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PREFACE  
 
 

Over the last few years, there has been a convergence between the fields 
of ultrafast science, nonlinear optics, optical frequency metrology, and 
precision laser spectroscopy. These fields have been developing largely 
independently since the birth of the laser, reaching remarkable levels of 
performance. On the ultrafast frontier, pulses of only a few cycles long have 
been produced, while in optical spectroscopy, the precision and resolution 
have reached one part in 1014. Although these two achievements appear to be 
completely disconnected, advances in nonlinear optics provided the essential 
link between them. The resulting convergence has enabled unprecedented 
advances in the control of the electric field of the pulses produced by 
femtosecond mode-locked lasers. The corresponding spectrum consists of a 
comb of sharp spectral lines with well-defined frequencies. These new 
techniques and capabilities are generally known as “femtosecond comb 
technology.” They have had dramatic impact on the diverse fields of 
precision measurement and extreme nonlinear optical physics. 

The historical background for these developments is provided in the 
Foreword by two of the pioneers of laser spectroscopy, John Hall and 
Theodor Hänsch. Indeed the developments described in this book were 
foreshadowed by Hänsch’s early work in the 1970s when he used 
picosecond pulses to demonstrate the connection between the time and 
frequency domains in laser spectroscopy. This work complemented the 
advances in precision laser stabilization developed by Hall. The parallel 
efforts on mode-locked lasers by Charles Shank, Erich Ippen, and others laid 
the groundwork for the development in the 1990s by Wilson Sibbett of Kerr-
lens mode locking, the instantaneous nature of which yields sub-10 fs pulses 
directly from laser oscillators that correspond to strong phase-locking of the 
comb components across a broad optical spectrum. The synergy between 
precision spectroscopy and ultrafast lasers was catalyzed by the development 
of novel optical fiber with high nonlinearity and controlled dispersion.   

In Chapter 1 we provide an introductory description of mode-locked 
lasers, the connection between time and frequency descriptions of their 
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output, the physical origins of the electric field dynamics, and an overview 
of applications of femtosecond comb technology. Chapter 2 by Ippen, 
Kärtner and Cundiff discusses the development of ultrashort lasers, 
particularly focusing on how to achieve an octave-spanning spectrum and 
pulse dynamics that are relevant to the stability and control of the comb. 
Chapter 3 by Bartels describes in detail high-repetition-rate ring oscillators 
for precision frequency metrology. Chapter 4 by Gaeta and Windeler 
provides in-depth discussions relating to the physics of bandwidth generation 
and the underlying noise process during pulse propagation through 
microstructure fibers. Certain aspects of comb dynamics and stability are 
presented in Chapters 5 by Steinmeyer and Keller. An attractive approach 
presented in Chapter 6 by Kobayashi makes use of optical parametric 
generation to produce high-peak-power, femtosecond pulses in the IR 
spectral domain. A detailed review of the traditional harmonic-based 
frequency chain is provided in Chapter 8 by Schnatz, Stenger, Lipphardt, 
Haverkamp, and Weiss, while the new epoch of absolute optical frequency 
measurement using femtosecond comb technology is reviewed in Chapter 7 
by Udem, Zimmermann, Holzwarth, Fischer, Kolachevsky, and Hänsch. 
Chapter 9 by Diddams, Ye, and Hollberg provides an account of the current 
state-of-the-art performance and characterization of femtosecond comb 
systems used for optical frequency measurement, synthesis, and optical 
atomic clocks. Chapter 10 by Baltuška, Paulus, Lindner, Kienberger, and 
Krausz provides a thorough discussion of the generation of the high-intensity 
pulses needed to access the regime of extreme nonlinear optics and a review 
of the results obtained for above-threshold ionization. Control of high-
harmonic generation is addressed in Chapter 11 by Gibson, Christov, 
Murnane and Kapteyn. Stabilization of mode-locked lasers and their 
applications to ultrasensitive sensors are discussed in Chapter 12 by Diels, 
Jones, and Arissian. 

The rapid progress during the last 5–6 years has been breathtaking and 
has made a tremendous impact on both science and technology. We foresee 
an undiminished potential for similar advances in the near future. We hope 
that the readers of this book will share our enthusiasm and benefit from the 
material presented in this book. 

The editors thank all of the chapter authors for their contributions. The 
efforts of Julie Phillips and Lynn Hogan in the JILA Scientific Reports 
Office are also gratefully acknowledged.  

 
Boulder      
September, 2004 Jun Ye and Steven T. Cundiff 
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Foreword  

HISTORY OF OPTICAL COMB DEVELOPMENT 

John L. Hall,1 and Theodor W. Hänsch,2 
1 JILA, National Institute of Standards and Technology and University of Colorado 

2 Max-Planck-Institut für Quantenoptik 

In the past five years, progress in laser stabilization, optical frequency 
measurement, femtosecond laser development and stabilization, nonlinear 
optics, and related topics has been stunning and unexpected. The excitement 
surrounding the rapid evolution in these fields since 1999 gives us a hint of 
what it must have been like after 1927 when the first ideas of quantum 
mechanics were being introduced. With laser optics, however, the explosion 
of knowledge is based upon years of detailed, painstaking research in the 
independent fields of laser stabilization, ultrafast laser development, and 
highly nonlinear optics [1]. The coalescence of these fields has provided five 
years of almost unprecedented discovery while, at the same time, a new 
millennium in metrology has generated advances of fundamental value in the 
contributing fields and in their spin-offs. To give just two examples: (1) the 
precise synchronization of picosecond and femtosecond lasers [2] allows 
nonlinear surface probing at the single-molecule level using coherent anti-
Stokes Raman microscopy and spectroscopy [3] and (2) the use of stabilized 
comb pulses allows time and frequency dissemination [4] over extended 
distances via fiber optics. The latter offers a new capability to metrologists 
and researchers interested in developing new accelerators and large-array 
radio telescopes.  

Here we offer our perspective on how we got started on this incredible 
journey of discovery and why it is occurring at this time. The rest of this 
timely book highlights key technical advances from the perspective of the 
researchers who made them. Consequently, this book should be of interest to 
students, practitioners in this rapidly evolving field, and physicists, chemists, 
and biologists whose research will be enhanced by the insights and 
discoveries recounted here. 
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The historical development of pulsed and continuous wave (cw) lasers 
diverged right from the beginning. The solid-state ruby laser of Ted Maiman 
involved kilojoule discharges into flash lamps and repetition rates from zero 
up to once per minute. (The laser’s high ion density implied that a serious 
power level would be involved.) In contrast, the gas laser of Ali Javan had 
much lower gain margins and required temporal stability to allow its 
incremental approach to the laser threshold. From the early 1960s until about 
1990, the pulse and cw laser communities continued to diverge. The cw laser 
folks liked to enhance the stability of their lasers, because stability was the 
main good feature they had. Certainly it wasn’t the ability to burn holes 
through Gillette razor blades, a popular specification for pulsed lasers of the 
day. Over the years, the cw-laser teams learned to frequency stabilize their 
milliwatt-scale lasers, eventually reaching into the subhertz domain. Some 
members of the pulse-laser community escalated to kilojoule pulse energies 
delivered in nanoseconds for fusion target compression and even larger 
discharges to be delivered to potentially hostile moving targets.  

On the other hand, the university research community wanted pulse 
lasers with high repetition rates that would enhance nonlinear responses, 
enable signal averaging over many pulses, and reduce the destructive impact 
of the probing radiation on the probed system. Thus began the search for 
laser media that were quiet and calm enough to lead to repeatable pulses, 
even at high repetition rate. First came the mode-locked He-Ne laser 
followed by actively mode-locked Argon lasers, which were developed 
commercially to give nanosecond pulses at 100 MHz rates. By the time 
synchronously pumped mode-locked picosecond dye lasers were introduced 
in the mid-1970s, the comb approach to frequency measurement was 
probably already inevitable, albeit more than 20 years in the future. 

A driving force in the development of laser (and optical comb) 
technologies was the desire to learn more about the physical world. For 
instance, Professor Hänsch’s group at Stanford (and later in Garching) 
focused on learning about the hydrogen spectrum, comparing hydrogen with 
deuterium to see the isotope shifts, accurately determining energies 
associated with various principal quantum numbers, and so forth. From the 
beginning, they realized that certain physical parameters, such as the Lamb 
shift or proton-size changes, could be isolated by using their quantum-
number-scaling dependence and thus probed in the optical regime.  

At Stanford, Hänsch’s team demonstrated one of the first mode-locked 
“femtosecond” dye lasers (with a pulse length of less than one picosecond) 
in 1977 [5]. Their progress in laser research was closely connected to the 
invention of spectroscopic techniques in the sub-Doppler regime as part of 
their work on precision spectroscopy of the simplest atomic system, 
hydrogen. The group’s new tunable dye-laser pulses were soon used in a 
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landmark experiment to demonstrate Fourier’s reality to us: stable pulse 
trains — evenly-spaced in time — represented as stable combs of frequency 
components. We note that in the late 1970s, Veniamin Chebotayev in 
Novosibirsk had also begun thinking about stable, repetitive laser pulse 
trains. Even though the early experiments could not yet verify the precisely 
equal spacing of the comb frequencies, Eckstein, Ferguson, and Hänsch [6] 
used a comb structure to measure some fine and hyperfine frequency 
intervals in atomic sodium in 1978. This classic paper would help define the 
future impact of ultrafast lasers on precision measurement. Then, as the work 
at Garching progressed over the years, one dream became clear and insistent: 
if only we could measure optical frequencies directly and accurately!   

This vision led the Garching team to flirt with extended chains of 
synchronized frequency sources. In the late 1980s, their new idea [7] was to 
deal with a series of increasing frequency differences between tunable diode 
laser sources. In this way, they hoped to avoid one of the major headaches of 
traditional chains — the step-wise increase of absolute frequencies 
throughout the chain that obliges one to develop a different laser technology 
at many points to cover the 105 frequency ratio from the microwave regime 
to the visible. A number of laser-diode frequency-interval-divider stages 
were built. A four-stage system was used for one of the hydrogen frequency 
measurements.  

The comb idea jumped ahead with the demonstration of intracavity 
modulator-based spectral comb generators by Kourogi et al. [8]. In these 
experiments, pulses were modulated onto stable cw laser beams. Researchers 
in both Garching [9] and Boulder [10] recognized the utility of these devices 
and launched frequency-measurement programs using their few terahertz 
width modulator-based optical combs to bridge the awkward frequency gaps. 

In the meantime, the ultrafast laser community continued to work toward 
improved pulse train stability and shorter pulses. Researchers developed 
several solid-state lasers, such as the cw-pumped mode-locked Nd:YAG, 
that were attractive for their stability. However, pulse durations below 30 ps 
were difficult to obtain because of the gain-bandwidth limitation of the laser 
material itself. Eventually the “intelligent and beautiful princess” — the 
titanium-doped sapphire laser system — was introduced and developed, 
along with the important discovery of Kerr-lens mode locking by Wilson 
Sibbett in St. Andrews [11]. These inventions changed femtosecond lasers 
from delicate contraptions to simple and reliable devices. Soon afterwards, 
commercial Ti:sapphire femtosecond lasers became readily available and 
they offered sub-100 fs pulses by the early 1990s. By 1994, the Garching 
group had acquired a Coherent Mira* laser for frequency metrology 
experiments. This laser and other similar devices opened the door to solving 
an array of challenging problems.  
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The factors that limit the shortness of the generated laser pulses arise 
from two issues: (1) finite gain-bandwidth product (which is not a problem 
for Ti:sapphire) and (2) intracavity dispersion. A short pulse can be viewed 
as the superposition of many cw phase-locked modes, all of which oscillate 
at their own cavity-defined frequencies. For the pulse train to be stable in 
time, the modes must have a common frequency separation. Because of 
dispersion in the sapphire, intracavity air, and mirror coatings, these cavity 
frequencies are generally not exactly evenly spaced. This is particularly true 
as the spectral bandwidth dramatically increases. So even with the ~30% 
bandwidth of Ti:sapphire, further shortening of sub-100 fs pulses proved 
difficult until Asaki et al. [12] employed a sufficiently general analysis of the 
pulse laser cavity. This model included the index of refraction characteristics 
of the intracavity dispersion-compensating prisms, the resulting color 
influence on the refraction direction, associated cavity path lengths, and 
some modeling of the air and laser crystal dispersion. Space-time focusing of 
the light bullet in the laser crystal was another important consideration.  

In the early 1990s, when most of researchers were working feverishly to 
shorten pulse widths, some dreamers began to think of pulses so short that 
their Fourier representation would span from radio frequencies up into the 
visible domain. This idea seemed like science fiction to one of the authors 
(JLH) and a likely possibility to the other (TWH). Of course, spectral self-
broadening was well known. By focusing powerful amplified pulses into 
water or some solids, one could basically generate a white-light continuum. 
At elevated pulse energy levels, one expected serious disruption of the 
calmness of the intermolecular bonds; consequently, one would not expect to 
find a phase-stable repetition of the generated white light. Perhaps a glass 
sample could melt and recrystallize at a 100 MHz rate, emitting a similar 
thermal spectrum on every heating cycle. However, to form a coherent 
optical comb in the forward direction, the timing would need to be stable to 
~1 radian — at the visible frequency! Few believed that this thermal process 
would be stable at the 0.3 fs level needed. Rather, it seemed clear that a more 
gentle process would be required, in which somewhat less-powerful laser 
pulses would strongly distort some atomic wave functions but not disrupt 
chemical bonds. Atomic frequencies are so high that when the pulse is gone, 
calmness can return; the next pulse would be able to generate just the same 
effect on the system. In this case, the phase-coherence of the source pulses 
could insure that the nonlinearly generated frequencies would be mutually 
coherent pulse-to-pulse. 

Researchers in both Garching and Boulder set out to learn about this 
subject. In Europe, an amplified pulse was split into two parts and focused 
onto two separate spots in a CaF2 crystal. The white light produced in each 
spot in the CaF2 plate interfered with each other in a geometry that allowed 
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the time delays to be equalized. Miraculously, stable white interference 
fringes could be seen by eye [13]. In this way, the Garching group realized 
that the phase of the nonlinearly generated light was stable enough to form 
an optical comb! This experiment led to Hänsch’s detailed six-page 
proposal, dated March 30, 1997, for an octave-spanning self-referenced 
universal optical-frequency comb synthesizer. Following this proposal, 
developments in the art of femtosecond-laser frequency comb generation 
began to appear quickly. 
 The next year (1998) saw the first crucial test of a Kerr-lens mode-locked 
Ti:sapphire laser in Garching [14]. This experiment clearly proved the 
viability of femtosecond-laser frequency comb synthesizers. Before this 
experiment, some researchers had argued that the laser comb spectrum 
would be completely washed out by phase noise. Although some 
publications were held back due to the restrictions of German patent law, by 
2000 the Garching team reported its first absolute frequency measurement 
with a comb (made in 1999) [15]. In a direct comparison with the 
transportable cesium fountain clock of the Bureau National de Métrologie – 
Systèmes de Référence Temps Espace, they measured the frequency of the 
hydrogen 1S–2S two-photon resonance with an uncertainty of 1.9 x 10-14, 
which is more than an order of magnitude more accurate than any previous 
optical frequency measurement. This experiment firmly established the 
viability of optical frequency metrology with femtosecond laser frequency 
combs. It also electrified the frequency metrology community. The 
convenience and simplicity of octave-spanning frequency combs added to 
the attraction of this new approach.  

In the meantime, researchers in Boulder were studying the spectral 
expansion associated with pulse propagation in an optical fiber as a possible 
replacement for their modulator-based comb generator. They showed that a 
cw test beam in the fiber developed a comb structure on it because of the co-
propagating femtosecond pulses. However, the new comb only contained 
information about the repetition rate of the pulses, not about their optical 
frequency [16]. Of course, in retrospect, it is clear that this “cross-
modulation” result (as opposed to “four-wave mixing”) was preordained 
because of the huge difference in the phase velocities of the two colors. The 
interesting frequency-coupled wavelets never got a chance to coherently 
build up along the fiber’s length. This experiment also showed that 
spectrally narrow features would be generated across a broad spectral range 
even when “pounding” on a fiber with powerful femtosecond pulses. 

A classic 1999 paper [17] offered a complete description of issues and 
techniques for comb-based optical frequency measurement, including the 
famous carrier-envelope phase-slipping issue [18]. The Garching team made 
their first self-contained rf-to-optical frequency comparison [19] using a 
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comb configuration that had a stabilized carrier-envelope-offset frequency. 
Since the comb spectrum did not yet span an octave, some interval-divider 
stages with auxiliary lasers had to be used for self-referencing. 

Soon afterwards, the world was turned upside down by Jinendra Ranka, 
Robert Windeler, and Andrew Stentz. During the 1999 CLEO postdeadline 
session, they announced that they had demonstrated that white light could be 
produced in a revolutionary way by using an internally structured fiber 
incorporating a number of air holes [20]. They showed pictures in which the 
input dark red pulse gradually transformed itself into green and blue, with 
expansion into the IR direction occurring as well. Soon it was discovered 
that supercontinuum could also be obtained in tapered fibers [21]. 

The central rod in the fiber preform had been surrounded by a number of 
hollow tubes. When drawn down to fiber scale, the inner “core” was 
surrounded by air that presented a vastly larger index contrast than found in 
normal fiber (where the contrast may be ~0.01). Consequently, a single-
mode microstructure fiber would have a much smaller diameter for a given 
wavelength, for example 1.7 instead of 5 micrometers for 800 nm light. This 
meant that a laser beam focused into this fiber would have a ~tenfold higher 
intensity and generate ~tenfold larger self-induced phase shifts during the 
pulse because of the Kerr effect, which is analogous to the quadratic Stark 
effect in atoms. Suddenly, researchers learned that white light could be 
generated by normal femtosecond oscillators without expensive and low-
repetition-rate amplifiers!  

Researchers also realized that the special fiber could help with the phase 
matching needed for a big coupling to accrue. In the “holey” fiber, a number 
of fiber parameters could be designer variables: the basic glass and its 
dispersion, the core size, the fractional angular coverage of supporting web, 
the size, and number of surrounding air holes. By design, it proved possible 
to make a strong cancellation between dispersion of the fiber core material 
and the dispersion associated with the geometric structure. In this way an 
input pulse could propagate vastly longer distances — millimeters rather 
than micrometers — before its peak intensity was diminished by the 
different propagation speeds of its spectral components. 

Knowing that the pulses were so gentle the fiber was not damaged and 
that all the frequency components would be cross-coupled together by the 
nearly constant propagation speed, we predicted the output of the fiber 
would be a spectral comb of coherent frequencies. Of course, for precision 
metrology, this idea would have to be tested.  

The first question was: how can we get some “Magic Rainbow Fiber?” 
Our combined approaches to friends, colleagues, and administrators at Bell 
Labs all came to nothing, apparently because of the lawyers there. Luckily 
for the JILA team, its most recently recruited colleague, Steve Cundiff, had 
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been in a nearby group in the same part of Bell Labs. By some unknown 
means, the JILA team came up with a sample of “Magic Fiber” to test by 
November 1999. The Garching group teamed up with the powerful fiber 
group of P. St. J. Russell at the University of Bath (UK), which had been 
working with both microstructure and tapered fibers. New results began 
immediately rolling in [21, 22], and the publication competition began in 
earnest! (Since then, many alternatives to the Magic Fiber approach have 
emerged, including supercontinuum generation in tapered fibers [21], 
octave-spanning laser oscillators without the use of external fibers, mode-
locked fiber lasers with some highly nonlinear ordinary fiber for spectral 
broadening, and schemes incorporating difference-frequency generation to 
determine the carrier-envelope-offset frequency with combs spanning less 
than an octave.)  

At this point, the Boulder team had a significant advantage. They had 
already worked on laser stabilization and optical frequency standards for 
many years because of JILA’s affiliation with the Boulder campus of the 
National Institute of Standards and Technology (NIST). Indeed, the authors 
of this foreword first met in Novosibirsk in 1969 at a conference organized 
by the late Veniamin Chebotayev on the topic of stabilized lasers. There, 
JLH presented his progress with a methane-stabilized He-Ne laser.  

While other researchers were busy improving cw and pulsed lasers, 
national metrology and standards laboratories around the world had been 
trying to verify the frequencies of their “as-maintained” national wavelength 
standards. The first such measurements occurred in Boulder and led, in 
1972, to the measurement of the frequency and wavelength of the methane 
standard. This measurement, in turn, led to a new and definitive value for the 
speed of light. Other national laboratories joined in, and a long discussion 
ensued about the philosophical and practical issues associated with 
calculating meters from the frequency of light rather than simply adopting 
new wavelength standards as they became available. Within 10 years, 
national laboratories in Canada, the United Kingdom, Japan, Germany, and 
Gaithersburg, Maryland, had confirmed parts of the Boulder work and the 
frequency of the He-Ne iodine-stabilized red laser had been determined. In 
1983, the meter was redefined based on the speed of light.  

The reproducibility of most of the reference lasers developed during this 
era was so good that their imperfections had little practical consequence for 
length metrology. Still, the optical frequency standards business continued to 
develop as researchers sought better designs and new reference transitions. 
More importantly, each nation wanted to confirm its own standards at the 
highest level.  

Both NIST and PTB built very good systems to measure the calcium 
intercombination transition at 657 nm, for example. In addition, the PTB 
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team built up one of the best rf-to-optical harmonic frequency “chains,” 
which took advantage of several decades of work on system components. 
While PTB’s “traditional” frequency chain worked well, its sheer 
complexity was daunting. The German laboratory’s state-of-the-art 
measurement [23] of the Ca frequency was published in 1996 and had a 
frequency uncertainty of ~ 430 hertz, arising from both the Ca standard and 
the measurement scheme. (By 2003 using femtosecond comb techniques, 
both NIST and PTB were reporting uncertainties for this frequency in the 
~10 hertz range, limited mostly by interesting spectroscopic issues with the 
optical Ca standard.) 

Its experience with optical frequency standards allowed the Boulder team 
at JILA to take Ranka et al.’s groundbreaking discovery of the properties of 
Magic Fiber and run with it. The Boulder team was the first to measure (and 
control) the carrier-envelope-offset frequency with a ν-to-2ν self-referenced 
comb [24]. With this method, they determined the frequency offset of the 
comb lines from the positions of harmonics of the repetition rate. Some 
known optical frequencies were confirmed. Within a few months, the group 
was also attempting to generate femtosecond pulses of controlled shape, in 
which the pulse-to-pulse carrier-envelope-offset phase was under the 
experimenter’s control.   

The absolute frequency measurements in the pre-comb epoch (prior to 
1999) were suddenly such a bother! The simplicity and efficiency of the new 
comb-based measurements attracted wide interest and provided a huge boost 
to the optical frequency metrology and standards field. Some parts of a total 
optical frequency metrology system even became available commercially 
(see, for example, http://www.menlosystems.com/*). Five years into the 
optical frequency comb epoch, the once-independent laser research 
subcommunities are now extremely interdependent, at least as viewed from 
the perspective of results. Of course, each advance has been primarily an 
independent step, attractive in its own context. Which market planner could 
have organized this beauty? 

One question remains, however: how can we be sure of the frequency comb 
results? The accuracy of comb techniques has been the subject of a number of 
tests, but no problems have turned up so far. JILA has used the comb 
technique to measure “known” optical standards. Rather than discovering 
limitations of the comb technique, we have typically found that these 
measurements refine our knowledge of the “known” standard [25]. Thus the 
obvious method of testing the comb by measuring a physical standard by both 
methods is not successful because of limitations of the standards themselves.  

Using another approach, the Garching team compared an octave-spanning 
frequency-comb synthesizer [26] with the more complex frequency synthesizer 
used in their 1999 hydrogen-frequency measurement. By starting with a 
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common 10 MHz rf reference and comparing comb lines near 350 THz, they 
verified agreement within a few parts in 1016; the precision of the experiment 
was probably limited by Doppler shifts due to air pressure changes or thermal 
expansion of the optical tables.  

The Garching group also made additional accuracy tests on the comb-
spacing uniformity using one stage of a frequency-interval divider [14]. The 
interval between comb lines near the edges of the “white” spectrum could be 
divided to find the “center” by two methods. Or, an edge line could be 
combined with one near the middle to seek a dispersive effect. No problems 
could be found. To really press to the testing limits, comb vs comb tests — 
using different comb frequencies, materials, or whatever we think could be 
important — are probably necessary. By late 2004, tests still had discovered no 
problems, and the accuracy in the context of frequency combs had reached   
10-21 [27]. 

As we begin the next era in optical comb research, with each group 
measuring specific frequencies with femtosecond comb techniques, the 
realization of the cesium standard frequency is likely to be the first weak 
point. With a day’s averaging, the GPS system can help us know our local 
frequency standard’s average performance, but it takes about a day to deliver 
an accuracy ~1 x 10-14; achieving this accuracy requires us to know the 
timing comparisons separately with each of the satellites used in the test. To 
test optical frequency combs against the highest traditional standard, modern 
fountain cesium clocks are usually available either by fiber link [4] or by 
physical transport.  

Femtosecond combs are now ready to accurately measure any desired 
frequency such as those of some isolated hydrogen atoms at rest in a field-
free vacuum, single Hg+ or Yb+ ions in an ion trap, or a million cold Sr 
atoms trapped in an optical lattice/trap. In addition, frequency comb 
techniques are having an impact on ultrafast physics. By making it possible 
to produce few-cycle pulses with a stabilized carrier-envelope phase, these 
tools are leading to the discovery of novel phenomena in nonlinear light-
matter interactions. For example, by 2004 amplified phase-stabilized pulses 
had been used to produce controlled bursts of soft x-rays with time durations 
in the attosecond range [28]. 

So where do we go from here? 
In contrast to the digital security of frequency measurement, in the final 

accuracy-defining step, it usually comes out that spectroscopic line-shape 
issues are what limit our results. How well do we know the connection 
between the center of the observed resonance line and the desired physical 
quantity? Resonance frequencies can be shifted by fields, laser intensity, 
Doppler shifts, and ... Careful treatment of such issues is part of what makes 
our field so fun. And, of course, many interesting measurements can be 
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designed so they measure differences or temporal changes and hence are 
better isolated from such limitations. But as our experiments improve, the 
line-center question will continue to reappear, ideally at an increasingly 
reduced sensitivity. 

In summary, optical frequency combs have given us some comfortable 
metrological headroom for pushing ideas for new optical frequency 
standards and for measuring interesting physical constants. And, we feel 
confident that the new metrology based on integer arithmetic and 
femtosecond combs will be sufficient to reveal shortcomings in our 
spectroscopy ideas and implementations. 

 
*Use of product name for technical information only and does not constitute an 

endorsement by NIST.  
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Chapter 1 

INTRODUCTION 
Optical Frequency Combs and their Applications 

Jun Ye and Steven T. Cundiff 
JILA, National Institute of Standards and Technology and the University of Colorado 

Abstract:  Recently there has been a remarkable synergy between the technology of 
precision laser stabilization and mode-locked ultrafast lasers. This has resulted 
in control of the frequency spectrum, which consists of a regular “comb” of 
sharp lines, produced by mode-locked lasers. Such a controlled mode-locked 
laser is a “femtosecond optical frequency comb generator.” For a sufficiently 
broad comb, it is possible to determine the absolute frequencies of all of the 
comb lines. This ability has revolutionized optical frequency metrology and 
synthesis. It has also served as the basis for the recent demonstrations of 
atomic clocks that utilize an optical frequency transition. In addition, it is 
having an impact on time-domain applications, including phase-sensitive 
extreme nonlinear optics and pulse manipulation and control. In this chapter, 
we first review the frequency-domain description of a mode-locked laser and 
the connection between the pulse phase and the frequency spectrum to provide 
a basis for understanding how the absolute frequencies can be determined and 
controlled. Using this understanding, applications in optical frequency 
metrology, optical atomic clocks, and precision spectroscopy are discussed. 
Next, we discuss applications of the carrier-envelope phase coherence in time-
domain experiments. This chapter serves as a broad introduction and summary 
for all subsequent chapters that present detailed discussions of specific topics.  

  

Key words: frequency comb, carrier-envelope phase, spectroscopy, optical frequency 
metrology, optical atomic clock, quantum coherence 

Mode-locked lasers generate “ultrashort” optical pulses by establishing a 
fixed phase relationship across a broad spectrum of frequencies. Progress in 
the technology of mode-locked lasers has resulted in the generation of 
optical pulses that are only 5 femtoseconds (fs) in duration [1], which 
corresponds to less than 2 cycles of the laser light. Although “mode locking” 
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is a frequency-domain concept, mode-locked lasers and their applications are 
typically discussed in the time domain. Recently, a paradigm shift in the 
field of ultrafast optics has been brought about by switching to a frequency-
domain treatment of the lasers and the pulse trains that they generate. 
Understanding mode-locked lasers in the frequency domain has allowed the 
extensive tools of frequency-domain laser stabilization to be employed with 
dramatic results. 

The central concept of these advances is that the pulse train generated by 
a mode-locked laser has a frequency spectrum that consists of a discrete, 
regularly spaced series of sharp lines, known as an optical frequency comb. 
As described below, if the comb spectrum is sufficiently broad, it is possible 
to directly measure the two radio frequencies (rf) that describe the comb. 
This fact has had an immediate impact in the field of optical frequency 
metrology/synthesis [2-5] and has enabled the recent demonstration of 
optical atomic clocks [6]. Because the comb spectrum can be related to 
phase evolution in the pulse train [2, 7], these results also promise important 
advances in ultrafast science, specifically in extreme nonlinear optics [8] and 
coherent control. In addition, the union of time- and frequency-domain 
techniques has yielded remarkable results in pulse synthesis [9]. 

The idea that a regularly spaced train of pulses corresponds to a comb in 
the frequency domain and can thereby excite narrow resonances was realized 
more than 20 years ago [10]. Teets et al. [11] used a train of pulses generated 
externally to the laser. However, it was quickly realized that mode-locked 
lasers were superior as demonstrated in a measurement of the sodium 
hyperfine splitting using a picosecond laser [12]. Some of the concepts being 
developed today were described in these early papers, but the technology 
was insufficient to demonstrate them at the time. Advances in mode-locked 
laser technology, specifically the Kerr-lens–mode-locked Ti:sapphire laser, 
renewed interest in this area [13-15]. The observation of supercontinuum 
generation from nanojoule pulses in microstructure fiber [16] led to the 
recent, sudden explosion in activity. 

In this chapter, we first discuss the time- and frequency-domain pictures 
of mode-locked lasers and the intrinsic connections between the evolution of 
the optical phase of the pulses and the frequency shift in the comb spectrum. 
This discussion provides the background for understanding how the absolute 
frequencies of the comb lines are determined and how the frequency-
domain-based control techniques are used to exert time-domain effects. The 
ease and precision with which different parts of the electromagnetic 
spectrum can be connected has led to wide-ranging applications in precision 
optical frequency metrology including rf-based absolute optical frequency 
measurement, optical frequency synthesis and distribution, and rf-clock 
signal generation from a precisely stabilized optical clock oscillator. These 
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new capabilities have brought novel approaches to precision atomic and 
molecular spectroscopy and sensitive measurement instrumentation. For 
time-domain applications, precise control of comb frequency and phase has 
resulted in tight synchronization and phase lock among independent mode-
locked laser sources, connecting various parts of optical spectra and 
synthesizing optical waveforms. The precise control of the carrier-envelope 
phase has led to new experimental capabilities in ultrafast science, including 
extreme nonlinear optical phenomena and coherent control. For example, 
interference among multiple photon-order excitation pathways can now be 
manipulated and controlled via a single mode-locked laser. The intrinsic 
ultrafast time scale associated with the sub-optical-cycle phase control has 
enabled ultrafast science to advance into the attosecond domain with a 
remarkable level of experimental command and precision.  

1. TIME- AND FREQUENCY-DOMAIN PICTURES 
OF A MODE-LOCKED LASER 

Understanding the connection between the time-domain and frequency-
domain descriptions of a mode-locked laser and the pulse train that it emits 
is crucial. In this section, we first briefly introduce mode-locked lasers to 
provide the necessary background. Then we discuss how, given a spectrum 
that spans an octave, to determine the frequency spectrum of the pulse train 
emitted by a mode-locked laser and how the absolute frequencies of the 
comb spectrum can be determined. Finally, we present a prototype 
femtosecond comb generator along with some relevant characterization 
techniques. 

A key concept in this discussion will be the carrier-envelope phase. This 
phase is based on the decomposition of an ultrashort pulse into an envelope 
function, ( )tÊ , that is superimposed on a continuous carrier wave with 
frequency ωc, so that the electric field of the pulse is written ( ) ( ) ti cetEtE ωˆ= . 
The carrier-envelope phase, φce, is the phase shift between the peak of the 
envelope and the closest peak of the carrier wave. In any dispersive material, 
the difference between group and phase velocities will cause φce to evolve as 
the pulse propagates. 

1.1 Introduction to mode-locked lasers 

Mode-locked lasers generate short optical pulses by establishing a fixed-
phase relationship between all of the lasing longitudinal modes (for a 
textbook level discussion, see [17]). Mode locking requires a mechanism 
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that results in a higher net gain for short pulses as compared to continuous 
wave (cw) operation. This mechanism can be either an active element or 
implemented passively with saturable absorption (real or effective). Passive 
mode locking yields the shortest pulses because, up to a limit, the self-
adjusting mechanism becomes more effective as the pulse shortens [18]. 
Real saturable absorption occurs in a material with a finite number of 
absorbers, for example, a dye or semiconductor. The shortness of the pulses 
is limited by the finite lifetime of the excited state. Effective saturable 
absorption typically uses the nonlinear index of refraction of some material 
together with spatial effects or interference to produce higher net gain for 
shorter pulses. The ultimate limit on minimum pulse duration in such a 
mode-locked laser is due to the interplay between the mode-locking 
mechanism, group-velocity dispersion (GVD), and net gain bandwidth [18]. 
Chapter 2 discusses the development of ultrashort lasers, particularly 
focusing on how to achieve an octave-spanning spectrum and pulse 
dynamics that are relevant to the stability and control of the comb. Further 
aspects of the comb dynamics and stability are presented in Chapters 5, 7, 9, 
10, and 12.  

Currently, the generation of ultrashort optical pulses is dominated by the 
Kerr-lens–mode-locked Ti:sapphire (KLM Ti:sapphire) laser because of its 
excellent performance and relative simplicity. Kerr-lens mode locking is 
based on a combination of self-focusing in the Ti:sapphire crystal and an 
aperture that selects the spatial mode corresponding to the presence of self-
focusing. The Ti:sapphire crystal is pumped by green light from either an 
Ar+-ion laser or a diode-pumped–solid-state (DPSS) laser, which provides 
far superior performance in terms of laser stability and noise. The 
Ti:sapphire crystal provides gain and serves as the nonlinear material for 
mode locking. Prisms or dispersion-compensating mirrors compensate the 
GVD in the gain crystal [19]. Chapter 3 describes in detail a high repetition-
rate ring oscillator system. Since the discovery of KLM [20], the pulse width 
obtained directly from mode-locked lasers has been shortened by 
approximately an order of magnitude by first optimizing the intracavity 
dispersion [21] and then using dispersion-compensating mirrors [1], yielding 
pulses that are less than 6 fs in duration, i.e., less than two optical cycles. 
Recently, output spectra that span an octave (factor of two in frequency) 
have been obtained directly from a mode-locked laser [22], which is an 
important accomplishment for phase stabilization.  

1.2 Frequency spectrum of a mode-locked laser 

To understand how frequency-domain techniques can be used to control  
mode-locked lasers, we must first connect the time- and frequency-domain 
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descriptions [23]. To start, we ignore the carrier-envelope phase and assume 
identical pulses, i.e., φce is a constant. If we just consider a single pulse, it 
will have a power spectrum that is the Fourier transform of its envelope 
function and is centered at the optical frequency of its carrier. Generally, for 
any pulse shape, the frequency width of the spectrum will be inversely 
proportional to the temporal width of the envelope. For a train of identical 
pulses, separated by a fixed interval, the spectrum can easily be obtained by 
a Fourier series expansion, yielding a comb of regularly spaced frequencies, 
where the comb spacing is inversely proportional to the time between pulses, 
i.e., it is the repetition rate (fr) of the laser that is producing the pulses. The 
Fourier relationship between time and frequency resolution guarantees that 
any spectrometer with sufficient spectral resolution to distinguish the 
individual comb lines cannot have enough temporal resolution to separate 
successive pulses. Therefore, the successive pulses interfere with each other 
inside the spectrometer and the comb spectrum occurs because there are 
certain discrete frequencies at which the interference is constructive. Using 
the result from Fourier analysis that a shift in time corresponds to a linear 
phase change with frequency, we can readily see that the constructive 
interference occurs at n fr, where n is an integer. 

When φce is evolving with time, such that from pulse to pulse (at a time 
separation of T = 1/ fr) there is a phase increment of ∆φce, then in the spectral 
domain, a rigid shift will occur for the frequencies at which the pulses add 
constructively. This shift is easily determined to be (1/2π) ∆φce /T. Thus the 
optical frequencies, νn, of the comb lines are νn = nfr + f0, where n is a large 
integer of the order of 106 that indexes the comb line, and f0 is the comb 
offset due to the pulse-to-pulse phase shift. The comb offset is connected to 
the pulse-to-pulse phase shift by ( ) cerff φ∆π210 = . The relationship 
between time- and frequency-domain pictures is summarized in Figure 1-1. 
The pulse-to-pulse change in the phase for the train of pulses emitted by a 
mode-locked laser occurs because the phase and group velocities inside the 
cavity are different. The pulse-to-pulse change in the phase for the train of 
pulses emitted by a mode-locked laser can be expressed in terms of the 
average phase (vp) and group (vg) velocities inside the cavity. 
Specifically, ( ) ccpgce lvv ωφ∆ 11 −= , where lc is the round-trip length of 

the laser cavity and ωc is the “carrier” frequency.  
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Figure 1-1. Summary of the time-frequency correspondence for a pulse train with evolving 
carrier-envelope phase. 

1.3 Determining absolute optical frequencies with 
octave-spanning spectra 

Armed with the understanding of the frequency spectrum of a mode-
locked laser, we now turn to the question of measuring the absolute 
frequencies of comb lines. For a frequency measurement to be absolute, it 
must be referenced to the hyperfine transition of 133Cs that defines the 
second. From the relations listed above, we see that determining the absolute 
optical frequencies of the femtosecond comb requires two rf measurements, 
that of fr and f0. Measurement of fr is straightforward: we simply detect the 
pulse train's repetition rate (from tens of megahertz to several gigahertz) with 
a fast photodiode. On the other hand, measurement of f0 is more involved as 
the pulse-to-pulse–carrier-envelope phase shift requires interferometric 
measurement, whether it is carried out in the time domain or in the 
frequency domain. When the optical spectrum spans an octave in frequency, 
i.e., the highest frequencies are a factor of two larger than the lowest 
frequencies, measurement of f0 is greatly simplified. If we use a second 
harmonic crystal to frequency double a comb line, with index n, from the 
low-frequency portion of the spectrum, it will have approximately the same 
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frequency as the comb line on the high-frequency side of the spectrum with 
index 2n. Measuring the heterodyne beat between these two families of 
optical comb lines yields a difference, 

( ) ( ) 0002 222 ffnffnf rrnn =+−+=−νν , which is just the offset frequency. 
Thus an octave-spanning spectrum enables a direct measurement of f0. 
However, an octave-spanning spectrum is not required; it just represents the 
simplest approach. We designate this scheme, shown in Figure 1-2(a), as 
“self-referencing” since it uses only the output of the mode-locked laser. 
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Figure 1-2. Two equivalent schemes for the measurement of f0 using an octave-spanning 
optical frequency comb. In the self-referencing approach, shown in (a), frequency doubling 
and comparison are accomplished with the comb itself. In the second approach shown in (b), 
the fundamental frequency (νstandard) and its second harmonic of a cw optical standard are 
used to determine f0. These two basic schemes are employed for absolute optical frequency 
measurement and implementation of optical atomic clocks. 

Self-referencing is not the only means of determining the absolute optical 
frequencies given an octave-spanning spectrum. For example, the absolute 
optical frequency of a cw laser can be determined if its frequency lies close 
to comb line n in the low-frequency portion of the femtosecond comb 
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spectrum. Then the second harmonic of the cw laser will be positioned close 
to the comb line 2n. Measurement of the heterodyne beat between the cw-
laser frequency, νs, and the comb line n gives ( )01 fnff rsbeat +−=ν  and 
between the second harmonic of the cw laser and comb line 2n gives 

( )02 22 fnff rsbeat +−= ν . Mixing the beats with appropriate weighting 

factors gives ( ) ( )( ) 00012 22222 ffnffnfff rsrsbeatbeat =+−−+−=− νν , 
which represents the second detection scheme shown in Figure 1-2(b). 
Another interesting fact is that by mixing the two beat signals, one 
establishes a direct link between the optical and rf frequencies (νs and fr) as 
in ( ) ( ) rsrsrsbeatbeat nffnffnfff −=++−+−=− ννν 0012 22 .  

1.4 Femtosecond optical-frequency comb generator 

A frequency comb generator produces a spectrum that consists of a series 
of equally spaced sharp lines with known frequencies. Microwave comb 
generators are commercially available. Optical-frequency comb generators 
have been constructed by injecting a single-frequency cw laser into a high-
quality optical cavity that contains an electro-optic modulator [24]. 
Typically, comb bandwidths of a few terahertz have been achieved using this 
method [25]. If the absolute optical frequency of the cw laser is known, then 
the resulting comb can be used to directly measure nearby frequencies [26]. 
Alternatively, without needing to know the absolute frequency of the cw 
laser, a comb generator can be used to span a frequency gap in a more 
complex frequency-measurement chain [27, 28]. 

Based on our discussion above, it is clear that a mode-locked laser also 
generates an optical frequency comb. However, there is no equivalent to the 
cw laser, which can provide a priori knowledge about the absolute 
frequencies of the comb. Thus, the first applications of mode-locked lasers 
were based on the use of precisely determined spanning intervals in more 
complex chains [14] or between a known and unknown frequency [15].  

The discussion in Section 1.3 shows that knowledge of the absolute 
frequencies of the comb generated by a mode-locked laser is easily obtained 
if it generates a spectrum that spans an octave. A Fourier-transform-limited 
pulse with a full-width–half-maximum (FWHM) bandwidth of an octave 
centered at 800 nm would only be a single optical cycle in duration. Such 
short pulses have not been achieved; the shortest pulses generated by a 
mode-locked oscillator (i.e., not including external amplification and 
broadening) are just under two cycles in duration [1, 22]. Fortunately, 
neither a transform-limited pulse nor a FWHM of an octave is needed to 
implement the methods for obtaining the absolute frequencies. The pulse 
width is unimportant as the methods are purely frequency-domain 
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techniques. Experimentally, it has been found that even if the power at the 
octave-spanning points is 40 dB below the peak, it is still possible to observe 
strong ν-to-2ν heterodyne beats.  

Since Ti:sapphire, which has the broadest gain bandwidth of all known 
laser media, does not support an octave-spanning spectrum, additional 
spectral content must be generated. This is accomplished by using self-phase 
modulation, which is based on a temporal variation in the index of refraction 
because of a combination of a short optical pulse and an intensity-dependent 
index of refraction [29]. The broadening can be achieved outside the laser 
cavity by using optical fiber or internally by creating coincident secondary 
time and space foci [22]. The latter technique requires carefully designed 
mirrors [30] and is challenging to implement; therefore the former is 
significantly more common. (For more detailed discussions, see Chapter 2.) 
Recent results have shown that additional spectral bandwidth can be 
obtained by minor changes in the cavity configuration of a high-repetition-
rate laser, although this technique has not yet yielded sufficient intensity at 
the octave points for observation of ν-to-2ν beats. (See Reference [31] and 
related discussions in Chapter 3.) 

The amount of spectral broadening that can be obtained in ordinary 
optical fiber is limited, primarily because temporal spreading of the pulse, 
due to GVD in the fiber, reduces the peak intensity. Using a low-repetition-
rate laser (to raise the pulse energy) an octave-spanning spectrum has been 
obtained with ordinary fiber [7]. The discovery [16] that microstructure fiber 
can have zero group-velocity dispersion within the emission spectrum of a 
Ti:sapphire laser eliminated this difficulty and led to rapid progress in the 
field of femtosecond-optical-frequency combs by allowing broadband-
continuum generation with only nanojoule-pulse energies.  

Microstructure fiber uses air holes surrounding a fused silica core to 
obtain the index-of-refraction contrast needed for waveguiding. This method 
results in a much larger index contrast than can be obtained using doping. 
The large index contrast has two consequences: (1) the ability to generate a 
zero in the GVD at visible or near-infrared wavelengths and (2) the 
possibility of using a much smaller core size. The first consequence means 
that the pulse does not spread temporally and hence maintains its high peak 
power. In addition, it results in phase matching between the generated 
spectral components. The second outcome greatly increases the light 
intensity in the core, thereby enhancing nonlinear effects. Chapter 4 provides 
in-depth discussions relating to the physics of bandwidth generation and the 
underlying noise process during pulse propagation through these relatively 
novel microstructure fibers.  

We have now introduced all of the concepts and components needed to 
construct a femtosecond-optical-frequency comb generator that produces 
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known absolute frequencies. There are several possible implementations, 
one of which we present in Figure 1-3. 
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Figure 1-3. Schematic of a femtosecond comb generator. AOM: acousto-optic modulator; 
SHX: second-harmonic-generation crystal. 

The heart of the comb generator is a KLM Ti:sapphire laser. A small 
portion of the output is detected using a high-speed photodiode to measure 
the repetition rate. Greater precision is obtained by measuring a large 
harmonic of the repetition rate rather than the fundamental. Ultimately, in 
implementing an optical clockwork with a frequency comb (cf. Chapter 9), 
the relevant information regarding the repetition frequency is collected in the 
optical domain with a gain factor of nearly a million for enhanced 
measurement precision. A servo loop controls the repetition rate of the laser 
by comparing this signal to a microwave clock or an optical-frequency 
standard. 

The output of the KLM Ti:sapphire laser is launched into a length of 
microstructure fiber. Using the minimum possible amount of spectral 
broadening in the microstructure fiber works best. For this reason, all 
metrology experiments start with KLM Ti:sapphire lasers that produce pulse 
widths of 30 fs or less. This strategy generally results in an octave-spanning 
spectrum for modest pulse energies and short lengths of microstructure fiber. 
The output of the microstructure fiber is split into two parts. One part serves 
as the useful output of the comb generator, while the other part is used in an 
ν-to-2ν interferometer to measure f0.  

The input to the ν-to-2ν interferometer is divided into long and short 
wavelength portions by a dichroic beam splitter. The long wavelength 
portion is frequency doubled by a second-harmonic crystal. The beams in the 
two arms of the interferometer, which now have the same spectral 
components, are recombined and detected with a photodiode. The lengths of 
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the two arms must be matched in order to achieve temporal overlap, 
including compensation for GVD in the microstructure fiber. 

The detected signal from the ν-to-2ν interferometer contains a forest of 
signals including multiples of fr and ν-to-2ν beat-note signals spaced above 
and below each repetition-rate signal by f0. One of the beat notes must be 
chosen and isolated for counting and stabilizing the laser. If the signal-to-
noise ratio is sufficiently large, an appropriate rf-bandpass filter is usually 
sufficient to process the signal without cycle slips, otherwise regeneration 
with a tracking oscillator can be employed.  

The final step is to close the loop to stabilize f0. This requires a “knob” on 
the laser that can be used to adjust f0, which is determined by the difference 
between the intracavity group and phase velocities. One common method for 
adjusting f0 is to swivel the end mirror in the arm of the laser cavity that 
contains the prism sequence [32]. Since the spectrum is spatially dispersed 
on this mirror, a small swivel produces a linear phase delay with frequency, 
which is equivalent to a group delay. An alternative method of controlling f0 
is to modulate the pump power [7, 33]. Empirically, this clearly causes a 
change in f0 [34]. However, the details are somewhat unclear, as there are 
likely contributions from the nonlinear phase, spectral shifts, and intensity 
dependence in the group velocity [35]. Each method has advantages and 
disadvantages with respect to servo speed and impact on amplitude noise. 

1.5  Time- and frequency-domain characterizations of f0 

Carrier-envelope phase coherence is critical for all of the time-domain 
processes discussed in the remainder of this section. Physically, the carrier-
envelope phase coherence simply reflects how well we can tell what the 
carrier-envelope phase is of a given pulse in the train if we know the phase 
of an earlier pulse. Knowing the carrier-envelope phase of a given pulse is 
important, however, for coherent pulse synthesis because we need to 
maintain carrier-envelope coherence between the two lasers. For 
experiments sensitive to φce, it is difficult to determine how φce affects the 
outcome if φce is varying wildly during the measurement. 

The connection between time and frequency can be illustrated by 
measuring the cross-correlation between successive pulses emitted by the 
comb generator. A cross-correlator is based on the interferometric 
autocorrelator commonly used to measure ultrashort pulses [17], with the 
modification that one arm of the interferometer is longer than the other by a 
multiple of the cavity round-trip time [34]. The asymmetric arm lengths 
allow appropriate delays to be introduced so that the pulse-to-pulse phase 
shift ∆φce can be measured. An autocorrelation curve is always symmetric. 
However, in an interferometric cross-correlation only the envelope is 
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symmetric, and the shift of the fringes from the peak of the envelope is due 
to the pulse-to-pulse phase shift ∆φce. By stabilizing f0 at different frequency 
offsets, differing values of ∆φce are obtained, as discussed in Section 1.2. 
Another technique, known as spectral interferometry, can also be employed 
to determine the values of ∆φce and the related f0 if the interfering pulses are 
separated by at least one cavity round-trip time. This technique also yields 
additional spectral-phase information. For single-shot experiments, a 
variation of the spectral-interferometry technique that involves interference 
between the fundamental and its second harmonic spectra, which overlap if 
the fundamental optical bandwidth exceeds one octave, becomes the most 
effective approach to measuring ∆φce [36].  

Although cross-correlation measurements can demonstrate some degree 
of phase coherence, they are actually quite insensitive to phase fluctuation 
because they measure the change between pulses that are separated by only a 
few round-trip times because of the practical size limitation of the 
interferometer. Instead, frequency-domain measurements of the frequency-
noise spectrum of f0 are much more sensitive since they can monitor the 
frequency/phase evolution of f0 over much longer time intervals. Typically, f0 
is determined from the self-referencing technique discussed earlier, from 
which one can make a close examination of the frequency- and phase-noise 
power spectral density associated with f0.  

 Given a measurement of the frequency-noise power spectral density of 

f0, 0fsν , the accumulated root-mean-square fluctuations of φce are given by 
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2 for an observation time τobs [37]. Once a 

femtosecond laser has been properly phase stabilized, experimental results 
have indicated that the linewidth of f0 is actually limited by the measurement 
time of a few thousand seconds [38]. The standard definition for coherence 
time is the τobs at which 1 radian of phase fluctuations have accumulated. 
Performing such an integration reveals that the coherence time can reach 
beyond 1000 s. 

We would like to emphasize that carrier-envelope phase coherence is not 
the same as optical coherence. A process that shifts the position the pulse 
without changing the φce of the pulse destroys the optical coherence but does 
not affect the carrier-envelope phase coherence.  
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2. PRECISION OPTICAL FREQUENCY 
METROLOGY USING FEMTOSECOND-
OPTICAL-FREQUENCY COMBS  

It is useful to review the historical development of optical frequency 
metrology and its perspectives in precision spectroscopy, clock-signal 
generation, and frequency synthesis. The outstanding spectral properties of 
optical frequency standards offer unprecedented resolution and precision and 
potentially the highest accuracy for physical measurements [39]. Even at the 
cost of extraordinary complexity and remarkable resources, researchers have 
explored and constructed optical-frequency synthesis chains that span the 
vast frequency gap between the optical and microwave spectral regions (see 
for example References [40, 41]). Previous efforts concentrated on 
measurement of a few discrete optical lines that are chosen to be optical 
frequency standards. Even limited frequency-measurement capabilities 
brought a number of significant advances in fundamental physics including: 
(1) the determination of the speed of light [40, 42] and the linkage between 
the fundamental physical units of length and time; (2) the refinement of the 
Rydberg constant and the Lamb shift [43] predicted by quantum 
electrodynamics; (3) the competitive measurement of various fundamental 
constants such as the fine structure constant [14, 44] and the ratio of proton-
to-electron mass [45]; and (4) a test of relativity theory [46]. However, until 
recently it was deemed an overwhelming challenge to synthesize arbitrary, 
absolute optical frequencies. The significance of the wide-bandwidth optical 
comb lies in the fact that it has substantially reduced this challenge. A 
detailed review of the traditional harmonic-based frequency chain is 
provided in Chapter 8, while the new epoch of absolute optical frequency 
measurement using femtosecond comb technology is reviewed in Chapter 7.  

2.1 Measurement of absolute optical frequency 

The dramatic simplification of a complex optical frequency chain to a 
single mode-locked laser has facilitated optical frequency measurement. An 
important aspect of this new technology is its high degree of reliability and 
precision together with a lack of systematic errors. For example, recent tests 
have shown that the repetition rate of a mode-locked laser equals the mode 
spacing to within the measurement uncertainty of 10-16 [13]. The uniformity 
of the comb’s mode spacing has also been verified to a level below 10-17 
[13], even after spectral broadening in fiber. Comparison between two 
separate femtosecond comb systems, both linked to a common reference 
source (microwave or optical), allows one to examine the intrinsic accuracy 
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of a femtosecond comb-based–frequency-measurement system at a level of a 
few parts in 1016, with no measurable systematic effects [47]. Chapter 9 
provides an account of the current state-of-the-art performance and 
characterization of femtosecond comb systems used for optical frequency 
measurement and synthesis.  

Another confirmation of femtosecond comb accuracy was provided by 
comparison of the measured frequency of a He-Ne laser frequency stabilized 
on a molecular iodine transition. Using an elaborate scheme of transfer 
standards and crosschecks, we were able to reliably compare the absolute 
frequency of the laser measured with a femtosecond comb in JILA and that 
measured by a traditional harmonic-optical-frequency synthesis chain 
located at the National Research Council Canada [48]. The difference 
between the two measurements is below 1.6 × 10-12. While the accuracy of 
this test has fewer digits, it is comforting to find such agreement in a direct 
comparison of the two synthesis methods at two national laboratories.  

As mentioned in Sections 1.3 and 1.4, one simple use of a femtosecond 
comb is to stabilize one degree of freedom, namely fr, and use the comb to 
span a frequency difference between two cw optical frequencies to be 
measured. A typical approach is to stabilize fr directly to a known 
microwave standard. Experimental observation has clearly confirmed that 
the actual limitation in precision with femtosecond comb-based 
measurements is the quality of the rf-reference sources [49]. For example, 
commercial cesium clocks have a stability ~5 × 10-12/τ1/2 and can be 
calibrated to an accuracy ~1 x 10-14. For absolute measurement of a single 
optical frequency, one also needs to measure f0 in addition to fr , and then 
count the heterodyne beat between one of the comb lines and the cw optical 
frequency. The comb mode order can be determined by varying fr, for 
example. Telle et al. have also introduced a clever method of using the comb 
from a mode-locked laser to measure the ratio of two optical frequencies 
[50]. By a judicious choice of mixing frequencies, they show it is possible to 
transfer the frequency stability of one optical source to a different optical 
frequency without additional noise from the comb. The advantage of this 
frequency-transfer method is that the frequency noise introduced by the 
mode-locked laser is taken out of the measurement process. Thus it is 
possible to compare two narrow optical atomic lines without requiring the 
optical frequency comb to be highly stabilized. In a demonstration 
experiment, Telle et al. obtained narrow optical beat signals in the terahertz 
range that were actually the transferred beat notes between three optical 
frequency standards [50]. This frequency-transfer method and the use of a 
free-running frequency comb have limitations but can be useful tools for 
measuring frequency ratios from rf to the visible.  
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There has been an explosion of absolute frequency measurements using 
femtosecond comb methods since 2000. Not surprisingly, the most accurate 
results come from optical standards that are based on transitions with 
extraordinary quality factors. One of the most precise measurements is the 
determination of the Hydrogen 1S–2S transition frequency at the Max-
Planck Institute for Quantum Optics (MPQ) in Garching [51], as discussed 
in Chapter 7. The MPQ team took advantage of the high stability of a 
transportable cesium fountain clock as the reference for their femtosecond 
comb. Their result was quoted at the 1.8 × 10-14 accuracy level. Some 
national laboratories have both trapped-ion teams and primary frequency-
standard teams that form a powerful collaboration. After investing many 
years of effort on the Hg+ trap [52], a team at the National Institute of 
Standards and Technology (NIST) in Boulder, Colorado, can now determine 
the frequency of an electric quadrupole transition of the Hg+ ion to <1 × 10-14 
[5]. Yb+ was measured with similar accuracy at the Physikalish-Technische 
Bundesanstalt (PTB) in Braunschweig [53]. Excellent results are also 
obtained for frequency determination of a spin-forbidden intercombination 
line in cold calcium atoms at both NIST and PTB [4, 5]. Indeed, with this 
new increase in measurement precision, testing fundamental physical 
postulates or determining constants at the next decimal place are again 
attracting great interest [54].  

Another direction to explore is the “everyman’s frequency measurement 
system” where one can consider tradeoffs such as a ~tenfold lower accuracy 
for a ~103 scale reduction for the apparatus. Femtosecond combs based on 
compact and energy efficient mode-locked lasers (such as fiber lasers) and 
super-continuum generation fibers can offer portable versions of a 
frequency-measurement device. Cell-based optical frequency standards, such 
as a solid-state laser stabilized on sub-Doppler transitions of molecular 
iodine, already offer a competitive stability near or below 1 × 10-14 when 
averaged over 10 to 1000 s [55, 56]. The long-term reproducibility of such a 
molecular standard over a period of more than three years was limited to 
about 3 × 10-13. Better stability and reproducibility are expected from an 
improved iodine spectrometer [57, 58].  

Cell-based optical standards play an essential role in length metrology 
[59]. For different national laboratories to establish a common basis for a 
length standard, an assortment of wavelength-reference lasers realized 
separately at each laboratory need to be regularly intercompared. The 
traditional practice has been to hold regular conventions, organized by the 
Bureau International des Poids et Mesures (BIPM), where stabilized lasers 
from different national laboratories were gathered at the same physical 
location and directly compared. A more economic and precise approach to 
carry out this task can now be accomplished by local calibrations of the 
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length-standard lasers with GPS systems to an accuracy ~1 × 10-14. Another 
rather pleasant outcome of the absolute frequency-calibration process is the 
associated capability of unambiguous testing of the manufacturing process of 
reference cells and their long-term variations [56]. 

2.2 Optical atomic clocks 

With the advent of wide-bandwidth–optical-comb technology, it is now 
possible to transfer the stability of the highest-quality optical frequency 
standards across vast frequency gaps to other optical spectral regions. 
Furthermore, the comb technology has also established a straightforward 
possibility to transfer the optical stability down to the rf domain and vice 
versa. One can now realize a network of microwave and optical frequencies 
at a level of stability and reproducibility that surpasses the properties of 
basically all commercially available frequency sources ─ and at a reasonable 
cost. Easy access to the resolution and stability offered by optical standards 
will greatly facilitate the application of frequency metrology both to 
precision experiments for fundamental physics and to practical devices. 

As elaborated in Chapter 9, recent experimental demonstrations support 
the concept that, in the future, the most stable and accurate frequency 
standards will be based on optical transitions. The advantage of an optical 
frequency standard over a traditional microwave standard is apparent if we 
examine the frequency stability of an atomic clock. Resonance natural 
widths, ∆ν, in the few kilohertz to the subhertz domain are available by 
selection of an atomic transition with a natural decay time, τ0, in the 100 µs 
to 1 s domain. In principle, one could obtain ~1/(2τ0) interactions per second 
with approximately twofold broadening of the resonance linewidth by the 
interrogation process. So, if we collect all the available information-bearing 

photons for a single measurement, a signal-to-noise ratio (SNR) of ~ N  
should be available, where N is the number of participating particles. 

Normalizing to a standard 1 s measurement time produces SNR ~ N  × 

( )021 τ . An optimum-frequency control system could find the center of 

the resonance with a precision of ~1/SNR in 1 s. Taking the resonance 
linewidth into account leads to a frequency uncertainty δν (at 1 s) ~∆ν/SNR 
= (2/Nτ0)

1/2. Assuming the Ramsey separated-field method and in the case 
where the interrogation time, TR, is shorter than the actual lifetime of the 
transition under study, the fractional frequency (in-)stability is 
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transition frequency and τ (τ > TR) is the total averaging time. Clearly, higher 
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stability is most easily attained if we can increase ω0  by changing ω0 from a 
microwave to an optical frequency.  

To create an optical atomic clock, one uses an optical frequency standard 
(νcw) to stabilize fr of a femtosecond comb, thus transferring the optical-
phase information to the microwave domain. Since the comb system has two 
degrees of freedom, fr and f0, one has to ensure that a direct and 
unambiguous phase relation between νcw and fr is established. This implies 
that either f0 is strictly known, for example, via tight phase stabilization to a 
known reference, or the variable f0 is somehow eliminated from the optical 
heterodyne beat that connects a comb component to that of νcw, such as in 
the example shown at the end of Section 1.3.  

Figure 1-2 and the related discussions presented in Section 1.3 provide 
basic guidelines for implementation of these schemes. The first approach, as 
shown in Figure 1-2 (a), uses the self-referencing technique to recover f0, 
which is then stabilized with respect to either fr or an auxiliary stable rf 
source. Stabilization of f0 to a few millihertz is more than adequate, as it 
yields a fractional frequency noise of < 10-17 for an optical carrier. A 
heterodyne beat between one of the comb components and the cw laser (νcw), 
which acts as the optical frequency standard, reveals fluctuations in fr. After 
appropriate processing, this error signal is used to stabilize the phase of fr 
coherently to νcw, thereby producing a clock signal output in the rf domain 
derived from νcw. The second approach, as shown in Figure 1-2(b), uses two 
beat signals between a stabilized cw laser (νcw) and its second harmonic 
(2νcw) against two respective comb components in the corresponding spectral 
domains. One immediately sees that we are taking the same advantage of the 
octave bandwidth of the femtosecond comb. Through appropriate electronic 
mixing of the two beats, one can derive two servo-control error signals 
associated with f0 and fr, respectively, or one can simply eliminate the 
variable f0 from the equation.  

One of the JILA optical frequency standards is a diode-pumped solid 
state Nd:YAG laser (νcw) with its second harmonic (2νcw) locked on a 
hyperfine component of an iodine transition (R(56) 32-0, a10) near 532 nm; 
this system offers an (in-)stability of 4 × 10-14 at 1 s [27, 55]. This optical 
frequency standard presents an ideal case for the scheme shown in Figure 1-
2(b), since both νcw and 2νcw are located within the spectrum of a 
Ti:sapphire-based femtosecond comb.  

With the tracking of the comb system exceeding the stability of the 
current optical frequency standards, we expect the stability of the derived 
clock signal to be basically that of the optical standard. To characterize the 
system, the optical clock signal is compared against other well-established 
microwave/rf frequency standards such as cesium atomic clocks or hydrogen 
masers. The comparison typically involves a heterodyne-beat experiment 
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between the two signal sources with a frequency counter recording the 
resultant beat-frequency fluctuations over a period of time. There has been 
good progress in the process of extracting high-stability rf-output signals 
from an optical clock at a level that approaches the optical stability. Further 
work along this line is continuing. We also still face some technical 
challenges in making an optical clock a reliable scientific device. Technical 
developments necessary for an advanced optical atomic clock include: (1) 
highly accurate, cold-atom optical frequency standards and portable, high-
stability optical frequency standards (see Chapters 8, 9); (2) development of 
ultrastable optical local oscillators suitable for the most demanding 
spectroscopic tasks (see Chapter 9); (3) stabilization and control of wide-
bandwidth optical combs, including exploration of novel generation and 
detection techniques and approaches to reduce noise (see Chapters 5, 7, 9); 
(4) reliable, stable, and compact ultrafast laser technology for practical 
implementation of optical clocks (see Chapters 2, 3, 4, 6); (5) development 
and use of femtosecond combs for intercomparison of optical frequency 
standards and the cesium primary standard (see Chapters 7, 8, 9); and (6) 
development of frequency- and time-transfer methods over extended fiber 
optic links that can support the next generation of atomic frequency 
standards (see Chapter 9). 

2.3 Optical frequency synthesizer 

As will be discussed in Section 4, a future goal of ultrafast technology is 
to demonstrate arbitrary pulse synthesis in the time domain, including the 
capability of phase-coherent stitching of distinct optical bandwidths. This 
time-domain capability would complement the goal of constructing an 
optical frequency synthesizer that allows access in the frequency domain to 
any optical-spectral feature with a well-defined optical carrier wave. Such a 
capability would greatly simplify precision-laser spectroscopy.  

With the development of an optical comb, we have now established an 
optical frequency grid with lines repeating every repetition frequency (100 
MHz–1 GHz) over an octave optical bandwidth and with every line stable at 
or below the 1-hertz level. This capability creates the basic infrastructure to 
construct a highly stable frequency synthesizer for both rf and optical 
spectral domains and, in principle, anything in between. An rf (optical) 
reference signal can be used to derive a phase-coherent secondary signal in 
any part of either the rf or the optical domains. Chapter 9 presents a more 
detailed discussion about transfer noise and accuracy relevant to this 
frequency distribution and synthesis process. In a traditional rf synthesizer, 
the output is a single-frequency rf-“delta” function (of reasonable power) 
that can be tuned to any desired frequency on demand. Realization of such a 



30 Chapter 1
 

 

frequency synthesizer in the optical domain requires a wide-tunable cw laser 
or an array of them that would collectively cover most of the visible 
spectrum. The frequency of the cw lasers would be controlled by the 
underlying optical frequency comb and therefore be directly related to the 
absolute time/frequency standard in a phase-coherent fashion. Setting of the 
optical frequency will be accomplished via computer control. Such a system 
(with continuous, precise frequency tuning and arbitrary frequency setting 
on demand) has indeed already been demonstrated [60].  

3. ATOMIC AND MOLECULAR SPECTROSCOPY 

The advent of precision femtosecond optical combs brings a new set of 
tools for precision atomic and molecular spectroscopy and allows us to 
explore spectroscopy in a broader sense. For example, ultrafast lasers are 
now being used not only for time-resolved spectroscopy on fast dynamics, 
but also for precision spectroscopy on structural information. Indeed, 
coherent control of dynamics and precision measurement are merging into a 
joint venture.  

The ability to make absolute optical frequency measurements in both 
visible and infrared (IR) spectral regions adds a new meaning to the term 
“precision molecular spectroscopy.” The understanding of molecular 
structure and dynamics often involves detailed spectral analysis over a broad 
wavelength range. Such a task can now be accomplished accurately and 
uniformly across all relevant spectral windows, allowing precise 
investigations of minute changes in the molecular structure over a large 
dynamic range. For example, absolute frequency measurement of vibration-
overtone transitions and other related resonances (such as hyperfine 
splitting) can reveal precise information about the molecular potential-
energy surface and relevant perturbation effects. We have pursued such a 
study with iodine molecules, as we discuss in Section 3.2.  

3.1 Precise, simultaneous determination of global atomic 
structure and transition dynamics 

The investigation of two-photon transitions in laser-cooled 87Rb atoms 
using a precisely stabilized femtosecond comb represents the first example 
of direct femtosecond comb spectroscopy. Phase coherence among the 
successive pulses interacting with a cold atomic sample is similar to the 
approach of Ramsey interference for precision atomic spectroscopy. 
However, the difference here is that the bandwidth associated with the 
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femtosecond pulse is so broad that one is able to explore the structure of a 
large number of atomic states simultaneously, while at the same time, one 
could study coherent and incoherent population transfer in a multilevel 
system. In short, one can simultaneously explore the global structure and 
dynamics of an atomic system. The multipulse interference in the time 
domain gives an interesting variation and generalization of the two-pulse-
based, temporal coherent control of the excited state wave packet.  

From the frequency domain perspective, spectroscopic resolution and 
precision will not be compromised by the use of ultrafast pulses, since they 
are associated with a phase-stabilized, wide-bandwidth femtosecond comb. 
Phase coherence among various transition pathways through different 
intermediate states produces multipath quantum-interference effects on the 
resonantly enhanced two-photon-transition probability in cold 87Rb atoms. 
The two-photon-transition spectrum can be analyzed in terms of the pulse 
repetition rate (fr) and the carrier-envelope-offset frequency (f0). Both can be 
stabilized to high precision. With a set of measurements taken at a few 
different combinations of fr and f0, one can essentially derive all relevant 
atomic-energy-level positions in absolute terms.  

Doppler-free–two-photon spectroscopy is usually carried out with two 
equal-frequency cw laser beams propagating in opposite directions. The two-
photon-transition rate can be resonantly enhanced via the intermediate states 
with two different laser frequencies [61] or accelerated atomic beams [62]. 
High-resolution–two-photon spectroscopy using pulsed picosecond light has 
also been demonstrated [12], with the recent extension to cold atoms [63]. A 
unique feature of the wide-bandwidth optical comb allows all relevant 
intermediate states to resonantly participate in the two-photon excitation 
process. This participation, in turn, permits phase coherence among different 
comb components to induce a stronger transition rate through quantum 
interference. The resonant interaction with the intermediate states also makes 
it possible to explore population-transfer dynamics and the mechanical 
consequences of light-atom interactions. Following the initial proposal [64] 
and the subsequent theoretical investigations, we are exploring this novel, 
high-resolution spectroscopy using a femtosecond laser.  

Figure 1-4 shows the relevant 87Rb energy levels involved in the two-
photon transition from the ground state 5S1/2 to the excited state 5D3/2. The 
dipole-allowed intermediate states, 5P3/2 and 5P1/2, are located ~2 and 17 nm 
below the virtual level, respectively. Also shown is a regularly spaced comb 
of optical frequencies around 800 nm. The experimental bandwidth of the 
comb (emitted from a 10 fs, 100 MHz repetition-rate, mode-locked 
Ti:sapphire laser) is ~50 nm. Adjustment of fr and f0 allows the comb 
components to line up with the corresponding hyperfine states of 5P3/2 and 
5P1/2 to resonantly enhance the two-photon transition. The frequency-domain 
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analysis is complemented by the time-domain-multipulse Ramsey 
interference picture, also illustrated in Figure 1-4, where the relevant 
quantities for interaction are τ = 1/fr and ∆φce. Both the frequency-domain 
and the time-domain analyses produce the same result on the two-photon-
transition spectra when one assumes a static distribution among the relevant 
atomic states. However, to follow the time evolution of the system, it is 
necessary to explore the interaction dynamics from one pulse to the next, 
taking into account both the atomic coherence and the optical coherence. 
The general Liouville equation for the density-matrix components of the 
atomic states, along with phenomenological decay terms, are used to derive a 
set of Bloch equations describing the evolution of all relevant levels 
associated with the ground, excited, and intermediate states. 
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Figure 1-4. Top: Schematic of the relevant energy levels of the 87Rb atom and the frequency-
domain perspective of the atom-light interaction. Bottom: Time-domain picture showing a 
sequence of mode-locked pulses, with the relevant interaction parameters in fr and ∆φce. The 
inset at right shows the relevant “three-level” model used for construction of the Bloch 
equations to solve for population-transfer dynamics. An example for the on-resonance, 
stepwise transition is shown with relevant detunings at δSP and δSD for the pair of comb modes 
that make the dominant contribution to the transition probability amplitude.   
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Experimental two-photon spectra resonantly enhanced by the 
intermediate states confirm the theoretical model where the effect of 
population transfer becomes non-negligible as the number of interacting 
pulses increases. Not surprisingly, the most dominant transition pathway 
when a large number of pulses is involved is 5S1/2 (F=2) → 5P3/2 (F=3) → 
5D5/2 (F=4), which represents a closed transition. If necessary, an appropriate 
repumping scheme, sometimes involving the probing femtosecond laser 
itself, can be employed to allow investigation of various transition pathways 
at longer time scales. This incoherent population-redistribution process is 
complemented by coherent-accumulation effects observed at shorter time 
scales. The relatively long lifetime associated with the atomic D-state allows 
phase-coherent accumulation of the transition amplitudes stimulated from 
successive pulses, resulting in a significant enhancement of the desired D-
state population. Only a few comb components are primarily responsible for 
the on-resonance, stepwise excitation since the linewidth (~6 MHz) of the 
intermediate P3/2 and P1/2 states and their hyperfine sublevels is much smaller 
than the comb-frequency spacing (fr = 100 MHz). Another interesting fact is 
that mechanical effects of the light on the cold atomic sample are clearly 
visible and can be controlled via various settings of fr and f0, which control 
the detuning δSP of the corresponding comb modes from the intermediate 
states. Although the laser spectrum spans about 50 nm, the resultant 
spectroscopy resolution approaches the limit of the atomic natural linewidth 
of 660 kHz associated with the D-state lifetime. This level of resolution is a 
result of careful control of the comb parameters, the use of ultracold atoms, 
and a good understanding of the light’s mechanical effects. The work on 
simple two-photon-transition dynamics provides a solid link between the 
time-domain picture of the carrier-envelope phase and the frequency-domain 
picture of fr and f0. One practical consequence of these results is that we can 
now directly control both degrees of freedom for the femtosecond comb by a 
transition in cold atoms. In future experiments, the exquisite control in the 
time-domain phase coherence will be complemented by spectral-domain 
amplitude and phase manipulations, leading to even greater control and 
spectroscopic investigative power.  

3.2 I2 hyperfine interactions, optical frequency 
standards, and clocks 

With the development of an optical frequency synthesizer, namely a 
tunable, cw Ti:sapphire laser guided by and referenced to an accurate 
femtosecond comb [Figure 1-5(a)], we have performed high-resolution and 
high-precision measurement of hyperfine interactions of the first excited 
electronic state (B) of I2 over an extensive range of vibrational and rotational 
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quantum numbers towards the dissociation limit [65]. Experimental data 
demonstrate systematic variations in the hyperfine parameters that confirm 
calculations based on ab initio molecular potential-energy curves and 
electronic wave functions derived from a separated-atomic-basis set. We 
have accurately determined the state-dependent quantitative changes of 
hyperfine interactions caused by perturbations from other electronic states 
and identified the respective perturbing states. Our work on I2 near the 
dissociation limit is also motivated by the desire to improve cell-based, 
portable optical frequency standards. Indeed, I2-stabilized lasers have already 
demonstrated high stability (< 5 x 10-14 at 1 s averaging time) and have 
served well for optical atomic clocks. 

