Technical
Reference Manual

VZ-200
Technical Reference

Manual

This manual is designed to prowide owners of the Dick Smith
VZI-200 Perscnal Colour Computer with additional information te
assist in programming, operation and expansion, All reasonable
care has been taken to ensure that the information herein is
accurate and correct; however no responsibility can be
accepted, nor liability assumed for either its accuracy or
suitability for any particular purpose. Dick Smith Management
Pty Ltd reserves the right to make circuit, programming and/or
mechanical changes to the products described herein, without
notice, in order teo improve performance.

Written and compiled by Jamieson Rowe

PUBLISHED BY DICK SMITH MANAGEMENT PTY LTD
Sydney, Australia 1983

-]

FIRST EDITION, 1963
EEPRINT September, 1954
Nutional Library of Australin Oard Mo, and ISBN 0 D4977R 16 6

COPYRIGHT © 1983, DICK SMITH MANAGEMENT PTY LTD.

This publication is protected by copyright. Except for the
video worksheets on page 17, which may be reproduced by the
purchaser of the book for his/her own use only, no part of this
book may be copied by any means —- whether photographic,
printing, electronic, magnetic or other technology without the
prior written consent of the copyright holder, Dick Smith
Management Pty Ltd, PO Box 321, North Ryde NSW 2113 Australia.

PABSEmMD.B4

-2 -

List of Contents

TOPIC PAGE
1. The Basic Computer FE RS AT b G OOt L o SO S SEOE B 4
2, VI-2@80 Memory Map S e e S R Do L 5.
3. The Keyboard MAE LK oiaraiaie pie noiria stu cldiaieimie i misis Sialsiviciie =ix 6
4. I/0 Mapping e e S e e O R]
5. Cassette/Speaker/VDC Outgut T G e s ke
o VigeoTZii§§2ir§gdZ§;phics mode (mode @) cessssessnnes 13
B: Hi-res graphics only mode (mode 1) secevanesmsss
7. VI-2@8 Screen Conttol COd8S ssssemmssresrnsanavecencs 11
2. System Pointers, el e T T O L 11
9. Reserving Space for a Machine Code program ..eas-sssss 12
1@. Finding the Top of Your VZ-20F'S MEMOTY sonsssnsssess 15
11. Calling a Machine Code Routine from BABICevevees 16
12. Useful ROM Subroutines for Assembly Programming ..ss. 17
13. VZ-2088 video Worksheets & Schematic Circuits-- 24

=

1. THE BASIC COMPUTER

The basic VZ-20@0 computer employs a Z-80A microprocessor (U4)
running at a clock speed of 3.58MHz. Two 8K x 8-bit
mask-programmed ROMs (U9,Ul@) contain the Microsoft BASIC
interpreter, while three 8K x 8-bit static RAMs (U2',U3' and
U4') provide program memory.

A 6847P-1 video controller chip (Ul5) and a further 2K x 8-bit
static RAM (U7) form the heart of the computer's video section.
These are coupled to the processor data bus wia an octal
bidirectional buffer, Ul4.

A simple software scanning scheme is used for the keyboard. The
keys are arranged in eight rows, each of which can be pulled
down to low logic level by diedes connected to the eight least
significant address lines (A8-A7). The other sides of the keys
are connected to six column lines, which are connected to six of
the inputs of a gated octal buffer (Ul2), and also to six pullup
resisters. The outputs of the =zix corresponding outputs of Ul2
connect to processor data lines D@-D5.

Cassette input is handled by a simple one-transistor circuit,
together with one of the remaining elements of Ul2 (D6).
Cassette cutput is taken from Ul, an 8-bit latch, via outputs Q1
and Q2. Other outputs from this latch are used to operate the
internal piezo speaker (0@ and Q5, used in push-pull), and to
control the mode (03) and background color (Q4) inputs of the

video controller chip.

Simplified decoding is used for selection of the various /0
devices in memory space. The decoding is performed by U2 and U3.
The memory address ranges (in hex) occupied are as follows:

@@@d - 1FFF: BASIC ROM @

2¢0@@ - 3FFF: BASIC ROM 1

4008 - 67FF: Not occupled in basic unit

(Used by ROM/game cartridges)

Keyboard matrix + cassette input (Read)
Cassette cutput, speaker, VDC control (Write)
Video RAM

Inbuilt program RAM

Not occuplied in basic unit

(Used by expansion RAM modules)

68@@ - EFFF:

TB@8 - TTIFF:
7808 - BFFF:
98dd - FFFF:

Mote that due to the simplified addressing, latch Ul serving the
cassette output, speaker and video display controller
effectively occupies all addresses from 68@@-6FFF inclusive.
Similarly the keyhoard/cassette input buffer Ul2 also occupies
all of this address range, although the individual rows of keys

effectively occupy discrete addresses.

2 memory map showing both hex and decimal address is shown
overleaf.

2. VZ-280 MEMORY MAP;

Decimal
65535

61440

57344
53348
49152
4508586
48960
36864

32768
38720
28672
26624

24576
2@480
16384
12288
B192
4@96

@

Hex

el L —

—————

e e

{(ROM 1)

(ROM 1)

(ROM)

(ROM @)

Fogg
Ep@d
Daga
ceag
BAga
AQPE
996?

1200
7800
Teea
6800
cpEg

Saag
4000
10
2080

18@8@

e

apas

FFFF ~

o

RESERVED FOR
MEMORY EXPANSION
(16K MODULE
EXTENDS RAM

TO CFFF)

INBUILT USER
RAM (6K)
VIDEO RAM (2K)

KYBD,CASS,5PKR

RESERVED FOR
ROM CARTRIDGES
(10K)

BASIC ROMS
(16K}

3. THE KEYBOARD MATRIX)

As explained earlier, the 45 keys of the VZI-2p@ keyboard are
arranged in an 8 % 6 matrix scanned by the eight least
significant address lines. This means that each row of the
keyboard matrix effectively cccupies a specific memory location
(or more accurately, a series of memory locations, due to the
simplified decoding). The individual keys are mapped into the
corresponding bits of that memory location, according to the
column they occupy in the matrix.

