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Pointer analysis is an important part for the source code analysis of C programs. In this paper, we propose
a bottom-up and flow- and context-sensitive pointer analysis algorithm, where bottom-up refers to the
ability to perform the analysis from callee modules to caller modules. Our approach is based on a new
modular pointer analysis domain named the update history that can abstract memory states of a proce-
dure independently of the information on aliases between memory locations and keep the information on
the order of side effects performed. Such a memory representation not only enables the analysis to be
formalized as a bottom-up analysis, but also helps the analysis to effectively identify killed side effects
and relevant alias contexts. The experiments performed on a pilot implementation of the method shows
that our approach is effective for improving the precision of a client analysis.
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1. Introduction

A bottom-up program analysis performs the analysis from callee
modules to caller modules, where a module in a C program is a sin-
gle procedure or a set of mutually recursive procedures. A bottom-
up C program analyzer computes the summary transfer function for
each procedure without utilizing any information on the caller
modules. For each call site where a procedure is invoked, such an
analyzer approximates the behavior of the procedure call, not by
analyzing source code of the callee, but by applying the summary
transfer function of the callee that has been separately computed
in advance.

In practice, this scheme has several advantages. First, it enables
the analysis to be performed on incomplete programs such as li-
brary code, by exploiting its ability to analyze and summarize
the behavior of procedure without callers. Thus, the analysis can
be applied in the modular development process of software in
which individual software components are separately developed
and subsequently linked with other components. Second, the anal-
ysis can often be scaled to large programs since the whole-program
and analysis results need not to be in memory simultaneously dur-
ing the analysis, and the reuse of the summaries of modules dis-
penses with the need to reanalyze the procedure body at every
call site. Third, when there is a code change, reusing the summaries
of modules that are independent of this modification means that
only the dependent parts of the code need to be reanalyzed.

Pointer analysis is essential to the effective source code analysis
of C programs. Our goal was to design and implement an effective
ll rights reserved.
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bottom-up pointer analysis that could be used in a modular soft-
ware development environment. Although several bottom-up ap-
proaches [1–10] for analyzing the pointer behavior of C programs
have been proposed, several problems remain that need to be ad-
dressed, two of which form the focus of this paper.

Consider the following example code, which provides funda-
mental insight into these problems:

int g1, g2;
f(int **p, int **q) {

l1: *p = &g1; l2: *q = &g2; l3: return *p;
}
main() {
int *i, *j;
l4: f(&i, &i); l5: f(&j, &j); l6: f(&i, &j);

}

Each memory location represented by expressions &p, &q,
&g1, &g2, p, q at the start of procedure f are designated as p, q,
g1, g2, p.*, and q.*, respectively.

The assignment l2 kills the effect of assignment l1 if both p and q
initially point to the same memory location, as in the cases of pro-
cedure calls at l4 and l5. In this case, the analyzer can safely discard
the effect of assignment l1, which is called a strong update [11].
Otherwise, the analyzer needs to keep the side effect of l1 (e.g.,
the procedure call at l6). Therefore, a precise bottom-up analysis
that distinguishes these two cases needs to effectively identify
actually killed side effects, which generally requires a flow- and
context-sensitive analysis. However, none of the existing bottom-
up pointer analyses [7–10] that are flow- and context-sensitive
can identify interprocedurally killed side effects of this type.
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The behavior of pointers in a procedure generally depends on
the alias context, which is the set of alias relations between un-
known locations1 that can be determined from the calling context.
For example, procedure f returns g2 if it is invoked with a calling
context such that p:� and q:� are identical (e.g., call sites l4 and l5),
whereas it returns g1 if p:� and q:� are different (e.g., call site l6).
Therefore, a precise bottom-up analysis that distinguishes these
two cases must be alias context sensitive, and the summary transfer
function should reflect this input–output dependency. Since com-
puting a full summary for all possible alias contexts of a procedure
can be prohibitively expensive and some alias relations do not affect
the output of a procedure, the alias context sensitive summary con-
struction algorithm needs to identify only relevant alias contexts2

that change the behavior of a procedure.
Our approach is based on the insight that both the killed side ef-

fects and relevant alias contexts discussed above can be effectively
identified if we have information on the order of side effects per-
formed. For example, if the summary of procedure f contains infor-
mation that memory location p:� is updated before q:� is updated,
we can kill the side effect of p:� when the analyzer becomes aware
that p:� and q:� are resolved to the same memory location, as in l4.
Based on this idea, we introduce a new memory representation that
keeps information on the order of side effects performed, which is
named the update history. Our bottom-up and flow- and context-
sensitive pointer analysis is formulated based on this memory rep-
resentation, which is used to identify killed side effects and relevant
alias contexts. We formally prove the soundness of the analysis by
formalizing the analysis as an inference algorithm of a type system,
which is a typical framework used to design a sound and compre-
hensive bottom-up program analysis.

We summarize our contributions as follows:

(1) We propose a bottom-up pointer analysis that can effec-
tively identify killed side effects and relevant contexts using
a new memory representation called the update history. The
update history can abstract the set of memory states inde-
pendently of the information on aliases between memory
locations, and keep the information on the order of side
effects performed.

(2) We illustrate the effectiveness of our approach with empir-
ical results obtained from experiments performed on a pilot
implementation of the method.

(3) We formalize the analysis using the type system framework,
and provide a formal proof of the soundness which has not
been satisfactorily investigated for this kind of problem
previously.

The remainder of this paper is organized as follows. Section 2
gives an informal overview of our approach, Section 3 presents
the memory type system that computes the side effects of a pro-
gram, and Section 4 presents the bottom-up pointer analysis algo-
rithm that is formulated as an inference algorithm for the memory
type system. Section 5 discusses our implementation and shows
the experimental results therefrom. We relate our work to previ-
ous research in Section 6, and draw conclusions in Section 7.
1 We call the memory locations that are decided at the procedure invocation, such
as p:� and q:�, unknown locations.

2 Even though considering only relevant alias contexts during the analysis removes
the overhead of computing meaningless summaries, a procedure can involve an
exponential number of relevant alias contexts. In this paper, we focus on a method for
effectively identifying relevant alias contexts, where the number of relevant alias
contexts considered in the analysis is subject to a constant bound k.
2. Overview

2.1. Memory location abstraction: access path

We name memory locations using the notion of the symbolic ac-
cess path [12], which makes the alias context independent naming
of memory locations possible. An access path AP of a procedure f
represents a set of addresses reachable by the access method at
the start of f, which has the following form:

s 2 Selector < ¼ fld j �
AP 2 AccessPath< ¼ x j l j AP:s

Access path x represents the address of variable x, access path l
represents the set of addresses dynamically allocated at program
point l, access path AP:fld represents the address of field fld of ac-
cess path AP, and access path AP:� represents the address to which
access path AP initially points at the start of a function. If access
path AP has at least one dereference (:� 2 AP), we call it an un-
known access path; otherwise, we call it a known access path.

In the presence of recursive data structures, the number of possi-
ble access paths for a procedure may be unbounded. For such recur-
sive access paths, we follow the well-known abstraction technique
that limits the depth of the recursive access for a variable to some
constant k. For example, a set of memory locations represented by
expressions x->next, x->next->next, . . . at the start of a proce-
dure are abstracted into a single abstract access path x: � :next, when
the field next means the recursive access, and k ¼ 1.

