor success rate. The increase in F' again increased N F' Egjope and decreased
the minimum usable population in most cases. However, in some cases, the increase in
NP could not patch the poor combination of small F' and large CR, and thus the failure
rates were high. In five-dimensional fg,;, the best result was acquired with F' = 0.2.

SUMMARY OF THE RESULTS

Neither of the tested algorithms had noticeable problems in solving the tested unimodal
problems. The difference was in the convergence speed, and G3-PCX could achieve
clearly superior performance in the function evaluations required to reach the optimum.
Increase in problem dimensionality or increase in precision demand for the solution did
not markedly change the relative situation.

The situation changed with multimodal problems. Even in some two-dimensional cases,
the G3-PCX had difficulty in solving the problems reliably. A large population was
needed to prevent premature convergence. When the dimensionality was increased to five,
the algorithm was not able to reach the zero failure rate in any of the tested multimodal
problems, regardless of the control parameter setup. In several cases, even the best
control parameter setup was unable to find the global optimum in more than 50% of the
runs. Similar difficulties for G3-PCX optimizing multimodal problems were reported in
[4, 5]. In comparison, DE reached a zero or close to zero (in fsq and frane) failure rate
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in all tested cases. DE performed especially well in separable multimodal problems with
small CR.

In most of the tested cases, DE was not very sensitive to the control parameter setup,
and could solve problems reasonably well even with roughly set parameters. The use
of a large parameter F' value with DE generally increased the robustness of the algo-
rithm, especially if the initialization was skewed, but in most cases, the price to pay was
decreased convergence speed in the form of steeper NF Ey,p.. Parameter CR controls
the degree of rotation invariance of the search, making use of a small value desirable
with separable problems. With nonseparable problems, large CR enabled the search to
proceed freely, regardless of the axis directions, again increasing convergence speed. The
CR parameter appeared also to affect the minimum usable population size: a small value
generally enabled the algorithm to solve the problem reliably with smaller NP. The
effect was especially noticeable when using the combination of small F' and large CR,
which often resulted in fast but unreliable convergence. The effect can be explained by
the additional diversity provided by using the crossover. As small F' enabled only small
jumps, the crossover was able to increase the pool of potential solutions the algorithm
was able to generate.

For the G3-PCX algorithm, parameters A and p appeared to have rather a small effect on
its ability to find the global optimum, but increasing the value of either notably decreased
the convergence speed. Parameters o and o, had a more notable effect on failure rate.
In many problems, using the values of 1 for either instead of 0.1 decreased the failure
rate noticeably, but the number of function evaluations required to solve the problem
was also typically multiplied. A limited study with f,.,s was also done to see if even
larger o¢ and o, would improve the performance of G3-PCX algorithm. Also, a setup
with larger values for all control parameters was tested. None of these cases suggested
improved performance.

4.3.5 Discussion and conclusions

The results show clearly that G3-PCX excels in unimodal problems due to the greediness
of the approach, which turns against the algorithm in multimodal cases. DE, on the other
hand, can exploit the separability of the problems efficiently when small CR is used and is
thus very efficient in separable multimodal problems. This demonstrates well the critical
effect the selection of test problems has in experimental studies comparing algorithms.
Selecting a test setup including functions sharing common features favors algorithms
that exploit those features. If the reasons for good or poor performance are not carefully
studied and documented, the results of such studies can be misleading. Using a test
set with well understood functions with varying features increases the reliability of the
conclusions drawn from the experimental data.

However, the selection of appropriate test functions is not the only difficulty of doing
a quality comparisons between different algorithms. Let us consider the results of the
current study from a wider perspective: can it be really said on the basis of the presented
results that DE outperforms G3-PCX in multimodal problems? The answer is actually
yes and no at the same time. The results do indeed demonstrate that the particularly
greedy version of G3-PCX used in this study and in [35] has a poor performance in mul-
timodal functions. The reason for this is simply that the offspring are generated around
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the best population member. This means that basically the algorithm relies on the initial
population to offer good enough coverage of the function surface to be able to estimate
the general area of global optimum, and then simply performs an extended local search
(in [91] G3-PCX is classified as an XLS algorithm) on this area to locate the actual global
optimum. This explains the very large population sizes required by the G3-PCX. While
such a strategy is efficient in functions with a low number of optima, it becomes unre-
liable in functions with a high number of optima and high dimensionality. Parameters
o¢ and oy, basically control the size of the area in which the extended local search is
performed. A similar effect could be gained in DE by replacing the DE/rand/1/bin with
DE/1/best/bin [125], which also generates trials around the best population member and
disabling the crossover by using value CR = 1. Now instead of o¢ and o, in G3-PCX, the
parameter F' controls the area in which the extended local search is performed. Using
a small F' would result in a similar very greedy DE algorithm as the tested version of

G3-PCX.

Similarly, the definition in [35] allows a less greedy version of the G3-PCX, which performs
the extended local search in parallel around several population members. Such usage
for the PCX-operator is suggested in [37] in context of multiobjective-optimization in
conjunction with the elitist non-dominated sorting GA. Dividing the search efforts to
several areas would of course decrease the convergence speed of the algorithm in unimodal
functions, but it would also increase the reliability in multimodal problems. It is possible
that by using proper versions and parameter combinations for both methods, comparable
performance in unimodal and nonseparable multimodal functions could be achieved.
The exception for this are the separable multimodal functions, which G3-PCX can not
exploit. The study thus demonstrates also another difficulty in comparing algorithms:
the selection of the used algorithm version and the parameter settings. Even with a well
defined test setup including varied functions and seemingly exhaustive parameter study,
the results are inconclusive for deciding the general comparable performance between
the G3-PCX and DE algorithms, as using different versions of the algorithms could
potentially change the situation dramatically. However, such an extended comparison of
different algorithm versions is beyond the scope of this study.

4.4 Test functions for multimodal optimization

The contents of this section have been originally published by the author in [137, 138].
While a wide variety of global optimization test problems and problem generators exist,
the available selection of suitable problems for testing multimodal optimization algo-
rithms is notably limited. Most multimodal optimization methods have been evaluated
using only one- or two-dimensional multimodal test functions. Furthermore, these func-
tions are often defined in a way which does not allow the function to be changed in terms
of the characteristics of multimodal landscapes. For example, for the Shubert function
used in [84], as the number of dimensions increases, the number of global optima grows
exponentially (D - 37, where D is the number of dimensions). There is no way to con-
trol the number of optima, nor how they are distributed. Additionally, the problem is
separable, and the global optima are positioned at regular intervals in the search space,
both being easily exploitable features. In short, using solely the currently available selec-
tion of test functions is inadequate for proper analysis of the characteristics of different
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multimodal optimization algorithms. For this reason, a software framework has been de-
veloped as a part of this work for generating tunable multimodal test functions. The aim
is to provide a general and easily expandable environment for testing different methods
of multimodal optimization. The term test function generator is used in this work for
the resulting software module, although the framework actually contains several function
families with different characteristics. The current software version is 1.1 and includes
cosine, quadratic, hump and common families, but the framework is easily expandable,
and new families may be added.

4.4.1 Existing function generators

Several function generators that are able to generate multimodal functions with real pa-
rameter spaces have been previously presented in the literature. The most interesting
among such approaches are analyzed below. To the author’s knowledge, no previous
versatile environment designed especially for producing problems for multimodal opti-
mization and measuring the performance of multimodal optimization algorithms exists.

The DF1 [107, 106] and Moving Peaks [13, 14] generators focus on generating dynamic
multimodal landscapes that change over time. The generators allow the construction
of landscapes with a desired number of optima and dimensionality. The optima loca-
tions, heights and slopes are tunable and can change dynamically. While in principle
the generators could be used to produce functions for evaluating multimodal optimizers,
the current implementations are designed only to provide information from the global
optimum. Thus evaluating the multimodal performance would be difficult and the gen-
erators are ill suited for the task. Additionally the generators do not allow the shape of
the optima to be changed (except for their height and slope).

Gaviano et al. [48] have generated differentiable multimodal functions with a single global
optimum by distorting convex functions using polynomials. Macnish [92] proposes a frac-
tal landscape generator capable of generating complex surfaces by simulating random
meteor impacts. The inability to produce functions with multiple global optima and to
offer exact information of the local optima are obvious limitations for the usability of
both methods in the context of multimodal optimization. The constrained test cases
generator [102, 103], on the other hand, allows multiple global optima to be generated.
The method generates function landscapes by dividing the search space into regions and
constructing a simple unimodal function for each region. The main feature of the ap-
proach is that it allows the definition of constraint functions for each of these regions.
Constrained optimization, however, is outside the scope of this thesis. When the con-
straint functions are ignored, however, the landscapes are very simple and of little use in
evaluating multimodal optimization approaches.

The two most promising methods for generating multimodal test functions are the Max
Set of Gaussians (MSG) landscape generator presented by Gallagher and Yuan [45], and
the method for generating composition test functions by Liang et al. [86]. The MSG
combines several independent peaks to form the function landscape, while the compo-
sition landscape is formed by combining several standard benchmark functions. Both
methods allow several global optima to be generated and are able to provide information
of their locations, which allows usage in the context of multimodal optimization. Further
discussion of both methods follows in Section 4.4.3.
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4.4.2 Cosine family

The cosine family allows functions with a high number of optima to be generated with
low computational cost. The degree of regularity and separability may be controlled
by rotating and stretching the functions. T'wo cosine curves are sampled together, one
of which defines global minima and the other adds local minima. The basic internal
structure is regular: all minima are of similar size and shape and located in rows of
similar distance from each other (see Figure 4.7(a)). The function family is defined by

L Zil —cos((Gi — 1)2my;) — a - cos((G; — 1)2wL;y;)
fcos(y) - 2D (417)

where i € [0,1]P, the parameters G and L are vectors of positive integers which define
the number of global and local minima for each dimension, and « €]0, 1] defines the
amplitude of the sampling function (depth of the local minima).
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Figure 4.7: Example figures of cosine family functions using parameter values
a =08 G = [3,3, L =[2,2] (9 global and 16 local minima). Additionally,
P, =[0,0.1,0.2,0.5,1] and P> = [0,0.5,0.8,0.9, 1] are used for (b).

The framework allows the function to be rotated to a random angle and uses Bezier
curves [10, 11] to stretch each dimension independently to decrease the regularity (see
Figure 4.7(b)). To calculate the function value for input vector #, & is first mapped to
4. The mapping proceeds in two steps, where the first step is to calculate l_;, which is the
rotated point corresponding to ¥
b= Of (4.18)
where the matrix O = [01,...,dp] is a randomly generated angle preserving orthogonal
linear transformation, as described in [59]. The domain of Z (the search space) is the
D-dimensional unit hypercube rotated with O”. Then b is mapped to i by applying a
Bezier formula o
i :Z (I;Z>Pi7j(1—bi)”i_jbij,i: 1,...,D (4.19)

=0
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where v; is the degree of the Bezier curve for dimension ¢ and defines the number of
the control points used. 15; are the control point vectors defined so that P; ¢ and P ,,
correspond to the lower and upper bound of y;, and the values between the bounds are
strictly increasing.

The Bezier stretching will decrease the regularity of the function, but generally not
completely eliminate it, because the function is regular along directions defined by O,
as demonstrated in Figure 4.8. The degree of regularity can be roughly measured by
considering the minimum number of global minima points required to have a set which
contains all possible differentials to jump from a neighboring minimum to the next in
the axis directions. For completely regular functions, only D+1 points are required (as
long as there is more than one minimum along each dimension). For stretched functions,
the required number is Zil (G; —1) + 1 out of the total number of global minima
Hfil G;. So the degree of regularity increases along with the number of dimensions.

Bezier stretching also affects the shape and size of the minima, increasing the differences
in their AOA.

A A

.M» .M,.
3 3
d,  d, d, d,
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XO XO
(a) Regular (b) Stretched

Figure 4.8: The effect of stretching on the regularity of a function. The points
are minima locations.

The number of minima increases exponentially along with the number of dimensions.
The number of local minima which are not global is HlD:l [Gi + (G; —1)(L; — 1)]. For
each dimension, two of the outermost minima will always be located on the constraints.
This means that if any of the elements of G are less than 3, every minimum will be
located on at least one constraint. In the unstretched case, each constraint on which the
minimum sits, halves the area of attraction for that minimum compared to a minimum
with one less constraint. The fraction of the AOA from the full possible area is thus
1/2P=! where I = 0,1,..., D describes the number of constraints the minimum sits on.
! = 0 means a minimum located on no constraint (full possible AOA) and [ = D is a
corner minimum with minimum AOA for dimension D. For methods that rely heavily
on the initial points, locating the minima on corners becomes harder with increasing
dimensionality, unless the information that the minima are located on the constraints is
exploited.
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Parameter « affects the depth of the local minima. Increasing the value makes the minima
deeper, also increasing their area of attraction, and thus slightly increasing the difficulty
of the problem. Examples of two-dimensional cosine family functions are presented in
Figure 4.7.

4.4.3 Quadratic family

The quadratic family is used to generate completely irregular landscapes, and allows
the number of minima to be defined independently of the number of dimensions (see
Figure 4.9). The user may select any number of global and local minima. The function
is created by combining several minima generated independently. Each minimum is
described as a D dimensional general quadratic form, where a symmetric matrix C
defines the shape. The functions in a quadratic family need not be stretched or rotated,
because no additional benefit would be gained as they are already irregular functions.
However, axis-aligned (hyper) ellipsoidal minima may be randomly rotated by rotating

matrix C as follows:
B =0CO” (4.20)

The functions are calculated by

Jouaa(@ = _min (- 3)B7NT - @) +vi) (4.21)

where & € [0,1]”, ¢ defines the location, and v; the fitness value of a minimum point for
the i’th minimum. 7 is the number of minima.

(a) Spherical, no local minima (b) Rotated ellipsoidal with local minima

Figure 4.9: Examples of quadratic family functions. The minimum Euclidean
distance between the global minima is set to 0.01, and the shape range for all
minima to [0.003,0.03]. (a) has 10 global spherical minima, while (b) has 10
global and 100 local rotated ellipsoidal minima so that the local minima points
have fitness values in the range [-0.95,-0.15]. The globally minimal value is always
-1.

The placement of minima is chosen randomly, although the minimum Euclidean distance
between global minima may be defined. The module makes certain that no minimum is
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completely engulfed by another, deeper minimum. The user may also define the shape
of minima, which may be spherical, ellipsoidal or randomly rotated ellipsoidal. This
selection is used for all generated minima. The shape range for global and local minima
may be defined independently, and the shapes are generated by using uniform random
numbers from this shape range for each dimension in creating matrix C. The user may
also define the range for the fitness values of local minima points. Figure 4.9 presents
examples of functions from the quadratic family.

The locations of minima are random, and the AOAs of minima can be inside each other,
the sizes of the areas of attraction for different minima will vary greatly. Using fewer or
shallower local minima will naturally leave more room for the global minima. Forcing
a longer minimum Euclidean distance between the global minima will also leave more
area for each minimum. As the dimensionality increases, the differences in the shape
parameters will have an exponentially increasing effect on the AOAs. Small differences
in shape parameter values can lead to large differences in the relative sizes of the AOAs
in high dimensions.

To demonstrate this, the RSGD algorithm was run on three different sets of quadratic
functions, with D = 1,2,...,10. The average performance of RSGD is a decent estimate
of the relative sizes of AOAs, because to locate a minimum, the random starting point
must be located in the AOA of that particular minimum. If the sizes differ significantly,
the larger ones will draw more points, slowing down the process of locating the minima
with a smaller AOA. Figure 4.10 displays the results of the runs. The first set of functions
has spherical minima with identical sizes. The second also has spherical minima and the
third ellipsoidal minima, both allowing the shape range to change by £50%. As can be
seen in the figure, the required NFE, as well as the standard deviation increase notably
more slowly along with the increase in dimensionality for the first set compared to the
other two. This is to be expected, because the identical shape eliminates the differences
in AOA caused by shape. The ellipsoidal shape is the most difficult to solve when the
dimensionality is low, but varying spherical shape becomes more difficult when D > 8.
This is logical, because for a spherical shape only one random value is generated, which
is then used in all dimensions. If the value is small, it will affect all dimensions. For an
ellipsoidal shape, each dimension will get a different random value, and the AOA will on
average vary less as more values are generated in higher dimensional cases. The slower
performance on the low dimensional ellipsoidal set can be explained by the fact that
the gradient descent tends to oscillate on nonspherical shapes and, thus needs more line
searches to find the minimum point compared to spherical shapes, where the gradient
points directly to the minimum point.

COMPARISON TO OTHER METHODS

The MSG [45] generator resembles the quadratic family, as peaks are similarly produced
independently and the dominant peak is used to define the function value at point .
MSG uses a Gaussian density function to define the peaks. For the quadratic family, a
general quadratic form was selected (which is similar to the exponent part of the Gaussian
density function, when the constant is removed) to describe the minima. As a result, the
landscapes generated by MSG have more localized optima shapes, as well as large almost
flat regions compared to the ones generated by the quadratic family. In theory, both
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(a) Function evaluations required to find all (b) Function evaluations required to find the
minima with precision 0.0001 i’th minimum in the 10-dimensional case

Figure 4.10: Performance of RSGD on different quadratic functions with 10
global and no local minima. The minimum Euclidean distance between the global
minima is set to 0.1. The function evaluations are averages from 100 independent
runs, and the figures include standard deviations. For each run, a different random
seed is used in generating the function.

approaches allow landscapes with no completely flat areas to be generated. However, a
potential problem with MSG is numerical precision: away from an optimum, it is possible
that the search space contains areas which seem flat because of limited numeric precision.
When using the quadratic form, this is not an issue.

The composition landscape proposed in [86] is formed by combining several basic bench-
mark functions. When using solely unimodal basic functions, the produced landscape
resembles the one generated by the quadratic family. The number and location of both
global and local optima may be controlled independently of the number of dimensions.
Additionally, the basic functions may be rotated, although the only unimodal basic func-
tion currently included is the symmetric sphere, on which rotation has no effect. The
proposed model allows each basic function to be scaled independently, but each dimension
is scaled equally and the shape of the function remains unchanged. Including ellipsoidal
unimodal basic functions and adding a dimensional scaling would allow the composi-
tion functions to mimic the rotated ellipsoidal optima shapes of the quadratic family.
However, the most interesting feature of the composition principle is that it allows the
landscape to be constructed of different basic components, which may already be mul-
timodal. While this means that the number of optima would no longer be independent
of the number of dimensions, and the number and locations of local optima would be
harder to define, it would allow the definition of changing landscapes with a lot of optima,
which requires less computational effort compared to the quadratic family. Thus adding
a new family adopting the composition principle might be an interesting option in future
development of the generator framework.
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4.4.4 Hump family

The hump family implements the generic hump functions family proposed by Singh and
Deb [151], see Figure 4.11. Like the quadratic family, the hump functions allow irregular
landscapes to be generated and the number of minima to be defined independently of the
dimensionality. The placement of minima is chosen randomly. Each minimum is defined
by
v; [1 - (M)ﬂ] if d(i,i) < r7od
fh (g,) _ 1 T;'ad k) ) — 1

0, otherwise

(4.22)

where: ¢ € [0,1]P, v; is the fitness of the i’th minimum. d(#, ) is the Euclidean distance
between ¢ and the center of the i’th minimum. 77%¢ € [0.001, 00) defines the basin radius
and f3; € [0.001, 1] the shape of the i’th minimum slope.

Each minimum in hump functions has a fixed radius value, and all values outside the
radius value are set to a constant 0. Thus, the function surface is flat between the
minima. This is problematic if small radii are used, because the result is a needle-
in-a-haystack problem, where the majority of the search space is flat, including only
some thin holes. Especially for methods relying on gradient information, the flat surface
makes the gradients unusable. However, the hump family offers better control over the
AOAs of minima compared to the quadratic family, because the AOAs do not intersect.
Furthermore, when reasonably large radii for the minima are used, the hump family is
suitable for testing the ability of an algorithm to handle flat areas on a function surface.
The minima are always spherical in shape, but the hump functions can be rotated and
stretched similarly to cosine family functions to change the shape.

Figure 4.11: Example of a hump family function. The function has 10 global
and local minima so that the local minima points have fitness values in the range [-
0.5,-0.15]. The globally minimal value is always -1. The radii range for all minima
is set to [0.05,0.2] and the shape parameter §; is in the range [0.2, 0.5].
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4.4.5 Common family

The common family collects some well known multimodal test problems from the liter-
ature and implements them inside the module framework. The module allows similar
rotation and Bezier stretching as used in the cosine family for all implemented functions
in the common family. At the moment, eight different functions having multiple global
minima are implemented. The implemented functions are:

The Branin function [101], Figure 4.12(a)

5.1 5

2
1
=\ 2 .
fora(y) = <y2 ey i T 6) + 10 (1 - —SW) cos(y1) + 10 (4.23)

where y; € [—5,10], y2 € [0, 15], has three irregularly spaced global minima.
The Himmelblau function [7], Figure 4.12(b)

Frim (@) = (i +y2 = 11> + (1 + 93 = 7)? (4.24)
where i € [—6,6]2, has four irregularly spaced global minima.
The Shubert function [84], Figure 4.12(c)

5 5

fanu(@) = icos((i+ 1)y +14) -y _icos((i + 1)yz + ) (4.25)

1=1 i=1

where i/ € [-10, 10)%, has 18 global and 742 local minima. The global minima are situated
in nine groups of two closely situated minima. The groups form a shape of 3 by 3 square.
The groups as well as the minima inside the groups are regularly spaced.

The Six-hump camel back function [101], [169], Figure 4.12(d)
vi

Fshen(§) = (4 —2.1y; + g) Yt + 1y + (—4+ 4y3)y3 (4.26)

where 31 € [—1.9,1.9], y2 € [—1.1,1.1], has two global and four local partially regular
minima.

The Vincent function [150], Figure 4.12(e)

D
1 .
Join(¥) = D ; sin 10 - log(y;) (4.27)

where 7 € [0.25,10]P, has 6 global minima. The function is partially regular, like a
Bezier stretched function of the cosine family. The differences between the minima are
not random but increase along the value of y.

The modified Rastrigin function, Figure 4.12(f)

Jras(¥) =20 + Z (yf + 10 cos(2my;)) (4.28)

i=1
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where 7 € [—5.12,5.12]2, is a version of the Rastrigin function modified to contain more
than one global minimum. It has four regularly spaced global minima and 96 local
minima.