Total search time: 1 minute 
Single mode,
> mWνcw

R

B 

1u

E
 -

en
er

gy

R - internuclear distance

X

2P3/2 + 2P3/2

2P1/2 + 2P3/2

RR

B 

1u

E
 -

en
er

gy

R - internuclear distance

X

2P3/2 + 2P3/2

2P1/2 + 2P3/2

νstandard

f

f0fr

0

< 10 nW per comb

Transfer stability
~ 10-16

(a)

(b)

Total search time: 1 minute 
Single mode,
> mWνcw Total search time: 1 minute 
Single mode,
> mWνcw
Single mode,
> mWνcw
Single mode,
> mWνcw

R

B 

1u

E
 -

en
er

gy

R - internuclear distance

X

2P3/2 + 2P3/2

2P1/2 + 2P3/2

RR

B 

1u

E
 -

en
er

gy

R - internuclear distance

X

2P3/2 + 2P3/2

2P1/2 + 2P3/2

νstandard

f

f0fr

0

< 10 nW per comb

Transfer stability
~ 10-16

νstandard

f

f0fr

0

< 10 nW per comb

Transfer stability
~ 10-16

f

f0fr

0

< 10 nW per comb

Transfer stability
~ 10-16

(a)

(b)

 

Figure 1-5. (a) Random access and precise stabilization of a cw laser (νcw) using the 
frequency reference grid provided by the femtosecond comb stabilized by optical (νstandard) 
and rf standards. (b) The ground state and the first excited state of I2 with their associated 
dissociation limits. The transition linewidth narrows when the excited state approaches the 
dissociation limit. 

The hyperfine structure of I2 rovibrational levels includes four 
contributions: (1) nuclear electric quadrupole (eqQ), (2) spin-rotation (C), 
(3) tensorial spin-spin (d), and (4) scalar spin-spin (δ) interactions. 
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Agreement between experiment and theory using the four-term effective 
hyperfine Hamiltonian is at the kilohertz level for a few selected transitions. 
For the first excited electronic state B with the 2P3/2 + 2P1/2 dissociation limit, 
our goal is to perform a systematic, high-precision investigation of hyperfine 
interactions over an extensive range of rovibrational quantum numbers 
coupled with a large range of internuclear separations. Such a study has 
allowed us to understand the rovibrational dependence of the hyperfine 
interactions (and the dependence on internuclear distance) based on ab initio 
molecular potential-energy curves and the associated electronic wave 
functions. Analysis of various perturbation effects leads to precise 
determination of molecular structure over a large dynamic range [66]. 

Prior studies have concentrated on a few, isolated rovibrational levels for 
the high vibrational levels ν' = 40–82 in the B state. For vibrational levels 
below ν' = 43, only functional forms of the state-dependent variations of the 
hyperfine interactions have been investigated from empirical data. 
Combining absolute optical frequency metrology with high-resolution and 
broad-wavelength-coverage laser spectroscopy, we have measured ~80 
rovibrational transitions with the upper vibrational levels (from ν' = 42 up to 
ν' = 70) stretching from a closely bonded molecular basis to a separated-
atomic basis appropriate for the 2P3/2 + 2P1/2 dissociation limit and providing 
kilohertz-level line accuracies for most hyperfine components. The study is 
performed in the wavelength region of 530–498 nm. Measurements 
performed on a large set of rovibrational quantum numbers provide 
systematic information on state-dependent variations in the hyperfine 
interactions caused by perturbation from other nearby states. Figure 1-5(b) 
shows a simple schematic of the ground and the first excited electronic states 
of I2 and their relevant dissociation limits. There is a clear trend of linewidth 
narrowing with decreasing transition wavelength [57]. However, this 
tendency is complicated by variations in linewidths among different 
rotational or hyperfine components when the transitions approach the 
predissociation region. The initial linewidth narrowing at shorter wavelength 
may indicate, among other interesting effects, that the Franck-Condon factor 
in the transition probability is reduced when the excited state reaches a 
higher vibration level. As the excited state approaches the dissociation 
threshold, the limit on lifetime imposed by predissociation and other effects 
will need to be taken into consideration. 

Figure 1-6 illustrates the systematic rovibrational dependences for all 
four hyperfine parameters. Each solid line is a fit of the experimental data 
for rotational dependence belonging to a single vibrational level (ν'). In 
general, all hyperfine parameters have a monotonic dependence on both 
rotational and vibrational quantum numbers except for the levels in the 
vicinity of ν' = 57–59. However, the ν-dependence of eqQB reverses its trend 
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after ν' = 60. For the sake of figure clarity, the eqQB data for ν' > 60 are not 
shown. Another important observation is that for levels of ν' = 57–59, all 
hyperfine parameters except for CB bear abnormal J-dependences due to 
perturbations from a 1g state through accidental rotational resonances. 

Combining data from this work and the literature [67], investigations of 
the hyperfine spectra now cover the majority of the vibrational levels (3 ≤ v' 
≤ 82) in the B state. Therefore, it is now possible and useful to explore the 
global trend of these hyperfine parameters in the B state. Suppressing the 
rotational dependence, hyperfine parameters as functions of pure vibrational 
energy E(v') are found to increase rapidly when molecules approach the 
dissociation limit, which is a result of the increasingly strong perturbations 
from other high-lying electronic states sharing the same dissociation limit 
with the B state. While the variation of CB is smooth over the whole range, 
eqQB , dB , and δB all have local irregularities at three positions: (1) ν' = 5 
where the B":1u state crosses nearby, (2) around ν' = 57–59 (see discussions 
above), and from ν' = 76–78, because of the same 1g state. 

To examine these hyperfine parameters in terms of the internuclear 
separation R, the vibrational average of the hyperfine parameters is removed 

by inverting the expression ( ) ( ) JJ vROvJvO ′′ ′′=′′, , where O(v',J') denotes 

one of the four hyperfine parameters. eqQB , CB , dB , and δB against R-

centroid are evaluated from JJ vRv ′′ ′′  (with Jv ′′  properly normalized). 

Consistent with CB’s smooth variation, the interpolation function CB (R) has 
small residual errors (within ±0.03, relative) for the entire range from v' = 3–
70. In contrast, the large residual errors in the interpolation of eqQB , dB, and 
δB for v' ≥ 56 reflect abnormal variations observed around v' = 57 and 59, 
restricting a reliable interpolation only to levels of v' < 56. In the region of R 
< 5 Å, valuable information can be readily extracted from eqQB to assist the 
investigation of I2’s electronic structure. Unlike the other three hyperfine 
parameters whose major parts originate from perturbations at nearly all 
possible values of R, a significant part of eqQB is due to the interaction 
between the nuclear quadrupole moment Q and the local electric-field 
gradient q(R) generated by the surrounding charge distribution of a largely 
B-state character. Thus, for R < 5 Å, where perturbations from other 
electronic states are negligible, the vibration-removed interpolation function 
eqQB (R), coupled with a priori information on q(R), can be used to 
determine the I2 nuclear quadrupole moment or serve as a benchmark for 
molecular ab initio calculations of the electronic structure at various values 
of R. 

Precision measurements on B–X hyperfine spectra provide an alternative, 
and yet effective, way to investigate the potential energy curves (PECs) 
sharing the same dissociation limit with the B state and the associated 
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electronic wave functions. To demonstrate this method, we perform 
calculations of eqQB, CB, dB, and δB based on the available PECs and 
electronic wave functions derived from a separated atomic-basis set. For 
both vibrational and rotational dependences, the ab initio calculation results 
agree very well with the experimental data for ν' ≥ 42 (R centroid ≥ 3.9 Å). 
In short, we have extended the range of separated atomic-basis calculations 
from levels near the dissociation limit to low vibrational levels (ν' = 5) and 
have found very good agreement with the experimental data on both 
vibrational and rotational dependences. 
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Figure 1-6. Rovibrational dependence of the B-state hyperfine parameters: (a) eqQB , (b) CB, 
(c) dB , and (d) δB. Graphs (b), (c), and (d) are semilog plots and the vertical scale of (c) has 
been inverted. Each solid line is a fit for J-dependence for each vibrational level (ν' indicated 
in the figure). Experimental data in squares and open circles show abnormal variations of 
eqQB , dB , and δB around ν' = 57 and 59. 
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4. CARRIER-ENVELOPE PHASE COHERENCE 
AND TIME-DOMAIN APPLICATIONS 

Prior to the development of femtosecond comb technology, mode-locked 
lasers were used almost exclusively for time-domain experiments. Although 
femtosecond comb technology has primarily impacted the frequency-domain 
applications described earlier, it is having an effect on time-domain 
experiments and promises to bring about just as dramatic advances in the 
time domain as it has in optical frequency metrology and optical clocks. 
Indeed, it is fascinating to blur the boundary between traditional cw 
precision spectroscopy and ultrafast phenomena. The time-domain 
applications put stringent requirements on carrier-envelope phase coherence. 
Stabilization of the “absolute” carrier-envelope phase at a level of tens of 
milliradians has been demonstrated. This phase coherence is maintained over 
an experimental period exceeding many minutes, laying the groundwork for 
synthesizing electric fields with known amplitude and phase at optical 
frequencies. Working with two independent femtosecond lasers operating at 
different wavelength regions, we can synchronize the two pulse trains at the 
femtosecond level and also phase lock the carrier frequencies. This 
procedure establishes phase coherence between the two lasers. By coherently 
stitching optical bandwidths together, a “synthesized” pulse has been 
generated. With the same pair of Ti:sapphire mode-locked lasers, we can 
generate widely tunable femtosecond pulses in the mid and far IR using 
difference-frequency generation. The flexibility of this new experimental 
approach is evidenced by the capability for rapid and programmable 
switching and modulation of the wavelength and amplitude of the generated 
IR pulses. A fully developed capability for producing phase-coherent visible 
and IR pulses over a broad spectral bandwidth, coupled with arbitrary 
control of amplitude and pulse shape, represent the ultimate instrumentation 
for coherent control of molecular systems. A pulse train with good carrier-
envelope-phase coherence is also very promising for experiments that are 
sensitive to φce, i.e., the “absolute” pulse phase. This sensitivity can be 
manifested in “extreme” nonlinear optics experiments or coherent control. 

The capability of precisely controlling pulse timing and the carrier-
envelope phase allows one to manipulate pulses using novel techniques and 
achieve unprecedented levels of flexibility and precision. For example, the 
simultaneous control of timing jitter and carrier-envelope phase can be used 
to phase coherently superpose a collection of successive pulses from a mode-
locked laser. By stabilizing the two degrees of freedom of a pulse train to an 
optical cavity acting as a coherent delay, constructive interference of 
sequential pulses will be built up until a cavity dumper switches out the 
“amplified” pulse [68]. Such a passive-pulse ‘amplifier,” along with the 
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synchronization technique we developed for pulse synthesis, have made a 
strong impact on the field of nonlinear optical spectroscopy and imaging of 
biomolecular systems, offering significant improvements in experimental 
sensitivity and spatial resolution [69]. With enhanced detection sensitivity 
comes the capability of tracking real-time biological dynamics. An ultrafast 
laser locked to a high-stability cavity is also expected to demonstrate 
extremely low pulse jitter and carrier-envelope-phase noise, features that 
will be particularly attractive for time-domain experiments. In addition, we 
are exploring the use of pulse-cavity interactions to obtain a high sensitivity 
in intracavity spectroscopy (linear and nonlinear) with wide spectral 
coverage and to enhance nonlinear interaction strengths for high-efficiency, 
nonlinear optical experiments. 

The carrier-envelope phase can also be used for deterministic control in 
the low-field regime because of interference between reaction channels in 
chemical systems and population transfer between quantum states [70, 71]. 
This interference had been demonstrated using separate phase-related pulses 
in atoms [72, 73], molecules [74], and in direct-gap semiconductors [75, 76]. 
Recently, it was demonstrated in a direct-gap semiconductor using φce 
stabilized pulses [77]. 

4.1 Timing synchronization of mode-locked lasers 

To establish phase coherence among independent ultrafast lasers, it is 
necessary to first achieve a level of synchronization among these lasers so 
that the remaining timing jitter is less than the oscillation period of the 
optical carrier, namely 2.7 fs for lasers centered around 800 nm. In the push 
for greater stability and precision of femtosecond optical combs, a number of 
effective techniques for ultralow-jitter timing synchronization have emerged. 
They include an all-electronic approach for active stabilization of repetition 
rates [78], cross-phase modulation to passively synchronize two mode-
locked lasers that share the same intracavity gain medium [79], the linkage 
of lasers’ repetition rates to the same optical standard [80], and optical cross-
correlation between the pulse trains to be synchronized [81].  

Detecting timing jitter should be carried out at a high harmonic of fr to 
attain much-enhanced detection sensitivity. The harmonic order can range 
from 100 to 106. This approach has enabled tight synchronization between 
two independent mode-locked Ti:sapphire lasers with a residual-rms timing 
jitter on the order of 1 fs or less, integrated over a bandwidth of a few 
megahertz. Of course the enhanced detection sensitivity comes with a price 
of reduced dynamic range for the change in the nominal value of fr. This 
problem can be alleviated by invoking another control loop that works with 
lower harmonics of fr. The low-frequency control loop can be used to 
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achieve a desired timing offset between the two pulse trains. The high 
stability loop can then be activated to achieve the ultimate level of 
synchronization at the preset value of timing offset. For example, in the all-
electronic implementation of laser synchronization, we use two phase-locked 
loops (PLLs). The low-resolution PLL compares and locks the fundamental 
repetition frequencies (100 MHz) of the lasers. The second, high-resolution, 
PLL compares the phase of the 140th harmonic of the two repetition 
frequencies at 14 GHz. A transition of control from the first PLL to the 
second PLL is sufficiently smooth to allow synchronization at the 
femtosecond level for any timing offsets within the entire dynamic range, 
e.g., one pulse period of 10 ns [82]. The synchronization lock can be 
maintained for several hours.  

The ability to synchronize a passively mode-locked laser to an external 
reference or to a second laser has many applications. Previous work in 
electronic synchronization of two mode-locked Ti:sapphire lasers 
demonstrated timing jitter of, at best, a few hundred femtoseconds. 
Therefore the present level of synchronization would make it possible to take 
full advantage of this time resolution for applications such as high-power 
sum- and difference-frequency mixing [83], novel pulse generation and 
shaping [9], new generations of laser/accelerator-based light sources, or 
experiments requiring synchronized laser light and x-rays or electron beams 
from synchrotrons [84]. Indeed, accurate timing of high-intensity fields is 
essential for several important schemes in quantum coherent control and 
extreme nonlinear optics such as efficient x-ray generation. Two recent 
applications that have been developed in our laboratories include tunable, 
subpicosecond pulse generation in the IR [85] and coherent anti–Stokes-
Raman scattering (CARS) microscopy with two tightly synchronized 
picosecond lasers [69]. The flexibility and general applicability of the two-
laser-synchronization approach are clearly demonstrated in the 
straightforward generation of programmable light sources for these 
applications. 

4.2 Phase lock between separate mode-locked lasers 

Phase locking of separate femtosecond lasers requires a step beyond 
synchronization of the two pulse trains. One needs effective detection and 
stabilization of the phase difference between the two optical carrier waves 
underlying the pulse envelopes [86]. After synchronization matches the 
repetition rates (fr 1 = fr 2), phase locking requires that the spectral combs of 
the individual lasers are maintained exactly coincident in the region of 
spectral overlap so that the two sets of optical frequency combs form a 
continuous and phase-coherent entity. We detect a coherent heterodyne-beat 
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signal between the corresponding comb components of the two mode-locked 
lasers. Such heterodyne detection yields information related to the difference 
in the offset frequencies of the two lasers, δf0 = f01 – f02, which can then be 
controlled. By phase locking δf0 to a frequency of a mean zero value, we 
effectively achieve (∆φce1 – ∆φce2) = 0, leading to two pulse trains that have 
nearly identical phase evolution. When stabilized, fluctuations associated 
with the recorded beat-frequency signal (δf0) can be suppressed to just a few 
millihertz with an averaging time of 1 s. 

The established phase coherence between the two mode-locked lasers can 
also be revealed via a direct time-domain analysis. For example, spectral 
interferometry analysis of the joint spectra of the two pulses produces 
interference fringes that correspond to phase coherence between the two 
pulse trains persisting over the measurement time period. A cross-correlation 
measurement between the two pulse trains also manifests phase coherence in 
the display of persistent fringe patterns. A more powerful and 
straightforward demonstration of the “coherently synthesized” aspect of the 
combined pulse is through a second-order autocorrelation measurement of 
the combined pulse. For this measurement, the two pulse trains are 
maximally overlapped in the time domain before the autocorrelator. When 
the two femtosecond lasers are phase locked, autocorrelation reveals a clean 
pulse that is often shorter in apparent duration and larger in amplitude than 
the individual original pulses. A successful implementation of coherent light 
synthesis has therefore become reality: the coherent combination of output 
from more than one laser where the combined output can be viewed as a 
coherent femtosecond pulse being emitted from a single source [9]. 

4.3 Extending phase-coherent femtosecond combs to the 
mid-IR spectral region 

Being able to combine the characteristics of two or more pulsed lasers 
working at different wavelengths provides a more flexible approach to 
coherent control. The capability of synchronizing the repetition rates and 
phase locking the carrier frequencies of two mode-locked lasers opens up 
many applications. This capability may be particularly important in the 
generation of tunable femtosecond sources in other previously unreachable 
spectral regions. For example, two stabilized mode-locked Ti:sapphire lasers 
can be employed to enable both sum- (SFG) and difference-frequency 
generation (DFG). The DFG signal produced by a GaSe crystal can be tuned 
from 6 microns to any longer wavelength region with a high repetition rate 
(the same as the original laser's) and a reasonable average power (tens of 
microwatts). Arbitrary amplitude-waveform generation and rapid 
wavelength switching in these nonlinear signals are simple to implement. 
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The ultimate goal of this work is to make an optical-waveform synthesizer 
that can create an arbitrary optical pulse on demand and use the novel source 
to study and control molecular motion. For frequency metrology and 
precision molecular spectroscopy in the IR region, the DFG approach 
produces an absolute frequency-calibrated-IR comb when the two 
Ti:sapphire lasers are synchronized and share a common offset frequency f0. 
Another attractive approach presented in Chapter 6 makes use of optical 
parametric generation to produce high-peak-power femtosecond pulses in 
the IR spectral domain. This scheme presents an attractive property of 
automatic cancellation of the carrier-envelope-phase shift in IR pulses. 

One of the important spectral regions is 1.5 µm, where compact, reliable, 
and efficient mode-locked lasers exist. Here there is rich information on 
molecular spectra. Frequency reference grids in this spectral window could 
find applications in dense-wavelength–division-multiplexed (DWDM) 
communications systems, photonic samplers in high-speed–analog-to-digital 
conversion, and distribution of optical frequency standards over optical fiber 
networks. The synchronization and phase-locking approach for Ti:sapphire 
lasers can be extended to cover mode-locked lasers at 1.5 µm [87]. We have 
indeed achieved tight synchronization and coherent phase locking between 
the repetition rates and the optical carriers, respectively, for the 1.5 µm 
mode-locked laser sources and a Ti:sapphire-based femtosecond frequency 
comb, which is used as the clockwork for an optical atomic clock [88]. 

To achieve phase locking between the optical carriers of the Ti:sapphire 
and the 1.5 µm mode-locked lasers, one requires spectral overlap between 
the two combs. The wide-bandwidth optical frequency comb generated by 
the mode-locked femtosecond Ti:sapphire laser is phase locked to a highly 
stable, visible optical frequency standard. The optical comb of the 1.5 µm 
source is frequency doubled and compared against the Ti:sapphire comb at a 
mutually accessible spectral region to generate a heterodyne beat between 
the two combs. Under simultaneous control of synchronization and phase 
locking, the 1.5 µm laser faithfully duplicates both the repetition frequency 
and the carrier phase of the Ti:sapphire laser. Therefore the optical clock 
information has now been transferred onto the 1.5 µm mode-locked laser, 
which can be used in a fiber network to transfer highly stable clock signals 
to remote ends [89]. This topic is discussed in Chapter 9.  

4.4 Femtosecond lasers and external optical cavities 

The combination of ultrashort pulse trains and optical cavities will open 
doors for a variety of exciting experiments. Such experiments will require an 
understanding of intricate pulse-cavity interactions and the development of 
techniques to efficiently couple ultrashort pulses into a high-finesse optical 
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cavity and coherently store them in it. An immediate impact will be on the 
precision stabilization of ultrafast lasers (see more detailed discussions in 
Chapter 12). Similar to the state-of-the-art stabilization of cw lasers, a 
cavity-stabilized ultrafast laser is expected to demonstrate superior short-
term stability of both the pulse-repetition frequency and the carrier-envelope 
phase [90]. The improved stability is beneficial in particular for time-domain 
applications where the signal-processing bandwidth is necessarily large. 
Another attractive application lies in broadband and ultrasensitive 
spectroscopy. The use of high-finesse cavities has played a decisive role in 
enhancing sensitivity and precision in atomic and molecular spectroscopy. 
We expect a dramatic advancement in the efficiency of intracavity 
spectroscopy by exploiting the application of ultrashort pulses. In other 
words, high detection sensitivity is achievable uniformly across the broad 
spectrum of the pulse. Applying cavity-stabilization techniques to 
femtosecond lasers, the comb structure of the probe laser can be precisely 
matched to the resonance modes of an empty cavity, allowing an efficient 
energy coupling for a spectroscopic probe. Molecular samples located inside 
the high-finesse cavity will have a strong impact on the dispersive properties 
of the cavity. In fact, it is this dispersion-related–cavity-pulling effect that 
will aid our sensitive detection process when we analyze the light 
transmitted through the cavity. Preliminary data on spectrally resolved, time-
domain–ring-down measurement for intracavity loss over the entire 
femtosecond-laser bandwidth are already quite promising. 

To develop sources for ultrafast nonlinear spectroscopy, a properly 
designed, dispersion-compensated cavity housing a nonlinear crystal will 
provide efficient nonlinear optical frequency conversion of ultrashort optical 
pulses at spectral regions where no active gain medium exists. Furthermore, 
by simultaneously locking two independent mode-locked lasers to the same 
optical cavity, efficient SFG and/or DFG can be produced over a large range 
of wavelengths. Similarly, a passive cavity can be used to explore coherent 
superposition of ultrashort pulses, with cavity stabilization providing the 
means to phase coherently superpose a collection of successive pulses from a 
mode-locked laser. The coherently enhanced pulse stored in the cavity can 
be switched out using a cavity-dumping element (such as a Bragg cell), 
resulting in a single phase-coherent, amplified pulse. The use of a passive 
cavity also offers the unique ability to effectively amplify pulses in spectral 
regions where no suitable gain medium exists such as for IR pulses from 
difference-frequency mixing or the ultraviolet light from harmonic 
generation. Unlike actively dumped laser systems, the pulse energy is not 
limited by the saturation of a gain medium or the requirement for a saturable 
absorber for mode locking. Instead, the linear response of the passive cavity 
allows the pulse energy to build up inside the cavity until limited by cavity 
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loss and/or dispersive pulse spreading. Therefore storage and amplification 
of ultrashort pulses in the femtosecond regime require precise control of the 
reflected spectral phase of the resonator mirrors and the optical loss of the 
resonator. While the reflected group delay of the mirrors only changes the 
effective length of the resonator, the group-delay dispersion (GDD) and 
higher-order derivatives of the group delay with respect to frequency affect 
the pulse shape. The net cavity GDD over the bandwidth of the pulse needs 
to be minimized to maintain the shape of the resonant pulse and allow for the 
coherent addition of energy from subsequent pulses.  

We have applied the coherent pulse-stacking technique to both 
picosecond [91] and femtosecond pulses [92]. Initial studies have already 
demonstrated amplification of picosecond pulses of more than thirtyfold at 
repetition rates of 253 kHz, yielding pulse energies greater than 150 nJ. With 
significant room left for optimization of the cavity finesse (current value of 
~350, limited by the cavity input-coupling mirror), we expect that 
amplifications greater than a hundredfold are feasible, which would bring 
pulse energies into the µJ range. While the use of picosecond pulses allows 
us to separate out complications arising from intracavity dispersion, for sub-
100 fs pulses, dispersive phase shifts in the cavity mirrors become an 
important topic. Preliminary results in enhancing low individual pulse 
energies for sub-50 fs pulses illustrate the importance of GDD control. The 
external enhancement cavity incorporated specially designed negative GDD 
low-loss mirrors to simultaneously compensate for the Bragg cell's 3 mm of 
fused silica and provide a high finesse. The input-coupling mirror 
transmission is ~0.8%, with a measured cavity finesse of 440. An intracavity 
energy build-up ratio of ~130 is expected, leading to single pulse 
amplifications of approximately 52 for the current setup, given the 40% 
dumping efficiency of our Bragg cell. The negative GDD mirrors are 
designed to only partially compensate for the total cavity dispersion. The 
remaining cavity GDD is estimated at +20 to +30 fs2. Controlling the 
intracavity pressure allows fine tuning of the net cavity GDD to zero. 
Experimental results are in good agreement with independent numerical 
calculations. The input pulses of 47 fs duration are experimentally enhanced 
by a factor of ~120 inside the passive cavity, with the output pulses 
broadened only to ~49 fs. These results are shown in Figure 1-7.  
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Figure 1-7. Top: Illustration of the principle of coherent-pulse amplification with the aid of an 
optical cavity, showing the matching of the pulse-repetition period with the cavity round-trip 
time. The intracavity pulse is switched out when sufficient energy is built up in the cavity. 
The build-up factor is given ideally by the cavity finesse, with appropriate intracavity 
dispersion compensation. Bottom: Coherent evolution of a 50 fs pulse inside the cavity. The 
left panel displays a FROG measurement of the amplified pulse switched out of the passive 
cavity shown at FWHM of 49 fs, slightly wider than the input pulse width of 47 fs. The right 
panel presents a comparison of the input and output pulse spectra, showing no significant 
distortion to the input pulse spectrum after the intracavity power is built up by a factor of 112. 

An important application of these advanced pulse-control technologies is 
in the field of nonlinear optical spectroscopy and nanoscale imaging. For 
example, using two tightly synchronized picosecond lasers, one can achieve 
significant improvements in experimental sensitivity and spatial resolutions 
for CARS microscopy. Vibrational imaging based on CARS spectroscopy is 
a powerful method for acquisition of chemically selective maps of biological 
samples. In CARS microscopy, pulsed-pump and Stokes beams are focused 
tightly to a single focal spot in the sample to achieve a high spatial 
resolution. The third-order nonlinear interaction produces a signal photon 
that is blue-shifted (anti-Stokes signal) with respect to the incident beams. 
Strong CARS signals are obtained whenever the frequency difference 
between the pump and Stokes coincides with a Raman-active vibrational 
mode, which gives rise to the molecule-specific vibrational contrast in the 
image. Recent studies and technological improvements have demonstrated 
the capability of CARS microscopy to attain high-resolution vibrational 
images of unstained living cells [93]. Practical applications of the CARS 
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microscopy technique require pulsed light sources, because optimized peak 
powers help boost the nonlinear signal. Pulses with temporal widths of 1–2 
picoseconds (ps) are used to match to the vibration bandwidths to optimize 
the CARS signal with minimized nonresonant background and 
compromising spectral resolution [94]. An important technical challenge is 
to achieve tight synchronization between two mode-locked lasers that 
produce the frequency difference that matches the vibrational resonance 
[95]. Another important consideration is that while the repetition rate of the 
pulse train needs to be low enough to avoid thermal damage to the cell due 
to a high average power, the peak power of the pulses needs to be reasonably 
high to improve the nonlinear signal strength. The technologies of pulse 
synchronization and coherent pulse stacking therefore become ideal tools for 
carrying out this task of combining spectroscopy with microscopy. 

4.5 Coherent control via quantum interference between 
one- and two-photon absorption  

Control of molecular reactions is a central goal of chemistry. The 
development of the laser led to the proposal that light fields could be used to 
control reaction pathways; for recent reviews, see [70] and [96]. Many 
techniques are sensitive to the phase of the applied fields and thus dubbed 
“coherent control.” To date, only the relative phase between two laser fields, 
or the relative internal phase of a femtosecond pulse (i.e., its chirp) has been 
demonstrated to have physical impacts. Some new schemes explore 
interference between pathways involving n-photons and m-photons. When n 
and m have opposite parity, a dependence on φce will occur for excitation by 
single ultrashort pulse. Early studies demonstrated the interference 
phenomenon by using a pair of phase-controlled pulses to ionize rubidium 
[72] and control electrical currents in bulk semiconductors [75]. In both 
cases, there is a connection between spatial direction and the relative phase. 
The latter system has recently been shown to be sensitive to φce [77]. 

In a semiconductor, the phase sensitivity can be understood by 
considering the k dependence of the transition amplitudes. In GaAs, when 
the phase is such to produce constructive interference between one- and two-
photon absorption at –k, it produces, to good approximation, destructive 
interference at k. This effect is schematically shown in Figure 1-8. For an 
octave-spanning pulse, the frequency components for one-photon absorption 
come from the high-energy tail of the spectrum, while for the two-photon 
absorption, they come from the low-frequency tail. Thus φce determines their 
relative phase in a manner analogous to the beat signal that occurs in a 
standard ν-to-2ν interferometer. The noninterfering carrier populations do 
not contribute to the signal, which makes it intrinsically balanced and thus 
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insensitive to amplitude fluctuations. This insensitivity provides an 
advantage over the standard ν-to-2ν interferometer, which relies on an 
ordinary photodiode for conversion of the light to an electrical signal. 
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Figure 1-8. Conceptual diagram of quantum interference between one- and two-photon 
absorption in a direct-gap semiconductor. The two interfering absorption pathways are driven 
by the spectral wings of a single octave-spanning pulse. An imbalance in the otherwise 
symmetric carrier-population distribution in momentum space (represented by ovals) occurs 
due to interference and results in a net current. The resulting photocurrent is sensitive to φce. 

The experimental demonstration of quantum interference control of the 
injected photocurrent in a semiconductor is shown in Figure 1-9 [77]. The 
carrier-envelope evolution of the laser was stabilized so that f0 = 2400 Hz 
using a standard ν-to-2ν interferometer in a servo loop. A portion of the 
resulting phase-stabilized pulse train was then used to illuminate a low-
temperature grown GaAs sample with gold electrodes. The electrodes are 
used to collect the resulting photocurrent, which also oscillates at f0. 

2600240022002000
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Figure 1-9. Spectrum of the measured quantum interference signal in a semiconductor. The 
dotted line is the background (no light on the sample). 

These results provide an interesting route to a simple, solid-state detector 
of the carrier-envelope phase. The first step is to use it simply to stabilize f0. 
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However this requires a significant improvement in signal-to-noise ratio and 
bandwidth. This technique does not suffer from the arbitrary offsets that 
plague detection using a standard ν-to-2ν interferometer and thus may allow 
measurement of the “absolute” φce [97]. However, shifts due to dispersion in 
the GaAs detector still need to be considered. 

4.6 Extreme nonlinear optics 

The expression “extreme nonlinear optics” refers to experiments where 
the optical pulses are so intense that the electric field of the pulse is more 
relevant than the intensity profile, as is the case in the “perturbative” regime 
[8]. In this regime, the electric field can be strong enough to distort the 
potential energy well for an electron bound to an atom so much that 
ionization occurs via tunneling. Such tunneling ionization, also known as 
“above-threshold ionization,” typically displays a threshold with respect to 
the electric field of the pulse. This effect causes tunneling ionization to 
depend both on the phase of sufficiently short pulses and whether the 
threshold is close to the maximum field in the pulse. Indirect evidence for 
such a phase dependence has been observed in high-harmonic generation 
[98], which occurs when the ionized electrons slam back into the ion. More 
recently, measurements of the photoelectron yield in opposite directions 
have provided evidence for a phase dependence in above-threshold 
ionization [99]. Chapter 10 provides a thorough discussion of the generation 
of the high-intensity pulses needed to access the regime of extreme nonlinear 
optics together with a review of the results obtained for above-threshold 
ionization. Control of high-harmonic generation is addressed in Chapter 11. 

5. SUMMARY 

Recent developments in femtosecond comb generators have enabled 
breakthroughs in optical frequency metrology, optical frequency synthesis, 
and optical atomic clocks. Femtosecond combs have been built, or are being 
built, for these applications around the world. Although not large on an 
absolute scale, the number is a large multiple of the total number of 
frequency multiplication chains ever built. Indeed, here in Boulder, 
Colorado, between NIST and JILA, there are more femtosecond comb-based 
frequency chains than were operating in the world prior to 1999! Thus, we 
are confident that precision, absolute optical frequency metrology and 
synthesis are becoming common laboratory tools. 

The time-domain applications engendered by femtosecond combs are just 
being realized. They also promise very exciting results in the near future. 
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Chapter 2 

FEMTOSECOND LASER DEVELOPMENT 

Franz X. Kärtner1, Erich P. Ippen1 and Steven T. Cundiff2 
1Research Laboratory of Electronics, Massachusetts Institue of Technology  

2JILA, National Institute of Standards and Technology and University of Colorado 

Abstract:  Advances in ultrashort-pulse laser technology have led to few-cycle-duration 
optical pulses, with octave-spanning spectra, generated directly from laser 
oscillators at high repetition rates. These new laser systems promise to be 
reliable sources of carrier-envelope–phase-stabilized femtosecond pulse trains 
and highly stable laser frequency combs. In this chapter, we review the pulse 
and carrier-envelope phase dynamics of these laser sources and discuss 
different laser designs based on prismless cavities and cavities including prism 
pairs for dispersion compensation. 

Key words:  mode-locked lasers, carrier-envelope phase, frequency comb 

1. INTRODUCTION 

Remarkable progress in the generation of femtosecond pulses with solid-
state lasers has followed from the discovery of self-mode-locking in a 
Ti:sapphire laser by the Sibbett group in 1991 [1]. Explained as a 
consequence of self-focusing inside the laser [2], this self-mode-locking 
behavior has become known as Kerr-lens mode locking (KLM). It is now the 
basis for femtosecond pulse generation in a wide variety of other solid-state 
laser systems as well. As shown in Figure 2-1, KLM has resulted in the 
shortest pulses, superceding previous marks set using dye lasers, 
amplification, and spectral broadening. 

Self-focusing in the KLM laser in the presence of aperturing due either to 
the size of the gain spot or some other physically introduced aperture can 
cause pulse shortening in precisely the manner described by "fast saturable 
absorber" mode-locking theory [3]. In addition, simultaneously occurring 
self-phase modulation (SPM), in the presence of group-velocity dispersion 
(GVD) in the resonator, provides a strong soliton like shaping to the pulses. 
This latter process can, in fact, be the dominant pulse-shaping effect; 



2. FEMTOSECOND LASER DEVELOPMENT 55
 

 

however, the KLM remains necessary to suppress the growth of noise 
between the pulses, thereby stabilizing the mode locking. An important 
variant of soliton shaping occurs when the GVD alternates between positive 
and negative values as the pulse propagates. The result can be the formation 
of "dispersion-managed solitons" even when the average GVD in the 
resonator is zero or net normal [4]. Such dispersion management has found 
important application in "stretched-pulse" fiber lasers [5] and may also play 
a role in very short pulse Ti:sapphire lasers [6]. 
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Figure 2-1. History of ultrashort pulse duration. 

Ultrashort pulse durations have been reduced to well below 10 fs by a 
variety of researchers including the university groups at Washington State 
University [7], the Technical Universiy of Vienna [8], ETH-Zurich [9], the 
Massachusetts Institute of Technology (MIT) [10], and the University of 
Karlsruhe [11]. The Washington State group, responsible for a number of 
successful early cavity designs, first documented the limitations to pulse 
shortening by higher-order dispersion. The TU-Vienna group introduced 
chirped mirrors for dispersion compensation, an approach that was further 
refined at ETH-Zurich with the concept of a double-chirped mirror design. 
Dispersion compensation over one octave, ultimately achieved by the use of 
double-chirped mirror pairs at MIT and the University of Karlsruhe, finally 
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led to the generation of 5 fs pulses containing less than two optical cycles. 
The wings of the spectrum of these pulses extend over more than one octave, 
an achievement that has important implications for the control of the electric 
field waveform of the pulse. It had been recognized earlier by Xu et al.[12] 
that for few-cycle pulses, the maximum electric field in a pulse 
quantitatively depends on the phase relationship between the carrier wave 
and the maximum of the envelope (see Figure 2-1). 

Nonlinear optical processes, which depend on powers of the electric field 
amplitude, must therefore also depend on the carrier-envelope phase for very 
short pulses. This dependence is visualized in Figure 2-2, which shows 
sketches of spectra resulting from instantaneous (2)χ  and (3)χ  processes 
produced by a chirp-free pulse with a rectangular-shaped spectrum spanning 
an octave. For a one-octave pulse, the spectra of the second-harmonic and 
optical-rectification terms overlap with the fundamental spectrum. 
Interference in the overlap regions will be constructive or destructive 
depending on the carrier-envelope phase. Use of this interference for carrier-
envelope phase control is called the ν-to-2ν self-heterodyne technique. If 
higher-order processes are employed, such as a (3)χ  nonlinearity, there are 
similar interference terms between the (2)χ  and (3)χ  terms. Thus a phase-
dependent interference is already possible even if the pulse spans only 2/3 of 
an octave. All of these interferences have been used to detect and control the 
carrier-envelope phase. 
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Figure 2-2. Top: Fundamental spectrum of an octave-spanning pulse centered at ω0; Below: 
Spectra generated by instantaneous second- and third-order nonlinearities due to optical 
rectification (OR), second-harmonic generation (SHG), self-phase modulation (SPM), and 
third-harmonic generation (THG). 

A special case, pointed out by Baltuška et al. [13], is that optical 
rectification or difference-frequency mixing of an optical pulse directly 
produces a phase-independent IR pulse. Currently, control of the carrier-



2. FEMTOSECOND LASER DEVELOPMENT 57
 

 

envelope phase for a variety of applications is one of the strongest 
motivations for the development of ultrabroadband lasers.  

 This chapter reviews progress made in phase-stabilized–octave-spanning 
lasers, starting with a discussion of the dispersion-managed pulse dynamics 
in sub-10 fs Ti:sapphire lasers in Section 2. In Section 3, the experimental 
realization of systems using combinations of prism pairs and chirped mirrors 
for dispersion compensation and prismless systems are described. Section 4 
discusses the carrier-envelope phase dynamics of some sources. The results 
achieved are summarized in Section 5. 

2. PULSE DYNAMICS 

The generation of ultrashort pulses from Ti:sapphire lasers has 
progressed rapidly over the past decade and led to the generation of pulses as 
short as 5 fs directly from the laser. The spectra generated by these lasers are 
not of simple shape [7, 11, 14], and various models to explain this 
complexity have been presented. Christov et al. [15] have shown by 
numerical simulations that, when the second-order group-velocity dispersion 
is balanced, fourth-order dispersion with gain bandwidth filtering and KLM 
action can lead to steady-state pulse generation. Extensive three-dimensional 
simulations have been carried out [15-17]. However, so far, a fully three-
dimensional numerical simulation of a KLM laser is still too time consuming 
for computation of the steady-state solution. Also, the solution is known 
from experimental observation to be very sensitive to changes in the self-
focusing dynamics caused by slight parameter variations. This sensitivity 
adds to the difficulty of obtaining meaningful information from steady-state 
simulations that require many hours of computer time.  

A schematic setup of current 5 fs Ti:sapphire lasers using only chirped 
mirrors for dispersion compensation is shown in Figure 2-3(a). For insight 
into the dynamics of this laser, we start by considering only the temporal 
dynamics, which are modeled by the nonlinear Schrödinger equation 

( ) ( ) aazia
t

ziDa
z

2

2

2

δ+
∂
∂−=

∂
∂

, (1) 

describing propagation of the envelope function a in a medium with 
distributed dispersion, D(z), and self-phase modulation, δ(z). The 
distribution of dispersion and nonlinearity in the laser is sketched in Figure 
2-3(b). It was first pointed out by Spielmann et al. that for very-short-pulse 
Ti:sapphire lasers, large changes in the pulse occur within one round trip and 
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that the ordering of the pulse-shaping elements within the cavity has a major 
effect on the pulse formation [18]. The discrete action of linear dispersion in 
the arms of the laser resonator and the discrete, but simultaneous, action of 
positive SPM and positive GDD in the laser crystal cannot be neglected any 
longer. The importance of the strong variations in dispersion was first 
discovered in a fiber laser and called stretched-pulse mode locking [19]. The 
positive dispersion in the Er-doped fiber section of a fiber ring laser was 
balanced by a negative-dispersion passive fiber. The pulse circulating in the 
ring was stretched and compressed by as much as a factor of 20 in one round 
trip. One consequence of this behavior was a dramatic decrease of the 
nonlinearity and thus increased stability against the SPM-induced 
instabilities. Also, the formation of Kelly sidebands [20] occurring for large 
nonlinear phase shifts per round trip in conventional soliton lasers was 
greatly suppressed. The energy of the output pulses could be increased a 
hundredfold [21]. These important consequences can explain the high power 
densities that can be achieved in sub-10 fs KLM lasers without undergoing 
catastrophic self-focusing in the laser crystal.  
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Figure 2-3. (a) Schematic of a Kerr-lens–mode-locked Ti:sapphire laser using double-chirped 
mirrors and BaF2 for dispersion compensation. (b) Distribution of dispersion and nonlinearity 
inside the laser cavity. 

Here, we consider the impact of the discrete action of dispersion and 
nonlinearity, which become important in the sub-10 fs range, in Ti:sapphire 
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lasers on the spectral shape of the laser pulses. The dispersion distribution 
shown in Figure 2-3(b) suggests an analogy with pulse propagation along a 
dispersion-managed fiber transmission link [4]. A system with sufficient 
variation of dispersion can support waves that have been called nonlinear 
Bloch waves [22]. One can show that the Kerr nonlinearity produces a self-
consistent nonlinear scattering potential that permits formation of a periodic 
solution with a simple phase factor in a system with zero net dispersion. It 
has been shown further that nonlinear propagation along dispersion-managed 
fiber near zero net GDD possesses a narrower spectrum in the segment of 
positive dispersion than in the segment of negative dispersion [4, 22]. Thus, 
the effect of negative dispersion is greater than that of the positive 
dispersion, and the pulse sees an effective net negative dispersion. This 
effective negative dispersion can balance the Kerr-induced phase, leading to 
steady-state pulses at zero net dispersion. This is true even when there is no 
nonlinearity in the negative dispersion segment. The pulses are analogous to 
solitons in that they are self-consistent solutions of the Hamiltonian 
(lossless) problem as are conventional solitons. But, they are not secant 
hyperbolic in shape. Figure 2-4 shows a numerical simulation of a self-
consistent solution of the Hamiltonian pulse-propagation problem in a linear 
medium of negative dispersion and subsequent propagation in a nonlinear 
medium of positive dispersion with positive self-phase modulation following 
Equation (1).  

The dispersion map D(z) is shown as an inset in Figure 2-5. The 
dispersion coefficient D(z) and the nonlinear coefficient δ(z) are defined per 
unit length. In Figure 2-4, the steady-state intensity profiles are shown at the 
center of the negative dispersion segment over 1000 round trips. In addition, 
we can include in the model the saturable gain, Lorentzian gain filtering, and 
KLM modeled by a fast saturable absorber. Figure 2-5 shows the behavior in 
one period (one round trip through the resonator) including these effects. 

The response of the absorber is ( ) ( )APaqaq
2

0 1 += , with q0 = 0.01/mm 

and PA = 1 MW. The bandwidth-limited gain is modeled by a Lorentzian 
gain profile with bandwidth 432 ×=Ω πg THz. The filtering and saturable 

absorber reduce the spectral and temporal side lobes of the Hamiltonian 
problem, respectively, as can be inferred from Figures 2-4 and 2-5. The 
steady-state pulse formation can be understood in the following way: By 
symmetry, the pulses are chirp free in the middle of the dispersion cells. A 
chirp-free pulse starting in the center of the gain crystal, i.e., nonlinear 
segment, is spectrally broadened by the SPM and disperses in time because 
of the GVD, which generates a mostly linear chirp over the pulse.  
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Figure 2-4. Simulation of the Hamiltonian problem. Temporal (a) and spectral (b) intensity 
profiles at the center of the negatively dispersive segment are shown for successive round 
trips. The total extent in 1000 round trips. ( ) 60±== ±DD fs/mm for the segment of crystal 
length 2=L mm, 5.5=FWHMτ  fs, 0=δ  for 1,0 =< δD  (MW-mm) for 0>D . 
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Figure 2-5. Pulse shaping in one round trip. The negative segment has no nonlinearity. 

After the pulse leaves the crystal, it experiences GVD in the arms of the 
laser resonator. The positively chirped pulse is compressed to its transform 
limit at the end of each arm, where output couplers can be placed. 
Propagation back towards the crystal imposes a negative chirp, generating 
the time-reversed solution of the nonlinear Schrödinger Equation (1). 
Therefore, subsequent propagation in the nonlinear crystal compresses the 
pulse spectrally and temporally to its initial shape in the center of the crystal. 
The spectrum is narrower in the crystal than in the negative-dispersion 
sections, because it is negatively prechirped before it enters the SPM section. 
Spectral spreading occurs again only after the pulse has been compressed. 
This result further explains that in a laser with a linear cavity, for which the 
negative dispersion is located in only one arm of the laser resonator (i.e., in 
the prism pair and no use of chirped mirrors), the spectrum is widest in the 
arm that contains the negative dispersion [18]. In a laser with a linear cavity, 
for which the negative dispersion is equally distributed in both arms of the 
cavity, the pulse runs through the dispersion map twice per round trip. The 
pulse is short at each end of the cavity, and, most importantly, the pulses are 
identical in all passes through the crystal; thus they can exploit the full KLM 
action twice per round trip [23]. For this reason, a symmetric dispersion 
distribution may lead to an effective saturable absorption that is twice as 
strong as an asymmetric dispersion distribution and that can produce 
substantially shorter pulses. Furthermore, the dispersion swing between the 
negative and positive dispersion sections is only half as large, which allows 
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for shorter dispersion-managed solitons operating at the same average power 
level. 

 

Figure 2-6. Energy of the pulse in the lossless dispersion-managed system with stretching 
2
FWHMLDS τ=  or, for a fixed crystal length L and pulse width as parameters; 

60=D fs2/mm for Ti:sapphire at 800 mm. 

A major difference from conventional soliton formation is illustrated in 
Figure 2-6. The figure shows the parameter ranges for a dispersion-managed 
Hamiltonian system (no gain, no loss, no filtering) that is unbalanced by the 
net dispersion that serves as the abscissa of the figure. Each curve gives the 
locus of energy vs net cavity dispersion for a stretching ratio 2

FWHMLDS τ=  
(or pulse width with fixed crystal length L). One can see that for a pulse 
width longer than 8 fs with crystal length L = 2 mm, no solution of finite 
energy exists in the dispersion-managed system for zero or positive net 
dispersion. Pulses of durations longer than 8 fs require net negative 
dispersion. Hence, one can reach the ultrashort operation at zero net 
dispersion only by first providing the system with negative dispersion. At the 
same energy, one can form a shorter pulse by reducing the net dispersion, 
provided that the 8 fs threshold has been passed. For a fixed-dispersion 
swing ± D, the stretching increases quadratically with the spectral width or 
the inverse pulse width. Long pulses with no stretching have a sech shape. 
For stretching ratios of 3–10, the pulses are Gaussian shaped. For even larger 
stretching ratios, the pulse spectra become increasingly more flat topped, as 
shown in Figure 2-4.  

These dynamics explain why there are steady-state pulses even at zero 
and slightly positive linear intracavity dispersion as confirmed in the 
experiment. These pulses would, of course, be unstable in the presence of 
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gain filtering due to the finite gain bandwidth of Ti:sapphire and, therefore, 
there is a need for strong-saturable-absorber action to keep the pulse stable 
against continuum radiation exploiting the peak of the gain. This saturable-
absorber action is due to the Kerr-lens effect and can be optimized by 
various techniques [23, 24], which shall not be repeated here. Also, the 
spectral shape of the output pulses is greatly distorted because of the finite 
bandwidth of the output coupler, which can greatly enhance the wings of the 
laser spectrum, as we will see in the next section. 

3. OCTAVE-SPANNING LASERS 

Although an octave of spectrum can be generated by spectral broadening 
in microstructure fiber, there are advantages to using a laser that generates an 
octave directly. Since there is no medium with a gain spectrum that spans an 
octave (for Ti:sapphire, it approaches a half-octave), an octave-spanning 
laser clearly must rely on nonlinear broadening inside the laser cavity. The 
first demonstration of an octave-spanning laser used a second time-and-
space focus in a separate glass element to enhance the nonlinearity [11]. 
More recently, there have been several demonstrations of Kerr-lens–mode-
locked Ti:sapphire lasers that use the Ti:sapphire alone as the nonlinear 
medium. In this section, we discuss an implementation that uses intracavity 
prisms for dispersion compensation [25] and one that only uses dispersion-
compensating mirrors [26]. 

The primary advantage of using an octave-spanning laser is that, by 
eliminating the microstructure fiber [27], issues of coupling and damage are 
also eliminated. Since the microstructure fiber has a very small core, the 
coupling is very alignment sensitive and tends to degrade with time. This 
poses a limit of approximately 10 hours on the duration of experiments. 
Although long enough for many applications, a proper clock needs to be able 
to run for days or longer. Damage to the microstructure fiber also limits the 
durations of experiments. However, there is significant variability as to how 
long it takes for damage to occur. Under some conditions, the fiber only lasts 
for hours, while under others it seems to last for weeks. 

For time-domain experiments that are affected by carrier-envelope phase, 
it is important to maintain a short (transform-limited) pulse. The large 
higher-order dispersion in the fiber coupled with high nonlinearity 
essentially makes this impossible, whereas with an octave-spanning laser, it 
is possible. 

With these advantages also come some disadvantages. The very high 
intracavity peak powers needed to obtain sufficient nonlinear spectral 
broadening makes these lasers susceptible to damaging the Ti:sapphire 
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crystal. This damage takes some time to occur but can limit the duration of 
experiments. In addition, the output spatial mode exhibits strong frequency 
dependence, which can also impact experiments. 

Intracavity continuum generation has been demonstrated in a Ti:sapphire 
laser that was operated in the self-Q-switching regime [28]. However, in this 
regime, the spectrum is unstable and therefore not useful for femtosecond 
comb applications. As described in Chapter 3, intracavity continuum 
generation has also been observed in high-repetition-rate lasers [29], but 
there was insufficient power at the octave points to implement ν-to-2ν 
stabilization. A 2ν-to-3ν scheme had to be used [30]. 

Finally, we would like to comment on the definition of “octave 
spanning.” The span of a spectrum is often taken as the width at some power 
below the peak (often full-width at half-maximum or perhaps even at the 10 
dB points). However, for femtosecond comb applications, there is a good 
operational definition of octave spanning, namely that it is possible to obtain 
ν-to-2ν beats. A slightly stronger version of this is that the beats are 
sufficiently strong to be used to stabilize the offset frequency of the laser. 
This criterion can be met even when the intensity at the octave points is as 
much as 40 dB below the peak.  

3.1 Octave-spanning laser using prisms 

The early designs for broadband Kerr-lens–mode-locked Ti:sapphire 
lasers [31] used a two-prism sequence for dispersion compensation [32]. 
Some mechanism for generating anomalous dispersion is needed to correct 
for the chirp acquired by the pulse as it passes through the normal dispersion 
Ti:sapphire crystal (and air for extreme bandwidth). The development of 
dispersion-compensating mirrors (also called “chirped mirrors”) [33], which 
have anomalous dispersion, meant that broadband mode locking could be 
achieved without prisms [34]. Dispersion-compensating mirrors not only 
provide anomalous dispersion, but they also have a much larger reflection 
bandwidth than standard dielectric mirrors. Incorporating both prisms and 
dispersion-compensating mirrors added additional flexibility in the design 
and enabled the production of sub-two-cycle pulses [10]. In this section, an 
octave-spanning laser that incorporates both prisms and dispersion-
compensating mirrors is presented. To meet the operational definition of 
“octave spanning,” we show that clean ν-to-2ν beats can be obtained and 
used to lock the offset frequency of the laser comb. 
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3.1.1 Design 

The prism-based–octave-spanning Ti:sapphire laser is an x-folded cavity 
that uses commercially available negatively chirped mirrors and intracavity 
CaF2 prisms for dispersion compensation, as shown in Figure 2-7. M1 and 
M2 (10 cm radius of curvature) are both double-chirped mirrors (DCM) 
designed to be used with CaF2 prisms [10]. M3 and EM are both negatively 
chirped LayertecTM mirrors,* part numbers 100466 and 101515, respectively. 
The output coupler (OC) is G034-007 from Spectra Physics* and the prism 
separation between the two CaF2 prisms is ~82 cm. The laser crystal is 2.3 
mm long and the pump focusing lens has a focal length of 10 cm. When the 
laser is pumped with 5.5 W of 532 nm light, the spectrum, at its broadest, 
extends from ~570 to ~1280 nm (-35 dB from the 800 nm portion of the 
spectrum). The average ML power is > 400 mW (100 mW cw) at an 88 MHz 
repetition rate. Mode locking is easily initiated by quickly changing the 
insertion of the prism furthest from EM. 
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M1 M2
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Figure 2-7. Schematic of laser and ν-to-2ν detection of f0. 

The continuum generated by the laser relies on the interplay between an 
enhancement of SPM and dispersion compensation, where the latter allows 
for the existence of the former. The exact choice of chirped mirrors, the 
prism separation, and the prism insertion appear not to be very important. 
Different combinations of mirrors for M1 and M2 (Layertec 101568), M3 
(DCM, Layertec 100466 and 101515) and EM (Layertec 100466 and 

 
* This information is given for technical purposes only and does not represent an endorsement 

on the part of the National Institute of Standards and Technology. 
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101515), and a protected silver mirror were tested and yielded octave-
spanning spectra. Also, two OC’s (Spectra Physics G034-007 and CVI Laser 
PR2 — 2% transmission @ 800nm) resulted in an octave of bandwidth. We 
have not been able to reproduce the octave spectrum using fused silica 
prisms. Apparently, in this case, the continuum generation does not result 
from meticulous dispersion compensation. This is not surprising since the 
continuum is created on a single pass through the crystal. As a result, careful 
dispersion compensation may only be necessary over the bandwidth 
indicated by the OC reflectivity and not the entire spectrum. 

The position of the curved mirrors is critical for producing an octave-
spanning spectrum. Typically, KLM is obtained by displacing one curved 
mirror away from the optimum mirror position for cw operation. Here, the 
mirror furthest from the pump is translated inward to the point that the laser 
is on the edge of stability for cw operation. This arrangement increases the 
discrimination between mode-locked and cw operation and requires the 
formation of a strong Kerr-lens to correct for the misalignment with respect 
to the pump. To optimize the bandwidth, both curved mirrors are then 
translated in the same direction away from the pump, just before the point 
where the laser begins Q-switching. 

3.1.2 Carrier-envelope phase stabilization 

30 dB

fr

ν-to-2ν beats

Frequency  

Figure 2-8. Rf spectrum showing a repetition rate peak and ν-to-2ν  heterodyne beats. 

To measure and stabilize the carrier-envelope phase in this laser, we 
implement the simplest self-referencing scheme, which compares the second 
harmonic on the low frequency extreme of the laser spectrum with the 
fundamental on the extreme high end of the spectrum (see Chapter 2). A ν-
to-2ν interferometer is used to measure f0. Specifically, f0 is obtained via 
optical heterodyne between the fundamental light of the laser spectrum at 
~580 nm and doubled light at ~1160 nm, see Figure 2-7. For the 
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measurements presented here, the signal-to-noise ratio of the offset-
frequency beat note, using the octave spectrum (see Figure 2-8), is greater 
than 30 dB at 100 kHz resolution bandwidth. Once measured, f0 is then 
stabilized by actively tilting the end mirror (EM) [35] with an in-loop-
accumulated phase error of 0.18 rad (1.65 mHz–102kHz), as shown in 
Figure 2-8. Because this is an in-loop measurement of the phase noise, it 
therefore may not be used alone to characterize the noise on the output of the 
laser. However, using the octave spectrum from the laser directly, we have 
eliminated the out-of-loop phase noise generated by microstructure fiber 
[36]. Also, because the prism-based ν-to-2ν interferometer used in the 
measurement of f0 minimizes non-common-mode mirrors, the dominant 
source of out-of-loop phase noise on the laser results from the feedback 
electronics.  
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Figure 2-9. Power spectral density of phase noise (left axis) and accumulated rms phase 
fluctuations (right axis). 

3.1.3 Frequency-dependent spatial mode  

Since the light in the wings of the spectrum is generated by self-phase 
modulation and is outside the gain bandwidth, it is not truly lasing and does 
not have to obey resonance conditions in the cavity. This means the spatial 
mode in the wings can vary significantly. This variation is relevant to f0 
detection as it can degrade the spatial-mode matching and thus limit the 
signal-to-noise ratio of the f0 beat note. It may also pose problems to pulse 
compression. This mismatch in mode profiles is depicted Figure 2-10. Figure 
2-11 shows the result of a 90/10 knife-edge method that was used to perform 
a second moment measurement of the beam profiles to yield the beam spot 
sizes as a function of wavelength [37]. From this result, we see that the 
spectral extremes exhibit a significant increase in asymmetry and deviation 
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away from the resonant Gaussian TEM00 mode and its corresponding 1/λ 
diffraction limit. �

587nm 612nm 664nm 690nm

1151nm1100nm1080nm

779nm 850nm 1000nm

587 nm 612 nm 664 nm 690 nm

720 nm 779 nm 850 nm 1000 nm

1080 nm 1100 nm 1120 nm 1051 nm

 

Figure 2-10. Beam profiles at various wavelengths. 
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Figure 2-11. Measured sagittal and tangential spot sizes as a function of wavelength (squares, 
left axis). Line shows laser spectrum (right axis). 

Measurement of the beam parameters at the output coupler, as shown in 
Figure 2-12, explains the increase in spot size in the wings of the spectrum. 
The beam waist shows a sudden decrease of the nonresonant as compared to 
the resonant modes. This decrease should cause a greater divergence in the 
wings of the laser spectrum, thereby leading to the larger spots sizes 
observed in the far field (see Figure 2-10). Figure 2-13 compares the 
measured beam divergence to that which would result from the propagation 
of a Gaussian TEM00 mode given the respective measured beam waists in 
Figure 2-12. The ratio of the former to the latter gives the M2 value as a 
function of wavelength, indicating the strength of the non-TEM00-Gaussian 
beam propagation (non-Gaussian modes and/or higher modes). 
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Figure 2-12. Waist size at output coupler as a function of wavelength for sagittal and 
tangential planes (squares, left axis). Output coupler transmission is line (right axis). 
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Figure 2-13. Measurement of beam divergence (squares) and predicted divergence based on 
waist size (lines). 

The mode profiles and the sudden decrease in waist in the extremes of 
the spectrum still need to be explained. For resonant modes, the cavity 
geometry determines the waist size and divergence. The beam characteristics 
of the nonresonant modes, however, can be directly influenced by the Kerr 
lens in the crystal and by diffraction and aperturing of optics without the 
self-correcting effects of the cavity. The Kerr lensing is considerable since 
intracavity continuum generation, for this laser, requires significant 
realignment away from ideal cw operation. This realignment results in a 
highly asymmetric cw beam (tangential waist/sagittal waist = 1.56) and a 
large discrimination in average output power between cw and mode-locked 
operation (4:1). The asymmetry implies that the nonlinear correction for the 
cw asymmetry may result in the formation of an asymmetric Kerr lens, 
which may explain the observed asymmetry in the wings of the spectrum. 
This mirror positioning also results in a different initial cw condition than for 
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“normal” KLM because it gives rise to a much more tightly focused cw 
beam than the pump beam (~ ratio of 4:1, calculated using ABCD cavity 
propagation based on the observed cw asymmetry). This leads us to the 
conclusion that the effect of the Kerr lens should be one that increases the 
waist of the mode-locked beam. The increased waist size improves the 
efficiency with which power is extracted from the pump beam and thus still 
acts as an effective saturable absorber. This is consistent with the observed 
beam waists (Figure 2-12), as the frequency at the very edges of the 
spectrum should be produced by a weaker Kerr lens than those of the 
resonant modes [37]. Complete modeling of the relationship between 
nonlinear effects in the crystal and pulse formation, however, is beyond the 
scope of this chapter but has been addressed elsewhere [16]. 

3.2 Prismless octave-spanning laser 

We have also built octave-spanning lasers where dispersion 
compensation is completely achieved by double-chirped mirror pairs [38] 
and thin BaF2 wedges for fine adjustment of the dispersion [26, 39]. 
Prismless lasers do have the advantage of being scalable to GHz repetition 
rates because of the compact dispersion compensation via chirped mirrors. 
Higher repetition rates mean higher power per mode at the same average 
output power, which is advantageous for frequency metrology. Also, the 
compactness of the cavity makes it less sensitive to temperature variations 
and environmental perturbations. 

3.2.1 Design 

The lasers consist of astigmatically compensated x- or z- folded cavities. 
The x-folded version is shown in Figure 2-14(a). The lasers have a 2 mm 
long Ti:sapphire crystal with an absorption of α =7 cm-1 at 532 nm. They are 
pumped by a diode-pumped, frequency-doubled Nd:vanadate laser. The 
radius of curvature (ROC) of the folding mirrors is 10 cm, and the pump lens 
has a 60 mm focal length. All mirrors in the cavity, with the exception of the 
end mirrors, are type I (gray) and type II (black) double-chirped mirrors 
(DCM) that generate smooth group-delay dispersion when used together in 
pairs [38]. Figure 2-9(b) shows the reflectivity and group delay of the DCM 
pairs. The total group delay is smooth from 600 to 1200 nm. The average 
reflectivity over the full octave can be as high as 99.9%. One cavity end 
mirror is a silver mirror and the other is a broadband output coupler, made of 
either ZnSe/MgF2 (80 MHz repetition-rate laser) or TiO2/SiO2 (150 MHz 
repetition-rate laser) coatings with 1% transmission. The output power in cw 
operation is typically 40 mW with 4.4 W pump power. In mode-locked 
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operation, the average power is 90 mW. The output power is limited by low 
output coupling and scattering losses in the OC coating and the silver mirror. 
Presumably, further optimization of output coupling and elimination of the 
silver mirror would increase laser efficiency. 
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Figure 2-14. (a) Schematic diagram of octave-spanning prismless laser. Gray and black 
mirrors are type I and II double-chirped mirrors (DCMs), respectively. The BaF2 wedges are 
used for fine-tuning of the dispersion. (b) Reflectivity (left scale) of the type I DCMs with 
pump window shown as thick solid line. The group-delay design is given by the thick, dash-
dotted line. The individual group delays (right scale) of type I and II DCMs are shown as thin 
lines and the average as a dashed line (almost identical to the design goal over the wavelength 
range of interest from 650–1200 nm). The measured group delay, using white-light 
interferometry, is shown as the thick solid line from 600–1100 nm. Beyond 1100 nm, the 
sensitivity of the Si detector limited the measurement. 

In one round trip of the laser pulse through the cavity, the total number of 
bounces on DCMs (12 bounces) generates the precise negative dispersion 
required to compensate for positive second- and higher-order dispersion 
caused by the laser crystal, the air path in the cavity, and the BaF2 wedge 
pairs used to fine-tune the intracavity dispersion. 

We used BaF2 for dispersion compensation because it has the lowest ratio 
of third- to second-order dispersion in the wavelength range from 600–1200 
nm, and the slope of the dispersion of BaF2 is nearly identical to that of air. 
These features make it possible to scale the cavity length and repetition rate 
without changing the overall intracavity dispersion. To achieve mode-locked 
operation, it is necessary to reduce the amount of BaF2 inside the laser cavity 
(by withdrawing one of the wedges). 

The broadest spectrum can be achieved by optimizing the insertion of the 
BaF2 wedge, so that the laser operates very close to the zero average-
dispersion point. In this case, the spectral width of the laser is critically 
dependent on the dispersion balance. With the prismless lasers, adjusting the 
dispersion does not significantly change the cavity alignment. Figures 2-
15(a) and (b) show the spectrum under broadband operation of an 80 MHz 
and a 150 MHz laser, respectively. The octave is already reached at a 
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spectral density about 25 dB below the average power level. The same plots 
also show the corresponding OC transmission curves. The detailed shape of 
this transmission curve is a determining factor in the width of the output 
spectrum, since it significantly enhances the spectral wings. A roll-off of the 
output coupler matched to the intracavity spectrum is necessary to generate 
the octave-spanning spectrum. 
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Figure 2-15. (a) Measured output spectra for lasers with 80 MHz repetition rate and (b) 150 
MHz repetition rate. In both cases, the octave is reached at approximately 25 dB below the 
average power level. The average mode-locked power is 90 mW for both lasers. Also shown 
(dashed lines) are the respective output coupler (OC) transmission curves for the ZnSe/MgF2 
Bragg-stack (a) and a broadband SiO2/TiO2 stack (b). Both have about 1% transmission at 
800 nm. 

3.2.2 Carrier-envelope phase stabilization 

We directly measure f0 by the ν-to-2ν technique described earlier, as 
shown in Figure 2-16(a). Using a dichroic beamsplitter, we split the laser 
output into long- and short-wavelength components and recombine them 
after insertion of a proper time-delay stage. The delay stage is essential to 
compensate for the difference in group delay between the 580 and 1160 nm 
radiation in the optical components (splitters, OC and BBO crystal). The 
recombined beam is then focused into a 1 mm BBO crystal cut for type I 
second harmonic of 1160 nm. The resulting output is sent through a 10 nm 
wide spectral filter centered at 580 nm. After projecting the doubled 1160 
nm light and the fundamental into the same polarization to enable 
interference, the beat signal is detected by a photomultiplier tube (PMT). 
Figure 2-16(b) shows the detected f0 beat signals with 10 kHz and 100 kHz 
measurement bandwidths. The signal-to-noise ratios are 30 dB and 40 dB, 
respectively. The f0 beat is very stable and the laser stays mode locked over 
many days. In the absence of active feedback and without any temperature 
control, the f0 frequency stays within the bandwidth of the bandpass filter 
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following the PMT, which is 8MHz, for more than 10 hours. On the time 
scale of seconds, the beat can jitter by about 100 kHz. The f0 lock only 
breaks because of a slow drift of the beat note out of the filter bandwidth of 
the 8 MHz filter, which is not yet controlled. 
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Figure 2-16. (a) Setup for f0 detection and lock. (b) Measured carrier-envelope beat signal 
from the 80 MHz laser. 

To demonstrate control over the comb, we filter the component fr + f0 at 
130 MHz from the PMT signal and phase lock it to a stable rf synthesizer 
using a phase-locked loop. To increase the locking range, the 130 MHz 
component of the signal is properly filtered and amplified, sent to a thirty-
two-fold frequency divider, and then compared with the synthesizer signal in 
a digital phase detector. The properly filtered and amplified phase-error 
signal controls the pump power via an acousto-optic modulator that directly 
controls the carrier-envelope frequency of the mode-locked laser.  

Figure 2-17 shows the measured phase-error spectral densities of the f0 
beat with and without active stabilization. The integrated phase error for the 
in-loop measurement is 0.2 rad (from 1 Hz to 10 MHz). The major 
contribution to this phase-noise error comes from the yet unsuppressed pump 
noise. We expect further improvement in the residual carrier-envelope phase 
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fluctuations with an improved loop filter design for stronger noise 
suppression. 

 

Figure 2-17. Spectral densities of the phase-error signal at the output of the digital phase 
detector for the f0 lock (solid line) and free running f0 (dashed line). 

4. CARRIER-ENVELOPE PHASE DYNAMICS 

The carrier-envelope phase evolution in a mode-locked laser depends on 
the pulse energy. This is not surprising as there is a nonlinear contribution to 
the phase shift of the intracavity pulse as it passes through the gain crystal. 
At the simplest level, this nonlinear phase shift happens because of the Kerr 
effect, i.e., the index of refraction depends on intensity and hence so does the 
optical path length. This is clearly an over simplification. Better insight is 
based on treating the pulse as a soliton. However, care is needed as classical 
soliton theory does not include the fact that the group velocity also depends 
on intensity (known as the “shock” term) or the fact that dispersion and 
nonlinearity in the laser are not constant as a function of position in the 
cavity. The intensity dependence of the carrier-envelope phase has both 
positive and negative aspects. On the positive side, it provides a parameter 
by which the carrier-envelope phase can be controlled. On the negative side, 
it means the amplitude noise will be converted to phase noise. 

One of the first experiments to measure carrier-envelope phase evolution 
(using a cross-correlator) observed its intensity dependence [12]. However, 
the slope, d∆φce/dI, had the opposite sign from what was expected based on 
classical soliton theory. This result was explained as being caused by an 
intensity-dependent shift in the spectrum. 

Subsequent theoretical work included the effect of the shock term [40]. It 
was found that the shock term causes the group velocity to change twice as 
fast with intensity as does the phase velocity. This fact results in an opposite 
sign of d∆φce/dI from what it would be if the shock term were ignored. 
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Further experiments using self-referencing to detect ∆φce showed that 
d∆φce/dI could actually change signs [41]. The results were consistent with 
the shifting of the spectrum with intensity also changing signs. These 
measurements also showed that for shorter pulses, ∆φce was much less 
sensitive to changes in the pulse intensity. This finding is consistent with 
theoretical work [40] but may also be simply due to clamping of the 
spectrum because of implicit spectral filtering in the laser. 

Numerical simulations of nonlinear pulse propagation in sapphire also 
show a change in the sign of d∆φce/dI that arises from warping of the 
envelope at high intensities [42]. There was no corresponding change in the 
direction of spectral shift, as was observed experimentally. However, this 
work only modeled propagation in sapphire and did not treat the rest of the 
laser cavity. 

More recent theoretical treatment based on a multiple-scales treatment of 
dispersion-managed solitons included both managed dispersion and 
nonlinearity [43]. Both shock and third-order dispersion were considered as 
well. The results confirmed the earlier conclusions [40], although the details 
varied because of differences in the treatment of and inclusion of additional 
effects. 

 At this point, a number of phenomena have been identified in theory and 
experiment, although a clear connection between them remains elusive. A 
further understanding is important as these effects, which are used to control 
∆φce, can also corrupt its stability and hence that of the generated spectral 
comb. 

5. SUMMARY 

The recent explosion in work on carrier-envelope phase stabilization of 
ultrashort pulses and the resulting stable frequency comb has been built on a 
foundation of mode-locked laser technology. The culmination of this has 
been the development of lasers that directly generate an octave-spanning 
spectrum. At the same time, the need for stabilization has pushed mode-
locked laser technology in new directions and forced the development of an 
improved understanding of the lasers.  
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Chapter 3 

GIGAHERTZ FEMTOSECOND LASERS 
The tools for precise optical frequency metrology 

Albrecht Bartels 
Time and Frequency Division, National Institute of Standards and Technology 

Abstract: Femtosecond lasers with a repetition rate of approximately 1 GHz are 
commonly used frequency comb generators for precise optical frequency 
metrology. They are conveniently compact, yield unambiguous frequency 
readings with the help of a commercial wavemeter, and can yield greater 
heterodyne beat signals against a cw laser than systems with lower repetition 
rates. This chapter reviews the technology of oscillators based on Ti:sapphire 
and Cr:forsterite that operate at repetition rates of up to 3.5 GHz. Aside from a 
discussion of these “standard” lasers with a typical full-width-at-half-
maximum (FWHM) bandwidth of 30 nm, one section is dedicated to the 
generation of a broadband continuum with a 1 GHz oscillator. This laser 
allows frequency measurements without additional spectral broadening and 
can be phase locked to a reference oscillator for uninterrupted periods 
exceeding one day.  

Keywords: mode-locked lasers, optical atomic clocks, optical frequency metrology 

1. INTRODUCTION 

The first report of a femtosecond laser based on Ti:sapphire as the gain 
material was published in 1991 [1]. Since then a number of research groups 
have attempted to increase the repetition rate from 100 MHz to even higher 
values. In 1998, right before the dawn of optical frequency metrology with 
femtosecond laser combs, the oscillators by Ramaswamy et al. [2] and Stingl 
et al. [3] were conceptually the most intriguing for realizing higher repetition 
rates. Both researchers employed a new, more compact method for 
intracavity dispersion management, replacing the long prism sequences that 
had been part of every femtosecond laser until then. The prior configuration 
had prevented repetition rates higher than ≈300 MHz.  
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Figure 3-1. Illustration of the advantages for frequency metrology of the frequency comb 
emitted by a 1 GHz femtosecond laser (left) compared to that of a 100 MHz laser (right). The 
length of the two sets of comb teeth (solid vertical lines) scales with the power per mode. The 
lengths of the gray horizontal bars represent the necessary resolution for premeasurement of 
the frequency to be measured (fT, indicated by the dashed line) to determine the index k of the 
mode against which fT is beat. 

In 1999 Udem et al. [4] demonstrated an optical frequency measurement 
with a femtosecond laser-based frequency comb for the first time. The comb 
was used to bridge the 18 THz wide gap between a calibrated reference 
frequency and the measured frequency fT . Soon afterwards, Jones et al. [5] 
showed that a femtosecond laser can be “self-referenced.” Self-referencing 
implies that both degrees of freedom of the optical frequency comb, the 
laser’s repetition rate fr and its carrier-envelope offset frequency f0, are 
accessible and controllable. Because f0 and fr are electronically manageable 
microwave frequencies, the entire optical frequency comb with a multitude 
of components νn = f0 + nfr (where n is a large integer) in the hundreds of 
terahertz range can be directly linked to a cesium clock and subsequently 
used for absolute measurements of optical frequencies. Since then, many 
groups have successfully used femtosecond lasers for optical frequency 
measurements and to realize optical atomic clocks [6].  

Even before these early experimental demonstrations of femtosecond 
laser-based optical frequency metrology, Reichert et al. [7] pointed out that 
repetition rates higher than the usually available 100 MHz would be greatly 
advantageous because they would yield a wider-spaced frequency comb. 
Typically in a frequency measurement, the result is given by fT = f0 + kfr + fb, 
where fb is the frequency of the heterodyne beat between fT and the 
neighboring frequency comb component with index k. While f0, fr, and fb can 
easily be measured, an unambiguous result for fT requires determination of k 
via a premeasurement of fT with a resolution of better than ± fr/2. In contrast 
to a 100 MHz system with a 1 GHz laser, this task is easily solved using a 
commercial wavemeter. (The best available wavemeter resolution within the 
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wavelength range of Ti:sapphire-based frequency combs is ≈100 MHz.) 
Also, with a cavity length of 30 cm, a 1 GHz oscillator is conveniently 
compact (commercially available models come in a ≈32×20×10 cm box) as 
compared to a 3 m long 100 MHz resonator. See Figure 3-1 for a comparison 
of the two systems. 

A femtosecond laser with a 1 GHz repetition rate yields ≈100 times more 
usable optical power per comb component (mode) than does a 100 MHz 
laser. This additional power increases the signal-to-noise ratio of a 
heterodyne beat signal against a continuous-wave (cw) laser, which is used 
as a local oscillator to realize fT, by the same amount. The factor of 100 is 
caused by two features of the femtosecond laser: First, the average output 
power of a well-designed Ti:sapphire laser is usually on the order of 25% of 
the absorbed pump power, regardless of the repetition rate. At a repetition 
rate 10 times higher, the average output power is distributed to one-tenth the 
number of modes, increasing the power per mode by a factor of 10. Second, 
the spectrally narrow output of a typical laser (FWHM ≈30–60 nm) needs to 
be broadened to span at least one octave via self-phase modulation (SPM) in 
a microstructure fiber [8] to allow self-referencing. However, nonlinear 
amplification of shot noise present on the input light limits the pulse energy 
that can be launched into a microstructure fiber and still attain usefully quiet 
output light [9, 10]. Above a threshold of ≈300 pJ of pulse energy, the excess 
noise on the fiber output grows exponentially. This behavior implies that a 
maximum average power of 300 mW in a 1 GHz system can be launched 
into a microstructure fiber. In comparison, only 30 mW can be sent into 
microstructure fiber in a 100 MHz system.  