The keyboard is scanned by the software taking each of the eight
address lines down to loglic low level in turn. If a key is

pressed, it effectively "pulls down™ the bit line at the address 3
for its row. For example if the "2" key is pressed, this causes
bit 1 to drop to @ at address 6BF7 (alsoc 69F7, 6AF7, 6BF7, 6CF7,
6DF7, GEF7 and 6FF7). Providing no other keys are pressed in
that row, the data retrieved by reading that address will be 3D
hex (binary 1111g1).

The keyboard matrix and its (lowest) row addresses in hex are L
shown below, Mote that each key causes a logic @ to appear at
the bit position shown, when its row address is read.

BIT POSITION 5 4 3 2 i @
ROW ADDRESS 68FE R Q E W T
68FD F A D CIRL S G
68FB v z ¢ SHFT X B
68F7 4 it 3 2 5
68EF BES che SR : N %
68DF 7 @ 8 - 9 6
68BF u P I RETH O ¥ 3
687F J H K : T H 4

4. I/0 MAPPING:

The Z-8@A microprocessor used in the VZI=20@ can address 256
ports in I/0 space. Tentatively the following I/0 address ranges
have been set aside for expansion peripherals: -

I/0 ADDRESS (hex) DEVICE

6g - @F Printer

¢ - 1F Floppy disk controller
20 - 2F Joystick interface

36 - 3F Communications MODEM
70-= IR Memory bank switch

ha

B CASSETTE/SPEAKER/VDC-OUTPUT LATCH:

AS noted earlier, write-only latech Ul is
g::::::e ou;put signal, the drive for the internal pie
Speet li and two centrol signals for the video dispfa 3

eller (VDC) chip. The lateh effectively occupiesyall of the

addresses from 6899 - ¢ ¢
- 6FFF : :
blt'map of the latoh is ShoésegéTgi:26624-2857l} inclusive. The

used to provide the

WEIGHTING BIT

B ik FUNCTION
29 32 BS — Speaker B
18
16 ____Ef__u_ — VDC background colour
@8 i
] B3 —® VDC display mode
#4 4 _...EE_. _.——b Cassette out (MSB)
a2 2 Bl —P Cassette out (LSB)
g1 1 EB —® Speaker 3
A. Speaker

The speaker is driven in i
push-pull fashion by bits g and
gage the speaker sound a note, the software should tog§1e55133 @
“?. qulternately at the.required rate. When bit g is a logic
r D1t 5 should be logic "F" and vice-versa, Note that when

this is done the sof i
A tware should not disturb the other bits of

B. Cassette output

Bits 1 and 2 are used to generate the cassette recordin

which is approximately 175 milliveolts peak-to-peak. e

C. VDC display mode

The VDC display mede is controlled b
L ¥ Y bit 3. If bit 3 is a logl
8", the VDC will operate in its text/low-res mixed mode.a[fogii

3 is taken to logic "1" in i i
e g 1", the VDC operates in its hi-res graphics

D. VDC background colour control

Bit 4 is used to contrel the VDC background colour. In

text/low-res mode (mode #r, a "a" i
in bit 4 g
background colour while a :1' 2 o palreen

in bit 4 gives an
background. In hi-res mode- (m i] oo
. i - {mode 1) a "@" in bit X : g
background, while a "1" gives a buff background, JIVes a green

6. VIDEO DISPLAY MODES

-The VZ-20@ has a total of 2K bytes of wvideo display RAM, located
in memory addresses 7698 - 77FF hex (28672 - 3@719 decimal)
inclusive. When the video display controller (VDC) chip is
operating in its text/lo-res mode (mode @), only the first 512
bytes of this video RAM are used, This is the default mode ;
entered on power-up. When the VDC is switched to its hi<res
graphics mode (mode 1), all of the video RAM is used.

A. TEXT/LO-~RES GRAPHICS MODE (MODE @)

In this mode the video screen is organised as 16 lines of 32
characters. Bach character displayed on the screen corresponds
to a single byte in the first 512 addresses of video RAM {7008 -
71FF hex, or 28672 - 29183 decimal).

A total of 256 different characters can be displayed in mode @:
128 alphanumeric characters, and 128 lo-res graphics characters.
The most significant bit (B7) of each character code is used to
determine whether an alphanumeric or graphics character is
displayed. Details of the coding used are shown below:

[i) Alphanumeriec characters:

6-bit ASCII char code

’ o =N
[B7 I B& l =1] I B4 I-BS I B2 I Bl I B@ l

@ = NORMAL CHARACTER
1 = INVERSE CHARACTER
)

= ALPHANUMERIC CHARACTER

(ii) Programmable (lo-res) graphics characters:

Graphics character code#*
r G N

l B7 I B6 I B5 | Ba | B3 I B2 I Bl | Bo

= CHARACTER COLQUR CODE

1l = GRAPHICS CHARACTER

*The graphics character coding used is quite simple. Each bit
corresponds te one cell of a 2 x 2 pixel matrix which occupies
the same screen area as an alphanumeric character:

B3 B2

Bl =11

8

The 3-bit colour code is as follows:

B6 B5 B4 HEX COLOUR
g ag Green
B 1 1d vellow
a 1 a 28 Blue
] 1 il 38 Red
1 4} a 4@ Buff
1 a 1 54 Cyan
il 1 @ 6 Magenta
3 1 1 7d Orange