When k ¼ 1, we say that the access path x: � :next has collapsed
since it represents several memory locations at run-time, while a
unique access path (e.g., p:�) represents only one memory location.
The value of a unique access path can be destructively updated be-
cause it represents the same run-time object throughout the exe-
cution of a procedure for a particular call [13,14].
2.2. Memory state abstraction: update history

An abstract memory M of a procedure f has the following form:

½AP1#V1� . . . ½APn#Vn�

This represents the memory state after the sequence of sym-
bolic updates, APi to Vi, are performed with the initial memory
state of procedure f, where value Vi represents the set of access
paths. For example, the memory ½p: �#fig�½q: �#fjg�½r: �#fkg�
computed on line 4 of Fig. 1 abstracts the memory state after up-
date operations p:� to fig, q:� to fjg, and r:� to fkg are successively
performed with the initial memory state of procedure f.

Note that the key problem of using such a memory representa-
tion as an analysis domain is that the order (vM) and join operation
(tM) are not trivially defined. To simplify the overview of this sec-
tion, we postpone the presentation of our approach to solve this
problem until Section 3.5.
2.3. Input context and summary

An input context (alias context) B is defined as a set of alias rela-
tions, where each alias relation AP#AP0 means that there is no
intersection (alias) between the memory locations represented
by AP and AP0. B abstracts a set of calling contexts by constraining
the alias status between access paths. For example, an input con-
text ; represents all calling contexts since there is no constraint
on the alias status. An input context fðq: �#r:�Þg of a procedure f
represents a set of calling contexts such that there is no intersec-
tion between the memory locations represented by expressions q
and r at the start of procedure f.



Fig. 1. Analysis example.
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The summary computed for each control flow graph (CFG) node
n of a procedure f are defined as a set of inout elements, where each
inout ðB;MÞ means that M is a safe approximation of the memory
state obtained after n is executed with a calling context abstracted
by input context B. For example, ½p: �#fig�½q: �#fjg�½r: �#fkg�
computed on line 4 of Fig. 1 abstracts every memory state that is
obtainable after line 4 has been executed, since B ¼ ; means that
B abstracts all calling contexts.

2.4. Strong update

Consider an update operation that updates the set of access
paths A to the value V with the memory M and the input context
B, which is caused either by an assignment statement or a proce-
dure invocation. If A is a singleton set {AP} and AP is a unique ac-
cess path, we can safely kill the old side effect on AP. In other
words, we append a new side effect ½AP#V � to M while deleting
the old side effect ½AP#V 0� 2 M. Note that we kill only the side ef-
fect for AP from M and do not kill the side effect for an unknown
access path AP0 in M, which can be identical to AP depending on
the input context. The analyzer does not attempt to eagerly kill
those side effects, instead postponing the decision to kill them un-
til the procedure is invoked by simply keeping them in the sum-
mary of the procedure. If the procedure is invoked and both AP
and AP0 are resolved as a unique access path AP00, the analyzer kills
those intermediate side effects lazily using the information on the
order of updates that is kept in the summary.

2.5. Lazy partitioning

Our analyzer lazily introduces a new alias relation into the anal-
ysis only when it is determined to be relevant. A relevant alias rela-
tion differentiates the meaning of a procedure f since the points-to
set computed inside the procedure is changed by this alias relation.
This dependence arises only when all of following three conditions
are satisfied:

(1) Either AP or AP0 represents an unknown location.
(2) AP is read after AP0 is updated.
(3) AP is not updated after AP0 is updated.

Such conditions can be explicitly identified by our memory rep-
resentation since it keeps the information on the order of side ef-
fects performed. For example, if there is a read operation on an
access path APi with the memory ½AP1#V1� . . . ½APn#Vn�, alias rela-
tions between APi and fAPiþ1; . . . ;APng are considered in the analy-
sis. Note that alias relations between APi and access paths
fAP1; . . . ;APi�1g are not relevant because they do not satisfy condi-
tion 3. Alias relations between APi and access paths that are not up-
dated yet and will be updated later inside the procedure are also
not relevant because they do not satisfy condition 2.

2.6. Analysis example

The example in Fig. 1 shows the analysis result at each program
point computed in the bottom-up manner using our pointer anal-
ysis algorithm. The analyzer first computes the summary of callee
procedure f with no particular calling context. Statements 2, 3, and
4 simply append side effects ½p: �#fig�, ½q: �#fjg�, and ½r: �#fkg�
to the initial memory � successively. This means postponing the
decision about what side effect of the old update history is killed
by an update operation if it depends on the calling context. As
mentioned in Section 2.5, the expression *q on line 5 may be inter-
preted differently depending on the input context of procedure f.
So, the analyzer introduces a new input context fq: �#r:�g and
computes the corresponding summary for this input context as
well. The side effect for p:� in the old update history can be killed
since the l-value of this assignment is a singleton set fp:�g, and p:�
is a unique access path. Finally, procedure f is summarized with the
inout elements computed on line 5, which is the return point of f.

Next, the analyzer computes the summary of caller procedure g
using the summary of procedure f (which was computed sepa-
rately). Unknown access paths p:�, q:�, and r:� in the summary
for procedure f are resolved as x:�, y:�, and y:�, respectively, at
the procedure call on line 7. Among two input contexts of the sum-
mary of procedure f, only ; is satisfiable for this calling context. So,
the analyzer applies corresponding side effects
½q: �#fjg�½r: �#fkg�½p: �#fj; kg� for this particular calling context
with initial memory � of procedure g. The underlining in the figure
shows the sequence of updates performed for this application. The
first line resolves the access path, in which access paths of the cal-
lee’s summary are substituted with those of the caller’s summary.
The # command on the second line shows the sequence of update
operations performed. This can be interpreted as performing the
sequence of updates in the context of caller, which are postponed
when procedure f is summarized. Note that such a lazy update
scheme increases the opportunity of strong updates in the bot-
tom-up analysis. For example, we can safely kill side effect
½q: �#fjg� since the successive side effect ½r: �#fkg� is determined
to be a side effect on the same unique access path y:� under this
particular calling context on line 7. Note that performing this
strong update when we summarized procedure f is unsafe because



Fig. 2. The language.

Fig. 3. Types.
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the B does not guarantee that q:� and r:� are identical. On line 8,
p:�, q:�, and r:� are resolved as x:�, y:�, and z:�, respectively. In this
case, both fy: �#z:�g and ; are satisfiable depending on the alias
context of procedure g. So, the analyzer introduces a new input
context fy: �#z:�g and computes the corresponding summary for
both input contexts.

3. The memory type system

A type system [15] can be regarded as an equation that specifies
the type that safely approximates the execution result of a pro-
gram. In this section, we formalize the bottom-up analysis pointer
analysis that was informally presented in Section 2 as a type sys-
tem for the memory. We first formalize our update history based
memory representation as a typical type element (modular analy-
sis domain) of the subtype system. Then we formalize the subtype
system3 for the memory type and prove the soundness of our mem-
ory type system. The target bottom-up pointer analysis is formulated
as an inference algorithm of this memory type system in Section 4.