Some problems remain, related mainly to the long-term reliability of 
frequency metrology systems and their ease of use. A great improvement 
was achieved in 2004 with a 1 GHz laser that readily spans a broadband 
continuum and can be self-referenced without the use of microstructure fiber 
for uninterrupted periods in excess of one day. This oscillator will be 
addressed in the last section. 

2. HIGH-REPETITION-RATE RING OSCILLATORS 

2.1 Design criteria and basic resonator layout 

The repetition rate fr of a passively mode-locked femtosecond laser is 
determined by the physical cavity length L and the round-trip-averaged 
group velocity gv : 
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Thus, increasing the repetition rate means shrinking the cavity length. The 
realization of gigahertz repetition rates for Ti:sapphire femtosecond lasers 
has been straightforward. A few simple specific design criteria now exist. 
They can be discussed in the context of a steady-state duration τ of a pulse 
circulating in a cavity in which only SPM, provided by the nonlinear 
refractive index n2 ≈ 3×10-16m2/W of the Ti:sapphire gain crystal, and 
negative group-delay dispersion (GDD), designated as D2, shape the pulse 
(see, for example, Reference [11]). This limit applies in good approximation 
to all Kerr-lens–mode-locked femtosecond lasers as long as higher-order 
dispersion is negligible: 
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where λ is the carrier wavelength, 0w  is the waist radius inside the laser 
crystal, d the length of the crystal, and EP the pulse energy.  

When shrinking a 100 MHz cavity to yield a 1 GHz repetition rate, the 
pulse energy PE is reduced by a factor of 10 (assuming constant average 
power). This results in a steady-state pulse duration 10 times longer. The 
combination of lower pulse energy and greater pulse duration reduces the 
peak by a factor of 100. This alone does not present a fundamental problem 
for achieving higher repetition rates. However, in practice Kerr-lens mode 
locking (KLM) is required to maintain stable pulsed operation over cw 
operation. A Kerr lens is induced by a high-intensity Gaussian beam profile 
in the Ti:sapphire crystal via its nonlinear refractive index. To achieve KLM, 
the cavity is arranged in a way that the Kerr lens modulates the net gain or 
loss of the cavity for a pulsed beam. Either it reduces the net cavity losses by 
increasing the transmission through a hard aperture (e.g., a slit) at an 
appropriate position in the resonator (hard-aperture KLM), or it increases the 
net gain by increasing the overlap with the finite gain volume inside the 
crystal (soft-aperture KLM). KLM gets more efficient with higher peak 
intensity. (High pulse energies and short pulse widths in the cavity are 
essential.) Thus the reduction of peak power due to the increased repetition 
rate must be compensated for. This is accomplished by reducing the amount 
of output coupling with respect to a 100 MHz oscillator (from ≈10% to ≈1%) 
and shrinking the waist radius w0 inside the gain crystal by tighter focusing. 

The second major concern is the achievement of negative net-GDD in the 
cavity. The standard method of employing a four-prism sequence (or a 
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double-passed, two-prism sequence) fails for high repetition rates because 
even with highly dispersive materials, an apex distance of ≈30 cm per prism 
pair is required [12]. This requirement sets an upper limit of ≈300 MHz on 
the repetition rate. An elegant way to replace a prism sequence is by using 
negative dispersion mirrors that reflect light with longer wavelengths from a 
deeper region in the coating than light with shorter wavelengths. A variety of 
structures has been developed, of which only Gires-Tournois interferometer 
(GTI) mirrors and chirped mirrors are used here [13].  

 

Figure 3-2. (a) Four-mirror cavity with the gain crystal enclosed by focusing mirrors M1 and 
M2. The flat mirror M3 and the output coupler (OC) form the collimated part of the cavity. 
The pump light enters the crystal through lens L and M1. (b) Equivalent to (a) but with extra 
folding using flat mirrors M4 and M5. 

The ring oscillators shown in Figure 3-2 are the basis for all lasers 
presented here. A ring configuration has been chosen for geometrical 
reasons. With a given number of components, it allows a higher repetition 
rate than a linear cavity. Also, ring cavities are less sensitive to back-
reflections. In the following sections, the cavities will be discussed in detail 
along with actually realized lasers.  

As with all Kerr-lens–mode-locked femtosecond lasers, these oscillators 
need an initial perturbation, such as tapping a mirror mount, to generate an 
intracavity power fluctuation that builds up to a stable circulating 
femtosecond pulse. As opposed to cw operation, which is bidirectional, 
mode-locked operation is unidirectional and starts in a random direction 
[14].  
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2.2 Standard Ti:sapphire lasers for 0.3–3.5 GHz 
repetition rate 

The four-mirror cavity, as shown in Figure 3-2(a), is usually employed to 
achieve the highest repetition rates because it can be made the most compact. 
The cavity contains a Ti:sapphire crystal of length d=1.5 mm (absorption 
coefficient α=5 cm-1) that is pumped with a frequency-doubled Nd:YVO4 
laser at 532 nm through lens L with fL = 30 mm. The crystal is placed at 
Brewster’s angle between mirrors M1 and M2. The pump beam radius inside 
the crystal is ≈10 µm. Mirrors M1 and M2 have a focal length of 15 mm, 
leading to a calculated waist radius of the resonator mode inside the crystal 
between 8 and 20 µm for repetition rates ranging from 0.5 to 3.5 GHz. The 
angles at which the intracavity beam is reflected off M1 and M2 are set such 
that the cavity is astigmatically compensated [15]. The crystal introduces a 
GDD of ≈87 fs2 at 800 nm wavelength. Chirped mirrors with a GDD of ≈ 
-45 fs2 at 800 nm are used for M1–M3 to achieve a net GDD of ≈ -48 fs2 (the 
GDD of the OC is negligible). The output coupler has a reflectance of 98%, 
and the cavity length is set to yield a repetition rate of 2 GHz. 

This laser is operated at pump powers between 1.8 and 5.5 W. Figure 3-3 
shows output power as a function of pump power with a rather low slope 
efficiency of 13.6%. The low efficiency is due to the short gain crystal, 
whose length is limited by the constraint to achieve a negative net GDD. 
However, if the absorbed pump power is considered, the slope efficiency 
rises to 25.8%.  

Figure 3-4(a) shows a measured autocorrelation trace of the laser output 
when operating at 5.5 W pump power after compensation of extracavity 
dispersion by multiple reflections off a pair of chirped mirrors. The envelope 
of a 24 fs long pulse, assuming a sech2(t) intensity profile, is fitted to the 
trace, showing good agreement. Figure 3-4(b) shows the corresponding 
output spectrum with a FWHM of 32 nm. The time-bandwidth product of 
0.35 deviates slightly from the ideal of 0.315. The inset of Figure 3-4(a) 
shows the pulse duration of the same laser operated at different intracavity 
pulse energies. (Variation of the pulse energy was attained by changing the 
pump power.) The theoretical pulse durations as a function of pulse energy, 
as in Equation (2), are also plotted in the inset and agree well with the 
experiment. (w0 was calculated using ABCD matrices to generate the 
theoretical curve.) The agreement between theory and experiment confirms 
that SPM and GDD dominantly shape the pulses in this laser; thus, pulse 
width and bandwidth can be easily and well controlled. 
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Figure 3-3. Laser output power as a function of incident pump power for the four-mirror 
(triangles) and six-mirror (squares) lasers described in the text. The solid lines are linear fits 
to the datasets. 
 

Attempts to further shorten the pulse duration were undertaken by 
reducing 2D . We found a limit at 14 fs (at a spectral bandwidth of 70 nm 

FWHM) due to higher-order terms in the intracavity dispersion.  

 

Figure 3-4. (a) Interferometric autocorrelation trace of the pulses from the four-mirror laser at 
5.5 W pump power. Inset: Pulse duration as a function of intracavity pulse energy (squares) 
and theoretical values according to Equation (2). (b) Corresponding output spectrum. Inset: 
Series of output spectra of a continuously tunable version of the six-mirror cavity [16].  
 

Often neglected in scientific papers, but important for real-world 
applications, is the beam quality of a femtosecond laser. Figure 3-5(a) shows 
a beam profile of the four-mirror cavity recorded at the focus after focusing 
the laser output with a lens of 200 mm focal length. It shows no noticeable 
deviation from circular symmetry. Figure 3-5(b) shows a cross section 
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through the beam profile with a fitted Gaussian, again with no noticeable 
deviation from ideal. A measurement of the M2-factor has been performed, 
yielding values of 1.1 for both tangential and saggital planes. (See Reference 
[17] for a definition of M2.) The excellent beam quality is attributed to the 
fact that spatially dispersive elements are absent in the cavity. 

With the four-mirror cavity, repetition rates between 1 GHz and 3.5 GHz 
were attained. The upper limit was set by geometrical constraints, i.e., it has 
not been possible to move the components closer together. It is anticipated 
that even higher repetition rates of up to 10 GHz are feasible by minimizing 
mechanical components and further reducing the focal lengths of M1 and 
M2. The disadvantage of this cavity is that the short-gain crystal results in a 
relatively low output power. 

 

Figure 3-5. (a) Mode profile of a four-mirror laser at the focus of a 200 mm lens. (b) Cross 
section (squares) through the profile shown in (a) and fit with a Gaussian (solid line).  

Folding with two additional negative dispersion mirrors in the cavity as 
in the six-mirror configuration shown in Figure 3-2(b) allows one to use a 
longer Ti:sapphire crystal, achieve more gain, and, at the same time, ensure a 
negative net GDD in the cavity. This approach is favored when higher output 
powers and moderate repetition rates are required. The oscillator depicted in 
Figure 3-2(b) has a crystal of length d = 2.5 mm and an absorption α = 5 cm-

1. It employs the same chirped mirrors that were used for the four-mirror 
cavity in positions of M1–M5 and has a repetition rate of 1 GHz. The net 
cavity GDD in this case is -80 fs2. With a 2% output coupler, the output 
power as a function of incident pump power is shown in Figure 3-3. The 
slope efficiency is 20%; with respect to the absorbed pump power, it is 28%, 
comparable to that of the four-mirror laser. At the highest available pump 
power of 10.5 W, a remarkably high output power of 2.1 W is attained.  

With respect to output spectra, pulse duration, and beam quality, the six-
mirror cavity performs equivalently to the four-mirror cavity. It has been 
realized at repetition rates between 300 MHz and 2 GHz. 
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The two oscillators described in this section are widely used frequency 
comb generators for optical frequency metrology. They are commonly 
operated between 0.8 GHz and 1 GHz. This range has proven to be the best 
compromise between high-repetition rate and sufficient pulse energy to 
generate an octave-spanning spectrum in common microstructure fibers. 
(See e.g., Reference [18] for a typical octave-spanning spectrum from a 1 
GHz four-mirror laser and a microstructure fiber.) 

The six-mirror cavity has also been realized in a wavelength-tunable 
modification at a repetition rate of 1 GHz [16]. A half-Brewster prism was 
used to introduce spatial dispersion into the resonator with the effect that 
horizontally tilting a cavity mirror allowed continuous tunability from 733 to 
850 nm with pulse durations of ≈40 fs. A series of output spectra is shown in 
the inset of Figure 3-4(b). 

2.3 Cr:forsterite oscillator at 433 MHz — extension to 
telecommunication wavelengths 

It is a logical step to extend the concept that has successfully been used 
with Ti:sapphire to gain media that operate at longer wavelengths. One 
reason is to obtain access to the telecommunication bands and thus be able to 
calibrate and characterize system components, such as wavelength 
references or wavelength-division multiplexing filters, in that region. A 
second goal is to generate a mode-locked spectrum that is adjacent to and 
that can be phase coherently combined with the output spectrum of a 
Ti:sapphire laser (specifically the one described in the next section) to 
generate an extraordinarily broad “superfrequency comb.” The gain material 
that is best suited for both tasks is Cr:forsterite, which has a gain spectrum 
extending from wavelengths of ≈1150 to 1350 nm. 

A femtosecond laser with Cr:forsterite was realized at a repetition rate of 
433 MHz in the six-mirror configuration [see Figure 3-2(b)] [19]. The 10 
mm gain crystal with an absorption coefficient of α=1.1 cm-1 at 1075 nm is 
significantly longer than in the Ti:sapphire lasers to allow for sufficient 
pump light absorption. The crystal is pumped with 10 W from an Yb:glass 
fiber laser emitting at 1075 nm through a lens with fL = 40 mm. The crystal is 
cooled to 0° C to increase the gain and to reduce problems with thermal 
lensing. (Cr:forsterite has a thermal conductivity ≈5 times lower than 
Ti:sapphire.) The focal lengths of mirrors M1 and M2 are 25 mm; they are 
longer than what has been used for the Ti:sapphire lasers to better match the 
confocal length of the cavity mode to the length of the gain crystal. With 
chirped mirrors at positions M1–M3, a GTI mirror at M4, a low-dispersive 
high reflector at M5, and the GDD of the gain crystal of 185 fs2 [20], the net 
GDD is ≈ -260 fs2. A 1.5% transmission output coupler at 1280 nm is used.  
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The mode-locked output power of this laser is 620 mW. A spectrum of 
the output pulses is shown in Figure 3-6. The spectral bandwidth is 59 nm 
centered around 1280 nm. The pulse duration of 30 fs was determined with 
an intensity autocorrelation measurement. 

Alignment of this laser for stable mode locking is more difficult than for 
Ti:sapphire lasers. Ti:sapphire lasers consistently mode lock at the inner 
edge of the cavity’s stability range, as expected from modeling KLM. This 
systematic guideline for finding mode-locked operation does not work in 
Cr:forsterite because of thermal lensing. However, once a working point has 
been found, the laser’s operation is reliable and reproducible. Mode-locked 
operation has been observed uninterrupted for up to seven days. 
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Figure 3-6. Output spectrum of the Cr:forsterite laser (solid line) and spectrum after 
broadening in a highly nonlinear Ge-doped silica fiber (HNLF) (dashed line).  

The output from this laser was successfully broadened via SPM in highly 
nonlinear Ge-doped silica fiber (HNLF) to form a frequency comb that spans 
more than one octave [19, 21], as shown in Figure 3-6. This frequency comb 
has been referenced to the National Institute of Standards and Technology’s 
(NIST’s) Ca optical frequency standard and a cesium atomic clock. Its utility 
for optical frequency measurements was demonstrated by Corwin et al. [22] 
who used the broadened Cr:forsterite comb for the characterization of 
telecommunication-band frequency standards.  

The creation of a phase-coherent superfrequency comb, ranging from  
wavelengths of 570 to 1450 nm, was demonstrated by actively linking the 
output of the Cr:forsterite laser, described above, and a broadband 
Ti:sapphire laser described in the next section [23]. 
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3. BROADBAND TI:SAPPHIRE OSCILLATOR 

A new type of extremely broadband femtosecond laser has been realized 
with a slight modification of the four-mirror cavity described earlier [see 
Figure 3-2(a)]. The modified cavity has a convex mirror with a radius of 
curvature of 1 m at the position of M3. M1, M2, and M3 are chirped mirrors. 
The output coupler has a transmission of 2% at 800 nm. The net intracavity 
dispersion of the resonator, including air and the Ti:sapphire crystal (d = 2.0 
mm), and the mirror reflectivities are shown in Figure 3-7. The net GDD at 
800 nm is ≈ -20 fs2. When the cavity is operated close to the inner edge of its 
stability range, continuous translation of mirror M2 towards M1 results in 
bidirectional mode locking and stages of stable and chaotic multipulsing in 
two directions and in one direction until a state with a single stable pulse 
circulating unidirectionally in the cavity is reached. At a pump power of 10.5 
W, the mode-locked output power is ≈1 W. The cavity length is adjusted to 
yield a 1 GHz repetition rate. 

 

Figure 3-7. Left panel: Net cavity group-delay dispersion (GDD) of the broadband laser. 
Right panel: Reflectance of the chirped mirrors (solid line) and the output coupler (dashed 
line). 

The output spectrum of the laser is shown in Figure 3-8. It spans from 
570 to 1100 nm at a power level of 1 nW per 1 GHz frequency mode. (1 nW 
per mode is the power typically required to measure a beat note against a 
milliwatt-scale cw laser with sufficient signal-to-noise ratio for a frequency 
measurement.) The spectrum has pronounced maxima at 670 nm, 845 nm, 
900 nm, and 927 nm. The peak around 670 nm can be isolated by a double 
reflection off a pair of 657 nm high reflectors, leading to the spectrum shown 
in the inset of Figure 3-8(b). It contains 450 mW of average power. 

The duration of the output pulses has only been roughly characterized by 
using an intensity autocorrelation measurement. Assuming a temporal sech2 
shape, it is 11 fs when the nonlinear crystal is angle-tuned to optimally phase 
match the central part of the spectrum. The peak around 670 nm yields 
bandwidth-limited pulses of 33 fs after isolation from the longer-wavelength 
part of the spectrum. 
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Figure 3-8. (a) Output spectrum of the broadband laser on a logarithmic scale (solid line). At 
a level of 1 nW per 1 GHz mode, it extends from 570 to 1100 nm. The dashed line shows a 
simulated spectrum, offset by 20 dB for clarity. (b) Output spectrum of the broadband laser on 
a linear scale. Inset: spectrum after reflection off a pair of 657 nm high reflectors. 

3.1 How does it work?  

The performance of this laser is extraordinary in a number of respects: 
First, when mode locking is stopped (e.g., by briefly intersecting the pump 
beam) and the laser falls back into cw operation, the output power drops by 
more than an order of magnitude to about 60 mW. Assuming that a Kerr-
lens-based effective saturable absorber is responsible for this behavior, a 
simple rate equation model leads to the conclusion that ≈30% saturable 
absorption is required to explain this drop. This high saturable absorption 
contrasts with what is usually observed for standard Ti:sapphire femtosecond 
lasers, which have an effective saturable absorption of ≈1–2%. Second, 
considering the fact that Ti:sapphire has no gain below 690 nm, the 450 mW 
of power contained in the peak around 670 nm is very remarkable and 
indicates that this strong component is generated during only a few round 
trips through the cavity. Finally, assuming that SPM and GDD dominate 
pulse shaping, mode locking of the laser at such extreme bandwidth should 
not be possible. The strong GDD modulation and the positive values outside 
a band ranging from 700 to 850 nm should quickly spread the pulse and 
prevent mode locking (see Figure 3-7 for the net intracavity dispersion). 

To get an idea of how this laser functions, it is helpful to review the two 
practical routes towards shorter pulses and broader spectra in a femtosecond 
laser. One approach is to engineer the dispersion inside the resonator in a 
way that short pulses with extremely broad spectra do not spread in time 
during a cavity round trip. This involves careful design of mirrors to have 
negative GDD over the desired large bandwidth and compensate for the 
positive-gain crystal dispersion with a low net-higher-order dispersion. This 
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approach has been taken with great success by Ell et al. [24]. Their carefully 
engineered intracavity dispersion is capable of generating spectra exceeding 
one octave with 5 fs pulses at a repetition rate of 64 MHz. In our case, 
however, because of the narrow bandwidth of the chirped mirrors, both with 
respect to their dispersive and reflective properties, this limit is inapplicable. 
Alternatively, one can allow higher-order dispersion in the resonator but, at 
the same time, ensure that the leading and trailing edges of the temporally 
spreading spectrum are sufficiently suppressed, such that only a short pulse 
remains stable in the cavity. This effect can be attained by employing an 
effective fast saturable absorber. In the case of our Ti:sapphire lasers, this 
effective saturable absorber is provided by a soft aperture KLM (see Section 
2.1). While this effect is actually a self-gain modulation, it can theoretically 
be treated as an equivalent fast saturable absorber. These effects are more 
generally referred to as self-amplitude modulation (SAM). 

There are strong indications that the broadband laser described above 
operates in the limit of an increased SAM. The strongest support for this idea 
is the experimental observation that the mode-locked output power and the 
continuous output power of the laser differ by more than an order of 
magnitude. This difference indicates that the Kerr-lens-induced effective 
saturable absorber has a saturable absorption of approximately 30%. 
Theoretical calculations of the change in beam waist diameter inside the gain 
medium (i.e., the soft-aperture Kerr-lens effect) show that replacing flat 
mirror M3 with a slightly convex mirror (in our case with a radius of 
curvature of 1 m) can increase the SAM of pulses circulating in the ring 
cavity [25]. While the theory applied to calculate this effect is valid only at 
power levels of about a factor of four below the power at which our 
oscillator operates, it still has provided a clue to understanding this new type 
of femtosecond oscillator. 

A full theory explaining why the convex mirror leads to a stronger 
effective saturable absorber does not yet exist. However, modeling the 
resonator with a split-step Fourier simulation allows us to understand why 
this laser functions. The model includes the Ti:sapphire gain spectrum and 
dispersion, all reflective amplitude and phase properties of the cavity 
mirrors, SPM, and a fast saturable absorber (of the same type as used by 
Chen et al. [26]). The dashed curve in Figure 3-9 shows a simulation of a 
cavity with the same mirrors as the broadband laser cavity but with a shorter 
crystal (d = 1.5 mm) and a saturable absorption of qsat. = 2%. Its net GDD at 
800 nm is -45 fs2. It represents a standard laser with a relatively narrow 
spectrum of 45 nm bandwidth. An attempt to get shorter pulses from this 
laser by increasing the net cavity GDD to ≈ -20 fs2 by using a longer crystal 
(d = 2.0 mm) fails because the simulation does not yield a stable solution 
anymore. Higher-order dispersion spreads the seed pulse and randomizes its 
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phase. However, when qsat. is increased to 30% for the d = 2 mm 
configuration, the model again delivers a stable solution, shown as the solid 
line in Figure 3-9. The solution corresponds to the new broadband laser 
where, despite dominant higher-order dispersion, a stable mode-locked 
solution is obtained because of the pulse-cleaning effect of the enhanced 
SAM. This simulation agrees very well with the experimental spectrum in its 
main features, which include the pronounced peaks at ≈670 nm and ≈900 
nm, the asymmetric central contribution around 835 nm, and the spectrum’s 
approximate width [see Figure 3-8(a)]. 
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Figure 3-9. Modeled output spectra of a standard laser (d = 1.5 mm, qsat.= 0.02) and a 
broadband laser (d = 2.0 mm, qsat. = 0.3) using a split-step Fourier simulation. 

3.2 Application in frequency metrology and optical 
clocks 

As previously explained, optical frequency metrology and optical-clock 
designs require measurements of both degrees of freedom of a femtosecond 
laser, its repetition rate fr and its carrier envelope offset frequency f0. This 
section briefly discusses how the broadband 1 GHz laser described in the last 
section is different from (and offers advantages over) the standard 1 GHz 
laser because of the way that the new laser’s offset frequency is measured. 

The standard ν-to-2ν-scheme for measuring f0 is to frequency double a 
low-frequency portion of the laser spectrum (typically ≈1100 nm) and beat it 
against a spectral matching, high-frequency part of the fundamental 
spectrum (≈550 nm) [5]. This approach requires a spectrum covering at least 
one octave. For standard lasers, the only way to attain such a broad spectrum 
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has been SPM in microstructure fibers. However, coupling light into the core 
of fibers with a diameter less than 2 µm is a difficult task. As SPM is a third-
order nonlinearity, slight changes in coupling efficiency can result in large 
changes of the attained spectrum and usually limit the time over which a 
measurement of f0 can be maintained with sufficient signal-to-noise ratio. 
Apart from that, microstructure fibers also limit the amount of useful 
average power achievable for the continuum spectrum because the nonlinear 
broadening process inherently amplifies both technical and shot noise 
present on the input light. (References 10 and 27 provide an overview on 
noise amplification during supercontinuum generation in microstructure 
fibers.) 

The broadband laser allows one to circumvent these problems with 
microstructure fiber because its broad spectral coverage allows for a direct 
measurement of its offset frequency. Although the output spectrum has 
wavelength components that are one octave apart, the power contained in 
them is too low to facilitate a measurement of f0 using the standard ν-to-2ν 
method. Therefore, we employ a 2ν-to-3ν method: A portion around 930 nm 
is frequency tripled and beat against the second harmonic of a portion 
around 620 nm to yield a signal at f0. Details of this setup can be found in 
Ramond et al. [28]. 

Although the 2ν-to-3ν method is more complicated than the standard 
method, the broadband laser has an unprecedented long-term stability as a 
frequency measurement tool. First, it routinely stays mode locked for periods 
of many days (>1 week demonstrated) without noticeable changes to its 
output power or spectrum. Second, the f0 signal usually has a signal-to-noise 
ratio of 25–30 dB in the 300 kHz bandwidth and does not degrade over time 
because of the absence of microstructure fiber in the measurement apparatus. 

In a test of its long-term stability, we have operated the laser in an optical 
clock configuration. Here, the repetition rate fr of the broadband laser is 
phase locked to a cavity-stabilized single-frequency laser diode at frequency 
fLD = 456 THz that represents the optical frequency standard that would be 
used in an optical clock. Specifically, a beat between the laser diode and the 
neighboring component of the frequency comb with frequency fb has been 
phase locked to a synthesizer at 600 MHz by feedback to the femtosecond 
laser’s cavity length via a mirror mounted onto a piezoelectric transducer. 
(All synthesizers were referenced to the NIST primary standard.) 
Additionally, f0 was phase locked to a synthesizer at 100 MHz by feedback 
to the pump power via an acousto-optic modulator. It can be shown that fr 
now derives its frequency and instability entirely from the laser diode or, in 
the case of an optical clock, from the optical frequency standard and is 
effectively the microwave output of the optical clock [23]. We then counted 
f0, fb and fr simultaneously with frequency counters at 10 s gate time. The 
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offset of the counter readings from their preset values (f0 = 100 MHz, fb = 
600 MHz, set by the synthesizers; fr = 998,092,449.54 Hz, defined by fLD and 
the choices of f0 and fb) over a period of 21 hours are displayed in Figure 3-
10. The data set shows uninterrupted and hands-off operation of the f0 phase 
lock for 21 hours with counter-resolution-limited deviations on the millihertz 
scale until the system was turned off. The phase lock on fb operated similarly 
for ≈14 h with only one detected feedback-loop error (cycle slip) at ≈4 h, i.e., 
≈10 h of continuously phase-locked data were obtained. The failure at ≈14 h 
was likely caused by the failure of the stabilization of fLD to the Fabry-Perot 
cavity that prevented the feedback loop from tracking the diode laser 
frequency rather than failure of the femtosecond laser itself. As fr represents 
a measurement of the laser diode frequency (fLD = f0 + nLD fr + fb, where nLD is 
the mode number of the frequency comb component against which fLD is 
beat), the time record of the offset of fr from 998,092,449.54 Hz can be 
multiplied with nLD = 456,857 to give a record of the temporal drift of the 
Fabry-Perot cavity on the right axis of the graph in Figure 3-10. The cycle 
slip in the fb feedback loop does not appear in the fr record because the effect 
of the 120 mHz excursion in fb results in an error of 260 nHz in fr, which is 
below our measurement limit. 

These results show that the broadband laser facilitates a phase-coherent, 
cycle-slip-free link between an optical oscillator at 456 THz and the 1 GHz 
laser repetition rate for 10 h. In other words, we have the ability to count 
1.6×1019 optical cycles at 456 THz without ever losing track of the 
oscillation. It has also been shown that fr and f0 of the broadband laser can be 
continuously phase locked to a synthesizer for more than 48 hours. 

4. CONCLUSION 

Ti:sapphire ring oscillators at 1 GHz repetition rate are currently the best 
available frequency comb generators for optical frequency metrology. They 
are compact, have a conveniently large comb spacing, and yield 100 times 
more power per mode than conventional 100 MHz lasers. Their simple ring-
laser architecture employing negative dispersion mirrors for GDD control 
allows repetition rates between 300 MHz and 3.5 GHz with Ti:sapphire. The 
concept is extendable to other gain media, as has been demonstrated with 
Cr:forsterite at 433 MHz repetition rate. 
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Figure 3-10. (a) A record of consecutive counter readings at 10 s gate time for the phase-
locked f0. The preset value of 100 MHz has been subtracted. (b) The simultaneously measured 
offset of fb from 600 MHz. In this plot, one cycle slip of the phase-locked loop controlling fb 
has occurred. (c) A time record of the offset of the laser repetition rate from 998,092,449.54 
Hz (left scale) that can be translated into a drift of fLD (right scale). 

The most critical development has been the 1 GHz broadband Ti:sapphire 
laser that eliminates troublesome microstructure fibers from optical-
frequency-measurement setups. This laser has enabled the construction of an 
optical clockwork with an unprecedented continuous operation time in 
excess of 48 hours. This laser might also become interesting in basic 
research as a source of femtosecond pulses in the range from 620 to 690 nm. 
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Abstract: Microstructure fibers have played a key role in the production of coherent 
frequency combs that span more than an octave of bandwidth. In this chapter, 
we review the fabrication process for such fibers and their linear and nonlinear 
optical properties. We also discuss the underlying physical processes that give 
rise to supercontinuum generation. 

Key words: microstructure fiber, supercontinuum generation, ultrashort pulse propagation, 
fiber dispersion 

1. INTRODUCTION 

The unlikely merger of ultrafast optics, microstructure fibers, and 
nonlinear optics with frequency stabilization techniques has led to a 
revolution in frequency metrology. Development over the past decade of 
ultrafast solid-state laser systems, such as Ti:sapphire, has resulted in laser 
oscillators that can produce sub-100 fs, nanojoule-energy mode-locked 
pulses in the near infrared (IR). In parallel, novel single component fibers 
with cross sections consisting of regularly spaced air holes were created [1] 
that for large air holes allowed the creation of waveguides that strongly 
confine the light field to a small area and shift the zero dispersion point of 
the fiber close to the operating wavelength of the Ti:sapphire oscillators. The 
combination of the high peak intensities due to strong light confinement and 
the large effective interaction lengths in the fibers results in a highly intense, 
nonlinear interaction that can generate a remarkably broad-bandwidth 
spectrum spanning more than an octave of the central laser frequency [2]. 
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This coherent white-light spectrum is precisely what is needed to stabilize 
the underlying frequency comb of the mode-locked laser oscillator. It has 
also led to other applications such as optical coherence tomography [3].  

In this chapter, we review the basic properties of microstructure fibers, 
how they are fabricated, and the underlying physics of supercontinuum 
generation using ultrashort laser pulses in these fibers.  

2. MICROSTRUCTURE FIBER FABRICATION 

Microstructure fibers have unique properties and can deliver 
functionalities superior to many of the best transmission and specialty fibers. 
Their unique properties are obtained from an intricate cross section of high- 
and low-index regions that traverse the length of the fiber. The vast majority 
of these fibers consist of silica for the high-index region and air for the low-
index region. These fibers are known by several different names including 
microstructure fiber, holey fiber, and photonic crystal fiber.  

The index profiles that make these fibers unique can also lead to 
inherently high loss. Loss occurs at connections launching light in and out of 
the fiber and along the length of the fiber. Light is launched into these fibers 
by free-space optics, low-temperature fusion splicing, or butt coupling. For 
microstructure fibers with small cores, coupling with free-space optics 
produces the smallest insertion loss. Loss due to significant mode mismatch 
occurs when splicing or butt coupling standard fibers to small-core 
microstructure fibers. Attenuation along the fiber length can occur because 
of impurities, hole surface roughness, or poor confinement but is presently 
low enough that it is not important for most device applications. 

Like traditional fibers, microstructure fibers are fabricated in a two-step 
process. First, a large-scale template of the fiber, called a preform, is 
fabricated. Second, the preform is drawn (stretched) into a fiber, typically 
kilometers in length. However, new preform fabrication and draw techniques 
had to be developed to incorporate air holes in the preform and have them 
remain through draw. 

2.1 Preform fabrication 

Preforms are long cylinders, typically less than a few centimeters in 
diameter, that closely match the structure of the desired fiber. Their large 
scale, compared to fiber, makes them easy to handle when assembling the 
desired microstructure pattern. They are typically composed of silica with air 
holes running uniformly along their length. Other amorphous materials are 
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also being explored such as polymers and highly nonlinear multicomponent 
glasses. 

The basic parameters of the fiber are hole size, hole position, pitch 
(center-to-center hole spacing), core diameter, and number of layers. They 
are usually determined by the geometry of the holes in the preform. 
However, changes in the size and shape of the fiber’s holes can be made 
purposely or accidentally during draw, causing deviations between the fiber 
and preform profiles. 

The most common method used to fabricate microstructure fibers is to 
stack tubes, rods, and core rods (rods containing doped cores) in a closely 
packed arrangement such as a triangular or hexagonal lattice (Figure 4-1). 
This assembly is bound together by a large tube, called an overclad tube. 
Fibers can be made with complicated or asymmetric index profiles by 
strategically placing tubes with the same outer diameter (for good stacking) 
but with different inner diameters to change the index profile in that region. 
For example, a birefringent fiber can be produced by placing smaller holes 
on opposite sides of the core.  

 

Figure 4-1. Left: Drawing of a preform fashioned from a close-pack arrangement of tubes and 
rods. Right: A scanning-electron-microscope (SEM) micrograph showing the fiber after the 
preform is drawn. 

The main advantages of stacking are that no special equipment is needed 
for fabricating preforms and that doped cores can be easily added. However, 
there are several disadvantages: First, the stacking method is limited to 
simple geometries of the air holes because the tubes are stacked in a closely 
packed arrangement. Second, unless hexagonal tubes are used, interstitial 
areas are created between the tubes that may not be desired in the final fiber. 
Third, the method is labor intensive and requires significant glass handling, 
making it difficult to produce ultralow-loss fiber because of impurities.  

Several alternative methods are being used to fabricate microstructure 
performs, including casting, extrusion, and drilling. Like stacking, each 
process has its advantages and disadvantages. The methods most likely to 
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replace or coexist with stacking are extrusion and casting. These processes 
have the advantage of not requiring precision tubing and are ideal for 
polymer, sol-gel slurry, or low melting-point glass. The main advantage of 
extrusion and casting is that complicated structures can be fabricated in 
which the position, size, and shape of the air regions are independent of one 
another. These methods may become more common as complex air 
structures are needed to make advanced microstructure fibers. 

Another method consists of drilling holes in a traditional preform or rod. 
Drilling is well understood and is used for other specialty fibers. The 
advantage of this method is that it is easy to put variously sized holes in any 
position in a preform, including doped regions. The disadvantages are that 
the holes cannot be drilled very deep compared to a standard preform length; 
the distance between holes may be limited due to cracking; and the fiber may 
experience high loss due to surface roughness of the holes and impurities 
incorporated during drilling. 

2.2 Fiber draw 

Draw is the most difficult part of making a microstructure fiber. There 
are typically many holes in the preform that all have a propensity to shrink to 
decrease the surface tension of the preform. There are two techniques that 
can be use to minimize or stop hole collapse. The first is to draw the preform 
under very high tension by operating the draw furnace at a low temperature. 
Minimal hole collapse will occur if the draw tension is significantly larger 
than the surface tension. However, this method also results in a substantial 
increase in the number of breaks during draw. This is not important if only 
small lengths are needed, but it is not practical as a production method. 

The second method is to pressurize the holes with an external source to 
counteract the surface tension. The holes can be made larger or smaller 
during draw by changing the pressure. However, the process can become 
unstable because a large hole needs a lower pressure to maintain its size than 
a small hole. If holes of different sizes exist, a larger hole will grow at the 
expense of a smaller one regardless of the pressure used. To minimize the 
instability, this method is typically performed in conjunction with relatively 
high-tension drawing. 

3. MICROSTRUCTURE FIBER TYPES 

The different types of microstructure fiber are achieved by varying the 
size, spacing, and pattern of the air holes within the fiber. Most 
microstructure fiber types guide light by total internal reflection. Large air 
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holes in the fiber create substantial refractive-index differences that result in 
large numerical apertures and optically isolated regions within the fiber. 
Fibers with large holes surrounding a small core create ideal nonlinear fibers 
at short wavelengths [Figure 4-2(a)]. As discussed in Section 5.2, these 
fibers can be designed to have zero-group-velocity dispersion in the near-
visible regime, and their small core can result in very high intensities over 
extended interaction lengths.  

 

Figure 4-2. SEM photographs of several types of microstructure fiber. (a) High-nonlinearity 
fiber. (b) Air-clad fiber. (c) Endlessly single-mode fiber [4]. (d) Band-gap fiber [6]. 

Air-clad fibers consist of large air holes closely packed around an inner 
cladding containing a doped core [Figure 4-2(b)]. These fibers have inner 
claddings with very high numerical apertures and are ideal for generating 
efficient, high-power cladding pump amplifiers and lasers.  

At the other extreme, fibers with small air holes have been designed [4] 
such that the cladding index changes with wavelength to create fibers that 
are endlessly single moded [Figure 4-2(c)]. These fibers can have very large 
core diameters and therefore can propagate high powers at low intensities. 

Fibers with precise, periodically spaced index regions in the cladding can 
create band-gap guidance, allowing light to be guided in a core with an index 
lower than the cladding [Figure 4-2(d)]. Guidance in an air core has been 
demonstrated [5] and has the potential to have an attenuation over an order 
of magnitude lower than the best traditional transmission fiber [6].  
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4. LINEAR OPTICAL PROPERTIES OF 
MICROSTRUCTURE FIBER 

The success of using small-core microstructure fibers with large core-
cladding index contrast to produce frequency combs that extend for more 
than an octave at optical frequencies can be attributed to two properties that 
occur simultaneously when the core diameter is made small: (1) strong 
waveguide confinement that enhances the effective nonlinearity of the fiber, 
and (2) the shift of the zero-group-velocity dispersion point to a wavelength 
that coincides with that of Ti:sapphire femtosecond laser oscillators.  

Microstructure fibers can be modeled reasonably well as a step-index 
fiber with a glass core and a surrounding cladding region with an effective 
refractive index governed by the air-filling fraction of the glass lattice. As 
such, the mechanism that effectively guides light in these fibers is total 
internal reflection. However, unlike conventional fibers where the contrast of 
the refractive indices of the core and cladding is small, the index contrast for 
microstructure fibers can vary over a much larger range and can be 
effectively as large as that for a glass rod in air. Many of the optical 
properties can be well approximated by the effective index model in which 
the effective index neff of refraction of the cladding region is given by  

  
n

eff
2 = f + (1− f )n

glass
2 , (1) 

where f is the air-filling fraction of the cladding region and nglass is the index 
of the glass that comprises the structure. The solutions for the modes and the 
dispersion using this simple step-index model can be obtained analytically, 
and the dispersion for the fundamental mode agrees very well with the 
predictions of the full-vector model [7]. It is apparent by calculating the 
effective V-number [8] that even for small cores and reasonably large air-
filling fractions (f > 0.5), the fiber is multimode (i.e., V > 2.405). 
Nevertheless, since the difference in the propagation constant between the 
fundamental mode and the higher-order modes is large, a strong perturbation 
is required to couple energy from the fundamental mode to the higher-order 
modes. Thus if the fundamental mode is initially excited, the energy does not 
easily couple to the higher-order modes [9]. In addition, the large index 
contrast also leads to a strong confinement of the fundamental mode with 
little energy lying outside the core. This results in a large effective 
nonlinearity that allows for strong nonlinear interactions with relatively 
modest pulse energies such as those from a femtosecond Ti:sapphire 
oscillator. 
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A key property for determining the propagation of ultrashort pulses in the 
fiber and for generation of a broad-band frequency comb is the group-
velocity dispersion (GVD) β2 = d2k/dω2 of the propagating mode, where 
k(ω) = neff(ω) ω/c is the wave number for the fundamental mode. The two 
sources of dispersion in the fiber are material dispersion and waveguide 
dispersion. For bulk fused-silica glass, the wavelength at which the GVD is 
zero is λ = 1.27 µm. In conventional step-index fibers with small index 
contrast, material dispersion dominates and is only slightly modified by the 
waveguide contribution. However, in small-core microstructure fibers with a 
large air-filling fraction, the waveguide dispersion dominates over most of 
the visible and near-IR regimes. Figure 4-3(a) is a plot using the simple step-
index model of the predicted GVD parameter D = (−2πc/λ2)β2 for an air-
filling fraction of unity for various values of the core diameter. For D > 0 
(<0) the GVD is termed anomalous (normal). For comparison, the dispersion 
for bulk-fused-silica glass is also shown. As the core diameter is reduced, the 
zero-GVD point shifts to shorter wavelengths and the maximal value of the 
anomalous dispersion increases. For sufficiently small cores, the zero-GVD 
point can be shifted completely into the visible regime, allowing for the 
generation of solitons in the near IR [9] and potentially the visible regime. 
For a 2 µm diameter core, the zero-GVD point is close to the central 
operating wavelength of femtosecond Ti:sapphire laser oscillators. Figure 4-
3(b) shows the dispersion for a fiber with a 2 µm core for various values of 
the cladding’s air-filling fraction f. The primary effect of decreasing f is to 
decrease the maximal anomalous dispersion and change the slope of the 
GVD (i.e., the third-order dispersion) at the zero-GVD point. The shift in the 
zero-GVD wavelength is relatively small. Thus, a “rule of thumb” in 
designing these high air-filling fraction fibers for a particular application is 
that the location of the zero-GVD point is controlled by the size of the core 
and the third-order dispersion at this point is controlled by the air-filling 
fraction. Such a picture has been verified by experiments that have 
characterized the dispersion properties of the fibers with a range of core 
sizes [10] and provides insight for the creation of microstructure fibers with 
a relatively flat GVD over a large wavelength span.  
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Figure 4-3. Plots of the group-velocity-dispersion parameter D for (a) various values of the 
diameters d and an air-filling fraction f = 1 and (b) various values of f for a core diameter d = 
1.7. The dashed line represents the dispersion curve for bulk-fused-silica glass. 

5. SUPERCONTINUUM GENERATION 

5.1 Nonlinear envelope equation 

For subpicosecond optical pulses propagating in optical fibers, the 
dominant optical nonlinearity is the intensity-dependent refractive index. 
This nonlinear-index change leads to self-phase modulation that results in a 
time-dependent phase that spectrally broadens the laser pulse. The addition 
of new frequency components significantly outside the bandwidth of the 
pulse can also occur via four-wave mixing. The efficiency of these nonlinear 
processes can be greatly altered by the linear dispersion of the fiber since it 
leads to a temporal broadening of the pulse and a corresponding decrease in 
the peak intensity. As a result of these nonlinear interactions, the spectral 
bandwidth of a pulse propagating within the fiber can increase substantially 
and, most importantly for frequency comb applications, become greater than 
the center input frequency ω0 of the incident pulse. The broad spectral 
radiation that is produced under such conditions is termed supercontinuum 
generation, or white-light generation. A theoretical description of 
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propagation under these conditions becomes difficult since the concepts of a 
pulse-amplitude envelope and a carrier frequency break down. Nevertheless, 
much of the underlying physics describing supercontinuum generation can 
be described within the framework of the one-dimensional nonlinear 
envelope equation (NEE) [11] with the inclusion of the effects of stimulated 
Raman scattering. 

In this model, the pulse is assumed to propagate along the z-axis with a 
wave vector amplitude k0 = n0ω0/c where n0 is the linear refractive index of 
the material at the central frequency ω0 of the pulse. For an input pulse with 
a peak amplitude A0 and a pulse duration τp, the equation for the normalized 
amplitude u(z, t) = A(z, t)/ A0 can be expressed as  

  

∂u

∂ζ
= −i sgn(β

2
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L
ds
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nl
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where Lds = τp
2/|β2| is the dispersion length, ζ =z/Lds is the normalized 

propagation distance, β2 is the group-velocity dispersion (GVD), 
Lds

(n) = τp
n/βn is the nth-order dispersion length, τ = (t − z/vg)/τp  is the 

normalized retarded time for the pulse traveling at the group velocity vg, and 
pnl is the normalized nonlinear polarization. Inclusion of both instantaneous 
(i.e., electronic) and noninstantaneous (i.e., nuclear) nonlinear refractive 
index changes in the nonlinear polarization yields 
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∫












u , (3) 

where Lnl = (c/ω0 n2I0) is the nonlinear length, I0 = n0c|A0|
2/2π is the peak 

input intensity, f is the fractional contribution of Raman scattering to the 
nonlinear refractive index, and g(τ) is the Raman-response function [12]. 
The presence of the operator 1+ i∂/ω0τp∂τ in the nonlinear polarization term 
accounts for self-steepening effects and allows for the modeling of the 
propagation of pulses with spectral widths comparable to the central 
frequency ω0.  

5.2 Spectral superbroadening 

For a femtosecond pulse propagating in a fiber, the central wavelength of 
the pulse relative to the zero-GVD point strongly determines the nature of 
the spectral broadening and supercontinuum generation. For the case in 
which the bandwidth of the pulse overlaps the zero-GVD point, the 
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qualitative characteristics of the supercontinuum generation can be attributed 
to the combined action of self-phase modulation and third-order dispersion 
[13]. Figure 4-4 plots the supercontinuum spectrum and temporal profile at 
two distances within the medium under conditions similar to that of 
Reference [2] of an initially 100 fs, 10 kW pulse at 770 nm inside a fused-
silica microstructure fiber with a core size of 1.7 µm in diameter. That is, Lds 
= 500 cm, ω0τp = 140, Lds/ Lds

(3) = 0.5, Lds/ Lds
(4) = −0.005, and f = 0.15. After 

only a 2 mm propagation distance [Figure 4-4(a)], the pulse spectrum has 
broadened to an octave. The temporal profile [Figure 4-4(b)] is highly 
complicated with no well-defined pulse structure. At longer distances 
[Figure 4-4(c)], the spectral “envelope” exhibits little change; however, a 
significant amount of substructure is seen. This substructure can be 
understood as arising from the formation of well-defined pulses [Figure 4-
4(d)], known as soliton fission [14], that is accompanied by nonsolitonic 
radiation at the short-wavelength side. Although stimulated Raman 
scattering and self-steepening result in quantitative changes in the spectrum, 
in the limit where the GVD is small, the basic shape of the supercontinuum 
spectrum depends primarily on the amount of third-order dispersion and, to a 
lesser extent, the amount of fourth-order dispersion. 

 

Figure 4-4. Theoretically predicted supercontinuum spectra and temporal profiles for z = 0.02 
cm (a,b) and z = 1.2 cm (c,d). 

For the case in which picosecond and nanosecond pulses are used, four-
wave mixing and Raman scattering can produce a broadband 
supercontinuum in long fiber lengths [15]. Tailoring the dispersion of the 
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fiber can result in control of the continuum such that certain spectral parts of 
the continuum are suppressed and others are enhanced [16]. The generated 
supercontinuum has also been found to be highly dependent on polarization 
because of the birefringent nature of microstructure fibers [17]. 

5.3 Continuum instability and noise 

Although at these powers, changes in the input pulse energy do not 
significantly alter the spectral envelope of the supercontinuum. However, 
numerical simulations show that the fine substructure is highly sensitive to 
the initial pulse energy. Figures 4-5(a) and (b) show spectra under identical 
conditions, except that the curve in (b) is for 0.1% higher input pulse energy, 
which corresponds to the fluctuations in a typical Ti:sapphire femtosecond 
oscillator. Although the gross spectral shape in both cases is nearly the same, 
the fine substructure for the two cases is completely different. This fine 
substructure and spectral instability were not observed in early 
supercontinuum-generation experiments either because of insufficient 
spectral resolution or as a result of the spectra consisting of an average over 
many laser pulses. Later experiments [18], in which single-pulse spectra 
were obtained, confirmed the existence of this fine substructure and its 
sensitivity to input pulse energy, as shown in Figure 4-6. The same 
wavelength subsection is shown for two different single-shot 
supercontinuum spectra, and the fine substructures are observed to be 
uncorrelated. Also shown is an average of four single-shot spectra. For 
certain applications, this sensitivity of the supercontinuum spectra to input 
fluctuations could impose limitations on its applicability. 

Another important issue for frequency-locking applications is noise 
added as a result of the nonlinear interaction, even for the case in which the 
input pulse is perfectly stable. Stimulated Raman scattering and 
modulational instability arising from four-wave mixing both result in 
amplification of vacuum fluctuations and spontaneous Raman scattering. 
These processes lead to a reduction in the degree of coherence of the 
continuum spectrum [19] and to noise as much as 40 dB above the shot-
noise limit in the frequency regions between the modes of the frequency 
comb [20]. The conclusion from these experiments and theoretical analysis 
is that for frequency metrology applications, it is desirable to use laser pulses 
with durations of less than 50 fs to minimize the effects of modulational 
instability and stimulated Raman scattering. 
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Figure 4-5. (a) Output spectrum for an input peak power P = 16 kW and the propagation 
distance 1.5  cm. (b) Same as (a), but with 0.1% higher peak power. (c) High resolution 
window of the spectra in (a) (solid line) and (b) (dotted line). 
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Figure 4-6. Experimental observation of spectral sensitivity to input pulse fluctuations, as 
described in Reference 21. The dashed and dotted curves are single-shot spectra taken 
seconds apart. The solid curve is the average of four spectra. 

6. CONCLUSIONS 

We expect that advances in supercontinuum generation in microstructure 
fibers will continue to be made and that applications, such as carrier-
envelope phase control for attosecond pulse generation [21], will be 
developed for this coherent white-light source. Future advances could 
include designing both the transverse and longitudinal structure of the fiber 
to tailor the shape of the continuum for specific applications. For example, 
by using a combination of both anomalous and normal dispersion sections, 
the fine substructure and overall sensitivity of the continuum to input 
fluctuation could be minimized [22]. Other designs could be developed to 
lower the threshold power, which could help avoid long-term damage to the 
fiber endfaces that are crucial for frequency-stabilization techniques 
requiring extended time periods. Further developments of femtosecond fiber 
laser systems with nanojoule energies also promise to create highly compact, 
stable, and coherent white-light systems that can be used under 
environmentally challenging field conditions. 
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Abstract: The spectrum of a mode-locked laser consists of a comb of equidistantly 
spaced frequencies. This comb has only two degrees of freedom, its offset 
frequency at zero and the spacing of the teeth of the comb. While the spacing 
of the frequencies is simply determined by the repetition rate of the laser and 
can be relatively easily controlled, the offset frequency is governed by phase 
differences between the carrier and the envelope of the pulses during one 
round trip through the laser cavity. This carrier-envelope offset (CEO) phase is 
measured via heterodyning different harmonics of the mode-locked laser 
spectrum. In an unstabilized laser, this CEO phase exhibits very strong noise 
and can fluctuate several thousand radians in only one second. We provide an 
analysis of CEO phase-noise contributions and track their origin. The passive 
stability with respect to CEO fluctuations can be greatly improved by suitable 
cavity design, which greatly simplifies the stabilization of the CEO phase. 
Recent efforts on carrier-envelope stabilization are reviewed and some 
limitations are outlined.    

Key words: dispersion, carrier-envelope phase, phase noise, phase stabilization 

1. INTRODUCTION 

Ultrashort pulse generation reached pulse durations of a few 
femtoseconds around the turn of the century [1]. Some of the shortest pulses 
have a width of only two optical cycles [2-4]. When pulse durations 
approach this regime, the commonly used approach of the slowly varying 
envelope approximation (SVEA) starts to fail. Nonlinear optical effects are 
then expected to depend not only on the envelope structure of the pulses, but 
also on the structure of the electric field itself, including its relative phase to 
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the envelope, which has been referred to as the absolute phase. In 2001 and 
2003, the first experimental evidence for the failure of the SVEA was 
reported [5].  

In this chapter, we describe how to monitor the relative phase between 
the envelope and the carrier of an optical pulse train from a mode-locked 
optical oscillator. The chapter is organized as follows: First, we introduce the 
definition of the carrier-envelope-offset (CEO) phase and frequency. We 
show how both entities are connected with intracavity dispersion. Methods 
to measure the CEO frequency are discussed, with an emphasis on the most 
wide spread ν-to-2ν scheme. Careful characterizations of the CEO-phase-
noise spectra are used to isolate the physical mechanisms behind the 
excessive fluctuations of the CEO phase of a free-running oscillator. This 
insight allows building femtosecond lasers with an increased passive 
stability of the CEO and forms the basis for subsequent stabilization of the 
CEO frequency. Finally, we discuss how to optimize control of the CEO 
phase and how to push residual phase jitter into the attosecond range. 

2. COMB PARAMETERS AND THEIR 
CONNECTION TO INTRACAVITY DISPERSION  

2.1 Carrier-envelope-offset phase and frequency in the 
time domain 

Figure 5-1 shows the envelope and the carrier of two subsequent pulses 
from a mode-locked laser. The envelope travels at group velocity 

)//(/ ωωυ dndncnc gg +==  and repeats itself after the cavity round-trip 

time TR. The underlying carrier propagates at phase velocity ncp /=υ . 

Generally, gp υυ ≠  in any dispersive medium. This means that the electric-

field structure of the pulse will undergo a permanent change. The drift of the 
relative phase between carrier and envelope can be tracked down to the 

ωd/dn  term in the definition of the group velocity. 
When propagating through a dispersive material with an index of 

refraction )(zn  along the axis z, the pulse will accumulate a phase offset 
between the carrier and envelope of  
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Figure 5-1. The electric field )(tE  of two subsequent pulses from a mode-locked laser (solid 
line). The envelope )(tA±  is shown as dashed lines. The electric-field patterns of the pulses 
experience a pulse-to-pulse phase shift ceφ∆  according to Equation (1). 
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Here L is the length of the dispersive material. For the case of a linear cavity, 
L takes the role of twice the cavity length, and the carrier-envelope offset 
(CEO) phase ceφ∆  is the change of the phase ceφ  per round trip:  

)()()( Rcecece Tttt −−= φφφ∆ . (2) 

The CEO phase ceφ∆  must not be confused with the phase ceφ , which is 

typically defined such that a pulse with ceφ = 0 has the largest possible value 

of the electric field [6]. Some authors have referred to ceφ  as the absolute 
phase. An example for such a pulse is shown as the left pulse in Figure 5-1. 

ceφ∆ , however, is defined as the difference of the absolute phase of two 
subsequent pulses. It is useful to introduce the CEO frequency [7]  

r
ce f
π

∆
f

20

φ
= , (3) 

where fr equals the inverse round-trip time 1/TR of the cavity and f0 is time 
dependent unless the intracavity dispersion and the cavity length are 
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absolutely constant with time. Changes of f0 or ecφ∆  tend to be unnoticeably 
small on a pulse-to-pulse time scale but can reach significant magnitudes on 
millisecond time scales, rendering stabilization of these parameters a 
nontrivial task. For a detailed derivation of the fundamental comb 
parameters from periodic waveforms and their connection to intracavity 
dispersion, we refer the reader to Reference [8].  

2.2 The frequency comb and its dynamics 

fr

f0

fr

f0

  

Figure 5-2. Equidistant frequency comb of a mode-locked laser. The comb lines are spaced 
by the repetition rate fr and exhibit a nonvanishing offset frequency f0 at zero frequency unless 
the electric-field pattern exactly reproduces from pulse to pulse (compare to the time domain 
picture in Figure 5-1).  
 

For the following considerations, it is useful to revisit the scenario of 
Figure 5-1 in the Fourier domain. As the pulses follow each other at a 
constant delay TR, their spectrum consists of a comb of equidistantly spaced 
frequencies with a separation fr = 1/TR. This frequency comb must not be 
confused with the modes of a linear cavity, which are only equidistant in the 
absence of intracavity dispersion. In contrast, if the spacing between the 
teeth in the mode-locked frequency comb were not constant, different 
Fourier components of the pulse in Figure 5-1 would travel at different 
repetition rates inside the cavity, and the pulse would slowly, but surely, drift 
apart. The fact that the separation of the frequencies is constant over the 
entire comb has been experimentally checked to better than 10-15 [9]. 

Differing phase and group velocity cause a translation of the entire 
frequency comb by the carrier-envelope-offset frequency f0 . The frequencies 
of the i th comb component can therefore be written in the form:  
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ri iff += 0ν . (4) 

This leaves only two degrees of freedom for the dynamics of the frequency 
comb, translation via f0 and breathing via fr, as illustrated in Figure 5-3. Any 
kind of perturbation of the cavity, e.g., by a thermal change of the refractive 
index of the laser crystal, will typically affect both the repetition rate and the 
CEO frequency.  
 

breathing

translation

  

Figure 5-3. Comb dynamics [10]. The frequencies inside the comb structure are determined 
by two parameters, f0 and fr . This gives rise to a translational degree of freedom and a 
breathing mode. Noise contributions will induce a characteristic linear combination of both 
degrees of freedom. 
 

However, there is always a fixed frequency fx that remains unaffected by a 
distortion X [11]. 
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where X could be any physical parameter of the cavity, e.g., its length or the 
temperature of the laser crystal. Let us illustrate the concept of a fixed point 
by choosing X as the cavity length. Cavity length fluctuations only affect the 
repetition rate fr of the laser but leave the per-round-trip phase shift ceφ∆  
between envelope and carrier unchanged. Inserting Equation (3) into 
Equation (5) yields 02 ff x = , i.e., a value very close to zero frequency. A 
complementary example would be an effect that causes only a change of the 
cavity group delay but leaves the phase delay unchanged. This could be 
achieved, e.g., by tilting a mirror in an intracavity prism sequence with the 
pivot point adjusted to the center frequency of the mode-locked spectrum 
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[12]. Retarding the group by one cycle relative to the phase changes f0 by 
one free spectral range (i.e., the repetition rate), whereas the repetition rate 
itself only changes by a very small amount. In this case, one calculates that fx 
equals the carrier frequency of the pulse. Most environmental contributions 
to comb dynamics, such as thermal or nonlinear changes of the intracavity 
refractive indices, have an xf  located between zero frequency and the 
carrier frequency [11]. This means that they neither add a pure contribution 
to the group delay nor do they only affect the phase delay of the group. 
Measuring the fixed frequency xf  can help to pinpoint the source of 
dominant frequency comb dynamics.   

3. MEASUREMENT OF THE CEO FREQUENCY 

An early approach for measurement of f0 employed an interferometric 
method based on second-harmonic generation (SHG) cross-correlation 
between two subsequent laser pulses [13]. For vanishing ceφ∆ , the cross-
correlation signal is identical to the interferometric autocorrelation, with a 
symmetric fringe pattern. In all other cases, the fringe pattern appears shifted 
with the fringe maximum located at cce ωφ∆ /  and the cross-correlation is 
asymmetric. Even though this measurement in the time domain works in 
principle [14], it is very susceptible to offset errors. Any offset between 
group and phase delay in the long arm of the cross-correlator will induce a 
measurement error in determining f0. Therefore, phase-coherent methods are 
indispensable for precise control of the CEO phase as was suggested in 
Reference [6].  

3.1 Heterodyning different laser harmonics 

Figure 5-4 provides the key to the measurement of f0 by heterodyning 
harmonics from different parts of the mode-locked spectrum. The technique 
was first proposed by Telle et al. [6]. Taking the Nth harmonic of a comb line 

rm fNmNfN 101
+=ν  and beating it with the Mth harmonic of another comb 

line rm fMmMfM 202
+=ν  yields  

0)(
21

fMNMN mm −=− νν , (6) 

which requires that 21 MmNm = . Equation (6) is the key to any measurement 
of the carrier-envelope offset and was used in the first experimental 
demonstrations by Jones et al. [14] and Apolonski et al. [15] for the case of 
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N = 1. The beat note of Equation (6) delivers the carrier-envelope-phase-
slippage rate, either directly or as one of its harmonics. An example for a 
measurement of the CEO frequency, which is based on this scheme, is 
shown in Figure 5-5. 

ν1 = f0 + n fr 2ν1 = 2f0 + 2n fr

ν2 = f0 + 2n fr

ν2
2ν1

f0

ν1 = f0 + n fr 2ν1 = 2f0 + 2n fr

ν2 = f0 + 2n fr

ν2
2ν1

f0

 

Figure 5-4. Scheme for measuring the CEO-frequency of a laser comb for the case of 
heterodyning the fundamental and the second harmonic, i.e., N = 1 and M = 2 in Equation (6). 
Graphically, this scheme mirrors the origin at f = ν1, transferring the f0 beat from dc into a 
region with nonvanishing spectral content. 

 However, the scheme of Equation (6) requires a certain minimum 
spectral width of the comb ( ) ( )MNMN +−= 2νν∆ ; e.g., beating of the 
fundamental and second harmonic requires an optical octave of bandwidth 
with 67.0=νν∆ . The situation of second-harmonic generation is 
illustrated in Figure 5-4. Often, an octave-spanning spectrum is not directly 
available from the oscillator. Alternatively, one can meet the bandwidth 
requirement by additional external broadening, as shown in the schematic 
setup in Figure 5-6, which is actually the most commonly used scheme to 
measure the CEO frequency of a laser.  
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Figure 5-5. Typical rf spectrum of the CEO beat note signal. This signal was measured at a 
Ti:sapphire laser heterodyning the fundamental and the second-harmonic-generation (SHG) 
signal from a continuum generated in a microstructure fiber [16]. The CEO beat is located at 
35 MHz with a signal-to-noise ratio of >45 dB in a 100 kHz bandwidth. Its mirror frequency 
is also visible at 65 MHz. The laser has a 100 MHz repetition rate. Some spurious 
contributions have been generated by nonlinear electronic mixing processes in the detector 
circuitry.   

Laser

� structure fiber

800nm

530 nm

530 nm

SHG

1060 nm

� CEO

 

Figure 5-6. Schematic drawing of a practical implementation of Equation (6) and Figure 5-4. 
The laser is spectrally broadened to more than an optical octave using continuum generation 
in a microstructure fiber. Two wavelengths forming one octave are separated. The long-
wavelength component is frequency doubled and heterodyned with the fundamental signal. 
The beat note contains an rf component at the CEO frequency. Specific wavelengths shown 
are meant as example values. 

3.2 Transfer oscillators and interval bisection  

Let us briefly mention other ways to circumvent the bandwidth 
bottleneck [6]. These alternative methods rely on transfer oscillators and 
interval bisection. A transfer oscillator is an additional single-frequency cw 
laser with frequency νtrans. This frequency or one of its harmonics has to be 
locked to one of the comb frequencies. At the same time, the fundamental 
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transfer oscillator is used for sum-frequency generation from the low-
frequency part of the comb to the high-frequency part. The beat notes of 
both then allow extraction of the CEO frequency. In particular, when the 
second or third harmonic of the transfer oscillator can be generated at 
sufficient power, this scheme can be operated with smaller bandwidth 
requirements. If the second harmonic of the transfer oscillator is locked to 
the comb, only 0.6 of an optical octave is required in the comb. For third-
harmonic generation, only 0.4 optical-octave bandwidth is required. 

Frequency-interval bisection [17] can be employed to divide the required 
comb width. The simplest scheme of this type uses a one-octave interval-
divider stage that generates the frequency νa at the midpoint of νb and 2νb. 
This can be done by phase locking the second harmonic of νa to the sum 
frequency of νb and 2νb to yield  

4

3

2

23

2
==

b

b

b

a

ν
ν

ν
ν

. (7) 

This way, one now has available two phase-locked oscillators at only half-
an-octave spectral separation. Locking one to the comb and phase 
comparison of the other allow extraction of the CEO frequency of the comb.  

4. CEO PHASE NOISE  

From the discussion so far, it should be clear that the carrier-envelope 
phase of a femtosecond oscillator is extremely sensitive to any kind of 
environmental influence and changes of the laser parameters such as pulse 
duration or power fluctuations. In this section, we discuss measurements of 
the carrier-envelope-phase noise of a laser oscillator. From these 
measurements, one can judge the severity of the noise problem. It is also 
helpful to reach an understanding of the mechanisms behind the carrier-
envelope-phase noise before attempting to stabilize the CEO phase. For this 
reason, we discuss measurements of the CEO phase noise for different laser 
configurations. We restrict ourselves to measurements of Ti:sapphire lasers, 
as the CEO-phase noise in these lasers has been analyzed with great scrutiny. 
The general carrier-envelope-phase noise shows striking similarities with 
timing-jitter noise in mode-locked lasers [18, 19]. We therefore use a similar 
formalism to describe and analyze the dynamics of the carrier-envelope-
offset frequency and phase. 
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4.1 Noise densities and rms phase jitter 

The easiest way to characterize the CEO-noise properties consists of 
frequency-to-voltage conversion of the CEO beat noise and subsequent 
spectral analysis with a Fourier analyzer or a similar spectrum analyzer. 
Multiplying the measured voltage noise by the conversion factor of the 
frequency-to-voltage converter yields the single-sideband frequency noise 

density ( )ff0
σ  in units HzHz  vs Fourier frequency f  [16]. Other ways 

to measure the frequency noise density have been described in [20]. 
However, the latter approach relied on constant amplitude-to-phase coupling 
over the entire measurement range. The frequency-noise density can be 
easily converted into a phase-noise density using the identity  

f
0

ce

fσ
σ φ = . (8) 

For an interpretation of the noise data, it is sometimes more useful to 
integrate the noise densities according to 

∫∫ 
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The integration spans from a lower frequency flow given by the inverse 
measurement time to an upper bound that is ideally half the repetition rate 
itself. Typically, one can only carry the integration to a few tens or hundreds 
of kilohertz, which is normally considered sufficient as the noise rolls off 
very rapidly at high frequencies. The integrated noise densities )( lowce fδφ  

and )(0 lowffδ can be interpreted as rms widths of the fluctuation range of 
phase or frequency, respectively.  

4.2 CEO-phase noise of mode-locked oscillators 

Examples of phase-noise measurements are shown in Figures 5-7 and 5-8 
[16, 21]. From the data in Figure 5-7, one can see that the noise generally 
rolls off above 1 kHz. At the very end of the measurement range shown in 
Figure 5-7, there seems to be an increase of noise that may be explainable by 
relaxation oscillations, similar to observations of timing-jitter noise [19]. The 
major noise contributions, however, are located in the range of a few 100 Hz 
to 1 kHz. For an interpretation of the severity of the noise, it is useful to 
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inspect the integrated phase noise starting at high frequencies and locating 
the point where the δφce approaches unity. In Figure 5-8, one can clearly see 
that the integrated phase noise already reaches one radian at several kHz 
Fourier frequency. Around 1 kHz, the noise grows dramatically, reaching 
values of several hundred to thousands of radians at 100 Hz offset frequency. 
In summary, this means that severe phase-noise contributions accumulate 
within approximately 1 ms of measurement time. For a successful phase lock 
of the CEO frequency, however, it is mandatory to keep residual jitters 
below δφce ≈ 0.3 rad [22]. This requirement is only set by the cycle-slip-free 
functioning of the phase-locked loop, whereas applications may demand an 
even tighter locking to smaller jitter values. These considerations make it 
clear that for any meaningful stabilization of the CEO frequency, servo 
bandwidths of 10 kHz or more are required, which makes the use of acousto-
optic or electro-optic controls preferable to a mechanical adjustment of 
intracavity dispersion. 
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Figure 5-7. Frequency noise density of different Ti:sapphire lasers [16, 21]. The top trace 
shows a measurement for a laser with intracavity prisms; the middle trace is measured for a 
prismless variant of the same laser. The bottom trace shows how the measured frequency 
noise density drops farther when a phase lock to a reference oscillator is activated. This 
measurement has to be interpreted as a noise floor, as it is limited by the stability of the local 
oscillator in the measurement. 

Moreover, Figures 5-7 and 5-8 contain measurements for both oscillators 
with and without prisms for intracavity dispersion compensation. In these 
measurements, an identical pump laser was used for the prismless and the 
prism setup. It becomes evident that prism-based femtosecond oscillators are 
about ten times as noisy as prismless lasers. This can only be explained by 
an additional physical mechanism present because of the intracavity prisms. 
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Figure 5-8. Integrated phase-noise density of different Ti:sapphire lasers [16, 21]. The top and 
middle traces have been computed from the data displayed in Figure 5-7 using Equations (8) 
and (9). The bottom trace is based on a direct phase comparison of a stabilized oscillator and 
an rf reference using an rf lock-in amplifier. 

4.3 Physical mechanisms behind CEO fluctuations 

The key to understanding the mechanisms forming the CEO noise is 
Equation (1). Any change of temperature, air pressure, or laser power may 
also affect ∆φce. For simplicity, let us assume that we have a laser cavity of 
length L filled with a material of index n. We can then rewrite the 
dependence of Equation (1) on any laser or environmental parameter X as 
[13, 21, 23]: 

L
X

n

X

Ln
L

n

XX cc
c

cce ∂∂
∂+

∂
∂

∂
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∂
∂

∂
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∂
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ω
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ω
ω

ω
ωωφ∆

2
222 . (10) 

These three partial derivatives account for changes of the center 
frequency ωc [13], changes of the cavity geometry [21], and changes of the 
first-order dispersion of the cavity [16, 23], respectively. Let us first consider 
environmental effects, which equal X for temperature or air pressure. 
Temperature changes of the laser crystal or intracavity prisms immediately 
translate into changes of the CEO frequency. Nevertheless, such variations 
are relatively slow and cannot fully explain the noise contributions at the 
high Fourier frequencies well above 1 kHz in Figures 5-7 and 5-8. A similar 
argument holds for pressure variations, which couple to the CEO frequency 
by refraction changes caused by the air in the cavity. Another coupling 
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mechanism is displacement of the cavity mirrors. The latter effect is much 
less of a concern than for stabilization of single-frequency lasers, because 
the fixed frequency of the comb dynamics lies close to zero frequency. Thus 
there is only a negligible effect on f0. In summary, environmental 
contributions are an important input to the low-frequency part of the CEO 
noise spectrum. Nevertheless, they can be relatively easily reduced by 
enclosing the laser in a box, thereby avoiding air turbulence. Typically, 
environmental contributions can be suitably reduced by these passive 
measures. Therefore they rarely represent an obstacle to successful 
stabilization of the CEO frequency.  

4.4 Amplitude-to-phase conversion effects  

Amplitude-to-phase conversion (APC) is a special case of Equation (10). 
The case where X is the intensity deserves special attention, as the resulting 
fluctuations of ∆φce can be arbitrarily fast when electronic nonlinearities such 
as the all-optical Kerr effect are mediating between amplitude fluctuations 
and CEO-phase noise. APC effects are mainly taking place in the laser 
crystal, as this is the position of highest intracavity intensities.  

Spectral shifting of the laser spectrum has been proposed as the first 
mechanism giving rise to APC effects [13]. The carrier frequency ωc shifts 
with pump power or intracavity intensity, an effect that strongly depends on 
the operating conditions of the laser. Generally, both effects seem to be 
weaker when the laser bandwidth is wider. In a recent publication, spectral 
shifting was observed for a 750 MHz repetition-rate laser below 50 nm 
mode-locked bandwidth, whereas it did not appear to play a role in a 100 
MHz repetition-rate laser with its stronger mode locking and higher pulse 
energy [23]. APC coefficients If ∂∂ /0  on the order of 10-7 HzW/m2 were 
observed when spectral shifting dominates the APC, resulting in the 
prevalent contribution to Equation (9). In contrast, the APC coefficient drops 
to a few 10-9 HzW/m2 in the absence of spectral shifting [16, 21, 23]. 

A second contribution to CEO-phase noise arises from geometrical 
changes of the laser cavity affecting the total cavity length L. This 
contribution is typically negligible in prismless cavities but can play a role in 
cavities that use intracavity prism sequences for dispersion compensation [3, 
21]. One potential mechanism behind such laser dynamics is beam-pointing 
variations inside the laser cavity together with the directional sensitivity of 
the dispersion of a prism compressor [21, 24]. If the beam direction inside 
the prism sequence changes, this will also affect the net first-order dispersion 
of the cavity via the second term in Equation (10). Beam-pointing variations 
can be induced by changes of the refractive index of the laser crystal. If the 
index of refraction of the laser crystal changes, Snell's law demands a change 
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of angles inside and outside the laser crystal [21]. Beam-pointing effects are 
held responsible for an approximately tenfold increase of CEO-phase noise 
of prism laser cavities as compared to prismless variants.  

The third term in Equation (10) contains contributions to CEO-phase 
noise via intensity-induced changes of the refractive index [25]. Nonlinear 
refraction is well known as the all-optical Kerr effect [26], but according to 
Equation (10), only the dispersion of the Kerr effect affects changes of the 
CEO phase. The issue of dispersion of the Kerr effect has been addressed by 
[27, 28]. According to Sheik-Bahae et al. [27], the main contribution to the 
first-order dispersion of a dielectric medium well below half the band edge 
stems from a Kramers-Kronig term induced by two-photon absorption. As 
per their example, for sapphire at 800 nm, one calculates 

362 10/ −≈∂∂∂ In ω s m2/W rad. Inserting values for typical Ti:sapphire laser 

cavities [4], one computes a theoretical estimate of If ∂∂ /0 =5×10-9 HzW/m2, 
which agrees well with the lowest experimentally observed values of 

If ∂∂ /0 . Again, these low APC coefficients can only be reached in the 
absence of geometrical effects and spectral shifting.  
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Figure 5-9. Transfer function of laser intensity noise into fluctuations of the CEO frequency 
[16]. These measurements were done in a prismless laser in the absence of spectral shifting. 
The measurements reflect Kerr contributions to the APC and thermally induced amplitude-to-
phase conversion (APC) effects at low frequencies. 

A measurement of the APC coefficient is shown in Figure 5-9. The 
theoretical estimate from Reference [27] is shown as a dashed line. The 
measurement was performed at different modulation frequencies. For 
frequencies below 1 kHz, an APC coefficient of a few times 10-8 HzW/m2 is 
observed. At higher modulation frequencies, the APC levels off to about 10-8 
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HzW/m2. Spectral shifting does not seem to play a role in these experiments, 
and geometrical effects are also not a concern because of a prismless cavity. 
At lower frequencies, additional contributions from thermally induced 
changes of the refractive index increase the APC effect. For modulation 
frequencies of about 10 kHz or more, the coupling dynamics appear to be 
restricted to a purely electronic-refractive nonlinearity.  

From the experimental observations, some guidelines can be given on 
how to keep APC effects to a minimum. The first recommendation is to use 
a prismless cavity, which is also strongly supported by the data in Figures 5-
7 and 5-8. In prismless cavities, beam pointing does not translate into CEO-
phase noise [21]. Spectral shifting is the other APC effect that can be 
avoided by suitable design of the laser. For a stable position of the laser 
spectrum, a broad mode-locked bandwidth of more than 50 nanometers and 
a high pulse energy appear to be favorable conditions [23]. If geometric 
effects and spectral shifting can be avoided, the APC effects are restricted to 
nonlinear refractive mechanisms, both Kerr-type and an additional thermally 
induced mechanism at low Fourier frequencies. Values on the order of 

If ∂∂ /0 =10-8 HzW/m2 or less are indicative of a dominance of nonlinear 
refraction in the APC dynamics. 