Deb’s 1st
1 D
Jan @ = -5 21 sin® (5my; ) (4.29)
i=

and 3rd functions [7], Figure 4.13
1 & 5
Jaers(§) = —5 D sin’ (57 (v —005)) (4.30)
i=1

where 7 € [0,1]P, have 5” global minima. The functions are distinguished by the
distribution of the optima. While fg4ep1 is regular, the distances between the optima in
fdebs decrease with the value of ¢, making the function partially regular.
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(a) Deb’s 1st (b) Deb’s 3rd

Figure 4.13: Deb’s 1st and 3rd functions

Additionally, the family implements another set of eight functions with a single global
minimum and a set of local minima to test the ability of algorithms to locate and keep
good local minima in addition to the global ones. The functions are taken from [163,
169, 50] and include the following;:

The Bohachevsky function, Figure 4.14(a)
Foon(¥) = y2 + 242 — 0.3 cos(3my1) — 0.4 cos(4mys) + 0.7 (4.31)

where ¢/ € [—50,50]2, has one global and several regularly spaced local minima. Among
the local minima, only the eight with the best fitness value are used to decide success of
an algorithm in locating the local minima. They are positioned in a 3 by 3 grid around
the global minimum.
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Shekel’s foxholes function, Figure 4.14(b)

1
0.002+ 352 (G + X0 (yi — aig)®) !

fshe(§) = =500 + (4.32)

where
A_<732 —-16 0 16 32 ... 0 16 32)

-32 =32 -32 -32 -32 ... 32 32 32

and i € [—65.536,65.536), has one global and 24 regularly spaced local minima posi-
tioned in a 5 by 5 grid. The global minimum is located at the corner of the grid.

The Ursem F1 function, Figure 4.14(c)
fur1(§) = —sin(2y1 — 0.5m) — 3cos(y2) — 0.5y1 (4.33)

where y1 € [-2.5,3], y2 € [~2,2], has one global and one local minimum.
The Ursem F3 function, Figure 4.14(d)

2—ly2| 3—lnl

2— 2—
Jur3(y) = —sin(2.2wy1 + 0.57) - — T sin(0.57y3 + 0.57) - 2= lvol 2= lwnl

5 (4.34)

where y1 € [—2,2], y2 € [-1.5,1.5], has one global and four regularly spaced local minima
positioned in a direct line, so that the global minimum is in the middle.

The Ursem F4 function, Figure 4.14(e)
2 — 2 2
Fura(§) = —3sin(0.5my; + 0.5m) - - VAT Vil“’z’ (4.35)

where ¢ € [-2,2]? , has one global minimum positioned at the middle and four local
minima at the corners of the search space.

The Ursem waves function, Figure 4.14(f)

furw () = —(0.3y1) + (y3 — 4.5y3)y1y2 + 4.7 cos(3y1 — y3(2 + y1)) sin(2.5my1)  (4.36)

where y; € [—0.9,1.2], y2 € [~1.2,1.2], has one global and nine irregularly spaced local
minima.

The final two included functions are the Ripple

2
Frin(@) = D —e 2255570 (5in® (5my,) + 0.1 cos? (500my;)) (4.37)
=1

and Ripple25 functions, Figure 4.15
- 2In2(¥=21y2, . 6
Fras(§) = ) —e 22T (sin® (5my) (4.38)
i=1

where 7 € [0,1]2. The Ripple has one global and 252004 local minima. The global form
of the function consists of 25 holes, which form a 5 by 5 regular grid, as shown by Figure
4.15. Additionally, the whole function surface is full of small ripples caused by the high
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frequency cosine function, which creates a large number of small local minima. Among
the minima, the best fitness of the 25 holes are used to decide success of an algorithm
in locating the minima. The global minimum is located at the corner of the grid. The
Ripple25 contains the global form of the Ripple function without the ripple. Ripple and
Ripple25 can be used as a pair to compare the ability of an algorithm to handle local
noise.
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Figure 4.15: Ripple25 function

4.4.6 Problem features and the proposed framework

Some important features of multimodal functions were listed in Section 4.1. This section
summarizes the relation of different function families to each of the features.

DIMENSIONALITY AND THE NUMBER OF OPTIMA

The cosine, quadratic and hump families allow the dimensionality to be scaled freely.
Some common family functions have a fixed dimensionality. The quadratic and hump
families allow the number of local and global optima to be set precisely and independently
of the number of dimensions. For the cosine and common family functions, the number
of optima increases exponentially along with the number of dimensions.

RELATIVE AREA OF ATTRACTION SIZES

The hump family allows the relative AOAs to be directly controlled. The quadratic
family allows similar but less precise control, due the fact that the AOAs of different
optima may intersect. In the cosine and common families, the relative AOA sizes can be
altered by stretching the functions.
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RELATIVE FITNESS OF OPTIMA

Cosine family functions have groups of local optima with similar fitness, whose depth
can be controlled. Quadratic and hump families allow the definition of a range in which
the fitness of each local optimum is randomly generated. For the common family, each
individual function defines the fitnesses, and they cannot be modified.

SEPARABILITY

Quadratic and hump families have high epistasis because they are always nonseparable.
The epistasis of the cosine and common family functions can be controlled by rotating
the functions.

DIRECTIONAL BIAS AND REGULARITY

The quadratic and hump family functions are irregular and do not embody directional bi-
ases. The cosine family functions always have directional bias. Their degree of regularity
can be controlled between regular and partially regular by using stretching and control-
ling the number and positions of the optima. The common family functions can also be
stretched, but some of them are already irregular or partially regular by definition.

SYMMETRY

The quadratic and hump families are not symmetric. The cosine family functions for
which G; and L; are defined as equal for all dimensions are completely symmetric in
their basic form. This means that they are symmetric in regard to all the D! possible
symmetry equivalences. Stretching and defining varying G; or L; of optima for different
dimensions can be used to control the amount of symmetry: removing symmetry from
n dimensions leaves (D — n)! symmetry equivalences in regard to which the function is
symmetric. Some of the common family functions are also symmetric. Using rotation
removes the symmetry. The proposed framework does not currently contain rotationally
symmetric functions.

CONTINUITY AND DIFFERENTIABILITY

All the functions within the framework are continuous and allow a numerical approxi-
mation of the first order derivative to be generated at any point, even if the derivative
does not exist in the analytical sense. The framework has not been designed to be used
with methods which require analytical first or higher order derivatives. The hump family
functions and some of the functions in the common family contain areas of flat fitness,
which pose a special challenge for methods using derivatives to direct the search.

GLOBAL STRUCTURE

Although the goal of multimodal optimization is to locate multiple optima, averaging
and copying can be used to some extent in exploiting the structure in certain functions.
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The cosine family functions in their basic form will often have one global optimum in the
middle of the search space and several optima which have equal values for all or most
parameters. Rotation and stretching can be used to remove the equal parameter values
from most of the optima, but one global optimum will always be located at the origin.
The quadratic and hump families generate the optima locations randomly, and thus
planned exploitation of global structure is not possible. None of the families currently
allow the design of specific types of global structure, like specifically planted valleys or
concentrations of optima.

OPTIMA ON CONSTRAINTS

As the optima locations in the quadratic and hump families are randomly selected, they
will be rarely positioned on the constraints. However, depending on the selection of the G
and L parameters of the cosine family, a significant portion or even all of the global optima
may be located on the constraints. For methods using solely the internal constraint
handling of the module, the search space seems to continue past the constraints, and
the constraints become irrelevant. However, the module provides also exact constraint
information if required by an algorithm, and thus allows it to be exploited.

4.4.7 Implementation and features

The software has been written in the C programming language obeying the ANSI stan-
dard. C was selected over C++ for maximum compatibility to optimization algorithms
written in C or C++. C as a compiled language is also fast compared to most other pop-
ular programming languages, and compilers are freely available. From the outset, the
idea has been to develop a general framework for evaluating multimodal optimization
algorithms. Thus the structure of the software has been designed to allow easy addition
of new function families to the module. Figure 4.16 presents the general structure of the
generator module as an UML class diagram. While ANSI C does not directly support
object-oriented concepts, they can be closely imitated. Thus the term class will be used
when referring to parts of the software.

Generator Utilities

A

Cosine||Quadratic||Hump||Common

Figure 4.16: UML class diagram of the software structure

Inheritance is imitated by defining a set of function pointers in the generator class,
which represent the functions provided by the public interface. Each class representing
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the different function families must provide an implementation for each of the interface
functions and an initialization function which connects the function pointers to actual
implementations. Adding a new function family thus requires adding a definition of
the new initialization function to the generator class, which would not be necessary for
languages supporting inheritance through dynamic binding. However, this is seen as a
minor inconvenience, as in all other respects implementation of the new family can be
done completely within its own compile unit. All function calls from the public interface
are first handled by the generator class, which is responsible for handling tasks collective
to all families, and the call is then redirected to the correct family as necessary. Thus
each new family needs to contain only implementation directly related to the family. The
utilities class provides implementation of functionalities used by multiple families, like
rotation, stretching and constraint handling, which are readily available to new families.

The module is used by simply including the header file containing the public interface
to optimization software. The user can then directly use all features provided by the
generator. Function configuration is performed using text files. Each function instance
is explicitly specified by an initialization file, except for the seed to the internal random
number generator for functions that use randomization. The user may provide the seed
through the call of initialization function. The same function is always generated with
the same seed. Thus it is easy to define exact test sets by providing the initialization
files and the information of used seeds. These features make the generator easy to use.

The module framework includes an internal constraint handling method to keep the
solutions within a given range. The constraints are handled by mirroring the violating
value back from the violated boundary by the amount of violation. This makes the
function space look continuous for the optimization approach during the run, because
any minimum which is located on the boundary looks symmetrical, although in reality
the value is calculated in a mirrored point inside the boundaries. If required, the internal
constraint handling can be ignored, and the linear constraint functions can be acquired
in analytic form.

To help in evaluating the quality of a solution provided by an algorithm, the module offers
a method for deciding how many different globally minimal solutions a given population
contains with a required precision and their exact locations. A similar method is provided
for the quadratic, hump and part of the common family functions for deciding the number
of found locally minimal solutions. Other useful features included are the possibility of
initializing a population uniformly in a proper range for the used function, an counter
for function evaluations, and the ability to acquire the number of minima a function
contains.

The software package is freely available in: http://www.ronkkonen.com/generator/.
The package includes the source codes, a simple plotter program for visualizing the 2D
functions generated, written in Matlab, and detailed documentation.

4.4.8 Future work

The framework allows easy addition of new families. One such future family could be a
variant of the current cosine family where the global optima would not be located on the
constraints. This would allow easy comparison of algorithms in regard to their ability to
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locate optima on the constraints and offer a different challenge for methods that rely on
the constraints and initial population. Another area in which the framework should be
developed is the ability to generate functions with a desirable global structure. For the
quadratic family this could be achieved by adding an option to give the optima locations
as parameters, instead of always generating them randomly. A new family based on the
composition idea discussed in section 4.4.3 could also be added to allow the generation
of varying landscapes having a large number of optima without excessive computational
cost. Additionally, more known test functions could be added to the common family, and
some of the existing functions currently limited to two dimensions could be generalized
to allow higher dimensional versions.

4.5 Summary

This chapter has considered the topic of evaluating optimization algorithms experimen-
tally, especially in the context of multimodal optimization. Three main challenges for
performing quality experimental studies were identified: the selection of suitable perfor-
mance measures and end condition for the search are important for achieving meaningful
results. Also extensive enough parameter studies are required to analyze the potential of
different algorithms and the effects of different parameters properly. Most importantly,
the selection of the used test function setup is crucial for the success of the study in ac-
quiring useful information about the features of the evaluated optimization algorithms.
The features of the test functions should be understood well enough to be able to analyze
the reasons behind the good or poor performance of the analyzed algorithms. Some of
the most important problem features which can be exploited by different algorithms,
were listed and analyzed, as well as some of the most used performance measures.

A software framework for generating multimodal test functions was created and presented
in response to the limited selection of test problems available at the moment. The
framework consists of four families of parameterizable functions, and more can be added
in the future. The families allow comparisons of multimodal optimization algorithms
with different and controllable functions having well understood features, allowing the
analysis of the algorithms in exploiting the different problem features.

The author’s own work of comparing DE and G3-PCX algorithms was used as an example
on demonstrating the above mentioned challenges in evaluating optimization algorithms.
The results are also used to justify the selection of the DE algorithm as the base for
multimodal optimization approaches proposed in the next chapter.



CHAPTER V

Differential Evolution

Differential Evolution [125, 122, 79] is a population-based steady-state EA introduced by
Storn and Price [157]. Several different DE strategies have been suggested [155, 42, 125].
A naming notation is presented in [158] to classify the variants so that each strategy
is named as DE/x/y/z, where x defines the target of the mutation operation, y is the
number of difference vectors used in the mutation, and z denotes the used crossover
scheme. Using the notation, the basic DE-strategy is named as DE/rand/1/bin. This
states that the mutation target is selected randomly among the population, mutation
is performed using a single difference vector, and uniform crossover (crossover due to
independent binomial experiments) is used.

The DE strategy used throughout this thesis is the DE/rand/1/bin. The strategy was
selected because of its simplicity and popularity, but it has also demonstrated a good
performance in difficult multimodal problems [100] and also in the test setup presented in
Section 4.3. The algorithm starts from a random initial population. In each generation g,
DE creates a trial vector u; 4 for each target vector &; 4 of the population using mutation

Vjig = Tjro,g T F- (Ijﬂ“hg - x]ﬁmg) (5'1)

and crossover

N . < L
Uy = { Vjig if rand[0,1) < CRV j = jrand (5.2)

Tj4ig9 Otherwise

operations. Indices ry, ro, and rg are mutually different and drawn from the set of
population indices. rand[0,1] is a random number drawn anew for each ¢ from uniform
distribution in the range [0,1]. The difference between two randomly chosen population
vectors (Zy, g — Try,q) defines the magnitude and direction of the mutation. This ex-
hibits a self-adaptive behavior to the mutation operation, as the average mutation step
length decreases as the population converges. To prevent crossover from duplicating the
objective vector, 4; 4 always inherits the parameter with a randomly chosen index jrand
from @; 4. The control parameters for DE are the crossover rate CR, the mutation factor
F and the population size NP. F €]0,1+] (the “+” sign marks that in principle F > 1
can be used, but in practice they are rarely useful) is a scaling factor for the mutation
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step length and affects the convergence speed of the population. CR € [0, 1] controls
the crossover by determining the average proportion of parameters the trial vector u; 4
inherits from the mutated vector v 4.

At the end of each generation the selection operation:
R ;g if f(d;g) < f(Z;
Ii,g+1 — { u’L,g 1 f(uz,g) — f(xl,g) (5.3)

Zjg otherwise

is performed comparing each trial vector #; 4 to the corresponding target vector &; 4. If
the trial has equal or lower cost, it replaces the target vector. DE/rand/1/bin is described
in Algorithm 2.

Algorithm 2 DE/rand/1/bin (DEGS)

1: Initialize population, g =1

2: while termination criterion not met do
fori=1;: < NP;i=i+1do
4 Randomly pick rg, 71,72 € {1,2,..., NP}, ro#r1#ra#1)
5 Randomly pick jrana € {1,2,...,D}
6: forj=1;<D;j=j5+1do
7
8
9

o

Perform mutation using (5.1)
Perform crossover using (5.2)
end for
10:  end for
11: fori=1;i< NP;i=i+1do

12: Perform selection using (5.3)
13:  end for
4: g=g+1

15: end while

5.1 Rotational invariance and stagnation

The uniform crossover operation is not rotationally invariant [125, p.101], meaning that
the search is biased in the axis directions. This is efficient when optimizing problems
with low epistasis, but harmful with nonseparable functions. As separable functions
can be solved efficiently by optimizing each parameter independently, EAs are not the
most efficient approaches for such problems. The global search capability provided by
the usage of population in EAs is better suited for harder nonseparable problems, for
which all parameters must be optimized at once. For this reason, rotationally invariant
operators are preferred.

The parameter CR controls the degree of rotational invariance of DE: the smaller the used
value of CR, the less rotationally invariant the search becomes. When the crossover is
disabled (CR = 1), the search becomes completely rotationally invariant. The downside
of using mutation-only DE is a reduced pool of potential trials [80], which may lead to
stagnation with small population sizes. Stagnation is a situation in which the population
has not fully converged, but the algorithm is not capable of producing new solutions
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which would improve the fitness. Using value F' = 1 similarly decreases the pool of
potential trials. Increasing the population size, on the other hand, decreases the risk of
stagnation.

5.2 Randomized mutation scale factor

Stagnation can be prevented in mutation-only DE by making the F' a random variable
instead using a fixed value. Zaharie [182] multiplies the mutation differential component-
wise with a D dimensional vector FJitt of random numbers, drawn anew for each mutation
from normal distribution, with expectation 0 and standard deviation o. Such approaches,
where each parameter of the differential vector is multiplied with a different number has
been named jitter [125, p.80].

In addition to scaling the length, the jitter mutation also changes the direction of the
differential. Assuming that none of the variables has identical value for the entire popula-
tion, which would reduce the corresponding term in the differential to zero, and that the
used probability distribution is unbounded, the jitter mutation can theoretically produce
any point in the search space with positive probability. Zaharie [182] demonstrates that
DE using jitter with unbounded probability distribution fulfills the convergence criteria
presented by Rudolph [130] for a theoretically convergent algorithm, i.e. for an algorithm
which will converge to the global optimum with probability one in finite time. The proof
is based on the fact that the mutation can theoretically produce any point in the search
space and DE is elitist, i.e. it never loses the best found solution. While the assumption
of having no zero terms in the differential can be safely made in theoretical analysis with
infinite precision, in practice such a situation may arise with limited precision.

A downside of using the jitter mutation in replacing the crossover is that jitter is also
not rotationally invariant [125, 156]. Another approach to randomize the mutation scale
factor is to simply replace the constant F in equation 5.1 with a randomized F%th,
Okdem [188] for example uses uniformly distributed random values in range [-2,2]. Such
approaches, where each component of the differential is multiplied by the same random
number is called dither in [125, p.80]. Dither randomizes the length of the differential,
but does not affect its direction, so the mutation can only reach points in a line along the
differential vector. This invalidates the convergence proof by Zaharie [182], even if an
unbounded probability distribution is used for generating the F@*" as dither mutation
is not able to potentially produce any point in the search space. While dither has not
been shown convergent in theoretical sense, the method offers a less disruptive way of
increasing the pool of potential trials compared to jitter. Because dither only affects
the length of the differential, it retains the rotational invariance of the mutation in basic
DE. The results of Das et al. [32, 31] suggest that the use of dither is able to increase
the performance of DE in certain problems, especially in noisy functions. Storn [156, p.
11] states that “Since dither is rotationally invariant and preserves the contour matching
property, this diversity enhancing method should always be used.”.

5.2.1 Study on jitter

The jitter mutation concept has been studied by the author [134, 132]. DE using a
similar jitter approach as that of Zaharie [182] was compared to unmodified DE on ten
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constrained optimization problems taken from [64]. The expectation was set to F and
for o values in range [0,0.1] were tested. Note that using o = 0 reduces the method
to normal mutation. The constraint handling was done using a method proposed by
Lampinen [78, 77].

The results demonstrate the ability of jitter to reduce the number of trials identical
to the current population members and to the other trials generated during the same
generation. While producing identical trials is clearly redundant in advancing the opti-
mization process, the non-identical solutions may also be of poor quality and thus are
not automatically better in advancing the search. The results did not show a significant
improvement of performance for the jitter version over the basic DE over the chosen test
set. Some interesting findings are worth noting, however, and are presented next.

Figures 5.1 and 5.2 demonstrate the performance of basic DE and the jitter approach as
the function of NP with a few different parameter settings in a reactor design problem
(number 104 in [64, p.113]) with ¢ = 107° and NFE,,,, = 500000. The problem is
eight-dimensional and has six constraint functions. Figures 5.3 and 5.4 demonstrate the
performance on an alkylation process problem (number 114 in [64, p.123]) with e = 1 and
NFE,,., = 300000000. The problem is ten-dimensional and has 11 constraint functions,
three of which are equality constraints. The equality constraints were substituted with
two inequality constraints, leaving a range of 0.002 between them and increasing the
actual number of constraint functions to 14.

Average number of function evaluations
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Figure 5.1: Average number of function evaluation from 1000 independent runs
for problem number 104 in [64, p.113].

For both problems, the expected effect of the variation operators (mutation and crossover)
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Figure 5.2: Percentage of runs which failed to locate the global optimum with
precision 10™° within 500000 function evaluations for problem number 104 in [64,
p.113].

of DE to the variance of population ¢"*" was kept constant by using a dynamic value for

expectation F for generating the F7i* calculated by

@21 2-CR
F ’\/ 5CR T Tanp (5:4)

The equation follows from solving the F' from the definition of ¢"*" by Zaharie [182]:

""" = \/2F2CR — 2CR/NP + CR?/NP + 1 (5.5)

With ¢¥" < 1, the variation operators decrease, and with ¢”*" > 1, the variation opera-
tors increase the population variance. As the variation operators are expected to increase
the population variance in contrast to the selection operation, values ¢"*" < 1 would lead
to a premature convergence as none of the operations would be able to increase the popu-
lation diversity. Zaharie [182] suggest a usable range for the ¢"*" parameter to be [1,1.5].
To emphasize robustness, the value ¢"*" = 1.5 was used in equation 5.4 for calculating
the F.

The results suggest that the value for ¢ in generating the Fitt for equation 5.9 should be
rather small, somewhere in the range [0, 0.1]. As can be seen in Figures 5.1 and 5.2, the
performance of DE is clearly inferior with ¢ = 0.1 compared to the smaller values. Using
large values for 0 makes the mutation behave like random search, as the differentials have
only little meaning and the algorithm loses its ability to use the population information
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Figure 5.3: Average number of function evaluations from 10 independent runs
for problem number 114 in [64, p.123].

for its advantage. Additionally, the lack of rotational invariance of jitter affects the search
more with increasing values of o.

Figures 5.1 and 5.2 demonstrate the typical effect of population size on the performance
of DE. With a too small population size, the algorithm will often converge prematurely
and fail to locate the global optimum. Typically an optimal NP exist, which is enough
to provide reliable convergence with a minimal number of function evaluations. If the
NP is increased further, the required number of function evaluations increases as well.
It is notable that DE requires a larger population size with CR = 1 compared to the
CR = 0.9 to achieve reliable convergence. However, also the required number of function
evaluations increases slower along with the increasing population size. A similar effect
is visible in Figure 5.3. This demonstrates the advantage of using CR = 1 on problems
with high epistasis, as the algorithm becomes less sensitive to the selection of the NP
parameter.