To summarise, the total mode (#) character set available is
shown below. Note that these are the characters displayed if the
codes concerned are written directly into the screen RAM —-
i.e., using POKE statements or from a machine code routine,

VZ=-20@ SCREEN CHARACTER SET

@ 1 2 3 485 67?893 APBCOPD E F mMsB
Lse @ g= " g|e P -]

1 sl Rk I e AT b e Sl S e e
2 |-, e B - B L e S e e
3 C-9 # 308 % e a anowowe
4 DET s 4D Tig g% e vl 35
3 E U % SE Uik sbd 1 v 1 1 118
] F ¥ & 6IF V &L B[& & & & 2 2 &
-F GooW e @ g g d 4 Jd 4 4
a H x < e H » (- B L[] [] L] L] L] [] [] []
9 PR T R b IR R S L G T S
n i e AR B (s Lo G [SO e T T 1 3
g KL+ J|KE 4+ 5 kb bbbt b
c | BB x £ Bt ’ | ™ = W W = = = =
D M 1 =~ =Im 3 = =|7T %9 39 99 T %N
E N =~ . 2IN ~ ., 3 |PrP P Prerprerp
F 0 =/ 7{0 — ., 2B BB BN [B B]

INVERSE G ¥ B RBFCNM O

Note that when the PRINT CHRS (N) command is used, rather than
POKE, the BASIC interpreter performs code conversion to make the
display conform more closely to normal ASCII standards. Hence
decimal codes § — 31 become non-printing control codes, while
codes 64-95 become those for the normal alphabetic capitals. as
there are no lower-case characters available, codes 96-127
duplicate the characters for codes 32-63. Codes 192-255 are used
for the inverse alphanumerics, and codes 128-143 for graphics
(with colour set by the COLOR M,N command) .

= Qs

B. HI-RES GRAPHICS MODE (MODE 1}

In this mode the screen is organised as 64 rows of 128 pixels,

giving a total of 8192 pixels. Each pixel can be displayed in —
ane of four colours, one of which is the background colour, This

means that for each of the two possible background colours, each

pixel can be either niurned off" (i.e., the same colour as the .
background), or displayed in one of threae colours.

The video RAM coding scheme used for this display mode uses each
byte to encode four adjacent pixels. This means that each pixel
is encoded in two bits. To illustrate this, here is the coding
for the first four pixels on the screen, up in the top left-hand
corner: -

PIXEL @ PIXEL 1 PIXEL 2 FIXEL 3

ADDRESS T@0@H: I B7 BB BS B4 B3 B2 Bl B

The next four pixels along the line are stored in location
7@#1H, and so on. The 2-bit colour ceding used for each pixel is
shown below: 2

(i) Backbround colour @ (green):

g@ = GREEN (background colour)

Bl = YELLOW

1@ = BLUE

11 = RED -

(ii) Background colour 1 (buff):

@@ = BUFF (background colour)

1 = CYAN

1@ = ORANGE

11 = MAGENTA e

Mote that from BASIC, any pixel may be individually turned on of
off using the SET(x,y) and RESET (x,y) command, and given various -4
colours using the COLOR(m,n) command .

video display worksheets for both mode (@) and meode (1) are
given at the rear of this manual. These can be very handy gor
planning the display screens, menus etc when you are writing
programs. Feel free to photocapy these worksheets, sc you can
use the photocopies in this way.

- 1@ - b

7. VZ=-20@@ SCREEN CONTROL CODES

The following codes can be used for screen control from BASIC:

Cursor left PRINTCHRS (8) Cursor rigﬁt PRINTCHRS (9)
cursor up PRINTCHRS (27) Cursor down PRINTCHRS (1)
Rubout PRINTCHRS (127) Insert PRINTCHRS (21)

Home PRINTCHRS (28) Clear screen PRINTCHR$(31)

8. SYSTEM POINTERS, ETC

Here are some_of the main system pointers and variable storage
locations of interest to VI-200 programmers:

POINTER OR VARIABLE HEX LOC DECIMAL
Top of Memory (ptr) T8ELl/2 3p897/8
start of BASIC program (ptr) 7884/5 30884/5
End of BASIC program {ptr) TEF9/A 30969/7/
{also start of simple variables table)

Start of dim. variables table (ptr) T8FB/C 3897172
End of BASIC's stack (ptr) Jea@/l lgase/1l
(also start of string variable storage area)

B Ees ian byme uf Sinraistmies boilu Tonml e
Interrupt exit (called upon interrupt) 787D/E/F 30845/6/7
?Ei;;a?figagicbétzz i:gstuEugfzgreen lin12$8 -l
Copy of output latch 783B 38779
Cursor position 78k6 36886
Qutput device code 789C 36876

(@ = video, 1 = printer, =1 = cassette)

The.contents of the BASIC stack pointer stored in 78A@/1 are
basically equal to the contents of the 'top of memory' pointer
stored in 78B1/2, less a figure equal to the number of bytes
reserved for string storage. The default value for string
storage space is 5@ bytes; this can be modified from within a
BASIC program by using the CLEAR command --— i.e., CLEAR 1000
will increase the string space to store 10@@ bytes.

The VEZ-2@8 printer interface uses I/0 port address @E for the

ASCII character code data and strobe cutput, and address @#H for
the busy/ready=bar status input (bit 8).

- 11 -

9. RESERVING SPACE FOR A MACHINE CODE PROGRAM

There are a number of ways te reserve memory space for a machine
code program, from within a BASIC program., But before details of
these methods are given, we should clarxfy the way that BASIC
normally organises RAM memory space.

A range of addresses at the bottom of user RAM is reserved for
system pointers and variables. This section is often termed the
"communications region". It includes locations which store
pointers to the boundaries of the various regions in upper RAM,
like the 'Top of Memory' pointer, the 'start of BASIC program'
pointer and so on. The latter peinter is stored at 78A4/5
(decimal 3§884/5).