3.1. The language

We will use the following notation: Let X denote an arbitrary
syntactic element in our type system, with X used to abbreviate
various syntactic enumerations (e.g., ðX;YÞ abbreviates ðX1;

Y1Þ; . . . ; ðXn;YnÞ).
The language used to model the pointer behaviors of the C pro-

gram is defined in Fig. 2. A program p is a sequence of procedure
declarations followed by expression e which represents the body
of the main procedure. Assignment statements such as x=y and
s->f=�y are represented as &x :¼ �ð&yÞ and &ðð�ð&sÞÞ:f Þ :¼
�ð�ð&yÞÞ, respectively. Statements such as x[i]=&y and
3 Our type system is a non-standard subtype system in the following senses: (1) it
does not perform any checking (verification), instead simply specifies the safe
approximation of a program’s execution result as a type element s; and hence, we do
not need the property ‘‘progress” [16] in our type system and (2) the type of a
procedure is a set of input–output pairs, each of which is a sound type of the
procedure.
�(x+j)=&y are translated into one representative statement
�ð&xÞ :¼ &y, where the access path for the variable x is safely re-
garded as the collapsed access path in the analysis. The condition
of an if statement is disregarded because we are interested in a
path-insensitive analysis. The loop is explained by recursive call.
To simplify the presentation we exclude the type casting and func-
tion pointer in the language. In our implementation, these features
are correctly handled using the same method as [2], which is a bot-
tom-up and flow-insensitive pointer analysis.

We refer the formal semantics of the language to our technical
report [17] since it is only related to the formal proof whose details
are also referred to the technical report.

3.2. Types

The types (analysis domains) in our memory type system are
defined in Fig. 3. The Value type A (or V) is a set of access paths.
The meanings of the Memory type M, the InputContext type B,4

the Inout type P,5 and the Summary type D are explained in Section
2. The TypeEnv type C is a finite mapping of procedure name to pro-
cedure summary.

3.3. Checking aliases between access paths

Judgements B ‘as as and B ‘B B0 check the disjointness between
access paths under the given input context B. Deduction rules for
these judgements are given in Fig. 4. An alias relation as is satisfied
under B if it is implied by B (rule [hypoth]) or as is known inside the
procedure (rule [AP#AP]). For example, the disjointness between
the access paths x:� and y:� of procedure f can be proved only when
x: �#y:� is in the given input context B, since both of x:� and y:� are
unknown access paths. If x: �#y:� R B, this means that memory
locations abstracted by x:� and y:� are not disjoint (may be aliased).
4 The extension of the type system for the other alias relations such as ‘‘must be
aliased” is direct, and is not considered in this paper for brevity.

5 The definition of P is extended to a tuple (B, (M, V)), where value V represents a
return value.



Fig. 5. Typing rules: memory reads.

Fig. 4. Typing rules: input context.

6 The ambiguity between rules [read-#] and [read-safe] is not problematic in terms
of the type system. The trivial problem of making the rules deterministic is addressed
in Section 4.
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3.4. Points-to set of M: read operation

The judgement B;M ‘AP AP ) V specifies the safe approxima-
tion of pointed access paths V of AP with memory M under input
context B. In other words, it specifies the conditions for the safe
read operation that computes the set of access paths V to which ac-
cess path AP points with M under B. Typing rules for this judge-
ment are given in Fig. 5.

When there is a read operation on AP, the value of AP is safely
approximated by examining the given memory from the most-re-
cently updated entry to the first updated entry.

If the update history of the examined memory is � (rule [read-
�]), this indicates that we are reading the value to which AP ini-
tially points. This value is represented as abstract access path
aðAP:�Þ, where a 2 AP ! AP is a well-known [9,2] access path
abstraction function that maps the concrete access path of each
procedure to the abstract access path by limiting the depth of
the recursive access to some constant k. In general, it is safe to
use any kind of abstraction (grouping) for the access paths as long
as the uniqueness of each abstract access path that is implied by
the used abstraction function is safely dealt with. A predicate
‘‘collapsedða;APÞ” is satisfied if one of the following conditions is
satisfied: (1) l 2 prefixðAPÞ, where prefix 2 AP ! 2AP is a function
that computes the set of prefix access paths of the given access
path AP; (2) 9AP0 2 prefixðAPÞ : AP0 is used in pointer arithmetic
or array indexing; or (3) 9AP1;AP2 2 DomðaÞ : AP1–AP2^
aðAP1Þ ¼ aðAP2Þ ¼ AP. Otherwise, AP is not a collapsed access path,
which is denoted as ‘‘uniqueða;APÞ”.

There are two cases if the examined current update history is
M½AP#V1�: (1) if AP is a unique access path, then the value of AP
is V1, since ½AP#V1� must update the AP (rule [read-=]) and (2) if
AP is a collapsed access path, then we conservatively join value
V1 to previous value V2 of AP in M since ½AP#V1� may update the
AP (rule [read-safe]).
There are also two cases if the examined current update history
is M½AP1#V1�: (1) if AP1 is disjoint with AP, then we read the value
of AP in memory M since ½AP1#V1� does not affect the value of AP
(rule [read-#]) and (2) if AP1 is not disjoint with AP (it is possibly
aliased), then we conservatively join value V1 to previous value V2

of AP in M since the last update history ½AP1#V1� may update the
location represented by AP (rule [read-safe]6).

Now, judgement B;M ‘r A) V is added to the type system that
specifies the safe approximation of pointed access paths V of the
set of access paths A with M under B. Typing rule [read-A] for this
judgement in Fig. 5 computes the pointed access paths of
fAP1; . . . ;APng by joining the pointed access paths Vi of each access
path APi with M under B.

3.5. Subtyping: orders between types

The key problem of keeping the information on the order of side
effects performed in the memory type is that the order between
memory types (subtype relation M1vMM2) is not trivially defined
since M1 and M2 can have a different order of side effects. In order
to handle such cases, we define the subtype relation between
memories in the context of safely rearranging the order of side ef-
fect in M1 and M2 into the same order.

Typing rules for the subtype relation between memories, which
generally depends on the input context B, are given in Fig. 6. If the
orders of side effects of M1 and M2 are same, the subtype relation is
determined by the rule ½vMð3Þ�, which inductively compares two
memories with the same order of updates. If the orders of side ef-
fects of M1 and M2 are different and the domain of the last side ef-
fect of M2 is AP (rule ½vMð2Þ�), M3vMM2 determines M1vMM2,



Fig. 6. Typing rules: subtype relation (order between memory types).
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where the domain of the last side effect of M3 is AP and the set of
memory states abstracted by M3 contains those of the M1. The
shiftðB;M1;APÞ operation of Fig. 6 is devised to find such an M3

by moving the side effect on AP in M1 to the rightmost position
such that the set of memory states abstracted by shiftðB;M1;APÞ al-
ways contains those of M1 under input context B. In other words,
shiftðB;M1;APÞ computes an M3 such that the last update history
of M3 is ½AP#V 0�, and for every abstract access path APi of proce-
dure f, if B;M1‘APAPi ) Vi and B;M3‘APAPi ) V 0i, then Vi # V 0i.

For example, let us consider the subtype relation between two
memories M1 ¼ ½x: �#fig�½y: �#fjg� and M2 ¼ ½y: �#fjg�½x: �#

fig�. If the input context B is fx: �#y:�g, then B ‘ M1vMM2 is satisfied
since shiftðB;M1; x:�Þ ¼ ½y: �#fjg�½x: �#fig� and B ‘ shift
ðB;M1; x:�Þ v M2 is satisfied by the rule [vMð3Þ]. If the input context
B is ; and uniqueða; x:�Þ, shiftðB;M1; x:�Þ ¼ ½y: �#fjg�½x: �#fi; jg�
since y:� and x:� may be aliased. In this case, we cannot conclude
B ‘ M1vMM2.