The alkylation process problem was clearly the most demanding among the used test
setup. The equality constraints posed a special problem for the used approach, as the
inequality constraints used to emulate them form a very narrow area for acceptable
solutions, which may be hard to locate. The alkylation process problem was also the only
one among the test setup which demonstrated a clear performance difference between
the basic DE and the jitter version. As can be seen in Figure 5.4, both setups of the
basic DE generate failures with the whole tested population range while the jitter version
only fails with NP < 30. Because of time limitations, the tests were done using only 10
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Figure 5.4: Percentage of runs which failed to locate the global optimum with
precision 1 within 300000000 function evaluations for problem number 114 in [64,
p.123].

repetitions, and also the maximum NP of 100 was rather low for such a problem. Thus
no definite conclusions can be drawn from the single result. Nevertheless, it suggests
that using a randomized mutation scale factor may be beneficial, especially in harder
problems.

5.2.2 Additive jitter

To achieve a mutation operator capable of reaching any point in the search space with a
positive probability similar to jitter but also capable of retaining the rotational invariance
of mutation, an additive jitter (ajitter) concept was proposed by the author in [135].
Instead of using the random term in the multiplication, the method adopts the idea
proposed by Ter Braak [161, 162] of using addition in implementing the jitter. Ter
Braak draws each component of a vector Fadit of length D from a symmetric unbounded
distribution with expectation 0, using a small fixed value for the standard deviation,
and adds the resulting vector to the scaled differential. Using a fixed value for the
standard deviation is problematic because it does not scale according to the length of
the differential. Thus the proportional effect of the added component is dependent on the
length of the differential: for long differentials the added component may easily become
indistinguishably small, while for short differentials the added component may dominate
the mutation. This can disrupt the self-adaptive nature of DE, which relies on changes
on population differentials.
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In jitter and dither, the effect of randomization is automatically proportional to the length
of the differential because of the multiplication. To achieve the same with the ajitter,
the standard deviation must be scaled. The vector F%Jit has thus been constructed by
drawing random numbers from a normal distribution with expectation 0 and using the
length of the differential scaled by Fo/v/D as standard deviation:

F{I" = N (0,1Frsg = Fragll - Fo/VD) j=1,2,..., D (5.6)
The scaling term /D keeps the length of Flaiit independent of the dimension of the
problem. o represents the proportional length of the differential. The use of ¢ here in
a slightly different meaning compared to jitter and dither, where it directly defines the
standard deviation of the used normal distribution, is intentional. The effect of changing

the value of the o parameter has a comparable effect in all three approaches, and the o
becomes an added parameter for a DE using any of the methods.

The convergence proof of Zaharie [182] applies to the ajitter in a similar manner as
to the jitter. Additionally, the ajitter is also a rotationally invariant process because
the construction of F% uses a symmetric distribution. Figure 5.5 demonstrates this by
displaying the distributions acquired by generating 400 random points for three differently
aligned differentials of equal length using dither, jitter and ajitter mutation with o = 0.1
and F = 1. As can be seen, the shapes of the distributions generated by dither and
ajitter are not affected by the rotation of the differential. For jitter, however, the shape
of the distribution clearly changes along the rotation.

5.3 Selection pressure

The selection operation of DE/rand/1/bin is global in the sense that the base vector
for mutation is a randomly selected population vector other than the target vector.
This means that the trial vector u; ; has no relation to the target vector &; 4, against
which it competes in the selection phase (eq. 5.3). Global selection thus allows under-
performing population vectors to be replaced with variants of the better solutions of the
population. Most of the traditional DE variants use global selection. The abbreviation
DEGS stands for DE using global selection and is used in this thesis as a synonym for
the DE/rand/1/bin, as it is the only traditional DE variant used.

In local selection, equation 5.1 is modified so that the target and base vectors are the
same (19 = 7). Now each population member is always compared to its own mutant in
the selection phase. When the selection is local, evolution of a vector only depends on
the current set of vector differences, and not directly on the parameter values of vectors
other than those of the target. In effect, local selection partitions the population into
NP niches, each of which is inhabited by a single vector that evolves in isolation. The
abbreviation DELS is used for DE using local selection.

Ter Braak [161, 162] demonstrates that local selection is Markovian and satisfies the
detailed balance condition [127, p. 229] and transforms a mutation-only DELS to a
Markov chain Monte Carlo (MCMC) algorithm by introducing a probabilistic Metropolis-
Hastings acceptance rule. MCMC algorithms aim to generate an output for matching
a target distribution. The resulting method, Differential Fvolution Markov Chain, runs
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Figure 5.5: Graphical presentation of 400 random points produced by dither (top
row), jitter (middle row) and additive jitter (bottom row) mutation operations
with ¢ = 0.1 and F' = 1. The points ¢, 71 and r2 represent the end points of
vectors ¥;, Tr, and Zr, starting from point 0,0 and the 71 — 72 is the differential
which is added to i.
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NP parallel Markov chains. DE provides the scale and orientation for the proposal
distribution. Based on an analogy with the classic random walk Metropolis algorithm,
the optimal choice for the mutation scale factor in such a setup is F* = 2.38/v/D [128].

The drift-free DE proposed by Price [123] uses the local selection in combination with
a drift-free recombination operation. The approach aims to eliminate biases caused
by crossover, global selection and the three-vector arithmetic recombination, which is
suggested in [125, p. 108] as a replacement for the crossover. In drift-free DE, the
mutation is responsible for exploring the search space, while recombination homogenizes
the population.

5.3.1 Scaling study

In order to study the differences between DEGS and DELS, a scaling study was performed
by the author in [124]. Especially the effect of dimensionality on the optimal values of
parameters NP and F' and their mutual interactions were studied using simple convex
unimodal functions. Mutation-only versions (CR = 1) of both algorithms were used to
eliminate disruptions caused by the crossover and, reduce the number of tunable control
parameters.

THE TEST SETUP

A set of experiments was performed using three convex unimodal functions with quadratic
minima: a sphere (eq. 4.5), an ellipse (eq. 4.6), and a rotated ellipse (eq. 4.7). Highly
multimodal functions were not considered because the aim was to observe fundamental
differences between the two forms of selection without the complicating influences entailed
by functions whose properties change with dimensionality. However, the generalized
Rosenbrock function (eq. 4.8) was included as the final function of the test bed to test
the effect of the non-convexity on the performance of the methods.

Initially the average NFE from 100 independent runs was calculated for each combination
of D =[2,4,...,30], F =[0.1,0.2,...,1] and NP = [1D,2D,...,10D]. For the convex
functions, the initialization of population was done using uniformly distributed random
numbers in the range [-100, 100] and in the range [-30, 30] for f,,s. Additionally, D = 50
was tested by using 10 independent runs. For DEGS, the NP range was extended up to
14D for the convex functions and up to 16D for the f,,s. The performance was measured
by calculating SP using € = 107% and NFE, 4, = 1000D - NP. The resulting graphs are
available in http://www.it.lut.fi/ip/evo/.

To provide more accurate estimates for the SP* (the optimal SP), the F* and NP* (the
values of NP and F' which produced the SP*) for the convex functions, the F' and NP
were sampled at higher resolution centered on the estimates of their optimal values from
the initial setup and averaged over 400 runs. In particular F' was sampled in the range
[F* —0.10, F* — 0.08,..., F* 4+ 0.10] and NP from NP* — D/2, NP* and NP* + D/2.

RESULTS

Figure 5.6 plots the achieved SP*, NP* and F* as a function of dimension. The trend
of each is estimated by displaying the best-fit power law trend lines. The results for all
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three convex functions are practically identical, demonstrating that neither the disparate
magnitudes of parameters nor the rotation have a significant effect on the performance
of either version of mutation-only DE, as can be observed in Figures 5.6(a), 5.6(c) and
5.6(e). This is expected, as the mutation operation is rotationally invariant, and the use
of differentials is efficient for scaling the step length of the mutation.

Figure 5.6(a) demonstrates that while DEGS is initially faster on the convex functions,
DELS gives a lower SP* once D > 14. A best-fit power law trend line for the DELS
data reveals that SP* nearly increases in proportion to D?, whereas the corresponding
best-fit power law trend line for DEGS shows SP* increasing faster than D23,

As the trend line in Figure 5.6(c) shows, the optimal population size for DELS increases
linearly with dimension in each convex problem corresponding to NP* = 2D, except
for D = 2 when NP* = 5. This relationship between NP* and D remains valid even
at D = 50. Given that sphere is such an easy function to optimize, the NP* = 2D
would appear to predict the smallest possible reliable population size for any function
for the mutation-only DE. Choosing a larger than optimal population size, for example
NP = 4D, remains effective and makes DELS less sensitive to the choice of F. The
corresponding plot for DEGS shows that NP* roughly increases in proportion to D4,

While the F™* for DEGS in Figure 5.6(e) seems to be approaching a lower limit at around
F' = 0.5, the optimal scaling constant for DELS continues to decrease as D increases.
The power law trend line reveals that under DELS, F* very nearly decreases in inverse
proportion to the square root of D.

Comparing the results for the Rosenbrock function in Figures 5.6(b), 5.6(d) and 5.6(f)
to the corresponding ones for convex functions shows the effect of the banana-shaped
contours on DELS and DEGS. Even though the simple power law is no longer a good fit,
Figure 5.6(b) suggests that SP* increases faster for both methods, compared to the three
convex functions. For DEGS, the exponent grows from 2.5 to approximately 2.7, and
the constant factor about doubles when moving from convex functions to the Rosenbrock
function. While the exponent of the trend line for DELS is roughly 2.5, a little less than
for DEGS, the almost twenty times bigger constant factor makes the algorithm clearly
slower in terms of SP. The SR for DELS drops along with increase in the number of
dimensions, and in 50-dimensional Rosenbrock the algorithm fails to solve the problem
within the given NF FE 4,

Figure 5.6(d) shows that over the range D = [2,30] the NP* scales almost linearly
in proportion to D for both algorithms, although the lone DEGS result at D = 50
suggests that at some point NP* begins to increase faster. DELS requires slightly larger
populations compared to DEGS on this function. Thus while non-convexity left the
scaling performance of NP unaffected except for the increased constant factor, it actually
lowered somewhat the rate of growth for DEGS. However, because DELS was unable of
solving the Rosenbrock with D = 50, the result is inconclusive.

The limit of 100 runs conducted for the Rosenbrock function makes its scaling data for
F* less reliable. The two plots in Figure 5.6(f) share similar profiles, except that the
plot for DELS is shifted down using lower F* and to the right (higher D) compared to
the plot for DEGS. For both algorithms, F* exhibits an initial rise followed by a slow
decline to what appears to be a constant value. For DELS, F* rises to 0.4 when D = 10,
before dropping to 0.2 for D > 20. Similarly, F* for DEGS rises to 0.8 at D = 4 before
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Figure 5.6: The SP*, NP* and F* for DEGS and DELS as a function of dimen-
sion and corresponding best-fit power law curve. For the convex functions, the
trend line is only shown for the sphere function.
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approaching F* = 0.5 as a limit. The non-convexity appears to lessen the disparity
in the scaling performance that DELS and DEGS exhibited on convex functions, and
demonstrates that the results derived from convex quadratic functions are not universal.

DISCUSSION AND CONCLUSIONS

A best-fit power law curve for the DELS data on the convex unimodal functions demon-
strates that F* is roughly equal to 1.3/ v/D. This result resembles the theoretically
predicted value of F* = 2.38/ VD for the random walk Metropolis algorithm when the
target distribution is Gaussian in the limit of large D [128]. It is also similar to the
pre-factor of 1/v/2D, with which the Evolution Strategies scale a multivariate normal
distribution [19]. For DEGS, however, F'* never drops below 0.48, because decreasing
F' inflates the optimal population size. Why then do small scale factors entail large
populations for DEGS but not for DELS?

To understand the performance difference between DELS and DEGS, it helps to consider
what happens when F' approaches zero. When the selection is local, the trial vector will
resemble the target vector &; , more closely when F' nears zero. Under global selection,
the shrinking F' makes the trial vector more like a random base vector #, 4. When F' = 0,
DELS compares each vector to itself, while DEGS compares each vector to a randomly
chosen population vector. When DELS replaces a vector by its copy (as it always does
because the copy has the same objective function value as the vector it is replacing),
there is no change in the composition of the population. DEGS, however, changes the
composition of the population when it replaces the target vector with a different vector
of an equal or lower objective function value. While not every base vector will be better
than the target vector that it tries to replace, those that are accepted can quickly drive
the population to uniformity.

Another way to explain this behavior is that short takeover time of global selection is
responsible for limiting the effectiveness of small values of F. Goldberg and Deb [54]
define the takeover time of a selection method as the expected number of generations
until copies of the best vector fill an initially diverse population, when selection is the
only used operation (no variation operations like mutation or recombination are used).
In principle DEGS could choose the best vector as a base vector NP times in a single
generation. In this unlikely case, the minimum takeover time for global selection is a
single generation, i.e. after NP competitions, the best vector would have filled the whole
population with copies of itself. Of course, the average takeover time of global selection
will be much longer because it is very unlikely that the same vector will be randomly
chosen as a base vector NP times in succession. Through a simulation, the takeover time
of DEGS has been estimated as proportional to NP - log(NP) in a limit of large NP
[124]. Either way, the takeover time of DEGS depends on NP. By contrast, the takeover
time for DELS is infinite, because local selection operating alone can never propagate
the best solution out of its own niche. Consequently, NP does not have to be inflated
to extend the takeover time long enough for the population to find a solution before
becoming uniform.

The ability of local selection to de-couple the population size from its strong dependence
on the mutation scale factor allows small populations to be used in conjunction with small
F. Under DEGS, the population sizes must be expanded beyond what DELS requires in
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order to prevent premature convergence. Once the optimal scale factor for the problem
at hand drops below F' = 0.5, the increase in population size begins to degrade the
SP for DEGS, whereas DELS remains both reliable and efficient. However, the results
for the Rosenbrock function demonstrate that the ability to use a small scale factor
is not always helpful. Especially on multimodal functions, small values for F' become
problematic, because the algorithm loses the ability to use the population information
effectively to identify and exploit the global features of the problem. Instead, using
small F' with DELS basically incorporates an explicit PN method for the DE, as each
population member is actually doing extended local search within the area defined by
the scaled mutation differentials.

5.3.2 Extending DELS for multimodal problems

To employ the potential of DELS to benefit from the use of small F' for multimodal
problems, the mutation operation was divided into two parts by the author in [135]:
local mutation and global mutation. The resulting algorithm, DELS using local muta-
tion (DELL), adopts the “either/or concept” [125, p.117], which uses only one variation
operator for generating each trial. The selection between two possible operators is done
probabilistically for each trial using the PX parameter to control the probabilities for us-
ing either. While it would be possible to use the traditional uniform crossover operation
also with DELS; it would destroy the rotational invariance of the approach, and thus the
crossover has been removed from the proposed algorithm.

The local mutation operator
Uig = Tig + 1~3/\/5' (Tr1,9 = Trarg) (5.7)

is responsible for offering an efficient local search capability to the algorithm. It is simply
the normal DELS mutation using the optimal mutation scale factor 1.3/+/D for convex-
unimodal problems (Figure 5.6(e)).

The global mutation is responsible for the global phase of the algorithm and allows
solutions to escape local optima. The idea is to use a similar mutation operator as in
the local selection, but using a longer mutation step length. Value F' = 1 is preferable,
as it means that the mutation step length is the unscaled length of the differential and
represent the actual scale of the population. Additionally, the dither, jitter or ajitter
concepts can be used in the global mutation to increase the pool of potential trials. The
dither version of the global mutation uses a random number F%*" drawn anew for each
mutation from normal distribution, with expectation F' and standard deviation o

ﬂi»g = fi,g + (frug - j’rz,g) (5.8)

in scaling the differential. The abbreviation DITH is used for DELL using the dither
global mutation. In the jitter version, the differential is multiplied component-wise with
a D dimensional vector F7%* of random numbers, drawn anew for each mutation from
normal distribution, with expectation F' and standard deviation o

g = Tig+ FI™ @ (Zy, g — Try.g) (5.9)
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The abbreviation JITT is used for DELL using the jitter global mutation. The ajitter
version of the global mutation adds the F%% to the differential

Uj,g = Tig + (fm 9 frz,g) + Faiit (5.10)

New F4dit is constructed for each mutation operation according to Equation 5.6. The
abbreviation AJIT is used for DELL using the ajitter global mutation.

DELL is described in Algorithm 3. Compared to the basic DE, two new parameters
are required, PX and o. On the other hand, the parameter CR is no longer required,
as the crossover is removed. Thus the actual number of parameters increases by one
compared to the basic DE. For F, the value of 1 is recommended to keep the global
mutation really global. However, F' has been left here as a parameter because it will
be demonstrated later in this thesis that using a different value may be beneficial in
some cases. The frequency to use either local or global mutation is controlled by PX, so
that with PX = 0 global mutation is never used and with PX = 1 global mutation is
always used. o controls how large role the differential has in the global mutation. Setting
o = 0 reduces all three versions to basic DELL, where the differential solely defines the
mutation, and increasing the value takes the global mutation towards a random search.

Algorithm 3 DELL, the initial version
1: Initialize population, g =1
2: while termination criterion not met do
3: fori=1;i<NP;i=i+1do

4: Randomly pick r1,73 € {1,2,..., NP}, r1 #13)

5: if rand|0,1] < PX then

6: Perform global mutation using (5.8), (5.9) or (5.10)
7 else

8: Perform local mutation using (5.7)

9: end if

10:  end for
11: fori=1;:< NP;i=i+1do

12: Perform selection using (5.3)
13:  end for
14: g=g+1

15: end while

TEST SETUP

Five test functions, Rosenbrock (eq. 4.8), Rastrigin (eq. 4.8), Schwefel (eq. 4.10),
Whitley (eq. 4.13) and Rana (eq. 4.16), were used to test the suggested three variants of
DELL, and for comparison, similar tests were performed with DEGS. For each function, a
scaling study for different dimensions was performed. Two different initialization ranges
were tested for f.,s to see if the placement of an optimum has an effect on the performance
of the algorithms. Randomly rotated versions of Rastrigin (f,qs) and Schwefel (frscr)
were also included to change the functions to a nonseparable form. The used rotation
method is similar to the one used in Section 4.4.2 for rotating the cosine family functions.
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The final included variant of the Rastrigin function is a randomly rotated and miss-scaled
version:

D i-1 2 i1
frras(§) = 10D+ ((10ﬁyi — 10 cos(27 - 10ﬁyi)) . (5.11)

i=1
Table 5.1 summarizes the used test function setup.

Table 5.1: The settings for different problems.

Function  Dimension NFFE,,qx Used constraints

fros 2-50 1000D- NP  —-30<z; <30 j=1,...,D

fras 2-20 3000D- NP  —512<2; <512 j=1,...,D and
~0.12<z; <1012 j=1,...,D

frrasmras  2-20 3000D-NP  —512<y; <512 j=1,...,D

fsch 2-20 3000D- NP —512<z; <512 j=1,...,D

frsch 2-20 3000D- NP —512<y; <512 j=1,...,D

Fuwhi 2-20 3000D-NP  —512<z; <512 j=1,...,D

frana 2-5 20000D - NP —520<z; <520 j=1,...,D

The performance was measured by calculating SP from 100 independent runs. For f;,s
e = 1076 and for the other functions, ¢ = 1072 was used. However, when SR is very
small, the value of SP is not very informative, as a small change in SR results in a huge
change in SP, and the variance in the SR becomes an issue. For this reason, the SP
values were calculated only for cases where the problem was considered solved. In this
study, a value of SR > 5/100 was required to categorize the problem as solved. A term
occasional success is used to refer to the runs for which SR < 5/100. The full set of
results is available in http://www.it.lut.fi/ip/evo/.

The constraints were handled by replacing the faulty variable with a randomly selected
value inside the constrained area. To save computation time, higher dimensional runs
were not performed, if the algorithm had already failed to solve a lower dimensional
version of the problem with all tested parameter combinations.

Because the test setup was very time consuming, not all possible parameter combinations
were tested. For DEGS, the crossover was disabled, using always CR = 1 to achieve
rotation invariance. For DEGS the values 0.5,0.6...1 for F' were tested in all cases.
The values F' < 0.5 were left out, due to the previous findings, which suggested that
DEGS can not fully benefit from small values of F' (Figures 5.6(e),5.6(f)). For the DELL
methods, F' =1 was always used.

The value of NP = 9D was tested with all methods and functions because it was close the
optimum NP value identified for the Rosenbrock function (Figure 5.6(d)). Additionally,
for DEGS, the value of NP = 2.4D'? and for the DELL methods, the value of NP = 3D
were tested on all problems. These values are close to the optimum NP values identified
for convex unimodal problems (Figure 5.6(c)) and can be considered the lower bound
for viable NP values for any harder problems. Because DEGS typically requires larger
population sizes than DELS, due to the larger selection pressure, the value of NP = 20D
was also tested with DEGS in all other problems except fi.,s. Lastly, with f,qnq all
methods were tested also with values NP = 20D and NP = 40D.
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For the DELL methods, values of ¢ = 0.1, ¢ = 0.01 and ¢ = 0 were tested for all
problems. Additionally, the value of o = 0.5 was occasionally used, to get an idea of how
much greater o values would perform, and to make certain that the used magnitude of
o was not too small altogether. These tests were not used, however, when determining
the best SP values, because a complete set of results were not generated using o = 0.5.
The PX value was scaled from 0,0.2,...,1 for all DELL methods and all problems.

RESULTS

All the tested algorithms were able solve the Rosenbrock function regardless of the di-
mension. As can be seen in Figure 5.7 all DELL methods perform almost similarly and
are clearly faster than DEGS. The relative difference between DELL and DEGS grows
larger as the dimension of the problem increases.

Best success performance

DELS/dither
DELS/jitter
DELS/ajitter
DEGS

<d4o+0

0 10 20 30 40 50

Figure 5.7: Best achieved SP values for frqs

The results for unrotated Rastrigin are presented in Figures 5.8(a) and 5.8(b). Changing
the initialization range of population from centered to non-centered does not have a
considerable effect on any of the methods. DEGS is able to solve (attain SR > 5) when
D < 8. Among the DELL methods, DITH is able to solve the problem when D < 10,
AJIT when D < 14 and JITT with all tested dimensions. For the SP, DEGS is again
the slowest, while JITT is able to outperform DITH and AJIT when D > 8.

The situation changes, when the Rastrigin function is rotated, which makes the function
nonseparable. As can be seen in Figures 5.8(c) and 5.8(d), the miss-scaling does not have
a significant effect on the performance of any of the algorithms. Also the rotation has a
negligible effect on the performance of DEGS, DITH and AJIT. However, the results of
JITT decrease notably and are now comparable to those of AJIT.