Mormally the BASIC program itself is stored next, in locations
starting at address 7AE9 hex. At the end of the BASIC program
text, the system stores a table containing the program's
variables. This is known as the 'wariable list table' (VLT).
This is divided into two sections: first the simple variable
table, containing simple numeric variables and pointers to the
simple string variables, and then the subscripted variable table
containing dimensioned variables.

As the BASIC program text changes in length, the VLT is moved up
or down in memory so that it always begins at the end of the
program. The pointer to the start of the VLT is stored in
location 78F9/A, and the pointer to the start of the subscripted
variable table in location 78FB/C.

The remaining major regions extend downward from the top of user
RAM. Normally at the very top of RAM 1s the string storage area,
extending down from the top of RAM (pointer stored at 78B1/2) by
either the default figure of 50 bytes, or a different amount
established by a CLEAR N command. The BASIC interpreter's stack
then extends downward in memory from the bottom of the string
area (pointer stored in 78A8/1).

The space between the top of the VLT region and the bottom of

the stack is not used, and is designated 'free space'. So that
normally, the RAM organisation looks like this:

TOP OF MEMORY (TOM)
}— String space

Default:TOM=-5¢ bytes =
}——-BASIC stack

= =2 (Eree space)

-_}—‘ VLT
}— BASIC program

Normally TAEOH —= -
i}—hu Communications
START OF USER RAM Region

- -

=

e

=t»

S

Method 1: This method ‘of reserving space for a machine code
program involves shifting the BASIC program area upward in
memory from its normal start at 7AE9, creating a space
immediately above the communications region. The machine code
program can then be loaded into this space, probably by POKEing
it from your main BASIC program.

Needless to say, the BASIC program area can only be shifted up
before your main program is loaded into it (if it were done
afterwards, the start of the program would be lost). But the
shifting is quite easy to do, because all that is required is
(a) to change the 'Start of BASIC program' and 'End of
Program/Start of VLT' pointers, together with (b) creation of a
new "null program' at the start of the new program area.

This can be done gquite easily by a small BASIC program which is
fed into the computer ahead of your main program. Here is what
it looks like if you want to reserve say 128 bytes:

1¢ POKE 31593,0:POKE 31594 ,@:POKE31595,0
2@ POKE 30884,105:POKE 3P885,123
3@ POKE 3@96%,187:POKE 38978,123

Here line 19 pckes a 'null program®' of 3 zero bytes into the
start of the new program area (which starts at 7B69H, or 31593).
Line 2@ pokes the decimal equivalents of the low and high bytes
of this new starting address of the program area into its
pointer address, while line 3¢ pokes in the corresponding values
for the new EOB/VLT pointer.

Note that this shifting program 'self destructs' -— conce you run
it, the BASIC interpreter loses all knowledge of its existence
in memory. So if you then try to LIST or RUN, nothing will
happen because as far as the interpreter is concerned, it now
has nothing in its (new) program storage area.

onge the program has run, however, any BASIC preogram you load in
will start at the new, higher address (here 128 bytes up),
leaving the space immediately abowve the communlcatlons area free
for a machine language routine or program.

Needless to say you can vary the above program to adjust the
amount of space reserved. You'll need to change both the values
pocked into the pointer locations in lines 2@ and 3@, and the
poke addresses in line 1@.

Don't forget that if you use this method, the 'reserving'
program will have to be loaded and run ahead of the main
program, every time you want to use it. The reserving operation
can't be done from within the main program itself,

This is one disadvantage of this method; another is that it is

not easy to leoad in both vyour main basic program and the machine
language program directly from tape.

- 13 -

Method 2: With this method of reserving space for a machine
Tanguage program, you create the reguired space in between the
end of the main BASIC program and the start of the VLT, by
shifting the VLT upward in memory.

This is simpler to achieve than Method 1, because all that is
required is to change the 'End of BASIC program/Start of VLT'
pointer stored in 78F9/A hex (decimal 38%969/78). In effect, we
'fool' the BASIC interpreter inte thinking that the BASIC
program is longer than it really is.

How do you work out the new value for this EOP/VLT pointer?
Probably the best approach is to PEEK at the value of the
pointer when your main program is loaded in normally, and then
add to this figure the amount you need for the machine language
routine -— plus a small amount (say 64 bytes) for safety margin.

Let's say you again want to reserve 128 bytes, First load in
your main BASIC program, then key in this command:

PRINT PEEK(38969) + 256*PEEK(30974d)

The answer you get is the current value of the EOP/VLT peinter,
in decimal. In other words, it represents the actual end of your
BASIC program. So add say 192 to this (128 plus a safety
margin), to get the new EOP/VLT pointer wvalue.

Say the value you get is 328#8. Now find the decimal eguivalents
of the high and low pointer bytes for this figure, by keying in
this line:

P=328§8:PRINT INT(P/256), P-(256*INT(P/256))

The first number you get is the pointer high byte (in this case
128), while the second is the pointer low byte (here 32).
Obviously if you get a different value from 3280@, key this into
the above line to get the corresponding wvalues.

Now all you have to do is fit these values into a pair of POKE
statements at the very start of your main BASIC program:

1 POKE 3#969,32 :POKE 3@¢97¢,128
This line must be right at the start of your program, so that

the EOP/VLT pointer is moved before the program introduces or
uses any variables. Otherwise the variables would be 'lest'.

This method allows you to load, save and run the BASIC program
normally, without any prior preparation. Once you have loaded
the machine language program into the reserved space betwgen the
BASIC program and its VLT, you can also save and re-load it
along with the BASIC program, aufomatically. This is because the
CSAVE and CLOAD routines use the EOP/VLT pointer to indicate the
end of the BASIC program. :

Mote that the 64-byte 'safety margin' allows for the small
increase in program length when you add line 1 above.