The typing rules for the memory join operation ðtMÞ are given
in Fig. 6 and defined in a similar way to the order between mem-
ories ðvMÞ explained above. Note that even though we declara-
tively (non-deterministic for the rules ½tMð2Þ� and ½tMð3Þ�)
presented the memory join operation for generality, a determin-
istic version of tM for the fixpoint iteration in the inference algo-
Fig. 7. Orders be
rithm of Section 4 is trivially derived from these rules. For
example, rule ½tMð3Þ� can have precedence when rule ½tMð2Þ� is
also applicable.

The orders and deterministic join operations between types
other than the memory type, are defined in the standard manner
as shown in Fig. 7. Since all the orders between types are reflexive
and transitive (preorder), the partial order (analysis domain for the
fixpoint iteration) for each type X can be automatically constructed
using the equivalence relation �X such that X1�XX2 iff X1vXX2 and
X2vXX1 [18]. Note that we omitted the definition of the greatest
element >X and the least element ?X for each type X, where the
corresponding extensions are trivial.

3.6. Memory updates

The judgement B;M;V ‘u A) M0 specifies the safe approxima-
tion of memory M0 after updating the set of access paths A to value
V with memory M and input context B, which is caused either by an
assignment statement or by a procedure invocation. Typing rules
for this judgement are given in Fig. 8.

The typing rule for strong update ([update-s]) is explained in
Section 2.4, where M � fAPg refers to the memory after removing
mapping ½AP#V � (if it exists) from M.
tween types.



Fig. 8. Typing rules: memory updates.
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If we are updating a collapsed access path AP to V with M ([up-
date-w]), we do not know for sure which concrete access path rep-
resented by AP is updated by this update operation. Therefore, the
old side effect ½AP#Vold� 2 M cannot be safely killed when the
new side effect ½AP#V � is added to M. On the other hand, simply
adding ½AP#V � to M to keep the old side effect ½AP#Vold� 2 M for
this case can be problematic since a loop can cause an unbounded
number of side effects on AP. Therefore, we conservatively bound
the length of the update history by approximating the set of up-
dates performed on one access path into one symbolic update as
follows. We first determine ðM � fAPgÞ½AP#V 0�, where the side ef-
fect for AP is safely (i.e., MvMðM � fAPgÞ½AP#V 0�) moved to the
rightmost position of M using the shift operation of Fig. 6. Then,
we join the new update value to the old value by adding merged
side effect ½AP#V [ V 0 � to M � fAPg. The update operation for the
multiple access paths ([update-w]) is explained similarly.

3.7. Typing rules for the program

In this section, we explain the main judgements of our memory
type system:
Fig. 9. Auxiliary
(1) ‘p p) ðM;VÞ,
(2) C ‘ fdecfun f ð�xÞ ¼ e,
(3) B;M ‘e e) M0;V .

Judgement 1 is read as ‘‘The type of a program p is ðM;VÞ”. This
means that the safe approximation of the execution result of pro-
gram p is M and V . Judgement 2 is read as ‘‘C types f”, which means
that C is a type environment that safely approximates the behavior
of procedure f. Judgement 3 is read similarly – intuitively it speci-
fies the safe approximation of the memory and the memory loca-
tion obtained after executing e under a calling context abstracted
by B and a memory abstracted by M. Typing rules for these judge-
ments are given in Fig. 10, and the auxiliary operations used in
those rules are given in Fig. 9.

The [Program] rule computes the safe approximation of execu-
tion results Mp and Vp of given program p using type environment
C, which provides the safe summary of each procedure fi invoked
in e. In the type system, we simply assume that such C for a pro-
gram are given globally. The inference algorithm of Section 4 de-
scribes the algorithm to infer such C. In [Fundec], we first
prepare a set of input contexts B1; . . . ;Bn, where each Bi is consid-
operations.



Fig. 10. Typing rules: program.
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ered to be relevant. If each ðBi; �Þ types e as ðM0
i;ViÞ, the summary of

procedure f is fðB1; ðM1;V1ÞÞ; . . . ; ðBn; ðMn;VnÞÞg. Note that C used to
type procedure f contains its own summary, which explains the
typing for recursion and mutually recursive procedures.

[Addr-id] computes the access paths fxg represented by expres-
sion &x, [Addr-*] computes access paths V represented by the
expression e, and [Addr-fld] computes access paths A for the field
fld of the access paths represented by expression e. [Deref-*] com-
putes memory M1 and value V1 by typing expression e, and then
computes the set of access paths V to which V1 points using the
typing rules for memory reads in Fig. 5. [Deref-fld], which com-
putes the value of field fld of expression e, is similar to [Deref-�].

[Asgn] successively types each expression e1 and e2, computing
the memory M2, the value (l-value) V1 of e1, and the value (r-value)
V2 of e2. Then it computes the result memory M3, which is obtained
after updating V1 to V2 with M2 using the typing rules for memory
updates in Fig. 8.

In [App], we first compute the substitution S that represents the
calling context using the access path abstraction function a (ex-
plained in Section 3.4) used to type callee procedure f. AP0½�y=�x� rep-
resents all concrete access paths of the caller that are abstracted
into abstract access path AP of procedure f, whose formal parame-
ters are �x. So, the caller’s access paths for AP are computed by iter-
atively reading the sequence of access path selectors of AP0 ½�y=�x�
with the caller’s memory M according to the access path resolving
rules of Fig. 9. Next, we determine which input–output relation of
the summary of procedure f is correct to type the procedure call
expression. The purpose of B ‘ Bi½S� is not to check any property
for verification as in the typical type system, but to select an
inoutðBi; ðMi;ViÞÞ, which is proved to be a safe approximation of
the behavior of the callee procedure for the calling context that sat-
isfies Bi. Such an input context always exists in the summary as
long as the input context ; (which means all calling contexts) ex-
ists in the summary. Finally, we iteratively perform each instanti-
ated update ½Ai#Vi� of Mi½S� with the caller’s memory M and input
context B (see the definition of M /

B
M i½S� and the substitution in

Fig. 9).
[New] can be simply regarded as a procedure application whose

summary is fð;; ð�; flgÞÞg, where l is a representative (collapsed) ac-
cess path for the memory locations allocated at l. Note that
although we have used a simple abstraction for the dynamically
allocated memory addresses, a variety of well-known techniques
to increase the precision can be adapted in our type system with-
out loss of generality: We can distinguish offsets of a memory
chunk allocated at one program point using the size or C-type
information used in the dynamic allocation. For example, consider
malloc lðsizeofðstructlistÞÞ, where list is a structure that
has two fields d and next. We can use a refined a that distinguishes



Fig. 11. Typing example.
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the fields of the structure list. We can also relate the call se-
quence r to the allocation point l using a tuple ðflg;rÞ, where
the type variable r is instantiated with the caller’s label l0 at the
call site, which yields ðfl; l0g;rÞ. In this case, we limit the size of
the call sequence set to some constant k.

[If] merges the execution results of e1 and e2 using the typing
rules for the memory join explained in Section 3.5.

3.8. Typing example

Fig. 11 shows the example typing (type derivation trees) for the
following C code:
int �*g1, ��g2, ��g3;
f1(int ��p, int ��q, int ��r) {
if(?) { l1: *p = malloc(sizeof(int));}

else { l2: �q = *r};
}
f2() { g2 = g1; f1(g1, g2, g3);}

Note that the C program is translated into our language as de-
scribed in Section 3.1. For example, *q=*r is translated into

*(&q) :¼ **(&r) since the left-hand side and right-hand side of
the assignment compute the l-value of * q and the r-value of *r,
respectively.