DELL outperforms DEGS also in the Schwefel function, as can be seen in Figure 5.9.
DEGS is able to solve the problem when D < 14 and the rotation again has only a small
effect on the performance. AJIT has problems with the higher dimensional versions and
is unable to solve (other than occasional successes) the unrotated version with D = 20
and the rotated version with D > 16. DITH and JITT are able to solve the problem
with all tested dimensions. DEGS was the slowest, when comparing SP. Again JITT
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Figure 5.8: Best achieved SP values for different versions of the Rastrigin func-
tion

outperformed the other DELL algorithms in the unrotated version, but in the rotated
version DITH was the fastest.

The Whitley function was the only one in the test set where DEGS was able to outperform
DELL. DEGS managed to solve the problem when D < 18, when the DELL methods
only managed to solve it when D < 16 (all methods scored occasional successes with all
tested dimensions). When comparing the SP values in Figure 5.10(a), DEGS is clearly
faster than DELL, regardless of the dimension. The differences between the performance
of the different DELL methods are rather small.

The Rana function (Figure 5.10(b)) was clearly the hardest on the test setup. DEGS
was able to solve it only when D = 2,3 while all DELL methods were able to solve it
when D = 2,3,4. DITH was the only method to get occasional successes when D = 5.
In terms of SP, DEGS was the slowest when D = 2 and shared the slowest performance
with AJIT when D = 3. Among the DELL methods, AJIT was the slowest and JITT
the fastest.
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Figure 5.9: Best achieved SP values for the Schwefel function

EFFECTS OF CONTROL PARAMETERS

The value of PX = 0 (global mutation disabled) performed poorly in all the tested cases
throughout the test set. In Rosenbrock, all DELL methods behaved rather similarly, and
small values performed best. Increasing the value up to 0.6 did not have a significant
effect in most cases, but using higher values started to decrease the performance of the
algorithms. In the other functions, PX did not have a clear optimum value. For DITH,
PX* typically got smaller as the dimensionality of the problem increased. For JITT and
AJIT the trend was not as clear.

In most cases, smaller values for ¢ increased the speed, but decreased the SR. In the
Rosenbrock function, small o values performed generally well, and it was the only tested
function where the value of ¢ = 0 outperformed the larger values. In Rastrigin and
Schwefel, the value of o = 0.01 performed well with small D, but with increasing di-
mensionality, ¢ = 0.1 gained the upper hand (except for AJIT in Schwefel) because of
increased SR. In the Whitley function, DITH performed well with ¢ = 0.1, but for JITT
and AJIT the best value for o was more often 0.01 than 0.1.

The best performing population sizes for all DELS methods on Rosenbrock were NP =
3D for all dimensions, and for DEGS they followed NP = 2.4D'® as expected. For
Rastrigin, all DELL methods performed best with NP = 9D, which was also the best
population size for DEGS when D < 4. With the increased dimension DEGS, required
NP = 20D. In Schwefel, all DELL methods performed best with NP = 3D until D < 8
and after that with NP = 9D. DEGS used NP = 2.4D-% or NP = 9D when D < 12 and
NP = 20D with D = 14. For Whitley, the best population size for DEGS was mostly
NP = 9D, except for NP = 2.4D"5 with D = 6 and NP = 20D with D = 18. The
DELL methods used NP = 3D in low dimensional and NP = 9D in higher dimensional
cases. DITH swapped at D = 6, JITT at D = 8 and AJIT at D = 12. In Rana, DEGS
performed best with NP = 40D, while the DELL methods used NP = 3D for D = 2,
NP = 20D, for D = 3 (except for JITT, which performed best with NP = 9D) and
NP = 40D with higher dimensions.
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Figure 5.10: Best achieved SP values for the Whitley and Rana functions

DISCUSSION AND CONCLUSIONS

As only a limited number of different parameter combinations were studied for each
method, it can not be exclusively claimed that some of the tested methods outperform
others even inside the selected function testbed, because with different parameter setup
the results may change. Especially, enabling the crossover for unrotated Rastrigin and
Schwefel would definitely increase the performance of DEGS, because it could exploit
the separability of the functions, as can be seen in the results presented in Section 4.3.
The goal of this study was, however, to demonstrate that with a suitable migration
operator, the concept of DELS can be applied to general multimodal problems, and
that goal was achieved. The performance obtained with DELL compares favorably with
the performance of DEGS. Especially in the Rosenbrock function, all DELL methods
were able to outperform DEGS. When the results are compared to the ones presented in
Section 5.3.1, it can be clearly seen that the use of global mutation operation increases
the performance of DELS with the Rosenbrock function significantly.

When comparing the overall results, DELL was able to outperform DEGS in all but the
Whitley function. It seems that the combination of a very steep overall slope and a highly
multimodal area around the optimum favor the greedier global selection, which draws the
population fast to the general area of the global optimum and can then perform efficient
local search. It can be observed in the results with different versions of Rastrigin that
none of the tested algorithms are sensitive to miss-scaling or moving the optimum away
from the center of the search space. Also the results for Rastrigin and Schwefel functions
show that rotation has only a small effect on the performance of DEGS, DITH and AJIT,
which is consistent with the fact that these methods are rotationally invariant. JITT, on
the other hand, performs clearly better in the unrotated cases, which confirms that jitter
exploits the separability of the functions. It is notable, however, that while being able to
clearly outperform DITH and AJIT with the unrotated functions, JITT is still able to
achieve comparable performance with the rotated versions. The performance differences
between different DELL versions are generally smaller than differences between DELL



5.4 Niching with Differential Evolution 107

and DEGS. Among the DELL versions, JITT performs the best overall in terms of
SP. When the separable cases are left out, the differences in performance between the
algorithms are quite small. AJIT has some problems with Schwefel and Rana, but
performs well with Rastrigin. Dither, on the other hand, has problems with Rastrigin,
but works well with Schwefel.

The use of a randomized scale factor increased the performance in all highly multimodal
problems. However, the used set of different NP values was very limited, and it is possible
that the performance of DELL using o = 0 could be increased by using larger NP values.
In most cases, the value o = 0.1 offered better robustness than smaller values. Generally
DITH seemed to prefer larger o values than JITT and AJIT. A possible explanation for
this is the fact that dither is able to produce a more limited variety of different trials, and
needs larger o value to compensate for the loss. The experiments with ¢ = 0.5 suggest
that especially with dither values even larger than ¢ = 0.1 could be useful in some cases.

The poor performance when using PX = 0 was to be expected, because local mutation
alone cannot escape local optima efficiently. Disabling local mutation (using PX = 1)
performs well in some functions, especially in Rana. Still, in most tested cases, a smaller
PX value seems to find the optimum more reliably, especially when the dimensionality
is increased. The use of local mutation is able to most clearly improve the performance
of DELL in the Rosenbrock function. This is well in line with the supposed role of local
mutation operation to speed up the local search of the niches. It is logical that the
benefits are most clearly visible in Rosenbrock, which is almost unimodal. Because the
local mutation seems to be useful in most problems, while not clearly harmful in any
of them, using PX = 1 is not recommended for initial guess when using DELL. When
the extremes are left out, the value of the PX parameter does not seem to be of critical
importance to the performance of the DELL. For this reason, a safe initial guess for the
value would be around 0.5.

The population sizes used in the tests were close to optimum for Rosenbrock according
to the scaling study (Section 5.3.1). However, the harder multimodal problems did not
scale similarly, and as dimensionality was increased, often the best performance was
achieved with the largest tested population size. For DELL, at the beginning the values
of NP = 3D often performed well, but when the dimensionality increased, NP = 9D
was required. This suggests that the optimal population size did not increase linearly
with the dimension any longer, like in the unimodal problems, but also for DELL the
optimum population size will grow faster in multimodal problems. For this reason, it is
possible that the use of larger population sizes for the higher dimensional cases would
increase SR and SP. As a conclusion, the optimum population size is problem-dependent.

5.4 Niching with Differential Evolution

Several variants of DE using niching methods to extend the usability of the algorithm to
multimodal optimization have been presented in the literature. Most of the methods fall
in the category of explicit PN, but also the implicit PN concepts of sharing and crowding
have been used. This section introduces different DE versions developed for multimodal
optimization.
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5.4.1 Sharing DE

The fitness sharing concept has been imported to DE by Thomsen [163]. The sharing
DE (SHDE) uses the standard sharing function described by equations 3.1 and 3.2, using
the Euclidean distance as the distance measure. The method allows the population to
double each generation. After NP trials have been generated, the sharing function is
used for calculating the fitness for each individual, and the worst half of the population
is purged. The algorithm ensures elitism by always preserving the individual with best
unscaled fitness. The algorithm suffers from the characteristic problems of sharing: the
requirement to define 0,44 and the high CPT of O(NP).

5.4.2 Crowding DE

Crowding-based DE (CRDE) presented by Thomsen [163] modifies the selection phase
of DEGS (eq. 5.3) so that instead of #;, the trial @; is compared to the most similar
member from a random subset of population &

T, otherwise

whose size is defined by the CF parameter. Also the replacement is done instantly to the
main population instead of using a separate trial population. The similarity is measured
by the Euclidean distance. To eliminate the additional parameter and URE, Thomsen
uses CF = NP, which means that CPT is high O(NP). The advantage of CRDE is
the lack of additional control parameters. Thomsen performed an experimental study
between the sharing and crowding versions of DE. The results demonstrated CRDE to
outperform SHDE in all tested cases in locating and maintaining multiple optima.

5.4.3 Speciation-based DE

Speciation-based DE (SDE) proposed by Li [85] is an explicit PN method. The DE
population is classified into species according to their similarity measured by Euclidean
distance. A procedure for determining species and the dominant individuals in these
species is used as in [84]. Each species and its corresponding species seed (the dominant
individual) form a separate subpopulation where DEGS is executed locally. To eliminate
redundant individuals, a trial having fitness identical to the species seed is replaced by a
randomly generated individual. Because species are adaptively formed around different
optima, over successive iterations, multiple global optima can be found in parallel. The
CPT of O(c) for SDE is similar as in the clearing approach and thus lower compared to
the SHDE and CRDE.

As with SHDE, the o,..4 parameter is required in order to define the size of a species,
which is a major limitation for the method. Parameter m defines the minimum number
of members in each species in addition to the species seed. If the species does not have
enough members, new individuals are randomly generated within o,,4 and added to the
species. Between generations, only NP fittest individuals are preserved. This includes a
risk of losing some potential niches before they have enough time to converge, especially
with small population sizes combined with large values of m and small ¢,.4q4.
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5.4.4 Multipopulation DE

Zaharie [184] proposes a multiresolution multipopulation DE (MMDE), which divides
the population to ¢ equally sized subpopulations. The search space is initially divided
into ¢ non-overlapping subdomains, for which the subpopulations are initialized. While
the DE algorithm is run independently for each subpopulation, the subpopulations are
not restricted to the subdomains used in the initialization. The search is divided into
epochs, between which the subpopulations are re-initialized using a finer discretization
of the domain, so that the number of subdomains increases by c after each epoch. The
best solution in each subpopulation is stored in an archive after each epoch. To prevent
redundant solutions from entering the archive, the Euclidean distance between each new
entree is calculated for each existing solution in the archive, and too similar solutions are
discarded. Additionally, hill-valley detection [169] is used to exclude solutions belonging
to the same peak. For each subpopulation, a subdomain for re-initialization is randomly
selected, but the sharing concept is used to exclude the subdomains for which the archive
already contains solutions. MMDE does not require the definition of the o,,4 parameter,
but introduces a set of new parameters, the number and size of the subpopulations, as
well as the number and length of the epochs. The added complexity of the method
comes from the re-initialization and archive updating procedures performed between
epochs. The complexity increase from the Euclidean distance calculations is affected by
the length of an epoch as well as the size of the archive. Thus the CPT for MMDE is
approximately O(n), where n defines the number of optima the problem contains, which
relates to the size of the archive. However, the hill-valley detection used in updating the
archive also requires excess function evaluations, the number of which is related to the
archive size and c.

In [183] Zaharie adds crowding to the multipopulation concept producing a multipopu-
lation crowding DE (MCDE). The subpopulations are initialized using subdomains as in
MMDE. For each subpopulation, the CRDE is used. As CRDE allows each subpopula-
tion to locate several optima, the epochs and re-initialization of MMDE are no longer
needed.

5.4.5 Other approaches

Rigling and Moore [126] have implemented an explicit PN method for DE by tagging
population members to belong to different subpopulations and implementing a mating re-
striction, so that the variation operations are performed only inside each subpopulation.
Additionally, a penalty is applied to members of each subpopulation that are too close to
members of different subpopulations to drive each subpopulation towards a different opti-
mum. The method requires the definition of the number of subpopulations (c¢), a penalty
term and the minimum spanning distance to be maintained between the subpopulation
(effectively the 0,44 parameter), which are all problem-dependent parameters and thus
form a major difficulty for the use of the method. Rumbler and Moore [131] have tried to
overcome these limitations by suggesting a NewEDFE method for determining the optimal
values for these parameters. The idea is to simply run the algorithm repeatedly with
different parameter setups to determine suitable values and at the same time keep record
of the found solutions. While single values for the problematic parameters are no longer
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needed, the problem of parameter selection still remains, as the ranges to be tested are
still needed. Of course the repeated runs increase the computational complexity.

Hendershot [62] has further extended the NewEDE concept in an algorithm called Mul-
tiDE. The algorithm is similarly run with varying values for the ¢ and o,,4 parameters
and records the best found solutions. The method, however, does not use the penalty
term and instead compares each trial to the elements in the recorded optimal solutions,
and if it differs less than the value of a precision parameter defined by the user, the trial
is discarded. Additionally, for each trial the Euclidean distances to the members of other
subpopulations are calculated, and if the trial is within the 0,44 from any of these, it
is moved away from that subpopulation. The process is repeated until the trial is not
within the ¢,,4 from any member of the other subpopulations. To increase the conver-
gence speed, subpopulations which fail to locate new optima within the user-specified
maximum number of computations, are eliminated. The main drawback of the MultiDE
is the difficulty to tune the control parameters: while the penalty term is removed, the
limits for o,4¢ and ¢ are still required. Additionally, the method adds the precision
parameter and the maximum number of computations allowed before elimination of sub-
population to the list of user defined-parameters. The complexity of the method is high,
as for each trial n-(NP— NP/c) (all ¢ subpopulations are of equal size) Euclidean distance
calculations are required, where n defines the number of repetitions until a suitable trial
is found. This gives the method the CPT of O(NP).

5.5 Using DELL for multimodal optimization

This section contains an initial investigation, originally published by the author in [136],
of using DELL for multimodal optimization. As the local selection concept by definition
isolates each population member, it can be seen as a niching method. Basically local
selection functions similarly to the deterministic crowding in the context of GAs, as in
both approaches the offspring is pitted against its own parent. Local selection shares the
advantages of deterministic crowding: a low CPT of O(1) and the lack of additional con-
trol parameters. Additionally, as in DE, only one parent is used, and local selection does
not even need to define a similarity measure, which is used in deterministic crowding for
determining which of the parents the offspring is compared to. The investigation studied
the performance of AJIT using a set of two-dimensional multimodal test problems. The
aim was to locate all global optima. Similar runs were performed with mutation-only
DEGS to demonstrate the differences between local and global selection. In all cases, 100
independent optimization runs were performed. The results demonstrate the capability
of DELS-based approaches in finding multiple global optima, but also point out short-
comings in the original DELL described by Algorithm 3 in the context of multimodal
optimization. An improved version of the algorithm is presented in Section 5.5.3. The
complete set of related results is available at http://www.it.lut.fi/ip/evo/.

5.5.1 The ability to find and maintain optima

The purpose of the first problem set was to test the ability to locate and maintain multiple
optima with ¢ = 10™3 when given more than enough time to converge (NFEpas =
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NP -10000), and to test how the control parameters affect the number of found optima.
Three sinusoid based two-dimensional functions were created for the task:

2
fs1(@) = Zsin(6.5xi) (5.13)

=1

fs2(T) = Zsm@o V) (5.14)

2
fes(@) = sin(10sin(w;) + 10 - \/7) (5.15)
i=1
where ¥ € [0,10]2. All functions contain 100 global optima and f.3 also contains 44
local optima. fs is regular, while fso and fs3 are partially regular functions. All
of the functions are separable. Similar tests were run using randomly rotated ver-
sions of the three functions. As the results were almost identical with the unrotated
versions, they are not separately reported on here. For the control parameters, the
values of F = {0.1,0.2,...,1}, CR = {0,0.5,1} for DEGS and ¢ = {0,0.1,0.2,0.3},
PX ={0,0.1,...,1} and F = 1 for AJIT were tested. NP = {100,300} were used for
both methods.

Figure 5.11 displays the results for the first test set. It can be seen that the effect
of population size is straightforward: increasing the NP increases the number of found
optima. The values of other control parameters do not appear to correlate with the value
of NP for either method.

As expected, DEGS has problems in maintaining more than a single optimum. The
value of CR has a negligible effect on performance, as the ability to exploit separability
does not help in maintaining multiple optima. However, when F = 1/n (where n is an
arbitrary integer), DEGS performs very well in fs1. Also in fs2(Z) and fs3(Z), DEGS is
able to locate and maintain more than a single optimum with F' = 1. The results can
be explained by the ability of DEGS to exploit the regularity of the functions. As the
algorithm starts to converge, the population begins shaping up around the optima. Now
any unscaled differential between different optima is ideal for jumping from an optimum
directly to another in regular functions, where the optima are equally spaced. Once the
population has located a couple of optima, DEGS will quickly locate the rest by just
directly jumping to them. This also negates the effect of global selection, which tends
to lose already located optima over time, because even if some of the optima are lost,
the information on how to jump there from another still exists in the population and the
lost optimum will be found shortly. The effect is strongest with F' = 1, but any value
F = 1/n allows such direct jumps, as long as the function has at least n + 1 equally
spaced optima in a row. For example with F' = 0.5, a differential suitable for jumping
directly from one optima to another is only between optima which have odd number of
optima between them. The jumping does not work as well in fso and fs3, which are
only partially regular. However, using F' = 1 allows DEGS to exploit even the partial
regularity to locate more than one optimum.

AJIT was able to locate a good portion of the optima with all parameter setups. In
fs1 DELL achieved best performance with ¢ = 0 and PX > 0, because with that setup
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Figure 5.11: Average percentage of found global optima. Note the different
scales.
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it could exploit the regularity of the function similarly as DEGS through the global
mutation. Still, the values of parameters PX and o had only a small effect on the
number of located optima. In fgo and fs3, AJIT achieved a steady number of optima as
long as ¢ > 0. With ¢ = 0, the performance dropped rapidly when global mutation was
allowed.

5.5.2 Convergence speed

The second test set consisted of four well known two-dimensional multimodal test func-
tions implemented inside the common family of the generator framework (Section 4.4.5):
the Himmelblau, Six-hump camel back, Branin and Shubert functions. The problems
were selected to provide results comparable with the ones presented in [183] and [85]
for other DE-based multimodal optimization approaches. For this reason, the functions
were not stretched or rotated. The average N F'E required to find all global optima with
e =10"* (¢ = 1073 for fsp.) were recorded using NFFE,,,, = NP - 2000. For the cal-
culation SR and SP, the desired set consisted of all the global optima of each function.
The control parameter values were: NP = {3- NGO,5- NGO,10 - NGO, 15 - NGO},
F ={0.5,1}, CR = 1 for DEGS and ¢ = {0,0.1,0.2}, PX = {0,0.5,1} and F =1 for
AJIT.

Table 5.2 shows the most interesting results for the second test set, including the best
achieved SP and the maximum SR with minimum NFE for both methods. Additionally,
some results reported in the literature are included for comparison. AJIT is able to
achieve SR = 1 in all tested problems, while DEGS has problems in locating all the
global optima regularly with the first three functions, as expected. F' = 1 works best but
also with F' = 0.5 DEGS is able to, at least occasionally, find all optima for all problems
except frim- The comparable results for the first three functions taken from the literature
are of a similar magnitude as the results for AJIT. While AJIT is the slowest niching
approach in fpim and fspep, it outperforms SDE in fpq.

In Shubert, DEGS has no problems at all and is able to solve the problem faster than
any of the methods using niching when F' = 1, as it exploits the regularity. As expected,
DELL gives best results in Shubert with ¢ = 0 and PX = 1, which allow the algorithm
exploit the regularity efficiently. To find all the optima with DELS using ¢ > 0, AJIT
requires almost ten times more function evaluations. DEGS with F' = 0.5 also performs
well, requiring clearly fewer function evaluations compared to AJIT. For comparison,
MCDE using two subpopulations and F = 0.5 is about 50% faster than DEGS with
F = 0.5, as can be seen in table 5.2. CRDE similarly using F' = 0.5 is, however,
clearly slower. It is logical that the crowding procedure slows down the convergence
compared to DEGS in regular functions, but the good performance of the subpopulation
approach is somewhat surprising, as the division to subpopulations decreases the ability
of an algorithm to exploit the regularity simply because fewer regularities exist within
the subpopulation. The explanation for the good performance of MCDE probably lies
in the fact that also the local optima are regularly spaced. Using a small number of
subpopulations thus does not fully destroy the ability to exploit the regularities, but
allows smaller population sizes, which increases the convergence speed. The result for
MCDE is still over three times slower than the best result with unmodified DEGS using
F =1, and over two times slower than with DELL using ¢ = 0 and PX = 1. The result
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for MMDE with Shubert uses 20 subpopulations and is unable to exploit the regularity.
The performance of MMDE is in the same magnitude class as AJIT with ¢ > 0 and
indicates the N F'E required to solve the problem without exploiting the regularity.