5. STABILIZATION OF THE CEO FREQUENCY  

In previous sections, we have introduced methods to measure the CEO 
frequency. We have also analyzed sources of CEO-phase noise and given 
guidelines on how to increase the passive stability of the CEO phase. Even if 
such measures can be further improved, the residual noise of the free-
running laser is still prohibitive for many applications in extreme nonlinear 
optics, which demand a stable CEO phase for seconds or minutes of 
integration times. 

5.1 Controlling the CEO frequency of a laser oscillator 

The only missing link to stabilization of the CEO frequency is now a 
mechanism for external control of the CEO frequency. Such a mechanism 
allows closing the servo loop, forcing the CEO frequency into a lock with an 
rf-reference oscillator. Ideally, a control mechanism should only act on the 
CEO frequency and leave other cavity parameters unchanged 
(orthogonality). If we leave this concern aside, all mechanisms causing APC 
are suited, in principle, for control of the CEO frequency. As was discussed 
previously, a servo bandwidth of more than 10 kHz is needed, which rules 
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out many slow mechanisms. Choice of the control mechanism is therefore a 
trade-off between orthogonality and bandwidth.  
 In lasers with intracavity prism sequences, an elegant way of controlling 
the CEO frequency of a laser without affecting other laser parameters is 
offered. Tilting the end mirror after the prism sequence affects only the 
difference between the group and phase delay in the cavity but leaves other 
laser parameters widely unchanged [12, 29]. The tilt of the end mirror has to 
be restricted to small excursions compared to the angular aperture of the 
beam at the end mirror. Only then can one be sure that the intracavity power 
is not also affected by the mirror tilt. Mirror excursion in the microradian 
range is sufficient to control the CEO frequency within one spectral range. 
This makes mirror tilting the method of choice for cavities with prisms. 
However, it is typically very difficult to reach a servo bandwidth of more 
than 1 kHz with mirror tilting because of mirror inertia. Reaching sufficient 
bandwidth requires an optimized setup of the tilt actuator. Bandwidths up to 
25 kHz have been demonstrated using a mirror of low mass directly mounted 
on a split piezoelectric transducer (PZT) actuator [30]. 

differential
mode

common
mode

�

GD( )�

 

Figure 5-10. Control of intracavity first-order dispersion by tilting of an end mirror after a 
dispersive delay line. Translation of the mirror parallel to the optical axis acts on both group 
and phase delay; tilting changes the difference between them. Provided a choice of the correct 
pivot point has been made, tilting only affects the CEO-frequency.  

Mirror tilting is not an option when a prismless setup is used. Then the 
method of choice is modulation of the pump power either with an acousto-
optic modulator [16] or with an electro-optic device [20]. As the required 
pump-power modulation is on the order of 10-3, it is typically very easy to 
reach bandwidths of several tens to hundreds of kHz. Pump-power 
modulation relies on the APC mechanisms discussed in the previous section 
and is currently the most widespread mechanism for CEO-frequency control.  

5.2 Performance of CEO phase locks 

Several detailed investigations on stabilization of the CEO frequency and 
the resultant residual CEO phase noise have been published [16, 20, 21, 30]. 
All these authors used microstructure fibers for additional external 
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broadening of the laser spectra. A first attempt to directly stabilize the CEO 
frequency of an octave-spanning laser was reported by Morgner et al. [3]. 
However, because this laser only spanned the octave at about -40 dBc, the 
authors achieved a CEO beat note that was considered minimum for a robust 
stabilization. The authors thus proposed a 2ν-to-3ν scheme. This scheme has 
been carried out recently with resulting small residual timing jitters and 
excellent long-term stability [31]. Still, a direct stabilization is more 
challenging than stabilization based on additional spectral broadening.  

Another important issue is the setup of the locking electronics. For any 
meaningful application, a phase lock to an rf-reference source is required. A 
phase lock can be as simple as that depicted in Figure 5-11, which consists 
of a double-balanced mixer and some means to adjust the servo loop gain. 
The gain has to be optimized for a sufficient phase margin of the loop to 
prevent self-oscillation of the servo circuit.  

APD Bandpass-filter

Ref. oscillator

AOM Driver

AM

Pump Beam
Ti:Sa

 

Figure 5-11. Simple phase-lock circuit used for stabilization of the CEO frequency [16]. The 
avalanche photo detector (APD) measures the beat note signal [Equation (6), Figure 5-5]. 
Suitable bandpass filtering isolates the beat note and suppresses mirror frequencies and 
spurious contributions. After mixing the signal with the reference oscillator, the mixing 
product is directly fed back via an acousto-optic modulator. The servo loop gain has to be 
adjusted for sufficient phase margin.  

The simple circuit of Figure 5-11 has only a very limited capture range 
and may not be able to avoid cycle slips in the presence of strong CEO-
phase noise. An alternative is usage of a phase detector with enhanced 
capture range [32]. Such a circuit is based on an electronic counter and can 
boost the phase capture range to tens or hundreds of π. This strategy comes 
at the price of decreased sensitivity that will ultimately limit the overall 
performance of the lock. The general recommendation is to reduce noise 
mechanisms as far as possible by enhancing the passive stability of the laser. 
Capture range enhancement should only be used as a last resort and then 
moderately; otherwise, extra noise of the stabilized laser will result. 
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Some of the best results in terms of residual phase noise were achieved 
with the simple double-balanced mixer (Reference [16], Figure 5-11). The 
measured data is also shown in Figures 5-7 and 5-8. From the data in Figure 
5-8, one can conclude that the residual phase jitter in these measurements 
was only about 20 mrad in a 10 kHz to 0.01 Hz interval. This corresponds to 
residual timing jitters of only 10 as associated with the CEO phase.  

5.3 Limitations of CEO control 

Using additional external broadening in a piece of microstructure fiber is 
currently the most widespread method for measuring and stabilizing the 
CEO frequency. As APC effects play a strong role in intracavity CEO 
dynamics, it would be surprising if the strong Kerr nonlinearities involved in 
continuum generation would not also give rise to APC effects extracavity. 
There is an important difference that immediately explains why extracavity 
APC effects are a much lesser concern than the effects discussed in Section 
4.4. If the same element with identical amplitude-to-phase coupling is 
moved from intracavity to extracavity, it generates CEO-phase noise via 
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The highest measured noise densities of the prismless oscillator of 

HzkHz/1≈ty)(intracavi
f0

σ  would therefore translate into extracavity-phase 

noise densities of only Hzrad10 5)( −≈yextracavit

ceφσ .  

Several approaches to experimentally quantify the strength of extracavity 
APC have been reported. Fortier et al. measured a coupling coefficient of 3.8 
rad/pJ for a 100 MHz laser [33]. These measurements relied on an out-of-
loop characterization of the stabilized oscillator, employing a second totally 
independent microstructure fiber and a second ν-to-2ν interferometer. A 
differential CEO-phase measurement using two independent CEO-
measurement schemes was reported in [8]. In this measurement, two 
independent CEO measurements on the same source were compared. A 
differential phase-noise spectrum is displayed in Figure 5-12. One can 
immediately see that the residual uncertainty of the CEO-phase measurement 
is several orders of magnitude smaller than the phase noise of the free-
running oscillator. The phase noise shown in Figure 5-12 adds up to an rms 
value of about π in a 5 s integration time [compare Equation (9) and Figure 
5-8]. The differential phase noise is mainly due to slow drifts that can 
corrupt measurements at long integration times. 
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Figure 5-12. Differential phase-noise spectrum of two independent measurements of the CEO 
phase.  

Several ways have been suggested for overcoming these residual effects. 
Rather than using the laser pulses directly, one can use the white-light 
continuum pulses for any kind of CEO-sensitive application. Using the 
spectrum directly from an octave-spanning oscillator would also rule out 
APC effects in the microstructure fiber. Still, both these solutions suffer 
from interferometer drift. One way to strongly reduce drift effects is a 
common-path interferometer, as suggested by Kakehata et al. [34] for single-
shot CEO-phase measurements.  

6. SUMMARY 

We have discussed fluctuations of the CEO phase in oscillators and 
explained their origin. The CEO phase turns out to be a very sensitive 
parameter that is easily influenced by nearly all laser and environmental 
parameters. Many of these contributions either give rise to slow drift effects 
or can be easily shielded by enclosing the laser. From the perspective of 
stabilizing the CEO frequency of the laser, however, amplitude-to-phase 
noise conversion turns out to be a much more significant problem that 
cannot totally be avoided. Several mechanisms contribute to the conversion 
of laser amplitude noise into CEO frequency fluctuations. Again, some of 
these contributions, such as spectral shifting or beam pointing, can be 
avoided, or at least reduced, by construction and choice of favorable 
operating conditions. With all these measures in place, it is possible to 
provide a tight lock to an external rf reference, with resulting residual timing 
jitters between carrier and envelope of the laser of only a few attoseconds. 
Even with such superior performance, one has to be careful to avoid intrinsic 
sources of CEO phase noise in the measurement set-up itself. Amplitude-to-
phase conversion also takes place in external continuum generation, which is 
often used to broaden the laser spectrum to an optical octave. The ν-to-2ν 
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interferometer is another weak point and can give rise to a small residual 
drift. These residual effects are relatively weak and do not appear to corrupt 
most applications of frequency combs demonstrated to date. Nevertheless, 
they can be avoided. An improved control of frequency comb parameters 
offers even higher precision in metrology applications and opens up novel 
applications in extreme nonlinear optics. Understanding the dynamics of the 
comb is the key to further progress in these areas. 
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Chapter 6 

FEMTOSECOND NONCOLLINEAR 
PARAMETRIC AMPLIFICATION AND 
CARRIER-ENVELOPE PHASE CONTROL 

Takayoshi Kobayashi 
Department of Physics, Faculty of Science, University of Tokyo 

Abstract:  This chapter presents the basic principles for three parametric interactions that 
enhance bandwidth to obtain short pulses while maintaining phase matching. 
To extend the bandwidth, we introduced a noncollinear configuration between 
the pump and signal. The idea is used in three different parametric processes: 
optical parametric generation (OPG), optical parametric amplification (OPA), 
and optical parametric oscillation (OPO). Using noncollinear phase matching, 
we developed a noncollinear-optical-parametric amplifier (NOPA) that 
delivers 4 fs visible-near-infrared pulses. We designed geometrical and 
temporal configurations of the NOPA that broaden the gain bandwidth in 
excess of 250 THz. The main requirements for bandwidth enhancement 
include (1) phase matching, (2) group-velocity matching, (3) pulse-front 
matching, and (4) optimization of the angular dispersion of the pump. To 
achieve the extended-gain bandwidth, full phase adjustment is performed by 
several compensators, including a prism pair, a grating-mirror system 
equivalent to a grating pair, chirped mirrors, and a deformable mirror. By 
adding these devices to the NOPA system, we obtained pulse widths of 3.9 fs 
in the visible and NIR spectral range.  

Key words: carrier-envelope phase, optical parametric amplification 

1. INTRODUCTION 

Femtosecond laser systems are experiencing explosive growth in both the 
number of users and variety of applications. In the process, pulse duration is 
continually being reduced. Optical pulses with a duration of only a few 
optical cycles have been achieved with the proliferation of diverse types of 
Ti:sapphire lasers. Sub-5 fs pulses have become available with 800 nm 
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Ti:sapphire lasers  that employ self-phase modulation (SPM) and spectral 
broadening in both quartz [1-3] and hollow waveguides [4-6]. The 
broadband pulses are compressed to a nearly Fourier-transformed pulse with 
novel pulse compression techniques such as chirped mirrors [7].  

Even though sub-5 fs pulse durations have been achieved [8], methods 
utilizing SPM for spectral broadening have two major drawbacks. First, they 
do not offer tunable pulses. Only limited tunability can be achieved (at the 
expense of reduced bandwidth) by filtering out various components of an 
SPM-broadened spectrum. Second, is the spectral modulation inherent in the 
SPM process. This limitation is perhaps the most fundamental. On the one 
hand, the interplay between material dispersion and SPM can substantially 
improve the smoothness of the broadened spectra [9]. On the other hand, 
pulse stretching due to dispersion lowers the peak intensity and makes it 
impossible to sustain strong SPM action over a long propagation distance. 
The result is limited spectral broadening.  

However, the invention of microstructure fiber [10] led to the generation 
of extremely broadband white-light continua with spectra that could support 
2-fs pulses. This remarkable feat is a consequence of the dramatic lowering 
of fiber dispersion. The same feature responsible for such unprecedented 
spectral broadening also yields substantial spectral modulation. The latter 
makes it nearly impossible to use these pulses in many demanding 
applications of nonlinear spectroscopy, which are sensitive to both the time 
and frequency distributions of the electric field. This feature also makes it 
difficult to use microstructure fiber in pump-probe experiments. 
Measurements of time-resolved spectra are subject to large errors induced by 
fluctuations (hugely enhanced by enormous nonlinearity) of the sharp 
(spiky) spectral structure.  

Unlike these schemes, which involve cumbersome fiber-chirping stages, 
remarkable progress in the generation of record-breaking short pulses has 
been made directly with Ti:sapphire lasers [11]. Few-cycle pulses at the few 
nJ level have been reported by several research groups. Even though short-
pulse generation directly from cavities is simpler than the elaborate 
extracavity compression [1, 6], the two methods share the same spectral 
range and the lack of wavelength tunability, except when the latter is 
implemented at the expense of shortness of pulse duration. In 2001-2002, a 
different approach to generating even shorter pulses directly from laser 
cavities was developed. Researchers demonstrated that it was possible to 
phase lock two independent Ti:sapphire oscillators [12] or two oscillators 
based on different gain media [13]. This approach could provide a 
straightforward way to generate an ultimately short, single-cycle optical 
pulse by coherently combining the output from several lasers employing 
different gain media [8]. Both the intracavity and extracavity methods of 
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pulse shortening should make it possible to generate broad laser spectra at 
the laser’s fundamental frequency or around one of its harmonics; however, 
this makes continuous wavelength tuning impossible in the shortest pulse 
regime. This difficulty, however, can be readily overcome in parametric 
pulse generation and amplification. 

In the 1990s, optical parametric oscillation (OPO) and optical parametric 
amplification (OPA) had become popular methods for tunable femtosecond 
pulse generation, especially since the appearance of femtosecond Ti:sapphire 
lasers [14-16]. The high power and excellent stability of a Ti:sapphire 
system make optical parametric conversion the most promising method for 
obtaining tunable ultrashort pulses. In addition, important progress was made 
during the 1980s in the growth of nonlinear optical crystals with large 
nonlinear coefficients and high damage thresholds. These advances opened 
the door to new and versatile applications of these crystals in the new 
century [17]. 

Beginning about 1994, with an OPA pumped by a Ti:sapphire amplifier, 
it became possible to create ultrashort pulses tunable outside the 800 nm 
region with a few-µJ pulse energy. An OPA pumped with a Ti:sapphire laser 
with peak wavelength around 800 nm generates near-infrared (NIR) pulses 
between 1 and 4 µm, whereas an OPA pumped at about 400 nm (the second 
harmonic of Ti:sapphire) can cover the shorter, visible–NIR optical 
frequency region between 450 nm and 3.5 µm [15, 16, 18-22]. Following the 
difference frequency generation (DFG) of the signal and idler, they can be 
used to cover the range from 200 nm to 12 µm, or almost the entire optical 
frequency region [15, 16]. However, the shortening of the output pulse from 
an OPA faces a problem with phase-matching bandwidth.  

2. ADVANCES OF NONCOLLINEAR-PHASE-
MATCHED OPTICAL PARAMETRIC 
CONVERSION  

The idea of a noncollinear phase matching is not new for broadband 
interaction. Takeuchi et al. [23] reported broadband generation of idler 
pulses by focusing a white-light continuum with a large convergence angle 
into a crystal to be phase-matched noncollinearly among a wide range of the 
continuum. The bandwidth was increased to as broad as 1300 cm-1 in the 
NIR. They used an optical parametric generator in a noncollinear 
configuration to generate signal and idler beams just around the pump axis. 
In the present work, noncollinear phase matching is investigated where the 
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signal and idler are arranged with larger noncollinear angles, as shown in 
Figure 6-1. 
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Figure 6-1. Geometric configuration of the wave vectors in an optical-parametric-
amplification (OPA) nonlinear crystal. The wave vectors of the pump (kp), signal [ks (λs )], 
and idler [ki(λi)] are shown in the gain crystal. The angles α and β are internal noncollinear 
angles between pump and signal beams and pump and idler beams, respectively. The group 
velocities of the pump (νp), signal (νs), and idler (νi) are also shown by dashed lines. 

Noncollinear phase matching has advantages over collinear phase 
matching. In an OPO, noncollinear phase matching is often adopted to 
compensate for spatial walk-off of the extraordinary ray in the crystal and to 
increase the gain [14, 24-26]. Temporal walk-off caused by the group-
velocity mismatch can also be improved by noncollinear phase matching 
[27-29]. Trapani et al. demonstrated noncollinear phase matching in an OPA 
for satisfying the group-velocity matching between the pump pulse and 
signal� or idler pulses in a β-BaB2O4 (BBO) crystal to obtain higher 
conversion efficiency with longer interaction length than for a collinear OPA 
[27-29]. 

The first use of noncollinear phase matching to eliminate temporal walk-
off was reported by Gale et al. in 1995 [26]. They constructed a 
synchronously pumped OPO using a BBO crystal. The noncollinear 
configuration between the pump and oscillating signal beams resulted in 
broadband phase-matching and generated pulses as short as 13 fs in the 
visible. The generation of a broad spectrum of over 100 nm in a nanosecond 
OPO based on the same configuration was also reported [30]. We 
demonstrated a noncollinearly phase-matched OPA (NOPA) using a BBO 
and achieved tunable 14 fs pulse generation in the visible with 3–8 µJ pulse 
energies in 1997 [31, 32]. Although there are restrictions for synchronizing 
the pump and signal pulses and bandwidth limitations due to cavity mirrors 
in a synchronously pumped OPO [33], a femtosecond NOPA will likely 
generate shorter pulses with multi microjoule pulse energies and broad 
tunability. Extensive subsequent investigations have been performed [34-
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38], and the NOPA continues to attract attention owing to its remarkable 
advantages. 

We will now describe the development of a noncollinear parametric 
amplifier. First, we introduced a pulse-front-matching geometry [36] to 
achieve a sub-5 fs light source using methods other than the conventional 
continuum-compression scheme. In the nonlinear configuration, the group 
velocity of a faster-traveling wave (the idler) is projected at an angle onto a 
slower wave (the signal), thus improving the temporal overlap of the two and 
achieving broadband phase matching. The importance of parametric 
conversion in the visible and near infrared has been dramatically increased 
by the discovery of the unique phase-matching conditions in a type-I BBO 
crystal pumped by the second harmonic of the Ti:sapphire laser [36, 38]. As 
a result, widely tunable sub-20 fs NOPAs have become more or less 
routinely used [34, 39]. Tunable operation in a 10 fs regime in both the 
visible and infrared has also been demonstrated [32, 36, 37, 40]. The 
development of sophisticated pulse-compression schemes has made phase 
correction over the entire parametric-amplification bandwidth possible, 
resulting in the realization of sub-5 fs pulse generation in the visible–NIR 
region [38, 41-43]. 

The great potential of sub-10 fs NOPAs was proven by several 
spectacular applications of nonlinear spectroscopy such as time-domain 
studies of ultrafast molecular dynamics in the condensed phase [42, 44]. 
Although other methods of ultrashort pulse generation may, in some cases, 
be better than NOPAs for both pulse length and spectral width [45], 
parametric amplifiers produce noticeably smoother spectra with high 
stability. The smooth, stable spectra play a vital role in time- and frequency-
resolved spectroscopy with high time resolution and with relatively high 
spectral resolution when the spectrometer is placed after the sample. The 
demand for continuing improvement of the NOPA pulse quality is evident. 

The second step in obtaining short optical pulses is to control the phase 
of the field to be constant over the whole gain bandwidth. A constant field 
phase leads not only to improved pulse compression, but also to easier 
dispersion manipulation in phase-sensitive applications of nonlinear 
spectroscopy. Several dispersion-control techniques have been employed to 
obtain the shortest pulses from NOPAs. For instance, sub-5 fs pulses have 
been achieved both by using a combination of a 45°-angled-prism 
compressor and a set of ultrabroad-chirped mirrors (UBCM) [38] and by 
using custom-designed UBCMs alone [43]. While it is feasible to fabricate a 
set of “ideal” UBCMs, the fixed dispersion of such multilayer dielectric 
structures makes it impossible to introduce fine wavelength-selective control 
of group delay, which is required in the daily optimization of a pulse 
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compressor. Similarly, typical elements of tunable negative dispersion, such 
as the prism and grating pairs [46-48], are rendered virtually nonadjustable 
because of the large spectral bandwidth of a sub-5 fs pulse. 

Thus, additional improvement of pulse quality cannot be achieved 
without implementing a flexible phase-correction method. The usefulness of 
a flexible phase method has been demonstrated in a computer-controlled 
shaping of tunable 16 fs pulses from a NOPA using a liquid crystal mask 
[49]. Micromachined flexible mirrors with electrostatic actuators, invented 
in the late 1990s, offer the possibility of adaptive pulse shaping. An 
inexpensive, commercially available membrane of this type was used to 
obtain nearly ideal spectrum-limited pulses of 15 fs duration from a 
Ti:sapphire laser [50] and subsequently employed for shaped-pulse 
optimization of the coherent emission of soft x-rays produced by high-
harmonic generation [51]. By implementing this compression method for a 
NOPA signal wave, a visible 7 fs pulse was obtained [52]. A successful 
optimization of the compression in a similar 10 fs tunable NOPA has been 
reported by Baum et al. [53]. Previously, we have briefly described the use 
of this technique to compress the NOPA pulses [54] and discuss it here in 
detail. We demonstrate how computer-controlled optimization combined 
with second-harmonic frequency-resolved optica-gating [55] allows us to 
reduce the output pulse duration down to about 4 fs at the central wavelength 
near 600 nm.  

3. PRINCIPLE OF PARAMETRIC AMPLIFICATION  

We describe the principle of optical parametric interaction, in particular 
noncollinear interaction, in this section. The requirements for efficient 
spectral conversion in optical parametric interactions are given by the two 
conditions among wave vectors and frequencies, 

isp κκκ += , (1) 

isp ωωω += . (2) 

Here κj and ωj are the wave vector and angular frequency with the suffixes j 
= p, s, and i corresponding to the pump, signal, and idler, respectively. The 
first is a phase-matching condition corresponding to momentum 
conservation among the relevant three photons; the second is the 
requirement of energy conservation. Hereafter, we assume a plane-wave 
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interaction among them. This assumption is well satisfied in the case when 
the beam diameter (including the beam waist at the focal point) is much 
larger than the wavelength. By neglecting the pump depletion and spectral 
width, the well-known parametric gain G is [56, 57] 

( )( ) 1sinh 2 += ccc glgllG Γ  

( )( )
3

0

2/122 2,2
cnnn

dkg
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is
eff ε

ΦωωΓ∆Γ =−= , (3) 

where Γ is the coupling constant, deff is the effective second-order nonlinear 
coefficient of the nonlinear optical crystals, c is the vacuum light velocity, ε0 
is the vacuum dielectric constant, Φ is the pump intensity, lc is the crystal 
length, and nj is the refractive index of the corresponding wave� The phase 
mismatch ∆κ along the pump direction is 

 βκακκκ∆ coscos isp −−= , (4) 

where α and β are the noncollinear angles between the wave vectors of the 
pump and signal and those between pump and idler, respectively. Figure 6-1 
illustrates the arrangement of the general noncollinear configuration. 

In the conventional collinear geometry (α = β = 0), the expression is 
simplified. By the Taylor expansion in powers of the angular frequencies 
around the central frequencies 00 is ωω − , κ∆  is given by  
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where 0ss ωωω∆ −≡ and 0iωω∆ ≡  and we use si ω∆ω∆ −= . Within the 

monochromatic pump approximation, as assumed above, 
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the group velocity of a j th component at the central frequency. The first-order 
derivative includes the parametric bandwidth [57], 

( )( )iscparametric cl ννΓν∆ 1153.0 −= , (6) 



140 Chapter 6 

 

which is defined as the full width at half maximum (FWHM) of the gain 
spectrum G( sω ). This represents the group-velocity mismatch (GVM) 
between the signal and idler in the nonlinear optical crystal that determines 
the bandwidth of an OPA. The GVM is an intrinsic effect for the ultrashort 
pulse interaction and determines the parametric bandwidth around 200–500 
cm-1 in standard OPAs [57]. Previously reported femtosecond OPAs with 
collinear geometry suffered from this problem, and the shortest pulse 
durations were limited to 40 fs in the visible [20] and to 30 fs in the NlR [16, 
21]. Broadening of the parametric bandwidth is essential for obtaining a 
tunable sub-10 fs light source. Sosnowski et al. [58] demonstrated a spectral 
broadening of the signal to about 800 cm-1 in the visible region by multistage 
amplification in which different spectral regions were amplified at each 
stage with slightly different crystal angles. However, this method has 
shortcomings, such as being rather complicated. In the late 1990s, novel NIR 
OPAs were reported [59, 60]. For example, Fournier et al. used the 
effectively cascading third-order process of second-harmonic generation of a 
signal and obtained self-compression to 20 fs signal pulses [59]. Nisoli et al. 
[60] demonstrated 14.5 fs signal pulse generation around 1.5 µm using an 
ultrashort 18 fs pump source from a Ti:sapphire amplifier followed by a 
hollow-fiber compressor. Both methods seem to be difficult and too sensitive 
to the pump energy. Third-order effects play an essential role in the 
characteristic pulse propagation in their schemes. Simpler and more robust 
methods are strongly desired for shorter pulse generation.  

3.1  Noncollinear-optical-parametric amplification 
(NOPA) 

In a noncollinear geometry, phase mismatch is expressed with more 
parameters than in the collinear geometry. Angles α and β are wavelength 
dependent and are expanded around the central frequency as  
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where the subscript 0 denotes the central value. From the phase-matching 
condition of Equation (1) we obtain  
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0000 coscos βκακκ isp += , (8a) 

0000 sinsin βκακ is = . (8b) 

By substituting Equations (7) and (8) into (4) we can expand the phase 
mismatch as  
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Thus, the first-order coefficient can include the dispersion of the 
noncollinear angles. It means that the signal-idler–group-velocity mismatch 
in  (6) can be modified by the wavelength-dependent noncollinear angles. If 
the condition 
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is satisfied, then the first-order phase mismatch is eliminated and extremely 
broadband phase matching is expected. The corresponding condition for the 
component perpendicular to the pump can be derived in the same way as  
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We can define the group-velocity matching in the noncollinear geometrical 
configuration by Equations (10a) and (10b). For a conventional collinear 
geometry ( 0== βα ), this condition is satisfied only when 

is νν =  (11) 

is fulfilled. This condition is only satisfied for the case of the degeneracy 
( )2pis ωωω ==  in a type-I interaction (e � o + o or o � e + e). In a type-

II interaction (e � o + e or o � o + e) the GVM is usually larger than that in 
a type-I interaction because of the large birefringence in the crystals [22, 57] 
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used in type II interactions. In a noncollinear geometry, the angular 
dispersion can eliminate the GVM and a broadband phase matching can be 
attained. The schematic of this configuration is shown in Figure 6-2.  

kp

ks(λs)

α 
(λs)θ

x

y

z

ki(λp
)β (λi)

 

Figure 6-2.  Signal-idler–group-velocity matching in an OPA nonlinear crystal with a general 
geometry. The wave vectors of the pump (kp), signal (ks(λ)), and idler (ki(λi)) are shown in the 
gain crystal. The angles α(λs) and β(λi) are internal noncollinear angles between pump and 
signal beams and between pump and idler beams, respectively. Coordinates x, y, and z and 
angle θ denote the crystal axes and angle between the optical axis of the crystal and a pump 
beam, respectively. 

The angular dispersions satisfying this condition are calculated from (10) as  
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This kind of phase matching is well known as achromatic phase matching 
[58, 59] and has been used to obtain broadband wavelength conversion of 
ultrashort pulses [23, 60-62].  

For practical applications of the amplified signal or generated idler, it is 
better to remove the angular dispersion. Thus we consider the case where the 
signal has no angular dispersion ( 0αα = ). The schematic is shown in 
(Figure 6-2). For 0αα = ,  (12) yields the simple group-velocity matching 
condition  

( )βανν += cosis ,  (13) 



6. FEMTOSECOND NONCOLLINEAR PARAMETRIC 143 
 AMPLIFICATION AND CARRIER-ENVELOPE PHASE CONTROL 
 

 

with 

( )
iiisii νκ

βα
ν

β
ν

α
βκω

β +=







+−=

∂
∂ tansinsin

cos
1

, (14) 

where the subscript 0 is dropped for simplicity. The physical meaning of this 
condition can be stated as the projection of the idler group velocity on the 
signal direction is equal to the signal group velocity. The phase mismatch in 
Equation (9) can then be rewritten 
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Group-velocity matching is satisfied at the expense of the collimation of the 
idler beam. This means that the angular dispersion of the idler given by 
Equation (12) absorbs the group-velocity mismatch between the signal and 
idler. We use the term "signal-idler–group-velocity matching" in this special 
case. For simplicity, the generalized group-velocity matching is called 
"achromatic phase matching" hereafter.  

Under the condition of a small noncollinear angle α, which is satisfied in 

many experimental situations, then 
( )

1
cos

cos ≈+
β

βα
 can be used. It is 

convenient to use the general group-velocity mismatch defined as: 

( )βανν +
−=− cos

11
GVM

is
is . (16) 

The GVM between the pump and signal, which limits the interaction length 
in the crystal, is [27]  

ανν cos

11
GVM

sp
sp −=− . (17)  

As clearly seen from Equations (16) and (17), both GVMs are dependent on 
the noncollinear angle α. Each of the GVMs can be eliminated by selecting a 
geometrical arrangement satisfying Equation (16) or (17). Group-velocity 
matching between the pump and signal or between the signal and idler using 
noncollinear geometry in the case of is νν >  has been reported; an order-of-
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magnitude longer interaction length than in the collinear geometry was also 
obtained [27-29]. Our current interest is the signal-idler–group-velocity 
matching, which is possible if is νν > . The bandwidth is broadened by more 
than tenfold and only limited by the group-velocity dispersion (GVD, as 
indicated in Equation (5) [57]; ultrashort pulse generation is thus expected. 

4. SIGNAL-WAVELENGTH-INSENSITIVE PHASE 
MATCHING 

In this section, we discuss signal-wavelength-insensitive phase matching 
or, in other words, broadband phase-matching. Recently, a simple expression 
for the phase-matching angle for different collinear and noncollinear type-I 
nonlinear-optical interactions in a negative uniaxial crystal was presented 
[63]. The phase matching and the energy-conservation conditions among the 
interacting beams are 

0
3

0
21 kkke += , (18) 

321 ωωω += . (19) 

Here, ki and ωι (λ i) are the wave vector and the frequency (wavelength), 
respectively, of i-th beam, and i  = 1, 2, and 3. Solving Equations (18) and 
(19), we obtain the following expression for the phase-matching angle θ that 
is defined as the internal angle made by the extraordinary (e) polarized pump 
beam with the optic axis of the crystal: 
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Here, 
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 ++ ψcos2 32
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oooo kkkk , (21) 

ψ =α + β , (22) 
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β = sin-1[(k2
ok3

o)sinα], (23) 

and Ao = 2π(n1
o/λ1), A

e = 2π(n1
e/ λ1), k2

o = k2
o =2π(n2

o/λ2), and k3
o =  k3

o 
=2π(n3

o/λ3); n1, n2, and n3 are refractive indices of the three interacting 
radiations with wavelengths λ1, λ2, and λ3. The superscripts o and e 
correspond to the ordinary and extraordinary polarizations, respectively, and 
α (β) is the noncollinear angle between the pump and the signal (idler) 
beams. Here k2

o and k3
o are the wave numbers corresponding to the signal 

and idler beams, respectively. Y is defined as the ‘average’ wave number of 
the signal and idler beams parallel to the pump beam. Considering the phase 
matching along the direction perpendicular to k1, Equation (23) is obtained. 
In the case of monochromatic pump, from Equation (20) we observe that the 
phase-matching angle θ will be independent (to first order) of the signal 
wavelength or signal frequency (ω2) if ∂θ/∂ω2 = 0, for any value of ω2.  In 
Equation (20), all the parameters except Y are independent of ω2. Therefore, 
the condition may be expressed as follows: 

∂Y/∂ω2 = 0. (24) 

It can be shown easily that  

βα coscos 32
oo kkY += .  (25) 

If the incident angle of the tunable seed beam has no frequency or, 
equivalently, wavelength dependency, the noncollinear angle α between the 
pump and tunable seed pulses will remain unchanged even with the change 
of the signal frequency, i.e., ∂α/∂ω2 =0. From Equations (24) and (25) 

(cosα/vg2 − cosβ/vg3) − k3
osinβ(∂β/∂ω2) = 0, (26) 

where, vgi = ∂ωi/∂ki, is the group velocity of the i-th beam (i = 2 and 3) with 
frequencies of ωi. To obtain Equation (26), we have used ∂ω2 = −∂ω3, since 
ω1 = constant because the pump is monochromatic. From Equation (23) 

αβ sinsin 23
oo kk = . (27) 

Differentiating Equation (27) with respect to ω2 and considering ∂α/∂ω2 = 0 
and ∂ω2 = −∂ω3, it can be shown that ∂β/∂ω2 = (sinα /vg2 + sinβ /vg3) 
/(k3

ocosβ). Substituting ∂β/∂ω2 in Equation (26) and after some algebraic 
simplification, we get (cosψ/vg2 − 1/vg3)/cosβ = 0, which is equivalent to 
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vg2 = vg3 cosψ. (28)  

Equation (28) can also be derived [31] by equating the first-order derivative 
of the phase mismatch with respect to ω2 to zero, assuming a monochromatic 
pump and setting ∂α/∂ω2 = 0. Using this method, we found that for a NOPA, 
the effective inverse group-velocity mismatch between the signal and the 
idler pulses [31] 

GVM2–3 = [1/vg2 – 1/(vg3 cosψ)]. (29) 

We observe from Equation (29) that GVM2–3 can be eliminated if Equation 
(28) is satisfied. Thus the condition given by Equation (28) is considered to 
be the requirement for group-velocity matching in a NOPA [31]. Therefore, 
with earlier methods [31], it can be shown only implicitly that Equation (28) 
is the condition for the insensitivity of the phase-matching angle with respect 
to the variation of signal frequency or wavelength. However, the derivation 
above is straightforward and simple starting from the expression of the 
phase-matching angle θ. We show explicitly that to achieve the insensitivity 
of the phase-matching angle with respect to the variation of signal frequency 
or wavelength of the NOPA, Equation (28) must be satisfied, i.e., the 
components of the group velocities of the idler beams with a broad spectrum 
along the signal direction must be equal to that of the corresponding signal 
beam. We studied the optical parametric properties of a relatively recently 
developed NLO crystal LB4 and found that Equation (28) is also satisfied if 
this crystal is employed as a NLO amplifier crystal in a 395 nm pumped 
type-I NOPA with a particular value of the noncollinear angle α [63]. 

5. GROUP-VELOCITY MATCHING IN β-BAB2O4  

This section describes achromatic phase matching in a BBO crystal, 
which is widely used as the gain crystal in an OPA. A BBO crystal has the 
advantages of broad tunability, a high damage threshold, and a large 
nonlinear coefficient [57]. A type-I (e οο +→ ) OPA is more suited to 
ultrashort pulse generation than a type-II (e e+→ο ) OPA because of the 
smaller GVM and larger effective nonlinear coefficient [22, 57, 60] in the 
former case. From Equation (8), the angle θ between the pump beam and the 
z axis (optic axis) and the idler noncollinear angle β satisfying the type-I 
phase matching are respectively  
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Here the three wavelengths ( jλ ’s) satisfy the relation, ( ) 111 −−− −= spi λλλ , and 

on  and en  are the refractive indices of the ordinary and extraordinary rays, 

respectively. The wavelength dependency of the refractive indices is 
obtained by the Sellmeier equations. 
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Figure 6-3. Theoretical phase-matching curves. Phase-matched probe wavelength dependence 
on the angle θ between the crystal axis Z and the pump beam in a type-I BBO OPA pumped at 
395 nm with several different values of the signal noncollinear angle α. The signal branches 
(solid curves) and idler branches (dashed curves) are shown. The area in gray indicates the 
region where the achromatic phase matching is possible. The opacity region indicates that the 
OPA gain cannot be obtained because of the corresponding idler absorption. 
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The curves of θ(λs,α) for various α with pump wavelength at 395 nm are 
shown in Figures 6-3 and 6-4. There are two branches corresponding to the 
signal and idler in the phase-matching curve for each non-zero α. These 
figures show that the most characteristic feature of the phase-matching curve 
is the broad spectral range. The region filled in gray in Figure 6-3 can satisfy 
the phase-matching condition by a noncollinear interaction. For a given θ, 
the signal and idler waves can be simultaneously emitted in a broad range of 
wavelength as shown in Figure 6-5. For a smaller angle between the pump 
beam and the crystal axis θ < °4.29 , the range of the spectrum is partially 
limited, whereas for θ > °4.29 , optical modes extending from 450 nm to 3 
µm are excited. This limit is due to the absorption of the idler in the crystal. 
The broad bandwidth can be explained in terms of noncollinear 
configuration with an extended group-velocity matching condition. 
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Figure 6-4. Signal branches of the theoretical phase-matching curves magnified in a 
wavelength region between 450 and 900 nm. The gray curve indicates the signal-idler–group-
velocity matching points. 

By utilizing a noncollinear geometry, group-velocity matching can take 
place for sλ  < 790 nm, as indicated by a dashed curve in Figure 6-4. The 

wavelength dependence of α that yields is−GMV  = 0 is calculated. It is 
found that over a spectral range broader than 100 nm, the noncollinear angle 
of α needed for phase matching varies from °7.3  only by less than °1.0 . A 
broad plateau at °±= 1.05.31θ  between 520 to 710 nm appears in the 
phase-matching curve for α  = °7.3 , as presented in Figure 6-6. 

Figure 6-7 shows parametric gain curve given by Equation (3) calculated 
for the configuration of °= 5.31θ  with effective angular dependent 
nonlinear coefficient Vpmcos6.1 θ=effd  [64] and with the pump intensity 
level of 50=Φ  GW/cm2. The gain extends the extremely broadband in the 
visible and NIR range from 520 to 750 nm with a small intensity variation 
and structure. The bandwidth reaches a breadth of 160 THz (5300 cm-1), and 
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from the Fourier transform of the gain spectrum shortest possible pulse 
width is estimated to be 4.4 fs. Note again that the idler waves are also 
generated with the same broad bandwidth in the NIR with the angular 
dispersion to be phase-matched with the broad spectrum of the signal waves 
(see Figure 6-6). 
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Figure 6-5. Signal-idler–group-velocity matching in an OPA with a special geometry of 
constant pump-signal angle (α = fixed). The wave vectors of the pump (kp), signal [ks(λs)], 
and idler [ki(λi)] are shown in the gain crystal. The angles α and β(λi) are internal 
noncollinear angles between pump and signal beams and pump and idler beams, respectively. 
Coordinates x, y, and z denote the crystal axes and q is the angle between the optical axis of 
the crystal and the pump beam. 

 

Figure 6-6. Noncollinear phase-matching curves. Wavelength dependence of pump incident 
angle θ  and idler noncollinear angle β  in the case of the pump-signal noncollinear angle of α 
= 3.7°. 

These features indicate that a NOPA is a promising light source for 
generating ultrashort pulses over a wide visible and NIR range in a sub-10 fs 
regime. In the present work this characteristic signal-idler group-velocity 
matched interaction is focused on and the applicability to the ultrashort pulse 
generation is extensively investigated and explored. 
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Figure 6-7. Wavelength dependence of the parametric gain [Equation (3)] in the type-I 
NCPM for the pump-signal noncollinear angle of  α = 3.7°. Here the experimental parameters 
Lc = 1 mm and Φ = 50 GW/cm2 are used. 

6. FEMTOSECOND NOPA BASED ON β -BAB2O4 

6.1 Broadband amplification of a single-filament 
continuum 

Figure 6-8 shows the experimental setup for the noncollinear-phase-
matched OPA (NOPA) developed in our group. The center wavelength, 
pulse energy, and duration of the regenerative amplifier pulse Ti:sapphire 
laser are about 790nm, 300 µJ, and 120 fs, respectively. The second 
harmonic at 395 nm is generated with a 1 mm thick BBO crystal by type-I 
phase matching with a cut angle of Φ = 29.4°. The second harmonic 
generated with a 100 µJ pulse energy is used as a pump. The pulse width of 
the second harmonic is estimated to be 150 fs by the cross-correlation trace 
with the fundamental pulse. After passing through a delay line for 
synchronization, the pump beam is telescoped to obtain a peak intensity of 
~300 GW cm-2 and pumps a 1 mm thick BBO crystal (type I, Φ = 30°). The 
small beam diameter of 0.5 mm is used to suppress the effect of the pulse-
front tilting [29]. The crystal is placed with the xz-plane lying in the plane of 
the page, and the polarization of the pump beam is in the plane as an e-ray. 
The thickness of the BBO crystal is determined so that the temporal walk-off 
due to sp−GVM  (~100 fs/mm) is well below the duration of the pump pulse. 

A small fraction of the pulse energy (1–2 µJ at 790 nm) is focused onto a 
2 mm thick sapphire plate and converted to a single-filament continuum to 
be used as the signal beam [19-21, 65]. The continuum is obtained by 
carefully adjusting the incident pulse energy to be only slightly higher than 
the threshold of continuum generation. The stabilities of the intensity and 
spectrum and the spatial coherence along the cross section are both excellent 
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and suited to be used as the seed of an OPA. The spectrum of the single-
filament continuum covers a broad spectral range from 450 nm to longer 
than 1000 nm. There is a strong spike around 790 nm because of the 
fundamental. Outside this region, the spectrum is smooth and flat, i.e., well-
suited for obtaining a smooth, short pulse without temporal structure because 
of the Fourier-transformation relation. 
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Figure 6-8. Experimental setup for the noncollinear-phase-matched OPA (NOPA). SHG: 
nonlinear crystal for second-harmonic generation; BS: beam splitter; HS: fundamental and 
second-harmonic separator; NF: notch filter centered at 800 nm; D: variable optical delay 
line; PS: periscope for rotating the polarization of the signal. The conelike parametric 
fluorescence with the minimized dispersion (see text) is illustrated with the external cone 
angle αext. Also illustrated are the crystal axes x, y, and z. 

The sum-frequency pulse of the continuum at different wavelengths and 
120 fs gate pulses at 790 nm are generated in a 0.5 mm thick BBO crystal 
(type I, Φ = 35°) and probed to measure the group delay. The wavelength-
dependent group delay is determined as the center-of-mass delay position in 
the corresponding cross-correlation trace [66]. The effect of dispersion in air 
is corrected using refractive index data in the literature [67]. Because of 
unsaturated self-phase modulation, the single-filament continuum does not 
posses a linear chirp across the whole range of the spectrum as is well 
known in optical fibers [1, 68]. The continuum beam is collimated and 
passes through a notch filter with a peak reflectance of -90% at 800 nm to 
reduce the fundamental pulse energy. It is then injected to propagate along 
the dispersion-minimized cone surface. The direction is in the xz-plane to be 
matched with the Poynting vector of the pump for the walk-off 
compensation [24]. A broad spectral range of the continuum is 
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noncollinearly amplified to a 2–3 µJ pulse energy with a short-term peak-to-
peak fluctuation of about 10%. 

6.2 Output properties  

The center wavelength of the amplified signal depends sensitively on the 
delay of the pump pulse owing to the chirp of the continuum. By sweeping 
the delay line length by 50 µm, the signal is stably and continuously tuned 
from 550 to 690 nm, as shown in Figure 6-9. Each delay yields a broad 
spectrum with the bandwidth up to 2000 cm-1. The small peaked structures 
around 530 nm and 760 µm are caused by the imperfect flatness of the 
phase-matching curve and the strong seed intensity near the fundamental, 
respectively. The notch filter suppresses the unexpected dual-wavelength 
amplification by decreasing the fundamental intensity and by separating 
temporally the two spectral components in the single beam. 

 

Figure 6-9. Spectra of the amplified signal. The center wavelength can be tuned only by 
scanning the delay line of the pump by 50 µm. 

In this group-velocity-matched geometry, the idler is broadly generated 
and fan shaped with a spanning angle of about °7  in the xz-plane, which can 
be observed by the second harmonic of the idler generated from the same 
BBO crystal. Figure 6-10 shows the wavelength dependence of the external 
noncollinear angle with respect to the pump direction. 
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Figure 6-10. Angular-dispersion property of the idler. Measured external noncollinear angles 
βext with respect to the pump are shown (full circles at λs = 680 nm and open squares at λs = 
600 nm). Also shown is the calculated phase-matching curve (solid curve). 

Figure 6-11 shows the background-free intensity autocorrelation trace at 
625 nm after the pulse compression. A 100 µm thick BBO (Type I, °= 45θ ) 
is used for the second-harmonic generation. The pulse compressor is a pair 
of BK7 Brewster prisms. It is optimized to a 37 cm slant length with a 
minimum insertion. By assuming that the envelope function is a sech2 pulse, 
a least-squares best fit yields a pulse width of 14 fs. The spectral width of a 
66 nm at FWHM corresponds to a temporal pulse width as short as 8 fs, 
indicating the pulse is far from transform-limited. 
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Figure 6-11. Intensity autocorrelation trace of the amplified signal after pulse compression 
(full circles). Autocorrelation measured with a second-harmonic generation crystal. The 
sech2-fit (solid curve) pulse width is 14 fs (FWHM). The spectrum is shown in the inset. 
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The measured pulse width and time-bandwidth product over the pump-
delay-tuning range are shown in Figure 6-12. The bandwidth is 700 cm-1 at a 
central wavelength of 550 nm. The bandwidth reaches up to 2000 cm-1 when 
the center wavelength is tuned to 690 nm. For both tunings, the pulse 
duration is sub-20-fs. The time-bandwidth product varies from 0.6 to 1.1, 
except at 550 nm where it is 0.4. In the long wavelength region, the spectrum 
spreads to beyond 800 nm with a non-negligible spike that degrades the 
time-bandwidth products to be larger than 1. The large time-bandwidth 
product is partly due to the pulse-width measuring apparatus that may 
overestimate the pulse width. The devices responsible could include the 
autocorrelator composed of a 100 µm thick BBO with a group-velocity 
mismatch of 40 fs at 600 nm and dispersive media, such as the lens and 
beam splitter. Using the 3.3 fs/step delay stage, the time resolution of the 
pulse stage used for the delay line also hinders accurate measurement of the 
pulse width. The wings on both sides observed in the autocorrelation traces 
also indicate higher-order dispersion. These problems have been eliminated 
as discussed below. 
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Figure 6-12. Wavelength dependence of the pulse width (full circles, sech2-fit) and time-
bandwidth product (full squares). The dotted line indicates the product of transform-limited 
pulse (0.315) in the case of a sech2-pulse envelope. 

The low conversion efficiency (-5%) can be improved by additional two-
stage amplification, where both pump and signal beams are reflected back to 
the crystal twice by plane mirrors with small, vertical tilt angles. Even 
though the gain of the first stage is as high as 104, the gain in the succeeding 
stage is smaller than 3. The reason for this is not clear but may be caused by 
the degradation of the beam quality from higher-order nonlinear effects. The 
resultant pulse energy is up to about 8 µJ, resulting from a longer pulse 
duration (~18 fs) and an increased time-bandwidth product of larger than 1. 
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7. LIMITATION OF PULSE WIDTH BECAUSE OF 
PULSE-FRONT MISMATCH 

The NOPA based on the signal-idler–group-velocity matching can 
generate sub-20 fs pulses with a wide tuning range in the visible regime. 
However, from the broad spectra with bandwidths exceeding 2000 cm-1, 
much shorter pulses of less than 10 fs duration are expected. The 
unexpectedly large time-bandwidth products are partly due to the non-
optimized autocorrelator and pulse compressor. However, it seems difficult 
to explain a broadening factor of 2–3 from the transform-limited duration. 

The most probable reason for the broadening is pulse-front tilting, an 
intrinsic effect of the noncollinear interaction of ultrashort pulses [29]. In a 
noncollinear geometry, the pulse fronts of the pump and signal cannot 
overlap fully with each other. Noncollinear amplification causes a tilted gain 
volume in the signal beam (with a noncollinear angle α), resulting in the 
generation of a signal tilted by the same angle. 

The external tilt angle γ is simply given from the relation 

.tantan γνα
c
s=  (31) 

The group velocity sν  describes the refraction. The pulse-front tilting 
induces a temporal delay across the beam diameter d by 

c

d
ttilt

γδ tan= , (32) 

which gives the maximum pulse broadening via time-space coupling. In a 
femtosecond NOPA, the tilting is a more serious problem than in a 
noncollinear OPO because an order-of-magnitude larger spot size is used in 
OPAs [29]. In the present NOPA for °= 7.3α , the tilt angle of the exit 
signal is calculated to be °3.6  at 600 nm. The 0.5 mm diameter of the pump 
can cause broadening up to 180 fs. This value is too large to explain the 
present experiments. An interaction within a smaller cross section is taking 
place in the crystal (see Figure 6-13). The divergence of the amplified signal 
and the relatively low conversion efficiency support this explanation. 

The most evident feature is the spatial chirp of the amplified signal. The 
pulse-front tilting is accompanied with a dispersion of the exit angle ε  [47] 
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Figure 6-13. Schematic of the noncollinear interaction between the pump pulse and signal 
pulse. The crystal is on the left side. The volumes occupied by the pump pulse are shown by 
rectangular shapes elongated perpendicular to the propagation direction. Those for probe 
pulse are shown by closed gray rectangles. The gain volume introduced by the pump pulse 
causes the tilting of the wave front of the signal pulse by α in the crystal, resulting in the 
special and angular dispersions of the exiting signal pulse. 

This feature originates from the inhibition of confined beam propagation 
with pulse-front tilting from the wave front, which is analogous to 
propagation through a prism [46] or grating [69]. The spatial chirp of the 
amplified signal is measured by scanning a 100 µm slit on the xz-plane over 
the beam cross section after collimating. The spectrum passing through the 
slit exhibits a position-dependent feature (Figure 6-14). The spatial chirp is 
estimated by a weighted average of the spectra. The result shows a 
characteristic quasi-linear dependence on the exit angle (Figure 6-15). The 
slope expected from the pulse-front tilting with a tilt angle of °= 3.6γ  shows 
an extremely good agreement with the measured spatial chirp. 
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Figure 6-14. Spatial chirp of the signal spectra after passing through the vertical slit. Slits are 
located at three different positions (thin curves) after the nonlinear crystal of the NOPA. The 
case of the fully open slit is shown in bold. 
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Figure 6-15. Dependence of the center-of-mass wavelength of signal spectra as a function of 
the relative exit angle. The dashed line indicates the expected spatial chirp of the signal tilted 
by 6.3°. 

7.1 Tilted pump geometry for pulse front matching 

The pulse-front matching geometry is schematically shown in Figure 6-
16. The pump beam passes through a prism with incident and exit angles c1 
and c2, respectively, causing the pulse-front to tilt. The tilt angle γprism just 
after the prism is [47] 

'
2

'
1

2

'coscos

sin
tan

λ
λ

φφ
α

λ
ϕλγ

d

dn

d

d apex
prism −=−= , (34) 
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where n is the refractive index of the prism, apexα  is the prism apex angle, 
and '1φ  is the internal incident angle. The tilt angle is then decreased and the 
pulse width broadened during propagation in free space by the spectral 
lateral walk-off over the beam cross section [69]. The following telescope 
recollimates the spectral lateral walk-off and images the tilted fronts on the 
focal plane with a longitudinal magnification factor, 21 / ffM = , which 
gives the tilt angle extγ  at the crystal position 

prismext f

f γγ tantan
2

1= . (35) 

The internal tilt angle intγ  is reduced by refraction with the relation 

ext
g

c
γ

ν
γ tantan int = . The pulse-front matching condition intγ = α is then 

prism
g

f

f

c

v
γα tantan

2

1= . (36) 

Because the spectral lateral walk-off spectrum (lateral dispersion) in the 
horizontal direction is insignificant in the present experimental conditions, 
the beam is nearly optimally recollimated in both horizontal and vertical 
directions. Since the spot size is reduced by the lateral magnification factor 
M-1 = f2 / fl', the design of the telescope is essentially determined by the 
requirement of the efficient amplification and dimensional restriction. 
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Figure 6-16. Geometry of pulse-front matching optical system. L: lens; M: mirror; CYM: 
cylindrical mirror; SM: spherical mirror; γint: internal tilt angle of pulse front of probe pulse in 
the nonlinear crystal of NOPA; γext: external tilt angle of pulse front of probe pulse out of the 
nonlinear crystal of NOPA; BBO: nonlinear crystal (β-barium borate). 
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8. CHIRP PROPERTY OF SIGNAL  

Because the seeded continuum has a chirp, the OPA is described as 
chirped-pulse amplification [70], and the amplified signal initially possesses 
the same chirp. In addition, the signal experiences phase distortion caused by 
the nonlinear effect in the BBO crystal and by the propagation through 
dispersive media such as the crystal, air, and the beam splitters in the 
frequency-resolved auto-correlation (FRAC). To attain a transform limited 
sub-10 fs pulse, accurate and precise phase correction is required over the 
whole spectral range.  

The dependence of the phase φ(ω) (ω: angular frequency) of the pulse on 
the wavelength is expanded around a central angular frequency ω0 
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The central wavelength may not be uniquely defined in the case of an 
extremely short pulse, which may have an irregular spectral shape with 
several spikes and a complicated structure.  

The distortion of the pulse shape is not caused by the dispersion of the 
phase velocity but by that of the group velocity. Thus the group delay (GD) 
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is used for pulse-propagation characterization. The constant term induces 
only a temporal shift during the pulse propagation without any shape change 
and is thus neglected in Equation (38). The coefficients of the expansion 

( ) ( ) ( )L,,, 0
''''

0
''''' ωφωφωφ  are called GD dispersion (GDD), third-order 

dispersion (TOD), fourth-order dispersion (FOD), and so on, respectively.  
In the propagation through a medium with the path length l  and wave 

vector ( ) ( ) cn /ωωωκ == , the phase shift ( ) ( )lωκωφ =  yields  
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( ) ( )ων
ω

g

l
T = , (39) 

which gives the intuitive representation of the GD. However, the concept of 
the GD can be represented in terms of wavelength-dependent optical paths 

( )ωP  such as a grating pair [46] or prism pair [48].  
Because the higher terms, such as a TOD and FOD, become significant in 

a sub-10 fs regime with a broad spectral range, a more precise phase 
correction is needed for the compression to the transform-limit. 

8.1 Compression to the sub-5 fs regime  

The GD compensation of the signal pulses using a pair of 
ultrabroadband-chirped mirrors (UBCMs) is performed taking into account 
the higher-order dispersion of the whole system including a °45  fused-silica 
prism pair, air along the optical path, and a beam splitter. By global 
optimization across the whole spectral range, the best compression is 
attained in the case of a 1 m slant length and a 6.0 mm internal path length of 
the prism pair at 650 nm and eight reflections in the four round trips between 
the two UBCMs in the pair, as shown in Figure 6-17.  
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Figure 6-17. Group-delay property of the compressor. The group delays of the prism pair, the 
UBCM pair with four round trips (thin, solid curve), the prism pair (dashed curve), air with a 
4.5 m path length through the air, the beam splitter in the FRAC, and the whole compressor 
system are shown from top to bottom. Also shown is the measured group delay of the signal 
(full circles) in the bottom box with the sign reversed. 

To obtain the full-bandwidth amplification, the compressor is divided 
into two portions before and after the BBO crystal. The experimental setup 
for the sub-5 fs NOPA system is shown in Figure 6-18. The pre-compressor 
is composed of one UBCM pair in a single round-trip configuration, and the 
main compressor has another pair in a three round-trip configuration with 
other elements. The insertion of the UBCM pair before the crystal reduces 
the seed chirp to about 10 fs GD difference between 530 and 770 nm, and 
the inequality / 2 ( )BBO p p s MAXT T GMPτ −∆ + ∆ < +  is fulfilled. 
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Figure 6-18. Schematic of the visible sub-5-fs pulse generator. L: lens; M: mirror; CYM: 
cylindrical mirror; SM: spherical mirror; BS: beam splitter; HS: harmonic separator; TP: 
prism for pulse-front tilting; L1, L2: lenses for the telescope; SMs: spherical mirrors (γ = 100 
mm); VND: variable neutral-density filter; WSM: spherical mirrors (γ = 120 mm); CF: cut-off 
filter; D: optical delay line; PS: periscope; P1,P2: 45° fused silica prisms; and CCMs: corner-
cube mirrors. 

By tailoring the experimental conditions and parameters as described 
above, full-bandwidth amplification by the double-path amplifier has been 
achieved. As evident in the chirp properties of the signal and idler inspected, 
effects such as a SPM or a cascaded second-order process [71] seem to be 
weak under our experimental conditions. Therefore the reduction of the 
initial chirp effect does not significantly change the net pulse parameters, 
including the overall chirp property.  

The pulse energy varies from about 6 to 7 µJ just after the BBO crystal; 
after the main compressor with about 70% throughput, it becomes about 5 
µJ. The highest throughput of about 80% is obtained by using properly 
selected UBCMs. Then only the reflections on the surfaces of the prisms 
cause loss. 

The spectrum of the signal is shown in Figure 6-19. The spectral shape 
depends on the positions of the delay lines, which are fixed to maximize the 
bandwidth. The FWHM is as broad as 240 nm, corresponding to 150 THz, 
and the transform-limited pulse width is calculated to be 4.4 fs. The 
bandwidth is slightly narrower than that reported in Reference [37]. The cut-
off filter of the seed effectively suppresses the amplification around 790 nm 
where the chirp exhibits a large nonlinearity. The collimated seed-pump 
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beam interaction also avoids the spectral broadening of the signal caused by 
beam divergence [66] that is accompanied by an undesirable spatial chirp. 
Careful attention to both of these details is essential to obtain a signal 
compressible to the transform-limit.  
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Figure 6-19. Spectrum of the signal pulses under a full-bandwidth operation. 

The pulse shape is measured by FRAC. The pulse energy is appropriately 
reduced by adjusting the radius of open aperture of an iris. Figure 6-20 
shows the FRAC trace of the signal after optimization of the parameters and 
alignment. The sech2-fit pulse width is as short as 3.5 fs, which is shorter 
than the transform-limited width. Because of the significant modulation of 
the spectral intensity, such an assumption cannot give an accurate width [1]. 
In the present work the pulse width is estimated by Fourier-transformation of 
the spectrum including the wavelength dependence of the phase in two ways.  

First, the phase is calculated from the properties of the measured group 
delay of the signal ( )ωpulseT  and the group delay of the compressor 

( )ωrcompresssoT  (see Figure 6-17) yielding  

( ) ( ) ( )[ ] .ωωωωφ
ω

dTT compressorpulse∫ +=  (40) 

The scattered values of the measured group delay are caused partly by the 
poor time resolution and by intensity fluctuation. The measured group delay 
is smoothed by fitting to a cubic-polynomial function. Using a calculated 
phase, the FRAC trace of the compressor output is then constructed and 
depicted by open circles in Figure 6-20.  
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Figure 6-20. Frequency-resolved auto-correlation (FRAC) trace of the compressor output. 
Traces are (a) for │τ│<15 fs and (b) for │τ│<40 fs (τ: delay time). Measured trace (solid 
curve), calculated trace with measured group-delay (GD) of signal and of compressor (open 
circles), calculated trace from the FT of measured spectrum (full circles), and calculated trace 
using sech2 with 3.5 fs width (dashed curve) are shown. The calculated pulse width is 4.7 fs, 
while that obtained by Fourier transformation of measured spectrum is 4.7 ±0.1 fs. 

The second approach is to fit the measured FRAC trace with parameters 
describing the phase. The complicated wavelength dependence of the group 
delay of the UBCMs is included. The residual phase can be reasonably 
assumed to have a smooth property and is determined by fitting the trace to a 
cubic-polynomial function of the frequency [5, 6]. Because an 
autocorrelation is used, the direction of the time axis is not determined by 
this process alone. By comparison with the calculated phase mentioned 
above, the direction can be determined. The fitted FRAC trace is shown in 
Figure 6-20 with full circles.  

Both phase profiles show similar behavior. The deviation is within π/2 
radian over the whole spectral range from 510 to 790 nm. The oscillations 
are due to the group delay of the UBCMs. The large deviations in the regions 
of < 500 nm and > 800 nm are due to the limited bandwidth of the UBCMs. 
However, UBCMs are less effective for pulse-width broadening because the 
spectral intensity in these regions is weak. The difference between both 
phases is mainly caused by the uncertainty of the measured group delay 
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because of a lack of information in the whole spectral range. It is also 
difficult to determine the precise values of the compressor parameters such 
as the internal path length.  

The calculated and fitted FRAC traces have nearly the same shapes and 
agree very well with the experimental trace even in the side wing regions. 
The estimated intensity profiles are shown in Figure 6-21. The calculated 
profile gives a 4.7 fs pulse duration, whereas the fitted one gives a 4.7 ± 0.1 
fs pulse duration. The result indicates that the phase correction with the 
highest precision is attained using the prism-chirped mirror compressor; 
almost transform-limited pulses are obtained. It is the first demonstration 
that the UBCMS can be applied to the visible range over more than 200 
THz. And, the electric field oscillates only for 2.2 cycles in the FWHM of 
the intensity profile. 
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Figure 6-21. Intensity profile of the compressed pulse. The transform-limited pulse width 
determined by the spectrum is 4.4 fs (thin solid curve), whereas the calculated (thick solid 
curve) and Fourier-transform-fit to FRAC with phase parametric (dashed curve) pulse widths 
are 4.7 fs and 4.7 ± 0.1 fs, respectively. 

The difference in the intensity profiles clearly indicates the limitation in 
extracting the pulse shape from a FRAC trace. The phase information is 
mainly included in the fringes of the side wings, which cannot be measured 
with high enough signal-to-noise ratios in many cases. Uncertainty results 
particularly in the shape of the trailing pulses. However, the pulse width, 
which is defined as the FWHM, is reasonably estimated by this method with 
a 0.1 fs accuracy. The pulse shape and phase can be precisely determined by 
other methods such as frequency resolved optical gating (FROG) [3]. 
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9. SECOND-GENERATION NONCOLLINEAR 
PARAMETRIC AMPLIFIER 

The NOPA we developed consists of three parts: The first element is a 
parametric amplifier with a gain bandwidth sufficient to support sub-4 fs 
operation. The second component is a grating-chirped-mirror compressor, 
used for rough group-delay compensation; it has a flexible mirror that allows 
for fine spectral phase adjustment. The third part comprises a pulse 
diagnostic set-up based on second-harmonic generation (SHG) FROG with 
feedback to a personal computer that also controls the actuators of the 
flexible mirror. An overview of the setup is presented in Figure 6-22. The 
system is pumped by a 120 fs, 1 kHz repetition rate regenerative amplifier 
[CPA1000 (Clark MXR)] that is seeded by a fiber laser oscillator (IMRA, 
Clark). We now address separately the design and functions of each stage of 
the setup.  
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Figure 6-22. Schematic of experimental setup of sub-4 fs NOPA. λ/2: 800 nm wave-plate; SP: 
2 mm sapphire plate; P1, P2: 45°quartz prisms; P3: 69° quartz prism (the distance from P3 to 
the NOPA crystal is 80 cm); CM1,2: ultrabroadband chirped mirrors; GR: 300 lines/mm ruled 
diffraction grating (Jobin Yvon); SM: spherical mirror, R = -400 mm; BS1,2: chromium-
coated d = 0.5 mm quartz beam splitters; SHG crystal: 0.4 mm θ = 29° BBO (EKSMA); 
NOPA crystal: 1 mm θ = 31.5°BBO (Casix); and SHG FROG crystal: θ = 29° BBO wedge 
plate d = 5÷20 µm (EKSMA). Spherical mirrors around the NOPA crystal are R = -200 mm. 
Thick arrows on the left indicate the data flow from the pulse diagnostic setup (SHG FROG) 
and the feedback to the flexible mirror. 

The discovery of “magic” phase-matching conditions in a Type I-BBO 
crystal pumped by a 400 nm light [26, 72] opened the door to producing 
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amplified visible pulses with a bandwidth of nearly 200 THz [36, 37, 41]. 
The uniqueness of this pumping arrangement comes from the fact that the 
pump inclination to the direction of the seed (~ 3.7°) matches almost 
perfectly the angle of birefringent walk-off between the o and e waves inside 
the crystal. As a result, BBO as long as 1–2 mm can be employed even in 5 
fs NOPAs. The implications of noncollinear phase matching are well 
understood and discussed in numerous papers [26, 29, 31, 32, 34, 36-40, 66, 
72]. 

We paid further attention to the subtleties of parametric amplification in a 
noncollinear configuration [36, 38], by considering the effect of pulse-front 
tilting of the signal wave on the ability to compress the signal into a sub-5 fs 
pulse. To prevent the tilting of the signal pulse in space, an effect that also 
results in angular dispersion of the amplified pulse, several researchers 
proposed to use a pump beam with a tilted wave front. This configuration, 
named pulse-front-matching, was implemented by sending the pump beam 
through a prism and adjusting the pulse tilt with a telescope consisting of 
two convex lenses [38, 41, 73]. 

We took care to find a balanced Mach-Zehnder interferometric 
autocorrelator [74] to characterize the NOPA pulses [38, 41, 42]. This 
particular autocorrelator does not have spatial resolution and, therefore, is 
insensitive to wave-front tilt. This does not necessarily mean the real pulse 
width does not suffer from broadening of the pulse width due to pulse-front 
tilting, however. The required spatial sensitivity can also be achieved by 
using an asymmetric number of reflections in the interferometer. 

Together with the effect of pulse-front matching, the angular dispersion 
of the pump beam in the sub-5 fs NOPA is an important factor in terms of 
enhancing the phase-matching bandwidth. Even with relatively thick second-
harmonic crystals (1–2 mm LBO or BBO) and comparatively long (120–150 
fs) pulses from standard regenerative amplifiers employed to pump the 
NOPAs [37, 38, 41, 42], the resulting second-harmonic radiation has a 
bandwidth of several nanometers. Wide-bandwidth parametric amplification 
can subsequently be achieved by pointing the seed beam in a specific 
direction for each spectral component of the pump, as schematically shown 
in Figures 6-23 and 6-24. The adjustment of the pump beam dispersion, 
required for phase-matching optimization, is obtained by selecting the apex 
angle of a prism in the second-harmonic pathway [Figure 6-23(b)] and the 
distance from the prism to the focusing optic. The required second-harmonic 
(SH) dispersion 
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where λ is the pump (SH) wavelength, 0λ  denotes the central component of 
the SH spectrum, l and f are the distance from the prism to the focusing optic 
and the focal distance, respectively. The exit angle of the SH beam behind 
the prism is 
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In Equation (42), 0γ  is the angle between the SH beam and the normal to the 
input face of the prism (incidence angle onto the prism), apexθ stands for the 
apex angle of the prism, and )(λn  is the refractive index of glass. 

(a)

(b)

 

Figure 6-23. Extension of parametric bandwidth by adjusting the incidence angle of 
individual pump wavelengths onto a NOPA crystal. (a) Schematic representation of 
noncollinear pump geometry. (b) Second-harmonic dispersion adjustment based on the use of 
a prism and a focusing optic. 

In our second-generation NOPA system, the distance between the 
Brewster-angled prisms for second-harmonic dispersion and a focusing 
mirror (Figure 6-22) is 80 cm. The radius of curvature for the concave mirror 
is R = -200 mm. Standard formalism for type I phase-matching in crystals 
[17] was used in this calculation to obtain the results depicted in Figure 6-24. 
We assumed that the efficiency of the parametric frequency conversion is 
not high. Thus we could disregard any pulse-reshaping effect that can lead to 
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an effective reduction of the group-velocity mismatch between the pump and 
signal waves because of a kind of nonlinear pulling effect in the reshaping 
process. As a result, we believe the data shown in Figure 6-24 represent a 
low estimate of the signal bandwidth that can be simultaneously phase-
matched in the NOPA. The pairs of curves with dark shaded areas in 
between composing dark stripes in Figure 6-24 represent cases of individual 
pump wavelengths. The cases of wavelengths of 389, 392, and 395 nm are 
shown. The thickness of each dark stripe gives the FWHM of the angular 
phase matching [17] and is determined by the nonlinear interaction length, 
assumed to be equal to the crystal thickness of 1 mm. The whole shaded area 
in Figure 6-24 corresponds to the combined bandwidth produced by the 
entire second-harmonic spectrum, shown as a shaded contour in the inset. 
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Figure 6-24. Phase matching in a 1 mm Type I BBO crystal, θ = 31.5°. Dark-shaded contours 
indicate FWHM of the angular phase matching for individual monochromatic pump 
wavelengths after optimization of their incidence angles. Dashed line denotes the direction of 
the seed beam. Inset depicts experimentally measured second-harmonic spectrum used to 
pump the NOPA (shaded contour) and calculated conversion efficiency of a 0.4 mm Type I 
BBO second-harmonic-generation crystal. 

 To maximize the effect by employing the widest region of pump 
frequencies, we used a thinner, 0.4-mm, BBO for the frequency doubling of 
the fundamental 120 fs pulses. This crystal provides an ~30% conversion 
efficiency in contrast to the higher value of about 50% in the 1 mm BBO 
used in our first NOPA; however, it ensures a larger spectral width of the 
second harmonic. The corresponding frequency conversion efficiency is 
given in the inset to Figure 6-24 by a solid curve and indicates that this 
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crystal causes no significant reduction of the resulting second-harmonic 
bandwidth.  

Analogous ideas about bandwidth extension have been applied in other 
parametric schemes. Angular dispersion of the frequencies in the 
fundamental beam has been used to obtain achromatic phase matching for 
second-harmonic generation [62], whereas a multipass OPA using slightly 
different beam directions in every pass [58] has been shown to dramatically 
broaden the resultant bandwidth of the amplified pulse. Recently, a single-
stage OPA pumped by two noncollinear beams has also been demonstrated 
as an efficient means of boosting the spectral width [75]. 

Another method for obtaining extremely broad bandwidth with short 
pulses is to use a two-stage compressor. This device incorporates a flexible 
mirror for adaptive pulse shaping plus a simple and trustworthy feedback 
loop based on a one-dimensional spectral measurement. Our rapid numerical 
algorithm for adaptive control of the flexible mirror is superior to more 
complex search routines, which are less resistant to laser intensity 
fluctuations. The automated optimization results in the generation of two-
cycle pulses with a carrier wavelength near 600 nm. The absence of deep 
modulation on the amplified spectrum in combination with adaptive phase 
correction lead to a high-quality temporal profile and allow the concentration 
of more than 90% of the pulse energy within a 7.5 fs time window. 

10. CONCLUSIONS AND OUTLOOK 

In this work, we report the design of a sub-5 fs visible–near-IR 
parametric amplifier with adaptive pulse tailoring that permits a 20-fold 
compression of the pump pulses from a standard Ti:sapphire chirped-pulse-
amplification system. Whereas smooth parametric spectra were generated 
that correspond to 3.5 fs pulses (if ideally compressed), we managed to 
obtain 3.9 fs pulses after passing the signal beam through a hybrid 
compressor based on a diffraction-grating telescopic dispersion line, 
specially designed multilayer-dielectric-chirped mirrors, and a computer-
controlled flexible mirror.  

As has been shown in this chapter, efficient use of all pump frequencies 
leads to the broadening of the amplification band. One of the fundamental 
issues for further progress in the development of a NOPA with even shorter 
pulse duration is the difficulty with the pulse diagnostics. The type I phase-
matching SHG FROG, employed in this work, is stretched to the limit 
because of the finite phase-matching bandwidth of the SHG crystal. 
Implementation of a heterodyne third-order FROG technique, based on 
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automatically phase-matched, frequency-resolved pump-probe in a 
transparent medium [76] may provide an excellent alternative. 

We would like to mention another fascinating use of the NOPA 
technique. Remarkably, parametric amplifiers provide an alternative 
approach to the generation of few-cycle optical pulses by using multiple 
source spectra rather than a single one [77]. This becomes possible as a 
result of unique phase relations among signal, pump, and idler waves in a 
white-light-seeded NOPA [78]. Methods for obtaining monocycle pulses 
include merging the signal and idler spectra [38, 41, 42] or merging the 
spectra of the signal and the fundamental broadened around 800 nm [79] into 
a single, coherent bandwidth since the carrier-envelope phase [80] of those 
waves exhibit identical drift. Moreover, octave-spanning carrier-envelope– 
phase-locked infrared idler pulses [78] and carrier-envelope-phase–self-
referenced visible signal pulses [81] from NOPAs have already been 
demonstrated. These developments are opening up the possibility of using 
NOPAs in field-sensitive applications of nonlinear optics [8, 81]. 
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Chapter 7 

OPTICAL FREQUENCY MEASUREMENT 
 

Thomas Udem, Marcus Zimmermann, Ronald Holzwarth, Marc Fischer, 
Nikolai Kolachevsky, Theodor W. Hänsch  
Max-Planck-Institut für Quantenoptik 

Abstract: The new alliance between the time and frequency domains in laser 
spectroscopy has made it possible to develop ultrafast counting schemes that 
can keep track of single optical oscillations. With this achievement, counting 
optical oscillations of more than 1015 cycles in one second has become a 
simple task. High-resolution spectroscopy for basic research and metrology 
greatly benefit from this technology as it has allowed the highest possible 
precision. This development has also led to the construction of all-optical 
atomic clocks that are expected to eventually outperform current state-of-the-
art cesium clocks. The possibility to measure almost any frequency ratio with 
very high precision can be used to search for possible variations of natural 
constants. 

Key words:  hydrogen spectroscopy, optical atomic clocks, optical frequency metrology, 
optical frequency synthesis 

1. FREQUENCY COMBS 

Frequency can be measured with by far the highest precision of all 
physical quantities. In the radio frequency (rf) domain (say up to 100 GHz), 
frequency counters have existed for a long time. Almost any of the most 
precise measurements in physics have been performed with such a counter 
that uses an atomic clock as a time base. To extend this accurate technique to 
higher frequencies, so called harmonic frequency chains have been 
constructed since the late 1960s [1]. In such a chain, nonlinear elements 
produce frequency multiples (harmonics) of a given oscillator to which a 
subsequent oscillator is phase locked. The latter is necessary because 
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nonlinear devices usually produce weak signals, at least when they are 
driven with a continuous wave (cw). Electronic phase-locked loops can be 
used to stabilize any kind of oscillator, even lasers, provided their intrinsic 
stability is sufficient so that there is no need for very rapid frequency 
corrections. Repeating the multiplication and phase-lock procedure many 
times makes it possible to convert a reference radio frequency, say from an 
atomic clock, to much higher frequencies. Because of the large number of 
steps necessary to build a long harmonic frequency chain, it was not before 
1995 when visible laser light was first referenced phase coherently to a 
cesium atomic clock using this method [2]. 