- 14 =

Method 3: This method of reserving space for a machine language
program involves changing the 'Top of Memory' (TOM) pointer so
that it points to an address lower than the actual top of
memory. This forces the BASIC interpreter to move its string
storage area and stack downward, leaving a space for your
machine language program at the top.

Like Methed 2, this is guite easy to do and it can be done from
within your BASIC program,

First, you need to PEEK the current value of the TOM pointer.
This is found gquite easily:

PRINT PEEK(3@897) + 2Z56*FPEEK(36898)

This will normally give you 36863 for a basic VZ-288, or 53247
if you have the 16K Memory Expansion Module plugged in,

Then you simply subtract from this figure the amount of space
you want to reserve for the machine language program, to give a
new TOM address. Then it's simply a matter of poking the low and
high byte figures for this address into the TOM pointer, at the
start of your program.

For example, say you want to reserve 256 bytes, and you have a
basic VZ-2@@ so the normal TOM is 36863, So the new artificial
TOM will be 36863=256, giving 366@7. To work out the two new
pointer bytes in decimal, type in:

T=366@7:PRINT IWMT(T/256), T=(256*INT(T/256))

The first number you get is the peinter high byte (here 142},
while the second is the low byte (here 255). If you have a
different value for TOM (T), you'll get corresponding values,

Having found these wvalues, all you need to do is add the
following line to the start of your program:

1 POKE 3@897,255:PUKE 3@898,142

The pointer must be changed before the program uses string
variables and the stack, or the system could 'crash',

Note that this method allows your BASIC program to be loaded,
gaved and run normally. However it dees not allew the machine
language program te be loaded directly inte the reserved area at
the same time, The machine code must be loaded either
separately, or POKEd into the reserved area by the BASIC program
itself == after the pointer is changed.

1., FINDING THE TOP OF ¥QUR VZI-2P@'s MEMORY

This is guite an easy one —— simply type in the line:

PRINT PEEK({3B897) + Z50*PEEK(3@898)

==E

11. CALLING A MACHINE CODE ROUTINE FROM BASIC

The standard way of calling a machine language program or
routine from BASIC is to use the USR(X) command. But before
this command can be used, the starting address of the chhine
language routine must be loaded into the USR program polnter,
stored at address 788E/F hex (decimal 38862/3). This can be
done using POKE statements,

To illustrate this, let's look at an example, Let's say you
want to use the INKEYS function in your BASIC program, to
accept input character-by-character. But you'd %ike the VI-200
to give its usual 'beep' each time teo register input, and the
INKEY$ function doesn't provide this,

As it happens, the BEEP subroutine'in VZ-2@f's BASIC ROM can
easily be called to do this, using the USR({X) command., The
calling address for the routine is 345@ hex, so the decimal
figures for the USR pointer bytes are 88 (low byte, equal to 50
hex) and 52 (high bytes, egual to 34 hex).

So if you want to produce a 'beep' at variogs p}aces in your
BASIC program, all you need to do is put thlg line near the
start of the program (before the first beep is needed):

20 POKE 3@B862,80:FOKE 30863,52

This sets up the USR pointer. Then wherever you want a 'beep'
in your pregram, simply use the command:

X=USR(X)

Note that before control is passed to the user rogtine at‘the
designated address, the value of the argument variable X is
stored in locations 31@@#9/31018 (7921/2 hex). So this can be
used to 'pass' a parameter value to the user routine. If the
routine doesn't need any parameters (like the '"beep' routine
above) , simply use a 'dummy' variable name like X, as shown.

The same general technique is used for calling other machine
code routines, whether they are located in ROM or RAM. It's
simply a matter of poking the start address of the routine into
3@862/3, and then using the USR command.

You aren't limited teo calling a single mach%ne code r9utine, by
the way. You can call a number of routines in turn, simply by
poking each routine's start address into 30862/3 before you use
the USR command to call it. Just remember to POKE the right
routine address into the pointer each time!

- 16 =

12. USEFUL ROM SUBROUTINES FOR ASSEMBLY PROGRAMMING

A, KEYBOARD SCANNING ROUTINE

The keyboard scanning routine resides at 2EF4 hex. This routine
scans the keyboard once and returns. If a key is pressed, the A
register will contain the code for that key; otherwise this
register will contain zero. Registers AF, BC, DE and HL are all
modified by the routine, so if the contents of these registers
must be preserved they should be pushed onto the stack before
the routine Is called. The following example showg how the
routine would be used to wait for the RETURN key to be pressed:

SCAN CALL 2EF4H
OR A o

;jscan kybd once
jany key pressed?
JR. Z,S5CAN ;back if not

CP @DH i3 jwas it RETN key?
JR NZ , SCAN iback if not

see jotherwise continue

B. CHARACTER OUTPUT SUBROUTINE

A routine which outputs a single character to the video display
is located at @33A hex. The code for the character to be
displayed must be in the A register, while the character will
be displayed on the screen at the position corresponding to the
current value of the cursor pointer. All registers are
preserved. Here is how the routine would be called to display
the word 'HI', followed by a carriage return:

LD A,'H" ;load A reg with cede
CALL B33AH ;& display

LT R Tt ;jsame for I

CALL @33AH

LD A, @DH jnow load A with CR code

CALL @33AH ;& update screen

C. MESSAGE OUTPUT SUBROUTINE

A very useful subroutine located at 28A7 hex can display a
string of character codes as a message on the screen. The
string of character codes must end with a zero byte. The HL
register palr must be set to the start of the string before the
subroutine is called. All registers are used by the subroutine.
Here is how it is used:

LD HL,M5G
CALL 28A7TH

;jload HL with start of strg
;& call print subroutine

MSG DEFM "READY' ;main message string
DEFB @DH jcarriage return
DEFE @ ;hull byte to terminate

- 17 =

D. COMPARE SYMBOL (EXAMINE STRING) =-- RST @8H

A routine which is called using the RST @BH instruction can be
used to compare a character in a string pointed to by the HL
register, with the value in the location following the RST #8
instruction itself. If there is a match, control is returned to
the instruction 2 bytes after the RST @8, with the HL register
incremented by one and the next character of the string in the
A register. This allows repeated calling to check for an
expected sequence of characters. Note that if a match is NOT
found, the RST @8 routine does not return from where it was
called, but jumps instead to the BASIC interpreter's input
phase after printing the SYNTAX ERROR message. Here is how the
routine is used to check that the string peinted to by the HL
register is 'A=B=C":

RST 08H ;test for 'A"

DEFE 41H ;hex wvalue of A for compariseon
RST #8H ;must have found, so try for '='
DEFB 3DH ;hex value of '='

RST @8H ;0K so far, try for 'B'

DEFB 42H

RST @8H jnow look for second '='

DEFB 3DH

RST @8H ;jE£inally check for 'C'

DEFB 43H

jmust have been OK, so proceed

PR

E. LOAD & CHECK NEXT CHARACTER IN STRING —-— RST 18H

The RST 14H instruction may be used to call a routine which
loads the A register with the next character of a string
pointed to by the HL register, and clears the CARRY flag if the
character is alphabetic, or sets the flag if it is
alphanumeric. Blanks and control codes @9H and @BH are skipped
automatically. The HL register is incremented before each
character is loaded, therefore on the first call the HL
register should be set to point to the address BEFORE the
location of the first string character to be tested. The string
must be terminated by a null byte.

Here is an example of this routine in use. Note that if it is
used immediately after the RST #8H instruction as shown, the HL
register will automatically be incremented to point to the next
character in the string:

RST #8H ;test for '='
DEFE 3DH
RST 1l0H jfetch & check next char

;jwill go to VAR if alpha

JR NC, VAR
jeontinues if numeral

= 18

F. COMPARE DE & HL REGISTER PAIRS -- RST 18H

The instruction RST 18H may be used to call a routine which
= compares the contents of the DE and HL register pairs. The
routine uses the A register only, but will only work for
unsigned or pesitive numbers. Upon returning, the result of the
b comparison will be in the status register:

HL < DE : carry set
| HL > DE : no carcy

HL <> DE : NZ

HL = DE : Z

= Here is an example of its use. Assume the DE pair contains a
number and we want to check that it falls within a certain

range -- say between 188 and 508 (decimal):

LD HL ,508 ;jload HL with upper limit
RST 18H & call comparison routine
JR C,ERR jcarry means num > 58@
LD HL,1l@@ ;now set for lower limit
RST 18H i& try again

& JR NC,ERR ino carry means num < 1@@
PR jif still here, must be 0K

- G+ SOUND DRIVER

Located at 345C hex is a routine which can be used to produce
sounds wvia the VZI-20@'s internal piezo speaker. Before calling
the routine, the HL register pair must be loaded with a number
representing the pitch (frequency) of the tone to be produced,
while the BC register pair must be loaded with the number of
o= cycles of the tone required (i.e., the duration in cycles). all
registers are used. The frequency coding used is inversely

= proportional te fregquency, i.e,, the smaller the number loaded
inte the HL register pair, the higher the freguency. As a
guide, the low C produced by VZ-=288's SOUND command in BASIC
can be produced using the decimal number 526, the middle C
using 25? and the high C using 127. Here is how you would call
the routine to get say 75 cycles of the middle C:

F LD HL, 259
2 LD BC, 75
CALL 345CH

jset freqguency code
iset number of cycles
;& call sound routine

H. "BEEP' ROUTINE

= The routine which is used by BASIC to produce the short 'beep'
wben a key is pressed is located at address 345¢ hex. It

— disturbs all registers except the HL pair, All you have to do
to produce a beep is call it;

CALL 345p ;make a "beep!

i = 19 =

J. CLEAR SCREEN

A routine located at @1C9 hex may be used to clear the video
screen, home the curser and select display mode (#). It L3
disturbs all registers, Again it is used simply by calling it:

CALL ©61lC9 ;jclear screen, home cursor etc

K. PRINTER DRIVER

The printer driver routine is located at @58D hex. To send a

character to the printer, load the character's ASCII code into

the C register and call the driver, After printing the g
character code will be returned in both the A and C registers,

a1l other registers are disturbed, For example to print the

letter 'a" (ASCII code 97 decimal), you would use:

LD iy ;set up code in C reg
CALL @58DH +& call printer driver

A line feed character (PAH) is automatically inserted after a
carriage return (@DH). If the driver is called with a null byte
in the C register, it will simply check printer status and
return with bit B of the A register either set or cleared. The
routine does check for a BREAK key depression, and if one is
detected, it will return with the carry flag set.