Fig. 12. Non-partitioning operations.
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½t2� and ½t4� are the type derivation trees7 for the assignments l1
and l2 of procedure f 1, respectively. Note that we simply assume
that access path abstraction function a and set of relevant input con-
texts B1; . . . ;Bn of each procedure are given for the type system as we
mentioned in Sections 3.4 and 3.7. In this example, we assume an a
such that access paths p:� and q:� are unique access paths and the
relevant input contexts of f 1 are ; and fp: �#q:�g.
½t5� computes the join of ½p: �#fl1g� and ½q: �#fr: � :�g� which

are the typing results of each branch. Note that the result of
shiftðB; ½p: �#fl1g�; q:�Þ which is used in the first depth of the type
derivation tree is dependent on input context B. If B ¼ fp: �#q:�g,
then V1 ¼ fq: � :�g. If B ¼ ;, then V1 ¼ fl1; q: � :�g.
½t6� is the type derivation tree for the if expression, which is

typed by the typing rule [If] with the type derivation trees ½t2�,
½t4�, and ½t5�.
½t7� is the type derivation tree for computing the summary of

procedure f 1. For each relevant input context ; and fp: �#q:�g,
the corresponding typing results of ½t6� are added to the summary.
½t8� is the type derivation tree for the procedure call in proce-

dure f 2. Since the typing result of g2 ¼ g1 is ½g2#fg1:�g�, access
paths p:� and q:� of the summary of procedure f 1 are resolved as
g1:� and g1:�, respectively. Therefore, the output for the input con-
text ; is applied for this calling context.

3.9. Correctness of the type system
Theorem 1 (Soundness of the memory type system). The typing
results of our memory type system safely approximates the execution
result of program p.

Proof. The full formal proof is available in our technical report
[17]. h
4. The analysis algorithm

In this section, we formulate the bottom-up pointer analysis
algorithm as a type inference algorithm for the memory type sys-
tem in Section 3. The primary goal of this inference algorithm is
computing a safe C which is simply assumed to be given8 in the
type system. Note that [Fundec] recursively uses C to specify the
conditions for C to safely approximate the behavior of procedure f,
which means that it is simply a recursive equation that is usually
7 We marked the used rule at the right-hand side of each type derivation tree, and
the abbreviation ——���

���
½t1� is used to denote the type derivation tree ½t1�.

8 The access path abstraction function a discussed in Section 3.4 can be determined
before computing the summary of each procedure using the C-type information of
each variable. For example, the abstract access paths for a variable whose C-type is a
recursive structure are statically determined in the manner discussed in Section 2.1.
solved by a fixpoint iteration algorithm [19]. Since we are interested
in an effective solution among several safe solutions for the equation,
the method to let only a bounded number of relevant input contexts
be considered when computing a safe C, is the secondary goal of
our inference algorithm.

4.1. Type inference without partitioning

Since the memory type system does not have any declarative
deduction rules such as a subsumption rule, the non-partitioning
operations (abstract transfer functions) np inferas 2 B� as! Bool,
np inferB 2 B� B! Bool, np inferAP 2 B�M � AP ! V , np inferr 2
B�M � A! V , np infervM

2 B�M �M ! Bool, np infertM
2 B�

M �M ! M, np inferu 2 B�M � V � A! M, np inferres 2 B�M�
AP ! V , and np infere 2 B�M � e! M � V that, respectively,
compute the safe typing results for the given input context B
of judgements B ‘as as, B ‘B B0, B;M ‘AP AP ) V , B;M ‘r A) V ,
B ‘ M1vMM2, B ‘ M1tMM2 ) M3, B;M;V ‘u A) M0, B;M ‘res AP )
V , and B;M ‘e e) M0;V , are trivially defined. For example, the
non-partitioning read operation np inferr 2 B�M � A! V which
computes the typing result V for the judgement B;M ‘r A) V
using the given B, M, and A, can be trivially defined as shown
in Fig. 12. As a result, the non-partitioning type inference algo-
rithm that computes the summary of each procedure for the
fixed input context ;, which abstracts every input context, is
trivially defined using the fixpoint iteration for C explained in
Section 4.4.

4.2. Type inference with lazy partitioning

In this section, we extend the non-partitioning operations of
Section 4.1 to introduce new input contexts when they are identi-
fied as relevant.

The partitionðB;M;AÞ operation of Fig. 13 computes a set of in-
put contexts fB1; . . . ;Bng partitioned from B (i.e., BivBB) that are
identified as relevant for determining the set of pointed access
paths of A when the sequence of side effects is M. The global vari-
able BSg in this operation is used to improve the efficiency of the
inference algorithm by avoiding duplicated partitioning, and the
global variable k means the partitioning bound.

The partitioning read operation inferr 2 B�M � A! 2ðB;VÞ of
Fig. 13, which introduces the relevant contexts Bis by need and
computes the corresponding read values Vis, are defined as fol-
lows. When there is a read operation that reads the set of access
paths A with M under B, we first determine the relevant contexts
using the partition operation. Then, for each relevant context
Bi 2 partitionðB;M;AÞ, we compute read value Vi using the non-
partitioning read (np inferr 2 B�M � A! V) operation of Section
4.1.

Partitioning operations for other non-partitioning operations
are defined in a similar manner to inferr .



Fig. 13. Partitioning operations.
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4.3. Intraprocedural analysis stage: infere

The intraprocedural analysis stage of our inference algorithm
is defined by operation infere 2 B�M � e! D as shown in
Fig. 14. infereðB;M; eÞ ¼ D summarizes the behavior of expression
e of procedure f for a given B, M, and C (C are given globally
from the interprocedural stage). In terms of data flow analysis,
infere can be considered as an abstract transfer function for node
ne of a procedure f. infere computes the safe approximation D for
the execution results of node ne when the side effect from the
Fig. 14. Intraprocedur
start of procedure f to the predecessor of ne is M under B. If
the behavior of e for M is unique under B, D is computed to
be a singleton set fðB; ðMe;VeÞÞg. If e behaves differently depend-
ing on Bi such that Bi v B, which can be effectively identified by
the partitioning operations of Section 4.2, we introduce such Bis
into the analysis and compute the corresponding results as
fðB; ðMe;VeÞÞ; ðB1; ðM1;V1Þ; . . . ; ðBn; ðMn;VnÞg).

For e1 :¼ e2, we first summarize the behavior of e1 partitioning B
to Bis if they are relevant to type (determine the behavior of) e1.
Then for each partitioned Bi of infereðB;M; e1Þ, we summarize the
al analysis stage.



Fig. 15. Interprocedural analysis stage.
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behavior of e2, partitioning each Bi to Bjs again if they are relevant
to type e2. Finally, we update V1 of infereðB;M; e1Þ to V2 of
infereðBi;M1; e2Þ with memory M2 obtained after executing e2,
partitioning Bj to Bks again if they are identified as relevant.

Forifðe1; e2Þ, we type each expression e1 and e2, and then join the
resulting summary D1 and D2 using thetD operation defined in Fig. 7.
In terms of data flow analysis,ifðe1; e2Þ can be considered as the join
operation for a CFG node n whose predecessors are e1 and e2. Note
that D1tDD2 operation can introduce k2 number of inout elements
in the worst case when k is the partitioning bound. In this case, we
limit the size of D1tDD2 to k using the trim 2 D! D operation which
safely removes some inout elements from the given summary (i.e.,
DvDtrimðDÞ). Note that an inout ðBi; ðMi;ViÞÞ of D is meaningless if
ðBj; ðMj;VjÞÞ 2 D, BivBBj, Bi ‘ MjvMMi, and Vj # Vi. The trim operation
first removes such meaningless summary from D that are possibly
introduced by tD. If every inout element of D is meaningful but the
partitioning bound k is exceeded, the trim operation discards arbi-
trary elements of D, except the top inout (i.e., B ¼ ;) so as to maintain
the overall input coverage of the procedure summary.