Table 5.2: Results for the second test set on finding all global optima.

f(Z) Method | NP | PX or F | o or CR NFE + std SP SR Source/comments
frim AJIT 40 1 0.1 8744 + 7396 8744 1
AJIT 20 0.5 0.2 4143 £ 894 6183 0.67
DEGS 60 1 1 5449 + 552 49537 0.11
SDE 50 0.5 0.9 5236 £ 5166 5236 1 [85]
CRDE 20 0.5 0.9 8033 8033 1 [183],e = 107¢
MCDE 20 0.5 0.9 7486 7486 1 [183],e =10~
MMDE 50 6069 6069 1 [183],e = 10~°
fsneb AJIT 20 0.5 0.1 1100 £ 205 1100 1
AJIT 10 1 0.2 645 £ 130 679 0.95
DEGS 20 1 1 738 + 101 T 0.95
DEGS 30 0.5 1 788 + 154 1487 0.53
SDE 50 0.5 0.9 723 + 124 723 1 [85]
fora DELL 45 1 0 3733 £ 398 3733 1
AJIT 30 0.5 0.1 3733 + 537 3733 1
AJIT 15 1 0.1 2202 + 874 2591 0.85
DEGS 30 1 1 1904 £ 205 3592 0.53
DEGS 45 0.5 1 2143 + 212 13395 0.16
SDE 50 0.5 0.9 4360 £ 2799 4360 1 [85]
Fshu DELL 90 1 0 18823 £+ 1215 18823 1
AJIT 180 0.5 0.1 156010 £ 10840 156010 1
DELL 54 1 0 12535 + 1844 12661 0.99
AJIT 90 0.5 0.1 91542 + 13181 108980 | 0.84
DEGS 54 1 1 8141 4943 8141 1
DEGS 180 0.5 1 46753 £ 6566 60719 0.77
CRDE 75 0.5 0.9 107200 107200 1 [183]
MCDE 50 0.5 0.9 29283 29283 1 [183]
MMDE | 400 109703 109703 1 [183]

5.5.3 Improved DELL version for multimodal optimization

The results of the tests (Figure 5.11) clearly demonstrate the inability of DELL to main-
tain multiple global optima effectively in other than regular functions without using a
randomized scale factor, i.e. when using ¢ = 0. The reason for this effect is that Algo-
rithm 3 allows the target vector to be selected as either of the random vectors (r; = i
or ro = 1) used to calculate the differential. With ¢ = 0, the trial may become a copy
of the other individual participating in the differential calculation. Because the trial is
always selected over the target if they have the same objective function value, this allows
jumps directly from one optimum to another. If the target is the only member residing
in that particular optimum, the optimum will be lost. By preventing the target from
participating in the calculation of the differential (r; # i and r9 # i), such jumps become
very unlikely, unless the optima are regularly spaced and the function contains several
differentials of equal length between the optima. In such cases, however, losing an op-
timum is usually temporary, because the differential to jump back is still stored in the
population, and eventually the population tends to settle on all the optima. Algorithm
4 defines the improved DELL version, for which the abbreviations DELL, AJIT, JITT
and DITH are used to refer for the rest of this thesis. An example of the effect of the
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modification is demonstrated in Figure 5.12. It can be seen that the percentage of found
optima drops dramatically with the original version when ¢ = 0 is used, compared to
the modified version.

Algorithm 4 DELL, improved version for multimodal optimization

1: Initialize population, g =1
2: while termination criterion not met do
3: fori=1;i < NP;i=i+1do

4: Randomly pick 71,70 € {1,2,..., NP} ,r1 # 1y #1)
5: if rand[0,1] < PX then

6: Perform global mutation using (5.8),(5.9) or (5.10)
7: else

8: Perform local mutation using (5.7)

9: end if

10: end for
11: fori=1;i < NP;i=i+1do

12: Perform selection using (5.3)
13:  end for
14: g=g+1

15: end while

100
80
B
60
40
0.1
1
0.05 05
o 0o PX
(a) Original (b) Improved

Figure 5.12: Average percentage of found optima from 100 runs on fg2,0 (see
Section 6.1.1), using NP = 100 and AJIT with varying PX and o. Note the
different scales.

5.6 Hybridization

Several approaches for hybridizing DE with local search methods to increase the conver-
gence speed have been presented in the literature. Tirronen et al. [165, 164] propose a
memetic differential evolution approach. The method runs DE and monitors the popu-
lation diversity. After the population diversity decreases below a certain threshold, the
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algorithm periodically activates a stochastic local search for a predetermined number of
function evaluations using a randomly selected population member. Similarly, the Hooke-
Jeeves algorithm is activated to be run for the best performing population member when
the diversity falls below a lower threshold. The algorithm has been enhanced in [166] by
adding simulated annealing as a fourth method to the hybrid. Now SA has the highest
activation threshold and it is used for a random population member. When the diversity
falls further, the Hooke-Jeeves gets activated using the best performing individual, then
stochastic local search using random, and finally using the best performing individual.
Super-fit memetic Differential Evolution [20] follows a similar philosophy. Now PSO is
first run for part of the population prior to DE to quickly generate a highly fit solu-
tion, which is then included to the DE population. The actual hybrid first activates the
Nelder-Mead simplex algorithm using random population members, and when the diver-
sity decreases further, the Rosenbrock algorithm using the best performing individual.

Gao and Wang [47] also hybridize the DE with the Nelder-Mead simplex. The algo-
rithm first runs DE for a preset number of iterations and then runs the Nelder-Mead
simplex from the best located point. After that the worst half of the population is re-
initialized and the search process is repeated. Chiou and Wang [25] suggest acceleration
and migration operators to DE. The acceleration operation speeds up the local search if
no improvement is observed between the generations. It replaces the worst population
member using a candidate generated from the best member by jumping to gradient di-
rection and scaling the step size accordingly. The algorithm also monitors population
diversity and uses the migration operator to generate a new population, when the diver-
sity drops too low. The new points are generated by adding normal distributed random
vectors to the best member of the previous population.

Noman and Iba [110] propose a fittest individual refinement strategy, which hybridizes
DE with XLS. A local search step is used each generation by generating a predetermined
number of points around the best population member in the hope of improving it further.
The method is developed further in [111] by using adaptive hill-climbing, which takes
feedback from the search for determining the step length of LS.

5.6.1 Hybrids for multimodal optimization

To prevent premature convergence or to offer a set of good starting points for local search
in post-hybridization methods, memetic algorithms often implement different niching
methods to keep the population diverse. For example Wei and Mei [173] hybridize GA
with the Nelder-Mead simplex method, using clearing for niching. Zhang and Lu [186]
similarly propose a GA hybrid using a modified simplex technique. Niching is done by
using a dynamic subpopulation strategy, which divides the population into subgroups.
Peng et al. [115] hybridize GA with a gradient descent and use the dynamic niche sharing
algorithm for applying a mating restriction. While such hybrids using niching would
be potential approaches for multimodal optimization, this aspect is rarely considered.
An exception are Ono et al. [112], who hybridize a sharing GA as well as an immune
algorithm with a Quasi-Newton local search method to find multiple optima. Their
results suggest that hybridization is able to improve the performance, compared to the
parent algorithms.
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5.6.2 Proposed hybrid algorithms

The two hybrid algorithms proposed in this section have been previously published by
the author in [138]. The idea to differentiate global and local phases is already used in
DELL. The local mutation step length is based on the results of DELS performance on
unimodal problems. In such cases, the population converges towards a single solution,
which speeds up the convergence when the average differentials shorten.

In multimodal optimization the situation changes, because the population converges
slower and towards multiple attractors, which keeps the average differentials longer. Thus
the used formula for calculating the step length in equation 5.7 may produce larger than
necessary values for an efficient local search. The convergence speed may be modified by
changing the step length, but this would create another control parameter, and finetuning
the mutation step length is not likely to make the operator match the speed of pure local
search approaches. For this reason, a new DELS based algorithm using gradient descent
for local search (DELG) instead of local mutation is proposed. The reason for selecting
gradient descent over the more efficient conjugate gradient method [121, p. 420], is
that gradient descent does not require the storing of information between line searches.
The proposed hybrid method is described in Algorithm 5. Each time the local phase is
selected, the algorithm performs a single line search in the direction of the approximated
gradient, not a complete local search. Thus, the global and local search advance in
parallel, their relative emphasis decided by PX. With PX = 1, DELG and DELL are
identical, and with PX = 0, DELG simply performs a local search for each population
member. The abbreviation DITG refers to dither, JITG to jitter and AJIG to the
additive jitter version of DELG. DELG shares the advantages of DELL: low CPT of
O(1) and lack of added problem-dependent control parameters.

Algorithm 5 DELG
1: Initialize population, g =1
2: while termination criterion not met do
3: fori=1;i<NP;i=i+1do

4: Randomly pick r1,73 € {1,2,...,NP},r1 # 13 # 1)

5: if rand[0,1] < PX then

6: Perform global mutation using (5.8), (5.9) or (5.10)

7 else

8: Set 7, = fi,g

9: Calculate normalized gradient g, = §/|d]

10: Perform bracketing using method presented in [121, p. 400], using initial

points ¥, and &, = —s - §n + Ta
11: Perform line search using method presented in [121, p. 404]
12: end if

13:  end for
14: fori=1;i < NP;i=i+1do

15: Perform selection using (5.3)
16: end for
17 g=g+1

18: end while
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The local selection-based approaches were initially designed for locating multiple global
optima, but their ability for preserving also local optima is yet to be verified. CRDE,
on the other hand, has been shown to be able to preserve local optima reasonably well
[183, 163]. Using the structure for DELG, the implementation of DE algorithm using
crowding and gradient descent (DECG) is straightforward. The algorithm similarly uses
global mutation for global and gradient descent for the local search phase. Instead of
using the local selection where the trial is compared to its own parent, however, the trial
is compared to the most similar member of the populations, similarly as in CRDE. The
modified algorithm introduces no additional parameters compared to DELG (assuming
CF = NP is used). The downside of the method compared to DELG is that the use of
crowding requires CF' euclidean distance calculations for each generated trial, and thus
CPT is O(NP) as in CRDE. Algorithm 6 describes DECG.

Algorithm 6 DECG
1: Initialize population
2: while termination criterion not met do
3: fori=1;i<NP;i=i+1do

4 Randomly pick 71,70 € {1,2,..., NP} ,r1 £ 1y # 1)

5: if rand[0,1] < PX then

6: Perform global mutation using (5.8), (5.9) or (5.10) ignoring the subscript g

7 else

8 Set fa = fz

9: Calculate normalized gradient g, = §/|7]

10: Perform bracketing using method presented in [121, p. 400], using initial
points ¥, and & = —s- G, + Ta

11: Perform line search using method presented in [121, p. 404]

12: end if

13: for j=1;j < NP;j=j+1do

14: Calculate Euclidean distance between #; and &;. The population member
with the shortest distance is &

15: end for

16: Perform selection using (5.12)

17:  end for
18: end while

DELG and DECG offer an interesting pair of DE-based hybrid algorithms for multimodal
optimization. Both offer effective separation of global and local search phases. DE using
global mutation allows the algorithm to identify and exploit the global features of the
optimized function, while the local search method ensures efficient local convergence
behavior. As the local and global search are performed in parallel, the decision when
to switch between the algorithms can be avoided. Instead, the user decides a value
for the PX parameter, which controls the emphasis towards the global or local search.
The difference between the approaches is that DELG allows multimodal optimization
with minimum added computational effort. DECG, on the other hand, will potentially
increase the ability to maintain more optima, but with added computational cost.
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5.7 Summary

This chapter has concentrated on the Differential Evolution algorithm. First the connec-
tion between the crossover and the rotational invariance of the algorithm was described,
as well as the stagnation problem. As a response for the stagnation, randomization of the
mutation scale factor was used. The author’s own study of the effects of jitter revealed
that using large values for the o decrease the performance of the algorithm, but with ap-
propriately small o values, the randomization may be beneficial in some functions. The
jitter concept was developed further by introducing an additive jitter operator, which
otherwise behaves like jitter, but is a rotationally invariant process.

Global and local selection were compared in a scaling study using simple unimodal func-
tions revealing a strong tendency of the global selection for drawing the population to
uniformity. Local selection does not have such tendency, which allows it to be used as
a niching method. A new DE algorithm for multimodal optimization based on the local
selection concept was constructed by dividing the mutation operation to local and global
parts, so that the local part is responsible for speeding up the local search while the
global part identifies and exploits global function features. The idea of randomizing the
scale factors was also incorporated in the global mutation. Two studies comparing DELS
and DEGS algorithms on multimodal functions were conducted. The first concentrated
on the ability of the algorithms to locate a single global optimum and the second to their
ability to do multimodal optimization. DELS demonstrated promising results in both
respects. An overview of different niching methods in the literature used with DE, as
well as a limited experimental comparison to DELS was also included.

Finally, the topic of using hybridization to improve the performance of multimodal op-
timization methods was considered. The idea of separating the local and global search
phases was taken further by presenting two hybrid algorithms for multimodal optimiza-
tion combining DE and a gradient descent local searcher. DELG uses the local selection
for niching while DECG relies on crowding. The next chapter presents experimental
studies comparing different DE-based multimodal optimization algorithms, including the
methods proposed in this chapter.
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CHAPTER VI

Experiments

This chapter presents experimental results of using eight different multimodal optimiza-
tion approaches on a set of problems generated by the test function generator described
in Section 4.4. The results have been previously partially published in [138]. The roles of
local and global search in multimodal optimization are examined through studying dif-
ferent approaches and their performance in different problems. In addition to identifying
the best performing methods for each problem type, the reasons behind the performance
differences are highlighted to increase the understanding of the behavior of different op-
timization approaches. The focus is especially on studying the effect of the degree of
regularity of the problem, which can be seen as an indication of the ability of an op-
timization method to exploit global information. In addition, the effects of increasing
the number of optima and dimensionality of the function are studied. The ability of an
algorithm to maintain stable niche populations is studied by including a set of problems,
where also local optima are of interest. Many niching methods bring along additional
control parameters, for which good values are often problem-specific and may prove hard
to tune correctly. For this reason, an extensive parameter study is performed for each
method.

Eight different approaches are compared on the basis of their ability to locate global
optima. DEGS is used as a benchmark and base model for all evolutionary methods.
The use of a single base model allows the differences between niching methods to become
visible. CRDE, SDE and DELL are used as representatives of different DE-based niching
methods. Two multistart gradient descent methods, RSGD and GBGD are included to
offer a baseline for comparison. In addition, two proposed hybrid approaches, DELG and
DECG are studied. Configuration files and example figures for each function, along with
a comprehensive set of plotted result curves are available at: http://www.it.lut.fi/
ip/evo/. In all cases, constraint handling is done using the mirroring approach provided
by the generator module described in Section 4.4. To make the functions nonseparable,
and thus eliminate the need to consider values smaller than CR = 1 for DE, all functions
from the cosine and common families are randomly rotated. Bezier curves of tenth degree
with random control points are used in all stretched cases. For all tests, 100 independent

121
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runs are performed, so that each time a different random seed from 0,1,...,99 is used
to initialize the generator. Thus each run is done with a different function. This is done
to minimize the ability of an algorithm to exploit a specific feature of a single function
instance and to concentrate on the behavior of the algorithms with function types. The
same function set is always used for each algorithm. The performance is determined
primarily by the average PR and secondarily by the speed to locate the i:th global
optimum measured as NFE using ¢ = 10~*. For the GD methods, new line searches are
performed until the improvement line search is able to provide is smaller than 1075.

6.1 Locating multiple global optima

The first test setup compares the ability of the eight algorithms to locate all global optima
within NFE,,., = D -250000 function evaluations. For all DE-based methods, crossover
is always disabled by using CR = 1 to keep the algorithms rotationally invariant. For the
population size, the best performing value among NP = [50, 100, 200, 300, 500, 1000, 2000]
is searched for each problem and each method individually. A fixed PX = 0.5 for
DELL and PX = 0.9 for DELG and DECG are used in all reported results comparing
algorithms. DELL is not sensitive to the value of the PX parameter, as long as the
extremes (0 and 1) are avoided, which would disable either the local or global mutation.
For the hybrids, larger PX has been selected to prevent the algorithms from becoming
overly greedy. Similarly, all DELS-based algorithms use a fixed F' =1 and ¢ = 0 for the
global mutation to keep the mutation step length global and to disable randomization.
For CRDE and SDE, the best performing value for mutation step length among F =
[0.1,0.5,0.9,1] is searched for each function due to the difficulties of finding a well-
performing value for all problems. For DEGS, similar values have been tested, but
the fixed F' = 1 demonstrate the best performance in all functions, and thus it is used in
all comparisons. Additionally, a best value for 0,4 is searched for SDE among ¢,.q =
[0.05,0.5, 2] for the common family functions, among o4 = [0.005, 0.05, 0.2] for the other
two-dimensional functions, among o,4,q = [0.05,0.08,0.2] for the five-dimensional cases
and among 0,44 = [0.05,0.11,0.2] for the ten-dimensional functions. Fixed m = 10 is
used to decrease the number of tunable parameters of SDE as suggested in [85]. Some
parameter combinations have been left untested for some methods and functions, due to
existing results and assumptions of their poor chance of improving the results.

The idea of searching good parameter combinations for each algorithm is to make the
comparison fair in the sense that it reveals the true potential of each algorithm and shows
how sensitive they are to the control parameters. The setup is actually somewhat tilted
to the favor of CRDE and SDE, as most of their parameters are optimized, while for
DELL, DELG and DECG only the best population size is sought for each problem, and
the other parameters are fixed as they are less problem-dependent. However, some tests
with DELS-based methods are performed using different values of the PX, as well as
values of ¢ > 0 with both dither and ajitter versions of global mutation to study the
effects of changing parameters and the sensitiveness of the algorithms to these parameters.
These results are not included in the comparisons between different algorithms, to keep
the results directly comparable to the ones acquired with DECG.
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6.1.1 Function setup

The setup consists of four regular, five partially regular and seven irregular functions.
The regular functions are the Shubert function and three functions from the cosine family.
To obtain partially regular functions, all the regular cases are stretched. Additionally,
the Vincent function is included. In the cosine functions, the basic shape of the global
optima is a 5 by 5 square (G = [5,5] and o = 0.8 is used). Among the resulting 25 global
optima, 16 are located at the constraints and 9 are inside the search space. The functions
differ by the number of local optima (NLO), for which the values L= [1,1], L= [10, 10]

and [ = [30, 30] are used, producing 0, 1656 and 14616 local optima, respectively.

The irregular functions are generated using the quadratic family. For all cases, rotated
ellipsoidal shapes are used for the optima, so that the values used to generate C are
randomly generated in the range [0.003,0.03], the optimum value of local optima in the
range [—0.95, —0.15] (global optima have value -1), and the minimum possible Euclidean
distance between two global optima points is set to 0.01. Versions with 0 and 100 local
optima are generated for two, five and ten dimensions, each having ten global optima.
In addition, a two-dimensional function with 1000 local optima is included. Table 6.1
summarizes the test function setup.

Table 6.1: First function test set.
Function NGO NLO D Family Regularity

fer1 25 0 2 cosine regular
ferio 25 1656 2 cosine regular
ferso 25 14616 2  cosine regular
fRshu 18 742 2 common  regular
fser1 25 0 2 cosine partial
fser10 25 1656 2 cosine partial
fserso 25 14616 2  cosine partial
fsrshu 18 742 2 common  partial
fRvin 36 0 2 common  partial
fa2.0 10 0 2 quadratic irregular
fq2,100 10 100 2 quadratic irregular
fq2.1000 10 1000 2 quadratic irregular
fa5.0 10 0 5 quadratic irregular
fa5,100 10 100 5 quadratic irregular
fa10,0 10 0 10 quadratic irregular
fq10,100 10 100 10 quadratic irregular

6.1.2 Results and analysis

Table 6.2 presents the best achieved PR results, along with the standard deviations for
each tested algorithm in the functions of the first test set. The best result for each
function is marked in the bold font, as well as any other results which do not have a
statistically significant difference to the best one with a significance level 0.05. Similarly,
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the worst results are marked in the italic font. The significance is determined using
the two-tailed Wilcoxon signed-rank test [178]. The performance column lists the tested
methods from the best to the worst performer in each problem, so that C is CRDE, G
means DELG, E stands for DECG, R is RSGD, D means DEGS, S stands for SDE, L
is DELL and I is GRGD. In cases with no statistically significant difference in the peak
ratios, the speed measured as the number of function evaluations is used to determine
the performance order. The brackets are used to group methods when their relative
performance order cannot be confidently defined. Table 6.3 displays the parameter setups
for each method which produced the results presented in Table 6.2.

Table 6.2: Results for the first function test set.
Function Performance DELG DECG CRDE DELL SDE DEGS RSGD GRGD

fera D(IGR)LSEC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
std 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fer1o (DGL)(ECS)RI  1.000 0.998 0.998 1.000 0.997 1.000 0.960 0.914
std 0.000 0.008 0.010 0.000 0.010 0.000 0.041 0.049
ferLso (DGL)(EC)SRI  1.000 0.998 0.998 1.000 0.990 1.000 0.378 0.360
std 0.000 0.009 0.009 0.000 0.021 0.000 0.100 0.000
FRshu D(LG)E(SC)IR  1.000 1.000 1.000 1.000 1.000 1.000 0.99 1.000
std 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000
fser1 (RI)GS(LCE)D  1.000  0.996 0.999 0.998 0.998 0.85/ 1.000 1.000
std 0.000 0.015 0.006 0.011 0.011 0.154 0.000 0.000
fserL1o GS(LE)RCID 0.999 0.956 0.809 0.964 0.985 0.714 0.858 0.725
std 0.007 0.042 0.078 0.069 0.028 0.248 0.089 0.143
fsecrLso GLECSDRI 0.953  0.815 0.684 0.871 0.654  0.616 0.291 0.188
std 0.063 0.112 0.120 0.156 0.137  0.254 0.098 0.099
fsRshu G(LS)CEI(RD) 1.000 0.910 0.927 1.000 0.999 0.87/ 0.882 0.896
std 0.000 0.100 0.153 0.000 0.008 0.151 0.115 0.122
fRuvin RGICLSED 0.959 0.696 0.901 0.804 0.770 0.359  0.970 0.956
std 0.032 0.047 0.035 0.048 0.049 0.044 0.023 0.025
fa2.0 (IR)G(SE)LCD  1.000 0.997  0.988 0.997 1.000 0.57] 1.000 1.000
std 0.000 0.017 0.036 0.017 0.000 0.147 0.000 0.000
Fa2.100 (GRIE)(LS)CD  1.000 0.992 0.944 0.987 0.985 0.613 0.999 0.998
std 0.000 0.027 0.066 0.039 0.041 0.128 0.010 0.014
fq2,1000 (GE)(L)RSCD  0.990 0.985 0.716 0.983 0.912 0.635 0.948 0.973
std 0.030 0.036 0.268 0.038 0.091 0.144 0.069 0.053
fas,0 RIE(GSC)LD 0.957 0.989 0.954 0.777 0.958 0.216 0.996 0.992
std 0.062 0.035 0.069 0.136 0.065 0.091 0.020 0.031
fq5,100 RIEGLSCD 0.701 0.769 0.211 0.502 0.313 0.120 0.905 0.853
std 0.145 0.138 0.129 0.161 0.135 0.085 0.104 0.116
fa10,0 REIGCSLD 0.893 0.957 0.728 0.411 0.619 0.117 0.981  0.932
std 0.101 0.061 0.222 0.175 0.106 0.038 0.042 0.075
fq10,100 R(IE)GLCSD 0.550 0.643 0.205 0.252 0.117 0.033 0.800 0.667
std 0.142 0.152 0.151 0.148 0.089 0.051 0.135 0.151

Figure 6.1 presents a classification of the algorithms in regard to their ability to identify
and exploit the regularity of the problem versus their convergence speed. The ability
to exploit regularity can be seen as an indicator of the ability of an algorithm to ex-
ploit global information. The convergence speed illustrates the speed in finding the first
optimum in problems with no local optima and can be seen as an indicator of the effec-
tiveness of the local search phase. Because the parameter setups affect the performance,
the classification is qualitative, and should be seen as a guideline for the properties of
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Table 6.3: Best parameter setups for the first function test set.

fa2,000 ] 1000 | 300
fa21000 | 1000 ] 500
fa5.0 | 300 ] 300
fes,100 | 500 ] 500
fa00 ]300 ]300
fqr0.100 | 500 | 300

100 1 [500 [200 0.5 0.005 ] 1000
100 1 ]500

100 0.5 0.005 | 1000

200 1 | 500 100 0.1 0.2 1000

|
|
100 0.1]300 [1000 0.5 0.05
|
|

|

| 1000
1000 0.5  0.05 | 500
2000 0.5  0.11 |

100 0.9 | 200
100 0.5 | 300

Function | DELG | DECG | CRDE DELL SDE DEGS
NP* NP* NP* F* | NP* | NP* F* o', | NP*
fer1 | 100 | 300 | 100 0.5 ]100 | 500 1 0.05 | 100
fer10 | 100 ]300 | 100 0.5 ] 100 | 2000 1 0.2 ] 100
ferso | 100 [ 300 ] 100 0.5]100 |[2000 1 0.2 | 100
fRshw ] 100 ] 100 | 100 1 |50 | 500 1 0.5 | 100
fser1 | 1000 | 1000 ] 500 0.1 ]1000 [500 1 0.05 | 1000
fserio | 1000 ] 500 | 100 1 ][500 ]500 1 0.05 | 1000
fserso | 300 [ 100 | 100 1 ]200 ]2000 1 0.05 | 1000
fsrshu ] 500 | 50 | 100 1 [300 ]1000 1 0.5 ] 1000
fRuin | 2000 | 2000 | 500 0.1 [ 1000 | 2000 0.5  0.05 | 2000
f42.0 | 1000 [ 500 ] 100 0.1 ]1000 [200 1 0.005 | 1000
|
|
|
|
|
|

500

the algorithms in typical cases.