L. CHECK PRINTER STATUS

A routine to check printer status is located at #5C4 hex. When
called it loads the printer status (I/0 port @0H) into the A
register and returns, Bit @ will be set (1) if the printer is
busy, or cleared (@) if it is ready. No other registers are
disturbed. An example:

TEST CALL @5C4H ;check is printer is ready
BIT #,A ;test bit B
JR WZ ,TEST ;loop if busy

smust be ready

M, SEND CR=LF TO PRINTER

A routine located at 3AE2 hex may be used to send a carriage
return and line feed combination to the printer. No registers
need be set up before calling, but all registers are disturbed.
1f the BREAK key is pressed while printing occurs (or while the

printer driver is waiting for the printer to signal 'ready'), =

the routine will return with the carry flag set:

CALL 3AE2 ;go send CR-LF to printer
Jp C,BRK ;jcheck if BREAK key pressed =
sas ;apparently not

- 20 =

VZ-200 VIDEO DISPLAY WORKSHEET (MODE 0)

J— 7O0CH (28672)

TO1FH (28703) —3,

o | [31
az | | 63
&4 | 95
a4 | 127

128 159

180 191

192 223

[| 4

224 255

256 287

288 319

320 51

352 383

184 | Her | BE

416 | 447

448 are

480 | 511

7160 29152 © T1FFK|(28183) —
VZ-200 VIDEO DISPLAY WORKSHEET (MODE 1)
[7000H §28672) o 701FH {28703)

0.0 W r i ; ,7_?112?.0
:_ i THF F1iN] o THEH
AR i T T

i
1T H1 T
! - :
0,15M : 2 T 127,15
1 I I 8|
. _ i
] 1 1 1
. i LS
031 B _. |J':H.4 i ST TR g 127.31
T T :
O HiHE
t 1 H H
:
.47 BIHERR !
i & + i ket
I e =
TR I e
0,63 M it T THiH i 127,63

"L 77E0H (30688)

77FFH (30718 =T

B e
@_6 FROM REAR
i TOP RIGHT
NOTES | P'
ﬂ"‘\‘_‘
3 b2 el 1 TOP LEFT
4 3 bt
-- = P
6 | ——NC 2 N
¥ 17 —nNe I
— 18 F—NC 1 ! =
1 20 —Nc 12 —Al
19 j 10 ——A3
W % T — Ab
| g Sy o mm)
1 A 5 = A}
| |13 FA% 4 —M
== S —— P4 3 — Ao
' 10 }— as 2 2
12— A6 ol
y 1 — A7 1 —ReE
'T Gy 5 — H
B i = 6 —MI
e 17— WA
| § | i 6 — D3 I8 —NM]
1)} —— D5 A?___.H—m
B T —Dé MEMORY EXPAN
= 23 — &7
5 — TORQA e s
g THE INFORMATION HEREON
25 R RD THE PROFERTY OF THE COMS,
= 14 — WR HO RIPRODUCTION OR UM
A THORIZED UBE M FART OR
g I/0 EXPANSION CONNECTOR o veen coma o
e s COMPANY AUTHORITY.
hSev
- g2 = ani USED
T ON

FIRST APPLICATION

REVISION

]DHJ\WNi AFPD E DATE

OILV¥WAHDS -~ WVH WVYD0Ud TVNHILNI M9 @PC—ZA

REV ianEl DESCRIPTION
[
34 —NC
42 ——NC
44 +—NC
A3 L— 44y <=~
el s
M — Ail
a5 — A
26 — A3
20— A
28 — A5
B e 0
3 p—Do
31 +——DlI
il +—D3
30 —D4
32 —D5
33 —De
29 — UK
% —INT
39 = HAL
40 |—ME
Al —WR
b
[ON CONNECTOR
| i stilisallol 0 (s @ DICK SMITH ELECTRONICS
AND TOLEWANCES ARE D:,N e 3 fid
tm xx ANGLLAR = - TITLE
. Y .5 GII-;FK
E u:‘::::m : ENGR VE-208 PERSONAL COLOUR COMPUTER
BREAN ALL BHARP
DO MOT BCALE NGE
AUTH
TERIAL SIZE | CODE IDENT | DWG NO
A3 £5-0137-00
IIsH
SCALE |sHeeT 4 oF &

BETSIFL

< HHBL

Ld=-@ga

£
*

PIV=BY

o’
*

9119

9119

- = i E
= Yn il mm?mu zl
'3 e k =3
uummmw 3
_l Wummnm z
: ipdtgg <
. T § § i E &
R I A L L HE -
=3 o e
: E rrg iz |39[s8
3 s
S
g L
*
™
-
&
+— 0 L
=|a
ki
o
= 3
|
= Ly
i i
) ‘I -] __
T
| | | L] | [
TOHD)i
A7 e
+5V 74LS5138
A
ol : 2 > STROBE
e I
e 18pF
U2 P
Ad ’ Tk ‘@
x Es
T & !
74LS373
= 4 28 el » 227
5 e
: Ll
7 * by
e Fa "“0\
73 e
e >3’
%. o b ey 5 8 x
i P TETT TR Qe
4.7k 4.7k
U1d
< BUSY/READY

T4LS33

VEZI-208 PRINTER INTERFACE

18pF

=il

== SCHEMATIC

DICK SMITH ELECTRONICS PTY LTD

REVISION

REV I ZONE |

DESCRIPTICN

|DRAWN] APPD { DATE

4.43MHz

TBAS2
to0p = b, 3 s ouT
Hj
15p 13 16
19in
}I!'r ' 2y
10w 16Y -
B=-Y 11K
—
21K
R-¥ i, S o T
L S— 4
+1LY
)| 3ak
18y s
| _ENCODER
UNLESS OTHERWIBE BPECIFIED SIGNATURE DATE
DIMENBIOHS ARE (N M8 INCHES @ DICK SMITH ELECTRONICS
AMD TOLERANCES ARE “;:"-
xn xx ANGLULAR TITLE
] t H CHECK
ALL MACHINED BUAPACE oy
REMOVE BUMRS ENGR VZ-208 PERSONAL COLOUR COMPUTER
BREAK ALL SHARF
DO MOT BCALE DRAWING ENGRG)
IAUTH
MATERIAL SIZE | CODE IDENT | DWG NO
A3 =
FINISH : 65-0237-00
SCALE |sHEeT 3 oF 4

| CHROMA IN

I
|
|
|

| VIDED

0 |

|
|
r
|
|
[
e -

4K

84314 5 2

14@20

o]

l4p2e

moN I TOR

I”P

4T

HobuL ATAR

E e
SIGNATURE DATE
D e e @ DICK SMITH ELECTRONICS
AMD TOLEMAMCES ARE Q'EVYN.
e e ANGULAR TITLE
;- E * CHECK
e
GEg i VZ-208 PERSONAL COLOUR COMPUTER
BREAK ALL SHARP COANERS
DO MOT BCALE NGRG
AUTH
MATERIAL SIZE CODE IDENT DWG NO B
A3 §5-0237-00
FINISH