The disadvantage of these harmonic frequency chains was not only that 
they could easily fill several large laser laboratories at one time, but that they 
could be used to measure only a single optical frequency. Even though 
mode-locked lasers for optical frequency measurements were used in 
rudimentary form in the late 1970s [3],  this method did not become practical 
until the advent of femtosecond (fs) mode-locked lasers. Such a laser 
necessarily emits a very broad spectrum, comparable in width to the optical 
carrier frequency. Currently the field’s work horse is the Ti:sapphire Kerr-
lens mode-locked laser, but fiber-based lasers are expected to take over for 
frequency metrology applications. 

In the frequency domain, a train of short pulses from a femtosecond 
mode-locked laser is the result of a phase-coherent superposition of many cw 
longitudinal cavity modes. These modes at ωn

1
 form a series of frequency 

spikes called a frequency comb. The individual modes can be selected by 
phase locking other cw lasers to them.  As has been shown, the modes are 
remarkably uniform, i.e., the separation between adjacent modes is constant 
across the frequency comb [4, 5]. This strictly regular arrangement is the 
most important feature used for optical frequency measurement and may be 
expressed as:  

CErn n ωωω += . (1) 

Here the mode number n of some 105 may be enumerated such that the 
frequency offset ωCE lies in between 0 and ωr = 2π/T. The mode spacing is 
thereby identified with pulse repetition rate, i.e., the inverse pulse repetition 

 
1 The notation used in this chapter corresponds to that of other chapters through the following 

relationships: 
  
  ωn = 2πνn 
  ωr = 2πfr 
  ωCE = 2πf0 

  ∆φ = ∆φce 
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time T. With the help of Equation (1), two radio frequencies ωr and ωCE are 
linked to the optical frequencies ωn of the laser. For this reason, mode-
locked lasers are capable of replacing the harmonic frequency chains of the 
past. 

To derive these frequency comb properties [6, 7], as detailed by Equation 
(1), it is useful to consider the electric field E(t) of the emitted pulse train. If 
the pulses were exact time-shifted copies, E(t) = E(t - T), a simple Fourier 
transformation would yield a strictly periodic spectrum with a mode 
separation of ωr and a zero comb offset ωCE = 0. However, this is not what 
occurs in a real laser. Because of intracavity dispersion, the group and phase 
velocities do not match for the pulse that is stored in the cavity. This causes 
the carrier wave to continuously shift with respect to the pulse envelope (see 
Figure 7-1). The pulses that emerge at the output-coupling mirror after each 
round trip show a discrete pulse-to-pulse carrier-envelope phase shift of ∆φ. 
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Figure 7-1. Three consecutive pulses of the pulse train emitted by a mode-locked laser and 
the corresponding spectrum. The pulse-to-pulse phase shift ∆φ results in an offset frequency 
ωCE = ∆φ/T because the optical carrier wave at ωc moves with the phase velocity while the 
envelope moves with the group velocity. 

The difference between phase and group velocity is determined by the 
dispersion properties of the cavity as a whole. The remarkable property of 
Kerr-lens mode-locked lasers, such as the Ti:sapphire laser, is that this 
difference is the only effect of intracavity dispersion on the pulse train. 
Higher-order dispersive terms that would continuously deform the pulse are 
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strongly suppressed. For this reason, the properties of the pulse train are 
most conveniently derived by separating the optical carrier wave that 
propagates with its phase velocity at ωc from the pulse-envelope function: 

ti cetAtE ω−= )()( . The pulse repetition time rT ωπ /2=  is determined from 
the group velocity by demanding that A(t) = A(t - T). Since it is strictly 
periodic it may be written in terms of a Fourier series  

∑ +=+= +−−

q

tqi
q

ti cceAccetAtE rcc ....)()( )( ωωω , (2) 

where Aq are Fourier components of A(t). This equation represents a comb of 
laser frequencies with spacing ωr that is shifted as a whole from the 
harmonics of ωr, just as in Equation (1). The only difference is the 
numbering of modes, which clearly is a matter of convention. 

2. THE CESIUM D1 LINE AND THE FINE 
STRUCTURE CONSTANT 

The first application of a fs mode-locked laser in optical frequency 
metrology occurred in 1998 with the determination of the transition 
frequency of the cesium D1 line at 335 THz (895 nm) [8]. In that experiment, 
we compared the frequency of the cesium D1 resonance line with the 4th  
harmonic of a CH4-stabilized 3.39 µm He-Ne laser. The frequency of this 
reference laser was known to within 2.6 parts in 1013. To bridge the large 
frequency gap of 18.39 THz between the 4th harmonic near 848 nm and the 
895 nm Cs D1 line, we used the frequency comb generated by a Mira 900 
system (Coherent Inc.) delivering 70 fs pulses with a repetition frequency of 
75 MHz. Even though this was already the largest frequency gap bridged 
coherently at that time, it was clear that the method could do much better 
with shorter pulses. 

The cesium D1 line was observed in a 7.5 cm long cell at room 
temperature. To probe the cesium D1 transition, we used a saturation 
spectrometer with two linearly polarized counter-propagating laser beams 
with equal intensities (10 µW/cm2). With this Doppler-free method, we 
observed 4 hyperfine components of the single stable isotope 133Cs for the 
transitions from the ground states Fg = 3 and Fg = 4 to the excited states Fe = 
3 and Fe = 4. The observed line width was about 6 MHz (FWHM), 
somewhat larger than the natural line width. Stray magnetic fields were 
reduced by a double-cylindrical µ-metal shielding to values below 2 µT 
along the laser beam axis. We found the line center of the resonances by 
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fitting a Lorentzian with a linear-frequency-dependent background to it as 
shown in Figure 7-2. 
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Figure 7-2. The Fg = 4 → Fe = 4 component of the cesium D1 transition obtained from a 
saturation spectrometer and a Lorentzian fit.  

The cesium D1 frequency can be used to derive a value for the fine 
structure constant α by taking advantage of the extremely well-known 

Rydberg constant, hcmR e 2/2α=∞ . Steven Chu and collaborators at 
Stanford University have measured the photon recoil shift of the D1 line 

22
D 2/

1
cmhff Csrec =  with an atom interferometer aiming for an accuracy 

near the parts-per-billion (ppb) level. Together with the very precise values 
for the proton–electron mass ratio mp /me [9] and the cesium–proton mass 
ratio mCs /mp [10], the fine structure constant is derived according to 
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The atomic mass ratios are measured with high precision in terms of the 
ratios of their cyclotron frequencies in Penning traps. Please note that all 
necessary ingredients to Equation (3), including the Rydberg constant that is 
determined by spectroscopy on atomic hydrogen, are based on intrinsically 
accurate frequency measurements. Because α scales all electromagnetic 
interactions, it can be determined by a variety of independent physical 
methods. Unfortunately, different values measured with comparable 
accuracy disagree with each other by up to 3.5 standard deviations [11], and 
the derivation of the currently most accurate value of α from the electron g - 
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2 experiment relies on extensive QED calculations [12]. The evaluation via 
Equation (3) provided the first independent confirmation of the g - 2 value at 
the ppb level of accuracy [11, 13].  

3. OPTICAL SYNTHESIZERS 

The availability of octave-spanning frequency combs allows the 
construction of a simple optical synthesizer. This synthesizer is capable of 
converting a given radio frequency phase coherently into the optical domain 
by virtue of Equation (1). To do so, one has to measure and/or phase-lock 
both ωr and ωCE to a radio frequency reference. While ωr may be measured 
with a photo detector anywhere in the output beam of the fs laser, the carrier-
envelope offset frequency ωCE is not determined that easily unless one has an 
octave-spanning frequency comb. 
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Figure 7-3. The offset frequency ωCE that displaces the modes of an octave-spanning 
frequency comb from being exact harmonics of the repetition rate ωr is measured by 
frequency-doubling some modes at the “red” side of the comb and beating them with modes 
at the “blue” side. 

In that case, a group of modes from the low-frequency end of the comb 
around CErLn ωω +  is frequency doubled in a nonlinear crystal and beat 
notes with another group of modes around nH at the high-frequency end of 
the comb are created. As sketched in Figure 7-3, this technique creates 
signals at the difference frequency of two optical waves on a photodetector: 

CErHLCErHCErL nnnn ωωωωωω +−=+−+ )2()()(2 . These beat 
frequencies are created for all possible combinations of nL and nH. However, 
the detected beat notes cannot exceed the bandwidth of the photodetector. 
One can further restrict the number of signals to precisely one by using an rf-
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low-pass filter. If this filter has a cut-off frequency of ωr/2, only the beat 
note at ωCE, belonging to all combinations with 02 =− HL nn , remains. The 
octave-spanning comb ensures that these combinations exist, i.e., that the 
modes nL and nH with nH = 2nL are simultaneously active modes. Knowing 
both ωCE and ωr means that frequencies of all modes according to Equation 
(1) are known and may be used for optical frequency measurements. This is 
accomplished by creating another beat note ωb between an unknown laser at 
ωl and a nearby mode of the comb. The frequency of that laser can then be 
determined by .bCErl n ωωωω ++=  The mode number n may be 
determined by a coarse measurement of ωl with a wave meter or by 
repeating the measurement with slight variation in ωr. 

This technique is called self-referencing [5, 14] and requires a frequency 
comb spanning a full optical octave in its simplest form. Alternatively, any 
combination of two different harmonics from the same comb will serve that 
purpose. Self-referencing has been performed with the beating of the 2nd 
and 3rd harmonic of comb components [15] and by comparing modes with 
frequency ratio of 7:8 [16]. The frequency comb, even without the 
knowledge of ωCE, can be thought of as a ruler in frequency space that 
allows the precise measurement of large optical frequency differences. The 
initial utilization of frequency combs was for that purpose [8]. 

To stabilize the frequency comb to a precise rf reference, it is not 
sufficient to measure the two comb parameters ωr and ωCE; they also have to 
be controlled separately. The repetition frequency is most conveniently 
controlled via the cavity length through a piezoelectric transducer. For a 
typical laser, the intrinsic stability of the repetition rate is high enough that 
the attainable bandwidth of the transducer is sufficient to keep it in phase 
with a good rf reference. The other comb parameter ωCE is controlled by 
changing the intensity of the stored pulse. It was shown that for a soliton-like 
laser such as the Ti:sapphire Kerr-lens mode-locked laser, the group and 
phase velocity depend in a different way on the peak intensity of the stored 
pulse [17]. Therefore one can adjust the pulse-to-pulse slippage of the 
carrier-envelope phase, and thereby ωCE, by controlling the average laser 
power. For a Ti:sapphire Kerr-lens mode-locked laser, this can be done by 
controlling the power of the pump laser. In this way the comb offset, just 
like the repetition frequency, can be adjusted to stay in phase with the rf 
reference. The two controls are not completely independent, but they affect 
the round-trip group delay and the round-trip phase delay differently. 
Keeping the servo bandwidths for ωr as low as possible and for ωCE as high 
as possible usually decouples the two servo systems. Having two two-phase 
servo systems operational that lock ωr and for ωCE to a radio frequency 
reference such as an atomic clock ensures that, by virtue of Equation (1) and 



7. OPTICAL FREQUENCY MEASUREMENT 183
 

 

the large integer n, the radio frequency reference is up-converted phase 
coherently to the optical region. 

4. OCTAVE-WIDE FREQUENCY COMBS 

Only now octave-spanning fs Ti:sapphire lasers are becoming possible. 
Therefore, external spectral broadening has been key to the simple ν-to-2ν 
self-referencing scheme described in the previous section. That spectral 
broadening employs self-phase modulation, whose origin is a slight intensity 
dependence of the refractive index of most materials. After propagating a 
length l, the intensity-dependent refractive index )()( 20 tInntn +=  leads to 
a self-induced phase shift of the field in Equation (2) of  

cltInt cNL /)()( 2 ωΦ −= ,  with 
2

)()( tAtI = . (4) 

This time-dependent phase shift leads to a frequency modulation that is 
proportional to the time derivative of the self-induced phase shift ).(tNLtΦ∂  

For fused silica with its positive Kerr coefficient /Wcm102.3 216
2

−×=n , 
the leading edges of the pulses create extra frequencies shifted to the red 

)0)(( <∂ tNLtΦ , while the trailing edges cause blue-shifted frequencies to 
emerge. Self-phase modulation modifies the envelope function according to  

)()()( ti NLetAtA Φ→ . (5) 

Because )(tNLΦ  has the same periodicity as A(t), the comb structure of the 
spectrum, as previously derived, is not affected. 

In an optical fiber, this process can be quite efficient as compared to bulk 
material, even though the nonlinear coefficient in fused silica is 
comparatively small. This efficiency arises because of the fiber core carrying 
a high-intensity pulse over an extended length. The details of fiber actions on 
the pulse train are, in fact, more complicated because other nonlinear effects 
such as Raman scattering may contribute. Whatever the fiber does to the 
pulses, however, a periodic input should produce a periodic output of some 
kind if the fiber action is the same for all the pulses. Therefore the comb 
structure, as derived from the periodic envelope function, is maintained. 

Effective self-phase modulation in a regular single-mode fiber takes 
place only over a limited fiber length. Dispersion causes the pulse to broaden 
temporally. This broadening continuously lowers the peak intensity as the 
pulse travels along the fiber until the nonlinear interaction comes to a halt. 
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Very efficient spectral broadening can be observed in photonic crystal fibers 
(PCFs) that can suppress this effect to some extent [18]. A PCF uses an array 
of submicron-sized air holes that surround the fiber core and run the length 
of a silica fiber to change its effective dispersion. This can be used to 
maintain high peak power over an extended propagation length and to 
significantly increase the spectral broadening. With these fibers, it has 
become possible to broaden low-power, high-repetition-rate lasers to beyond 
one optical octave. 

Effective spectral broadening of femtosecond light pulses was performed 
in very much the same way a long time before the invention of PCFs. 
Formerly, spectral broadening was accomplished with very powerful laser 
pulses obtained with laser post-amplifiers. However, so far this technique 
only works by reducing the pulse repetition rate, thereby concentrating the 
available power into fewer pulses. This reduction is disastrous for frequency 
metrology because it also reduces the power that is left per mode. It would 
also be very difficult to separate single modes out of such a dense comb. The 
PCFs allow spectral broadening of fs pulses to more than an optical octave at 
repetition rates of 1 GHz.  

Meanwhile, some lasers are reaching an octave-spanning spectrum even 
without using external self-phase modulation. Some designs use intracavity 
self-phase modulation [19] while others employ specially designed cavities 
[20] or mirrors [21]. These lasers avoid mechanical stability problems 
associated with the tiny core of PCFs. However, their power is generally 
weak at the spectral edges that are used for self-referencing. So far only one 
laser system had been phase stabilized in this way [20].  

5. APPLICATION TO HYDROGEN 

In our lab, high-resolution spectroscopy on atomic hydrogen was the 
incentive to develop wide-span optical frequency combs. Initially, the task 
was to bridge a gap of about 2 THz in our previous harmonic frequency 
chain to determine the sharp hydrogen 1S–2S transition frequency relative to 
a very precise methane-stabilized He-Ne laser. This laser operates at 3.39 
µm, which is close to the 28th subharmonic of the 1S–2S transition at 121 
nm. The accuracy-limiting factor at that time was the frequency mismatch 
between the 28th harmonic of the He-Ne laser standard and the hydrogen 
transition. For the first measurement of this kind, 6,372 longitudinal modes 
from a precisely calibrated cavity were used to determine the frequency gap 
[22]. This method introduced an uncertainty of 45 kHz. 

In the following years, phase-coherent methods were developed to bridge 
optical frequency gaps in the THz range. The first method applied in our 
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laboratory was the use of optical-frequency interval dividers [23, 24]. The 
concept was to phase lock the second harmonic of a laser 2f to the sum 
frequency generated by two additional lasers at f1 + f2. In doing so, the laser 
frequency f is set at the precise midpoint between f1 and f2: f = (f1 + f2)/2. In 
this way, an arbitrary large frequency gap f2 - f1 can be divided in two. These 
dividers can be cascaded such that n stages would divide an optical 
frequency gap by 2n. With a 5-stage interval-divider chain, we have divided 
the aforementioned gap to become accessible to radio frequency counting 
techniques. At the time, the accuracy of the experiment was limited by the 
reproducibility of our He-Ne laser standard to about 840 Hz [6]. 

Already then it was clear that, given a way to measure frequency gaps 
that are comparable in size to the optical frequency itself, absolute optical 
frequency measurements could be performed using the ν-to-2ν method 
described above [23]. The first electro-optic frequency comb was brought to 
our lab by Motonobu Kourogi from the Tokyo Institute of Technology in 
1997. This device was capable of measuring frequency gaps of several THz 
using a single laser. It replaced the much-more-complicated interval divider 
stages but was itself soon replaced by a femtosecond frequency comb. With 
the frequency comb, it was possible for the first time to measure frequency 
gaps comparable to the optical carrier frequency and thereby convert the 1S–
2S transition frequency phase coherently to the radio frequency domain [16]. 
Given a precise radio frequency reference, the accuracy was limited by the 
hydrogen spectrometer.  

6. THE FIRST OPTICAL SYNTHESIZER 

In 1999 [25], the )1,1,2()1,1,1( ±=′=′→±== FF mFSmFS  two-
photon transition frequency in atomic hydrogen was compared phase 
coherently to the frequency of the ground-state hyperfine splitting in 133Cs. 
For this purpose, one of the most precise Cs atomic fountain clocks (FOM) 
[26], built in the group of A. Clairon at the Bureau National de Métrologie – 
Systèmes de Référence Temps Espace (BNM-SYRTE) in Paris, was brought 
to our laboratory. A photonic crystal fiber that would have allowed us to 
produce an octave-spanning frequency comb was not at our disposal at that 
time. Therefore, we set up a self-referencing scheme that compared modes 
with a frequency ratio of 7:8, as shown in Figure 7-4. The frequency comb 
was produced by a Mira 900 (Coherent Inc. with about 70 fs pulse duration) 
with some spectral broadening in a regular single-mode fiber. The total span 
of the frequency comb was in excess of 1/14 of the dye laser’s frequency, or 
44 THz. 
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In 2003 [27] we repeated this measurement with a much simpler ν-to-2ν 
self-referencing scheme as described above (see Figure 7-3). This 
modification did not improve the accuracy of the frequency measurement of 
the dye laser, which was in both cases determined by the Cs fountain clock, 
but vastly simplified the experimental setup. 
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Figure 7-4. Sketch of the first (still somewhat complicated) self-referenced frequency comb. 
While the second harmonic of the dye laser at 486 nm is used to excite the 1S–2S transition, 
its subharmonic 3.5f-∆f and the 4th harmonic of the He-Ne laser are compared to the 
frequency comb. The ratio of these frequencies is 7:8 instead of the 1:2 in a much simpler ν-
to-2ν self-referencing scheme. Because the 3.39 µm He-Ne laser could not be tuned precisely 
to the 28th subharmonic of the dye laser, a second, much smaller frequency gap ∆f was present 
in this setup and was measured simultaneously with the same frequency comb. The oval 
symbol represents an optical interval divider that fixes the center frequency 4f – ∆f relative to 
its inputs 4f and 7f - 2∆f. All optical connections represent phase-locked lasers except where 
the rf counters are located. These are used to measure beat notes with the nearest comb 
modes. Once the two frequency gaps 0.5f and ∆f have been precisely measured with a Cs 
clock-referenced frequency comb, the dye laser at 14f + 8∆f is readily calculated. In addition, 
we can calculate the frequency of any other mode in the frequency comb and fix the carrier-
envelope phase by locking the comb with ωCE = 0.  
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7. THE HYDROGEN SPECTROMETER 

The cw dye laser near 486 nm that is used to excite the hydrogen atoms 
can be locked to a high-finesse reference cavity to narrow its line width and 
fix its frequency. A new cavity made from Ultra-Low-Expansion (ULE) 
glass was used for the 2003 measurement. Its drift was measured to be less 
than 1 Hz s-1 for the entire time of the measurement. Due to better thermal 
and acoustic isolation and improvements in the laser-locking electronics, the 
laser line width was narrower than it had been in 1999. An upper limit for 
the laser line width was deduced from an investigation of the beat signal 
between two laser fields locked separately to independent Zerodur and ULE 
cavities to about 120 Hz at a laser wavelength of 486 nm. 
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Figure 7-5. Hydrogen spectrometer. The 486 nm light from the dye laser is frequency doubled 
in a Barium β-Borate (BBO) crystal. The resulting radiation is used to drive the 1S–2S two-
photon transition that is free of the first-order Doppler effect if the two photons are counter-
propagating. The latter is ensured by a linear enhancement cavity in the vacuum chamber that 
is held at a pressure of about 10-8–10-7 mbar. The acousto-optic modulator (AOM) allows the 
dye laser to be tuned away from the resonance of the reference resonator to scan the hydrogen 
line. 

As shown in Figure 7-5, molecular hydrogen is dissociated in a gas 
discharge and forms a cold atomic beam after contact with a copper nozzle 
that is kept at 5–7 K. The region of the atomic beam is shielded from stray 
electric fields by a Faraday cage. Some of the atoms are excited from the 
ground state to the metastable 2S state by the absorption of two counter-
propagating photons from the laser field in the enhancement cavity. In this 
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arrangement, the first-order Doppler effect of the two photons exactly 
cancels each other. Those atoms that are flying close to the cavity axis can 
enter the detection region where the 2S atoms are quenched in a small 
electric field and forced to emit a Lα-photon, which is detected with a solar-
blind photo multiplier. We have periodically blocked the laser beam and the 
atomic beam. This procedure eliminates background counts from the 
exciting laser. The delay ∆t between blocking the 243 nm radiation and the 
start of photon counting sets an upper limit on the velocity of the atoms that 
contribute to the signal. Therefore, velocity-dependent systematic effects, 
such as the second-order Doppler shift and the time-of-flight broadening, are 
smaller for spectra recorded at larger ∆t. The hydrogen beam is blocked by a 
fork chopper in less than 200 µs after the blocking of the excitation light to 
prevent slow atoms from being blown away by fast atoms that emerge 
subsequently from the nozzle. With the help of a multi-channel scaler, we 
count all photons and sort them into 12 equidistant delay-time bins. From 
each scan of the laser frequency over the hydrogen 1S–2S resonance, we get 
12 distinct spectra, as shown for a sample line in the left panel of Figure 7-6. 
To correct for the second-order Doppler shift, we use an elaborated theory 
model [28] to fit all the delayed spectra simultaneously with one set of 7 fit 
parameters. Besides the second-order Doppler effect, the other dominating 
systematic effect is the dynamic AC Stark shift that scales linearly with the 
excitation light intensity. We have compensated for that effect by varying 
the laser intensity and extrapolating the transition frequency to zero 
intensity, as shown in the right portion of Figure 7-6. The result of the fitting 
procedure is the 1S–2S transition frequency for the hydrogen atom at rest. 
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Figure 7-6. Left: simultaneous fit of a 1S–2S transition spectrum recorded at different 
detection delays. The nozzle temperature was 7 K. Right: AC Stark shift extrapolation to zero 
power for all the lines recorded during one day of data taking. 

To check for possible cycle slipping, all phase-locked frequencies were 
counted to verify consistency with the phase-lock systems. Data points were 
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accepted only where all counter readings were consistent. Additionally, it 
was verified that the dye laser was continuously locked to the reference 
resonator during the measurement. To exploit the superior short-term 
stability of that resonator, we measured the frequency of the standing light 
field in the resonator first. To compensate for the slow drifts of the resonator, 
we fit a second-order polynomial to that drift and then, knowing the AOM 
detuning, we used the polynomial in the subsequent determination of the dye 
laser frequency. The left part of Figure 7-7 shows the absolute frequency of 
the standing light field inside our new ULE reference resonator. The right 
hand side of the figure shows the normalized Allan variance of the dye laser 
locked to the reference resonator, measured relative to the Cs fountain clock 
FOM. For longer averaging times, the plot of the Allan variance is generated 
by juxtaposing 1 s counter readouts. Whereas it is known that such a 
procedure can alter the functional dependence of the Allan variance [29], 
white frequency noise, as produced by the Cs fountain, is immune to this 
form of bias. The observed τ -1/2 dependence coincides with the 
independently measured fountain clock instability for averaging times 
shorter than ≈ 10 s. The short-term stability of the laser system is better than 
the stability of the fountain clock. However, the long-term stability is limited 
by the drift of the ULE reference resonator. For the given stability of the Cs 
fountain clock and the cavity, the optimum record length is around 500 s. 
For longer averaging times, the Cs fountain is more stable than the drift-
corrected ULE cavity. 
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Figure 7-7. Left: Absolute frequency of the standing light field inside the reference resonator 
(AOM shifted dye laser, see Figure 7-5) as a function of time. The solid line is a parabolic fit 
to the data. The linear contribution to the drift is less than 0.1 Hz per s in this example and 
below 1 Hz per s at all times. Right: Normalized Allan variance vs averaging time computed 
from a time series of 1 s counter readings with considerable dead time. The straight line 
indicates the τ -1/2 dependence, which is the signature of the Cs fountain clock. The raw data 
analysis (solid squares) shows that the stability for averaging times longer than 20 s is limited 
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by the drift of the ULE reference cavity. Open squares represent data corrected for the 
parabolic cavity drift. 

8. THE 1S–2S TRANSITION FREQUENCY 

We have measured the 1S–2S transition in atomic hydrogen during 10 
days in 1999 and during 12 days in 2003. Both data sets have been analyzed 
using the same theoretical line-shape model and are therefore comparable. In 
Figure 7-8, the results of the extrapolation to zero-excitation light intensity 
and the respective statistical error bars for each day are presented. Since 
1999, the statistical uncertainty for each day of measurement has been 
significantly reduced because of the narrower laser line width and better 
signal-to-noise ratio; however, the scatter of the daily averages did not 
reduce accordingly. We have tested several possible reasons for this 
additional scatter, including an intrabeam pressure shift, a background gas-
pressure shift, Stark effects due to the rf gas discharge, and the DC Stark 
shift. We have been able to exclude all of these effects, at least on a 
conservative level of 10–20 Hz. A possible origin of the observed scatter can 
be due to a residual first-order Doppler effect arising from a violation of the 
axial symmetry of the enhancement cavity mode and the hydrogen atomic 
beam. The scattering of the excitation light on intracavity diaphragms could 
also cause slight changes of the field distribution and the corresponding first-
order Doppler effect. However, such changes should average to zero over 
multiple adjustments of the hydrogen spectrometer because the shifts can 
have both signs. As the scatter is the same for both the measurement sets, we 
believe them to be equivalent. The main statistical and systematic 
uncertainties of these measurements are collected in Table 7-1. The 
averaging of the 1999 and 2003 daily data points was performed without 
weighting them.2 For both measurements, the dominating uncertainty arises 
from the day-to-day scatter while the pure statistical uncertainty for each day 
is significantly smaller. In fact, weighting of the daily data only slightly 
influences the results (on the level of σ/2). 

Comparing both measurements, we deduce a difference of 

1999,2003, HH νν −  equal to (-29 ± 57) Hz within 44 months. This difference 

corresponds to a relative drift of νH against the 133Cs ground-state hyperfine 

splitting of 1510)3.62.3())/(ln( −×±−=∂ CsHt νν  per year. 

 
2 The result of 2 466 061 102 474 870 Hz was inadvertently described in [25] as “the 

weighted mean value” but was calculated without consideration of the daily statistical 
uncertainties. 
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Table 7-1. Results of the (1S, F = 1, mF = ±1 → 2S, F' = 1, m'F  = ±1) transition frequency 
measurement (νH,1999, νH,2003) and uncertainty budgets (σH,1999, σH,2003) for the 1999 and 2003   
measurements, respectively. 
 
Contribution νH,1999 

  [Hz] 
σH,1999 
  [Hz] 

νH,2003 
  [Hz] 

σH,2003 
  [Hz] 

Extrapolated value – 2 466 061 102 474 kHz   870    36 851                 25 
Background gas-pressure shift     10    10        0                    2 
Intrabeam pressure shift       0    10        0                   10 
Line-shape model       0    20        0                   20 
DC Stark shift       0      5        0                     5 
Blackbody radiation       0             1        0                     1 
Standing wave effects       0     10        0                     1 
Intensity zero uncertainty       0             1        0                     0 
Fountain clock uncertainty       0             5        0                     5 
    
Total – 2 466 061 102 474 kHz   880            45             851                  34 
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Figure 7-8. Experimental results and averages for the 1999 and 2003 measurements of the 
(1S, F = 1, mF = ±1 → 2S, F' = 1, m'F = ± 1) transition frequency in atomic hydrogen. Each 
data point represents one day of averaging. The two results are unweighted mean values of the 
daily averages. 
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9. CHECKING FOR SLOW DRIFTS OF A NATURAL 
CONSTANT 

In the era of rapid development of precision experimental methods, the 
stability of fundamental constants becomes a question of basic interest. Any 
drift of nongravitational constants is forbidden in all metric theories of 
gravity, including general relativity. The basis of these theories is Einstein's 
Equivalence Principle (EEP), which states that weight is proportional to 
mass and that in any local freely falling reference frame, the result of any 
nongravitational experiment must be independent of time and space. This 
hypothesis can be proven only experimentally because no theory exists that 
predicts the values of fundamental constants. In contrast to metric theories, 
string theory models, which aim to unify quantum mechanics and 
gravitation, allow for, or even predict, violations of EEP. Limits on the 
variation of fundamental constants might therefore provide important 
constraints on these new theoretical models. 

A recent analysis of quasar absorption spectra with red-shifted UV 
transition lines indicates a variation of the fine structure constant on the level 

of 510)12.054.0(/ −×±−=αα∆  for a red-shift range (0.2 < z < 3.7) [30]. On 
geological timescales, a limit for the drift of α has been deduced from 
isotope abundance ratios in the natural fission reactor of Oklo, Gabon, which 
operated about 2 Gyr ago. Modeling the processes that have changed the 
isotope ratios of heavy elements gives a limit of 

810)44.136.0(/ −×±−=αα∆  [31]. In these measurements, the high 
sensitivity to the time variation of α is achieved through very long 
observation times at moderate resolution for ∆α. Therefore, they are 
vulnerable to systematic effects. In fact, more recent observation of quasar 
absorption spectra, performed by different groups, seem to rule out a 
variation of α on the level observed by Webb et al. [32]. 

In contrast to astronomical or geological observations, laboratory 
experiments can reach an accuracy of 10-15 with better controlled 
systematics. For this reason, laboratory measurements can compete, even 
though the temporal separation of observations is necessarily smaller by 
many orders of magnitude. In general, frequency measurements must be 
performed with any form of unit and therefore always yield the ratio of two 
frequencies. If one compares with the ground-state hyperfine splitting of 
133Cs, for example, the measurement would be in units of Hz. However, for 
the purpose of testing the stability of natural constants, any other frequency 
ratio may be used. In fact, as will be shown below, measuring the ratio of 
two optical frequencies could be advantageous. The frequency comb 
provides a convenient way to measure optical frequency ratios. This 
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measurement is accomplished by locking one mode of the frequency comb 
to one optical transition, referencing the carrier envelope offset frequency to 
the repetition rate and observing a beat note between the comb and the other 
optical frequency [33]. 

To map any possible variation of the measured frequency ratio on the 
variation of natural constants, the following expression for electronic 
(optical) transitions is commonly used: 

)(αν relyopt FRA= , (6) 

where Ry is the Rydberg frequency expressed in hertz and Frel(α) takes into 
account relativistic and many-body effects. The constant A is a pure 
numerical factor and does not depend on any natural constant. For hydrogen, 
one would use the Schrödinger energies with A = 1/n2 and Frel(α) = 1 to 
describe the first-order scaling in α, which is sufficient here. The 
corresponding expression for hyperfine transitions reads: 

)(2 α
µ
µαν rel

B

n
yhf FRA ′′= , (7) 

with a different constant A′  and a different relativistic correction F’ rel(α). 
From these two equations, it is clear that the Rydberg constant cancels in any 
frequency measurement. The last expression depends on the Bohr magneton 
µB and the nuclear magnetic moment µn. The size of the latter depends 
mainly on the strong coupling constant that may also be subject to a slow 
drift. This is the reason why optical-to-optical comparisons are desirable. 
However, having more than one optical-to-hyperfine comparison at hand, the 
drift of the different constants may be separated [27]. 

Even though the frequency measurements in use for such an evaluation 
are rather accurate, the derived drift is not. Therefore only low-order 
numerical values for the derivatives of the relativistic corrections are used in 
the evaluation. For the cesium ground state splitting, one finds [34]   

8.0)(ln +≈∂ αα α CsF . (8) 

Whereas for the hydrogen optical transitions, the Schrödinger approximation 
with 

0)(ln ≈∂ αα α HF  (9) 
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is sufficient. The relative drift of the hydrogen/cesium frequency ratio is 
therefore approximated by 

)ln(8.2)/ln()/ln( αµµνν tBCstCsHt ∂−−∂=∂ .             (10) 

For clarity, we set ),ln(αtx ∂≡  and )/ln( BCsty µµ∂≡  and get for an 
experimental constraint with the result of the previous section: 

115 yr10)3.62.3(8.2 −−×±=+ xy    for H.             (11) 

To separate the relative drift rates of x and y, other transition frequency 
ratios have to be observed over time. In fact, in similar experiments 
performed at the National Institute of Standards and Technology (NIST) in 
Boulder, Colorado (USA) and the Physikalisch-Technische Bundesanstalt 
(PTB) in Braunschweig, Germany, other optical transition frequencies in a 
single trapped Hg+ ion [35] and a single trapped Yb+ ion [36] have been 
compared to the cesium ground-state splitting using a self-referenced 
frequency comb. These measurements lead to the following experimental 
constraints: 

115 yr10)0.72.0(0.6 −−×±=+ xy  for Hg+ ,          (12) 

115 yr10)4.42.1(9.1 −−×±=+ xy   for Yb+ .                          (13) 

Since Equations (11) through (13) represent an over-determined set for 
the two variables x and y, a least-square adjustment procedure yields the 
most likely values and their uncertainties [36]: 

115 yr10)0.23.0()ln( −−×±−==∂=
α
αα &

tx ,  and (14) 

115 yr10)8.64.2()/ln( −−×±+=∂= BCsty µµ . (15) 

Figure 7-9 shows the current limit for the drift rates from laboratory 
measurements. The uncertainties of these limits reach within a factor of ten 
to the uncertainties of the relative drift rates derived from astronomical 
observations [30, 32]. In the near future, one can expect a significant 
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improvement of the laboratory measurements, even without an increase of 
experimental accuracy, just because the available time interval increases. 
One can also expect that additional optical transition frequencies may be 
measured that will further restrict the extent of the ellipse in Figure 7-9. It 
should also be pointed out that, since there is no accepted physical model 
that would describe the drift of natural constants,3 there is no reason to 
assume it to be linear in time. In this sense, astronomical and laboratory 
measurements are somewhat complementary because they observe on 
different time scales. 
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Figure 7-9. Combining the drift rates of optical transitions in hydrogen, Hg+ and Yb+. The 
experimentally allowed region for the drift rates of α and µCs/µB is shown in the form of an 
ellipse. 

It has also been argued that a possible drift of the coupling constants 
must be correlated [37], at least if one believes in the existence of a Grand 
Unified Theory. In such a theory, the fundamental interactions are described 
within the same framework. The drift rates must therefore be synchronized 
in some sense. According to Calmet et al. [37], the fractional time variation 
of hadron masses and along the same line the nuclear magnetic moments, 
should change about 38 times faster than the fractional time variation of the 
fine structure constant α. The analysis presented here is independent of such 

 
3 If there was such a model that describes the drift of natural constants in terms of other 

constants, it would simply mean that our current constants are not fundamental. 
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assumptions as it separates the drift rates of different constants. In that sense, 
the conclusions are model independent. 
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Chapter 8 

OPTICAL FREQUENCY MEASUREMENT 
USING FREQUENCY MULTIPLICATION AND 
FREQUENCY COMBS 

Harald Schnatz, Jörn Stenger, Burghard Lipphardt, Nils Haverkamp, and 
Carl-Otto Weiss 
Physikalisch-Technische Bundesanstalt 

Abstract: We review the development of phase-coherent optical frequency measurement 
from its start with the harmonic frequency chain to the present use of optical 
comb generators. We demonstrate that the frequency fluctuations of a 
femtosecond comb laser—used in optical frequency measurement—can be 
eliminated completely from the measurement process, allowing ultimate 
frequency measurement performance. This principle was applied to the 
frequency measurements of the Ca cloud standard and the Yb+ single-ion 
standard. The latter measurements confirm the suitability of these optical 
standards as future atomic clocks. 

Key words: frequency comb, frequency chains, optical atomic clocks, optical frequency 
metrology, optical frequency references 

1. INTRODUCTION 

In the past, the measurement of optical frequencies with reference to 
standard rf frequencies was done analogously to microwave techniques. 
Essentially, higher frequencies were measured by harmonic mixing with 
lower frequencies, progressing from the microwave range through the 
infrared (IR) to the visible spectral range. The oscillators used were solid 
state and electron tube microwave sources up to 500 GHz and lasers for 
higher frequencies. For nonlinear elements, diodes with progressively 
smaller RC-time constants for increasing frequency were used, directly 
scaled from the microwave range. 
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Commonly used devices included micron-size semiconductor Schottky 
diodes (up to about 5 THz) [1] and metal-insulator-metal point contacts that 
work up to about 200 THz [2]. Above 100 THz, second-harmonic generation 
in bulk crystals was used. In this way it was possible to phase-coherently 
relate the 657 nm cold Ca atom optical frequency standard with a standard 
frequency generated by a cesium clock [3]. 

It may be worth remembering at this point in time, optical frequency 
measurements were only a rudiment in a much more ambitious program. The 
idea of scaling microwave techniques to the optical range arose from the 
development of the laser out of the maser. Consequently, several groups 
started to work on a program to develop “optical electronics” in the 1960s 
(prominent among these groups was Javan’s group at MIT). This group 
envisioned scaling electronic elements in such a way that they would be 
capable of handling frequencies as high as visible optical radiation 
frequencies; thus they envisioned the generation of coherent optical radiation 
with transistor oscillators rather than with atom amplifiers using population 
inversion. This project would have entailed, of course, guiding light by wires 
or metal cables, which is possible over distances of small multiples of the 
wavelength. Techniques of this kind resurfaced in the 1980s and 1990s in 
near-field microscopy research.  

The first steps in this program consisted of scaling diodes to high 
frequencies because a transistor was basically composed of two diodes. This 
research led to the successful implementation of optical frequency 
measurements where diodes served as the necessary, fast harmonic mixers.  

Somehow, probably also under the impression of the successes of laser 
physics and technology, this ambitious program of “optical electronics” was 
forgotten. No serious efforts were ever made to realize diodes of the 
necessary small response time and negative resistance (not just a negative 
differential resistance as is sufficient for harmonic mixing), as necessary for 
amplification. Only half-hearted efforts were made (using metals with a 
higher plasma frequency) to increase the frequency response of point contact 
diodes beyond 200 THz, a limit imposed by the plasma frequency of 
commonly used metals [4]. 

Nevertheless, the desirability of a technique of “optical electronics” is 
still the same as it was in the 1960s; indeed, one might expect this program 
to be taken up again in the future, reinvigorated by an urgent need for ever- 
increasing speeds in electronics.  

What was accomplished during this epoch, however, was the 
demonstration that electronic techniques can – if not amplify optical 
radiation – multiply and mix frequencies of radiation up to the visible 
spectral range. 
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2. FREQUENCY MEASUREMENTS BY REPEATED 
HARMONIC MIXING (FREQUENCY CHAINS) 

Most lasers in the IR that can be used for a “frequency multiplication 
chain” are gas lasers. They are tunable only within approximately a Doppler-
gain linewidth, i.e., 10-6 of their carrier frequency. For all practical purposes, 
this means a fixed frequency. Therefore the frequency multiplication chains 
were essentially designed (and only useful) for measuring one particular 
optical standard. 

A certain flexibility was provided by the fact that, at around 30 THz, CO2 
lasers were used that had more than 100 different gain lines with gaps 
between 20 and 100 GHz. The chains aimed first at one particular CO2-laser 
line. The continuation to higher frequencies was made possible by other 
CO2-laser lines (which provided a certain frequency flexibility). The 
frequency gap between the two CO2-laser lines used was bridged by using 
harmonics of millimeter wave sources. 

In the Physicalisch-Technische Bundesanstalt (PTB), the frequency 
multiplication chain (Figure 8-1) was designed for the 657 nm Ca and the 
3.39 µm CH4 transitions. The microwave/far-IR part aimed at the 12CO2 

R(32) line to reach the CH4 transition and used the 12CO2 P(14) line for the 
continuation to Ca frequency standard. The gap of ~1 THz between these 
lines was bridged by the 8th harmonic of a 126 GHz oscillator. For details of 
this optical frequency measurement chain see [5]. 

Figure 8-2 shows the stability of frequency measurements for the CH4 
line at 3.39 µm and the Ca line at 657 nm. Both measurements are limited by 
the available short-term stability of the low-frequency reference (an H 
maser), which is also given.  

The conclusion drawn from these results is that the combined instability 
of the optical references and the frequency measurement is smaller than that 
of the low-frequency reference. This effect occurred in spite of the fact that 
cycle slips in the phase locks, particularly at the 400 GHz step, could not be 
completely avoided. This result shows that optical atomic clocks are 
feasible. For the results of repeated measurements of the Ca line, see Section 
5.1.  

Optical frequency chain measurements as described need essentially one 
special set-up for an optical frequency range of only a few tens of GHz. The 
arrangements are thus specialized, complex, occupy a large amount of space, 
and consist of costly and difficult-to-operate lasers. 
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Figure 8-1. Harmonic frequency chain to the Ca frequency standard. (PLL: phase-locked 
loop; ⊗ : harmonic mixers.) 



202 Chapter 8
 

 

1 10 100 1000

10-14

10-13

10-12

s

 

 

σ y(
 2

, τ
 )

 

integration time  

Figure 8-2. Allan standard deviation of Ca (■) and CH4 (□) frequency standards. For 
comparison, the typical stability of an H maser is represented by the line without 
measurement points. 

3. FREQUENCY INTERVAL DIVISION APPROACH 

Several approaches to overcome the limitations of optical frequency 
measurement chains have been proposed. Among them are frequency 
interval bisection [6], optical-parametric oscillators (OPO) [7], optical comb 
generators [8, 9], sum- and difference-frequency generation in the near IR 
[10], frequency-division-by-three [11], and four-wave mixing in laser diodes 
[12]. All of these techniques rely on the principle of difference-frequency 
synthesis, in contrast to the harmonic-generation method used in the 
frequency chains. 

Two techniques were primarily used: (a) frequency-interval division and 
(b) passive optical-comb generation. In method (a), the concept is that any 
optical frequency interval can be measured by successive frequency interval 
division. An interval is halved in the first step, divided by 4 in the second 
step, and then by 8, 16, etc. until the interval is small enough to be counted 
electronically. If the initial interval is the one between ν and 2ν  (i.e., created 
by second-harmonic generation), then this process leads to the determination 
of the optical frequency ν. This “interval bisection” was first demonstrated 
by Telle et al. [6]. For the experiment, one uses a third laser (ν3) at the 
arithmetic mean of the frequencies ν1 and ν2 to determine the interval 
(Figure 8-3). The frequency ν3 bisects the interval between ν1 and ν2 if 2ν3 = 
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ν1 + ν2. Complete frequency chains have been planned using this approach 
[6]. However, difficulties were encountered in obtaining the lasers in certain 
ranges of the visible spectrum.  

To measure the frequency of the 1S–2S transition in atomic hydrogen, 
Hänsch’s group in Garching built a frequency chain starting from a CH4-
stabilized reference laser at 3.39 µm and reaching the UV at 243 nm. The 
technique combined conventional harmonic mixing with optical interval 
bisection [13, 14]. The CH4-reference frequency itself had to be calibrated 
using the harmonic-mixing frequency chain at PTB and a transportable CH4-
frequency standard. 

Laser 1

Laser 2

Laser 3

Servo

Detector

SUM

SHG

ν2

ν1

ν1+ν2  - 2ν3

ν3 = (ν1+ν2) / 2
 

Figure 8-3. Diagram of an optical difference-frequency divider for frequency-interval 
bisection (adapted from Reference [6]). 

An alternative method for frequency-interval division is to inject the two 
frequencies forming the interval into a laser that emits roughly at the half-
interval frequency. Frequency components are generated via four-wave 
mixing symmetrically around the mid-interval frequency and act as “seeds” 
for the laser emitting near the mid-interval frequency. The four-wave-mixing 
products are all of equal frequency when the laser emits the half-interval 
frequency, and consequently a phase synchronization of the laser emission 
occurs. Thus the interval is divided by the laser phase-coherently. Due to the 
degeneracy of the two four-wave mixing processes occurring, there is phase 
bistability for the laser emission. The phase bistability is the basis for the 
formation of spatial solitons currently under consideration for optical 
information processing [15]. 
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The second method (b) was conceived early [8]. Using an electro-optic 
modulator, driven at a microwave frequency (typically 5–10 GHz) in an 
optical resonator, a wide spectrum of modulation sidebands is produced. If 
the round-trip time of the light in the optical resonator is synchronized with 
the microwave period, the phase modulation of the light adds up over a 
number of round trips. This means that the phase excursion of the phase 
modulation is increased by a factor equal to the optical resonator finesse, 
thereby increasing the number and strength of the modulation sidebands. In 
this way, Kourogi [16] was able to generate frequency combs of 30 THz 
widths. Such a frequency comb generator was used by Huber et al. [17] to 
bridge a gap of ~2 THz in the 800 nm range. The width of the comb was 
further increased by passing the optical radiation through a nonlinear fiber 
that effects self-phase modulation. 

During the last decade, a number of measurements of the properties of 
hydrogen, such as the 1S–2S transition frequency [18], the isotope shift in 
deuterium [19], the 1S Lamb shift [20], and the Rydberg constant [13, 21] 
were performed via optical frequency measurements. Incorporating novel 
techniques like Kurogi’s optical comb generator [16], the frequency chain in 
Garching could be modified to measure the frequency of the In+ clock 
transition at 236.5 nm [22]. More details of the various frequency 
measurements performed with different concepts at different laboratories can 
be found in recent review articles [23]. Although frequency-interval division 
had proved its usefulness, no complete chain was ever built using this 
principle. 

4. OPTICAL FREQUENCY MEASUREMENT USING 
FEMTOSECOND LASERS 

Apart from sequential-interval bisection, a frequency comb with 
precisely spaced comb lines may be used to measure the interval ν to 2ν. 
The requirement for this is that the comb width is > (2ν – ν), i.e., larger than 
an octave. Initially efforts were directed at expanding the comb width of 
passive comb generators [16], but with the demonstration [24] that mode-
locked Ti:sapphire lasers emit excellent spectral combs, the efforts 
concentrated on “active” comb generators, i.e., on mode-locked lasers. The 
concept foresaw using the comb spectrum emitted directly by the mode-
locked Ti:sapphire laser, which is far less than an octave wide, and to reduce 
the octave interval by dividing the interval by 2 or 4, as described above. 
During the course of these efforts, however, evidence appeared of a more-
than-an-octave-wide “continua” generated by mode-locked pulses in fibers 
with narrow cores [25, 26]. The suggestion was that these continua might 



8.  OPTICAL FREQUENCY MEASUREMENT USING FREQUENCY 
MULTIPLICATION AND FREQUENCY COMBS 

205

 

 

actually be coherent frequency combs if driven by mode-locked lasers, 
which by themselves emit coherent combs. In other words, the suggestion 
was that the generated octave-wide continua maintain the coherence of the 
driving field. Experiments quickly showed that these continua can, in fact, 
be coherent combs, and the first optical frequency measurements using 
octave-spanning combs were demonstrated [27]. Tests showed pulse-to-
pulse coherence across the entire optical spectrum, and by comparing the 
interval division method with a comb-frequency measurement, the coherent 
nature of the comb was further ascertained [28]. 

In most frequency measurement schemes, errors can occur due to “cycle 
slipping.” Considering that mode-locking a laser also involves a “phase-
locking” process, 2π phase slips are conceivable that would adversely affect 
frequency measurement. A test, however, showed no indication of such 
cycle slips. By measuring an octave interval [29], it was shown that the 
frequency-measurement errors must be below ∆ν/ν = 10-18. In fact, the 
observed 10-18 limit was clearly caused by slow phase changes due to slow 
changes of optical path lengths because of temperature changes and can thus 
be improved (see Section 6.2). 

The mechanism(s) that generate octave-wide spectra in nonlinear fibers 
are not entirely understood yet. In [30], it is argued that self-phase 
modulation (SPM) that is commonly assumed to account for the spectral 
broadening is by far too weak to generate octave-wide spectra. Model 
calculations show that wide spectra occur only under a condition where the 
pump pulse disintegrates into fundamental fiber solitons whose wavelength 
red-shifts in time (to cover the wide spectrum towards the IR) while the 
“dispersive waves” (i.e., the radiation “shedded” from the initial pulses in 
the process of soliton formation) blue-shift in time covering the short 
wavelength range. In a remotely related paper [31], it was shown that the 
dispersive waves themselves can subsequently transform to solitons, 
shedding additional light covering additional spectral ranges. Thus at the end 
a wide spectrum is generated. 

These model calculations seem realistic since they predict several 
features to be critical that are in agreement with experimental results: (1) a 
particularly short pulse is not important (indicating that SPM is not the main 
mechanism for spectral broadening) and (2) wide spectra are only obtained 
in the case where the center of the input spectrums is close to the zero-
dispersion point of the fiber. Therefore, it appears that octave-wide spectra 
are produced by not just one mechanism. Rather, several effects contribute, 
including Raman amplification, four-wave mixing, soliton formation, and 
SPM. 
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The question arises on how such incoherent processes can produce 
coherent comb spectra. All observations point to the following explanation: 
initially, in the interaction of the light with the fiber, SPM (which produces a 
coherent spectrum) creates a field that, at all comb frequencies (i.e., even at 
the edges of the width of an octave), exceeds the incoherent noise strongly. 
Thus incoherent amplification mechanisms must start from a coherent 
“seed” (instead of incoherent noise), resulting in a coherent octave comb. 
Because of the complete phase coherence of the entire comb, the phase 
fluctuations of one comb line are very small. The entire laser field acts as 
one coherent field; thus the phase fluctuations induced by spontaneously 
emitted photons (Shawlow-Townes phase diffusion) are exceedingly small 
given the total laser power of several 100 mW. The comb is extremely 
“rigid.” 

We mention that this enormous rigidity, or phase coherence, is not, in 
general, a property of mode-locked lasers. Mode-locked dye lasers, for 
example, lock predominantly by slow cascaded four-wave-mixing processes, 
where in each mixing process, (vacuum-) noise is added, so that in such 
systems the coherence range in the comb is much smaller than the comb 
width. It is this particular mode-locking mechanism of the Ti:sapphire laser 
that utilizes the essentially instantaneous Kerr effect that produces an 
instantaneous and completely synchronous refractive-index modulation for 
all modes throughout the spectrum. 

Generally, optical oscillators possess extreme spectral purity limited only 
by spontaneous emission. One wonders if such high spectral purity could be 
transferred to other spectral regions where applications require it, e.g., to the 
rf/microwave range. To transfer the spectral purity to lower frequencies, a 
“noiseless-optical-frequency divider” would evidently be needed; however, 
such a device does not exist. Fortunately, as discussed above, the optical 
frequency can be measured in terms of the pulse repetition rate (the comb 
line spacing), such that the optical frequency is a (in general noninteger) 
multiple of the pulse repetition frequency. In this sense, the mode-locked 
laser contains a built-in divider. The latter is very low noise because of the 
rigidity of the comb spectrum. The laser radiation contains rf frequencies in 
the difference-frequency domain. However, these frequencies have to be 
converted to electrical signals. Although this optical-to-electrical conversion 
presents a limitation (photodiodes can only handle limited amounts of 
optical power), it can be estimated that microwave signals thus generated 
will be superior in phase noise to the fields of the best (cryogenic) 
microwave oscillators. 

We now briefly describe the basic properties of a Kerr-lens, mode-locked 
laser that emits a periodic train of short pulses generating an optical 
frequency comb of distinct lines with well-defined, equidistant spacing. The 
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spectral span of this comb reflects the duration of an individual pulse, while 
the spacing between the lines is determined by the pulse repetition 
frequency.  

We start with a time domain description of the pulses emitted by a mode-
locked laser, as shown in the upper part of Figure 8-4. Every time the pulse 
circulating inside the cavity hits the output coupler, the laser emits a pulse. 
This process results in a train of pulses separated by time τ = lc / vg, where lc 
is the round-trip length of the cavity and vg is the group velocity. Because of 
unavoidable dispersion in the cavity, the group and phase velocities vp are, in 
general, not equal. This inequality results in a shift of the carrier phase with 
respect to the peak of the envelope for each round trip. 
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Figure 8-4. Representation of the output field of a mode-locked laser in the time domain or 
frequency domain, including the definition and measurement of the carrier-envelope-offset 
frequency f0.  

This shift between successive pulses is described by ∆φce, which is 
proportional to the difference of the inverse of the group- and phase-
velocities. Taking the Fourier transform of a train of pulses, together with 
the condition that the field reproduces itself after each round trip coherently, 
yields a comb spectrum with angular frequencies 

τ
φ∆

τ
πω ce

m

m +⋅≡ 2
.  (1) 

Dividing by 2π yields the frequencies of the mth comb mode, 
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Therefore, the frequency of any line of the spectral comb emitted by such 
a laser, as shown in the lower part of Figure 8-4, is given by an integer m, 
the pulse repetition frequency fr of the laser, and the carrier-envelope offset-
frequency, f0, which accounts for an offset of the entire comb with respect to 
the frequency zero. The frequency f0 represents the time derivative of the 
optical (carrier) phase ∆φce as measured with respect to the pulse envelope. 

The determination of the frequency of the mth comb mode ν(m) therefore 
requires precision measurements of fr, f0, and m. The determination of m can 
be performed by a wavelength measurement, for example. The measurement 
of the pulse repetition rate fr is straightforward to carry out. However, since 
fr enters the optical frequency measurement process with the large factor m, 
the noise properties of the measurement are demanding. 

The measurement of f0 is also a demanding task. Several more or less 
complex schemes, depending on the comb span available, have been 
proposed for the measurement of f0 [32]. The simplest concept requires an 
octave span of the frequency comb that is not directly available from the 
laser used. The available span has to be expanded, e.g., by external spectral 
broadening. Microstructure air-silica fibers, which allow the tailoring of the 
group-velocity dispersion (GVD) properties [26], are highly suited for SPM 
of moderate peak power pulses. They provide both lateral and temporal 
confinement of the pulses over long interaction lengths. If the octave span is 
achieved, then the f0 measurement can be accomplished by second-harmonic 
generation (SHG) of the spectral lines in the low-frequency wing of the 
comb, as shown in Figure 8-4. This method has been developed at JILA [33] 
and MPQ [34]. 

Whereas the frequencies of the comb lines are shifted by f0 with respect 
to the origin, their second harmonics are shifted by 2f0 (Figure 8-4). Thus, 
the beat notes between these harmonics and the corresponding high-
frequency-wing lines of the comb shows the desired component at f0 (n=2m) 

( ) rrr fnmfnffmff −+=−−+= 222 000δν . (3)  

When all three quantities fr, f0, and m are known, any unknown external 
optical frequency νext of a laser emitting within the spectral range of the 
comb can, in turn, be determined by measuring the beat-note frequency ∆ν 
with a suitable comb line. The absolute frequency νext is then expressed by 
νext = ν(m) + ∆ν.  Furthermore, it is possible to directly reference the comb 
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spacing (fr) and position (f0) to the microwave cesium time standard, thereby 
determining the absolute optical frequencies of all of the comb lines.  

This recent advance in optical frequency measurement technology has 
facilitated the realization of the ultimate goal of a practical optical frequency 
synthesizer: it forms a phase-coherent grid linking the entire optical 
spectrum to a microwave standard, or vice versa. 

5. OPTICAL FREQUENCY MEASUREMENTS  

We have used such “self-referenced” combs to measure the frequencies 
of the Ca cold atom cloud standard at 657 nm [35] and the single Yb+-ion 
standard at 435 nm [36]. The arrangement in Figure 8-5 was used. The comb 
generator used a 10 fs Kerr-lens mode-locked Ti:sapphire laser [32] and a 
microstructure fiber for broadening the comb spectrum [26]. By coupling 30 
mW into a 10 cm long fiber, we covered the spectrum from 500 to 1200 nm. 
 The pulses behind the fiber are frequency doubled and coherently 
superposed with the fundamental comb radiation. Variable delay adjusts the 
pulse arrival times so that the pulses of fundamental and frequency-doubled 
radiation overlap in time. A grating filters out the high frequency end of the 
spectrum that contains the f0 beat, which is detected by a photo detector. The 
f0 beat frequency is filtered by a tracking oscillator as developed for classical 
frequency multiplication work. It is an optimum filter strategy, for lasers and 
oscillators exhibiting only frequency noise with Fourier components in the 
kHz range [5]. 

The critical frequency to be measured is fr since the optical interval ν to 
2ν is measured as a very high multiple of this quantity. Instead of fr itself, a 
high harmonic of it in the 10 GHz range (~100th harmonic) is detected after 
spectral filtering of the laser light by a solid etalon of 10 GHz free spectral 
range. The 10 GHz beat is down-converted with a low noise 10 GHz signal 
synthesized from the rf-frequency standard (a hydrogen maser referenced to 
a cesium fountain clock). The difference frequency is again multiplied by 96 
and by 3, reducing frequency-counter digitization errors to below the level of 
the noise of the H maser and thereby, the frequency that is effectively 
measured is 3 THz. 

For the measurement of frequencies of optical standards, the light of 
these standards is heterodyned with a narrow range of the comb spectrum 
filtered out by interference filters around the standards’ frequencies. The 
usual tracking oscillator is used for optimal filtering of the heterodyne 
signal. 
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Figure 8-5. Femtosecond laser as frequency comb generator and generated comb spectrum. 
LBO: Lithium β-Borate crystal and SESAM: Semiconductor Saturable Absorber Mirror. 

The optical standards that are used for absolute optical frequency 
measurement at PTB are located in two different buildings, and the comb 
generator in a third building. The standards’ radiation is brought to the comb 
generator by ~250 m long single-mode fibers and the rf standard signal by 
air-dielectric cables. Measurements have shown that the changes in the cable 
and fiber lengths due to temperature changes, which produce temporal phase 
changes (corresponding to frequency shifts), remain below ∆ν/ν = 10-15. At 
the present level of precision for absolute frequency measurements, these 
changes can be neglected. 

5.1 Ca frequency measurement 

An improved Ca spectrometer uses an ensemble of cold Ca atoms 
prepared in a magneto-optical trap (MOT) [37]. The contributions to the 
uncertainty of the improved standard were investigated earlier [38], resulting 
in an overall uncertainty of 8 Hz (δν/ν = 2 x 10-14). A summary of the 
historical record of frequency measurements of laser-cooled Ca frequency 
standards is shown in Figure 8-6. Earlier frequency measurements based on 
the harmonic frequency chain (see 1995–1997 in Figure 8-6) led to a 
fractional uncertainty of 2.5 x 10-13. The first measurements of the Ca 
standard with a femtosecond laser comb agreed within the combined 
uncertainties (September 2000) [39]. In the meantime further measurements 
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were performed. These measurements were limited mainly by the 
uncertainties resulting from the corrections due to magnetic quadrupole 
fields of the MOT and AC-Stark shifts (June 2001). A frequency 
measurement with reduced uncertainty was then performed [35] where the 
spurious phase shifts resulting from misalignment and curvature of wave 
fronts were reduced and the systematic shifts due to the quadrupole MOT 
field and the AC-Stark shift were eliminated.  

For a weighted mean of all frequency measurements shown in Figure 8-
6, the measurements of June 2001 were averaged, and the uncertainty of the 
single measurements of 23 Hz kept as they were taken on a single day with 
no changes in the settings, so that the systematic shifts were not independent. 
The same was true for the two days of measurements in October 2001 that 
were averaged and their uncertainty determined to 8 Hz. With a new comb 
system, additional frequency measurements were done in October 2003, and 
individual data points were treated in the way described above, resulting in a 
total uncertainty of these measurements of 6 Hz. The weighted mean of all 
the frequency measurements performed at PTB with the harmonic chain and 
the femtosecond frequency comb is thus, 

νCa = ( 455 986 240 494 149 ± 6) Hz 

with a relative standard uncertainty 1.3 x 10-14. 
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Figure 8-6. Frequency measurements of laser-cooled Ca optical frequency standards over 
the past eight years. The full-square data points represent data from PTB [38] while the single 
open-dot data point represents the frequency value reported by the NIST group [40]. Prior to 
1999: a harmonic frequency chain; since 2000: femtosecond optical combs. 
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The Ca frequency measurement is in good agreement with recent 
measurements made at the National Institute of Standards and Technology 
(NIST), Boulder, also using a femtosecond comb generator [40]. The 
consistency of the Ca results between the two laboratories, over time and 
with different apparatus, demonstrates the good reproducibility of these 
standards with respect to the cesium primary frequency standards. 

5.2 Yb+ frequency measurement 

Several measurements of the absolute frequency of the Yb+ ion trap 
frequency standard were performed in 2001 and 2003. The results are shown 
in Figure 8-7. By averaging the data over the measuring period in 2001, a 
value for the 6s 2S1/2 (F = 0) – 5d 2D3/2 (F = 2) electric-quadrupole clock 
transition of the 171Yb+ ion of  

νYb+
 = 688 358 979 309 312 Hz ± 6 Hz 

was derived [41]. An additional measurement of its frequency was 
performed in 2003 with a new frequency comb generator. The results of this 
measurement deviated from the previous one by (–2.3 ± 6.4) Hz. 
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Figure 8-7. Frequency measurements of laser-cooled Yb+ optical frequency standards over 
the past three years. The first three data points represent published data from Reference [41]. 

The combined 1σ-uncertainty of 6.4 Hz of the latest measurement is 
given by statistical and systematic contributions. Sources of systematic 
uncertainties are the realization uncertainty of the cesium fountain frequency 
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standard [42] and the 171Yb+ frequency standard. The dominant contribution 
to the total uncertainty of the frequency value is the statistical uncertainty of 
the frequency measurement of 5 Hz because of the limited time of 
observation. The most significant systematic contribution to the uncertainty 
of 3 Hz is due to a quadrupole shift caused by unknown electric field 
gradients in the trap. This quadrupole Stark effect has recently been 
measured [43]. The reproducibility of frequency comparisons of two traps 
over an extended time, which included reloading traps, seems to indicate that 
this quadrupole Stark shift would, with the traps used presently, be below 1 
Hz. 

The weighted mean of the frequency of electric-quadrupole clock 
transition of the 171Yb+ ion is  

νYb+
 = 688 358 979 309 311 ± 6 Hz. 

The measurement of the frequency of the electric-quadrupole clock 
transition of the 171Yb+ ion with a relative uncertainty of 1 x 10-14 
demonstrates the potential of the 171Yb+ standard as a precise optical 
frequency reference. 

In accordance with the measurements using the traditional frequency 
chain on the Ca standard and on the CH4 IR standards [3, 44], the absolute 
frequency measurements are dominated by the noise of the low-frequency 
reference (the hydrogen maser) for short integration times. 

6. TEST ON THE PRECISION OF FREQUENCY 
MEASUREMENT WITH FREQUENCY COMBS 

6.1 Transfer technique 

Ideally in a frequency measurement, the measurement instrument itself, 
i.e., the frequency multiplication chain or frequency comb, should not limit 
the measurement in any way. Obviously any laser setup exhibits 
frequency/phase-fluctuations. Even if one has the necessary “transducers” 
for phase locking all desired frequencies, the residual phase excursions dφ/dt 
still allow changes of the frequencies.  

The faster the transducers (i.e., typically piezo transducers limited in 
speed by the mirror masses), the smaller the phase excursions can be held. 
(Evidently, with the increase of control speed, an increased signal-to-noise 
ratio of the control signals is required.)  
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In general, to become independent of transducer speed in frequency 
synthesis, the “transfer technique” is used. As an example, one may consider 
a frequency multiplication step (Figure 8-8). The frequency f2 of a laser is 
measured against a reference near its frequency. (In a frequency 
multiplication chain this reference would be a harmonic of a lower 
frequency f1 that is already known.) The beat signal b1,2 between the 
reference and the laser contains all the frequency fluctuations of the transfer 
laser.  

 f3  stabilized

*m

 *n

b2,3 = mf2 - f3

b1,2 =  nf1 - f2

 m
     1

f2  - f3/m

fc = nf1  - f3/m

 f2  transfer osc.

 f1  stabilized
 

Figure 8-8. Using an intermediate oscillator in the transfer mode. The signal fc is independent 
from f2. 

The laser’s frequency is then multiplied m-fold and its harmonic 
compared with the frequency of another stabilized laser f3 of approximately 
m-fold higher frequency. The latter beat signal b2,3 contains the frequency 
fluctuations multiplied m times. Thus the frequency fluctuations of the 
transfer laser can be eliminated completely from the measurement by 
dividing the beat signal frequency b2,3 electronically by m and subtracting it 
(e.g., by a mixer that produces a difference frequency) from the beat signal 
frequency b1,2. The resulting difference frequency then measures directly the 
difference of the nth harmonic of the reference and the laser frequency 
divided by m. All frequency fluctuations of the transfer laser itself are 
eliminated purely electronically, and no fast transducers are needed. The 
transfer laser itself does not enter into the measurement. It just “transfers” 
information from the reference frequency level by a (n x m)-multiple to the 
laser frequency level. Thus the name: “transfer technique.” We have used 
the scheme of phase-coherent transfer in our conventional frequency 
multiplication chain [5]. 
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For any phase-coherent frequency measurement, the maintenance of the 
coherence or “phase-tracking-ability” of the harmonic mixing signals is the 
essential requirement for a frequency measurement. Simply stated: if a 
frequency is multiplied by a factor N, its period duration is divided by N. If 
the low starting frequency shows a certain level of phase noise (i.e., the zero 
crossings of the field jitter by an amount ∆t), then there is a critical factor 
Ncrit above which ∆t exceeds the period duration of the multiplied frequency. 
This means that, on average, the period to which a zero crossing belongs is 
no longer defined. (This phenomenon is called “coherence collapse.”) If an 
oscillator “transfers” information between two other oscillators (relating 
their frequency in some way), the transfer technique can be generalized. In 
the way, the femtosecond comb generator can act as a transfer oscillator, and 
its frequency fluctuations thus do not enter the measurement process. 

For the realization of absolute frequency measurement using the transfer 
technique, the scheme in Figure 8-9 was used. This scheme realizes 
physically the relation of the frequency ν of an optical frequency standard 
with the three measured frequencies fr, f0, and ∆ν: ν = m fr + f0 + ∆ν. To keep 
the requirements on the phase detector stabilities reasonable, the pulse 
repetition frequency is measured as a high harmonic (m1 ~ 100). The detector 
output frequency around 11 GHz is then down-converted to a range of a few 
MHz using a suitable harmonic of the absolute reference (hydrogen maser 
referenced to a cesium clock). The resolution of the frequency measurement 
is further increased by a factor m3 using an additional tracking generator 
with a harmonic phase-locked loop. In this kind of harmonic generation, the 
harmonic number must be limited because of the decrease of the signal-to-
noise ratio and of the necessary increase of the tracking bandwidth with the 
harmonic number that would both ultimately cause cycle slips. 

On the other hand, the optical frequencies can be divided by the factor m 
directly. However, this reduces the resolution and the phase noise of the 
dividers will provide a serious limitation. Therefore, the two “optical” beats 
are summed and divided by m2. This procedure leads to the optimized 
combination m = m1 ⋅m2 ⋅m3. For practical reasons, we choose m1 and m3 in 
the range of 100 and 294, respectively. 

In this way, the frequency νc represents the beat between the up-
converted low-frequency reference (hydrogen maser referenced to cesium 
clock) and the down-converted optical-frequency standard. All information 
is contained in the frequency νc that is independent of the fluctuations of the 
comb. Since the input signals ν and fLO are stable, it is possible to filter the 
signal νc by a filter of a few Hz(!) bandwidth, increasing the SNR ratio 
enormously. 
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This technique differs completely from the conventional approach in its 
handling of the technical frequency noise contributions. One radio frequency 
signal containing all necessary information about the external optical signals 
is synthesized and stabilization of the comb is not necessary. Technically, 
the complete cancellation of all femtosecond comb fluctuations requires a 
processing of the optical signals with a sufficiently high bandwidth. 
Considering the typical Fourier frequency range of the noise of f0 and the 
beat signal ∆ν of a few MHz, this requirement can be easily fulfilled. 
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Figure 8-9. Linking microwave and optical frequencies: signal-processing scheme. 

6.2 Frequency ratio 

Any absolute frequency measurement requires that the frequency ν is 
measured and expressed in the SI-unit Hertz. The primary unit Hertz is 
technically realized by a cesium-clock controlled H-maser generating a 
standard frequency of 100 MHz, for example. Therefore, any absolute 
frequency measurement is principally limited by the frequency instability of 
the hydrogen maser. However, optical frequencies are measured (in many 
cases) with respect to an optical reference frequency by measurement of 
their frequency difference [45]. Then, only a fraction of the H-maser noise 
enters the measurement process and is given by the ratio between the 
frequency difference and the absolute frequency.  

Measuring the ratio of two frequencies does not require a frequency 
reference. Because the ratio is a unitless number, it is not referred to an 
absolute frequency and its stability is that of the optical frequency standard 
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with the larger instability. Thus, frequency ratios for oscillators with better 
stability can be determined with smaller uncertainty if a technique is 
available to realize the frequency ratio without introducing additional noise. 
Such a technique is the transfer oscillator concept, described above, which 
has been generalized for signals with rational frequency ratios [29, 46]. 
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Figure 8-10. Modified transfer concept for the measurement of optical frequency ratios. νC 
represents the beat note between arbitrary optical frequencies ν1 and ν2.  

If, as with the optical comb generator, two frequencies are related by the 
comb through a “rational” harmonic ν2/ν1 = m2/m1, then the two beats have to 
be treated accordingly. One of the beat frequencies has to be multiplied by 
m2/m1, and the result has to be subtracted from the other beat frequency. 
Figure 8-10 shows the scheme for the measurement of the ratio of the 
frequencies of two optical standards whose frequencies are given by  

ν1 = m1 ⋅fr + f0 + ∆1 and ν2 = m2 ⋅fr + f0 + ∆2 . 

Three signals are detected: f0 and two beat signals of two external 
frequency standards with the modes of the femtosecond frequency comb, ∆1 
and ∆2. The sum frequency of ∆1 and f0 is generated by a mixer. The sum 
frequency of ∆2 and f0 is additionally processed with a direct-digital 
synthesizer (DDS). Such a device generates an output signal from an input 
signal with a frequency ratio given by a long digital tuning word. It 
numerically approximates the ratio of the two integers, m1 and m2, by j/2n, 
where j is an integer and n the bit length of the tuning word. The resulting 
possible error is negligible for commercially available n = 48 bit devices. 

Generating the difference frequency of the signals νA and νB with the 
help of a mixer, results in the ratio 
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The frequency νC is a measure of the (small) deviation of the optical 
signals frequency ratio ν2/ν1 from m2/m1. Since νC<< ν1, ν2, the requirements 
on the radio frequency reference are, in general, not demanding. The 
frequency νC carries the full information of the fluctuations of the ratio ν2/ν1 
and can be considered as the frequency of the beat note between ν1 and ν2 as 
projected to the vicinity of ν1. However, the uncertainty of ν1 enters and 
limits the precision of the ratio if the term in the brackets is not zero. By 
proper choice of fr and f0, this term can be made equal to zero and the ratio of 
optical frequency standards can be measured without knowledge of the 
comb-related frequencies (except for the definite determination of the mode 
numbers m1 and m2). By measuring νC, this scheme allows one to realize a 
relative frequency measurement of an unknown frequency ν2 with respect to 
an arbitrary frequency reference ν1.  

As well as measuring the ratio of two optical frequencies, the method 
allows the measurement of the ratio of an optical and a radio frequency. This 
rf reference can be related to a primary standard, thereby realizing the 
absolute frequency measurement described in the previous paragraph. 

The measurement of a frequency ratio has been used with a subharmonic 
of the Yb+ ion-frequency standards νYb

+ at 871 nm [47], and an iodine-
stabilized Nd:YAG laser ν0 at 1064 nm [48]. Referring to Figure 8-10, the 
beat note of νYb

+ with a comb mode was ∆2 and that of ν0 was ∆1. The output 
of the last mixer in Figure 8-10 is equivalent to the beat signal between the 
iodine and Yb+ signals at a virtual frequency of νC = 43 THz.  

Figure 8-11 shows the resulting Allan standard deviation of this ratio 
measurement (open squares) and of an absolute optical frequency 
measurement of the Yb+ optical frequency standard (full dots). The accuracy 
of the absolute frequency measurement is limited by the noise of the 
hydrogen maser (solid line). In contrast, the frequency noise of the beat note 
between the Yb+ and iodine signals is expected to be substantially smaller 
than that of the H-maser, at least at Fourier frequencies f > 0.1 Hz. The direct 
frequency comparison of two independent I2-stabilized standards shows 
frequency instabilities similar to that found for the Yb+/I2-ratio measurement, 
indicating that this ratio measurement was limited by the noise of the I2-
stabilized standard. The dashed line assumes a white noise level of ≈3 x 10-14 
at 1 s. 

This experiment demonstrated the capability of phase-coherently linking 
optical frequencies from very different spectral regions without introducing 
additional noise from the measurement process. Thus frequency-ratio 
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measurements between optical frequencies with short-term instabilities 
superior to that of a microwave reference can be carried out. 

Using the setup we just described, it was not possible to investigate any 
possible noise contribution from the femtosecond comb; the stability of even 
the high-quality reference-signal pair was not good enough. Therefore, in a 
second experiment, we used the signal ν0 and its second harmonic νSH that 
was generated in a nonlinear crystal. The frequency-doubling process 
enabled the generation of a pair of reference frequencies with almost 
completely correlated fluctuations, leading to a fixed frequency ratio of 2:1 
even for the shortest averaging times.  

Referring to Figure 8-10, the beat note of νSH with a comb mode was ∆2 
and that of ν0 was ∆1. The DDS was replaced by a frequency divider of 2. 
Both comb lines generating the beat notes at the fundamental and the second 
harmonic were themselves generated in the microstructure fiber. 
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Figure 8-11. Allan standard deviation of the Yb+ frequency standard (full dots) with respect 
to an H-maser. The frequency instability of a typical hydrogen maser reference (solid line) is 
given for comparison. The open squares represent the stability of an I2-stabilized–frequency- 
doubled Nd:YAG laser as derived from the frequency ratio with respect to Yb+ standard. The 
triangles show the Allan standard deviation for the frequency ratio between the second 
harmonic and the fundamental of the I2-stabilized Nd:YAG laser. 