For f �y, the reachðB;M;A½�y=�x�Þ operation first computes the access
paths of the caller for each AP 2 A that are reachable by access path
AP0 with M such that aðAP0Þ ¼ AP½�y=�x�. This introduces new input
contexts fB1; . . . ;Bng, where Bi v B, if they are relevant to computing
the value of each AP. For each introduced input context Bi, this oper-
ation computes the corresponding substitution Si. The
iupdateðB;M; ½A1#V1� . . . ½An#Vn�Þ operation performs the sequence
of updates ½Ai#Vi� iteratively with M partitioning B by needs.

4.4. Interprocedural analysis stage: inferp

The interprocedural analysis stage of our inference algorithm,
given in Fig. 15, traverses the procedure declarations of program
p in a bottom-up manner computing the summary of each proce-
dure. We assume that a pre-order enumeration of the strongly con-
nected components in the call graph is given.9 The summary of each
procedure is computed using the fixpoint iteration whose termina-
tion is discussed in Section 4.5. Note that C, which contains the sum-
mary of every callee procedure in procedure body e, includes the
prefixpoint solution summary for the inferred procedure itself and
mutually recursive functions.

4.5. Termination and soundness

If we never partition B in infere of Section 4.3, the abstract trans-
fer function infere is monotonic since this case is identical to the
9 We refer to existing work [2] for the incremental construction of the call graph in
the presence of the function pointers in the bottom-up pointer analysis, which could
be adapted in our pilot implementation of Section 6 without loss of generality.
memory type system where the [Fundec] rule considers only one
input context >B (i.e., ;). The formal proof of the monotonicity of
our memory type system is available in our technical report [17].
It is trivial to show that infere is still monotonic even in the pres-
ence of the partition operation, since this simply introduces finite
input contexts Bis, and the corresponding output for each input
context Bi is computed in the same manner as in the memory type
system (which is monotonic). However, when we composite the
extensive function trim to infere (i.e., infere is a function such that
infere ¼ E � F, where F is monotonic and E is extensive), as in
Fig. 14, infere does not guarantee the monotonicity. In order to en-
sure that the fixpoint iteration of Fig. 15 always terminates with
the postfixpoint (safe) solution of F [18], we define the sequence
D0; . . . ;Di of our fixpoint iteration based on Theorem 2.

Theorem 2 (Termination with postfixpoint). If D is finite, F : D! D
is monotonic, E : D! D is extensive, then the sequence

D0 ¼ ?D

Diþ1 ¼ DitDðE � FÞðDiÞ

is stationary and its limit is the postfixpoint of F.

Proof. The sequence Di is obviously increasing by its definition
with tD. There exists i such that Diþ1 v Di since D is finite. So, the
fixpoint iteration always terminates. Moreover, such Diþ1 is the
postfixpoint of F since Di w Diþ1 ¼ DitDðE � FÞðDiÞ w ðE � FÞðDiÞ w
FðDiÞ. h

Now, the soundness of the inference algorithm is proved in The-
orem 3. Note that we use the monotonic function F (infere without
trim) in the proof since the limit of sequence D0; . . . ;Di in Theorem
2 is guaranteed to be the postfixpoint of F.

Theorem 3 (Soundness of the algorithm). If ‘ p) ðM0;V 0Þ,
inferpðpÞ ¼ D, and trim is not used, then 8ðB; ðM;VÞÞ 2
D : B ‘ M0vMM ^ V 0# V.

Proof. The proof is trivial by simple induction on the structure of p
and e, since the typing result computed by infere without the trim
operation is the same as the memory type system. h
5. Experiments

5.1. Implementation

To assess the effects of using the update history, we imple-
mented10 various flow- and context-sensitive bottom-up pointer
10 We added about 7500 lines of OCaml code to CIL [20].
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analyses where the update history is utilized only in the implemen-
tation for our analysis. Each analysis is named as follows according
to the ability to perform strong updates in (1) direct assignments
(e.g., x ¼ &i), (2) indirect assignments (e.g., �x ¼ &i), and (3) proce-
dure calls (summary applications):

	 Analysis ‘‘OOO” is our inference algorithm that can kill the side
effects in direct assignments, indirect assignments, and proce-
dure calls, by utilizing the update history.

	 Analysis ‘‘OOX” does not kill the side effects at procedure calls.
For the partitioning, only conditions 1 and 3 of Section 2.5 are
utilized. Taking all the above-described characteristics into
account, the theoretical precision of analysis ‘‘OOX” is similar
to RCI [9] except that the more-precise condition 2 of Section
2.5 is utilized in ‘‘OOX”.

	 Analysis ‘‘OXX” does not kill the side effects in indirect assign-
ments and procedure calls. Note that the base analysis of [7,8]
is similar to ‘‘OXX” in terms of the ability to perform strong
updates only in direct assignments although they did not con-
sider partitioning as discussed in Section 6.1.

	 Analysis ‘‘XXX” never kills the side effects. This was included to
demonstrate the overall effects of strong updates in analysis
‘‘OOO”.

We were careful to safely extend the inference algorithm of Sec-
tion 4 for real C language. The methods for safely dealing with
function pointer, type casting, and union in the bottom-up pointer
analysis were taken directly from a previous study [2]: (1) the call
graph, which is needed for the bottom-up traversal of a program,
was incrementally constructed considering the function pointer
and (2) the field selector of an access path was modeled as the off-
set from the base access path, which enabled the analysis to safely
deal with arbitrary type casting and union.11 The pilot implementa-
tion cannot safely deal with the multi-threading and setjmp/longjmp
functions in C code, and hence the programs without these features
were used in our experiments. For the safe and efficient aliasable
operation of Fig. 13, the analyzer examined all assignment and pro-
cedure call statements of whole-program and safely assumed the
disjointness between t1- and t2-type access paths if there was no va-
lue flow between two different C-types t1 and t2. For the library pro-
cedures used, we manually wrote 281 hand-coded stubs that
modeled the side effects of each procedure. For example, the sum-
mary of the library procedure realloc was hand-coded to return
the allocation point l joined with its first argument.

The partition and trim operations of the inference algorithm
were implemented to keep the k most-precise partitions when
the number of partitions exceeds the given partitioning bound.
Note that the number of relevant input contexts in a procedure
can be much larger than the given partitioning bound, in which
case considering every relevant alias relation contained in the pro-
cedure during the analysis might not be useful since a bottom-up
analyzer cannot identify which alias relations might actually be
used later by a caller. Instead of focusing on this problem in the pa-
per, we attempted to avoid such a situation by adding the follow-
ing timeout feature to our inference algorithm: if the analyzer
could not finish the summary computation within the given time
limit, it immediately stopped the fixpoint iteration and regarded
the intermediately computed set of relevant input contexts as
the final set, with the expectation that a sufficient number of
meaningful input contexts had already been identified. Then, the
analyzer finished the summary computation by computing the cor-
responding outputs for these fixed input contexts. This approach is
11 Details of the safe field-sensitive analysis in the presence of type casting can be
found elsewhere [2,21,22].
sound since any relevant input context can be predicted. Note that
a time limit of 1 s was used in our experiments, which gave us the
same precision as in experiments without the timeout feature,
while it ran up to 6.29 times faster.