SCAlF

Tsheer 2 oF 4

+y
|GI
it W
el B g & j
A ==
5398
(13 P S a
i1 Pl
| cv
= MR MR

1| e

e ML HA
Lila &y
&
L5393
ald
H l’l
dy

Ls21

2

s | [[

HiE

3

iL)
- L]
T L
o]
Llas =
[I L5396 &
1] &, |t |
M
GHD
1]

THE (WFORMATION HERBON
THE PROPETY OF THE COMP!
WO REPRODUCTION OR L
THORIZED USE W PART Of
WHOLE BHALL BE MADE Wil
OUT WRITTEN CONBENT OF
COMPAMY AUTHORITY.

e e e
NEXT
ASSY

USED
[o,]

FIRST APPLICATION

788
0 7ack *l lm“
10 RESET T ‘I
e 8
= 33Ke3 Y
g RY Qo Rz RN BB +sv Reb RT R
45V1
+£
47k % 6
\ T lag |aS : al
h 5 fas g S [
R T Re NE A L R L bd® lan
l‘ 2fus F oclio 2l
Al F Dlgwrf 5| 6 Bl o REElaa 5|9 L]
-—H— LA 7 AS
\5:_“ ¥ Clsir] %] B Re B faolse o3 - h i;rr
¥ = 39| po P2l WIS
NLES I‘ 4 3 i 5 RS i faples b1 15 Jﬁm
o 32Ut U4 ve| Y ~_Elaa ULD
Lo M ' | N me B L 3tla z-88A 3 h—Tins ROM
8 W 3las L Y ol
45 T 8 -1 s 6 s T Ll #rsq28 L_1]m e
3 by wiftl -1 s
Ab u 1IRT I w2 (ulm sy pefid
H— T TR %) ot
s K Ll H a7 T 20| paf 2
S lew i ld
19 el
= . MREQ 7% BE oo
Wi gl ko 9| 18] 2 20 22 2| J-:\L
e oo h[~J3
=9 i ny
pi bl bo — Uiz
o F 11 INT
N IS
358z =
WR
D 4!
(I . (B00E-1FFF) 3l
5 e (2000-3FFF)
7 1 (6800-6EFF) | | ot
(6Ba0—7FEFF)
L a)
i ol 1w (7
il # |
0 pram_(
L5139
ps A15.MREQ

REVISION

+5v

”ﬂ" 004 5 i . T \‘ 1 | | \

REW {zoue| DESCRIPTION Iaqnwu] ar E DaTF

o
w5V C W R
GAkaLL - +51 TR LA r 11 Le}.. Lafore i
— A HS -y- .r
A LA #[oam e 1T 2 . S (1S
s ~2loas o 5| —a DRAM e =
__]‘ T e Fs 21 INT e
T LAt A ::: Lot gl EN.-’G] 1 N
H g e bt Bl ve |, -
4 H™ T N3 M el — - 16| 4116 | f—f~a116 | [~ |~ 4116 | [~ J=a116([dma116
R 3 pat \%W- z =4 - T Pt fes b tcee L [
— & u7 [l o5 L = B ne
IR pRoGRaM Rams [bl [Toes 6116 e ﬂ‘:ﬁ_“-_ e T 1 o
SEE __}‘ 8 |pae o] F 25 :\lm = £ S —H= = o
UBPLEMENTARY s =il Yy e "*‘“37—-_]_ e | 08 S
CIRCUIT) — ::_'%q 3] o = 2 | | s sk 1 (sl B
= | — s i Vel) o Lon el e) Foe Yid Y] T oo ema zp
| fows M"E"‘\- i = ettt |:4 ‘|“|. j.ﬁn | s | |=“.“k.‘e qk.J_a P
& s i = =TT TT=) T2 K S
5 3 i = B = b = = 5
~ ~ [doas o 2] e St oy | esu m ‘ i S i | #6r -5¢
.-..}. 5 e 8 20 . - : -
i L3 ™y it 1
»r’“i (17 Jos oi T ==
S 16 |pa pil 6 = :
EEE]R) I8 (TR]
b o] +3V IN
__(wprog &L AT L eyg s o
—RD RaMs) S 5 [== - \
B A R el T [T ‘ ‘i“_ L
alz = e gl] i
£ A tao I : it I i

L
™
@)
+
]

|

[1s@2C{

L_%

8 e 4

WRITE 68@@-6FFF

3 [cPras
0~7FFF) el
P a1
1B-TIFE) =" a1 81
b 13 |es arl
. |3 o
gy -1 g

L5174

SIZE | CODE IDENT | DWG NO
a3 65-0237-00 =

VZI-200 PERSONAL CDLOUB COMPUTER SCALE TsreeT "%E T

@ DICK SMITH ELECTRONICS

L]

pe—

L

B - e

AP=Al5

] LT

TA x ull

Ls123.[.

o
s

i

Dé@=D7

:_fe
o
LI

iz 5

s L

|
E

£

-] G

z fr
G

= 3

s

b
uls fJ
LS74 =
a L
Cas messe
28] = B
" WR
LINKS*
| 4K S
i 6K 1 == 3
! 8K 1 —— 4
—_—] . - *
e —— = 5 i ek
L 2%
8 7 6 s [