The GD approaches are clearly the greediest of the algorithms, because they concentrate
solely on local search. RSGD neglects all global information, including regularity. GRGD,
on the other hand, aims to divide the points evenly in the search space and can potentially
exploit regularity efficiently. The ability is limited to cases where the grid fits well to the
optima, however, and can lead to a poor performance if the grid is poorly positioned in
regard to the optima.

The hybrids are second in raw convergence speed, losing to pure GD due to the mutation
operation and the use of population. On the other hand, these features allow them to
direct the search with the global information. Especially using ¢ = 0 and F' = 1 allows
direct jumps between regularly spaced optima, and as a result DELG becomes very
efficient in regular cases, rivaled only by DELL with ¢ = 0 and DEGS with F' = 1. The
crowding hinders the ability of DECG to exploit the regularity, because it hinders the
process of convergence to the optima and decreases the number of available differentials
suitable to be exploited.

DEGS and SDE are in the middle for the convergence speed comparison. DEGS is
naturally greedy for an evolutionary method, because the global selection allows points
to jump towards the best found solution, and there is no mechanism for keeping the
diversity. SDE performs DEGS locally, covering only a part of the search space at a time.
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Figure 6.1: Comparison of the algorithms.

The algorithm is very sensitive to the o,,4 parameter, and the value has a significant
impact on both, the local and global behavior of the algorithm. Mainly, 0,.,q limits the
maximum differential inside a species, thus affecting the mutation step size. Basically,
larger 0,44 values allow longer differentials and strengthen the global phase, while smaller
values decrease the differentials and take the algorithm towards parallel stochastic local
search. Using a large enough 0,44 value to include the whole search phase would make
the algorithm DEGS. In practice, 0,4 must be defined as small enough not to include
several global optima, which hurts the ability of the algorithm to exploit regularity.

Compared to the other methods, DELL and especially CRDE are slower. In both, the
local search phase is based on mutation. Because they keep the population diverse,
the average differentials will stay longer compared to DEGS. This interferes with the
idea of self-adaptation of DE, where the local search is attained automatically by the
shortening differentials as the population begins to converge. DELL is faster of the
two, because a smaller scaling constant is used for the local mutation. This also allows
DELL to exploit the regularity through global mutation efficiently, which uses unscaled
differentials, independently of the local part. In CRDE, parameter F' always defines the
scaling. The value F' = 1 will allow the algorithm to exploit regularity, but hinders the
convergence speed, while a smaller value increases the convergence speed, but decreases
the ability to exploit global information. Next, we look at the results in functions with
varying degree of regularity in closer detail.

REGULAR FUNCTIONS

Figure 6.2 displays convergence graphs for the different methods on the regular functions.
Figures 6.2(a), 6.2(c) and 6.2(d) display the best achieved results corresponding to the
PR values in Table 6.2. Figure 6.2(b) highlights some of the most interesting effects of
changing parameter setups for different methods.

The best performer in all regular cases is DEGS using F' = 1, as can be seen in Figure 6.2
and Table 6.2, followed closely by DELG using o = 0. Also DELL performs well in cases
which contain local optima, but can not match the speed of the fastest methods in the
easiest f.r1 function. The results are especially interesting in the light that DEGS does
not use any niching methods and is thus designed for locating only one optimum. The
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Figure 6.2: Average NFE required to find the i:th optimum. The numbers state
what percentage of the runs were able to find the corresponding number of optima,
if not 100%. Note the different scales.

good performance can be explained by the ability of DEGS to exploit the regularity of the
functions described in Section 5.5. Because global mutation uses unscaled differentials,
DELG and DELL are similarly able to exploit the regularity. This enables the three
algorithms to locate all the optima using small population sizes, even in functions with
a lot of local optima.

In principle, CRDE is able to exploit the regularity as DEGS or DELS-based methods
similarly. However, the performance results for CRDE are clearly inferior in all regular
cases, and it is the worst performer among the tested methods in f.;1. The reason for the
poor performance is the dual nature of parameter F'. The value F' = 1 hinders the local
search capabilities of CRDE too much to allow the algorithm to converge near the optima
fast enough to start exploiting the regularity efficiently. In both cosine functions, CRDE
achieves the best performance with F' = 0.5 and only in fgrgsp, does it use the value F' = 1,
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which allows the most efficient exploitation of regularity. In cosine functions, where the
global optima are in a 5 by 5 grid (always 5 optima in a direct line), the value F' = 0.5
still allows the algorithm to exploit the regularity rather efficiently, while considerably
speeding up the convergence. In frsp. the optima form two 3 by 3 grids (only 3 optima
in a direct line). Now, the value F' = 0.5 will only allow direct jumps from one optimum
to another with differentials generated between endpoints of a line compared to the value
of F' =1, when any differential between two optima is a potential jump to a new optima.
F =1 also allows jumps between optima in different grids, unlike F' = 0.5. As can be
seen in Figure 6.2(c), with F' = 1 the initial convergence of CRDE is very slow, but once
it locates the first few optima, it does not take long to locate the rest.

The performance of DECG is interesting. While it locates the first few optima fast,
it fails to exploit the regularity as efficiently as DEGS, DELG and DELL, and is thus
considerably slower in locating the rest of the optima. The explanation lies in the crowd-
ing process, which keeps the population members diverse by only replacing the closest
member. This keeps the population diverse effectively, as individuals already close to an
optimum tend to draw the comparison to themselves, shielding inferior individuals lo-
cated further away. Thus the inferior solutions converge towards the optima only through
small steps. This means that crowding is able to keep the population diverse longer, com-
pared to local selection, which allows longer jumps towards the optima. The increased
diversity also means that less of the generated differentials are suitable for exploiting the
regularity. The speed advantage of DECG is still clear when compared to the CRDE, as
the ability to do efficient local search is no longer tied to the ability to exploit regularity.

The deterministic nature of GRGD makes it a difficult method to compare using the
cosine family functions. The chosen method of generating the grid makes the algorithm
inefficient in searching near the constraints where the majority of the global optima are
located. On the other hand, the algorithm will always instantly locate the first nine global
optima of f.r1, fer10 and fer30, because the first nine starting points will be generated
directly at the optima. Generating starting points on the constraints at the beginning
would allow the algorithm to instantly locate all global optima of these functions, but
such a strategy would strongly bias the search to the constraints in a more general case.
For this reason, the results for GRGD are more interesting for the quadratic family
functions, where they demonstrate the effect of an even coverage of the search space, but
are reported for all functions because of completeness.

The performance of RSGD and SDE, which largely neglect the global phase, compares
poorly to the other methods on regular functions. RSGD is still among the best per-
forming methods on f.r1, but the performance drops dramatically when local optima are
added, making RSGD the worst performer in other regular functions. For a method like
RSGD that depends solely on the starting points, it is crucial to have a random point
placed in the area of attraction (AOA) of each global optimum. When no local optima
exist, the whole search space belongs to the AOA of some global optima. Also each
global optimum has a reasonably large area of attraction in f.r1 (due the constraints in
fer1, the four corner optima each have AOA of 1/64 of the whole search space, while the
twelve on the edges have 2/64, and the nine in the middle have 4/64 each for initial point
placement). So, it is rather easy to locate the AOA of each global optimum by random
points, and the efficient local search of RSGD can then locate the optima quickly. The
addition of local optima reduces the AOA of global optima and makes it more difficult
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to find them by random point placement.

SDE demonstrates a similar, but less dramatic decrease in relative performance (the
difference in performance compared to the other tested methods), as the NLO increase.
It is notable, that the value of 0,44 = 0.05 works best in f.r1, but 0,..q = 0.2 is better
in fopi0 and fer30. The Euclidean distance between the global optima is 0.2 in these
functions. In f.r1, local search is a viable strategy, and thus a rather small value for o,.44
works well. The value 0,4,¢ = 0.2 with F' = 1 is just large enough to allow five neighboring
optima inside a single niche in an cross formation, so that two direct lines containing
three regular optima points exist. It is now possible to get long enough differentials inside
a niche for jumping from a neighboring optimum to another one. This allows SDE to
exploit the regularity to some degree and increases performance in cases containing local
optima.

Thus, using 0,4 values large enough to allow several global optima inside a single niche in
regular functions can sometimes be advantageous. However, the regularities are typically
only visible in the global scale. Dividing the search space into a smaller niches prevents
SDE from recognizing the regularities and finding more than one of the optima inside
each niche. As displayed in figure 6.2(d), SDE achieves best performance in frsp., with
the value 0,4¢ = 0.5 and is able to locate all 18 global optima in all 100 runs. The
minimum Euclidean distance between the global optima in frsp, is approximately 0.88.
When SDE is run on the function with an otherwise similar setup, but using 0,44 = 2
(figure not displayed), it is able to locate all optima only in 22% of the runs (and would
likely lose some of the optima also in those cases, if the runs were continued long enough).
SDE requires considerably larger population sizes in the regular functions compared to
the other evolutionary methods to compensate for the weaker global phase.

Figure 6.2(b) demonstrates a dramatic decrease in the performance of DEGS when F =
0.9 is used. Now the algorithm is not able to exploit the regularity, and as a result it
is able to locate only a few of the optima. In addition, it will lose the already found
optima in time and eventually converge to only one. Using a similar setup with CRDE
displays a far less dramatic performance decrease, demonstrating the ability of crowding
to prevent the population from converging to a single optimum, which happens in DEGS.
Using a larger population size would likely allow CRDE to achieve 100% SR in locating
all the optima also with F' = 0.9. However, increasing the population size decreases the
convergence speed of CRDE rapidly compared to the other tested algorithms.

Increasing the ¢ in DELS-based methods also causes a performance drop, because the
direct jumps from an optimum to another are no longer of exactly right length and
considerably larger population sizes are required to locate all optima reliably. As can be
seen in Figure 6.2(b), AJIT suffers the biggest performance drop on f.r1, when o = 0.1
is used followed by DITH. The performance drop for AJIG and DITG is small, because
the increase in population does not slow down the hybrid as much, due to the efficient
local search. In functions with local optima, the effect of increasing o is similar, and the
performance of DELL methods drops much faster compared to AJIG and DITG. The
better performance of the dither global mutation compared to additive jitter is expected,
because scaling only the mutation step length disrupts the differentials between the
optima less than changing the direction as well. The effect of parameter PX is rather
small, as long as the extremes are not used. In functions with local optima, using
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PX < 0.5 and ¢ > 0 tends to emphasize the local phase too heavily, especially with
DELG.

The comparison of SDE performance in Figures 6.2(a) and 6.2(b) shows that decreasing
the value of 0,44 (or alternatively F') will only speed up the local search to a certain
point. Decreasing it further makes the maximum step size too small and starts to slow
down the search. A small 0,,4 may also cause SDE to lose some of the niches due to
the selection, which only preserves NP fittest members among the population: if all the
niches do not converge at equal speed, it is possible that up to m new points are generated
around each seed. In an extreme case, where each seed alone forms a niche, the maximum
population could grow to m - NP, among which only NP fittest are preserved at the end
of the generation. Although typically the number of new points is considerably smaller,
it increases when the value of 0,,4 decreases, and it is a possibility that a niche gets
completely erased before it has enough time to converge fully.

PARTIALLY REGULAR FUNCTIONS

Table 6.2 and Figure 6.3 show the performance of the algorithms in partially regular
functions. As can be seen, DELG achieves the best overall performance. It is the top
performer in all partially regular functions containing local optima. However, in fryin
RSGD is able to outperform DELG and in fs.r,1 both GD methods demonstrate superior
performance to DELG. Both functions contain only global optima. It is notable that the
performance of RSGD drops only slightly when f.r1 is stretched. The reason is that
on average the effect of random stretching on the AOA of optima is quite small, and as
RSGD does not use the regularity information, the loss does not affect its performance
either. The differences in the AOAs of different optima in fg,, are considerably larger.
This can be clearly seen on the performance, as RSGD can no longer achieve PR 1 in
fRvin, although it is still able to beat the other methods. GRGD outperforms RSGD
slightly in fsgrshu, but has again problems on the cosine family functions, which have
global optima on the constraints. Overall, both GD methods demonstrate rather similar
performance, and similarly to the regular functions, the performance of both methods
slumps as the NLO increases.

DELL performs poorly in cases with no local optima, but as the number increases, the
relative performance improves rapidly and DELL gains the second place in the perfor-
mance comparison in fs.rso and fsgrshy. All DELS-based methods are able to exploit
efficiently even the partial regularities with ¢ = 0, which gives them an advantage in
cases containing local optima. In the functions that contain no local optima, ¢ > 0
often performs slightly better, although the differences to results acquired with ¢ = 0
are small. On the other hand, increasing the value of ¢ on functions containing local
optima, has typically a notable negative effect on performance. Thus, the use of ¢ =0
is recommended also in partially regular functions. As with the regular functions, the
disruptive effect of dither global mutation on the ability of the algorithm to exploit reg-
ularity is smaller than that of an additive jitter, and thus increasing o typically has a
slightly smaller negative effect on the performance of DITH and DITG compared to AJIT
and AJIG. Using small PX for DELG tends to emphasize the local search too heavily,
decreasing the performance in cases with local optima, and PX = 0.9 is clearly superior
to PX = 0.5 in all but fs.r1 and fryin-
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Figure 6.3: Average NFE required to find the i:th optimum. The numbers state
what percentage of the runs were able to find the corresponding number of optima,
if not 100%.

Because SDE is unable to exploit the regularity with small o,.,4 values, the relative
performance drop caused by stretching is smaller compared to the other evolutionary
methods. This shows especially in the fsrspu and fscrio functions, where SDE is able
to claim the second place in performance comparison. However, in fryin SDE is the third
worst performer and in the cosine functions, the relative performance of SDE drops with
high NLO. The best setup for SDE in all stretched cosine functions is ¢,..q = 0.05. While
in ferso, 0rad = 0.2 is large enough to allow partial exploitation of the regularity, SDE
is unable to do that any longer in the stretched function, which explains the significant
performance drop in fscr30-

The relative performance of CRDE increases slightly when moving from regular to par-
tially regular functions, but it remains one of the worst performing methods overall,
failing to achieve SR of 100% in any of the tested cases. The cosine functions with local
optima are especially difficult, and CRDE is the only method which never locates all the
optima in fscr10- It is notable that in functions with no local optima, the best result is
achieved with F' = 0.1, while in cases containing local optima, F' = 1 is always the best
choice in contrast to the regular cases, where F' = 0.5 performs best in cosine functions.
The explanation is again the dual nature of parameter F: in problems with no local
optima, a small value of F' combined with large NP allows a more efficient local search,
which outweighs the benefit of exploiting the regularity partially. However, as the NLO
increases, relying on the local search becomes inefficient, and the benefit of even partial
exploitation of regularity outweighs the loss in local search speed. The ability to exploit
the regularity with F' = 0.5 is diminished, because the number of exploitable differentials
is smaller.

DECG is only average performer in the partially regular functions and is the second to
worst in fsc.r1 and fryin, which do not contain local optima. It is interesting that in
these functions CRDE is able to outperform DECG. The explanation lies in the small
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F = 0.1 allowed for CRDE, which suits well in functions with no local optima. The
relative performance of DECG increases along with NLO similarly as with DELL, but
DECG is not able to outperform DELL or DELG in any of the problems. The superior
ability to exploit regularities still remains the deciding factor even in partially regular
functions. DECG, however, clearly outperforms CRDE in fs.r10 and fscr3o but some-
what surprisingly shows inferior performance in fsgrsny. The difference there cannot be
explained by differences in mutation step length, as CRDE achieves the best result with
F = 1. Another interesting point to notice is that the best result of DECG on fsgshy is
attained with a very small population size, NP = 50. This is the only time in the whole
test setup that such a small NP value produces the best PR for any method. The ex-
planation probably lies in the very closely situated double global optima of the function.
Once the algorithm manages to place one individual in the AOA of one of the double
optima, crowding might well use it for comparing any trial generated to the other, as
it is very close, and thus either the trial is discarded or the individual jumps from one
optimum to the other. It may take a while for the other population members to move
close enough to allow the algorithm to locate both optima when the ability to exploit
regularity is diminished by stretching the function. Smaller population moves faster as a
whole, which could explain why such an small population size works well, but increases
the risk that some of the optima are not located at all. Similar effect happens of course
with CRDE, but the smoother progress made by the algorithm seems to work somewhat
better when the global optima are situated in closely positioned groups.

While DEGS is the top performer in regular functions, the performance crumbles in the
partially regular cases. The algorithm is the worst performer in all but the fs.r30 func-
tion, where it is able to outperform the GD methods. Still, the algorithm is able to exploit
even the partial regularities well enough to be able to locate all optima occasionally in
all but the fryin function. This is quite remarkable, when the fact that it does not use
any niching is taken into account. What makes the cosine functions easier for DEGS is
the fact that on average the regularity is disrupted less by random stretching compared
t0 fRuvin. Additionally, some of the problem instances will have only slight stretching,
which increases the chances for DEGS to jump from the vicinity of an optimum near
another and increases the chance to locate multiple optima fast. It is crucial that DEGS
is able to locate enough optima fast enough to store the differentials for jumps between
optima, before the greedy global selection draws the population to one optimum. The
increase in local optima is not as big of a problem for methods able to exploit the regular-
ity, because differentials between local optima are often also suitable for jumping from a
local optimum to another and eventually to a global one. In fgyn, the big differences in
AOAs of the optima, combined with the big differences of differentials between different
optima (lack of nearly suitable differentials) cause the algorithm to concentrate only on
a few optima, typically the ones with large AOA.

When the best performing population sizes are studied in Table 6.3, a substantial increase
can be seen for DELS-based methods and especially for DEGS, when moving from regular
to partially regular functions, because the methods can no longer rely on regularity as
heavily. What may seem odd, is the fact that for most methods, larger NP values are
used for the easier fs.r1 function compared to fscri0 and fscr30, which contain local
optima. The explanation is simply the NFFE,,,,, which limits the usable population
size. The methods with an inefficient local phase are forced to use small populations to
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Figure 6.4: Average NFE required to find the i:th optimum. The numbers state
what percentage of the runs were able to find the corresponding number of optima,
if not 100%.

converge fast enough. As DELG is able to do more efficient local search, it is able to use
a wider range of NP values reliably before losing the ability to converge within the given
NFFE,... DECG actually prefers smaller NP on fsrshu and fserso compared to their
unstretched variants. For DEGS, the main problem is rather to keep the algorithm from
converging too fast to a single optimum, and large NP values are thus best for all cases.

IRREGULAR FUNCTIONS

Looking at the results in Table 6.2 reveals that although DELG is no longer able to
exploit the regularity in the irregular cases, it is again the top performer in both two-
dimensional cases which contain local optima. DECG is close behind and demonstrates
comparable performance in fg2 1000. As the dimensionality increases, RSGD claims the
title of top performer in all five and ten-dimensional functions. As can be seen in Figure
6.4(a), the GD methods also outperform other methods in the fg20 function and are
among the top performers in fg2 100-

The quadratic family does not offer a meaningful global structure, nor does it offer
other easily exploitable features. Furthermore, when different random seeds are used,
each quadratic function test set actually contains 100 different functions. This removes
exploitable global information effectively. Lobo and Lima [89] claim that multistart
methods will very likely outperform EAs in problems with no global structure which
the EA could exploit. Although their study only assumes a goal of finding a single
optimum, the results in this study suggest that the same generally holds for multimodal
optimization and includes the hybrids. The DE part in the hybrids becomes an overhead
in irregular functions, as it is no longer able to offer significant advantage to the search
through exploiting the global information. Two-dimensional functions containing local
optima, however, are an exception for this. As the two-dimensional search space is
still rather compact, the niching DE part is able to keep the population well spread,
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preventing the hybrids from searching the same areas repeatedly. Similarly, GRGD
is able to outperform RSGD in fg2,1000 through minimizing the redundant searches.
As the volume of the search space increases along with the dimensionality, it becomes
increasingly difficult to cover the search space with enough detail, and the overhead
outweighs the gained benefits, giving an advantage to RSGD over the hybrids. The
unbiased sampling of RSGD seems able to offer a better starting point distribution for
the higher dimensional quadratic functions compared to GRGD, as the assumption of
equally distributed global optima made by the grid fits poorly to the functions. The
performance differences between RSGD, GRGD and the hybrids are still rather small in
fq5,0 and fg10,0 which do not contain local optima. When the local optima are added in
fq5,100 and fg10,100, the performance of RSGD drops less compared to the other methods.