The triangles in Figure 8-11 show the Allan standard deviation for this 
measurement. The instability is more than two orders of magnitude smaller 
than for the νYb+/ν0 measurement, for which high-quality oscillators were 
already used. The optical frequency ratio can be measured at averaging times 
of 100 s to a level of ~10-18 corresponding to mHz fluctuations. The residual 
fluctuations at the large averaging times do not indicate a limitation of the 
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frequency measurement but are the result of the slow optical phase 
variations caused by the changes in the optical path lengths between the 
optical elements on the table where the system was set up, in temperature, in 
the motion of the air, and so forth. These variations could evidently be 
reduced further so that 10-18 does not represent a limit in measurement 
precision. 

In any case, the lower curve shows unambiguously that the transfer 
method works well and that a frequency comb used in the transfer mode is 
adequate for forming a part of future atomic clocks based on optical 
transitions; it would not limit the transfer of optical stability to the rf range, 
even at the projected precision and stability of 10-18.  

Figure 8-12 shows a Fourier transform of the measurements represented 
by the lowest curve of Figure 8-11. The 9 mHz spectral line representing the 
frequency measurement uncertainty corresponds to the “virtual measurement 
frequency” of 43 THz. Converted to the measured optical frequency of 282 
THz it would show a spectral line of 60 mHz width (still remarkably narrow) 
at 282 THz as characterizing the measurement, or the coherence of the 
measurement process. 

 

Figure 8-12. Power spectrum of the beat note between sub-harmonics of the outputs of an I2 
and an Yb+-frequency standard taken at a virtual frequency of 43 THz as calculated from the 
recorded phase excursions by fast Fourier transform. 

7. SUMMARY 

Frequency chains have been developed and operated for many years in 
several laboratories. However, during the last few years, great progress has 
been achieved in the development of optical frequency standards and optical 
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frequency synthesis. These advances are based on precision spectroscopy 
with cold absorbers and improvements of phase-coherent optical frequency 
measurements. In the past, each laboratory focused on different target 
frequencies and hence different frequency standards. With the development 
of optical frequency measurements based on femtosecond lasers, a new era 
in optical frequency metrology was started. In fact, optical frequency 
measurements based on femtosecond lasers will soon be available in many 
laboratories. This concept is well suited for measuring the absolute 
frequency of essentially any optical frequency standard with reproducibility 
at the level of the present primary atomic frequency standards. 

The control of the comb frequencies, especially the carrier offset 
frequency f0, which arises from the pulse to pulse phase shift of the carrier 
envelope phase, allows one to investigate extreme nonlinear processes that 
are directly sensitive to the electric field of each pulse such as x-ray 
generation, and it can be used to tightly synchronize independent mode-
locked lasers operating in different spectral regions [49]. 

With the femtosecond comb, it is possible to compare different optical 
frequency standards by beat frequency measurements, and the 
reproducibility of stabilized lasers can now be determined over long periods 
of time by comparisons with the cesium atomic clock. Furthermore, the use 
of active optical-frequency comb generators allows one to develop accurate 
clocks operating in the optical frequency range.  

It can be envisaged that the uncertainty of the best optical frequency 
standards will eventually become lower than that of the present realization of 
the second. This new situation may lead to a replacement of the (cesium-
based) definition of the second by an optical reference frequency. With the 
continuing fast progress in the development of optical frequency standards, 
the selection of the “best reference” will be a challenging and exciting task.  
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Abstract: In the late 1990’s mode-locked femtosecond lasers were introduced as an 
important new tool for the synthesis and measurement of optical frequencies.  
The simplicity, robustness and improved precision of femtosecond lasers have 
now led to their prominence in the field of optical frequency metrology.  In 
addition, their use is developing significant new time-domain applications 
based on the precise control of the carrier-envelope phase.  It is anticipated 
that narrow linewidth lasers referenced to optical transitions in atoms and ions 
will soon be the best electromagnetic frequency references of any kind, with 
projected fractional frequency instability below 1µ10-15τ-1/2 and uncertainties 
approaching 1µ10-18.  When used in conjunction with such ultraprecise 
frequency standards, the femtosecond laser serves as a broadband synthesizer 
that phase coherently converts the input optical frequency to an array of 
optical frequencies spanning hundreds of terahertz and to countable 
microwave frequencies.  The excess fractional frequency noise introduced in 
the synthesis process can approach the level of 1µ10-19.     

Key words: optical atomic clocks, optical frequency metrology, mode-locked lasers, 
frequency comb, optical frequency synthesis 

1. INTRODUCTION  

Recent developments in time and frequency metrology have brought us 
to the point where we can begin to address the possibility of using atomic 
clocks “ticking” at optical frequencies (~500 THz) to measure time intervals 
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with uncertainties approaching 1 part in 1018.  This represents a dramatic 
shift from the past fifty years of precision time keeping, where atomic clocks  
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Figure 9-1. The development of optical clocks and optical frequency metrology has arisen out 
of many different sub-fields of atomic, molecular, and optical physics.  While optical clocks 
have their roots in the precision optical-frequency spectroscopy of cooled and trapped ions 
and atoms, the emergence of robust mode-locked solid-state femtosecond lasers and nonlinear 
spectral broadening/conversion techniques has provided new opportunities and invigorated 
the field as a whole. 

have exclusively operated at microwave frequencies, with the 9,192,631,770  
Hz ground-state hyperfine transition in cesium-133 being the internationally 
recognized definition for the SI second.  The jump from microwave to 
optical frequencies has been jointly fueled by advances in several branches 
of atomic and optical physics, including laser cooling and trapping, precision 
spectroscopy, frequency stabilized lasers, nonlinear fiber optics, spectral 
broadening and frequency conversion, and femtosecond mode-locked lasers 
(see Figure 9-1).  Over the past 30–40 years, developments in precision 
optical frequency spectroscopy with highly stabilized lasers have formed a 
solid basis for the surge of activity in optical frequency metrology since 
1999.  Pioneers of this field [1-8] recognized that the spectroscopy of cooled 
and trapped atoms with narrow linewidth lasers would be valuable for 
precision measurements in general, and even 20–30 years ago, prototype 
“optical clocks” were being developed [6, 9].  While it was clear that clocks 
operating at optical frequencies had much potential for improved stability 
and accuracy, a longstanding problem in the development of such clocks has 
been a reliable and straightforward means of counting the extremely rapid 
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optical oscillations.  Solutions to this counting problem involved harmonic 
frequency chains [10, 11] at several national facilities or an alternative 
approach based on interval bisection [12].  However, both of these 
techniques required significant resources and were rather complicated, 
meaning it was unlikely they could ever become widespread and reliable.  In 
1998-99, this scenario was rapidly changed after the group of T. Hänsch 
demonstrated that mode-locked femtosecond lasers could play an important 
role in optical frequency metrology [13, 14].  With the subsequent 
introduction of highly nonlinear optical fibers that could broaden the 
femtosecond laser spectrum to bandwidths greater than one octave, all of the 
pieces rapidly came together for the implementation of a simple and elegant 
single-step phase-coherent means of counting optical frequencies [15, 16]. 

As illustrated by Figure 9-1 and this brief introduction, the science and 
technology that underlie optical clocks are rich and varied.  Several excellent 
reviews and introductions to this topic already exist [17-22] and others are 
found in this volume itself.  Instead of attempting to provide a 
comprehensive review, we will focus on the role that femtosecond lasers 
play in emerging optical clocks and in low noise frequency synthesis. We 
will begin by presenting the main components that make up an optical clock 
and highlight some of the most relevant detail of the atomic references.  The 
bulk of this chapter will then describe in detail the role of the femtosecond 
laser in optical clocks and low-noise optical and microwave frequency 
synthesis.  This description will include various methods by which the 
femtosecond laser can be controlled as well as some tests that have searched 
for inaccuracies in such laser systems when they are used in precision 
frequency measurements.  An overview of the array of different femtosecond 
laser synthesizers that have been developed since 2000 will be presented.  
And in conclusion, we will discuss recent experiments focused on the 
distribution of optical clock signals through optical fiber networks using 
mode-locked lasers. 

1.1 Basic components of optical clocks 

Most common clocks consist of two major components:  an oscillator 
that produces periodic events or “clock ticks,” and a counter for 
accumulating and displaying each tick [23].  For example, the swing of a 
pendulum provides the periodic events that are counted, accumulated, and 
displayed via a set of gears driving a pair of clock hands.  Similarly, in a 
quartz watch, the mechanical vibrations of a small quartz crystal are 
electronically detected, accumulated, and displayed to generate time.  
However, because of the influence of environmental fluctuations, the nature 
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of an artifact-based standard makes it very difficult for a quartz oscillator to 
remain reproducible at a level of 1 µs per day.  Atomic clocks add a third 
component that solves this problem:  the resonance of a well-isolated atomic 
transition that is used to control the oscillator frequency. This is where 
precision spectroscopy becomes vital to ensure that the evolution of a clock 
signal is ultimately governed by fundamental quantum physics. If the 
frequency of the oscillator is controlled to match the transition frequency 
between two unperturbed atomic states (i.e., the oscillator is locked to the 
atomic transition frequency), then the time generated can have the desired 
long-term stability and accuracy.  For an atomic clock based on a microwave 
transition, high-speed electronics count and accumulate a defined number of 
cycles of the reference oscillator to mark a second of time.  As sketched in 
Figure 9-2, the basic concepts are the same for an atomic clock based on an 
optical transition at a much higher frequency.  In this case, the oscillator is a 
stabilized laser with its frequency locked to an optical transition.  However, 
no electronic device exists that can directly count the extremely rapid optical 
oscillations.  Until very recently, devices that could divide an optical 
frequency down to a countable microwave (called “frequency chains”) were 
complicated, large-scale devices requiring significant resources for operation 
[11, 24, 25].  However, as will be described in detail in Section 3, the advent 
of femtosecond-laser-based clockwork greatly simplifies this problem of 
directly counting the optical frequency.     
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& Laser
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Atoms

Frequency
Counter

 

Figure 9-2. Schematic diagram of an optical clock.  A laser is first stabilized to a Fabry-Perot 
optical cavity that provides a means to narrow the laser linewidth leading to good short-term 
stability.  The center of a narrow resonance in an appropriate atomic sample then provides a 
stable reference to which the frequency of the laser can be steered.  Once its frequency is 
locked to the center of the atomic resonance, a predetermined number of optical cycles are 
counted to mark a second of time.  
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1.2 Uses of optical atomic clocks 

While timekeeping is an important aspect of our everyday lives, most of 
us do not really care or need to know the exact time to much better than ~60 
seconds at any point in our daily routines.  Computer networks that record 
financial transactions and reservations may require timekeeping that is ~100 
times better than this, but still at the modest level of millisecond accuracy.  
However, many technological applications, such as communication and 
navigation systems (e.g., the Global Positioning System, GPS [26]), are 
much more demanding, requiring clocks that are stable and accurate at the 
level of 10–100 nanoseconds per day. The most accurate clocks are 
ultimately referenced to natural resonances in atoms, and they provide a 
unique tool for the scientific exploration of basic atomic structure and the 
physical interactions between atoms and their environment.  It is necessary 
for timekeeping purposes to have clocks that are accurate at the level of 100 
picoseconds per day (1 part in 1015), but it is also arguable that clocks with 
such performance are equally valuable as basic science research tools.    The 
next generation optical clocks that are currently being developed will move 
beyond this already astounding level of performance, with projected 
uncertainties approaching 1 part in 1018.  In other words, if such a clock 
could run indefinitely, it would neither gain nor lose one second in the 
lifetime of our universe. 

It is valid and important to ask why scientists, or society for that matter, 
might want still better clocks.  A brief look back in the history of 
timekeeping provides some idea of how we might expect emerging optical 
clocks to benefit society in the coming decades.  In the 1950s when 
microwave atomic clocks based on cesium (and other atoms and molecules) 
were first developed, the situation was not so different from where we find 
ourselves today.  The first atomic clocks were quickly recognized as being 
significantly better than the existing mechanical and quartz-based clocks, yet 
at the same time, they were mainly a tool of scientific interest.  At that point, 
few people would imagine that just 30 years into the future, a constellation 
of satellites containing cesium and rubidium atomic clocks would 
circumnavigate the globe providing accurate time and position to all people 
below.   The GPS and its constituent atomic clocks are now an integral part 
of our lives.    While it is difficult to extrapolate to the next 50 years, it is 
fully expected that optical clocks will find numerous applications in 
advanced communications and navigation systems.  For example, the very 
stable optical clock ticks may be especially useful for tracking and 
communication between satellites and spacecraft in the much greater 
expanses beyond our planet. Indeed, stable and precise lasers are envisioned 
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to provide both laser distance ranging (length metrology) and time keeping 
simultaneously for satellites [27]. 

For the near future, it is already clear that optical clocks and optical 
frequency metrology will provide interesting and new scientific avenues to 
study our universe—pushing the limits on tests of the most fundamental 
physical laws to new levels.  Of particular interest is the continued 
application of optical frequency standards in spectroscopy and the improved 
determination of the fine structure constant α and the Rydberg constant R

∞
 

[14, 28].  As measurement accuracy improves, metrologists may find 
themselves in the unique position of being able to observe physical 
“constants” evolve in time [29]. Indeed, laboratory tests on the possible 
divergence of clocks based on different atomic transitions already provide 
some of the most stringent constraints of the variation of α [30, 31].  
Experiments of fundamental importance for which precision 
clocks/oscillators are of value include searches for variations in the isotropy 
of space, a preferred reference frame, and Lorentz and Charge-Parity-Time 
(CPT) symmetry violation [32].   Following the recent trapping of cold 
antihydrogen at CERN [33], in the coming years it may be possible to 
compare optical clocks based on the 1S–2S transitions in both hydrogen and 
anti-hydrogen [34].  Such measurements would provide precisions tests of 
the fundamental symmetry between matter and antimatter [35]. 

1.3 A brief history of the development of optical clocks  

In the decade following the invention of the laser, it became clear to 
many researchers that a stable optical oscillator had great potential for 
precision measurements including time keeping.  The reader is referred to 
the references [24] and the contributions of Chapter 8 in this volume for a 
more detailed history of the development of optical frequency standards and 
optical clocks.  Here, we present only a brief overview of this topic touching 
on a few of the most important advances.   

Not long after the invention of the laser, efforts were in place to stabilize 
its frequency to the center of its Doppler-broadened gain profile.  From that 
point forward, an increasingly sophisticated set of tools was used to improve 
the resolution and fidelity with which a laser’s frequency could probe, and 
be stabilized to, a narrow spectroscopic feature in an atom, ion, or molecule.  
The proposal to use the divided-down output of a laser-based oscillator 
suitably locked to a quantum reference as a time and/or frequency standard 
was put forth by pioneers such as Javan [36] and Dehmelt [1]; however, the 
difficult task of counting optical cycles was a formidable challenge that 
could be addressed by only a few research groups and national laboratories 
with sufficient resources.  This effort resulted in the so-called harmonic 
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frequency chains that employed successive nonlinear steps to multiply the 
frequency of a cesium-based primary standard up to the IR and then, 
ultimately, the optical domain.  At NIST (then National Bureau of 
Standards), a cesium-referenced frequency measurement of the 88 THz 
methane-stabilized helium-neon laser was combined with a krypton-
referenced wavelength measurement of the same stabilized laser to provide a 
hundredfold improvement to the measurement of the speed of light.  This 
was a conclusive demonstration of the value of laser-based frequency 
standards, and soon thereafter, the speed of light was defined as a fixed value 
such that an optical frequency standard could also serve as an absolute 
length standard (e.g., λ = c/f ).  The result of this advance cannot be 
overstated.  The ubiquitous 633 nm helium-neon laser, with its frequency 
stabilized to a known transition in iodine, has served for the past 20 years as 
the length standard for wide variety of industrial and scientific applications. 

The widespread use of atomically stabilized lasers for time standards has 
been more difficult to realize.  Beyond the serious problem of counting 
optical cycles, this is due, at least in part, to the continued improvements and 
excellent performance accessibility of cesium-based microwave frequency 
standards (the latest developments of cesium standards around the world can 
be found in Reference [37]).  Nonetheless, in the 1980s at least two groups 
developed operational “optical clocks” based on the 88 THz methane-
stabilized helium-neon laser and conventional frequency chains [6, 9].  The 
fractional short-term stability for these devices was already in the 10-12 
regime where the limitation arose from the microwave standard against 
which the optical clock was compared.  In the 1990s laser cooling and 
trapping techniques were introduced and refined frequency chains were 
developed to connect optical transitions to the microwave domain.  
Noteworthy in this respect were the efforts surrounding Ca (456 THz) [10] 
and Sr+ (445 THz) [11] at the Physikalisch-Technische Bundesanstalt of 
Germany and the National Research Council of Canada, respectively.   

2. THE ATOMIC REFERENCE 

Every optical atomic clock needs a quantum reference, which is most 
commonly an electronic transition in an atom, molecule, or ion.  As might be 
expected, many factors go into the choice of a specific reference, and atoms, 
molecules, and ions all have advantages and disadvantages relative to one 
another.  In this section, we will first describe the benefit one gains by 
choosing an optical reference as opposed to a microwave reference.  Then 
we will spend some time describing references based on single trapped ions, 
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an ensemble of laser-cooled and trapped atoms, and molecular gases.  
Specific examples from laboratory systems will also be provided. 

   When the center-of-mass motion of the quantum reference for the clock 
is well controlled, the coherent interaction time in both optical and 
microwave domains can be the determining factor of the spectral resolution.  
However, the optical part of the electromagnetic spectrum provides 
~100,000 times higher operating frequencies.  Therefore, the resonance 
quality factor, Q = ν/ν0, of an optical clock transition is expected to be 
significantly higher than that available in the microwave domain.  (Here, ν0 
is the atomic transition frequency and ∆ν is the transition linewidth.)  A 
superior Q factor provides a more stable frequency standard, and is essential 
for making a more accurate standard as well. This is seen in the Allan 
deviation σy(τ) which provides a convenient measure of the fractional 
frequency instability of a clock as a function of the averaging time τ [38].  
For an oscillator locked to an atomic transition, the Allan deviation is 

N

T

Q
rms

y τπν
ντσ

τ ⋅
≈

∆
≈ 1

)(
0

, (1) 

where ∆νrms is the measured frequency fluctuation, N is the number of atoms, 
and T is the cycle time (i.e., the time required to make a determination of the 
line center) with τ >T.  This expression assumes that technical noise is 
reduced to a sufficiently small level that the quantum-mechanical atomic 
projection noise is the dominant stability limit [39].  In this limit, σy(τ) 
decreases as the square root of the averaging time for all clocks, so a tenfold 
decrease in the short-term instability leads to a hundredfold reduction in 
averaging time τ  to reach a given stability and uncertainty.  This point is 
particularly important if one ultimately hopes to reach a fractional frequency 
uncertainty of 10-18, which is the anticipated level for ion-based optical 
clocks.  In this case, an extremely small short-term instability, i.e., σy(τ) ≤ 
1×10-15 τ -1/2 , is clearly desirable to avoid inordinately long averaging times 
(see Figure 9-3).  
 Since σy(τ) scales as 1/Q, all else being equal, the shift from microwave to 
optical frequencies should improve the short-term stability by a factor of 105.    
Thus, with a linewidth of about 1 Hz and 106 atoms detected every 0.5 
seconds, theoretically, these systems could support an instability σy(τ) º 5 µ 
10-19τ -1/2.  This simplistic estimate ignores significant complications that will 
degrade the performance. Nonetheless, it promises that in the years ahead 
there will be plenty of room for improvement using optical frequency 
standards.  The current status and near-term prospects of the Allan deviation 
for optical and microwave frequency standards is shown in Figure 9-3 
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Figure 9-3. Fractional frequency instability as characterized by the Allan deviation of a 
microwave frequency standard (cesium fountain clock) and several promising optical 
frequency standards.  The plotted curves are based on measured data, except where predicted 
curves are given as dashed lines.    

2.1 Single ion references 

Trapped ions, particularly single laser-cooled ions, have numerous 
advantages as optical frequency standards and clocks [1, 40]. Perhaps one of 
their most important attributes is the nearly ideal independence between the 
trapping potential for the center-of-mass motion and the internal atomic level 
structure that provides the clock reference. Importantly, ions can be confined 
in an rf trap and laser-cooled so that the amplitude of the residual motion is 
much less than the optical wavelength of the probe radiation (the Lamb-
Dicke limit).  This nearly eliminates the velocity-dependent Doppler 
broadening and shifts associated with motion of the ion relative to the 
probing radiation.  In a cryogenic environment, the ion is nearly unperturbed 
by atomic collisions, and the effects of blackbody radiation are also very 
small.  The storage time of a single ion in a trap can be months; hence, the 
probe interaction time is usually constrained by other technical issues such 
as the laser coherence time or, fundamentally, by the natural lifetime of the 
transition under study. This permits extremely high-Q resonances to be 
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observed.  All of these factors are critically important for the achievement of 
the highest accuracy. 

The technical challenges of making an optical frequency standard based 
on a single ion are formidable but single-ion standards have now been 
achieved in a handful of laboratories around the world.  At NIST, an optical-
frequency standard based on a single trapped 199Hg+ ion is being developed.  
The performance of this standard is immediately competitive with the 
performance of the best microwave standards and has the potential to surpass 
those standards in terms of stability, frequency reproducibility, and accuracy.  
For this standard, a single 199Hg+ ion is trapped in a small rf Paul trap (≈1 
mm internal dimensions) and laser cooled to a few milliKelvins using 194 
nm radiation.  A highly stabilized dye laser at 563 nm with a linewidth of 
less than 1 Hz is frequency doubled to 282 nm (1,064 THz) to probe the 
clock transition [41].  Measured linewidths as narrow as 6.7 Hz on the 282 
nm transition have been reported [42].  For an averaging time τ in seconds, 
the projected instability of an optical frequency standard using a single Hg+ 
ion is 1 x 10-15τ−1/2, and fractional frequency uncertainties approaching 
1x10-18 seem feasible.   

One apparent difficulty of modern optical standards is the requirement 
that suitable transitions for laser cooling, fluorescence detection, and the 
clock itself be present in the same atom or ion.  While some atoms have 
good clock transitions, their cooling and detection transitions might be less 
than ideal.  Wineland et al. have proposed an efficient solution to this 
problem in the case of ion-based clocks that involves simultaneously 
trapping a “clock” ion and a “logic” ion [43].  Using techniques developed 
for quantum computation applications [44], the logic ion would provide the 
functions of sympathetic cooling and detection, leaving more flexibility in 
choosing the best clock ion with a narrow, unperturbed and accessible 
transition.   This approach is currently be implemented at NIST using 27Al+ 
as the clock ion and 9Be+ as the logic ion. 

2.2 Neutral atom references 

Some neutral atoms also have narrow optical transitions that are 
relatively insensitive to external perturbations and are thus attractive as 
optical frequency standards. Neutral atoms have some advantages and 
disadvantages relative to ions. Using the well-established techniques of laser 
cooling and trapping, they are fairly easy to confine and cool to low 
temperatures. However, in contrast to ions, the trapping methods for neutrals 
perturb the atomic energy levels, which is unacceptable for use in a 
frequency standard. To avoid the broadening and shifts associated with the 
trap, neutral atoms are released from the trap before the clock transition is 
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probed.  The atoms fall from the trap under the influence of gravity and 
expand with low thermal velocities (typically a few cm/s).  The resulting 
atomic motion brings with it limitations in accuracy (and even stability) that 
are associated with velocity-dependent frequency shifts. Two of the more 
troublesome effects are the limited observation time and the incomplete 
cancellation of the first-order Doppler shift associated with wave-front 
curvature and wave-vector mismatch.  Reduced observation times limit the 
line Q, the stability, and the accuracy.  However, neutral atoms do have at 
least one significant advantage: large numbers of atoms can be used, 
producing a large signal-to-noise ratio (SNR) in a short time and the potential 
for exceptional short-term stability.   

The atomic Ca optical frequency standard [45, 46] is one of the most 
promising and extensively studied cases.  It has a 400 Hz wide clock 
transition at 657 nm (1S0 – 3P1) that is reasonably immune from external 
perturbations.  It is readily laser cooled and trapped, and it is experimentally 
convenient because the relevant transitions are accessible with tunable diode 
lasers.   Cooling and trapping of about 107 Ca atoms to mK temperatures can 
be accomplished in a magneto-optic trap (MOT) with frequency doubled 
diode laser tuned to the 423 nm 1S0 – 1P1 transition.  With the cooling 
radiation turned off, an injection-locked and stabilized diode laser at 657 nm 
(456 THz) then probes the clock transition with the separated excitation 
method of optical Ramsey-Bordé spectroscopy.  Optical fringes with high 
signal-to-noise ratio are observed using shelving detection on the cooling 
transition. With this technique, the present Ca standard can provide short-
term fractional frequency instability of about 4 x 10-15 in 1 s of averaging.   
Second stage cooling on the narrow 1S0 – 3P1 to temperatures ~10 µK has 
been achieved with the aid of 552 nm light that quenches (i.e., depopulates) 
the long-lived 3P1 state [47].  The 10-µK temperatures reduce velocity-
related systematic shifts, and it appears that uncertainties at or below 10-15 
will be attainable with such a system. 

Ultimate neutral atom-based systems with high accuracy will demand a 
stringent separation between the external degrees of freedom (controlled by 
the trapping potential) and internal level structure (clock transitions), similar 
to that obtained with single trapped ions. A crucial step towards high 
reproducibility and accuracy is to confine neutral atoms in the Lamb-Dicke 
regime, while at the same time limiting the effect of the confining potential 
to only the external degrees of freedom [48]. The fermionic isotope of 87Sr 
has a nonzero nuclear magnetic moment (I = 9/2) that gives rise to magnetic 
substructure in both the ground and excited states [49]. Moreover, 87Sr 
possesses a doubly forbidden J = 0 to J = 0 clock transition, 1S0 (F = 9/2) – 
3P0 (F' = 9/2), which has a ~1mHz linewidth (corresponding to an intrinsic 
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line Q of 4.3x1017) and is expected to be highly insensitive to external 
electromagnetic fields and collisional shifts [50].  The Sr atoms are first 
cooled in two stages to temperatures <1 µK [51]. These pre-cooled atoms 
can then be efficiently transferred into a far-off-resonance optical lattice trap 
where sideband cooling can bring the atoms to the motional ground state. 
Using a magic wavelength (~800 nm) for the latter trap ensures that both the 
ground and excited (3P0) state experience the same energy shift anywhere 
inside the trap. The sensitivity to the light polarization is reduced because of 
the fact that J = 0 for both clock states. The 87Sr 1S0 (F = 9/2) – 3P0 (F' = 9/2) 
transition can then be interrogated free from broadening and shifts due to 
Doppler, recoil, and trapping potential related shifts.  

2.3 Molecular references 

The abundance and relatively convenient gas-cell spectroscopy of 
molecular resonances make them attractive references for optical clocks as 
well.  Indeed, IR transitions in molecules such as CH4, CO2, and OsO4 were 
some of the first references explored [25, 52] and continue to be used in 
several research programs around the world [53]. Their natural linewidths 
range from a few megahertz to below a kilohertz, limited by molecular 
fluorescent decay. Useable linewidths are usually ≥10 kHz due to the transit 
of molecules through the light beam.  Transitions to higher levels of these 
fundamental rovibrational states, usually termed overtone bands, extend 
these rovibrational spectra well into the visible with similar ~ kHz potential 
linewidths. Until recently, the rich spectra of the molecular overtone bands 
have not been adopted as suitable frequency references in the visible due to 
their small transition strengths. However, with one of the most sensitive 
absorption techniques, which combines frequency modulation with cavity 
enhancement, an excellent SNR for these weak but narrow overtone lines can 
be achieved, enabling the use of molecular overtones as standards in the 
visible [54].  

Perhaps the most widespread example of a molecular reference is the 
iodine molecule.  The narrow-linewidth I2 transitions in the visible 
wavelength region have provided excellent cell-based optical frequency 
references for laser stabilization. Frequency-doubled Nd:YAG/127I2 at 532 
nm has proved to be one of the best portable optical frequency standards 
with compact size, reliability, and high stability (<5 x 10-14 at 1 s) [55]. To 
reach a better frequency stability, it is useful to explore I2 transitions towards 
the dissociation limit at wavelengths below 532 nm where the natural 
linewidths decrease at a faster rate than the line strengths. The systematic 
variation of the I2 transition linewidths within the range of 498–532 nm has 
been measured, with the linewidth decreasing by nearly sixfold when the 
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wavelength is decreased from 532 nm to near the dissociation limit [56]. The 
high SNR results indicate that I2 transitions in the wavelength range 501–
532 nm hold great promise for future development of optical frequency 
standards, especially with the advent of all-solid-state Yb:YAG lasers. One 
exciting candidate is the 514.67 nm standard that has a projected instability 
<10-14 at 1 s [57]. 

Table 9-1. Some of the promising optical frequency references for emerging and future 
optical clocks.  Presently achieved values of instability and uncertainty are listed, while the 
projected values are given in parentheses.  The research institute is given in the last column. 
 Frequency 

(THz) 
1-s Fractional 

Instability 
Fractional 

Uncertainty Institute 

Ions     
Hg+ 1064 3µ10-15 

(1µ10-15) 

1µ10-14 

(<1µ10-17) 

NIST 

In+ 1267  2µ10-13 MPQ 

Sr+ 445  5µ10-15 NRC, NPL 

Al+ 1124   NIST 

Yb+ 688  9µ10-15 

(<1µ10-17) 

PTB 

Yb+ 642  2µ10-12 NPL 

Neutral 
Atoms 

    

H 2466  2µ10-14 MPQ 

Ca 456 4µ10-15 

(<2µ10-16) 

2µ10-14 

(<1µ10-15) 

PTB, NIST 

Sr    U. Tokyo,  

JILA,  SYRTE, 

LENS 

Yb    KRISS, NIST 

Molecules     

OsO4 29  3µ10-13 Paris Nord 

CH4 88   Lebedev, NPL, 

PTB,  

Novosibirsk  

I2 563 4µ10-14 9µ10-12 JILA, PTB, 

NMIJ, BIPM 
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2.4 Local oscillator requirements 

While it is necessary to start with a suitable atomic transition, whether it 
be in an ion, atom, or molecule, as diagramed in Figure 9-2, another 
important element of an optical clock is the local oscillator.   For an optical 
clock, the local oscillator is comprised of a continuous wave (cw) laser that 
has its emission spectrum narrowed and stabilized to an isolated high-Q 
Fabry-Perot optical cavity.  The optical cavity must have sufficiently good 
short-term stability to permit interrogation of a narrow spectroscopic feature 
in the quantum reference (i.e., ion, atom, or molecule) with a good SNR.  For 
example, in the case of the single Hg+ ion, the optical transition linewidth is 
just a few hertz wide, which requires a local oscillator with a sub-hertz 
linewidth.  Significant effort has been invested for the past few decades in 
the reduction of the laser linewidth down to this sub-hertz level [41, 58].  A 
key aspect in this development has been improved techniques for the 
mechanical and thermal isolation of the Fabry-Perot optical cavity from the 
surrounding laboratory environment [41].  A more recent advance in this 
evolution focuses on reducing the acceleration sensitivity of the cavity 
through geometrical design and by careful choice of how the cavity is 
supported.   

3. FEMTOSECOND LASER-BASED OPTICAL 
FREQUENCY SYNTHESIZERS 

The possibility of using a mode-locked laser as a tool for optical 
frequency metrology was first demonstrated with picosecond lasers by 
Hänsch and co-workers in the late 1970s [59].  The essence of this original 
idea was to use the comb of frequencies emitted from a mode-locked laser as 
a precise “optical frequency ruler.”  The spacing of the tick marks of such an 
optical frequency ruler is given by the repetition rate fr at which pulses are 
emitted from the mode-locked laser, while the differential phase shift 
∆φce between the pulse carrier and the pulse envelope each round trip 
determines the overall offset of the comb elements f0 = fr (∆φce/2π).  The 
relationship between these two parameters and the nth element of the optical 
frequency comb is given by the simple expression 

νn = nfr + f0 . (2) 

This technique lay largely dormant until experiments in 1998 
demonstrated that the frequency comb associated with a femtosecond mode-
locked laser could be readily controlled and provided a more versatile and 
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precise method for counting optical frequencies than existing technologies  
[13].  In fact, in just a matter of years, the new femtosecond comb 
technology has fully replaced laboratory efforts that existed for decades; it is 
now widely accepted that mode-locked femtosecond lasers will play a 
critical role in the next generation of atomic clocks based on optical 
frequencies [46, 60, 61].  Moreover, due to the simplicity and relatively low 
cost, the techniques and tools described here can be implemented in 
university and industrial research laboratories, which has resulted in a 
variety of interesting and exciting new avenues of research [62-64]. 

The absence of robust solid-state femtosecond lasers likely contributed to 
the twenty-year delay between the first conceptual experiments and practical 
implementation of the frequency comb concept.  Although the femtosecond 
dye laser was developed throughout the 1970s and 1980s, it was not until the 
1990s that robust and high-power femtosecond lasers based on titanium-
doped sapphire (Ti:sapphire)  were perfected [65, 66]. (Chapter 2 of this 
volume presents a detailed account of development of solid-state mode-
locked laser technology.) For comb generation, it was natural that 
femtosecond Ti:sapphire would become the source of choice. When 
combined with nonlinear microstructure and tapered fibers [67], octave-
spanning spectra could be generated.  A few representative Ti:sapphire laser 
configurations and resulting spectra are shown in Figure 9-4.  It is important 
to realize that the array of frequency modes given by Equation (2) reside 
beneath the broad spectral envelopes shown in this figure (which were 
recorded with a low resolution grating spectrometer).  As will be described 
in further detail below, such a simple means for generating very broad 
spectra allows for the straightforward measurement and control of f0 in 
addition to providing a network of useful comb lines spanning the visible 
and near-IR.   

In this section, we will not dwell on the actual generation of the 
frequency comb from a femtosecond laser.  The reader is referred to several 
excellent review articles on this topic [17, 18, 21], in addition to the other 
chapters in this book.  Instead, we will explain the details of how a 
femtosecond laser is actually used in an optical clock and for low noise 
frequency synthesis.  We first spell out some of the specific metrological 
considerations that arise in the use and choice of a femtosecond laser for 
optical clocks and synthesis applications.  Next, we discuss the “mechanical” 
details of actually using and controlling a femtosecond laser.  We will then 
present what is currently known about the achievable noise properties of the 
laser itself.  Finally, while Ti:sapphire femtosecond lasers continue to be the 
most widely used options for optical clocks and frequency metrology, fiber-
based femtosecond laser sources and alternative solid-state lasers that can be 



240 Chapter 9 

 

efficiently pumped offer significant advantages in terms of size and cost.   
We will spend the last part of this section looking at these sources and the 
benefits they might have for future optical clocks.  

  

3.1 Considerations in designing a femtosecond comb for 
use in an optical clock 

The first experiments [13, 15, 16] verifying the valuable contribution of 
femtosecond lasers to optical frequency metrology all employed 
femtosecond lasers that had been developed over the previous decade for 
experiments in ultrafast science [66].  While such lasers worked very well 
for the initial proof-of-principle experiments, and continue to be used in 
many cases, they lacked other desirable qualities for frequency metrology.  
The ultimate femtosecond laser for optical frequency metrology and optical 
clocks is likely to be a continuously evolving device, but nonetheless, in this 
section we attempt to lay out some of the desirable characteristics of these 
devices as they relate to their use in frequency metrology and optical clocks. 
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Figure 9-4. Common Ti:sapphire femtosecond lasers used for frequency metrology and their 
output spectra.  (a) Conventional linear cavity design employing a combination of chirped 
mirrors and prisms produces the broadband spectrum shown in (c).  The ring laser shown in 
(b) uses only chirped mirrors and can produce the spectrum show in (d).  The spectrum shown 
in (e) is produced using either a laser (a) or (b) in combination with nonlinear microstructure 
optical fiber.  

Repetition rate:  There are a few factors that drive the consideration of 
the best repetition rate.  The most obvious feature is that for a constant 
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average output power from the laser, the mode comb of a high repetition rate 
laser will have a proportionately higher power per mode.  This is a clear 
advantage for frequency domain applications where we rely on a good SNR 
in the heterodyne beats between a cw laser and an individual tooth of the 
comb itself.   However, one cannot take this point to the extreme.  For 
example, if we again assume a constant output power, as the repetition rate 
increases, the power per pulse decreases.  This is an important consideration 
if one is to rely on nonlinear processes to broaden the optical spectrum to an 
octave.  As a rule of thumb, with the typical microstructure fibers used with 
Ti:sapphire lasers around 800 nm, one needs roughly a few hundred 
picojoules of energy in a ~50 fs pulse to obtain an octave of spectral 
broadening.   This can be achieved with a 1 GHz repetition rate laser, but 
given the same average power, it is not likely to be possible if the laser could 
operate with a 10 GHz repetition rate.   

Photodetectors & electronics:  Since many uses of the femtosecond 
laser comb ultimately involve a connection to the rf/microwave domain, the 
photodetectors that provide this connection as well as the subsequent 
electronics that are used must also be a consideration.  While photodetectors 
and microwave electronics with bandwidths up to ~50 GHz are 
commercially available, devices that operate much above 10 GHz tend to be 
more costly, more difficult to use, and less sensitive.  This last factor can 
actually result in a loss of SNR that one had hoped to achieve precisely by 
choosing a higher repetition rate in the first place.   This can be particularly 
true with the photodetector that is used to detect the optical clock output at fr, 
where extremely high SNR is required to generate stable electrical signals 
[68].   Another important electronics-related consideration surrounding the 
choice of repetition rate is the frequency one might ultimately choose for 
connecting the fr output of the femtosecond laser to existing rf/microwave 
sources and standards.  The best choice of low-noise electronic synthesizers 
that would divide or multiply fr up or down to common frequencies of 5, 100 
or 9,192.631770 MHz will certainly be a consideration for the most 
demanding applications.   

Size, simplicity & robustness:  While size, simplicity, and robustness 
are not necessarily synonymous, it is often true that a smaller device of 
simple construction can be more robust.  For example, small size lends itself 
to improved temperature stability, which directly impacts the operation of 
any femtosecond laser and the required dynamic range for the various servo 
controls.  This is a point in favor of higher repetition rate systems, or at least 
systems with smaller footprints.  When it comes down to the actual design of 
the laser, this factor would also tend to favor the use of chirped mirrors or 
fully integrated optics (such as a fiber laser) over the use of prisms for 
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dispersion control.  The reliable generation of octave-spanning spectra 
directly from the laser is also a significant simplification as it allows one to 
eliminate sensitive microstructured nonlinear fibers from the apparatus.   

Spectral coverage:  A study of the different atoms, ions, and molecules 
used in emerging optical-frequency standards (see Table 9-1) reveals that 
many of the atomic transitions of interest fall in the 500–1100 nm range (or 
harmonics thereof).  Thus, Ti:sapphire-based femtosecond laser combs 
centered at 800 nm are a good starting place and direct continuum generation 
or subsequent broadening in nonlinear microstructure fibers provides overlap 
with most of the wavelengths that are presently of interest.  While nonlinear 
microstructure fibers have performed amazingly well in all experiments to 
date, they present challenging technical limitations on the ability to control 
the femtosecond laser over long periods.  Coupling of the light into their 
~1.7 µm diameter cores is difficult to maintain for long times at a level 
where an octave of spectrum is attained.  An attractive alternative is recently 
developed femtosecond lasers that directly emit octave-spanning spectra 
suitable for self-referencing [69-71].  These lasers have slightly less 
bandwidth than is typically achieved from nonlinear microstructure fibers; 
however, initial experiments indicate the broadband lasers can be much more 
robust [72, 73]. A full understanding and optimization of these extremely 
broadband lasers is yet to emerge, but we anticipate they will play a very 
important role in optical clocks, perhaps reducing the need for nonlinear 
microstructure fibers. 

Noise:  Perhaps the most important consideration for any synthesizer is 
its residual or excess noise.  More specific details on the presently achieved 
noise levels will be presented below, but from a general design point of 
view, there are important considerations that should be pointed out with 
regards to systems that employ nonlinear microstructure fibers. First, it is 
important to construct a femtosecond laser with robust and stable mechanical 
configurations and environmental shielding. Understanding the laser 
dynamics and noise sources is also fundamental to design and 
implementation of stabilization feedback loops [74, 75]. Because of its 
highly nonlinear nature, microstructure fiber can significantly amplify both 
technical and fundamental shot noise on the input light [76, 77].  With 
careful attention, the most significant aspects of the technical noise can be 
reduced; however, the shot noise on the laser output will always be present 
and potentially represents a more formidable problem. Of particular 
significance is the finding that longer pulses and chirped pulses generate 
more noise when launched into nonlinear microstructure fibers [77, 78].   
For example, 75 fs pulses containing a few nanojoule of energy can make a 
stunning continuum stretching from 450 to 1400 nm, but excess broadband 
noise makes it nearly useless for precision frequency metrology.   
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3.2 Frequency synthesis with a femtosecond laser 

The basic function of the femtosecond laser in an optical clock is to 
provide a phase-coherent link between the uncountable optical reference 
frequency and the more accessible microwave domain.  Using a mechanical 
analogy, we can imagine the femtosecond laser to be a one-step reduction, or 
multiplication, gear.    Alternatively, one can discuss the femtosecond laser 
as being an extremely broadband optical frequency synthesizer, with general 
properties not so different from commonly used rf and microwave 
synthesizers.  While the mechanical analogy is straightforward conceptually, 
the synthesizer picture is the more useful one as it allows us to employ 
rigorous characterization techniques developed in the rf and microwave 
domains.  
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Figure 9-5. The femtosecond laser-based optical frequency synthesizer. 

As shown in Figure 9-5, the femtosecond laser-based synthesizer can 
employ either a microwave (µ-wave) or optical input reference that is phase 
coherently linked to an optical or microwave frequency at the output.  These 
operations can all be carried out and understood by considering the 
underlying frequency comb structure associated with the femtosecond laser.  
The first uses of the femtosecond laser-based synthesizer involved supplying 
a microwave reference at port 2 and obtaining coherently related optical 
frequencies in the form of the optical comb of Equation (2) at port 4 [15, 16, 
79].   This path relies on the femtosecond laser to effectively multiply fr by 
approximately a factor of 106 to reach the optical domain. In principle, the 
multiplicative factor could be a much smaller value, on the order of 102 or 
103, to instead yield microwave frequencies in the hundreds of gigahertz (or 
even terahertz range). This potentially interesting use of the synthesizer 
(ports 2 Ø 3) has so far received less attention.  When used to down-convert 
an optical frequency input to a microwave output (ports 1Ø 3), the frequency 
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of the output is given by the repetition rate fr or one of its harmonics [46, 60, 
61].  The synthesizer can also function to effectively synthesize new optical 
frequencies that are displaced from the input optical reference by a freely 
chosen offset plus-or-minus harmonics of fr (ports 1Ø 4) [80].    

3.2.1 Methods of control 

Control of f0:  To accomplish all of these operations, it is required that at 
least two of the three variables given in Equation (2), in addition to n, be 
measured and controlled.  For example, one might control fr and f0 and use νn 
as an output.  Alternatively, Equation (2) can be inverted such that one tooth 
(n = N) of the comb νN and f0 are controlled and fr is then the output.  
Whereas it is relatively straightforward to measure the repetition rate fr by 
monitoring the pulse train with a sufficiently fast photodetector, it is more 
challenging to measure the offset frequency f0 of the comb.  In principle, 
once fr is measured, it is sufficient to use a cw laser with well-known 
frequency to measure and stabilize f0.  While this might be practical in some 
situations, it doubles the number of required frequency standards (one for f0  
and a second for fr) required for using the synthesizer and potentially limits 
the performance.   

A more elegant means of measuring and controlling f0 involves using 
nonlinear frequency generation to compare different regions of the frequency 
comb [81].  As shown in Figure 9-6(a), if the laser spectrum covers more 
than one octave, then the comb elements at the low-frequency end of the 
spectrum can be doubled in a nonlinear crystal and subsequently 
heterodyned against the high-frequency components of the comb to yield 
2(nfr + f0) – (mfr + f0) = f0 when n = m/2.  Spectral broadening of low power 
Ti:sapphire lasers to more than an octave is accomplished through self-phase 
modulation (SPM) in microstructure fibers [67].  Such an approach was first 
demonstrated by Jones et al. [16] and continues to be the most common 
manner in which to measure f0.   This so-called “ν-to-2ν” self-referencing 
scheme has also been demonstrated with low-power Cr:LiSAF [82] and Er-
doped fiber lasers [83]. It has also been shown that “ν-to-2ν” self-
referencing can be accomplished with Ti:sapphire lasers that directly emit an 
octave-spanning spectrum [71, 84].  As summarized by Telle et al. [81], it is 
not necessary to have an octave-spanning spectrum from the femtosecond 
laser to measure f0.  The price to be paid, however, is that extra steps of 
nonlinear conversion must be employed.  For example, with a spectrum 
spanning 2/3 of an octave, f0 can be obtained through the comparison of the 
second harmonic and third harmonic of separated portions of the optical 
spectrum, e.g., 3(nfr + f0) – 2(mfr + f0) = f0 when n = 2m/3 [72, 84, 85]. 
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Figure 9-6. Techniques for measuring and controlling f0 (a, b) and fr (c,d).  See text for 
details. 

Once f0 has been measured, it is typically phase-locked to a stable rf 
source or to a rational fraction of fr itself.  Such a phase-lock requires an 
actuator inside the laser cavity that provides a differential change to the 
group and phase velocities of the circulating field. Two common modes of 
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control have so far been used. The first employs modulation of intracavity 
laser power [79, 86], and the second (which is applicable in linear cavities 
employing prism pairs) involves the tipping of one of the cavity mirrors [18, 
87].  While the merits and physical mechanisms of these differing techniques 
remain a topic of discussion, both have been successfully implemented to 
reduce the residual fluctuations of f0 to the millihertz level relative to a stable 
reference.  When f0 is phase-locked to D.C. or a harmonic of fr, precise 
stabilization has the consequence of maintaining the relative carrier-
envelope phase at a fixed value for times approaching one hour [88].  This 
has enabled the subsequent amplification and use of such lasers for 
experiments in phase-sensitive extreme nonlinear optics experiments (see, 
for example, Reference [64] and Chapter 10 of this volume).   

Control of fr:  As already mentioned, fr can be detected with a sufficiently 
fast photodetector.  The rf spectrum of the resulting photocurrent consists of 
a series of harmonics of fr, one of which can be filtered and phase-locked to 
a low-noise rf source (Figure 9-6(c)).  In this case, it is common to use a 
piezo-mounted cavity mirror as an actuator for changing fr.   A more careful 
consideration of Equation (2) highlights some of the difficulties and 
disadvantages of controlling fr in the rf/microwave domain as just described.  
Because the optical frequency νn scales as the multiplicative mode number n, 
the spectral density of phase noise on the rf reference source to which fr is 
phase-locked is multiplied by a factor of n2.  For a mode in the optical 
domain with n º500,000 (fr = 1 GHz), this implies that the phase noise of the 
rf reference is increased by 115 dB when it is effectively multiplied up to the 
optical domain using the femtosecond laser comb. A high-quality quartz-
based rf reference at 1 GHz might have a typical noise floor of –110 dBc/Hz, 
but when it serves as the reference for fr, there will be nothing remaining of 
the phase-coherent carrier in the optical mode νn.  This is similar to the well-
known problem of “carrier collapse,” which places extreme demands on the 
rf reference (as well as all intermediate electronic components) for fr.   

There are, however, a few ways to minimize this phase-noise 
multiplication problem.  First of all, one can rely on the relatively good 
short-term stability of the femtosecond laser itself.  On time scales less than 
~1ms, the noise of a typical Ti:sapphire laser has been measured to fall 
below that of most high quality microwave sources [20, 68].  This means 
that if one controls fr relative to a microwave reference, a control bandwidth 
of §1 kHz is all that is required to remove the low-frequency thermal and 
acoustic noise of the mode-locked laser.  Use of higher bandwidth will 
simply transfer the noise of the microwave reference to fr, which will 
subsequently be multiplied up to the optical comb elements.  Although the 
observed optical linewidth may still be on the order of 0.1–1 MHz, one 
generally finds that the fractional stability of the optical comb elements can 
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be equal to the fractional stability of the microwave reference.  Of course, if 
a microwave reference for fr with lower phase noise is available (such as a 
cryogenic sapphire microwave oscillator), then one can potentially narrow 
the optical linewidth further.   

However, in the near future it is likely that the lowest-noise 
electromagnetic oscillators of any kind will be based on cw lasers referenced 
to stable Fabry-Perot optical cavities and/or atomic or molecular resonances.  
In fact, cw lasers with sub-hertz linewidths have recently been demonstrated 
[41], allowing the use of such a source to control fr in the optical domain.  
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Figure 9-7. Phase noise of various oscillators and synthesizers at 1 GHz.  The quartz curve 
corresponds to a high-quality 5 MHz oscillator and assumes noise-free multiplication to 1 
GHz.  The commercial synthesizer is residual synthesizer noise that would be added to the 
reference oscillator (typically quartz).  The sapphire resonator curve represents a state-of-the-
art commercial product with its frequency divided down from 10 GHz to 1 GHz.  The dotted 
Ca curve is a projection of what should be achievable, and the Hg+ optical cavity is estimated 
from experimental data [41]. 

 
As seen in Figure 9-6(d), this is typically done by making an optical-

offset phase-lock between one tooth (mode N) of the femtosecond comb (νN) 
and the stable cw reference laser νS.   The resulting expression for fr is  

fr = (νS - f0 + fb)/N , (3) 
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where fb is the arbitrary (yet phase-locked) beat frequency between νS and 
νN.  This expression illustrates that any frequency fluctuations in νS are 
divided by N before appearing in fr (spectral density of phase fluctuations are 
divided by N2).  Since both f0 and fb are phase-locked microwave frequencies 
<1 GHz having fluctuations well below 1 Hz, the fluctuations of νS will 
likely dominate the noise of fr.  Assuming a perfect frequency divider, the 
anticipated limits to the phase noise spectral density of a sub-hertz laser (Hg+ 
optical cavity) and the Ca optical standard are compared to other low-phase-
noise sources in Figure 9-7.  Clearly, the phase noise of the optical standards 
offers significant potential in this regard. At present, the noise from the 
femtosecond laser and the optical detection of fr (1 GHz) has been measured 
to be -120 dBc/Hz at 1 Hz offset, decreasing to ~ -155 dBc/Hz at 1 kHz [89].  
It has been shown that the phase noise on the optical comb of the 
femtosecond laser itself can be significantly less than this level [90], leading 
to the conclusion that the dominant noise sources for optical-to-microwave 
conversion with the femtosecond laser synthesizer are introduced in 
photodetection of fr and subsequent electronic processing and measurement. 
 Alternative control methods:  Instead of frequency-doubling a portion 
of the octave spanning comb spectrum as described above, one can use a cw 
laser and its second harmonic to access and control f0 and fr. [91].  This is 
diagramed in Figure 9-6(b).  Measurement of the heterodyne beat between 
the cw laser frequency, νs, and the comb line n gives ( )01 fnff rsb +−=ν  
and between the second harmonic of the cw laser and comb line 2n gives 

( )02 22 fnff rsb +−= ν . Mixing the beats with appropriate weighting factors 

gives ( ) ( )( ) 00012 22222 ffnffnfff rsrsbb =+−−+−=− νν , which 
represents another detection scheme of f0.  On the other hand, it is now also 
possible to establish a direct phase coherent link between optical and 
microwave frequencies without the need of stabilizing f0. The following 
expression, ( ) ( )( ) rsrsrsbb nffnffnfff −=+−−+−=− ννν 0012 22 , 
illustrates this principle.  After appropriate processing, this error signal is 
used to stabilize the phase of fr coherently to νs , thereby producing an output 
clock signal in the rf domain derived from νs [61].  

There are several other methods for removing the dependence of the 
frequency comb on f0. For example, by using difference-frequency 
generation (DFG) between different spectral portions of the same frequency 
comb, a DFG comb independent of f0 in the IR spectral region with excellent 
accuracy and stability can be generated [92, 93]. Furthermore, a DFG comb 
(again, independent of f0) tuned to 800 nm might also pave the way to an all-
optical carrier-envelope phase-stabilization scheme by re-injecting this DFG 
comb into the femtosecond laser cavity. Equivalent to the DFG approach, 
sum-frequency generation (SFG) between an IR optical frequency standard 
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(e.g., a methane-stabilized He-Ne laser at 3.39 µm) with the long-
wavelength portion of a frequency comb yields an SFG comb that can be 
tuned to spectrally overlap with the short-wavelength portion of the original 
frequency comb. The resultant heterodyne beat between the two combs of 
the same origin leads again to a carrier-envelope frequency-independent 
optical clockwork. We have recently implemented such an optical clockwork 
based on SFG between a cw optical parametric oscillator (OPO) at 3.39 µm 
idler wavelength and a custom-tailored mode-locked Ti:sapphire laser with 
two dominant spectral peaks at 834 and 670 nm. No additional single-
frequency lasers phase-locked to the Ti:sapphire comb are necessary.  

Finally, it is important to note the clever “transfer oscillator” [94, 95] 
concept in which a judicious choice of frequency-ratio mixing effectively 
eliminates the noise properties of the unstabilized femtosecond laser when it 
is used to determine the ratio of widely separated optical frequencies or even 
optical and microwave frequencies.  An advantage of this technique is that it 
allows one to replace the more difficult and relatively slow (<100 kHz) 
control of the femtosecond laser with more straightforward and faster (~1 
MHz bandwidth) phase-tracking oscillators on the various heterodyne beats.    

3.3 Testing the synthesizer 

As might be expected, the introduction of mode-locked femtosecond 
lasers into the field of optical frequency metrology was met with some initial 
questions about how well such a new technology could perform relative to 
what existed.  Such healthy skepticism has led to some interesting and 
valuable tests of Equation (2).  Table 9-2 provides a summary of some of the 
relevant experimental tests of the femtosecond laser synthesizer. It is not 
always straightforward to understand precisely what is being tested in some 
of these experiments, but in general they can all be viewed as placing 
simultaneous constraints on fr and f0.   

The most obvious question one can ask about Equation 2 is whether or 
not the comb of optical frequencies is indeed uniform or evenly spaced.  The 
time domain perspective of how the mode-locked laser functions leads one 
to the conclusion that this must be the case.  An uneven spacing of the 
modes would imply that different portions of the spectrum experience 
different roundtrip delays in the cavity.  Were this the case, the pulse would 
rapidly spread and break apart, which is not consistent with the solitonlike 
operation of mode-locked lasers.  The first frequency-domain verification of 
this operation was offered by the group of T. Hänsch, by comparing a 44 
THz wide comb from a femtosecond laser with an optical interval divider, 
thus confirming the uniformity at the level of a few parts in 1018 [13, 96].   
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While these impressive experiments can also be viewed as a test of the 
uniformity of f0, one apparent weakness is that they employed only a single 
femtosecond laser and did not verify that the actual frequency position of the 
modes of the comb could be controlled or reproduced at this level.   

Table 9-2. Summary of various tests of the femtosecond laser synthesizers 
What was tested Fractional 

Uncertainty 
Systems Used Reference 

 
Uniformity of fr 3µ10-18 

  

fs laser broadened to 44 
THz in standard fiber 

[13] 

[96] 

Microwave to 
optical frequency 
synthesis 

5.1 µ 10-16 

 
ν-to-2ν fs synthesizer 
with 3.5ν-4ν frequency 
chain 

[79] 

Microwave to 
optical frequency 
synthesis 

1.6  µ 10-12 ν-to-2ν fs synthesizer and 
harmonic frequency chain 

[97] 

Optical-to-optical 
frequency synthesis 

4 µ 10-17 Two ν-to-2ν fs 
synthesizers 

[98] 

Optical-to-optical 
ratio and SHG 

7 µ 10-19 Single fs laser and cw 
laser +SHG 

[94] 

Microwave to 
optical frequency 
synthesis 

1 µ 10-15 Two ν-to-2ν fs 
synthesizers 

[99] 

Uncertainty of  DFG 
relative to 
fundamental comb 

6.6 µ 10-21 Single fs laser and DFG 
and SFG 

[92] 

Optical-to-optical 
frequency synthesis 

1.4 µ 10-19 Two ν-to-2ν and two 
2ν-to-3ν fs synthesizers 

[100] 

 
To minimize the possibility of unknown systematic effects, a better test 

of the mode-locked laser frequency comb is the comparison of several 
independent devices.  A few tests have been performed using microwave 
standards to reference both a femtosecond laser-based synthesizer and a 
more traditional frequency chain or interval divider, which were 
subsequently compared in the optical domain [79, 97, 99]. The best result in 
this case was an uncertainty limit as low as 5 × 10-16 [79].  In general, the 
limit in these cases was imposed by the short-term instability and associated 
long averaging times [79, 99] or by the uncertainty of the optical standard 
that was measured [97].  Significantly improved short-term instability can be 
obtained when the femtosecond laser-based synthesizer is referenced to an 
optical standard. In an earlier test, two such devices were compared and 
agreement was found at the level of 4 × 10-17 [98].  More recently, this same 
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test was repeated with four systems, two of which employed octave-
spanning spectra generated in nonlinear microstructure fiber and two which 
generated broad spectra directly from the laser [100].  With improved short-
term instability and longer averaging times, a fractional frequency 
uncertainty limit of near 1 × 10-19 was achieved.  Using the “transfer 
oscillator” technique already discussed above [94], Stenger et al. tested a  
femtosecond laser comb by measuring the ratio of the frequency of a cw 
laser to its second harmonic with an uncertainty of 7 × 10-19.    

3.4 Alternatives to Ti:sapphire  

In the few years since the introduction of femtosecond lasers into field of 
frequency metrology, the palette of available sources has already begun to 
broaden beyond that of Ti:sapphire lasers (see Figure 9-7).  The reliability of 
the mature Ti:sapphire laser has made it the natural place to begin this 
exciting field, and it is likely that femtosecond laser-based synthesizers 
employing Ti:sapphire will continue to be used in many applications.  
However, the present size and cost of the pump laser for Ti:sapphire-based 
systems has motivated the search for alternative systems. In the future, it 
would not be surprising to find that femtosecond laser-based synthesizers 
and optical clocks will be widely used in science and technology and will be 
commercially available in compact packages similar to today’s microwave 
synthesizers and clocks.  The availability of robust, low-priced femtosecond-
laser synthesizers will be particularly important for applications in air- or 
space-borne platforms or widespread applications (such as communications 
systems) for which cost and rugged packaging are of greatest importance.  

To date, some of the promising femtosecond lasers that have produced 
octave-spanning spectra include diode-pumped Cr:LiSAF [82], a fiber-laser- 
pumped Cr:Forsterite [101], and an Er-doped fiber laser [83, 85, 102].   Each 
of these has some advantages and disadvantages relative to Ti:sapphire.  For 
example, both Cr:LiSAF and Cr:Forsterite have more convenient  and 
compact pumping schemes either directly with diode lasers or with a Yb-
doped fiber laser.  One of the trade-offs here is that these laser hosts are not 
as broadband and efficient as Ti:sapphire and tend to have worse thermal 
properties. An Er-fiber laser-based comb generator has a number of 
advantages over Ti:Sapphire. It can be much more compact, robust, lighter, 
and power-efficient than a bulk optic solid-state laser system, and would 
require less alignment. Additionally, it can be easily integrated into a 
telecommunication system in the important 1300–1600 nm regime.  
However, at this point, the Er-fiber-based systems only operate at repetition 
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rates of 50–100 MHz and can have excess noise that is not fully understood 
[85]. 

2004

2002

2000

1998

1996

1994

Y
ea

r 

500 1000 2000 4000 8000 16000
log2[wavelength] (nm)

a

b

c

f

g h

i

d
e

 

Figure 9-7.  Spectral extent of some sources used as combs in frequency metrology.  (a)  
Electro-optic modulator-based comb developed by Kourogi et al. [103];  (b) Ti:sapphire 
femtosecond laser comb [13, 14];  (c) Octave-spanning femtosecond laser comb generated 
using microstructure fiber [15, 16];  (d)  Broadband spectrum generated directly from a 
Ti:sapphire laser [69];  (e) Cr:LiSAF femtosecond laser plus microstructure fiber [82];  (f)  
Octave-spanning comb generated with femtosecond Cr:forsterite and nonlinear optical fiber 
[104];  (g)  Octave-spanning comb generated with Er-fiber laser and nonlinear optical fiber 
[83];  (h)  Offset-frequency-free comb near 3400 nm generated via difference-frequency 
generation [93];  (i) Tunable frequency comb generated via difference-frequency generation 
between synchronized Ti:sapphire lasers [105].    

If wavelength coverage is a concern, one can take advantage of nonlinear 
frequency conversion external to the femtosecond laser itself.  This has been 
demonstrated for 2ν-to-3ν with Cr:forsterite and fiber laser sources [85, 
106].  Another interesting option is to use DFG between two extremes of a 
Ti:sapphire laser comb to generate a frequency comb further in the IR [92, 
93].  While this provides extra wavelength tunability for the femtosecond 
source, it also is a means of generating a frequency comb that is independent 
of the offset frequency f0.  As also shown in Figure 9-7, wide tunability 
between 7 and 10 microns can also be accomplished with independent 
Ti:sapphire lasers that are synchronized and potentially phase-locked [105]. 
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4. SIGNAL TRANSMISSION AND CROSS-LINKING  

With the advent of optical atomic clocks and the associated superior 
short-term frequency stability, transfer of signals linked to such 
clock/frequency standards over an appreciable distance with a minimal loss 
of stability has become an active subject for research [107, 108]. The 
stability of the best microwave and optical frequency standards, for times 
less than ~ one week, can now exceed the capabilities of the traditional 
transmission systems (i.e., GPS, Two-Way Time transfer [109]) used to 
distribute these time/frequency reference signals to remote sites. The 
instabilities in transmission channels can contribute a significant fraction of 
the overall uncertainty in the comparison of high-performance standards that 
are not co-located. While improvement in the transfer process over large-
scale signal paths remains challenging, researchers have started 
experimenting with optical fibers as effective means for local networks of 
dissemination or comparison of time and frequency standards, both in the 
microwave and optical domains. The attractiveness of this approach lies in 
the fact that an environmentally isolated fiber can be considerably more 
stable than open-air paths, especially at short time scales. Furthermore, the 
same advantages enjoyed by communication systems in optical fiber (e.g., 
low loss, scalability, etc.) can be realized in a time/frequency distribution 
system. Active stabilization of fiber-optic channels for the distribution of 
reference frequencies can also be employed to improve the stability of the 
transmitted standard. Besides the obvious benefit of more precise 
time/frequency transfer, an actively stabilized optical fiber network can play 
a critical role in the implementation of long-baseline coherent interferometry 
or ultralow timing jitter in particle-accelerator-based novel light sources.   

An rf signal can be transferred in an optical fiber network by amplitude 
modulating a suitable optical carrier (for example at 1.55 µm) used for 
transmission and then recovering the modulation frequency at the remote 
end as the transferred reference signal. However, the instability of this rf 
modulation-based frequency transfer protocol seems to rise to a few parts in 
1013 at 1-s over a 6.9 km long fiber linking JILA to NIST. Jet Propulsion 
Laboratory colleagues have demonstrated the rf transfer instability of parts 
in 1014 at 1 s for a 16 km-long fiber under active noise cancellation control 
[110]. In comparison, direct transfer of a cw laser-based optical frequency 
standard through the same 6.9 km fiber suffered an instability of a few parts 
in 1014 at 1 s.  This instability is further reduced to 3 × 10-15 at 1 s after active 
optical-phase-noise cancellation is implemented [107]. A femtosecond laser 
located at the remote end can be phase locked to this incoming cw laser 
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carrier, essentially redistributing the optical frequency to the microwave 
domain via the mode-locked laser’s repetition frequency.  

With the development of precision femtosecond comb technology, it 
appears natural to use a mode-locked source to transfer both optical and 
microwave reference signals at the highest level of stability. Of course, the 
first logical step is to extend the precision optical-comb spectral coverage 
into the 1.5 µm wavelength region, where compact, reliable, and efficient 
mode-locked lasers exist for fiber distribution networks. This step has been 
accomplished by tight synchronization between the repetition rates and 
coherent phase locking of the optical carriers of the 1.5 µm mode-locked 
laser sources and a Ti:Sapphire-based femtosecond frequency comb, which 
is used as the clockwork for an optical atomic clock based on the molecular 
iodine transition. A phase-coherent link between mode-locked lasers requires 
two distinct conditions to be met [63, 111]. First, the comb spacing of the 
1550 nm source (fr,1550) must be stabilized to the optical clock’s comb 
spacing (fr,775). Second, the two combs’ offset frequencies (f0,775 and f0,1550) 
must be phase locked together. This latter step requires spectral overlap 
between the two combs. The optical comb of the 1550 nm source is 
frequency doubled and compared against the Ti:sapphire comb at a mutually 
accessible spectral region to generate a heterodyne beat.  

We have investigated a number of different types of passively mode-
locked lasers in the 1550 nm region, including an erbium/ytterbium-doped 
waveguide laser [112], an erbium-doped fiber laser [108, 113], and a mode-
locked laser diode (MLLD) [75, 114]. Each laser offers at least two control 
parameters to obtain simultaneous time synchronization and carrier phase-
locking. For example, stabilization through the cavity length is a common 
feature for all these lasers. The carrier-envelope-offset frequency (f0,1550) can 
be tuned in both waveguide and fiber lasers through control of the intensity 
of their pump lasers. A MLLD, on the other hand, can be tuned with both the 
injection current and the reverse bias voltage on the saturable absorber. 
Among the three mode-locked laser sources, the waveguide laser achieved 
the lowest residual timing jitter with a record-low, root-mean-square relative 
timing jitter of 14.4 fs integrated from 10 Hz to 375 MHz (the Nyquist 
frequency), owing to the laser’s high-Q cavity and overall gain dynamics. 
Although the MLLD has a larger rms timing jitter of ~22 fs within the 
bandwidth of 1 Hz – 100 MHz, it does offer the advantage of a compact size, 
robust operation, and completely electrical control, along with the potential 
in device improvements to lower the jitter at high frequencies.  

Transfer of optical frequency standards is then implemented by using the 
stabilized mode-locked laser sources at 1.5 µm that are transmitted through 
an optical fiber network. We have explored the dual transfer process for both 
the optical carrier frequency and the rf signal represented by the laser’s 
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repetition frequency and to compare the transfer of such an rf signal with 
that of a modulated optical carrier. When the 1.5 µm mode-locked laser is 
phase coherently connected to a Ti:sapphire mode-locked laser serving as 
the clockwork for an optical atomic clock, both the optical carrier frequency 
and the repetition frequency of the 1.5  µm mode-locked laser are connected 
to a single optical frequency standard. Therefore a single fiber link allows a 
user at the remote end to either simply use a fast photodiode to recover the rf 
reference signal or establish a more elaborate, direct connection to the 
optical carrier. Simultaneous existence of both the optical phase and the 
pulse-repetition-rate information would also enable novel measurement 
capabilities on material dispersion and length determination. The 
experimental results confirm that with the use of a mode-locked laser at 1.5 
µm, the instability of the transfer process for the repetition frequency (rf 
reference) over the 6.9 km long fiber is nearly the same as that of optical 
carrier transfer of a cw laser discussed earlier, and is almost an order of 
magnitude better than that of transfer of a rf-modulated cw laser carrier. 
Furthermore, it is clear that a pulsed transfer process preserves the stability 
of the optical carrier as in the cw optical transfer process. Preliminary results 
on pulsed transfer under active noise cancellation indicate rf transfer 
instability reaching a few parts in 1015 at 1 s.  We are currently exploring the 
utility of such ultrastable frequency transfer for time-domain experiments 
where the goal is to deliver extremely low-jitter timing signals throughout a 
fiber network, permitting ultrafast lasers located at remote areas be 
synchronized together at a precision level of a few femtoseconds within a 
multi-megahertz bandwidth.   
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1 Institut für Photonik, Technische Universität Wien  
2 Max-Planck-Institut für Quantenoptik 

3 Department of Physics, Texas A&M University 

Abstract: Intense, ultrashort waveforms of light can be produced with a predetermined 
electromagnetic field. These waveforms are essential in many applications of 
extreme nonlinear optics, most prominently in laser-driven sources of high-
energy attosecond radiation. Field reproducibility in each laser shot requires a 
stable carrier-envelope phase. We analyze different schemes of phase-stable 
amplification and identify constraints limiting the precision. We describe a 
phase-stabilized system based on a 20 fs multipass Ti:sapphire amplifier 
supplemented with a fiber compression stage for producing few-cycle pulses. 
The amplifier introduces only a slow phase drift and, therefore, can be seeded 
by a standard phase-stabilized oscillator. The phase stability of the 5 fs, 400 µJ 
pulses is verified by high harmonic generation, in which different carrier-
envelope phases produce distinctly different XUV spectra. The carrier-
envelope phase (with a ±π ambiguity) is calibrated from a series of spectra. 
The calibration allows full characterization of the electric field. The estimated 
precision of the phase control is better than π/5, which reduces the timing jitter 
between the driving laser pulse and the XUV bursts to ~250 as and enables the 
generation of stable, isolated attosecond pulses. We demonstrate a more robust 
phase measurement based on the detection of electron emission from 
photoionized atoms in opposite directions. This method determines the carrier-
envelope phase with the π/10 accuracy and without inversion ambiguity. Using 
the photoionization technique, we demonstrate the Gouy effect for focused 
few-cycle pulses. This result is of critical importance for any phase-dependent 
strong-field applications of ultrashort laser pulses. 

Key words: carrier-envelope phase, ultrashort pulses, Gouy phase shift, high harmonic 
generation, above threshold ionization, phase-stabilized amplifiers 
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1. INTRODUCTION 

The applications of ultrafast laser science demand an increasing degree of 
control over many parameters of intense ultrashort laser pulses. Some forms 
of control, such as techniques for adjusting spatial and temporal intensity 
pulse profiles and the sweep of carrier frequency (chirp) across the electric 
field, are already well established [1]. There are also well-developed 
methods for pulse diagnostics, which can fully characterize the envelope of 
the pulse and its chirp, that are an integral part of any control scheme [2, 3]. 
New demands, such as control over the time-dependent polarization state of 
the pulse field on the scale of a single optical cycle [4], emerge in the 
context of strong-field applications sensitive to the strength of individual 
light-wave cycles within the laser pulse rather than to the intensity envelope.  

As broadband laser systems approach the single-cycle regime [5-7], the 
electric-field strength of the pulses varies substantially from peak to peak of 
every optical half cycle. Therefore, it becomes necessary to precisely control 
the evolution of the electric field underneath the pulse envelope for 
ultrashort wave forms of light used in field-sensitive experiments. The 
parameter that determines the offset of the most prominent field peak with 
respect to the pulse envelope is the carrier-envelope phase. Change of the 
carrier-envelope phase represents the slippage of the carrier wave through 
the pulse envelope, which takes place in conventional mode-locked laser 
systems [8] i.e., those without carrier-envelope-phase stabilization.  

The development of techniques suitable for carrier-envelope-phase 
stabilization of mode-locked oscillators [9-11] and demonstration of such 
laser systems [12, 13] were significant steps toward accomplishing full 
control over the temporal and spectral properties of femtosecond laser 
pulses. Maintaining the value of the carrier-envelope phase and fixed 
repetition frequency manifests itself in the frequency domain as a perfectly 
defined and steady comb of laser modes across the laser bandwidth and 
thereby provides an invaluable tool for frequency metrology [9, 10, 14-18]. 
Driven by the demand for simple, precise, and robust instrumentation for 
frequency measurements, the technology of carrier-envelope-phase control 
of mode-locked femtosecond lasers has rapidly matured [17, 18] and is now 
commercially available [19]. In comparison with laser oscillators operating 
at megahertz-to-gigahertz repetition rates, phase stabilization of laser 
amplifiers is significantly complicated by their low, typically 1–10 kHz, 
repetition rate. Whereas it is possible to trace the carrier-envelope-phase 
offset in the output of an oscillator and compensate it by active stabilization 
of the laser cavity [12, 13], the output phase of a standard chirped-pulse-
amplifier (CPA) is random [20-22]. Therefore, the information on phase 
excursions monitored behind the amplifier is insufficient for the phase 
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stabilization of the output pulse train. Other techniques, possibly in 
combination with the use of a phase-stabilized seed oscillator, are required. 
Several different strategies for carrier-envelope stabilization of amplified 
laser pulses will be discussed.  

The significance of the carrier-envelope-phase control of intense 
ultrashort laser pulses, and the motivation for pursuing it, can be readily 
grasped from the numerical example presented in Figure 10-1. This 
simulation compares the XUV/soft x-ray emission from a target of noble gas 
exposed to three different driving optical fields depicted in Figure 10-1(a)–
(c). The generation of the soft x-ray radiation [23, 24] includes the following 
steps: (1) ionization occurring in the vicinity of the field peaks, (2) 
acceleration of the detached electrons by the laser electric field, and (3) 
recombination of the electron into its ground state following a recollision 
with the parent ion. The sum of the binding and the kinetic energy of the 
electron is thus released as a high-energy photon. The highest-energy soft x-
ray quanta, which are emitted at the cutoff frequency, appear after 
approximately two-thirds of the optical cycle following the moment of 
ionization. This release of a photon nearly coincides with the first zero 
crossing of the electric field behind the strongest field peak. 

Figure 10-1(d)–(i) shows the corresponding temporal structure of the soft 
x-ray radiation emitted around 65 and 130 eV, respectively. The latter 
photon energy represents the cutoff obtainable for a neon gas target with a 
length of 2 mm and a pressure of 100 mbar. Pulse intensity was chosen to 
reach the cutoff frequency of 130 eV. It is obvious from Figures 10-1(d) and 
(g) that for a 20-femtosecond pulse, typical of many currently available laser 
amplifiers, the x-ray bursts are emitted repeatedly over many successive 
optical cycles. For this driving laser pulse, the threshold of field strength 
[horizontal bars in Figures 10-1(a)–(c)] required to generate cutoff-
frequency x-ray photons can be overcome by multiple field peaks because of 
their comparable magnitude. Consequently, regardless of the carrier-
envelope-phase setting, the emitted x-rays consist of a train of attosecond 
spikes. 
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Figure 10-1. Numerical simulation of laser-driven soft x-ray emission from noble gas atoms. 
(a) Electric field of a 20 fs laser pulse. (b) Electric field of a 5 fs laser pulse optimized for 
generation of a single subfemtosecond x-ray pulse. (c) Electric field of a 5 fs pulse producing 
the two highest energy x-ray pulses. (d) – (f) Time-domain structures of x-ray radiation 
emitted in a 10 eV bandwidth at half the cutoff energy. (g) – (i) Time-domain structures of x-
ray radiation emitted in a 10 eV bandwidth at the cutoff energy. The lower x-ray peak yield in 
(d) and (g) in comparison to (e), (f), (h), and (i) is the consequence of higher ionization by 
more numerous field peaks of the 20 fs pulse. In total, gas concentration loss due to ionization 
was 6.7% and 1.7% for the 20 and 5 fs pulses, respectively. Horizontal bars in (a)–(c) show 
the peak intensity threshold required to yield cutoff-frequency x-ray radiation. 
 