5.2. Experimental results

Table 1 lists the experiments performed with C programs cho-
sen from the SPEC2000 benchmark suite and GNU textutils and
preprocessed (merged) by CIL. The characteristics of these pro-
grams are summarized in columns 2–5 of the table. Column 6
(kind) lists the performed analysis, and column 7 (k) lists the par-
titioning bound for each experiment.

The performance of our inference algorithm is quantified in col-
umns 8 (time) and 9 (mem), which include the total cost of prepro-
cessing and postprocessing for each experiment. The experimental
results show that our approach is relatively cost-effective in the
sense that the precision of the client analysis was improved with-
out sacrificing the performance significantly. However, for the rea-
sonable time and memory limits applied in the experiments,12 all
of the tested approaches were unable to analyze large programs such
as 254.gap and 176.gcc of the SPEC2000 benchmark suite, which
were often used as scalability references.

Column 10 (avg) in Table 1 lists the average number of targets
for a pointer dereference13 in a program. Since we did not know
how an unknown access path of a procedure would actually be re-
solved at the invocation point with the results of bottom-up pointer
analysis, the counting was performed after propagating the known
access paths from the main procedure in a top-down manner, which
was similar to phases II and III described by Chatterjee et al. [9].
When there were multiple contexts for a program point, the count-
ing was performed after conservatively joining the analysis result for
each context. These results demonstrate that the precision of the
analysis can be improved when the opportunity for strong updates
increases or alias context sensitive summarization (partitioning) is
considered.

In order to assess the effects of applying different approaches to
the client analyses, we also implemented a simple client analysis
that detected either uninitialized-value or integer-value (e.g.,
null-pointer) dereferences using the results of the pointer analysis.
Column 11 (safe) in Table 1 lists the percentages of pointer derefer-
ences that were shown to be safe using this type of client analysis,
and these are depicted as a graph in Fig. 16. These results show
that our method of pointer analysis was able to prove that more
pointer dereferences were safe.

Columns 12 (indirect) and 13 (inter) in Table 1 list the percent-
ages of intraprocedural strong updates in indirect assignments and
interprocedural strong updates in procedure invocations during
the analysis, which influenced the precision results in columns
10 (avg) and 11 (safe). This demonstrates the importance of strong
updates during bottom-up pointer analysis. For example, analysis
‘‘XXX” was unable to show whether 32% of pointer dereferences
of program pr were safe accesses, whereas this was possible using
analysis ‘‘OXX”. Note that the difference between analyses ‘‘OOX”
and ‘‘OOO” shows the effect of the interprocedural strong updates,
which could not be performed in previous bottom-up approaches.
Not considering interprocedural strong updates resulted in the cli-
ent analysis not being able to show that a maximum of 37% (in vpr)
of pointer dereferences were safe, even though this was possible
with our analysis ‘‘OOO”.
12 We applied a criterion of scalability such that analysis time and memory are
limited to 1 h and 1 GB, respectively.

13 Multilevel dereferencing was counted separately (e.g., **x comprises two
dereferences).



Table 1
Experimental results.

Program N(L) F S C Analysis Performance Precision S-update %

Kind k Time Mem Avg Safe Indirect Inter

mcf 13(1.5) 26 1 1 XXX 1 1 2 1.6 0 0 0
OXX 1 1 2 1.4 21 0 0
OOX 1 1 2 1.4 21 5 0
OOX 2 1 3 1.4 22 5 0
OOX 5 1 3 1.4 23 5 0
OOO 1 1 2 1.4 22 5 6
OOO 2 1 3 1.4 23 5 6
OOO 5 1 3 1.4 23 5 6

pr 17(2.7) 41 4 2 XXX 1 1 7 2.6 5 0 0
OXX 1 1 7 2.4 37 0 0
OOX 1 1 7 2.4 37 15 0
OOX 2 3 8 1.3 46 15 0
OOX 5 5 8 1.3 46 14 0
OOO 1 3 8 2.4 46 15 21
OOO 2 6 8 1.3 55 15 21
OOO 5 5 8 1.3 55 15 22

sort 26(3.6) 45 1 2 XXX 1 2 10 1.7 11 0 0
OXX 1 2 10 1.7 21 0 0
OOX 1 2 10 1.7 21 24 0
OOX 2 5 10 1.7 21 24 0
OOX 5 8 13 1.5 21 24 0
OOO 1 2 9 1.7 30 24 27
OOO 2 4 10 1.7 30 24 27
OOO 5 5 11 1.3 40 24 32

gzip 45(5.7) 89 1 1 XXX 1 3 14 1.4 28 0 0
OXX 1 3 13 1.3 54 0 0
OOX 1 3 14 1.3 54 24 0
OOX 2 8 15 1.3 54 24 0
OOX 5 12 18 1.1 64 24 0
OOO 1 3 13 1.2 60 24 24
OOO 2 6 13 1.2 60 24 23
OOO 5 10 15 1.0 70 24 24

bzip2 33(3.9) 74 1 1 XXX 1 1 6 1.3 60 0 0
OXX 1 1 6 1.3 60 0 0
OOX 1 1 6 1.3 60 95 0
OOX 2 1 6 1.3 60 95 0
OOX 5 1 6 1.3 60 95 0
OOO 1 1 6 1.2 68 95 92
OOO 2 1 6 1.2 68 95 92
OOO 5 1 6 1.2 68 95 92

ammp 149(13.7) 179 2 33 XXX 1 96 50 10.9 0 0 0
OXX 1 96 50 10.8 2 0 0
OOX 1 95 50 10.8 2 6 0
OOX 2 136 53 10.8 2 6 0
OOX 5 195 56 10.8 2 6 0
OOO 1 150 56 10.6 13 6 24
OOO 2 188 59 10.5 13 6 24
OOO 5 241 61 10.5 13 6 24

vpr 151(17.1) 300 7 11 XXX 1 43 48 3.2 0 0 0
OXX 1 43 48 3.2 1 0 0
OOX 1 42 48 3.2 1 22 0
OOX 2 55 49 3.2 1 22 0
OOX 5 71 54 3.2 1 23 0
OOO 1 364 67 2.7 38 22 35
OOO 2 415 67 2.7 38 22 35
OOO 5 499 75 2.6 38 23 36

crafty 192(22.0) 109 2 1 XXX 1 42 68 1.9 0 0 0
OXX 1 42 68 1.6 43 0 0
OOX 1 43 68 1.6 43 41 0
OOX 2 49 68 1.6 43 41 0
OOX 5 62 82 1.6 43 41 0
OOO 1 73 103 1.6 54 41 36
OOO 2 85 100 1.6 54 41 36
OOO 5 97 103 1.6 54 41 36

twolf 252(24.9) 191 1 1 XXX 1 60 59 2.7 0 0 0
OXX 1 60 59 2.7 2 0 0
OOX 1 60 59 2.7 2 6 0
OOX 2 82 67 2.7 2 6 0
OOX 5 115 92 2.7 2 6 0
OOO 1 213 77 2.4 33 6 32
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Fig. 16. Effects of using different approaches on a client analysis.