DECG outperforms DELG in all five and ten-dimensional functions and is able to chal-
lenge GRGD for the second place in performance comparison. While the improved ability
of crowding to keep population diversity disrupts the ability to exploit regularities, it is
able to offer an advantage over local selection in irregular cases, especially with increasing
dimensionality. Both hybrid methods are able to outperform the pure DE-based methods
constantly through their more efficient local search capability.

The relative performance of SDE drops again as the NLO increases. The effect of in-
creasing dimensionality is mainly similar. In the cosine functions, where the optima were
rather evenly spaced in the search space, the performance of SDE dropped much slower
compared to that of RSGD, as the NLO increased. The situation reverses in the two-
dimensional quadratic functions, where the optima distribution is random. Of course,
the NLO in quadratic cases is significantly lower, so increasing the number further might
eventually change the situation. Still, finding a good value for parameter o,qq is more
difficult for quadratic functions, because some optima may be very close to each other
and the distribution changes each run. Optimally, the value of o,4,4 should be large
enough to allow effective exploration, but at the same time small enough not to place
several optima inside the same niche. A good value is easy to define when the optima
are spread evenly on the search space, like in the cosine functions, but gets harder if the
optima are clustered. This gives a relative advantage to RSGD, in which the distribution
of optima affects only through the differences in AOA.

The relative performance of DELL is again poor on the functions with no local optima,
but when local optima are added, the relative performance improves slightly. Compared
to CRDE, DELL is again able to use larger NP to its advantage. As can be seen
in the Figure 6.4(b), 5% of the CRDE runs fail to locate any of the optima before
reaching N F E,, ., in a function which contains no local optima. Tests with other setups
demonstrate that smaller F' values enable CRDE to locate the first optima reliably in
fq10,0, but at a cost of decreased performance in locating the harder optima. Despite the
fact that F' = 1 no longer enables the exploitation of regularity, the explorative power of
large F' is needed, because CRDE is limited to a rather low NP. Thus, the dual nature
of F is a problem also in the irregular functions. Although CRDE performs poorly in
most irregular functions, it performs relatively well in fg50 and fg10,0. In fg10,0 CRDE
is the only pure DE method that can even sometimes locate all ten global optima. In
the harder functions the algorithm simply converges too slowly to achieve reasonable
performance in the given time frame.

Because DEGS relies most on the regularity, its performance drops most, and DEGS is
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clearly the worst performing method in all irregular functions. In the two-dimensional
functions the algorithm is still able to occasionally locate all ten optima, which is actually
a notable achievement for an algorithm not using niching, but the performance drops
dramatically as the dimension increases. Especially in the ten-dimensional functions,
DEGS manages to occasionally locate two of the optima at best. The results demonstrate
clearly the inability of DEGS to locate and maintain several optima in functions where
the algorithm cannot exploit regularity.

As the ability of DELS-based methods to exploit regularity relies on global mutation,
values of ¢ > 0 are harmful in functions, that have regularities to exploit. Similarly,
a rather large PX value should be preferred for DELG to allow efficient exploitation.
However, in the irregular functions, no regularities exist which could be exploited. Using
o > 0 or smaller values for PX might thus boost the performance.

Table 6.4 demonstrates the effects of using the ajitter and dither versions of global
mutation with varying o values for DELL. As can be seen, using ¢ > 0 is able to offer
statistically significant improvement to PR only once, in fq10,0 using AJIT with large
o = 0.2. The use of large values for ¢ tends to decrease the performance more often
than offer an advantage, especially on functions containing local optima. The differences
between the ajitter and dither versions are small. It seems that typically o > 0 is harmful
for DELL methods even in completely irregular functions. Often increasings o allows the
algorithm to increase the performance with small population sizes, but a similar result
can usually be acquired by using ¢ = 0 and increasing the NP instead.

Table 6.5 demonstrates the effects of varying PX and ¢ for the DELG methods. Using
o = 0.01 has a rather limited effect on the performance, but is able to give a statistically
significant boost in the fg10,100 function with the AJIG version. Again, the differences
between ajitter and dither are small. Decreasing PX from 0.9 to 0.5, however, has a
more notable effect. PX = 0.5 is worse on the two-dimensional functions which contain
local optima, but offers a statistically significant boost in performance in fg5 100 and both
ten-dimensional functions. The advantage gained through smaller PX values with the
harder functions can be explained by the fact that it decreases the overhead caused by
the DE part and takes the algorithm closer to RSGD.

6.1.3 Discussion

Figure 6.5 presents a qualitative summary of the results. As CRDE and SDE are not
able to achieve top performance in any of the tested cases they are not included in the
figure. DEGS is the best method in all regular cases, but with only a slight margin. For
this reason, the graph considers DELG as an equally good choice. Also DELL becomes
competitive in regular functions when NLO increases. Outside the regular functions,
DEGS and DELL are unable to achieve top performance, and thus no group of functions
exist where they would clearly excel over the other compared methods. Although no tests
were done on many dimensional regular or partially regular functions, it is expected that
the methods able to exploit the regularity in two-dimensional cases efficiently gain even
stronger advantage when the dimensionality increases, given an equal degree of regularity.

The GD methods excel in all functions with no local optima. The relative performance,
however, decreases rapidly along the increasing number of local optima in regular and
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Table 6.4: PR values for varying the ¢ parameter for the DELL methods using
NP* from Table 6.3 and PX = 0.5. All results are compared to DELL with ¢ =0
using the two-tailed Wilcoxon signed-rank test with significance level 0.05. Any
results having statistically significant difference are marked with the bold font if
they are better and with the italic font if they are worse.

Function | DELL | AJIT DITH AJIT DITH
c=0 |0c=001 ¢=001 0=02 o0c=02
fe2.0 0.997 | 0.998 1.000 0.999 0.997
std 0.017 | 0.014 0.000 0.010 0.017
fq2,100 0.987 | 0.986 0.991 0.974 0.984
std 0.039 | 0.035 0.029 0.061 0.040
fq2.1000 0.983 0.946 0.962 0.727 0.754
std 0.038 | 0.083 0.063 0.171 0.165
fa5.0 0.777 | 0.774 0.775 0.789 0.774
std 0.136 | 0.157 0.151 0.136 0.148
fq5,100 0.502 | 0.477 0.471 0.044 0.087
std 0.161 0.192 0.176 0.128 0.177
fq10,0 0.411 0.391 0.581 0.450 0.399
std 0.175 | 0.179 0.170 0.200 0.191
fq10,100 0.252 | 0.252 0.272 0.138 0.129
std 0.148 | 0.157 0.162 0.174 0.168

partially regular functions, due to the inability to use global information. DELG excels
in all but the easiest of the tested regular and partially regular functions, as well as in
the two-dimensional irregular functions which contain local optima. The GD methods
perform well overall in the irregular functions. Especially RSGD is the top performer
in all five- and ten-dimensional irregular functions. DECG can not match the ability of
DELG in exploiting regularity, but performs well in the irregular functions. While not a
match for RSGD, DECG outperforms DELG and is able to rival GRGD in the five- and
ten-dimensional irregular functions. DECG is also able to rival DELG in two-dimensional
irregular functions with high NLO.

It seems that adding noise to the global mutation is not crucial to the performance, and
is in fact harmful unless the function is completely irregular, in which case the noise may
be slightly beneficial. Clearly separating the local and global phase is crucial, however, as
can be observed by comparing the results of different methods. CRDE excels at keeping
the population diversity, but fails to execute efficient local search: the self-adaptation of
DE relies on the fast convergence of the population, which decreases the differentials and
increases the speed of final convergence. Such convergence does not happen in CRDE.
Thus, the user of CRDE is left with an unpleasant choice to either using a large F', which
allows effective global search but hampers the local phase, or using a small F, which
allows faster local search but hampers the explorative capabilities. The idea to separate
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Table 6.5: PR values for varying the o and PX parameters for the DELG meth-
ods using NP* from Table 6.3. All results are compared to DELG with o = 0 and
PX = 0.9 using the two-tailed Wilcoxon signed-rank test with significance level
0.05. Statistically significantly better results are marked with the bold font and
significantly worse with the italic font. Empty places mean that the particular
combination was not tested.

Function | DELG DELG AJIG DITG AJIG DITG
oc=0 c=0 o =0.01 o =10.01 o =0.01 o =0.01
PX=09 | PX=05 PX=09 PX=09 PX=05 PX=05

fa2.0 1.000 1.000 1.000 1.000

std 0.000 0.000 0.000 0.000

fa2,100 1.000 0.990 0.999 0.996

std 0.000 0.030 0.014 0.020

fq2,1000 0.990 0.946 0.991 0.994

std 0.030 0.068 0.032 0.030

fa5.0 0.957 0.963 0.959 0.952 0.968 0.970

std 0.062 0.065 0.065 0.067 0.058 0.060

fa5,100 0.701 0.745 0.710 0.703 0.745 0.750

std 0.145 0.148 0.160 0.142 0.121 0.140

fq10,0 0.893 0.932 0.886 0.894 0.932 0.923

std 0.101 0.075 0.102 0.104 0.083 0.090

fq10,100 0.550 0.619 0.584 0.577 0.615 0.615

std 0.142 0.150 0.155 0.156 0.153 0.147

the mutation in the local and global part used in DELL allows different values of F' to
be used and removes the cumbersome dual nature of the parameter. Although this is
already beneficial, replacing the local mutation by a more efficient local search method
significantly speeds up the local convergence without sacrificing the ability to exploit
global information, as demonstrated by the results of hybrids.

As DEGS is not designed for multimodal optimization, the poor results in irregular
functions are not surprising. However, the very good performance in regular cases is
interesting. The effect is not limited to cases which have multiple global optima, but
the algorithm can also use differentials between regularly spaced local optima to locate
more optima. This is very important to remember, when constructing test setups for
DE based approaches and analyzing the results even in functions with only one global
optimum. The ability to exploit regularity is a heritage of using the differentials in the
mutation, and the DE-based approaches are hard to beat in regular problems, when a
suitable parameter setup is used.
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Figure 6.5: Best performing methods in different types of problems.

6.2 Locating and maintaining local optima

The purpose of the second test set is to highlight the differences of the compared niching
methods in locating and preserving local optima in addition to the global ones. Only the
most interesting algorithms from the first test set are included to keep the comparisons
manageable, including both hybrids and the CRDE algorithm for comparison. The
algorithms are always run for D % 75000 function evaluations, after which their average
PR is calculated (which is a similar value as used in [163]). For all tests, the value on
NP = 100 is used. For DELG and DECG, fixed PX = 0.9 and ¢ = 0 are always used.
Some tests were also done using o > 0, but they did not produce improved results. For
CRDE, CR =1 is always used and for F', values 1 and 0.5 are tested.

The hill-valley function was introduced in [169] to determine if two points in a search
space exist in the AOA of same optima. The idea is to simply sample points in a straight
line between the two points and to compare the fitness function values of the sampled
points with the original points. If any of the interior points have a worse fitness value than
either of the original points, the points belong to the AOA of different optima. Thomsen
[163] and Zaharie [183] mention the ability of the hill-valley function to prevent CRDE
from losing the local optima on the Six-hump camel back function. For this reason,
versions of CRDE and DECG using the hill-valley rule are implemented (HCRDE and
HDECG) to enable comparison. Five points are always used, for which the first is set
in the middle of the line between the original points, and the rest are placed so that
they always divide the remaining distance between the previous point and the worse of
the original points to half. The hill-valley test is performed in the selection phase, such
that a trial is only accepted to the population if it belongs to the AOA of the same
optimum. Essentially, the use of the hill-valley function is a way of limiting the global
search cababilities of the algorithms in order to decrease REs. A similar effect can be
achieved by decreasing the differentials with a small F' or using a small PX to emphasize
GD. The use of small values for these parameters is also studied along the hill-valley
versions.
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6.2.1 Function setup

The test set includes all eight common family functions with a single global optimum
and the six-hump camel back function. Stretched versions of the six-hump camel back,
Shekel’s foxholes and both versions of ripple function are also included. Additionally,
eight functions from the quadratic and four from the hump families are included to test
the performance in cases which contain multiple global optima in addition to the local
ones. For both families, the optimum value ranges of local optima of [—0.5, —0.15] and
[—0.95,—0.9] are used to demonstrate the effect of having local optima values closer or
further away from the global optimum value. For the quadratic functions, two different
shapes are used for all optima: rotated ellipsoidal, with values used to generate C' from
range [0.003, 0.03], and spherical, with a fixed size of 0.02. Half of the quadratic functions
are ten-dimensional, to demonstrate the effects of increasing dimension. In all cases, the
minimum possible Euclidean distance between two global optima points is set to 0.01.
For the hump family, the radii of the optima are either fixed to 0.1 or change in the range
[0.05,0.2]. For « the range [0.2,0.5] is used in all cases. Table 6.6 summarizes the second
test function setup.

Table 6.6: The second test set. Global and local columns list the number of
global and local optima. The * in the NLO column indicates that the function
actually has more local optima, and the value then describes the number of local
optima which are defined as interesting to be found. f(Z*) is the global optimum
value and LOVR is the local optima value range.

Function NGO NLO D Family Regularity  f(Z* LOVR Comment
fRsheb 2 4 2 common partial -1.031 0.215, 2.104]

fsRsheb 2 4 2 common irregular -1.031 0.215,2.104] stretched
fRboh 1 8* 2 common regular 0 0.413,0.883]

fRshe 1 24 2 common regular -499 —498, —476]

fsRshe 1 24 2 common partial -499 —498, —476] stretched
fRur1 1 1 2 common irregular -6.199 —3.057

fRur3 1 4 2 common regular -2.5 [~1.601, —0.700]

fRura 1 4 2 common regular -1.5 —0.621

fRurw 1 9 2 common irregular -7.307 —7.304, —2.931]

fRrip 1 24* 2 common regular -2.2 —2.109, —0.550]

fsmrip 1 24%* 2 common partial -2.2 —2.109, —0.550]  stretched
fRrr2s 1 24 2 common regular -2 —1.917, —0.502]

fsRrr2s 1 24 2 common partial -2 —1.917, —0.502] stretched

frst 10 10 2 hump irregular -1 —0.95,-0.9 fixed radii
frurn 10 10 2 hump irregular -1 —0.5,—-0.15 fixed radii

fhet 10 10 2 hump irregular -1 —0.95,-0.9 changing radii
fhen 10 10 2 hump irregular -1 —0.5,—-0.15 changing radii
fasi2 10 10 2 quadratic  irregular -1 —0.95,-0.9 spherical
fasn2 10 10 2 quadratic  irregular -1 —0.5,—0.15 spherical
farel2 10 10 2 quadratic irregular -1 —0.95,—-0.9 rot. ellipsoidal
farenz 10 10 2 quadratic  irregular -1 —0.5,—0.15 rot. ellipsoidal
fastio 10 10 10 quadratic irregular -1 —0.95,-0.9 spherical
fashio 10 10 10 quadratic irregular -1 —0.5,—-0.15 spherical
faretio 10 10 10 quadratic irregular -1 —0.95,-0.9 rot. ellipsoidal
farento 10 10 10 quadratic irregular -1 —0.5,—0.15 rot. ellipsoidal
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6.2.2 Results and analysis

Table 6.7 presents the peak ratios for the common family functions of the second test
set. When looking at the PR for local optima, CRDE with F' = 0.5 is the top performer
in almost all functions. However, in the fsg,; function, it performs very poorly in
locating both the global and local optima. To explain this, the properties of the common
family functions used in the set must be considered. Because the functions are all two-
dimensional, and a majority of them have a low number of optima with reasonably large
AOA, a simple local search strategy from the initial population is efficient. Thus smaller
F values offer superior performance in most cases. Additionally, in cases where the
local search is adequate for locating the optima, using a more effective global search will
increase the possibility of losing some of the local optima through making jumps to better
areas more likely. Compared to the other functions, frrip and fsrryp have a very large
number of optima. This is a problem for strategies purely relying on the initial points
and local search. However, the value F' = 0.5 is still suitable to exploit the regularity
of the frrip function, and CRDE achieves a good performance. When the regularity is
disrupted through stretching, a weaker global search capability of CRDE with F' = 0.5
is revealed, and the peak ratios crumble compared to the results using F' = 1.

DELG is always able to locate the global optima in all functions, while all methods
using crowding have difficulties on fsgrrip. On the other hand, DELG has difficulties
in keeping the local optima. Excluding the easy fgru.1 function, where all methods
achieve full peak ratios and six-hump camel back functions, DELG demonstrates clearly
inferior performance to all crowding methods. Because DELG has been designed for
locating global optima, it always allows jumps which increase the fitness value of the trial
compared to its parent. Thus the global optima will eventually draw the population from
the local ones. The probability of losing a local optimum is proportional to its optimum
value. Better local optima may also draw points from the worse ones, but may only lose
points to optima better than they are. Because crowding pits the trial against the closest
individual in population, better optima will typically draw less points from the worse. If
the other optimum, which the trial is about to jump to, already contains a population
member, it is likely that the trial will compete against that instead of allowing a jump
from another optimum. Of course, this depends on the function topology, and a steeper
optimum may still draw the population away from a shallow one close by, regardless of
the crowding. This happens for example in the six-hump camel back functions, where
the crowding methods with F = 1 are only able to achieve comparable peak ratios to
the DELG. The superior ability of DELG to exploit even partial regularities gives it an
advantage in locating the global optimum in fgg,ip, which has a lot of unwanted local
optima to distract the methods.

Figure 6.6(a) displays the development of global and local peak ratios as a function
of NFE for fspgrip. As can be seen, DELG achieves global PR of one fast, while the
crowding-based methods increase the rate only slowly and are far from one at the 150000
function evaluations. The curves for DECG and CRDE are of similar shape, but CRDE
is even slower. DECG and CRDE are able to increase the local PR steadily, while for
DELG the rate increases at first, but stops before reaching 0.2 and begins to decrease
slowly when DELG starts to lose the worse local optima. Figure 6.6(b) displays the
development curves for fsgro5, which serves as a typical example for the curves in most
common family functions. Usually DELG is the first to achieve high global PR, but can
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Table 6.7: Results for the common family functions of the second test set. The

“global” and “local” rows are calculated considering only the number of found

global or local optima, while the “all” rows consider both. The bold font is used

to highlight the best and the italic font the worst results compared to others,

when the difference to the rest is statistically significant according to the two-

tailed Wilcoxon signed-rank test with significance level 0.05.

DELG F=1| DECG F=1|CRDE F=1|CRDE F=05
Function PR std PR std PR std PR std
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fRsheb Local 0.248 0.025 0.250 0.000 0.250 0.000 0.488 0.055
All 0.498 0.017 0.500 0.000 0.500 0.000 0.658 0.037
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fSRsheb Local 0.285 0.087 0.290 0.099 0.275 0.083 0.460 0.099
All 0.523 0.058 0.527 0.066 0.517 0.056 0.640 0.066
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fRboh Local 0.254 0.033 1.000 0.000 1.000 0.000 1.000 0.000
All 0.337 0.029 1.000 0.000 1.000 0.000 1.000 0.000
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fRshe Local 0.082 0.007 1.000 0.000 1.000 0.000 1.000 0.000
All 0.119 0.007 1.000 0.000 1.000 0.000 1.000 0.000
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fSRshe Local 0.240 0.059 0.968 0.068 0.961 0.076 0.998 0.010
All 0.270 0.057 0.969 0.065 0.962 0.072 0.998 0.010
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fRur1 Local 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
All 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fRurs Local 0.240 0.049 0.780 0.182 0.700 0.170 0.750 0.000
All 0.392 0.039 0.824 0.146 0.760 0.136 0.800 0.000
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
SRur4 Local 0.110 0.125 0.250 0.000 0.250 0.000 0.763 0.152
All 0.288 0.100 0.400 0.000 0.400 0.000 0.810 0.122
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fRurw Local 0.147 0.079 0.431 0.060 0.420 0.068 0.559 0.019
All 0.232 0.071 0.488 0.054 0.478 0.061 0.603 0.017
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fRrip Local 0.123 0.009 0.667 0.000 0.667 0.000 0.735 0.030
All 0.158 0.009 0.680 0.000 0.680 0.000 0.746 0.029
Global | 1.000 0.000 0.480 0.502 0.320 0.469 0.010 0.100
fsRrip Local 0.125 0.046 0.534 0.122 0.519 0.136 0.199 0.086
All 0.160 0.045 0.532 0.127 0.511 0.141 0.192 0.082
Global | 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
fRrros Local 0.083 0.013 0.625 0.000 0.625 0.000 0.730 0.026
All 0.120 0.012 0.640 0.000 0.640 0.000 0.741 0.025
Global | 1.000 0.000 1.000 0.000 1.000 0.000 0.990 0.100
fsRrros Local 0.193 0.045 0.668 0.098 0.655 0.102 0.821 0.122
All 0.226 0.043 0.681 0.093 0.668 0.098 0.828 0.117
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not keep the local optima well. DECG is a bit behind, and CRDE takes more function
evaluations to locate the optima. However, the speed of CRDE and DECG is close to
similar in the regular frepe and frrip functions, where all methods can easily exploit the
regularity. Additionally, in the fgr,rs function, which has the optima in a single row,
CRDE is faster than DECG in locating the global optimum. The peak curves for CRDE
using F' = 0.5 are comparable to the F' = 1 curves, except that the rise of global PR in
the ripple functions is slower.
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Figure 6.6: Development of local and global PR.

EFFECTS OF LIMITING GLOBAL SEARCH CAPABILITY

The results in Table 6.7 demonstrate superior peak ratios for CRDE using F' = 0.5
instead of /' = 1 on all but the fgg,; function. Additionally, the hill-valley detection
has been shown to improve the ability of CRDE to keep local optima in the six-hump
camel back function ([163],[183]). Basically the effect of using the hill-valley function or
a small F' or PX values is similar: it reduces or even disables the global search capability
of the algorithm by preventing jumps between optima. To study this effect further, a
set of tests were performed with different versions of the algorithms with limited global
search capability using the six-hump camel back function and different ripple functions.
The results are displayed in Table 6.8.