The situation changes dramatically for a 5 fs driving pulse [Figure 10-
1(b) and (c)]. Whereas the emission at half the cutoff energy also comprises 
a train of spikes [Figure 10-1(e)–(f)], the soft x-rays at the cutoff frequency 
[Figure 10-1(h) and (i)] are extremely sensitive to the arrangement of the 
optical cycles in the driving laser field. A π/2 change in the carrier-envelope 
phase determines whether a single half cycle or two field peaks fulfill the 
threshold requirement that, in turn, leads to the generation of an isolated 
subfemtosecond pulse [Figure 10-1(h)] or a pair of bursts [Figure 10-1(i)]. 
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The case study presented in Figure 10-1 underscores several compelling 
reasons for seeking carrier-envelope-phase control of amplified laser pulses 
in conjunction with the generation of subfemtosecond pulses [25] and their 
use in the emerging field of attosecond metrology [26, 27] and spectroscopy 
[28]. First, pulse-to-pulse fluctuations of the carrier-envelope phase lead to 
an unstable temporal profile of the soft x-ray pulses, including duration 
variations and, for some phases, strong prepulses. Second, a variable carrier-
envelope phase results in large intensity instability of the soft x-ray bursts, 
which severely limits their utility. Third, carrier-envelope-phase shifts cause 
timing jitter between the soft x-ray burst and the envelope peak of the 
driving laser field. This timing jitter further reduces the temporal resolution 
of excite-probe experiments that use the laser and the soft x-ray pulses, 
respectively, as excitation and probe [28] and vice versa. The implications of 
carrier-envelope-phase variations on the higher-order harmonic generation 
(extending into the XUV/soft x-ray range) have been studied in a number of 
papers [6, 23, 24, 29-31]. The lack of carrier-envelope-phase control has 
been identified as a cause of an excessive spectral noise observed in x-ray 
spectra [32, 33]. Similar critical dependence on the value of the carrier-
envelope phase is expected in other nonlinear optical interactions that exhibit 
a threshold with respect to the field strength of the incident laser pulse [6]. In 
particular, the first clear experimental evidence of a carrier-envelope-phase-
dependent effect was obtained in an above-threshold ionization measurement 
in gas [34]. In this scheme, the angular yield of photoelectron emission was 
found to correlate with the carrier-envelope phase of the circularly polarized 
driving pulses. Once carrier-envelope-phase-stabilized pulses at the required 
intensity level become available, it should be possible to steer photoelectrons 
from gas [34] or solid [35] targets in a predefined way by adjusting the phase 
of light. In principle, carrier-envelope-phase control of laser pulses would 
open the way to synthesizing intense wave forms of light (i.e., very brief 
high-peak-intensity electromagnetic fields exactly reproducible in every 
laser shot) that could be used to control the motion of charged particles with 
ultimate precision. Next to phase stabilization, an essential part of carrier-
envelope phase control is the measurement of the actual phase value. 
Standard techniques of pulse characterization [2, 3] are insensitive to carrier-
envelope phase since its value has no influence on the shape of the pulse 
envelope. Information on the relative pulse-to-pulse phase drift can be 
obtained by various methods involving interference of spectrally overlapping 
harmonic orders [10-13, 20, 22, 36, 37]. However, such techniques do not 
permit phase calibration. Instead, the use of high-order nonlinear responses 
has been suggested for this purpose [6, 30, 38, 39]. In the context of the 
numerical example presented in Figure 10-1, we have seen that phase 
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calibration is needed to ascertain the presence of isolated attosecond pulses, 
especially if such pulses are intended for time-resolved attosecond 
applications. 

This chapter investigates both the problem of carrier-envelope-phase 
stabilization of amplified ultrashort laser pulses and methods of phase 
calibration. Several possible schemes of carrier-envelope-phase control 
capable of operating at kilohertz repetition rates are addressed. We look into 
the origin of phase distortion added throughout pulse amplification and beam 
passage through peripheral components, such as dispersive pulse 
compressors, and stages of nonlinear spectral broadening. We then explain 
in detail the operation of a carrier-envelope-phase-stabilized multipass 
Ti:sapphire 5 fs amplifier [40]. Next, we focus on measuring the actual value 
of the carrier-envelope phase. To perform such phase calibration, we 
develop a method relying on the spectrum of XUV emission from a noble 
gas. The robustness of this approach is confirmed both experimentally and 
by numerical simulations. Whereas phase determination based on the 
spectral XUV measurement is very practical in conjunction with the 
generation of isolated subfemtosecond pulses in that spectral range, the 
information provided by this technique is still insufficient for a complete 
characterization of the electric field of the driving laser pulse. Therefore, we 
also present an accurate, unambiguous carrier-envelope measurement based 
on directional observation of photoelectron emission. We demonstrate that a 
dual time-of-flight photoelectron detector can be used to calibrate the 
carrier-envelope phase and visualize the Gouy phase shift of a few-cycle 
light field in a focused or defocused beam. 

2. CARRIER-ENVELOPE PHASE OF A MODE-
LOCKED PULSE TRAIN AND A SINGLE 
ATTOSECOND PULSE 

The temporal evolution of a linearly polarized electric field of a single 
pulse of light can be expressed 

[ ]φω += tttAtE LLL )(cos)()( . (1) 

This description includes three physical quantities: the amplitude )(tAL , the 
frequency of field oscillations )()( 0 ttL βωω += ,4 and the carrier-envelope 
phase, φ. The latter parameter determines the timing of the carrier-wave 

 
4  The notation used in this chapter corresponds to that of other chapters through the following 

relationships: ωn = 2πνn; ωr = 2πfr; ωCE = 2πf0; ∆φ = ∆φce 
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oscillations with respect to the amplitude envelope )(tAL , whereas β(t) 
stands for a possible chirp, i.e., a carrier frequency sweep across the pulse. 
The relationship between the carrier-wave and the envelope changes as a 
result of pulse propagation through a dispersive medium. Therefore, 
Equation (1) is only relevant at a specific location. Also, referring to a 
carrier-envelope–phase-stabilized pulse train, we mean that at a given point 
in space every pulse has the same parameters in Equation (1) and imply that 
the phase evolution with propagation is identical for all these pulses.  

For applications of nonlinear optics that are sensitive to the strength of 
individual field peaks, a change in φ makes a physically measurable 
difference only if the amplitude is subject to significant variation within the 

light period T0 = 2π/ω0, i.e., )(
2)(

0

tA
Tt

tA
L

L π≅
∂

∂
. Evidently, this condition 

is fulfilled for 5 fs pulses [Figure 10-1(b) and (c)], where the XUV emission 
depends on φ, as opposed to 20 fs pulses [Figure 10-1(a)] where the strength 
variation between neighboring peaks is substantially smaller. Nevertheless, 
the carrier-envelope phase preserves a clear meaning regardless of the pulse 
duration. This can be easily understood by invoking the frequency-domain 
representation of a mode-locked laser spectrum [9-13, 17, 18, 41]. The 
frequency of each individual laser mode is 

,CErn n ωωω +=  (2) 

where n is the mode number, rω is the repetition rate of the laser, and CEω is 
a frequency shift from an exact integer multiple of rω . Equation (2) 
describes the comb of frequencies across the mode-locked bandwidth that is 
of interest in frequency-domain metrology [17, 42]. The physical origin of 
the frequency mismatch CEω  lies in the difference between the group delay 
(the cavity round-trip time of the envelope) and the phase delay (the round 
trip of the carrier wave). Consequently, the carrier-envelope phase (i.e., the 
position of the carrier-wave oscillation with respect to the envelope that is 
advancing at a different velocity) is shifted with each successive laser pulse 
by 

r

CE

ω
ωπφ 2=∆ . (3) 

The phase slippage [8] φ∆  can be compensated by managing the cavity 
dispersion [15, 36, 43], thereby forcing all emitted pulses to carry the same 
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value of φ. Reduction of the repetition rate (e.g., by selecting every mth pulse 
with a pulse picker in front of a chirped-pulse-amplifier) leads to an m-fold 
increase of the mode density but does not scale the frequency mode 
mismatch, which remains { }CEmr

ωωmod . In fact, the generation of new 

frequency modes is the result of applying a modulation that is nonlinear in 
the time domain (the fast switching of the pulse picker). This nonlinearity 
does not destroy the properties of the frequency comb as all the modes 
remain rigorously locked to each other. The same reasoning applies to the 
case of a single-isolated laser pulse ( 0=rω ) that corresponds to a 

continuously filled spectrum, )(ωLI . In this treatment, φ  can be interpreted 

as a frequency-independent offset of the spectral phase )(ωφL . This 
relationship is immediately apparent from the following Fourier-transform 
link between the time- and frequency-domain electric fields 

( )[ ]∫ ++−= ..)(exp)(
2

1
)( ccdtiItE LLL ωφωωφω

π
. (4) 

Here the intensity spectrum )(ωLI and the phase )(ωφL fully determine the 
quantities )(tAL and )(tLω  [2] but do not specify the carrier-wave offset. 
The spectral manifestation of φ, given by Equation (4), is particularly 
valuable for describing various single-shot measurements of the carrier-
envelope-phase throughout the chapter. 

3. MEASUREMENT OF PHASE VARIATIONS 

In this section, we address practical methods for characterizing carrier-
envelope phase changes that are vital for implementing phase-stabilizing 
feedback loops.  

3.1 Detecting carrier-envelope drift of oscillator pulses 

The standard tracking technique is employed in several carrier-envelope–
phase-controlled oscillators [12, 13, 16-18] and will be discussed later in this 
section. It relies on detecting the frequency beat from the laser modes of the 
frequency comb that are separated by a spectral octave, i.e., they differ in 
their frequency by a harmonic order. The lower-frequency mode is then 
frequency doubled and the two modes are brought into interference with 
each other, producing a beat at the carrier-envelope frequency 
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( ) ( )CErCErCE 2nn ωωωωω +−+= 2 . (5) 

This scheme requires a very broadband, octave-spanning spectrum, 
which is unavailable from a typical mode-locked oscillator. To gain the 
necessary bandwidth, the laser spectrum can be broadened in a medium with 
third-order nonlinearity. Using a photonic crystal fiber (PCF) [44], this task 
can be accomplished even with nJ pulses. The device incorporating the 
spectral broadening, frequency doubling, and beat-signal generation is called 
a nonlinear interferometer or ν-to-2ν setup. In state-of-the-art broadband 
mode-locked oscillators, it has already become possible to derive the ν and 
the 2ν, frequency components directly from the laser spectrum, thus 
obviating the need for extracavity spectral broadening [45]. For further 
details on ν-to-2ν interferometry, see Chapter 1. 

3.2 Detecting carrier-envelope drift of amplified pulses 

There are three significant difference in the phase-drift of amplified laser 
pulses compared with an oscillator. First, the repetition rate of the amplifier 
must be lowered, typically by 5 orders of magnitude, to 1–10 kHz, which 
complicates accurate detection of rω  and CEω . Second, the availability of 
high-energy pulses simplifies the problem of producing an octave-spanning 
continuum. Third, laser amplifiers exhibit a considerably higher peak 
intensity noise as compared to “quiet” Kerr-lens–mode-locked oscillators 
[46]. Consequently, the excursions of a quasi-monochromatic ν-to-2ν signal 
detected behind the amplifier do not necessarily indicate a change in carrier-
envelope phase but might reflect pulse energy fluctuations. 

E <1 µJpulse

WLG (sapphire)

SHG

Polarizer

VND Spectrometer
(b)

 

Figure 10-2. Setup for phase characterization of amplified pulses by nonlinear spectral 
interferometry. VND: variable neutral density filter; SHG: second harmonic generator; WLG: 
white light generator. 

Initial amplifier phase tracking schemes [7, 20, 40] took advantage of 
abundant pulse energy and used different types of single-shot nonlinear 
spectral interferometry. The objective was to use broadband detection of the 
ν-to-2ν beat as opposed to the narrowband scheme acceptable in the case of 
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an oscillator. The essence of this approach can be described as follows. After 
generating a sufficiently broadband spectrum, )(ωWLI , the pulse is sent to a 
second-harmonic-generation (SHG) crystal, resulting in an up-shifted field 

( )
( )[ ]

( )[ ],2)(exp)(

)()(exp

)()(),:(2exp)( 2

ϕωφω

ωωωφωφ

ωωωωωωωχϕω

+=

′′−+′×

′−′′−′∝ ∫

SHGSHG

WLWL

WLWLSHG

iI

di

IIiE

 (6) 

where )(ωφWL is the spectral phase of the white light and 2χ is the second-
order susceptibility. The interference between the white-light and SHG 
pulses, separated by the time delay 0τ , yields a spectrum 

( )ϕωτωφωφωω

ωωω

++−−+

+−=

0)()(cos)()()1(2

)()()1()(

WLSHGSHGWL

SHGWL

IIaa

IaIaS
, (7) 

where the coefficient a  stands for the polarizer transmission for the 
polarization of the SHG light. For a sufficiently large pulse separation 0τ , 
corresponding to many spectral fringes in the interferogram )(ωS , the 
argument of the cosine in Equation (7) can be recovered using the standard 
algorithm of spectral interferometry [47]. The phase of the newly obtained 
complex spectral function then directly yields the differential phase of the 
two fields, { }ϕωφωφπ +− )()(mod 2 WLSHG . In principle, such an interference 
measurement can be used not only to characterize the pulse-to-pulse changes 
of φ, but also to find the actual value of φ. In practice, however, this is not 
feasible because with current methods, )(ωφSHG  and )(ωφWL  can only be 
characterized with the precision of an arbitrary constant [2]. Only by fully 
accounting for the evolution of the spectral phase in the SHG crystal, which 
includes both linear and nonlinear pulse propagation, would it be possible to 
retrieve the value of φ in this scheme. Therefore, the ν-to-2ν interferometer 
can only measure the full carrier-envelope phase after calibration by an 
independent external experiment, as shown in Section 7. Otherwise, this 
device reflects the phase jump in the j th laser pulse with respect to another 
(e.g., 0th) pulse arriving earlier from the same pulse train and chosen as 
reference, i.e., the interferometer measures δφj = φj − φ0. The difference 
between the method outlined above and Fourier-transform-spectral-
interferometry based on the use of parametric waves, as reported in 
Reference [22], is that, in the latter case, one measures the interference 
between the frequency-doubled idler and the signal pulses. The advantage is 
that the white-light continuum injected into the parametric device does not 
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have to span an octave and the interference is observed close to the spectral 
peak of the signal rather than in the continuum wing. 

In this work, however, we opted for a simpler setup, as shown in [Figure 
10-2], which is similar to the scheme published in Reference [20]. For 
further simplification, we replaced white-light generation in a hollow 
waveguide with bulk continuum generation in a 2 mm of sapphire. Because 
of the dispersion of the sapphire and of the 1 mm BBO (β-BaB2O4) 
frequency-doubling crystal, the white-light and SHG are sufficiently 
separated in time to employ spectral interferometry. The spectral 
interferogram is measured by a fiber-coupled spectrometer behind a 
polarizer cube that selects the common polarization of the beams. With a 2 
MHz acquisition card, single-shot ν-to-2ν interferograms can be detected for 
every 3rd laser shot at a 1 kHz repetition rate. In the ν-to-2ν unit shown in 
Figure 10-2, the timing jitter, δτττ += 0 , has an immediate impact on the 
fringe pattern of the measured interferogram, as will be shown in Section 
3.3. However, for the collinear arrangement, depicted in Figure 10-2, the 
problem of timing jitter is negligible as the interfering beams follow the 
same path. 

3.3 Measuring the phase difference by linear 
interferometry 

We have presented interferometric methods that employ nonlinear 
frequency conversion and reveal variations in the value of the carrier-
envelope phase. Here we discuss the technique of linear spectral 
interferometry [48, 49], which measures the phase difference between the 
test and reference arms of an interferometer. It is instructive to compare the 
relevance of this method to the characterization of carrier-envelope-phase 
drift with the measurement of pulse envelope and chirp. If the intensity 
spectrum )(I L ω and the phase )(ωφL  are determined in front of an 
interferometer and the phase accumulated inside the interferometer )(ωφ  is 
recovered by spectral interferometry, then the phase of the outgoing pulse is 
known and equals )()( ωφωφ +L . Therefore, once )(ωφL is found with a 
nonlinear optical technique (e.g., autocorrelation or frequency-resolved 
optical gating [2]), complete phase characterization can be performed with 
linear methods provided a reference beam derived after the nonlinear 
measurement is available. In essence, we have just stated the principle of the 
pulse measurement by TADPOLE (Temporal Analysis by Dispersing a Pair 
Of Light E-fields) [2].  

Linear spectral interferometry can be used in exactly the same way to 
study carrier-envelope-phase deviations occurring behind a nonlinear ν-to-
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2ν interferometer. To do so, a small fraction of the reference beam can be 
split behind the point where the changes of φ are tracked with the ν-to-2ν 
unit and sent to propagate through free space (air). For practical purposes, 
fluctuations of air density are the only cause of carrier-envelope-phase jitter 
of the reference pulses. Therefore, we consider these pulses carrier-
envelope-phase stable. The test beam is directed into an optical arrangement 
(e.g., an amplifier) and accumulates a phase difference )(ωφ  with respect to 
the reference. As a consequence of beam-pointing instability during 
propagation through elements with angular dispersion and other linear and/or 
nonlinear dispersion changes [50], the test pulse can pick up a frequency-
dependent phase offset 

( ) ( ) K+−′′+−′+= 2
00000 )(

6

1
)(

2

1
)()( ωωωδωωωδωδωδ . (8) 

We assume that )(ωδ  corresponds to a very minute dispersion modification 
that does not involve reshaping of the pulse envelope. Otherwise, in case 

)(tAL is modified, carrier-envelope-phase control would become irrelevant. 
Indeed, a tiny (<1 µm) change in the propagation length within dispersive 
material already leads to a sizable leap in the carrier-envelope phase [8], 
which we callδφ . Consequently, we can justifiably disregard higher-order 
terms, starting with the parabolic phase distortion. In fact, δφ represents the 
sum of frequency-independent terms in Equation (8). The linear shift with 
frequency term in Equation (8) is next in significance. It simply represents 
the time shift due to a modified propagation length and, therefore, has no 
bearing on the carrier-envelope dynamics. Thus we will only pay attention to 
the phase jump, δφ , in the characterization of the phase drift of the test pulse 
and treat the test-reference timing offset separately. 

As was pointed out in Section 3.2, a temporal jitter between the 
interfering pulses causes fringe rearrangement in the spectrogram )(ωS . This 
timing variation is inevitable, especially if the reference beam is not 
interferometrically stabilized. For large laser systems, the path of the 
reference beam can be several meters long and fluctuate by several 
wavelengths. Thus, the ability of spectral interferometry (linear or nonlinear) 
to discriminate between δφ  and the timing jitter needs to be scrutinized. 

Figure 10-3 gives an overview of the properties of spectral 
interferometry. Figure 10-3(a) shows a typical interferogram and the power 
spectrum of its Fourier transform (inset) used in phase retrieval. In Figure 
10-3(b), we examine the impact on the interferogram of a pure time shift 
(δτ ) and a pure phase jump (δφ ), depicted by the solid and the dashed 
curves, respectively. Figure 10-3(c) presents the corresponding phases after 
subtracting the phase slope 0ωτ , which is due to the delay between the test 
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and reference pulses. The shape of the intensity spectrum )(ωLI  [solid curve 
in Figure 10-3(a)] and differential phase )(ωφ  [dotted curve in Figure 10-
3(c)] are selected arbitrarily. The values of δτ and δφ  are chosen so that the 
interferograms in Figure 10-3(b) closely resemble each other. Nevertheless, 
there is a fundamental difference because the timing variation changes the 
fringe period. This change can be clearly observed in an interferogram 
consisting of a large number of fringes. Therefore, a charged coupled device 
(CCD) camera-based spectrograph (which covers the relevant spectral width 
and has a sufficiently high resolution) makes it possible to separate the 
contributions of δφ  and δτ  as long as Fourier-transform–spectral-
interferometry noise criteria [49] are met. We implemented the time jitter 
correction numerically in our Fourier-transform–spectral-interferometry 
code by extracting a linear phase obtained by back-transformation into the 
frequency domain. 
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Figure 10-3. Discrimination between phase and timing jitter in Fourier-transform spectral 
interferometry. (a) Intensity spectrum (solid curve) and spectral interferogram (dotted curve). 
(b) Spectral interferograms modified by a timing shift (solid curve) and a frequency-
independent phase shift (dashed curve). (The fringe period changes in the case of timing 
shift.) (c) Differential spectral phases after time-delay slope subtraction. Dotted and solid and 
dashed curves correspond to interferograms in (a) and (b), respectively. Inset shows the power 
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spectrum of the Fourier transform to the time domain. Dashed contour corresponds to a 
possible filter required in the phase extraction to isolate the temporal peak at τ0. 
 

The immediate implication of the timing-problem solution is the ability 
to trace carrier-envelope-phase jumps with respect to a reference beam 
propagating in free space. We believe this method can be particularly useful 
for extending carrier-envelope-phase stabilization in a multistage laser 
system, in which the earliest stage is phase stabilized and subsequent stages 
are expected to introduce only slow phase drift. 

4. PHASE JITTER OF THE WHITE-LIGHT 
CONTINUUM 

The ν-to-2ν phase characterization methods presented in Section 3 (and 
all phase-stabilized laser systems reported by 2002 [12, 13, 18]) rely on 
white-light generation to create a phase-coherent, spectrally broadened 
replica of the input laser pulse. The phase noise added in the process of 
white-light generation is an intrinsic problem of carrier-envelope-phase 
stabilization loops [18]. In this section, we outline the reason for the phase 
coherence between the white light and the initial pulse and then study the 
influence of intensity fluctuations on phase noise. 

4.1 Phase lock between the input pulse and the white-
light continuum 

Generally, white-light generation consists of several nonlinear wave-
mixing processes that lead to generation of new frequency components. 
Therefore, it is not immediately clear whether white-light generation can be 
relied on for producing a frequency-broadened, but phase-offset-repeating, 
replica of the laser pulse. The complete propagation equation for pulse self-
action (assuming the perturbative regime of nonlinear optics [6]) is derived 
directly from Maxwell’s equation [6, 51] to be 

[ ] ),(),()(
2

0

2
22 ω

ε
ωωω rr nlP

c
Ek =+∇ , (9) 

where ),( ωrE  and ),( ωrnlP  denote the electric field and generated 
nonlinear polarization, respectively. The particular form of ),( ωrnlP that 
describes both the delayed Raman response (i.e., slow nonlinearity) and the 
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parametric four-wave mixing based on fast-electronic Kerr nonlinearity, also 
known as the process of self-phase-modulation [51] is 
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where 3χ  represents the effective third-order susceptibility and the 
conjugation symbol marks emission [52]. The propagation-dependent 
change of dispersion is included in ),( ωφ r . Here we assume that all mixing 
frequencies are positive [53]. The appearance of the conjugation operator in 
the convolution integral in Equation (10) accounts for the preservation of the 
initial phase offset φ in the output field. After solving Equation (9) over the 
interaction length of the white-light-generation medium 10 rr → , the 
resultant output pulse will generally carry a different value of the carrier-
envelope phase [6, 54] than the input pulse (i.e., φWL ≠ φ), which is also the 
case for any type of dispersive linear or nonlinear pulse propagation. 
Nevertheless, the important criterion for an accurate carrier-phase-phase drift 
determination is the ability of the white-light continuum to repeat (without 
distortion) the input phase offset. This ability is the consequence of the rule 
for phase summation in Equation (10). After plugging Equation (10) into 
Equation (9), φ cancels out, i.e., it has no effect on ),( 1 ωφ r of the output 
field regardless of the microscopic origin of the nonlinearity. The presence 
of a resonant or nonresonant fifth-order parametric wave mixing 
( EEEEE ** ) [55] does not lead to a φ-dependent propagation either. 
However, the solution for pulse propagation does become φ-dependent if 
second-harmonic generation and/or third-harmonic generation cannot be 
neglected. To account for these contributions, ),( ωrnlP  should also include 
the terms describing the three-wave mixing of second-harmonic generation 
and the four-wave mixing of third-harmonic generation, with their phase 
summation rules given by the field products EEand EEE , respectively.  

We would like to underscore two points. First, the phase shift added by 
both the nonresonant and/or resonant white-light generation does not depend 
on the carrier-envelope phase of the input pulse. Therefore, the techniques of 
spectral broadening can be readily applied to schemes for measuring the 
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carrier-envelope-phase drift. Second, mixing in of undesired mechanisms of 
frequency conversion, such as second-harmonic generation (or, in a broader 
sense, sum-frequency generation) and third-harmonic generation, can distort 
the frequency-independent phase of the white-light pulse even if there are no 
intensity fluctuations of the input pulse. In typical experimental conditions, 
however, second- and third-harmonic generation do not play a significant 
role. For instance, non-phase-matched second-harmonic radiation is often 
observed in the cladding of conventional single-mode fibers, but it is 
probably not sufficiently strong to cause a noticeable pulse-to-pulse phase 
jitter. For bulk-material chirping (typically performed in sapphire or CaF2), 
the contributions of second- and third-harmonic generation are negligible. 

4.2 Phase noise resulting from intensity fluctuations 

In Section 4.1, we dismissed the interplay between different types of 
nonlinearity as a concern for added phase jitter in white-light generation. In 
practice, a much more important phase distortion is the variation of the 
intensity-induced phase shift [56]. As the result of intensity-dependent 
nonlinear interaction, the phase accumulated throughout the white-light 
generation can vary from pulse to pulse and compromise the fidelity of 
carrier-envelope-phase-drift characterization. In the case of ν-to-2ν 
interferometers suited for oscillators, these problems can arise from 
mechanical vibrations of the PCF, which affect the amount of light coupled 
in. In contrast, ν-to-2ν interferometers for amplified pulses can employ bulk 
white-light generation (cf. Section 3.2), which is almost insensitive to beam-
pointing fluctuations. Typical studies of the phase stability of white-light 
generation consist of interference measurements of independently produced 
white-light continua [57, 58]. The influence of white-light-generation phase 
noise on the operation of phase-stabilization loops has also been investigated 
by measuring the carrier-envelope drift with two independent PCF-based ν-
to-2ν interferometers [18, 59]. 

Here, we check the phase jitter of white-light generation in bulk sapphire 
against increased intensity noise of amplified pulses [46]. The white-light-
generation stage shown in Figure 10-2 was supplemented by the linear 
interferometer depicted in Figure 10-4. This addition allowed us to measure 
the phase shift of the white light with respect to the replica of the injected 
pulse. The intensity of the beam was varied with a neutral density filter 
while single-shot–white-light interferograms and laser spectra were being 
recorded by a dual-channel spectrometer. The synchronous registration of 
the laser spectra is necessary to calibrate the pulse energy in each laser shot. 

We used a multipass Ti:sapphire amplifier with an rms intensity noise of 
1%. The optimized setting of the neutral density filter corresponds to a pulse 
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energy of 0.7 µJ in front of the sapphire and a focal-spot diameter of ~ 30 
µm. These parameters allowed us to generate a bandwidth adequate for ν-to-
2ν measurement. For these conditions, the rms phase jitter retrieved from the 
laser–white-light interferogram was ~100 mrad. 

Adjustable 
delay

BS BS

BS

WLG

VND

Spectrometer

CCD 1 CCD 2

 

Figure 10-4. Single-shot spectral interferometer for measurement of carrier-envelope-phase 
jitter arising from white-light generation. VND: variable neutral density filter and BS: 
dielectric beamsplitter. 
 

Next, we recorded phase statistics for various settings of the neutral 
density filter. The resultant phase evolution, plotted as a function of incident 
pulse energy, is presented in Figure 10-5. The data cover several distinct 
regimes, indicated in Figure 10-5 by vertical sections. First, we notice that 
there is an abrupt phase change that corresponds to the increasing strength of 
self-focusing and filament formation. This phase change can be explained by 
an alteration in the group velocity of light with the increase of the intensity-
dependent part of the refractive index of sapphire. After the markedly noisy 
region of the onset of filamentation, the phase shows a certain “rebound” 
that probably indicates an increase in the filament length. The rebound is 
followed by an interval of stable filamentation that is relatively broad in 
terms of pulse energy — about ±8% around the energy set point of the ν-to-
2ν setup. At higher pulse energies, we observe a collapse of the filament and 
multiple filamentation. The phase noise and the downward phase trend 
somewhat resemble the situation before the formation of a single stable 
filament. Measurement at even higher energies could not be performed with 
a multifilament beam because of the breakdown of the interference pattern 
into several modes. 

In the regime of a stable filament, the phase exhibits a quasi-linear 
change with energy. The rate of this variation, given by the straight line in 
Figure 10-5, is 12 mrad/nJ. This rate corresponds to an 84 mrad phase shift 
for a 1% jump in the pulse energy. 

The phase evolution covers only the spectral overlap region between the 
white light and the input pulse, i.e., approximately a 60 nm bandwidth. 
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Therefore, the results of our measurement correspond to the best-case 
scenario since phase excursions in the blue (2ν) spectral region cannot be 
visualized. Additionally, the second-harmonic generation of the red-shifted 
part of the continuum also causes an intensity-dependent phase shift and, 
consequently, is likely to worsen the precision of the ν-to-2ν carrier-
envelope-phase-drift characterization. 
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Figure 10-5. Intensity-phase coupling of the white-light generation in bulk sapphire. Solid 
dots depict phase changes extracted from single-shot interferograms. Straight line shows a 
linear fit marking the slope of phase intensity-dependent variation in the vicinity of the pulse 
energy used for ν-to-2ν characterization. 
 

The issues of the phase properties of white-light generation presented in 
this section are important for identifying the limitations of carrier-envelope-
phase-control schemes and for evaluating the applicability of white-light 
generation as a tool for extending a mode-locked frequency comb [58] and 
creating phase-coherent frequency-shifted pulse replicas [21]. 

5. CONCEPTS OF PHASE-CONTROLLED 
AMPLIFICATION 

In this section, we suggest several practical designs of carrier-envelope 
phase-stabilized amplifiers. The corresponding schematics are sketched in 
Figure 10-6 and can employ both CPA [60] and optical parametric 
amplification (OPA) [61, 62]. Two types of carrier-envelope phase noise or 
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drift in amplifiers must be considered. The first kind of phase noise is 
associated with the fluctuations of the intensity-dependent nonlinear phase 
contribution. It can vary randomly from pulse to pulse as the result of pump 
energy fluctuations and, therefore, cannot be compensated with active phase-
stabilization loops. To minimize this problem, the value of the B-integral 

[63] ∫= dzztInkt ),()()( 20ωψ , i.e., the accumulated nonlinear phase, or 

self-phase modulation in the amplifier, should be on the order of π . This 
condition is fulfilled in typical CPA amplifiers. Recent measurements of 
time-domain interferometric cross-correlation between seed-oscillator pulses 
and their amplified replicas have shown that the phase jitter at the output of a 
multipass Ti:sapphire amplifier lies below 0.1 rad [64]. In fact, with pump 
energy fluctuations being the chief contributor to the jitter of the nonlinear 
phase, the use of low-noise diode-pumped pump lasers should make it 
possible to phase stabilize amplifiers operating at higher B-integral values. 

The second kind of carrier-envelope drift is caused by beam-pointing 
instability that leads to path-length fluctuations in dispersive elements [50] 
of the amplifier. Such mechanical perturbations occur on a relatively slow 
timescale, with characteristic time constants of 1 second or longer. 
Therefore, the resulting carrier-envelope phase modulation could be easily 
traced and precompensated. 

The schemes of carrier-envelope-phase control amplification, discussed 
here, can be divided into three categories: (1) all-optical phase self-
stabilization [Figure 10-6(a)]; (2) passive triggering on a seed pulse with an 
appropriate carrier-envelope-phase value [Figure 10-6(b)]; and (3) use of 
carrier-envelope–phase-stabilized seed with a subloop for phase correction 
of the amplifier output [Figure 10-6(c)–(e)]. 

Recently it has been shown that passive carrier-envelope-phase 
stabilization can be obtained in an appropriately configured OPA [21]. This 
is achieved by seeding the OPA with a white-light pulse generated by the 
OPA pump pulse. As discussed in Section 4, both the seed and the pump 
pulses are phase coherent and, in the process of difference-frequency 
generation, the phases of these two pulses cancel. Therefore, the amplified 
idler pulse, which is a result of difference-frequency generation between the 
pump and the seed, is free of carrier-envelope drift even when the OPA is 
pumped with random-carrier-envelope-phase pulses. This scheme, shown in 
Figure 10-6(a), can be used as a phase-stable extension of a conventional, 
free-running CPA. Subsequent amplification can be carried out by 
broadband chirped-pulse OPA into a TW–PW regime [62]. The drawback of 
this approach is that the red-shifted output wavelength of the idler wave does 
not permit postamplification to be carried out in the laser gain medium used 
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to generate the pump beam. Consequently, implementation of all-optical 
phase stabilization in high-energy systems is not straightforward and 
demands development of dedicated amplification stages. 

Other designs presented in Figure 10-6(b)–(e) are intended as upgrades of 
existing amplified systems. Figure 10-6(b) represents the simplest possible 
realization of phase control based on the 105

 difference in the repetition rates 
of the seed oscillator and a kHz amplifier. The carrier-envelope phase-
evolution of the oscillator pulse train is quasi-periodic [8, 13]. The rate of the 
pulse-to-pulse phase slippage φ∆  can be adjusted by manipulating the 
cavity dispersion. With a ν-to-2ν interferometer, one can monitor the 
evolution of the CEω beat and employ this signal to trigger a pulse picker to 
select an oscillator pulse with a desired phase [13]. To ensure proper 
amplification, the pulse picker must be triggered shortly after the flash of the 
kHz pump laser and within the lifetime of population inversion, which 
leaves room to select an “appropriate” seed pulse from thousands of 
oscillator shots. The key drawback of this scheme is the relatively poor 
precision with which such a selection can be performed, since there could be 
several additional laser shots between the triggering pulse and the one that is 
actually sent to the amplifier. In this situation, variations of the quasi-
periodic phase change would introduce a variable carrier-envelope-phase 
shift of the selected pulse. Another difficulty in this method is the lack of an 
obvious mechanism to correct phase fluctuations arising in the amplifier. 
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Figure 10-6. Multiple concepts of phase-stable pulse amplification. (a) All-optical (passive) 
phase stabilization with optical parametric amplification (OPA). (b) Phase-selective seed by a 
free-running oscillator. (c)–(e) Schemes employing a phase-stabilized seed oscillator with a 
secondary phase-correction loop behind the amplifier based on linear (c), (d) and nonlinear (e) 
phase-drift detection. Concepts (c) and (d) require high-energy seed that can be attained with 
a cw-amplified or a long-cavity oscillator (c) and a cavity-dumped oscillator (d). PP: pulse 
picker; PLL: phase-locked loop; NLI: nonlinear ν-to-2ν interferometer; and FTSI: Fourier-
transform spectral interferometry.  
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The schemes drawn in Figure 10-6(c) and (d) are based on the use of a 
carrier-envelope-controlled oscillator [12, 13]. They explore the possibility 
of sending a reference (pilot) beam for the measurement of the phase offset 
in the amplifier. Information on the slow phase drift behind the amplifier is 
obtained with the linear spectral-interferometry described in Section 3.3. It 
can then be plugged into the phase-stabilization loop of the oscillator. The 
core of the phase-stabilizing electronics is the phase-lock loop (PLL in 
Figure 10-6) that forces the beat signal CEω to oscillate in phase with an 
external local oscillator via a feedback to the intracavity dispersion. The 
inverse of the phase offset measured by spectral interferometry at the 
amplifier output can then be combined with the phase of the local oscillator 
signal ( rω41 ), thus precompensating this offset already in the oscillator. 

The use of the reference beam for (a potentially single-shot) spectral 
interferometry imposes the demand for high-seed pulse energy. Pulses of 
tens of nanojoules can be obtained by intermediate cw amplification of the 
seed pulse train before ν-to-2ν characterization, by employing long-cavity 
oscillators [13, 65] or using a cavity-dumped oscillator [66]. This type of 
laser has a dual output. It emits a pulse train through the output coupler at 
the full repetition rate, which can be conveniently used to drive the ν-to-2ν 
interferometer. At the same time, the pulses ejected by the intracavity pulse 
picker are directly synchronized with the amplifier and satisfy the needs for 
a kHz seed and a spectral interferometry reference. 

The remaining concept for phase control of an amplifier [Figure 10-6(e)] 
offers the most compatibility with existing CPA systems and is well suited 
for retrofitting them. This scheme requires implementation of a standard 
phase-lock loop of the seed oscillator, which consists of a ν-to-
2ν interferometer for the oscillator, electronics, and an additional secondary 
feedback loop. The feedback loop consists of a high-energy ν-to-2ν 
interferometer and computer for the spectral interferometry. Neither the 
oscillator nor the amplifier requires significant modification. We have 
followed this blueprint to upgrade a standard multipass Ti:sapphire CPA 
system [46] for carrier-envelope–phase-stabilized operation.  

6. PHASE-STABILIZED 5 fs, 0.1 TW-AMPLIFIED 
SYSTEM 

In our high-power laser setup [Figure 10-6(e)], we have incorporated a 
commercially available phase-stabilized 10 fs laser system (FS 800, Menlo 
Systems GmbH). It consists of a dispersive-mirror-controlled Kerr-lens–
mode-locked Ti:sapphire oscillator (Femtosource Compact Pro, Femtolasers 
GmbH), a ν-to-2ν interferometer, and phase-locking electronics that drive an 
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acousto-optic modulator to control the intensity of the cw pump laser (Verdi 
V, Coherent). About 50% of the output of the oscillator is diverted into 2 cm 
of PCF for detection of the carrier-envelope beat frequency. The reference 
signal (i.e., the local oscillator) for the phase-locked loop is derived by 
dividing the repetition rate of the oscillator (80 MHz) by a factor of 4. As 
can be seen from Equation (3), selecting rω or its (sub)harmonics as the 
reference signal is the best choice to control the value of CEω . Before 
activating the phase lock loop, we set the intracavity carrier-envelope-phase 
shift ∆φ to approximately 2π(m + 1/4), where m is an integer. This rough 
adjustment of ∆φ is performed by changing the optical path length through a 
pair of thin intracavity wedges of fused silica. At this stage, φ is 
approximately reproduced in every fourth round trip in the laser cavity, 
resulting in a quasi-periodic modulation of the ν-to-2ν beat signal at 4rω , 
i.e., 20 MHz. Next, to enhance the accuracy of the phase reproducibility, 

CEω  and 4/rω are phase locked. Phase locking is achieved by controlling 
∆φ via nonlinear effects in the Ti:sapphire crystal through the variation of 
the pump intensity [8]. For this purpose, the cw pump laser is passed through 
the acousto-optic modulator [13, 50], which varies the power of the 
transmitted beam according to the phase error [Figure 10-6(c)–(e)]. As a 
result, every fourth pulse in the 80 MHz pulse train carries the same carrier-
envelope phase, giving rise to an accurate optical field reproduction. 

In 2004, we employed a multipass Ti:sapphire chirped-pulse amplifier 
(Femtopower, Femtolasers GmbH). The Q-switched diode-pumped pump 
laser (Corona, Coherent Inc.) of the amplifier and the pulse picker (Pockels 
cell) in the amplifier were synchronized with exactly every 80,000th pulse 
from the oscillator to ensure that only pulses with identical φ are amplified 
(at a 1 kHz repetition rate). The nanojoule pulses are temporally stretched by 
a glass block before their energy is boosted to ≈ 1 millijoule in 9 passes 
through a 40 mm Ti:sapphire crystal. After amplification, the duration of the 
pulses is reduced to ≈20 fs in a refractive pulse compressor consisting of two 
pairs of Brewster-angled prisms. To shorten the pulse even further, the 
output of the amplifier is injected into a 1 m hollow-core glass fiber filled 
with neon gas and subsequently passed through a set of ultrabroadband 
chirped mirrors. To detect carrier-envelope-phase variations, a small fraction 
(< 1%) of the energy of the 20 fs pulses is split off from the main beam 
directly behind the amplifier and fed into the second ν-to-2ν interferometer 
sketched in Figure 10-2 and discussed in Section 3.2. The parameters of the 
resultant output pulses are summarized in Figure 10-7(a). The insets in 
Figure 10-7(a) depict the measured spectrum and second-order 
interferometric autocorrelation of the compressed pulses. An iterative pulse 
retrieval from these data yields a near-bandwidth-limited pulse with an 
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amplitude envelope )(tAL , as shown by the thin-dashed line in Figure 10-
7(a). It also yields a pulse duration [full width at half maximum of 2)(tAL ] 
of τL = 5.4 ± 0.5 fs.    

Experimental results obtained with the second ν-to-2ν interferometer in 
different phase-stabilization regimes of the amplifier are summarized in 
Figure 10-7(b). In the case of a phase-unlocked seed oscillator, the 
interference pattern is completely averaged out within approximately 200 
laser shots [black curve, left inset of Figure 10-7(b)]. This finding 
underscores the importance of a single-shot monitoring capability for the φ 
drift. In contrast, seeding the amplifier system with phase-locked pulses 
preserves a clear interference pattern for CCD exposure times as long as 
several seconds. The only additional stabilization required is the tracing of 

CEω at the oscillator output. The temporal evolution of the carrier-envelope-
phase variation in this mode, which we term simple phase lock, is 
exemplified in Figure 10-7(b) by the dotted curve. These data reveal that the 
carrier-envelope phase of the high-energy 20 fs pulses remains virtually 
stable for periods of up to several seconds. This is remarkable considering 
the sensitivity of the carrier-envelope phase to path-length change in any 
solid optical medium [8]. Beam direction instabilities in the microradian 
range can produce path-length changes of this order of magnitude in the 
prism compressor and are likely to provide a significant contribution to the 
phase drifts on a longer time scale. However, compared with other 
femtosecond amplifiers that employ long-pulse–diffraction-grating-based 
stretchers, our system presents a clear advantage in terms of its angular beam 
stability. This stability results from employing bulk-material pulse chirping. 

The slow drift of φ shown by the dotted curve in Figure 10-7(b) can be 
readily tracked by computer analysis of the ν-to-2ν fringe pattern [right inset 
in Figure 10-7(b)]. A voltage proportional to the change of φ is generated by 
a personal computer that performs the ν-to-2ν Fourier-transform spectral 
interferometry analysis. As shown in Figure 10-6(e), this signal is combined 
with the fast-changing feedback from the first ν-to-2ν unit that monitors the 
phase evolution of the seed oscillator. The absence of fast phase changes in 
the amplifier allows us to accumulate the interferograms measured in the 
second nonlinear interferometer [Figure 10-2] for about 20–30 ms (i.e., 20–
30 laser shots). The implementation of this signal integration smoothens the 
operation of the feedback loop by preventing accidental overshoots of the 
carrier-envelope-phase control. Once stabilized at a certain value of φ, the 
phase behind the amplifier can be controlled with the Fourier-transform–
spectral-interferometry computer by adding an offset value to the feedback 
signal. The simultaneous use of both feedback loops allows us to stabilize 
the phase for extended periods (>> 1 minute). The solid curve in Figure 10-
7(b) shows the typical phase drift measured in the second ν-to-2ν device 
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with both feedbacks active. The device exhibits a rms jitter of ~75 mrad. 
This figure, however, should not be confused with the actual precision with 
which the carrier-envelope phase can be maintained behind the amplifier. 
Since the phase characterization in the nonlinear interferometer is influenced 
by the device noise (cf. discussion in Section 3), the feedback loop would 
not be able to discriminate this measurement noise from the real phase jitter 
in the amplifier. Therefore, an external (out-of-loop) experiment is required 
to confirm the carrier-envelope phase stability. It will be presented in 
Section 7.  
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Figure 10-7. Performance overview of the phase-stabilized amplified system. (a) Pulse 
properties behind the hollow-fiber–chirped-mirror compressor: retrieved pulse envelope 
(dashed curves) and a possible electric field (solid curve) of the compressed pulse. Insets 
show measured intensity spectrum (right) and measured and retrieved second-order 
interferometric autocorrelation (left). (b) Carrier-envelope phase dynamics with oscillator-
only phase stabilization (dotted curve) and combined oscillator-amplifier phase stabilization 
(solid curve). Insets show ν-to-2ν interference spectrograms recorded with the nonlinear 
interferometer at the amplifier output [Figure 10-6(e)]. 
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We turn now to the carrier-envelope-phase stability of pulses passing 
through a hollow waveguide used to obtain the spectral broadening, as 
shown in the right inset of Figure 10-7(a). We placed the second ν-to-2ν 
interferometer behind the amplifier rather than at the output of the hollow-
fiber-chirped-mirror compressor to obtain better intensity stability of the 20 
fs pulses (around 1% rms). The intensity noise of the white light emerging 
from the fiber is higher and varies from 1.6% rms in the spectral region of 
the input laser pulse to 4% at 650 nm. At the same time, the spectral breadth 
of this white-light is insufficient to support ν-to-2ν detection under optimal 
conditions for generating 5 fs pulses. To assess the detrimental effect of 
hollow-fiber white-light generation on carrier-envelope-phase stability, we 
repeated the experiments described in Section 4 (Figure 10-4). The resultant 
pulse-to-pulse rms phase noise was found to range from 80 mrad to 140 
mrad depending on the pressure of neon in the capillary. We also conducted 
intensity-dependence measurements of the phase offset within a ±15% 
energy range around the mean-energy value (700 µJ) injected into the fiber. 
This study revealed a 3.4 mrad/µJ slope of the phase within the region of 
spectral overlap between the laser pulse and the white light. Unfortunately, 
with spectral-interferometry, it was impossible to assess the phase jitter 
across the whole spectrum. Nevertheless, one cannot expect dramatic phase 
excursions in the spectral wings since they would have an immediate impact 
on the pulse profile. Such envelope fluctuations of the compressed pulse 
have not been observed in our system. The spectral-interferometry 
measurements justify the use of ν-to-2ν detection in front of the hollow 
fiber. 

7. CONTROL OF LIGHT FIELD OSCILLATIONS 

The reference phase in the combined feedback loop of our high-power 
phase-controlled laser system can be adjusted within a range of 2π, 
providing a convenient means of setting φ to an arbitrary value. 
Nevertheless, the techniques we have implemented so far merely enable us 
to keep φ constant and vary it by a known amount, whereas the actual value 
of φ remains unknown. As opposed to the ν-to-2ν technique, strong-field 
phenomena driven by few-cycle pulses have been predicted to be sensitive to 
φ and potentially could serve for its determination. The processes predicted 
to be suitable for this purpose include high-order harmonic emission [30, 31, 
67] and above-threshold ionization [20, 34, 38, 39, 68]. We chose high-order 
harmonic generation for our investigations because it has a relatively simple 
experimental implementation and relies on linearly polarized light, which is 
readily available in our setup. In addition, a clear intuitive insight into this 
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process had been developed in several excellent models [23, 24, 69] that 
have been tested and confirmed by a large number of numerical studies and 
experiments [29-31, 70]. 

The relevant aspects of the process can be summarized as follows. The 
highest-energy XUV or soft x-ray photons are emitted around the zero 
transition(s) of the laser electric field near the peak of the envelope. This is 
implicit in semiclassical models [6, 23, 24, 69] and was recently verified in 
an attosecond experiment [27]. The energy of the emitted photon is 
essentially determined by the intensity of the laser half-cycle preceding the 
emission. For a few-cycle pulse with φ ≈ 0 or π [the “cosine” wave, shown in 
Figure 10-1(b)], there is only one most intense half cycle that implies the 
emission of an isolated x-ray burst at the highest photon energies 
[Figure 1(h)]. The presence of such an isolated feature in the time domain 
corresponds to a smooth spectrum. In stark contrast, an identical pulse with a 
“sine” carrier [φ ≈ ± π/2, Figure 10-1(c)] exhibits two most intense half 
cycles, giving rise to a pair of soft x-ray bursts separated by T0/2 in time 
[Figure 10-1(i)]. In the frequency domain, this temporal structure implies a 
modulated (quasi-harmonic) spectrum up to the highest photon energies.  

To check the validity of this simple intuitive picture, we developed a 
computer code simulating propagation of an intense few-cycle laser pulse 
through an ionizing medium. The program solves Maxwell’s equations in 
three space dimensions and calculates the emergence of high-order 
harmonics using a refined version [6] of the quantum theory of Lewenstein 
et al. [24, 71]. Figure 10-8 summarizes the results of the simulations relevant 
to the experiments described below. In the simulation, the laser pulse 
duration is τL = 5 fs, the pulse energy is 0.2 mJ, the beam diameter is 2wL = 
122 µm, the medium is neon, the pressure is 100 mbar, and the length is 
2 mm. Figure 10-8(a)–(d) displays the computed spectral distribution of few-
cycle-driven coherent soft x-ray emission from neon in the cutoff range for 
four different values of the carrier-envelope phase of the driving laser pulse. 
Figure 10-8(e) and (f) shows the temporal intensity profile of cutoff x-rays 
transmitted through a Gaussian filter [solid contour in Figure 10-8(a)] for φ = 
0 and φ = π/2 (solid curves) along with the instantaneous intensity of the 
driving laser [i.e., 2)(tEL ], depicted by dashed curves. Detailed numerical 
simulations show that the smoothest and most-modulated spectral-cutoff 
features actually correspond to the values of ~20° and ~110°, respectively, 
rather than to the intuitive values of 0° and 90°. However, this discrepancy is 
insignificant in our experiments, because it lies within the uncertainty with 
which we can identify different carrier-envelope phase values. 

The results of our simulations, together with previous numerical studies 
[6, 30, 31, 72], support our intuitive analysis and show a strong spectral 
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dependence between the temporal structure of the x-ray bursts and the 
spectral shape of the cutoff region. The width of the smooth spectral 
continuum, ∆(hω)cont, that corresponds to an isolated x-ray burst depends on 
the ratio of instantaneous intensity 2)(tEL of the strongest half cycle and its 
neighboring peak. The corresponding difference of instantaneous intensity is 
marked by ∆ in Figure 10-8(e). Because of the linear dependence between 
the highest-emitted x-ray photon energy and the peak laser intensity, the 
continuum bandwidth can be expressed as: 

( ) ,
)(

)(
max

2
∆

ω
ω∆

tE

I

L

pcutoff
cont

−
=
h

h  (11) 

where pI  is the ionization potential. Table 10-1 lists the instantaneous 
intensity ratio and the width of the continuum (calculated at 125 eV) for 
several values of τL/T0, which is the number of oscillation cycles within the 
laser pulse duration.  
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Figure 10-8. Numerical simulations of few-cycle-driven coherent soft x-ray emission from 
ionizing atoms. (a)–(d) Cutoff-range spectra are shown for different carrier-envelope-phase 
settings of the driving laser pulse. (e)–(f) The solid curves depict the temporal intensity profile 
of the cutoff harmonic radiation filtered through a Gaussian bandpass filter with a full width 
at half maximum of 7 eV [solid contour in (a), whereas the dashed curves plot EL(t)

2]. These 
results support the intuitive analysis that the field carrying φ = 0 is predicted to produce a 
single soft x-ray burst [filtered in the cutoff (e)]. Deviation of φ from zero gradually 
suppresses the magnitude of the main burst and gives rise to a satellite spike. The latter 
becomes most prominent for  φ  → π/2 (f). In the frequency domain, the isolated pulse 
emerging for φ = 0 implies a continuous spectrum shown in (a) that becomes increasingly 
modulated with the appearance of the second burst for  φ  → π/2 (b)–(d). 
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Table 10-1. Expected spectral width of the cutoff continuum for a φ = 0 wave as a function of 
pulse duration.  

0TLτ † ( )maxL )t(E 2∆ ‡ ( ) eV@125contωh∆ * 

2 0.16 20 eV 

3 0.07 8.8 eV 

4 0.04 5.0 eV 

5 0.03 3.8 eV 
† Number of oscillation cycles within the laser pulse duration 
‡ Instantaneous intensity ratio 
* width of continuum. 

According to Table 10-1, τL/T0 ≤ 2.5 is required to produce a continuum 
with a sizeable (>10 eV) bandwidth in the 100 eV range. For few-cycle 
pulses that meet with this criterion, the appearance of the predicted 
continuum [Figure 10-8(a)] is robust over a broad range of parameters as 
long as the propagation length does not exceed half the coherence length [6]. 
Experimentally, this condition is readily fulfilled by operating at a gas 
density equal to or below that resulting in the maximum cutoff yield. We 
generated high-order harmonics by gently focusing 5 fs, 0.2 mJ laser pulses 
into a 2 mm neon gas medium. The cycle-averaged peak intensity was 
estimated to be 7×1014 W/cm2. The neon gas was supplied in a thin-walled 
metal tube [32] with a backing pressure of 160 mbar. However, the pressure 
in the interaction region was somewhat lower because of the gas expansion 
into the surrounding vacuum chamber. Thin zirconium foils were installed in 
the pathway of the emitted soft x-ray radiation to block the laser light and 
low-order harmonics. The high-energy part of the spectrum (above 80 eV) 
was spectrally analyzed with a simple spectrometer consisting of a 10,000-
line/mm transmission grating and a backside-illuminated soft x-ray CCD 
camera (Roper Scientific).  

Figure 10-9 shows a series of soft x-ray spectra generated for different 
values of the carrier-envelope phase of the 5 fs pump pulses. For settings of 
φ = φ0, the harmonics near the cutoff (hω > 120 eV) completely merge into a 
continuum. With a gradual change of the phase, the continuous spectral 
distribution of the cutoff radiation begins to break up into discrete harmonic 
peaks, with the maximum modulation depth appearing for settings of φ = φ0 

± π/2. This behavior is in agreement with the intuitive picture and the 
computer simulations under the assumption of φ0 = 0 + nπ, where n=0.1. The 
residual ambiguity in the determination of φ relates to the inversion 
symmetry of the interaction with the atomic gas medium. A π-shift in φ 
results in no change of the light wave other than reversing the direction of 
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the electromagnetic field vectors. In an isotropic medium, such a phase flip 
cannot lead to any measurable physical consequences. 
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Figure10- 9. Measured spectral intensity of soft x-ray emission from ionizing atoms driven by 
5 fs pulses. (a)–(d) Data obtained with phase-stabilized pulses for different carrier-envelope-
phase settings are shown. (e) Spectrum measured without carrier-envelope-phase stabilization. 
X-ray CCD exposure was 0.5 s in all cases. 
 

The presence of distinct spectral behavior in the cutoff region allows us 
to calibrate the actual value of the carrier-envelope phase. A continuum with 
a bandwidth of ≈16 eV is clearly visible in Figure 10-9(b) and is in fair 
agreement with the value of ∆(hω)cont = 20 eV predicted by our simple 
considerations for 5 fs, 750 nm (τL/T0 = 2) light pulses (Table 10-1). On the 
contrary, the x-ray spectra corresponding to the phase settings shifted by 
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±π/2 [Figure 10-9(a) and (d)] display a pronounced modulation surviving 
into the cutoff. Therefore, the carrier-envelope phase can be evaluated with 
the highest possible accuracy by recording pairs of soft x-ray harmonic 
spectra at φ1 = φ and φ2 = φ + π/2, where φ is varied in small steps. In this 
method, φ = 0 (or, equivalently, π) can be identified from a pair of spectra 
that exhibit the smallest and the largest modulation depth in the cutoff range, 
respectively. Applying this procedure to the data in Figure 10-9, we 
conclude that the phase setting φ0 ≈ 0. The current amplitude and phase 
stability of our source permits identification of the carrier-envelope-phase 
value with an accuracy better than π/5. The obtained value of φ is 
subsequently used to calibrate the interference pattern recorded in the second 
ν-to-2ν interferometer. After performing this calibration, we can 
subsequently change φ (with accuracy better than π/10) using the 
interferometer. 

The soft x-ray experiments with phase-stabilized pulses also show that 
the harmonic peaks shift with φ. This effect was predicted by previous [31, 
73] and current simulations. It clearly manifests itself in the spectra shown in 
Figure 10-9. This shift indicates that the peaks visible in the few-cycle-
driven harmonic spectra do not, strictly speaking, represent genuine 
harmonics, because the laser frequency is kept unchanged. Thus its 
harmonics are expected to remain invariant as well. The shift of these 
“quasi-harmonics” is a direct consequence of the variation of the field 
amplitude within T0 and the confinement of emission within a couple of 
oscillation cycles. This carrier-envelope-phase-induced shift completely 
smears the harmonic structure of the near-cutoff soft x-rays generated by our 
5 fs pulses in the absence of phase stabilization [Figure 10-9(e)]. 

To gain further insight into the effect of spectral shift and smearing, we 
recorded x-ray spectra obtained with longer laser pulses of about 10 fs. The 
energy of the pulses sent to the target was increased to reach the same cutoff 
frequency as in the data in Figure 10-9. The spectra we obtained are 
displayed in Figure 10-10 and exhibit several differences with respect to the 
5 fs case. First, there is no pronounced continuum in the cutoff region that 
would permit identification of the φ0 phase offset, as is expected for this 
pulse width in accordance with Table 10-1. Second, there are clear spectral 
peaks at photon energies up to 110 eV that survive into the phase-unlocked 
regime (Figure 10-10, bottom panel). The blowup in Figure 10-10(b) shows 
that the frequencies of these peaks do not vary with phase and, consequently, 
represent true odd-number harmonic orders of the laser field. However, the 
situation is dramatically changed toward the cutoff, because the spectral 
peaks seen there [Figure 10-10(c)] shift their frequency by the full laser 
photon energy. Similar behavior was observed by another group of 
researchers who detected single-shot x-ray spectra with a carrier-envelope-
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phase-unlocked laser [74]. Apparently, a quasi-periodic spectral pattern is 
the result of complicated interference among x-rays bursts generated by a 
laser field, the amplitude of which changes significantly within an optical 
cycle [72]. The “genuine” harmonics at low frequencies are produced by 
many participating peaks of the laser field, whereas the “spurious” 
harmonics near the cutoff are formed by very few field peaks. In this regard, 
the anomaly in the energy interval of 95–105 eV in Figure 10-10 is 
noteworthy. This “intermediate” region features quasi-harmonic peaks with a 
period equal to the energy of one laser photon. This is remarkable, since 
such periodicity corresponds to laser field peaks separated by T0 rather than 
by the usual T0/2 (i.e., by the time spacing between the nearest half cycles). 
We believe the reason for this transient behavior is the involvement of three 
neighboring half cycles capable of generating x-rays at that frequency, a 
condition that cannot be fulfilled at both lower- and higher-photon energies. 
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Figure 10-10. Measured spectral intensity of soft x-ray emission from ionizing atoms driven 
by 10 fs pulses. (a) Full-range spectra. (b) and (c) Close-ups on spectral regions with 
distinctly different spectral dependencies on the carrier-envelope phase. 
 

Both the experiments with 5 and 10 fs pulses underscore the benefits that 
carrier-envelope-phase stabilization brings to the study of coherent laser-
driven x-ray sources. 
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8. CARRIER-ENVELOPE-PHASE MEASUREMENT 
WITHOUT AMBIGUITY 

Carrier-envelope-phase effects (discussed above in the context of soft x-
ray emission) are also expected to be observed in other strong-field 
experiments. The ability to measure and precisely stabilize the carrier-
envelope phase is crucial for many applications. Clear evidence of phase 
effects has been seen in photoionization without phase control for few-cycle 
pulses [34, 75]; in soft x-ray generation with phase-stabilized pulses [40] and 
in the single-shot regime [74, 76]; and in photoemission from surfaces with 
nonamplified few-cycle pulses [77]. Phase-dependent effects in 
semiconductors have been predicted [78]. In fact, carrier-envelope-phase 
effects due to the field asymmetry of few-cycle pulses can be easily 
understood when compared with coherent control by an asymmetric two-
color light field [79]. Nonlinear photoionization provides a straightforward 
approach to looking for signatures of the carrier-envelope phase. Particular 
emphasis is given to noninversion symmetric emission of photoelectrons, 
i.e., a different count rate for electrons emitted to the right and to the left. A 
number of theoretical investigations have been devoted to the problem in the 
past years [38, 68, 80-82]. Most of them concentrate on total yields of 
photoelectrons. Here we present experimental results of nonlinear 
photoionization from a gas target [75, 83] with the intense phase-stabilized, 
few-cycle light source described in Section 6. The spatially asymmetric field 
of few-cycle laser pulses leads to different photoionization rates for opposite 
directions. By detecting this difference, it is possible to measure the carrier-
envelope phase of intense few-cycle laser pulses without the field-inversion 
ambiguity present in the x-ray emission experiment on the centro-symmetric 
system (described in Section 7). 

As in the case of x-ray emission where the interaction with most 
prominent half cycles of a 5 fs laser pulse causes the generation of the most 
energetic x-ray photons, the highest-peak-strength half cycles are responsible 
for the release of photoelectrons with the largest drift momenta during 
nonlinear photoionization. The results of a classical calculation illustrating 
the difference for cosinelike and sinelike light waves are depicted in 
Figure 10-11 and give a qualitative explanation of how this effect can be 
utilized for carrier-envelope-phase calibration.  

In our experiments, xenon atoms were ionized with 5 fs laser pulses with 
peak intensities of nearly 1014 W/cm2. Absorption of eight photons is 
necessary to overcome the ionization threshold. Higher-order ionization 
processes, known as above-threshold ionization [84], are also observed at 
correspondingly high photoelectron energies.  
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Figure 10-11. Electric field (short-dashed curve) and envelope (long-dashed curve) of a 5 fs 
laser pulse for CE phase 0 (left panel) and –π/2 (right panel). The drift momentum of high-
energy photoelectrons as a function of the ionization time t0 is shown in black (emission to the 
right) and gray (emission to the left). It was calculated with a classical model. Note that 
highest momentum does not necessarily coincide with highest electron yield: In the right 
panel the ionization probability at times labeled with 1 is considerably lower than those 
labeled with 2 because of lower field strength at t0. 
 

To study the above-threshold-ionization phenomena, we employed the 
time-of-flight (TOF) spectrometer schematically depicted in Figure 10-12. In 
this apparatus, two opposing electrically and magnetically shielded TOF 
detectors are mounted in an ultrahigh vacuum apparatus. Xenon atoms are 
fed in through a nozzle from the top and are ionized in the focus of a few-
cycle laser beam. The lens shown in the sketch is a concave mirror with a 
focal length of 250 mm. The pulse energy was attenuated to 20 µJ. The laser 
polarization is linear and parallel to the flight tubes. The laser field changes 
sign while propagating through the focus. Slits with a width of 250 µm are 
used to block the electrons emitted outside the focal region. The position of 
the slits can be adjusted. A photodiode and microchannel plates detect the 
laser pulses and photoelectrons, respectively. The laser repetition rate is 1 
kHz and 50 electrons are typically recorded per pulse at each microchannel 
plate. A pair of glass wedges (apex angle 2.8°) is used to optimize dispersion 
and adjust the carrier-envelope phase. Therefore, a ∆s translation of one 
wedge introduces a )8.2tan( °⋅= sx ∆∆ change in the total glass thickness 
seen by the laser beam. For our laser pulses centered at the wavelength of 
760 nm, an addition of 52 µm of fused silica changed the carrier-envelope-
phase value by 2π without affecting the pulse duration. 
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Figure 10-12. The “stereo above-threshold-ionization’’ spectrometer. MCP: microchannel 
plates and PD: photodiode. 
 

Figure 10-13(a) shows a series of above-threshold-ionization spectra 
corresponding to different carrier-envelope phases. Simply by inspecting the 
high-energy part (>20 eV) of the spectra, one can verify that a carrier-
envelope phase shift by ∆φ  = π corresponds to a change from the electron 
spectrum emitted into the left detection channel to the spectrum emitted to 
the right one. Furthermore the above-threshold-ionization spectrum is 
invariant under a 2π phase shift. For high electron energies, the difference 
between the left and right electron yield reaches up to an order of magnitude 
and can be controlled by adjusting the carrier-envelope phase. This phase-
determined yield discrimination constitutes a new kind of coherent control 
and exhibits, to our knowledge, the highest contrast observed so far.  

Figure 10-13(b) displays the ratio of photoemission to the left and to the 
right for different spectral regions. The ratio of high- and low-energy 
electrons oscillates with a periodicity of ∆φ in excellent agreement with the 
periodicity expected from glass dispersion. Besides the much higher contrast 
for high-energy electrons, a phase shift of both sets of data is also apparent. 
To determine the carrier-envelope phase, we have to establish the connection 
between the phase of the field and the above-threshold-ionization signal. We 
do this by using high-energy (>20 eV) electrons. One reason for choosing 
this spectral region is its higher sensitivity to the carrier-envelope phase.  
The sensitivity is similar to that in the spectral cutoff of x-ray radiation 
discussed in Section 7. More importantly, the dominant overall features in 
this spectral region of above-threshold ionization are known to be rather 
independent of specific properties of the atomic species and of laser 
intensity.  
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Figure 10-13. (a) Photoelectron spectra for different CE phases controlled by fine movement 
of one of the wedges. ∆x indicates the glass added hereby. The black curves correspond to 
emission to the right (positive direction), the gray ones to the opposite direction. The insets 
show the corresponding real time variation of the electric field, as deduced from the phase 
assignment shown in Figure 10-14. Only without phase stabilization were identical spectra 
measured to both left and right as expected. (b) Left-right ratio of the total electron yield 
(solid black curve) and high-energy electrons (dashed gray curve) as a function of glass 
thickness ∆x added or subtracted by moving one of the wedges. ∆x = 0 corresponds to optimal 
dispersion compensation, i.e., the shortest pulses. Maximal left/right ratio for the total yield 
does not coincide with that for high-energy electrons. Note the different scales for low- and 
high-energy electrons. The upper horizontal scale indicates the CE envelope phase of the 
pulse, as deduced from the comparison with theory shown in Figure 10-14. (c) Fine-increment 
phase scan indicating long-term CE phase stabilization drift of the laser setup. The 
measurement was performed over ≥10 min by slowly scanning the wedges forth (triangles 
pointing to the right) and back (triangles pointing to the left) using a fine increment of the 
glass thickness. The mismatch at the start and the end indicates a phase drift of ~50 mrad/min. 
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Figure 10-14 shows a comparison between measurements and classical 
calculations. The latter take into account only the high-energy electrons. In 
the experimental and theoretical data, the ratio of emission to the left and 
right depends in a characteristic way on electron energy and the carrier-
envelope phase. These dependences lead to the inclined stripes in the false-
color representations. Another common feature is that the asymmetry of left-
right emission increases with the strengthening of the electron energy. 
Unlike the asymmetry contrast, these characteristic features do not depend 
on the pulse shape or duration. The sharp edges in the calculation originate 
from classical energy conservation. This artifact is removed by energy-time 
uncertainty in quantum mechanics. Matching the characteristic features of 
the theoretical and experimental data leads to an unambiguous determination 
of the carrier-envelope phase with an estimated error of π/10. 

 

Figure 10-14. Determination of the CE phase. Grayscale representation (logarithmic scale) of 
the left-right ratio of photoelectrons as a function of the electron energy and the CE phase. 
Higher values (white) indicate dominant left emission, lower values (black) dominant right 
emission. For the theoretical part (bottom panel), only rescattered electrons were taken into 
account. The parameters used are the same as in the experiment. This comparison allows 
precise carrier-envelope phase determination. Within the convention of Equation (1), the 
electric field is now uniquely characterized. 
 

The calculation used to determine the carrier-envelope phase is based on 
the insight that at high intensities above-threshold ionization can be 
understood in terms of quasi-static field ionization at some time t0 and 
subsequent classical evolution of the electron in the laser field [23, 85]. For a 
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review, see [86]. A considerable fraction of the photoelectrons generated 
when atoms or molecules are exposed to intense laser pulses do not escape 
directly. Rather, they return to the ion core within times of typically less than 
an optical cycle and in precise synchronization with the electric field of the 
laser pulse. The characteristics of returning electrons can be observed in the 
kinetic energy spectra of photoelectrons. The underlying mechanism is 
elastic scattering of the electrons when they return to the ion core at t = t1 
and are subsequently accelerated by the laser field. Consequently, 
photoelectrons with high kinetic energy are observed. In the photoelectron 
spectra, they manifest themselves in the high-energy plateau on the 
exponentially decreasing count rate at low electron energies [87].  

The kinetic energy spectrum of the plateau electrons is sensitive to the 
carrier-envelope phase for several reasons. First, high-energy electrons 
returning to the ion core can be created only in subfemtosecond time 
intervals close to peaks of the electric field of the laser pulse (see Figure 10-
11). However, the probability that they will tunnel through the atomic 
potential at t0 depends exponentially on the field strength EL(t0) [cf. Equation 
(1)]. As few-cycle pulses are involved, tunneling is likely only for those very 
few optical half-cycles close to the pulse maximum. Generally, the highest 
kinetic energies are reached for electrons returning to the core when the 
electric field becomes nearly zero, i.e., EL(t1)=0. For few-cycle pulses, the 
field amplitude EL also needs to be as high as possible for t > t1 to allow 
efficient acceleration after rescattering. Since the start time t0 and return time 
t1 differ by almost one optical cycle, both the highest possible field strength 
at t0 and the highest possible amplitude after t1, are difficult to meet and 
result in a strong dependence of photoionization on the carrier-envelope 
phase. Number, strength, and timing of the wave packets lead to distinctive 
structures in the above-threshold-ionization spectra. Their analysis therefore 
provides detailed information about the key processes of attosecond science. 
Quantum mechanical calculations are in very good qualitative agreement 
with this classical treatment [82]. 

Having established that above-threshold ionization can be used for 
precise determination of the carrier-envelope phase, we provide an example 
of the sensitivity of the instrument. Figure 10-13(c) shows a measurement 
performed with fine ∆φ increments. These results reveal small phase drifts 
that we attribute to the laser system and its stabilization scheme. The phase 
drifts are of the order of 50 mrad/min, measured for more than 10 minutes. 
Since the stereo above-threshold-ionization phase meter is not only able to 
measure the carrier-envelope phase, but also to detect small phase drifts, it 
clearly has the potential to be used in a feedback loop. In addition, the target 
gas pressure is so low (<  10-4 mbar) that the above-threshold-ionization 
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experiment does not affect the laser beam. Thus a stereo above-threshold-
ionization phase meter can be placed anywhere along a laser beam line. 

9. GOUY PHASE SHIFT FOR FEW-CYCLE LASER 
PULSES 

So far we have considered carrier-envelope stabilization of amplified 
few-cycle pulses and their applications. We have also addressed the question 
of determining the carrier-envelope phase value. An important issue for 
nonlinear processes driven with phase-stabilized few-cycle pulses is that 
they usually take place in the focus of the laser beam. However, an 
electromagnetic beam propagating through a focus experiences an additional 
π phase shift with respect to a plane wave. This can be explained by 
introducing the phenomenon predicted by Kirchhoff and experimentally 
observed by Gouy [88], any spherical wave radiating from a source that is 
small compared with the wavelength advances in phase by π/2 within a short 
distance of the source. This phase, also referred to as Gouy phase, is a 
general property of a focused wave, including sound waves [89]. Intuitive 
explanations of this phase anomaly have been proposed [90]. Recently, 
direct observations of the polarity change of focused single-cycle terahertz 
pulses have been reported [91]. For applications of carrier-envelope-stable 
few-cycle light fields, phase matching of higher-order harmonic generation 
(see Section 7) is governed by the atomic response and the Gouy phase shift 
of the focused fundamental laser beam [92]. Moreover, the Gouy phase 
strongly affects the spatial variation of the carrier-envelope phase of 
ultrashort pulses around the beam focus. 

In principle, the Gouy phase shift of a TEM00 wave can be described by a 
simple formula depending on the focusing geometry and the wavelength, 
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where the beam is traveling in the +z direction and zR is the Rayleigh 
distance (dependent on the wavelength λ). Because of the large bandwidth of 
few-cycle pulses, their different spectral components experience the Gouy 
phase shift on different spatial scales. In particular, the blue colors undergo a 
steeper phase change than the red colors. It has been shown theoretically 
[38, 93] that this leads to a difference of phase and group velocities in the 
vicinity of the focus and, therefore, to carrier-envelope-phase slippage. For 
this reason, the CE phase variation cannot be generally described by 
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Equation (12). Indeed, the details of the phase change in the focus depend on 
the spatial profile of the laser beam and on the focusing geometry. In all 
cases, an overall π phase shift is expected between two symmetric positions 
far away from a spherical focus. Because of the continuous phase change of 
the pulse propagating through the focal region, the corresponding electric 
field of light takes on all possible phase variations. For example, a focused 
“+cos” E-field will be a sinelike wave in the focal region and will reemerge 
as a “-cos” field beyond the focus. This variation, of course, can affect the 
outcome of a phase-sensitive light–matter interaction that is not confined to a 
length much shorter than the Rayleigh range. Thus, precise control of the 
spatial variation of the carrier-envelope phase within the whole focal region 
is crucial to any phase-dependent experiment. 

We present the experimental determination of the evolution of the 
carrier-envelope phase in the focus of few-cycle laser pulses. Together with 
the determination of the carrier-envelope phase presented in Section 8, this 
result constitutes a full and unambiguous characterization of the electric field 
of laser pulses in space and time within the paraxial approximation (i.e., 
neglecting the small longitudinal component of the electric field). We 
studied the spatial variation of the carrier-envelope phase using the same 
technique that was presented in Section 8, i.e., by simultaneously detecting 
above-threshold-ionization photoelectron spectra in opposite directions 
(Figure 10-12). The pulse energy of carrier-envelope-controlled 5 fs pulses 
was attenuated to 20 µJ, and the beam focused with a f/30 geometry into a 
low-density xenon gas jet. Under these focusing conditions, the electric field 
is expected to undergo a π phase shift over a few millimeters. To reveal the 
the Gouy phase, one has to selectively detect the electrons generated at a 
well-defined position of the focus. A pair of moveable slits perpendicular to 
the beam (z direction) and to the polarization axes allows the entire focal 
region to be scanned. The slit width is 250 µm, well below the Rayleigh 
range (≈1 mm). To achieve optimum spatial resolution in the z direction, the 
slits are placed at a distance of only 1 mm from the beam (Figure 10-12). 
With this setup, the angular distribution of the emitted photoelectrons does 
not affect the phase resolution, which is estimated to be ≈0.1 rad. 

Figure 10-15 shows the asymmetry of the electron count rate (left/right 
ratio) as a function of the glass thickness introduced by moving the fused-
silica wedges in front of the above-threshold-ionization spectrometer. We 
made the measurement by moving the pair of slits to a distance of ≈2 mm 
before (dashed line) and after (solid line) the focus. The phase shift of π 
between the two curves is a direct measurement of the Gouy phase shift in 
the focus. 
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Figure 10-15. Variation of glass thickness in the beam path to change the carrier-envelope 
phase of the pulses. The left/right ratio of the electron yield exhibits clear oscillations with a 
periodicity consistent with glass dispersion at the wavelength of the laser. The measurement 
was performed before (dashed line) and after (solid line) the focus. The π phase shift is due to 
the Gouy carrier-envelope phase shift resulting from the passage through the focus. 
 

