
Chapter 5: Complete set of quantum gates

Arbitrary quantum gates acting on any number of qubits can be constructed (approximated to
arbitrary precision) from a small number of one-and two-bit gates.

Single-qubit gates

General single-qubit state is a point on the Bloch sphere
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General single-qubit gate U|θ, ϕ〉 = |θ′, ϕ′〉 is a rotation about an arbitrary axis.

Experimentalists do not like arbitrary axes!

Decomposition into products of rotations about a small number of different axes is possible, at
least approximately. Precision depends on the number of factors in the product,
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• The NOT and
√

NOT gates:
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• The Hadamard gate (Jacques Salomon Hadamard, 1865-1963)
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Basis states → symmetric and antisymmetric linear combinations.

Is a very efficient tool for creating entangled states → quantum algorithms.

H2 = 1⇒ H is unitary ⇒ H is a rotation. Axis?
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Every single qubit operation can be approximated to arbitrary precision using only the π
8 and

(square root of) Hadamard gates.



Two-qubit gates

• The CNOT gate (controlled not) flips the target qubit when the control qubit is 1.

As a truth table:

control-qubit target-qubit result
0 0 00
0 1 01
1 0 11
1 1 10

In matrix notation with respect to the usual
computational basis (|00〉, |01〉, |10〉, |11〉):

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =
(

1 0
0 X

)

Note that X =
(

0 1
1 0

)
is the single-qubit NOT gate.

The CNOT gate and the single-qubit gates discussed above suffice to perform any unitary
operation on a finite number of qubits.



Universal set of gates

Three steps of the proof:

1. Two-level gates are universal. Any d × d unitary matrix U can be written (exactly) as a

product of d(d−1)
2 two level unitary matrices (affecting only two vector components).

2. CNOT and single-qubit gates are universal. Any two-level matrix can be expressed (exactly)
by these building blocks.

3. Single-qubit gates can be approximated using H
1
2 and π

8 gates.
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Step 2 of the proof: constructing two-level gates

Rearrange the computational basis such that the two levels of interest are the basis states of
one qubit, apply arbitrary single-qubit operation, rearrange the basis back to original order.
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Example: How to achieve operation U between basis vectors |ABC〉 = |000〉 and |111〉:

• Apply the Toffoli gate θ(3) (CCNOT):
θ(3)(NOTA,NOT B,C): |000〉 ↔ |001〉; all other states unaffected.

• θ(3)(NOTA,C,B): |001〉 ↔ |011〉; all other states unaffected.

• Apply C2U to A, with B and C as control qubits.
U thus acts only on the first qubit of |011〉 and |111〉 as desired.

• Reshuffle to original order.

All controlled or doubly controlled gates can be built using CNOT.