As can be seen, limiting the global search capability is advantageous in functions with
only a low number of optima. However, for the fr;, and fsgrrip functions, which have
a large number of optima and contain regularities, such a limitation is disastrous for
the performance. The hill-valley detection is used in a very limiting manner, which
completely prevents population points from leaving the AOA of an optimum. Basically
the effect is similar to using PX = 0, which simply runs gradient descent for each point
in the initial population, although the convergence is slower with the hill-valley version.
As no jumps are allowed between optima (assuming that the hill-valley is always able to
identify a hill between the points, which may not be the case), the algorithms are limited
to the optima included in the initial population. In essence such algorithms completely
eliminate all replacement errors, not only the UREs. Because the algorithm can never
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Table 6.8: Results demonstrating the effects of limiting global search capability.
The values are the average PR for all optima (both local and global). The bold
font is used to highlight the best and the italic font the worst results compared
to others, when the difference to the rest is statistically significant according to
the two-tailed Wilcoxon signed-rank test with significance level 0.05.

DELG DECG CRDE DELG DECG CRDE DELG HDECG HCRDE

Function F=0.5 F=0.5 F=0.5 F=0.1 F=0.1 F=0.1 PX=0 F=1 F=0.5
fRsheb 0.667 0.667 0.658 0.998 1.000 1.000 1.000 0.998 1.000
std 0.000 0.000 0.037 0.017 0.000 0.000 0.000 0.017 0.000
fRrip 0.254 0.824 0.746 0.159 0.273 0.149 0.004 0.009 0.000
std 0.029 0.060 0.029 0.067 0.099 0.068 0.013 0.018 0.000
fsrrip 0.253 0.352 0.192 0.214 0.260 0.139 0.007 0.012 0.001
std 0.056 0.098 0.082 0.081 0.095 0.079 0.017 0.023 0.006
frr2s 0.126 0.831 0.741 0.979 0.990 0.984 0.973 0.991 0.998
std 0.018 0.053 0.025 0.030 0.018 0.023 0.029 0.018 0.010
fsrras 0.274 0.858 0.828 0.967 0.986 0.976 0.953 0.981 0.984
std 0.081 0.107 0.117 0.036 0.028 0.030 0.046 0.032 0.029

lose any of the found optima, it will be stuck with the first found ones. In cases where
NP is significantly smaller than the number of optima, it is unlikely that the first found
optima are the best ones. Such a severe limitation of the global search capability can offer
an advantage in functions where the global search phase is unable to offer advantage to
the search through exploiting the global function features. Still, the multistart methods
are a superior choice for such functions, because they do not require a predetermined
population size and lack the overhead related to the use of population.

Using value F' = 0.1 is not as strict a limitation as PX = 0 or the hill-valley detection, and
allows small jumps to neighboring optima. This shows as an improved performance with
the frrip and fsrrip functions. Increasing F' to 0.5 similarly improves the performance
in frrip and fsrrip, but decreases the performance in the easier functions. While a small
Fis not as limiting, it still prevents the algorithm from doing effective global search. The
use of a small F' means that each population member performs extended local search:
it can jump out of small local optima and find a locally global solution, but cannot
not exploit global information, like regularities. Thus algorithms using implicit PN will
behave like explicit PN methods, if the step length is reduced enough, as they lose the
global search phase and their sight becomes limited on a part of the search space.

The tendency of DELG to lose the local optima is still visible in results acquired with
value F' = 0.5, but the difference to crowding methods vanishes when F' is decreased
further, because no long jumps are possible from worse to better local optima. The
results with F' = 0.5 for DECG demonstrate that the superior local peak rates for CRDE
in Table 6.7 are indeed due to the value of F, and using a similar value for DECG
typically offers superior performance.

QUADRATIC AND HUMP FAMILY FUNCTIONS

Looking at the results for the two-dimensional quadratic family functions in Table 6.9,
a significant drop in local peak ratios of DELG can be seen in all cases where high
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local optima value range ([—0.5, —0.15]) has been used, compared to the cases with the
low ([—0.95,—0.9]) range. For crowding methods, the drop is significantly smaller, but
still visible. When the optimum values of local optima are close to the local ones, the
probability for the DELG to lose them decreases, and the results are comparable to the
ones acquired by the crowding methods. In the hump family functions, the drop in local
peak ratios is even more clear for all algorithms between the functions with low and high
local optima value ranges. Still, the local peak ratios of DELG are significantly inferior
compared to the other methods in all functions, and drop to zero in the ones with a high
optimum value range. The results demonstrate well the tendency of DELG to lose the
poor local optima and the increased, although not perfect, ability of crowding to preserve
them. CRDE with F' = 0.5 achieves the top local peak ratios. DELG achieves the top
global peak ratios in most hump family functions, while DECG gains the upper hand in
the quadratic family functions with rotated ellipsoidal optima shapes.

Figure 6.7 demonstrates the development of global and local PR as a function of NFE
for fgsn2 and fysi2. For DELG and DECG, the global and local peak ratios rise rapidly
almost to one in both functions. The local ratios start to decrease after peaking, as the
algorithms lose the worse local optima. In fgs2, DELG and DEGS lose the local optima
at a similar slow rate. In fysp2, the rate is increased for both methods, but especially
for DELG, which initially achieves an even higher local peak ratio, but loses the optima
very rapidly after that. In the harder fgren2 and fyrei2 functions, the development curves
behave similarly, but do not achieve as high an initial value for the local peak ratios, and
DECG is able to keep it almost stable. The development figures for the hump family
functions resemble the quadratic family ones. The peak ratio development curves for
CRDE using F' = 0.5 look similar to the F' =1 curves, except that the rise of the global
peak ratio is typically slower.
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Figure 6.7: Development of local and global PR.

The results for ten-dimensional quadratic functions in Table 6.9 show clearly the advan-
tage of the efficient local search of hybrids. Although the NFE limit is now five times
larger compared to the two-dimensional cases, CRDE with value F' = 1 converges too
slowly, and as a result is able to locate almost no optima. Value F' = 0.5 speeds up
the local search and allows the algorithm to locate part of the optima, but the peak
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Table 6.9: Results for the hump and quadratic family functions of the second test
set. The “global” and “local” rows are calculated considering only the number

of found global or local optima, while the “all” rows consider both. The bold

font is used to highlight the best and the italic font the worst results compared

to others, when the difference to the rest is statistically significant according to

the two-tailed Wilcoxon signed-rank test with significance level 0.05.

DELG F=1|DECG F=1|CRDE F=1|CRDE F=05
Function PR std PR std PR std PR std
Global | 0.995 0.022 0.981 0.042 0.969 0.058 0.964 0.085
Iugt Local 0.310 0.137 0.551 0.149 0.481 0.149 0.681 0.120
All 0.653 0.069 0.766 0.075 0.725 0.085 0.822 0.071
Global | 0.999  0.010 0.990 0.033 0.969 0.053 0.981 0.053
fugn Local 0.000 0.000 0.285 0.128 0.261 0.126 0.382 0.145
All 0.500 0.005 0.638 0.065 0.615 0.072 0.682 0.068
Global | 0.950 0.070 0.942 0.076 0.944 0.078 0.959 0.067
Thel Local 0.381 0.150 0.599 0.142 0.543 0.145 0.729 0.118
All 0.666 0.073 0.771 0.074 0.744 0.083 0.844 0.066
Global | 0.977  0.047 0.958 0.067 0.958 0.065 0.984 0.040
Fhen Local 0.000 0.023 0.290 0.173 0.240 0.156 0.331 0.172
All 0.489 0.067 0.624 0.091 0.599 0.089 0.658 0.089
Global | 0.989 0.031 0.990 0.030 0.947 0.076 0.992 0.027
fqsi2 Local 0.859 0.102 0.844 0.113 0.774 0.132 0.900 0.084
All 0.924 0.052 0.917 0.056 0.861 0.073 0.946 0.045
Global | 0.994 0.024 0.988 0.036 0.959 0.059 0.992 0.031
fqsh2 Local 0.407 0.125 0.624 0.148 0.596 0.148 0.765 0.129
All 0.701 0.062 0.806 0.074 0.778 0.072 0.879 0.068
Global | 0.887 0.103 0.949 0.066 0.890 0.112 0.924 0.090
fqrei2 Local 0.815 0.128 0.867 0.117 0.786 0.127 0.866 0.117
All 0.851 0.084 0.908 0.064 0.838 0.084 0.895 0.074
Global | 0.925 0.078 0.975 0.046 0.918 0.090 0.929 0.077
faren2 Local 0.478 0.150 0.702 0.138 0.642 0.151 0.759 0.136
All 0.702 0.077 0.839 0.070 0.780 0.089 0.844 0.078
Global | 0.922 0.079 0.996 0.020 0.000 0.000 0.628 0.397
fqsito Local 0.932 0.075 0.997 0.017 0.000 0.000 0.635 0.385
All 0.927 0.051 0.997 0.013 0.000 0.000 0.632 0.386
Global | 0.938 0.081 0.990 0.030 0.000 0.000 0.638 0.377
fqsh10 Local 0.933 0.081 0.998 0.014 0.000 0.000 0.637 0.383
All 0.936 0.059 0.994 0.018 0.000 0.000 0.638 0.374
Global | 0.643 0.151 0.755 0.140 0.000 0.000 0.278 0.178
faretio Local 0.621 0.156 0.738 0.135 0.000 0.000 0.278 0.211
All 0.628 0.109 0.747 0.094 0.000 0.000 0.278 0.168
Global | 0.630 0.137 0.751 0.137 0.000 0.000 0.263 0.173
faren1o Local 0.632 0.146 0.728 0.130 0.001 0.010 0.280 0.204
All 0.631 0.107 0.740 0.090 0.001 0.005 0.272 0.161
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ratios are still clearly inferior compared to the hybrid methods. This shows well that the
lack of efficient local search makes CRDE unusably slow as the dimension of the prob-
lem increases, especially with large F' values. Figure 6.8 displays the PR development
for the fqsni0 and fgren1o functions, where the slow convergence of CRDE even with
F = 0.5 can be seen. All methods are equally good at locating global and local optima,
and contrary to the two-dimensional functions, no difference in local PR between the
functions with low and high local optima value ranges is visible. As the search space
increases along dimensionality, the probability of jumps from local optima to global ones
decreases, and allows even DELG to keep the local optima better. The peak ratios for
DECG are superior compared to DELG in all ten-dimensional functions, which is in line
with the results of the first test set. Using rotated ellipsoidal shapes for optima increase
the problem difficulty compared to the spherical ones, which is clearly visible in the PRs
of all methods.

e —— CRDE NP 100, F 0.5, CR 1, global
CRDE NP 100, F 0.5, CR 1, local
0.7/l _ - DELG NP 100, PX 0.9, 0 0, global
0.8 1 - - - DELG NP 100, PX 0.9, 0, local
0.6[] -0~ DECG NP 100, PX 0.9, 6 0, global S
- - DECG NP 100, PX -

o || —*—CRDE NP 100, F 0.5, CR 1, global o 0.5
k= 0.6 CRDE NP 100, F 0.5, CR 1, local f=
= - =~ DELG NP 100, PX 0.9, ¢ 0, global o4l
= - -~ DELG NP 100, PX 0.9, 0 0, local =<V
9] || o~ DECG NP 100, PX 0.9, 5 0, global 9]
a 041~ DECG NP 100, PX 0.9, 6 0, local Q03¢
02 0.2
0.1
0 0
0 2 4 6 0 2 4 6 8
NFE X 10° NFE X 10°
(@) fqsnio (b) farento

Figure 6.8: Development of local and global PR.

6.2.3 Discussion

Also the second test set demonstrates the advantage of separating the global and local
search operations through hybridization. While CRDE is able to keep up with the hybrids
in the easier two-dimensional function,it becomes too slow to achieve convergence in
reasonable time when the dimensionality increases. RSGD was not used in the second
test set, as the algorithm can not lose local optima and the probability to locate a given
optimum is simply proportional to its AOA, regardless of the depth. RSGD would very
likely achieve top performance in locating both the global and local optima in most of
the used functions (excluding the ripple functions) due to the small NLO and the lack
of regularities in the hump and quadratic functions.

Using DECG instead of DELG offers two benefits: crowding is less prone on losing only
locally optimal solutions, and the increased population diversity gives an advantage over
local selection with irregular functions as the function dimensionality increases. The
probability of losing the local optima with local selection, however, also decreases with
dimensionality. Still, if the goal is to locate also suboptimal solutions reliably, DECG
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may be the better choice. If the interest is only in the global or nearly global solutions,
DELG becomes more attractive with its superior ability to exploit regularities and the
lower computational complexity. DECG is able to offer advantage in irregular functions
of higher dimensionality, but as the ability to exploit regularities is the main contribution
of the DE part to the hybrid, multistart methods are even more effective in the irregular
functions.

The addition of noise to the global mutation by using o > 0 did not offer clear advantages
in locating the local optima, either. The ability to control the mutation step length
through the F' parameter, however, is sometimes beneficial also for the global mutation
operation. While F' = 1 generally allows the most effective global search capability,
different values may be more suitable for exploiting a particular function topology. Still,
good results with a small F' are easily misleading, because their usability is limited to
cases with only a small number of optima. The same is true for all approaches which limit
the global search capability, like the use of the hill-valley function. It would be possible
to modify the hill-valley algorithm so that a jump away from an AOA of an optimum
is allowed, if at least one other population member is present in the same optimum.
However, this would be computationally very expensive, especially because each hill-
valley calculation between two points requires several function evaluations. Even if the
computational cost is ignored, such a method can still locate only NP optima at best.
Because an algorithm using the hill-valley detection can never lose any of the found
optima, it will be stuck with the first found ones, and multistart methods can perform
the same task more efficiently. In cases where VP is significantly smaller than the number
of optima, it is unlikely that the first found optima are the best ones. An approach was
also briefly tested, where the trial was allowed to replace the worst population member,
in case it was decided to reside in a different optimum than the target to circumvent
the limitation of never losing optima. Such an algorithm, however, behaves like global
selection and converges fast into a single point, losing the ability to do multimodal
optimization.

6.3 Summary

The aim of this section was to increase the understanding of the role of local and
global search in multimodal optimization through studying eight different optimization
approaches. The results demonstrate the capabilities of Differential Evolution-based
algorithms to identify and exploit regularities efficiently, due to use of differentials in
mutation. Even without any external niching methods, DE can achieve very good per-
formance in regular functions and works reasonably well as long as even partial regu-
larities remain. Methods having a strong global phase generally outperform the local
search-oriented methods in regular functions.

The suggested hybrid approaches combine global search aspect provided by the DE suc-
cessfully to the efficient local search capability provided by the gradient descent algo-
rithm. The resulting algorithms are able to provide increased performance compared to
both parent algorithms, as long as even partial regularities exist, which the DE part can
exploit. This implies significant advantages to be attainable in multimodal optimization
through separation of the local and global phases of an algorithm and selecting appro-
priate and effective methods for both. If the function to be optimized does not contain
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regularities or other features the global phase can exploit, methods concentrating only
on the local phase gain advantage, as the global phase then adds only overhead to the
process. This is demonstrated by the fact that the multistart methods are the top per-
formers in the irregular functions, which do not offer exploitable global features. The
more efficient local phase of the hybrids, however, helps them to achieve clearly superior
performance compared to pure DE methods also in irregular functions. The lack of an
efficient local phase in pure DE methods often slows down the convergence too much
to fully take advantage of the effective global phase, even in functions which contain
exploitable features. As a consequence, algorithms having a weak local phase are often
forced to use inefficient parameter setups, like too small population sizes or too short
mutation steps, to allow convergence in a reasonable time.

The comparison of local selection and crowding revealed that local selection is more apt
to losing already found local optima, especially if their fitness differs much from the
globally optimal fitness. While local selection demonstrates superior performance with
functions containing regularities, crowding gains advantage in irregular functions when
the dimensionality increases. Multistart methods, however, generally outperform even
DECG in irregular functions, because the global phase is not able to contribute enough
to the search to offset the overhead. The true strength of the DE hybrids compared to
the multistart methods lies in the fact that they are able to offer a potential increase
in performance through identifying and exploiting regularities the user is not aware of
beforehand. If such regularities are not available, they still offer superior performance to
pure DE methods.

The results also question the advantage of using randomization in the mutation of DE
when performing multimodal optimization, as using ¢ > 0 did not offer clear advantages
in any of the tested setups. The ability to identify and exploit regularities is a major
advantage of DE in multimodal optimization, and the randomization directly hinders
the algorithm in this respect. The DELG and DECG algorithms could be simplified by
removing the randomization from the global mutation. This would reduce the parameters
by one, as o would no longer be needed. An advantage gained from a random element
in mutation is often reported for noisy functions, however, and as the test setup did
not contain any such functions, it is premature to decide the usefulness of the operator.
However, for non-noisy functions, the use of o = 0 is recommended, at least as an initial
value.

Table 6.10 lists the complete set of parameters for each tested algorithm and classi-
fies them to three groups according to the difficulty of finding a good value for each.
The classification is somewhat qualitative. The “easy” control parameters either have a
clearly optimal setup, which allows the best use of the strengths a particular algorithm
(F,CR,0,CF) or they are less problem dependent and the algorithm is not sensitive to
slight changes of the parameter (PX,d,n). This allows efficient use of the algorithms by
simply using suggested values for these parameters. Parameters classified as “moderate”,
are problem dependent, but the algorithms are not highly sensitive to these parameters.
Mainly the population size is moderately difficult parameter to set for most methods,
because using overly large population sizes typically only decreases the efficiency of the
algorithms, but is not critical to the success. For methods having especially weak local
search capability, the algorithm becomes more sensitive to the NP and thus for CRDE
the selection of the parameter is “hard”. Also the F' is hard to tune for CRDE because
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of the dual nature of the parameter. SDE is very sensitive to the parameter .4, which
is highly problem dependent and thus hard to tune. The F' and o,,4 are related and
changing the value of 0,,4 affects the length of the differentials as well as the value for
F'. For this reason, the selection of the value for F' is dependent on the value of 0,44,
which increases the difficulty of selecting a good value for F'.

Table 6.10: Complete list of the control parameters of the tested methods classi-
fied according to the difficulty of specifying good values for each and recommended
values for the less problem dependent parameters.

Method | Easy | Moderate | Difficult
DELG F= NP
o=
PX =0.9
§=10"°
n=10"%
DECG F=1 NP
o=0
PX =0.9
CF = NP
§=10""°
n=10"%
CRDE CR = NP
CF = NP F
DELL F = NP
o=0
PX =0.5
SDE m=10 NP Orad
CR=1 F
DEGS F= NP
CR =
RSGD | 6=10"%
n=10"%
GRGD | §=10"° ‘ ‘
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CHAPTER VII

Conclusions

The main objective of this thesis was to increase the understanding of the role of local and
global search in multimodal optimization. The results imply a significant advantage to
be attained in multimodal optimization through separation of the local and global phases
of an algorithm and selecting appropriate and effective methods for both. A natural way
of attaining this is by hybridization. The study reveals the ability of hybrid approaches
to outperform non-hybrid methods through their more effective use of global and local
search phases in functions which contain suitable global features to be exploited. If
such features do not exist, the global phase becomes a burden. An efficient local phase,
however, is always important, and the lack of one may severely hinder also the ability of
an algorithm to exploit the global features.

The most obvious methods concentrating only on the local phase are the multistart
methods. Many evolutionary methods, however, also perform extended local search, and
largely neglect the global search phase. The use of explicit parallel niching methods or
simply reducing the step length enough have similar effects in limiting the global search
capabilities of the algorithm. Such methods are efficient in functions with a low amount
of optima and ones without suitable global features which could be exploited. The
lack of an effective global search phase, however, prevents the methods from identifying
and exploiting the global function features, which is the central idea of evolutionary
algorithms.

The lack of an efficient local phase slows down the actual convergence and prevents the
algorithms from taking full advantage of the effective global phase. Self-adaptive algo-
rithms like Differential Evolution, which use the population information to scale the step
length, are especially problematic in the context of multimodal optimization. When the
aim is to locate only a single optimum, the algorithm may rely on the converging popu-
lation to shorten the step length and increase the local search capacity near the global
optimum. In multimodal optimization, similar general convergence does not happen, as
the population needs to stay spread between several optima. Simply implementing a
niching method for a self-adaptive algorithm without considering the effects to the local
search capability may thus lead to a very slowly converging algorithm. Such algorithms
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are often forced to use inefficient parameter setups, such as too small population sizes or
too short mutation steps, to allow convergence in reasonable time, which in turn hampers
the global search capability.

The idea of separating the global and local search phase can be used in the future to
generate different methods for multimodal optimization. Differential Evolution is able
to identify and exploit the regularities of the function efficiently through the mutation
operation, which is based on differentials between population members. Additionally,
the ability to exploit separability can be gained through crossover. Different approaches
could be used to identify and exploit different features. Thus a wide variety of differ-
ent approaches for implementing the global and also the local part should be studied
to determine the best combinations for different types of problems. Another potential
research direction could be to study the ways and possible benefits of making the PX
parameter adaptive. The advantage of the hybrid algorithms lies in the fact that they
are able to offer a potential increase in performance compared to multistart methods
through identifying and exploiting global features the user is not aware of beforehand,
but if such features are not available, they still offer superior performance to pure EA
methods through the more efficient local search.

The proposed test function framework allows the generation of different types of multi-
modal test functions, and allows features of the functions to be changed independently
of each other. This makes it possible to study how each function feature affects the
performance of each algorithm. Especially interesting in the context of this study is
the regularity. Interestingly, the basic version of the Differential Evolution algorithm,
which does not use any niching methods, demonstrates the best performance in locating
the global optima in regular functions. The algorithm is not suitable for multimodal
optimization in a more general setup, however, as it quickly converges to a single opti-
mum without the regularities. The result demonstrates the need for a well defined and
understood test setup, as the results could otherwise be misleading.

Local selection was found to be able to preserve population diversity, and as a result to
be suitable to be used as a niching method. The advantages of the approach are the
lack of added control parameters and low computational complexity. The comparison of
local selection and crowding revealed that local selection is more apt to losing already
found local optima, especially if their fitness differs much from the globally optimal
fitness. While local selection demonstrates superior performance in functions containing
regularities, crowding gains advantage in irregular functions when the dimensionality
increases. The price to pay is the higher computational complexity of crowding.

Based on the acquired results, DELG offers the most potential for new arbitrary multi-
modal optimization problems through combining the ability to exploit possible regulari-
ties to the capability for efficient local search. If also local optima which have consider-
ably inferior fitness are of interest, DECG becomes an interesting choice. If the hybrids
demonstrate poor performance, the particular problem likely does not contain regularities
which could be exploited and RSGD will then become the algorithm of choice. The pure
DE methods can not be recommended due to their inferior local search capability. Also
GRGD is an inferior choice to RSGD in arbitrary functions where no priori information
is available due the biased starting point distribution.

The use of randomization in the mutation of Differential Evolution hinders the ability of
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the algorithm to exploit regularities and is thus typically harmful in the context of mul-
timodal optimization. The possible advantages of the randomization was not confirmed
by the results in this thesis and remains a future research topic.
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