The electric-field polarity reversal observed by measuring the phase 
value in front of and behind the focus does not describe the details of the 
phase slippage in the focal region itself. Since many experiments take place 
over an extended area of the focus (e.g., higher-order harmonic generation in 
the XUV), it is essential to characterize the phase variation precisely and, in 
particular, to recognize possible anomalies in the behavior of the carrier-
envelope phase evolution. Indeed, the possible presence of an anomalous 
phase change in the focus has been suggested as an explanation of the 
observed enhancement of the harmonic-generation efficiency by using 
truncated Bessel beams [94]. 

To analyze the phase variation within the focal range, we acquired 
electron spectra at several positions by moving the pair of slits. Figure 10-16 
shows the detected left/right asymmetry as a function of the electron energy 
and of the carrier-envelope phase for a few z positions. Different approaches 
are possible to retrieve the phase variation. The integrated electron yield 
provides a clear phase indication and can be used to show the overall phase 
shift in the focus (Figure 10-15). However, scanning the focal range implies 
measuring at constantly changing intensities. Since it is predicted that the 
maximum of the integrated left/right asymmetry should occur at a phase that 
depends on the intensity [81], it is not easy to decouple the Gouy phase shift 
from the possible intensity-dependent phase shift. A better approach relies 
on the spectral information in Figure 10-16. Light and dark shades 
correspond to spectral regions of strong asymmetry. Since these colors are 
easily distinguishable, they can be used to follow the phase evolution. The 
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measurements were made by approaching the focus from the outer part and 
by moving the slits alternatively before and after the focus. With this 
procedure, measurements of symmetric positions around the focus are 
consecutive, thus reducing detrimental effects from possible long-term phase 
drifts. 

 

Figure 10-16. Left/right asymmetry maps (logarithmic scale) for different longitudinal 
positions as a function of the electron energy and glass thickness introduced. Lighter shades 
indicate dominant left emission; darker shades— dominant right emission. The maps (a) –(f ) 
correspond, respectively, to the positions: z=-1.75 mm, z=-1.0 mm, z=-0.25 mm, z=+0.25 mm, 
z=+1.0 mm, z=+1.75 mm (positive values represent positions after the focus). The phase 
difference is determined by evaluating the shift of the characteristic structures (indicated by 
the dashed lines) of the asymmetry pattern. The extension of the electron yield to higher 
energies in the central part of the focus is due to the higher intensity. 
 

Figure 10-16(a) and (f) corresponds to the outer part of the focal range. 
The strong asymmetry in the high-energy part of the spectra [above-
threshold-ionization plateau (dashed area)] changes sign while passing 
through the focus, confirming the π phase shift already discussed (see Figure 
10-15). More interestingly, Figure 10-16(b)–(e) corresponds to positions in 
the central part of the focus. The asymmetry in the plateau is partly smeared 
out, but another clear asymmetric area appears in the low-energy part of the 
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spectra [20–25 eV (dashed area)], just before the above-threshold-ionization 
plateau. Its nature is not entirely understood, but, because of being definitely 
a carrier-envelope phase effect, it can be exploited to retrieve the phase 
variation in the focus. By moving in the direction of beam propagation, i.e., 
from before to after the focus [Figures 10-16(a)–(f)], the characteristic 
pattern moves toward the left side of the graphs, i.e., toward decreasing glass 
thickness. This pattern is in full agreement with the intuitive physical origin 
of the Gouy carrier-envelope-phase shift. Indeed, in a dispersive medium 
like glass, the phase velocity exceeds the group velocity. The same situation 
occurs in the propagation of the ultrashort pulse in the laser focus [93]. Thus, 
it is not surprising that to observe similar features, less glass is needed after 
the focus with respect to a symmetric position before the focus. The Gouy 
carrier-envelope-phase shift determination can be performed simply by 
numerically evaluating the shift of the asymmetry pattern; converting the 
glass-thickness shift obtained (µm) into phase difference (rad) is then 
straightforward. 

Figure 10-17 shows the retrieved carrier-envelope phase shift for the 
positions of Figure 10-16 and for several others not shown there. For 
comparison, the Gouy phase of a Gaussian beam [Equation (12)] with an 
f/30 focusing geometry is also shown (solid line). Note that the carrier-
envelope-phase shift is not expected to follow the Gouy phase, the latter 
being a property of cw lasers. The beam in our experiments is a few-cycle 
pulse-truncated Bessel beam. The use of a spherical focusing mirror in our 
setup inevitably introduces a slight astigmatism. 

 

Figure 10-17. Retrieved carrier-envelope Gouy phase shift as a function of the propagation 
distance in the focus. The solid line is the Gouy phase of a cw Gaussian beam, shown for 
comparison. In the outer part of the focus, the electron count rate rapidly decreases, making 
detection of additional experimental points difficult. 

 
The pulses undergo the π phase shift within a few Rayleigh distances. 

Because of the rapid decrease of electron yield at lower intensities, the 
measurements were stopped at a distance of ≈2 mm before and after the 
focus. This prevented observation of the expected area of constant carrier-
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envelope phase in the outer part of the focus. However, the region of interest 
for all experiments is entirely covered, and the estimated error for the 
experimental data is relatively low (≤0.1 rad). The phase changes smoothly 
with a constant slope and does not exhibit any wiggles or irregularities, 
which is particularly important for experiments. 

10. CONCLUSIONS AND OUTLOOK 

We demonstrated the generation of intense few-cycle light pulses with a 
reproducible temporal evolution of the electromagnetic field. With these 
light wave forms, we explored the sensitivity of microscopic atomic currents 
to the timing of light-field oscillations with respect to the pulse peak. The 
short-wavelength (XUV, soft x-ray) radiation emitted by the atomic currents 
allowed determination of this timing with sub-T0/10, i.e., sub-250 
attoseconds, accuracy. The generation of intense few-cycle light with a 
reproducible and known wave form is expected to benefit the emerging field 
of attosecond physics in several ways.  

The high-frequency atomic currents, employed as a light-waveform 
detector in the current experiments, are also sources of subfemtosecond 
XUV/soft x-ray pulses [25, 26]. Therefore, the measurement and 
stabilization of the carrier-envelope phase presented in this research directly 
opens the door to generating single, isolated subfemtosecond pulses that are 
ideally suited for most spectroscopic applications. Ultrashort wave packets 
with controlled field oscillations will also benefit the techniques that have 
been introduced for attosecond metrology [26, 27] and spectroscopy [28]. 
They are indispensable to measuring the shape and chirp of subfemtosecond 
XUV or x-ray pulses [95] and to observing inner-shell atomic processes on 
an attosecond timescale [28]. In addition, control over the temporal structure 
of electron wave packets liberated by optical-field ionization also relies on 
synthesized light wave forms. Few-cycle light with controlled field 
oscillations will be able to launch an electron wave packet with well-
controlled subfemtosecond temporal structure into the continuum and 
precisely steer its subsequent motion. One intriguing scenario is to make the 
electron recollide with its parent ion and use this recollision to excite and/or 
probe molecular [96], atomic, or possibly even nuclear dynamics. Finally, 
yet another potential application area of high-intensity wave forms is 
electron acceleration in the forward direction to ultrarelativistic energies in a 
highly controlled manner. 
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Chapter 11 

QUANTUM CONTROL OF HIGH-ORDER 
HARMONIC GENERATION 
Applied Attosecond Science 

Emily Gibson, Ivan Christov, Margaret M. Murnane, and Henry C. Kapteyn 
JILA, University of Colorado and National Institute of Standards and Technology; 
Department of Physics, University of Colorado; and NSF Engineering Research Center for 
Extreme-Ultraviolet Science and Technology 

Abstract: We discuss the physical processes involved in the generation and optimization 
of extreme ultraviolet and soft x-ray light though the process of high-order 
harmonic generation. We show that by manipulating the sub-optical-cycle 
attosecond dynamics of this process using optimized waveguide structures and 
pulse shapes, we can control the energy of the emitted photons, the phase 
matching of the conversion process, and the spatial and temporal coherence of 
the light. High-order harmonic generation is a useful source of short 
wavelength light with ultrashort time duration. Thus, optimization and 
manipulation of high-order harmonic generation demonstrates control of 
electron dynamics on attosecond time scales. 

Key words: high harmonic generation, phase matching, attosecond 

Ultrafast laser technology makes it possible to generate extremely high 
field intensities above 1018 W/cm2 or, alternatively, to probe extremely short 
time durations corresponding to only a few femtoseconds [1]. One of the 
most prominent applications of very high-power, ultrashort-pulse lasers has 
been to study the regime of “nonperturbative” light-matter interactions [2]. 
At intensities above ~1014 W/cm2, the magnitude of the electric field of the 
laser radiation is comparable to the field binding an electron to an atom. In 
this regime, the strong electric field can easily ionize atoms. Once the atom 
is ionized, the subsequent motion of the free electron is controlled by the 
oscillating laser field, and the electron can easily reach kinetic energies 
many times that of the original electron binding energy. 

One of the most significant consequences of this intense laser-matter 
interaction is the process of high harmonic generation (HHG) [3]. In HHG, 
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the ionized electron recollides and then recombines with its parent ion, 
releasing a high energy photon. The energy and phase of the emitted high-
harmonic light depend on the detailed electron trajectory in the laser field—
dynamics that occur on a fraction of an optical cycle, or attosecond, 
timescale. Thus, the properties of HHG are sensitive to the field evolution of 
the driving laser [4]; in contrast, traditional nonlinear processes, such as 
second-harmonic generation, are insensitive to many aspects of the driving 
field such as the carrier-envelope offset (CEO). Detailed studies of the 
dependence of high-harmonic generation on the time-history of the driving 
laser field represent the first results from the field of attosecond science [5, 
6], an area of research that has received considerable attention in the early 
2000s [7]. Consequences of the attosecond dynamics of HHG include the 
ability to manipulate electron dynamics with attosecond precision [8-10], the 
phase matching of the conversion process (attosecond engineering) [11, 12], 
and the ability to generate pulses of light with subfemtosecond duration. The 
strong dependence on the laser field also means that HHG is sensitive to the 
CEO of the driving laser pulse [13-15]. By combining pulse shaping 
techniques with recently developed methods to control the CEO of an 
ultrafast pulse by locking the mode frequencies to a cw reference [16], it 
becomes possible to control the complete electric field of the pulse in the 
time domain with attosecond precision. This allows us to access the fastest 
time scales that are possible with modern laser technology.  

1. THE PHYSICS OF HIGH-ORDER-HARMONIC 
GENERATION 

High-order-harmonic generation results when an intense laser field 
interacts with a gas or material. An intuitive model of the process at the 
atomic level was developed by Corkum, Kulander, and others [4, 17] and is 
sometimes referred to as the “three-step” model. In the first step, the strong 
electric field of the laser suppresses the Coulomb barrier binding an electron 
to the atom, freeing the valence electron either by tunneling or “over-the-
barrier” ionization. The freed electron is then accelerated by the field. Since 
the laser field is oscillating, the electron can, with some probability, return to 
its parent ion and recombine, emitting a high-energy photon. This process 
occurs for many atoms driven coherently over several laser cycles, resulting 
in emission of higher-order odd harmonics in a coherent, low-divergence 
beam. The three-step model accurately predicts that the highest photon 
energy that can result from HHG occurs when an electron is ionized at a 
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phase of 18 degrees after the peak of the laser cycle. This cutoff photon 
energy is then predicted to be: 

pp UIE 2.3max += , (1) 

where Ip is the ionization potential of the atom and Up is the ponderomotive 
energy given by 

2222 4/ λω ImEeU p ∝= , (2) 

where e, E, m, ω, I, and λ are the electron charge, field amplitude, electron 
mass, laser frequency, intensity, and wavelength, respectively. The highest 
photon energy therefore scales linearly with the laser intensity. 

The “recollision” energies associated with the intensities required to 
field-ionize atoms can be as high as several hundred electron volts [18, 19]. 
Thus, the emitted high-harmonic photons can correspond to the combined 
energy of several hundred of the incident photons. The linear relationship 
between the cutoff and the incident intensity also presents very attractive 
scaling as compared to, for example, EUV (extreme ultraviolet) laser 
schemes where the power requirements scale as the photon energy to the 3rd–
5th power [20]. However, to take advantage of this favorable scaling, several 
challenges must be overcome. The HHG process necessarily ionizes the gas, 
generating free-electron plasma. The dispersion of the plasma causes a 
mismatch in the phase velocities of the fundamental and harmonic light, 
significantly reducing the amount of harmonic signal produced. Also, the 
plasma can defocus the laser beam, decreasing the peak intensity, and 
thereby limiting the maximum harmonic energy [21]. To date, the highest 
energy HHG emission has been achieved using short-duration laser pulses 
and noble gases with high ionization potentials that can reduce the amount of 
ionization for a given peak intensity [18, 19]. This emission can extend from 
the ultraviolet up to the soft x-ray region of the spectrum (>500 eV), making 
it an ideal source for pure and applied science such as photoemission 
spectroscopy [22], plasma interferometry [23], or metrology for optics for 
EUV lithography. 
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2. “SINGLE-ATOM” EFFECTS IN HIGH-ORDER-
HARMONIC GENERATION: MANIPULATION 
AND COHERENT CONTROL 

A simple classical picture of HHG as given by the three-step model 
accurately predicts the range of photon energies that can be obtained for a 
given incident laser intensity. However, electrons are not “classical” objects, 
and a more accurate picture of the HHG process includes the wave nature of 
the oscillating electron. A fully quantum, analytical theory of HHG has been 
derived by Lewenstein et al. [4] and has been extremely successful in 
describing both the general characteristics of HHG, such as the photon 
energy cutoff, as well as more specific characteristics such as the divergence 
properties of the generated beam [24] and the specific spectral characteristics 
of the emission [5]. Qualitatively, the spectral characteristics of HHG 
emission are a result of the fact that the ionized electron has an associated 
deBroglie wavelength corresponding to the kinetic energy acquired in the 
laser field, ph=λ , where h is Planck’s constant and p is the electron 
momentum. The emission also has a phase related to the total phase the 
electron accumulates during its free trajectory, approximately [24]  

psf Utq τωϕ −≈ , (3) 

where q is the harmonic order, ω is the laser frequency, and ifs tt −=τ  is 

the time difference between when the electron is ionized and when it 
recombines with the ion. The phase of the emitted x-rays is therefore not 
simply related to the phase of the driving laser but also includes an “intrinsic 
phase” component that can vary rapidly with intensity. The intrinsic phase 
has consequences for both the spatial and spectral emission characteristics. 
Spatially, this intrinsic phase can result in a complex spatial profile of the 
harmonic emission when generated using a beam that is converging toward a 
focus. This is in contrast to the near-Gaussian profile for HHG generated by 
a beam diverging from a focus [24, 25] or the ~100% spatial coherence of 
light generated using a waveguide configuration [26]. In the spectral domain, 
this time-varying intrinsic phase results in large frequency shifts and spectral 
broadening or narrowing of the harmonic emission [5]. 

From a nonlinear optics point of view, HHG is unique as a purely 
electronic nonlinearity with a finite time response. In many ways, HHG is 
simply an extension of nonlinear optical processes such as second-harmonic 
generation (SHG). In SHG, an electron driven in an “anharmonic” potential, 
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which is created by the crystalline configuration of the material, moves in a 
nonsinusoidal path that results in emission of radiation at the second-
harmonic frequency. This is the same for HHG, with the “anharmonic” 
potential consisting of free space with the very strong perturbation of an 
ionic core localized in a small area. The fact that the electron takes a fraction 
of an optical cycle to return to the core means that the atomic emission 
depends on the time history of the driving field over the preceding interval of 
a few hundred attoseconds. This finite response time makes it possible to 
manipulate the atomic response through quantum control techniques by 
manipulating the laser pulse shape in time. The first studies relating to 
quantum control of high-harmonic generation were simple studies of the 
effect of the chirp of the driving laser pulse on the spectrum of high-
harmonic generation [5]. HHG emission generated near the peak of the 
driving laser pulse exhibits an intrinsic-phase-induced negative chirp since 
ϕ ˜ ∝  I laser; i.e., the harmonic emission spectrum varies from blue to red in 
time. Any chirp imprinted on the laser pulse itself adds to the intrinsic chirp, 
resulting in an asymmetry in the spectral linewidth of the emission with 
respect to chirp. These experiments demonstrated a direct spectral-temporal 
coupling that is a result of the attosecond time response of the HHG 
nonlinearity.  

This phenomenon can be exploited in a dramatic way through a 
technique called intra-atomic phase matching (IAPM) by temporally shaping 
the driving laser pulse [8, 10]. A simple picture of IAPM is given in Figure 
11-1. In HHG, the radiation is emitted as a series of attosecond-time-scale 
bursts, twice each cycle of the laser field. However, for a particular spectral 
component of each burst corresponding to an individual harmonic order, the 
phase is not fixed to the driving laser but varies on a cycle-by-cycle basis as 
the light intensity increases and decreases, changing the value of the intrinsic 
phase. This effect results in a partial destructive interference that reduces the 
intensity of the emitted harmonics. 

In IAPM, the intensity of a selected harmonic is optimized by adjusting 
the shape of the laser pulse so that a nonlinear chirp is added to the light 
pulse. This pulse shaping shifts the position of the peaks in the laser field on 
a suboptical cycle basis; i.e., on timescales ≤100 attoseconds. The harmonic 
bursts from each half-cycle of the laser field can then add constructively, 
optimizing the harmonic emission intensity. IAPM thus makes it possible to 
“re-phase” the harmonic emission from an atom for a selected harmonic 
order. Furthermore, this optimization can in some circumstances be 
extremely selective, with the pulse shape chosen to optimize one harmonic 
order while suppressing the neighboring harmonics. IAPM thus represents a 
useful manipulation of attosecond time-scale electron dynamics and 
demonstrates the ability to do attosecond engineering. Another interesting 
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aspect of the IAPM process is that although it involves precise manipulation 
of a laser pulse and an electron wave function, it was not predicted 
beforehand but instead was discovered by applying learning algorithm 
techniques to optimize the HHG emission by manipulation of the laser pulse 
shape [27]. The physics of this process was subsequently explained and 
reproduced by implementing a learning algorithm in conjunction with the 
three-step model theory of HHG. This computational model reproduced the 
experiment and made it possible to deduce the mechanism behind IAPM 
[10]. Optimization of high-harmonic emission to generate nearly 
monochromatic radiation (i.e., primarily a single harmonic) is desirable for 
many applications in ultrafast spectroscopy using EUV radiation. Other 
recent, closely related work has shown that the spectral and temporal 
characteristics of high-harmonic radiation are sensitive to the carrier-
envelope offset of the driving laser pulse [15]. 

 

 

Figure 11-1. Illustration of intra-atomic phase matching. When the optimized pulse shape is 
used, a particular harmonic constructively adds over each half cycle (from [9]). 

3. PHASE MATCHING OF HIGH-HARMONIC 
GENERATION 

Although the single-atom effect of high-order harmonic generation 
presents intriguing physics, applications of HHG radiation as a “table-top” 
coherent soft x-ray source depend upon optimizing the total flux generated 
from an ensemble of atoms. In nonlinear optical processes, the conversion 
efficiency from the fundamental to the harmonic field is enhanced by phase 
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matching. In its simplest manifestation, phase matching will occur when the 
driving laser and the harmonic signal travel with the same phase velocity, so 
that signal generated throughout the conversion region adds constructively. 
In HHG, since the ionization level is changing throughout the pulse and the 
increasing density of free electrons has a large effect on the phase velocity of 
the driving laser, phase matching can only be obtained in limited time 
windows in the pulse. Enhancement of the flux from HHG is possible by 
guiding the driving laser with a hollow-core, gas-filled waveguide [28, 29]. 
The laser light is guided by glancing incidence reflection, allowing 
propagation over an extended interaction length with a well-defined intensity 
and phase profile. The fundamental and harmonic light propagate through 
the waveguide with phase velocities determined by the dispersion of the 
neutral gas, the plasma, and the waveguide at the two different frequencies. 
The difference in the wave vectors of the fundamental and harmonic light 
results in a phase mismatch 
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where λ, q, a, 11u , η, P, Natm, and re are the fundamental wavelength, 
harmonic order, waveguide radius, the first zero of the Bessel function J0, 
ionization fraction, gas pressure in atmospheres, number density at 1 atm, 
and classical electron radius, respectively; )/()( qλδλδδ −=∆  is the 
difference in the index of refraction at the fundamental and harmonic 
frequencies of gas at 1 atm. Here, the small contribution from the nonlinear 
refractive index is neglected. The waveguide allows control over the 
experimental parameters, such as gas pressure and radius, to optimize phase 
matching. 

For low levels of ionization, the pressure can be adjusted so that the 
waveguide and plasma dispersion balance the dispersion due to the neutral 
atoms, which is of opposite sign, and phase matching can be achieved (∆k = 
0). Since phase matching is accomplished by adjusting the phase velocity of 
the fundamental and the harmonic radiation to travel at a phase velocity ~c, 
the bandwidth of this phase matching is very broad, encompassing many 
harmonic orders. However, for higher intensities, the changing ionization 
during the pulse means that there is a narrow time window for phase 
matching so that only the harmonics generated in that window are enhanced. 
When phase matched, the harmonic signal increases quadratically with 
interaction length until it is limited by background absorption of the gas. 
This method of phase matching has limitations. When a large enough 
fraction of the gas is ionized, the plasma dispersion is greater than the 
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neutral dispersion for any pressure. Thus phase matching is no longer 
possible, and the phase velocity of the fundamental light exceeds that of the 
generated harmonic signal. The critical ionization fraction is [30] 
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Figure 11-2 plots the pressure required to achieve phase matching as a 
function of the ionization fraction. 

 

Figure 11-2. Plot of pressure for phase matching as a function of normalized ionization 
fraction (η/ηcr). Beyond critical ionization, phase matching is no longer possible. 

For low intensities, and therefore lower harmonic orders, where the 
ionization fraction is small, phase matching is primarily achieved by 
balancing the waveguide dispersion with the neutral gas dispersion. At the 
higher intensities required to generate higher energy harmonics, however, 
the plasma term becomes significant and higher neutral gas pressures are 
needed to compensate. Beyond the critical ionization, phase matching is not 
possible [13, 31]. The optimum pressure also depends on the diameter of the 
waveguide; for the case of “plane-wave” propagation without a waveguide 
in a uniform-density gas, phase matching will occur when the fractional 
ionization equals the critical ionization [30]. However, this requires either 
very high pulse energy or high gas pressure and results in spatially varying 
phase matching that can create a complex spatial mode of the harmonic 
emission. In contrast, the use of the hollow waveguide allows for better 
phase matching, resulting in build-up of an EUV beam with a spatial mode 

∆k = 0 

No Phase- 
Matching 
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of extremely high coherence [26, 32]. In 2004, stable beams of EUV light 
with full spatial coherence had only been generated using the hollow 
waveguide geometry. 

Another consequence of the time-varying–phase-matching conditions is 
sensitivity to the CEO of the pulse, both for few-cycle pulses and also in the 
case of light pulses with durations of tens of femtoseconds [13, 15, 33]. At 
the peak of the pulse, the ionization fraction is increasing significantly in a 
series of steps over each half cycle, so that the phase-matching conditions 
vary rapidly with time. The ionization as a function of time for a particular 
driving laser pulse can be calculated using the Ammosov-Delone-Krainov 
(ADK) tunneling ionization rates [34]. Figure 11-3 shows the fractional 
ionization of argon gas for two different values of the CEO. The amount of 
ionization created at each half-cycle is dependent on the CEO; however, the 
final level of ionization is the same for both pulses. 
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Figure 11-3. Calculation of the fractional ionization of argon using ADK ionization rates for a 
20 fs pulse with peak intensity of 2.2 x 1014 W/cm2 for a cosine and sine pulse. 

For a given harmonic order, tuning the pressure can allow phase 
matching at different half cycles of the pulse. Durfee et al. observed 
evidence of the CEO effect on phase-matching [13]. Figure 11-4(a) shows 
the calculation of the pressure dependence of the flux of the 29th harmonic 
for one value of the CEO for a 20 fs pulse. The different peaks correspond to 
optimal phase matching at different ionization “steps.” The exact position of 
these peaks depends on the intensity, the pressure, and the CEO of the pulse. 
For a fixed gas pressure, the positions of the peaks move around as the 
phase-matching conditions change with the CEO. Figure 11-4(b) shows the 
experimentally measured 29th order harmonic signal. In the pressure region 
corresponding to phase matching at the peak of the pulse, where the amount 
of ionization is dependent on the CEO, the signal shows a strongly 

� 

� 
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oscillating behavior, consistent with the effect of a rapidly varying CEO. 
This fluctuation is only observed at higher pressures because, at lower 
pressures, exact phase matching between the fundamental and the harmonic 
is never achieved, and thus the relative ionization and CEO are averaged 
along the length of the waveguide. Rapidly increasing levels of ionization, 
together with a stable carrier-envelope offset, may make it possible to phase 
match only the emission from a particular single half cycle, giving a single, 
enhanced attosecond-duration pulse. 

 

Figure 11-4. (a) Calculation of the flux of the 29th harmonic for a 20 fs laser pulse and peak 
intensity of 2.2 x 1014 W/cm2 as a function of argon pressure using a 3 cm waveguide. (b) 
Experimentally measured flux for the same conditions as (a) (from [29]). 

4. QUASI-PHASE MATCHING OF HIGH-
HARMONIC GENERATION 

Implementing high-order-harmonic generation in a waveguide geometry 
has many advantages. However, normal phase matching in a straight 
waveguide is limited to relatively low levels of ionization below the critical 
ionization fraction (typically 0.5%, 1% and 5% in He, Ne and Ar, for 
example). This restricts the enhancement of HHG emission to photon 
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energies < 80 eV for a 20 fs pulse. At higher photon energies and ionization 
levels, the plasma contribution becomes much greater than the neutral gas 
contribution, making phase matching impossible. In the absence of phase 
matching, the harmonic emission builds up periodically over a coherence 
length and then interferes with out-of-phase light generated in the next 
section of the nonlinear medium, drastically reducing the total flux.  

In recent work, we showed that the inability to phase match in high 
ionization levels can be overcome for the first time by applying quasi-phase 
-matching (QPM) techniques to the HHG process. The ability to quasi-phase 
match HHG significantly extends the range of photon energies where it is 
possible to generate flux efficiently. The process of QPM was first proposed 
in 1962, shortly after the birth of nonlinear optics. Armstrong et al. [35] 
proposed a “phase-corrective scheme,” whereby the phase mismatch in a 
nonlinear optical process is periodically corrected by introducing a 
periodicity in the medium itself of the coherence length. For example, quasi-
phase matching of second-harmonic light can be achieved by periodically 
reversing the crystal orientation, and therefore the polarity of the nonlinear 
response, so that a 180-degree phase shift is introduced every coherence 
length. This reverses the destructive interference, allowing continual build-
up of the harmonic signal. Practical implementation of this concept awaited 
the development of crystal-poling techniques in the mid-1990s [36]. 

Unfortunately, the generation of coherent light at EUV wavelengths must 
take place in a gas or on a surface, making the use of standard QPM 
techniques impossible. Fortunately, the extreme nonlinear nature of HHG 
makes alternate approaches possible. For example, quasi-phase matching of 
the frequency conversion process can be achieved by restricting HHG to 
regions where the signal will be in phase and add constructively. Some ideas 
for quasi-phase matching of HHG include using a modulated density gas or 
plasma to periodically change the nonlinear susceptibility [37]. Another 
proposal suggests using counter-propagating light to modulate the intensity 
of the driving laser [38]. Since both the intrinsic phase and the amplitude of 
the harmonic emission vary quite dramatically with laser intensity, even 
modest periodic modulations of the laser intensity can result in a phase 
modulation of the generated harmonic light. Experimentally, quasi-phase 
matching of HHG was first implemented using a technique proposed by 
Christov et al. [11]. In this technique, a hollow-core waveguide is modified 
to have a periodically changing inner diameter to modulate the driving laser 
intensity. Figure 11-5(a) shows a calculation of the signal of the 95th 
harmonic as a function of propagation length in a straight waveguide using a 
15 fs pulse with a peak intensity of 7 x 1014 W/cm2 and 1 Torr of argon. The 
calculation uses three-dimensional propagation models, and the harmonic 
generation signal is calculated using a quasi-classical approximation for the 
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dipole moment. Figure 11-5(b) shows the same calculation using a hollow-
core waveguide with a 0.5 mm period sinusoidal corrugation that changes 
the laser intensity by 5%. The modulated waveguide causes a dramatic 
enhancement in the final signal (note the different scales of the two plots). 

We can understand the basic physics for enhancement of the HHG signal 
by using classical nonlinear optics theory for quasi-phase-matching. In a 
simplified model of harmonic generation, the field of harmonic order q, after 
propagating a distance L in a nonlinear medium, is related to the phase 
mismatch, k∆ , by  

dzezdzEE kzi
L

n
q

∆−
∫∝ )()(
0

ω , (6) 

where ωE  is the fundamental field, n is the effective order of the nonlinear 
process, d(z) is the nonlinear coefficient, and ∆k is the phase mismatch 
calculated in Equation (4). In our case, the nonlinear coefficient can be 
expressed as a general periodic function of z with period Λ [36] 
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where Λ= /2 mKm π  is the effective wave vector of QPM, Λ is the 
modulation period of the quasi-phase matching, and m is the order of the 
QPM process. Equations (6) and (7) show that the harmonic signal will be 
enhanced when kKm ∆≈ . The signal enhancement is greatest for m = 1, but 
QPM still enhances the generated HHG signal for higher values of m. 
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Figure 11-5. (a) Calculation of the signal of the 95th harmonic for a straight waveguide as a 
function of propagation distance. (b) Calculation for a 0.5 mm period modulated waveguide 
(from [11]). 

The first set of experiments demonstrating quasi-phase matching of HHG 
showed a dramatic extension of the harmonic spectrum using modulated 
waveguides [12]. In this experiment, 25 fs duration pulses from a high 
repetition rate (2–5 kHz, 1 mJ/pulse) Ti:sapphire laser system operating at 
760 nm [39] were focused into 150 µm diameter modulated-hollow-core 
waveguides filled with various gases. The modulated waveguides used in 
this experiment were produced using precision glass-blowing techniques 
starting with a straight hollow-core fiber (also 150 µm in diameter). The 
modulations were approximately sinusoidal, with a radial depth on the order 
of 10 microns, corresponding to a 13% modulation of the fiber radius. The 
initial experiments used waveguides with modulation periods varying from 
1–0.5 mm. Figure 11-6 shows the experimentally measured HHG spectra 
from He for three different modulated-waveguide periodicities. As the 
modulation period is reduced from 1 mm to 0.75 mm to 0.5 mm, the highest 
observable harmonic energy increases from 112 eV to 175 eV. 
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Figure 11-6. Experimental harmonic spectra from 111 Torr He with a driving pulse of 25 fs 
and peak intensity ~5 x 1014 W/cm2 for different modulated-waveguide periodicities (from 
[12]). 

The significance of QPM is that it permits phase matching of HHG at 
higher ionization levels and hence higher photon energies than was 
previously possible. This effect becomes apparent from a calculation of the 
coherence length that results from the mismatch in the phase velocity of the 
fundamental and harmonic because of ionization. At high ionization levels, 
the phase mismatch is predominantly due to the plasma dispersion and is 
given by 
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where λ is the laser wavelength and ne is the electron density. For example, 
for fully ionized argon at a pressure of 1 Torr, ne = 3.5 x 1016 cm-3, giving ∆k 
~7550 m-1 for the 95th harmonic order (150 eV). Therefore, the coherence 
length, Lc, given by Lc = π/∆k, is ~0.4 mm. Thus, very substantial levels of 
ionization can be compensated for by using QPM with modulation periods in 
the range of 1–0.25 mm that can be readily manufactured with glass-blowing 
techniques. 

In initial experiments, the ionization level in helium was still relatively 
low (~1%) and only ~4% in argon. However, more recent experiments have 
demonstrated QPM in fully ionized gas. The results of more recent 
experiments performed at higher laser intensities of 1.6 x 1015 W/cm2, in 9 
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Torr of Ne gas, using 0.25 mm-modulated and straight waveguides, are 
shown in Figure 11-7 [40]. At these intensities, a simple calculation of the 
cutoff harmonic energy, given in Equation (1), yields an expected cutoff of 
330 eV. However, the observable harmonic emission from the straight 
waveguide [Figure 11-7 (lower curve)] only extends to around 225 eV. In 
contrast, the harmonic emission from the 0.25 mm-modulated waveguide 
(upper curve) is brighter and extends to significantly higher energies, where 
the carbon edge at 284 eV is clearly visible. 

 

Straight 
fiber 

Modulated 
fiber (0.25mm) 
 

Carbon K-edge 

 

Figure 11-7. Comparison of experimental harmonic spectra for neon for straight and 
modulated fibers [40]. 

Using the expression in Equation (8), which is valid at high ionization 
levels, we calculate ∆k ~90,000 m-1 for the 183rd harmonic order at the C 
edge (284 eV) for ~60% ionized Ne. The effective wave vector for first-order 
QPM for a modulation period of 0.25 mm is K1 ~25,000 m-1. Again, the 
harmonic signal will be enhanced when kKm ∆≈ . For the harmonics in Ne 
near the C edge, the large phase mismatch of ~90,000 m-1 can be 
compensated for using third or fifth order (m = 3,5) QPM. For these cutoff 
harmonics, the phase mismatch above 225 eV is large enough that the signal 
can only be observed using a modulated waveguide and is not seen in a 
straight waveguide. 

 Based on conservative estimates of detection efficiency, filter 
transmission, and measurements of grating efficiency, we determined a 
minimum flux of between 106–108 photons/sec in a 10% bandwidth at the C 
edge. This flux may be sufficient for biological imaging applications, and a 
number of improvements should further increase it. 

The data of Figure 11-7 illustrate that the highest observed harmonic 
orders are not limited by the Ip + 3.17 Up relation but by ionization-induced 
phase mismatch. The modulated waveguide compensates for this phase 
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mismatch, making it possible to observe higher harmonics. By the peak of 
the laser pulse, calculations indicate that Ne should be ~70–90% ionized, 
which is well above the ionization level at which it has been previously 
possible to demonstrate phase-matching enhancement. Although past work 
observed HHG from He in the water window, this process was not phase 
matched and produced significantly lower signal levels [18, 41]. 

In the future, since the highest HHG photon energy scales linearly with 
laser intensity, using very reasonable laser parameters (i.e., pulse durations 
of 10 fs, intensities of 5x1015 W/cm2, and waveguides with 0.1 mm 
periodicity), it will be possible to generate high-order quasi-phase-matched 
light at photon energies beyond 1 keV. 

5. CONCLUSION 

Recent advances in laser technology and in our understanding of electron 
dynamics in strong fields have resulted in enormous progress in the quest to 
develop practical coherent light sources at wavelengths much shorter than 
visible light. The use of quantum control techniques makes it possible to 
generate light with a spectrum that can be engineered for specific 
applications and to allow for the generation of attosecond-duration pulses. 
Using quasi-phase-matching techniques, there is a clear path to pursue for 
generating flux sufficient to implement a table-top soft x-ray microscope and 
to reach multi-keV energies. 
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APPLICATIONS OF ULTRAFAST LASERS 
Sensors of extreme sensitivity 
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Abstract: We discuss implementations of mode-locked ring lasers, their stabilization via 
passive optical cavities, and their applications to the development of ultra-
sensitive sensors.  

Key words: mode-locked laser, ring laser, sensors, optical parametric oscillator, optical 
cavity stabilization 

The frequency of an electromagnetic wave is a quantity that lends itself 
to the most precise measurement of all physical observables. Stabilized cw 
lasers have led to accurate and precise length and time measurements, with 
an accuracy reaching one part in 1015 [1]. By transposing the stability of a 
single frequency laser to more than 1,000,000 equidistant frequencies, the 
mode-locked laser opens the way to new metrological applications. Some of 
these applications (optical frequency measurements, atomic clocks, extended 
combs leading to attosecond pulses, nonlinear optics, and attosecond 
metrology) have been covered in the previous chapters. The applications 
discussed in this chapter relate to the remarkable phase relationship that 
exists across the million equidistant modes. As a consequence of that phase 
relationship, it is possible to make phase measurements with an 
unprecedented accuracy. Unlike standard phase measurements that are made 
by measuring the arccos of an interference fringe (essentially an intensity 
measurement), the phase measurements presented here always convert the 
phase into a frequency. We will discuss in Sections 1-4 how mode-locked 
combs lead to practical sensing applications such as measurements of 
displacements, fields, indices of refraction, and elongation. The sensitivity 
limit of these applications can be extended through stabilization. The 
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stabilization technique outlined in Section 5 can lead to extremely sensitive 
measurements of dispersion, taking advantage of the phase relation between 
modes across a very large bandwidth (Section 6). Finally, future prospects of 
stabilizing a ring laser for all sensing applications are discussed in Section 7.  

1. MODE LOCKING 

The purpose of this introduction to “mode locking” is to bring the reader 
back to the real world of the typical mode-locked laser, which is quite 
different from the highly sophisticated sources discussed in this book. The 
expression mode locking suggests the concept of equidistant, longitudinal 
modes of a laser cavity emitting in phase. This was, in fact, the early 
interpretation given for cw lasers emitting a train of pulses at the cavity 
repetition rate. As detailed in the previous chapters, this frequency 
description of mode locking is equivalent to having a continuous single 
frequency carrier, sampled at equal time intervals by an envelope function, 
in the time domain. Unless sophisticated stabilization techniques (described 
in earlier chapters) are used, an ordinary mode-locked laser does not fit the 
above description.  
 Each cavity mirror is subject to vibrational motions of its support. A 
typical mechanical resonance is around 100 Hz and has motion amplitude 
ranging from 0.1 to 1 µm. Because of this motion, the position of the 
longitudinal modes of the cavity is not fixed in time. The intracavity laser 
pulse follows this change in time, because it is Doppler-shifted at each 
reflection from the vibrating mirror. For this reason, one can no longer talk 
about an output pulse train made up of identical pulses. The difference 
between the properties of the radiation from an ultrastable “frequency comb” 
as opposed to the ordinary “mode-locked laser” can be established in a 
coherence measurement. Coherence can be measured with a Mach-Zehnder 
interferometer, as sketched in Figure 12-1. In the case of a single pulse, no 
coherence can be measured for an optical delay of the interferometer 
exceeding the pulse duration. In the case of a pulse train, as the delay of the 
Mach Zehnder is being scanned, interferences may occur for delays equal to 
an integer multiple m of the pulse spacing. In a standard mode-locked laser, 
the fringe visibility decays rapidly to zero with increasing m. This is because 
the carrier frequency is Doppler-shifted at each round trip, and the pulse 
spacing is not constant because of mirror motion. In the frequency domain, 
there is no longer a perfect comb of delta-function modes in phase.  
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Figure 12-1. Coherence measured by a Mach-Zehnder interferometer. (a) In the case of a 
regular pulse train, by providing the near perfect frequency comb as discussed in previous 
chapters, interferences could be observed even in a delay of the interferometer approaching 1 
s, or 14 orders of magnitude larger than the pulse duration. (b) The coherence of an unknown 
source A can be measured by optical beating with a reference source B, provided both sources 
have the same repetition rate. An optical delay is required to ensure that the pulse of each 
train interfere at detection. 

A Mach-Zehnder interferometer is obviously not a practical instrument 
for measuring the coherence of a pulse train over many interpulse spacings. 
As described in the previous chapters, it is possible to have a pulse train 
coherent over delays 14 orders of magnitude larger than the pulse duration. 
Another method to measure the coherence of source A is to compare it with a 
perfectly coherent source B with the same repetition rate [Figure 12-1(b)]. If 
two sources of the same repetition rate but different carrier frequencies are 
made to interfere on a detector, a beat note at the difference between the two 
carrier frequencies will be observed [2]. The inverse of the bandwidth of this 
beat note is the coherence time of source A. A convolution of the bandwidths 
of each source is involved if source B is not perfectly coherent.  

An example of a beat note between two pulse trains of the same 
repetition rate, but different carrier frequency, is shown in Figure 12-2.  
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Figure 12-2. (a) Beat note recorded between two femtosecond pulse trains of the same 
repetition rate. (b) Fourier transform of the same recording, showing a bandwidth of only 3 
Hz, or 0.8 Hz broader than the sampling time limit. 

It may seem like a “tour de force” to achieve such a degree of 
stabilization as to record a coherence time of 0.3 s for a comb of fs pulses. 
Indeed, this bandwidth, obtained for an unstabilized mode-locked laser, is 3 
orders of magnitude narrower than that of a single mode of a frequency 
comb stabilized to a reference cavity [3]. The measurement for Figure 12-2, 
however, was made with an unstabilized laser. The “trick” in this 
measurement is that the two beams being interfered have individually low 
coherence, but the fluctuations in repetition rate and carrier frequency of the 
two lasers are correlated. The two beams are the outputs corresponding to a 
clockwise and a counterclockwise circulating pulse in a ring cavity. 
Therefore, the same fluctuations in the laser apply to the two laser beams 
since both share the same geometrical mode of the cavity. The properties of 
such a mode-locked bidirectional ring laser are discussed in Section 2.  
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Figure 12-3. Topological representation of a mode-locked ring laser. The pulse envelopes 
overlap at the same location of the cavity at each round trip. 

A topological representation of a mode-locked ring laser is given in 
Figure 12-3. Two femtosecond pulses circulate in opposite sense in the 
cavity, crossing at each round trip at the same point in the cavity. In general, 
a nonlinear element, such as a saturable absorber, forces the pulses to meet at 
a fixed point. The average group velocity is the same for the counter-
circulating beams. The phase velocity, however, may differ for the two 
directions of circulation. Therefore, the carrier frequency for the two 
directions may or may not be identical. If the two carrier frequencies are 
equal, a standing wave is formed in the cavity at the pulse crossing. If the 
frequency of the clockwise circulating pulse is slightly different from that of 
the counterclockwise pulse, the interference pattern of the two waves moves 
under the crossing envelopes (top left, Figure 12-3). Therefore the phase of 
the interference pattern with respect to the fixed envelope changes at each 
round trip. It is that change of carrier-to-envelope phase, at each roundtrip, 
that is being measured by the beat note between the two outputs. At each 
round-trip, the clockwise and counterclockwise pulses come to the same 
position (because the group velocity is the same for both directions). Let us 
assume that at a given round-trip index, i, the interference pattern has the 
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phase φ0 with respect to the envelope. At the next round-trip, 1i + , the 
phase of the interference with respect to the envelope is φ0 + ∆φ.  

Even though the cavity perimeter fluctuates by as much as a wavelength 
during the measurement and the comb mode is imperfect, the interference 
pattern has a bandwidth of only of the order of a few Hz. In fact, in this 
measurement, the interference pattern is not determined by the total 
fluctuation of the cavity but by the fluctuation in difference in clockwise vs 
counterclockwise perimeters during each single roundtrip. A difference in 
perimeter ∆P between the clockwise and counterclockwise circulating beams 
causes a beat note ∆ν given by [4]:  

P

P∆
ν
ν∆ = , (1) 

where P is the perimeter of the ring laser and ν  the optical frequency. A beat 
note ∆ν of 3 Hz corresponds to a perimeter difference ∆P of P x 3 Hz/ν ≈ 
10-14 m. A mirror position fluctuation of 10-14 m during a round-trip time of 
10 ns corresponds to a motion of 0.01 µm in a mechanical resonance period 
of 10 ms. To further reduce the bandwidth of the beat note, it is necessary to 
suppress the fluctuations that cause a difference in time of arrival that, in 
turn, will cause a difference in perimeter between the two circulating pulses 
during any round trip. Stabilization of the cavity perimeter may achieve the 
goal of reducing the beat note bandwidth. The type of stabilization required 
will be discussed in Section 7, which follows a discussion of the applications 
of the ring laser.  

3. RING LASERS AS SENSORS 

The detection of the beat note between the two outputs of a mode-locked 
ring laser leads to numerous sensing applications of exceptional sensitivity. 
The “sensor” consists of a mode-locked ring laser operating in a 
bidirectional mode and a detector located at an equal optical path distance 
from the intracavity pulse crossing point, as sketched in Figure 12-4. To 
avoid gain competition and have equal energy for the two counter-
circulating intracavity pulses, the amplifying medium should be located 1/4 
cavity perimeter away from the pulse crossing point.   
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Figure 12-4.  The general configuration of the sensor is that of a mode-locked ring laser and a 
detector located at equal optical path from the pulse crossing point, via the clockwise or 
counterclockwise direction of circulation. The gain medium is located at 1/4 cavity perimeter 
from the pulse crossing point. S is the sample of which the characteristics have to be 
determined. An eventual excitation of the sample is applied exactly at the cavity round-trip 
time. 

There are three types of detection that can be performed: (1) 
Measurements of nonreciprocal effects, in which the “sample” can be the 
laser itself (rotation sensing), a flowing fluid (motion measurement by 
Fresnel drag), a material with a high Verdet constant (magnetic field 
measurement), or a resonant atomic vapor (intracavity phase spectroscopy); 
(2) changes of cavity optical length externally synchronized such as electro-
optic effect, displacement due to phonons, electric field measurements, or a 
nonlinear medium (measurement of nonlinear index); and (3) monitoring of 
continuous small motions  

The first type of response exists also with cw lasers, but, with mode-
locked ring lasers, the sensitivity is not limited by a dead band. The next two 
types of response are unique to mode-locked ring lasers, for which the 
detection is not limited to nonreciprocal effects. While case (2) above 
requires a signal that can be modulated at the frequency of the cavity 
repetition rate, a continuous or slow drift can also be detected [case (3)] by 
sending the two intracavity pulses through separate pathways using electro-
optical means [5].  
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3.1  Case (1): nonreciprocal effects 

Without the need for adding any intracavity element, the device of Figure 
12-4 can be used for rotation sensing. The rotational beat note response ∆νR 
is related to the rotation of the laser (angular velocity ΩR) around its axis by:  

RR P

A Ω
λ

ν∆ 4= , (2) 

where A is the ring area. A large area to perimeter (A/P) ratio is desirable to 
have an optimum sensitivity to rotation. For applications where rotation 
sensing is not desired, a figure-of-8 laser with a net-zero area is the preferred 
geometry. Since the femtosecond ring laser acts as laser gyroscope without a 
dead band, the sensitivity to rotation is only limited by the bandwidth of the 
beat note, itself directly related to the stability of the resonator. Without 
active stabilization of the cavity, the 3 Hz bandwidth of the beat note of the 
Ti:sapphire ring laser shown in Figure 12-2 corresponds to a sensitivity to 
rotation of 0.2 degrees/hour, which compares favorably with the best 
navigational optical gyroscopes. Stabilization of the cavity perimeter would 
improve this figure by at least three orders of magnitude.  

Rotation is not the only effect that causes a differential change in carrier 
frequency for the counter-circulating pulses. The beat note is extremely 
sensitive to air flows through the Fresnel Drag effect. The first evidence of 
nonreciprocal response in a ring mode-locked dye laser was a measurement 
of air flow through the Fresnel drag [6]. Very small air currents (air 
velocities of the order of 1 mm/s) can also account for the observed beat note 
bandwidth in Figure 12-2.  

Magnetic field detection requires the insertion of a material with a high 
Verdet constant in the ring cavity, as with sample S sandwiched between two 
quarter-wave plates in Figure 12-4. The clockwise and counter-clockwise 
circulating pulses become, respectively, right and left circular polarized in 
the sample. In presence of a magnetic field, there is a difference in optical 
path ∆P between the two senses of circulation, resulting in a beat note 
proportional to the magnetic field. This effect can be particularly large in the 
presence of resonance. Optimal magnetic field sensitivity requires the use of 
a material for which the index change due to a magnetic field is maximal. 
Atomic vapors, such as used in potassium magnetometers [7], have a large 
resonant Faraday rotation, hence a large magnetic field-induced change in 
index for circularly polarized light. These vapor magnetometers have been 
used successfully in aerial mapping of the earth’s magnetic field and to 
locate minerals, in particular magnetic iron deposits and nickel deposits [8]. 
The beat note response of the ring laser is significantly more sensitive to 
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magnetic field than the extracavity measurement performed in the potassium 
magnetometer [7] and should approach the sensitivity of the superconducting 
weak link detector or SQUID [9]. The latter has the disadvantage that it 
provides only microscopic information and has a limited dynamic range.  

To reach a better sensitivity than the superconducting magnetometer, it is 
necessary to stabilize the laser to the atomic line selected as magnetic field 
sensor. Stabilizing a ring laser that produces a continuous train of ultrashort 
pulses is a very challenging task, which will be discussed in Section 7.  

Intracavity spectroscopy is the last example of nonreciprocal 
measurement that, unlike the previous ones, requires the full mode comb 
structure of the mode-locked laser. In the case of the atomic vapor used in 
magnetometers, the level structure is a Λ , of which each branch is near 
resonance with one of the counter-circulating pulses. The two counter-
circulating pulses are thus probing the near resonant dispersion of the sample 
S. Doppler-resolved near-resonant spectroscopy can be performed by 
recording the beat note while linearly scanning the carrier frequency of the 
mode-locked train in one direction. This experiment applied to samarium led 
to the first observation of the dispersion of the dark resonance [10].  

3.2  Case (2): reciprocal effects that can be synchronized 
to the cavity repetition rate 

In Figure 12-4, an arrow at the sample S indicates a possibility of 
changing some property of a cavity element with the same periodicity as the 
time of arrival of one of the intracavity pulses at that location. The 
synchronization can be externally applied (through a detector monitoring the 
pulse rate) or self-induced, as in the measurement of a nonlinear index. If the 
sample S in Figure 12-4 has an intensity dependent index of refraction n(I), 
there will be a contribution to the beat note given by: 

( ) ( )( )−−+≈= InIn
d

RT λ
π

τ
φ∆ν∆ 2

, (3) 

where I+  and I- are the beam intensities at the sample for the clockwise and 
counterclockwise circulating pulses, respectively. Equation 3 is valid only in 
the approximation that the sample thickness d is sufficiently small so that the 
intensities of each beam can be assumed to be constant in the sample. The 
difference  ( ) ( )−−+ InIn  can be varied by translating the sample along the 
beam axis between two lenses or spherical mirrors [11]. An example of 
measurement of the nonlinear index of lithium niobate with an optical 
parametric oscillator ring laser can be found in Reference [12].  
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The best sensitivity in these measurements can be achieved when all 
other contributions to the beat note can be eliminated, in particular the 
nonreciprocal effects listed above. The topology least sensitive to all 
nonreciprocal effects is the linear limit of an elongated ring. Instead of a 
clockwise and counterclockwise circulating pulse, in this “linear ring” two 
pulses circulate simultaneously, meeting exactly in the middle of the 
resonator. As with the ring laser sensor, a beat note is measured between the 
output pulse trains corresponding to each of these pulses. Unlike the case of 
a ring laser, the phase shift is the same for either of the intracavity 
circulating pulses because they travel through the same optical elements in 
the same order. There is therefore no bias beat note. To measure the electro-
optic coefficient of a sample S inserted in this cavity, an electric field is 
applied at the cavity round-trip rate (1/2 of the pulse rate). To observe a beat 
note between the two interfering pulse trains requires a voltage only in the 
milliVolt range to be applied to the sample [13], leading to the most 
sensitive and accurate method to determine an electro-optic coefficient.  

Figure 12-2 indicates that the sensitivity to the position of a reflecting 
surface is of the order of 0.001 Å. One immediate application is the study of 
displacements associated with ultrasound phonons, which can be produced 
in a coating synchronously with the cavity repetition rate. Other applications, 
such as monitoring the growth rate of a crystal or optical scanning 
nanoscopy, require a similar sensitivity to slow-moving displacements.  

3.3 Case (3): reciprocal effects, slow motions 

Either in the ring laser or in its linear limit, an electro-optic device can be 
inserted in the cavity to split the path of two circulating pulses, sending one 
through the sample to be analyzed and the other through a reference path [5], 
which can be stabilized to a reference cavity. Unlike the previous 
measurement, a stable cavity is not a sufficient attribute to perform accurate 
measurements. As will be seen in Section 5 on stabilization, the reference 
cavity may drift; hence there would be an ambiguity in the measurement: is 
the change in beat note reflecting an elongation of the sample or of the 
reference cavity? Thus this type of measurement requires accuracy (long-
term stability) in addition to short-term stability through the reference cavity. 
The solution is to use properties of atomic transition to accurately fix a 
reference repetition rate and carrier frequency [14].  
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Figure 12-5. Illustration of the intracavity optical parametric oscillator (OPO) pumped by the 
Ti:sapphire laser. Four LaKL21 prisms are incorporated in the pump cavity to compensate for 
the group-velocity dispersion (GVD) from the Ti:sapphire crystal, the Periodically Poled 
Lithium Niobate (PPLN) crystal, and other intracavity elements such as lenses and mirrors. 
This four-prisms configuration was necessitated by the desire to have large GVD 
compensation (needed because of the large positive GVD of LiNbO3) and a reasonably short 
cavity length (1/2 of the perimeter of the OPO cavity). The main control of the GVD 
compensation is the prism spacing L2. Two quantum wells (MQW) of AlGaAs on top of a 
mirror structure are used in the cavity as a saturable absorber to mode lock the laser. 

Most measurements with ring laser sensors have been performed with 
either dye lasers [6] or Ti:sapphire lasers [4, 11, 13] mode locked with 
flowing saturable absorbers. Such systems are appropriate for demonstration 
purposes, but the future is for all-solid-state compact systems that can be 
readily stabilized. Some initial results on the most promising system, an 
intracavity-pumped Optical Parametric Oscillator (OPO) ring, are presented 
here. A synchronously pumped OPO offers the possibility of decoupling 
relative phase and repetition rates of the oscillating signals. The repetition 
rate of the OPO signal is equal to that of the pump laser and can therefore be 
controlled through stabilization of the mode spacing of the pump laser. The 
carrier frequency of the OPO is directly determined by the OPO cavity 
length. The position of the crossing point of the two circulating pulses in the 
OPO is simply determined by the timing of two successive pump pulses sent 
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in opposite directions. It is essential that the OPO crystal be part of the pump 
cavity. Only such an intracavity-pumped configuration can ensure that the 
OPO gain volumes for either direction are directly superimposed (because 
they share a common mode of the pump cavity). The operation of such a ring 
OPO has been demonstrated [15]. The cavity configuration of such an OPO-
pumped intracavity by a linear Ti:sapphire laser is sketched in Figure 12-5.   

The Ti:sapphire laser radiation consists of 200 fs pulses centered at 785 
nm, with a repetition rate of 95MHz. The OPO crystal is a 3 mm Brewster-
cut PPLN crystal (HC Photonics, Taiwan) with a period of 19.4 mm  (quasi-
phase matching for the signal near 1.36 mm) that is temperature stabilized at 
408 K to prevent photorefractive damage. The cavity mirrors and crystal are 
located away from the two crossing points of the ring.   
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Figure 12-6. Beat frequency (a) taken by a sensitive InGaAs detector (D in Figure12-5) and 
(b) its Fourier transform. 

The observed beat frequency is due to the intensity difference of the 
intracavity beams. The pump in one direction is attenuated by depletion 
through the crystal and transmission through four antireflection-coated 
surfaces and one reflective coating before coming back to pump into the 
other direction. The intensity difference, combined with the nonlinear 
refractive index of the lithium niobate crystal, results in a differential phase 
shift between the counter-circulating OPO beams—hence a beat note. The 
narrow bandwidth of the beat note in Figure 12-6 demonstrates that indeed, 
intracavity pumping ensures that the gain for the two directions originates 
from the same point in the OPO crystal. The absence of any moving part and 
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the fundamental absence of a dead band make the intracavity-pumped OPO 
ring the most promising sensor based on nonreciprocal effects in ring 
cavities. The beat note bandwidth results from cavity length fluctuations and 
can be eliminated by active stabilization. A reduced beat note bandwidth 
implies a better sensitivity (resolution) in the response of the ring laser as a 
sensor for any of the applications listed in Section 3.  

5. STABILIZATION OF THE FREQUENCY COMB 

The bidirectional ring laser produces a pair of highly correlated pulse 
trains that allow one to minimize the effects of perturbations on the 
femtosecond comb and make precision measurements of nonreciprocal 
effects inside the laser cavity. The absolute noise on each pulse train still has 
an impact—albeit greatly diminished—on the precision of these 
measurements. Further reduction of the linewidth of the signal—a beat note 
in the case of the ring laser—requires active stabilization of the femtosecond 
laser cavity. This section is devoted to the stabilization technique applied to 
a linear cavity and its application. In Section 7, this technique is extended to 
the ring laser.  

Stabilization and control of mode-locked lasers has been demanded by 
novel applications using the femtosecond comb. Like their single frequency 
counterparts, mode-locked lasers are perturbed by mechanical and acoustic 
vibrations that shift and broaden the comb structure. However, because of 
the higher peak intensities of the intracavity pulses and the mode-locking 
dynamics, these systems are more susceptible to noise induced by pulse 
energy fluctuations. As discussed in previous chapters, the most common 
technique for stabilization of the femtosecond laser uses a combination of 
two phase-locked loops to lock both degrees of freedom (the carrier 
frequency and the repetition rate) of the femtosecond frequency comb. Some 
techniques choose to do all measurements in the rf domain, substituting the 
offset frequency for that of the average frequency. The most straightforward 
implementation of such techniques requires octave bandwidth spanning.  

In the technique described here, optical frequencies are directly used to 
avoid the multiplication error involved with rf-source measurements. Beat-
note detections with a high signal-to-noise ratio and at least one highly stable 
frequency reference are required. In this method, the average frequency and 
repetition rate of the femtosecond laser is locked to a stable Fabry-Perot 
reference cavity. With proper stabilization, the pulse train inherits the 
stability of the reference cavity and precision measurements of phase shifts 
are spectrally resolved across a broad bandwidth. In the time domain, one 
can think of the reference cavity as a "reference pulse" source for time scales 
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up to the lifetime of the cavity. Although mechanical cavities are susceptible 
to drifts on long time scales ( >10 s), such cavities can provide an extremely 
high stability reference (σ(1s) ~3 x 10-16 [1]) because of a combination of 
narrow cavity resonances and a linear response to the interrogating laser.  

5.1 Locking femtosecond pulses to stable reference 
cavities  

Earlier stabilization experiments with mode-locked lasers often used 
short Fabry-Perot etalons to stabilize the average position of the comb, 
directly employing the techniques developed for single frequency 
lasers [16]. More recent experiments have used Fabry-Perot cavities as 
“mode filters,” transmitting every 20th comb component, such that any 
individual mode of the comb can be unambiguously identified with a wave 
meter [17, 18]. 

Constructive interference of the femtosecond pulse with the intra-
reference-cavity pulse is achieved when the pulse envelopes and optical 
phases overlap. Satisfying these two conditions will get to the resonance and 
energy build-up in the cavity [19], where each pulse in the cavity is a life-
time average of the previous pulses. Complete transmission is identical to 
locking the repetition rate and average frequency of the femtosecond pulses 
to the reference cavity. 

Close-up of such an experiment [20] is shown in Figure 12-7. The 
reference cavity is a long (62.5 cm) Fabry-Perot resonator made of a solid 
block of ultralow-expansion quartz (ULE) with high reflectivity mirrors of 
the same material optically contacted on both ends. The cavity is placed in a 
vacuum chamber to isolate it from thermal and acoustic noise and, if needed, 
to control the pressure. The vacuum chamber usually keeps the pressure 
inside the reference cavity below 15 mTorr. The laser cavity length is twice 
that of the reference cavity, so that every other mode can be transmitted. 
Kerr-lens mode locking provides pulses around 40 fs. The two degrees of 
freedom are controlled with two piezoelectric transducers (PZT). A change 
in the cavity length (PZT1) results in mode shifting and tilting of the end 
mirror (PZT2) selects different frequency components and controls the group 
velocity. These adjustments can be made nearly orthogonal by proper gain 
adjustment on Servo1 and Servo2. An acousto-optic modulator is used for 
fast (up to 150 kHz) carrier-frequency corrections without changing the 
repetition rate of the laser. The error signal is obtained by Pound-Drever-
Hall discrimination [21]. The laser beam is phase modulated at 10.7 MHz 
and detection of the cavity resonance is made at the modulated frequency. 
Detectors PD1 and PD2 collect marginal reflected light from the reference 
cavity that is spatially expanded with a grating.  
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Figure 12-7. Schematic of experimental setup. The laser output, protected from feedback by a 
Faraday isolator, is sent through an acousto-optic modulator that controls average frequency 
before being sent through a phase modulator and mode matched to the reference cavity. 
AOM: acousto-optic modulator; PM: phase modulator; B: beam splitter; PD1 and PD2: 
photodiodes 1 and 2; and PZT1–3: piezo-electric transducers.   

The error signals obtained in this way are the composite signals from all 
longitudinal modes detected within the spectral regions seen at PD1 and 
PD2. One detector can provide the error signal to lock the position of the 
comb about some average frequency by adjusting AOM and PZT1 (i.e., 
controlling the cavity length). The difference between the error signals from 
PD1 and PD2 determines fluctuations in the laser repetition rate that can be 
stabilized by PZT2, which selects the average group velocity [18]. The 
sensitivity of this discriminator is equal to the slope of the error signals 
multiplied by the number of modes between them. This technique provides 
an extremely sensitive discriminator for the repetition rate by effectively 
locking a high harmonic of it to the cavity. The reference cavity sees the 

fr 
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stabilized modes of frequency VCOrm ffmfν ++= 0 , where fr is the laser 
repetition frequency and f0 the offset frequency of the comb. The frequency 
fVCO is provided by the voltage-controlled oscillator (VCO) used to drive the 
AOM. Note that the sum VCOff +0  is stabilized in this technique.  
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Figure 12-8. Measurement of optical frequencies of the femtosecond comb. One hundred 
consecutive measurements are made showing the slow, but easily measurable, drift of the 
reference cavity. Fractional Allan deviation from these counts is σ (1s) ~3 x 10-12.    

5.2 Characterization of femtosecond comb stability  

The stability of a femtosecond laser cavity can be confirmed by 
measuring any single optical frequency of the comb. A frequency mode νm = 
mfr + f0 is determined by measuring the repetition rate fr and the offset 
frequency f0. Here the offset frequency of the comb was detected by beat 
note measurement [22] of a frequency mode with its second harmonic in a 
“ν–to–2ν interferometer," using microstructure fiber. The nonzero offset 
frequency of the femtosecond-stabilized comb is because of the finite 
dispersive phase shifts of the reference cavity mirrors. Figure 12-8 shows the 
linear drift for mode number 3,212,199 of the femtosecond comb. The value 
of this drift can be greatly improved through temperature control of the 
vacuum chamber walls. (Drift rates well below 100 Hz/s are usually 
obtainable even without temperature stabilization.) The beat note of the 5th 
harmonic of the repetition rate (120 MHz) with the 6th harmonic of an 
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accurate 100 MHz frequency reference source provides the repetition rate 
value. The 1-s Allan deviation for these counts is ~3 x 10-12. This number is 
limited by the stability of the low-noise frequency reference (100 MHz).  

6. DISPERSION MEASUREMENT APPLICATIONS  

A reference cavity and a laser have mutual dependency: each one can be 
a source and reference for the other. As mentioned before, the nonzero offset 
frequency is due to the phase change upon reflection from the two cavity 
mirrors. In the frequency domain, this phase shift is usually frequency 
dependent, i.e., the reference cavity mode spacing changes with frequency. 
In the time domain, the pulse’s frequency component goes through different 
depths in the mirror coating; thus each frequency component “sees” a 
different length of the reference cavity, known as an "external cavity." 

The stabilized femtosecond laser can act as a frequency comb to 
characterize the dispersion of the external cavity mirrors. This ruler can 
measure the dispersion of gases and low-density materials inside the external 
cavity over a broad bandwidth. Furthermore, the high peak-intensity build-
up in the cavity provides a tool to study nonlinear phase shifts. An 
experimental setup is presented in the following section.  

6.1 Cavity characterization   

A tunable cw Ti:sapphire laser is added to the setup and locked to a 
single mode of the reference cavity while femtosecond laser stabilization has 
been achieved,  as shown in Figure 12-9. The equally spaced femtosecond 
comb provides an absolute frequency grid against which the unequally 
spaced reference cavity modes can be measured. The beat frequency 
between the cw laser and the mth mode of the femtosecond comb, ∆(m), 
gives a direct measurement of the deviation of the reference cavity 
frequencies from the equally spaced modes of the femtosecond comb.  

Figure 12-10 shows the results of this measurement when the external 
reference cavity was in a vacuum. Each data point for ∆(m) corresponds to 
approximately 100 measured readings. The cavity’s free spectra range (FSR) 
as a function of frequency, ( )fσ , is calculated from the relation 

( ) ( )ff ∂∂+= ∆σσ 10  and is indicated by the dashed lines and right side 
ordinate. Notice that the maximum deviation (∆ ~300 kHz) of the FSR is 
less than the width of the cavity resonance (~1 MHz). This explains why it is 
possible to align the entire bandwidth of the femtosecond laser to the modes 
of the external cavity. The mirrors are standard high-reflecting dielectric 



350 Chapter 12
 

 

mirrors. Higher quality mirrors with lower GVD increase the bandwidth of 
the transmitted laser and improve locking stability of femtosecond lasers to 
high-finesse reference cavities.  
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Figure 12-9. Experimental setup to measure longitudinal modes of reference cavity. PBS: 
polarizing beamsplitter and BS: non-polarizing beamsplitter. 
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Figure 12-10. Measured deviation (∆) of the reference cavity longitudinal modes under 
vacuum from the equidistant positions of the frequency comb (left ordinate; squares) and the 
calculated mode spacing of the cavity vs frequency (right ordinate; dashed curve).  
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6.2 Atmospheric dispersion  

The same measurement is performed when the external cavity is in 
atmospheric pressure (Figure 12-11). The dispersion of air may result in a 
beat note higher than the cavity linewidth (~1 MHz) in some spectral 
regions, indicating regions of the femtosecond comb that are not coupled 
into the cavity. From this data, one can calculate the round-trip GVD inside 
the cavity. The inverse of the pulse round-trip time in the cavity is equal to 
the FSR and will be frequency dependent in the presence of GVD. The pulse 
round-trip time is  

Ω
Φτ

∂
∂= n

n , (4) 

where nΦ  is the total round-trip phase shift inside the cavity. The change in   
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and therefore the round-trip GVD can be related to the measured FSR by  

Ω
σ

σ
Φ

∂
∂−=′

2

1
n . (6) 

The calculated round-trip GVD for the cavity at atmospheric pressure is 
≈ 20 fs2. Assuming the calculated GVD is entirely due to the passage of the 
pulse through the atmosphere in the 62.5-cm long reference cavity, Equation 
(6) gives ≈′′k 0.16 fs2/cm at 385 THz (780 nm). This value is in good 
agreement with that calculated for dry air at atmospheric pressure based on 
the measured index of refraction [23]. The accuracy of this measurement 
technique and the long interaction length available inside a resonant cavity 
make this system suitable for pursuing precise measurements of linear and 
nonlinear dispersion in different media and characterizing phase shifts from 
dielectric mirrors.  
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Figure 12-11. Measured deviation of the reference cavity longitudinal modes at atmospheric 
pressure from the equidistant positions of the frequency comb (left ordinate; data points) and 
the calculated mode spacing of the cavity vs frequency (right ordinate; dashed curve).  

7. RING LASER STABILIZATION 

Applying the previous techniques to the stabilization of a bidirectional 
ring laser is not straightforward. Since the sensor applications involve 
intracavity measurements, the laser itself, rather than an extracavity beam, is 
shifted in frequency by an AO modulator. A basic challenge is to find two 
orthogonal cavity controls to act independently on the pulse repetition rate 
and the carrier frequency. In the case of the Ti:sapphire ring laser, one can 
control the carrier frequency through the pump intensity and the repetition 
rate through the cavity length. These two controls are however not perfectly 
independent, as opposed to the case of an OPO, where the repetition rate of 
the OPO is controlled by the pump laser and the OPO signal carrier 
frequency is determined by the ring perimeter. An example of intracavity-
pumped OPO geometry is sketched in Figure 12-12.   
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Figure 12-12. Sketch of a possible ring OPO geometry and the stabilization loop. 

The beams of the pump laser and the OPO signal are combined by a 
dichroic beam splitter (DBS). Both beams are given the same phase 
modulation at 10.5 MHz by an electro-optic crystal. The reflection of the 
reference cavity (1/2 the cavity length of the pump) is dispersed by a grating. 
The difference between the two error signals taken at the edges of the pump 
spectrum are used to control the cavity length (mirror M1) of the pump laser 
and hence the repetition rate of the system. The wavelength of the OPO 
signal is unaffected, since it is solely determined by the OPO cavity 
perimeter. An error signal is thus derived from the dispersion of the grating 
at the signal wavelength and mixed with the modulation. The correction 
signal is sent simultaneously to the piezo drivers of mirrors M3 and M4, 
located symmetrically with respect to the pulse crossing point C. It is 
essential to symmetrically apply the correction for the signal cavity 
simultaneously to the two circulating pulses to prevent a broadening of the 
beat-note bandwidth by the motion of the cavity length-correcting mirrors.  

As mentioned earlier, for applications that require long-term stability or 
accuracy (monitoring or slow drifts in the picometer range), the OPO 
frequency and the pulse repetition rate have to be locked to some atomic 
transition. Because of the general tunability of an OPO, there is a large 
choice of atomic systems available. One approach [14] is to use a Λ  level 
structure that has a two-photon resonance at the carrier frequency of one of 
the OPO pulses and a ground-level splitting resonant with the pulse 
repetition rate. The main challenge is to find an error signal (fluorescence, 
dispersion, absorption) that has a well-defined peak at the proper optical 
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frequency and repetition rate. This problem has been investigated 
theoretically for the case of rubidium vapor in Reference [14].  
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above threshold ionization, 296 
absolute optical frequency, 17, 24, 

204 
attosecond, 268, 315 
carrier-envelope offset frequency. 

See offset frequency 
carrier-envelope phase, 56, 265 

coherence, 22, 38 
definition, 14, 113 
dynamics, 74, 123 
evolution, 16, 113 
noise, 120, 278 
stabilization 

amplifiers, 271, 280 
oscillators, 66, 72, 126, 270 

CEO frequency. See offset frequency 
chirp, 159 
coherence time, 23 
combs. See frequency combs 
cross-correlation, 22, 117 
dispersion, 113 

fiber, 103 
management, 58 

solitons, 75 
plasma, 316 

dispersion map, 59 
dispersion measurement, 349 

dispersion-compensating mirrors, 44, 
64, 82, 137, 160 

extreme nonlinear optics, 48, 264, 
314 

femtosecond comb. See frequency 
comb 

femtosecond lasers. See mode-locked 
lasers 

fine structure constant, 179, 192 
FRAC. See frequency resolved 

autocorrelation 
frequency chains, 8, 24, 200 
frequency comb, 204, 240 

applications, 24, 338 
definition, 13, 177 
dynamics, 112 
electro-optic, 3, 19, 185, 204 
generator, 19-22 
history, 1–10 
infrared, 41, 252 
line spacing. See repetition 

frequency 
offset frequency, 16 

control, 22, 126, 244 
stability, 348 
stabilization, 112, 345 
verification, 25, 213, 249 
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frequency division, 3, 202 
frequency multiplicaton. See 

frequency chains 
frequency ratio, 120, 216, 249 
frequency-resolved autocorrelation, 

163 
frequency transfer, 253 
frequency-dependent spatial mode, 

67 
fundamental constants, drift, 192, 

230 
global positioning system, 229 
Gouy phase shift, 268, 302–306 
group velocity matching, 146 
high harmonic generation, 265, 314 

carrier-envelope phase 
dependence, 267 

carrier-envelope phase sensitivity, 
289 

cutoff, 265 
phase matching, 320 
quasi-phase-matching, 324 

high repetition rate oscillator, 79, 240 
basic design, 80 
broadband, 88 
Cr:forsterite, 86, 251 

intra atomic phase-matching (IAPM), 
318 

Kerr-lens–mode-locked, 15, 54, 206 
KLM. See Kerr-lens–mode-locked 
microstructure fiber, 6, 20, 63, 97–

111, 184, 244 
dispersion, 103 
fabrication, 98 
properties, 102 
types, 100 

mode locking, 14, 334 
mode-locked lasers, 12–23 

Cr:forsterite, 251 
Cr:LiSAF, 251 
diode, 254 
Er-doped fiber, 251 

mode-locked lasers, cont. 
phase locking, 40 
ring, 337 

as sensors, 338 
stabilization, 352 

spectrum, 15, 115, 207 
synchronization, 39 
ti:sapphire, 3, 15–21, 31, 38, 42, 

57–64, 78, 88, 97, 120, 125, 
134, 182, 183, 204, 239, 246 

nonlinear Schrödinger equation, 57 
NOPA. See optical parametric 

amplification; noncollinear 
octave spanning lasers, 63 

prismless, 70 
with prisms, 64 

octave-spanning spectrum, 17, 118, 
183, 241 

offset frequency, 16, 114, 177 
stabilization, 126, 244 

OPA. See optical parameteric 
amplification 

optical atomic clocks, 27, 225–252 
basic components, 227 
frequency references, 237 

ion, 233 
molecular, 26, 236 
neutral atom, 234 

history, 230 
uses, 229 

optical cavity, 42–45 
amplification, 44 
reference, 346 

optical coherence, 23 
optical frequency combs. See 

frequency combs 
optical frequency metrology, 24, 179, 

209 
Ca, 210 
cesium D1, 180 
H, 190 
Hg+, 194 
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Yb+, 194, 212 

optical frequency synthesis, 29, 181– 
185, 238 
noise, 242 

optical local oscillator, 206, 238 
optical parametric amplification, 133-

171 
carrier-envelope phase 

stabilization, 171 
noncollinear, 135, 140 
principles, 138 

optical parametric oscillators, 155, 
343 

phase matching 
high harmonic generation 319–

329 
parametric amplification, 136 

photodetectors, 241 
photonic crystal fiber. See 

microstructure fiber 
pulse front matching, 155 
pulse synthesis, 40 
QIC. See quantum interference 

control 
quantum coherence, 31, 46 
quantum interference control, 46 
recollision, 265, 316 
repetition frequency, 16, 115, 177, 

207, 240 
stabilization, 28, 39, 182, 246, 346 

self-amplitude modulation, 90 
self-focusing, 57 
self-phase modulation, 20, 183, 205 
self-referencing, 18, 79, 117, 182, 

208, 244 
sensors, 338 –342 
shock, 74 
spectral broadening. See 

supercontinuum generation 
spectral interferometry, 272 
spectroscopy, 30 

atomic, 30 
hydrogen, 184 
rubidium, 31 

hyperfine structure, 34 
molecular, 33 

supercontinuum generation, 20, 104, 
151, 184, 205, 244 
noise, 107 

three-step model, 265, 315 
tilted pulse, 157 
timing 

jitter, 38 
synchronization, 39 
transmission, 253 –255 

ultrashort pulse, 14 
propagation, 105, 113 

white light generation. See 
supercontinuum generation 
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