Table 1 (continued)

Program N(L) F S C Analysis Performance Precision S-update %

Kind k Time Mem Avg Safe Indirect Inter

OOO 2 247 92 2.4 33 6 32
OOO 5 320 150 2.4 33 6 32

N: number of CFG nodes (1 = 1000), L: lines of code excluding comments and blank lines (1 = 1000), F: number of procedures, S: maximum size of SCC (strongly connected
components), C: maximum number of callees by a function pointer, time: execution time on a Linux-based computer with a 3.2-GHz Intel Xeon CPU (in seconds), and mem:
maximum size of the major heap (in megabytes).
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6. Related work

6.1. Bottom-up and flow-sensitive pointer analysis

There are several bottom-up pointer analysis algorithms [7–10]
that are flow- and context-sensitive on which we are focusing in
this paper.

Harrold and Rothermel [7] and Rountev et al. [8] extend the
work of Landi and Ryder [23], which is a top-down and flow-
and context-sensitive analysis, to design their summary based
pointer analysis methods. For the strong updates, both Harrold
and Rothermel [7] and Rountev et al. [8] follow the method of
Landi and Ryder [23] in which alias information is killed only when
the left side of the assignment does not contain a pointer derefer-
ence. For the alias context sensitivity, Harrold and Rothermel [7]
consider every possible alias context for a procedure in a brute-
force manner. The usefulness of this approach for analyzing real
C programs is unclear since computing the summary for the
exhaustive number of possible alias contexts of a procedure can
be prohibitively expensive, as our empirical results demonstrate.
Rountev et al. [8] do not consider the problem of inferring the rel-
evant input contexts of a procedure since they assume that this
information is provided by an inexpensive front-end whole-pro-
gram analysis.

Whaley and Rinard [10] proposed a compositional pointer and
escape analysis algorithm for Java programs, based on a graph
based memory state abstraction. Points-to information is killed
only when the left side of the assignment represents a single un-
ique access path that does not escape from the analysis scope
(e.g., procedure). Therefore, the intraprocedural strong updates
on the unique unknown access paths and the access paths for the
global variables are not performed. The interprocedural strong up-
dates are not performed. They extract a single analysis result for
the calling context with no aliases and merge nodes for the calling
contexts with aliases. In other words, the alias context sensitive
summarization is not considered in this work.
The work of Chatterjee et al. (RCI) [9] is the most closely related
to our work since they consider both the problems of strong up-
dates on unknown access paths and relevant alias context infer-
ence. For the strong updates, the interprocedural strong updates,
which are shown to be effective by the difference between ‘‘OOX”
and ‘‘OOO” in our experiments, are not applicable in RCI since they
do not keep the information on the order of side effects in the sum-
mary of procedure. For the relevant input context inference, pre-
cise conditions to be a relevant alias relation, such as conditions
2 and 3 in Section 2.5, cannot be identified in RCI since the decision
for these conditions can be made using the information on the or-
der of side effects performed that contributes to the given memory
state (points-to information).

Rountev et al. [8] investigated the problem of formalizing a
sound analysis for program fragments. As an example fragment
analysis, they presented the flow- and context-sensitive pointer
analysis discussed above. The techniques they used to formally
present the analysis and to prove the soundness of the analysis
were based on a data flow analysis framework [24–26], whereas
our technique is based on the subject reduction lemma [16] of type
system framework [15].

6.2. Bottom-up and flow-insensitive pointer analysis

Most of pointer analysis algorithms, which involve the notion of
constructing the summary of each procedure without the caller
procedure and then using this summary to analyze the callers of
that procedure, are proposed as flow-insensitive analyses [1–6].
The advantage of this approach is that it leads to a simpler sum-
mary construction algorithm and lower analysis cost than the
flow-sensitive approach in general. The disadvantage of this ap-
proach is that the analysis results are too imprecise when it is
important to take the statement ordering into account. Consider
the following C program fragment as a simple example:

1: int �p = NULL; int i;

2: p = &i;
3: �p = 1;

Only the results of the flow-sensitive pointer analysis algo-
rithm, which destructively updates p at line 2 such as ‘‘OXX”,
‘‘OOX”, and ‘‘OOO” of our experiments, can prove that this program
fragment has no null-pointer dereference, since the points-to set of
p at line 3 includes null when it is computed by a flow-insensitive
pointer analysis or a flow-sensitive pointer analysis without strong
updates.

6.3. Top-down analysis

The top-down pointer analysis has been extensively reported in
the literature, with [27,28] providing extensive lists of the previous
work in this field. Most of flow- and context-sensitive pointer anal-
ysis algorithms are proposed as top-down analyses [23,12,29,
13,14,28,30,31]. The disadvantage of the top-down approach is that
it cannot operate on incomplete programs. Therefore, existing
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top-down pointer analyses are not readily applicable to the modu-
lar software development environment (our target environment).
The advantage of top-down analysis is that it generally computes
more-precise analysis results than bottom-up analysis when the
whole-program is available and scalable.

6.4. Alias context sensitivity

Since top-down analysis is performed from the callers to the
callees and hence every access path is a known access path, they
need not take the potential aliases between unknown access paths
into account which potentially causes the conservative approxima-
tions in the bottom-up analysis. Consider the example program in
Section 1. If a bottom-up analysis does not consider the problem of
distinguishing the different behaviors of a procedure which are
dependent on the calling contexts (i.e., only considers the input
context >B), the return value of procedure f is conservatively
approximated as fg1; g2g due to the potential alias between p:�
and q:�. Although we attempted to avoid such approximations by
distinguishing the behaviors of a procedure for the relevant alias
contexts, such kinds of approximations still remain since a proce-
dure can involve an exponential potential number of relevant alias
contexts, and we limit the number of alias contexts considered in
the summary to a constant bound k. On the contrary, top-down
analyses need not introduce such kinds of approximations since
the concrete calling context can be always determined before ana-
lyzing the behavior of the procedure.

6.5. Strong update

The effectiveness of flow-sensitive analysis is affected by the
opportunity of the strong updates during the analysis. Our method
to identify the killed side effects is similar with Wilson and Lam
[13,14] in the following senses: (1) the memory locations are
named according to the allocation site; (2) we distinguish between
different fields within a structure but not the different elements of
an array; (3) the access paths for the recursive structures are dis-
tinguished based on k-limiting; and (4) the side effects for the un-
ique unknown access paths can be killed inside the procedure
independently of the calling contexts. Taking all of these into ac-
count, the stack memory location, which is abstracted into an ac-
cess path such that the base is a variable and the selectors
involve neither a recursive access nor an array, can be destructively
updated. All the other locations can be destructively updated only
by (4). There are several top-down analyses that provide the meth-
ods to increase the opportunity of strong updates that cannot be
performed in our approach. For example, Sagiv et al. [30] can kill
the side effects on heap allocated objects and recursive data struc-
tures by precisely modeling and tracing the shape of memory
states, and Yong et al. [32] can distinguish between different ele-
ments of an array by precisely modeling and tracing the value of
the array index. However, such abilities to precisely trace the
uniqueness of abstract memory locations for strong updates are
dependent on the analysis results which can be computed in the
top-down manner. Therefore, they are not readily adaptable to
the bottom-up analysis that operates on incomplete programs,
which forms the focus of this paper.

6.6. Top-down analyses utilizing the reusable summary

There are various forms of pointer-related top-down analyses
[13,14,33–36] that involve constructing the calling-context-depen-
dent summary for each procedure and then using this summary
to analyze the callers of that procedure, with the summary nor-
mally being used to improve the performance. Although these ap-
proaches utilized the summary, they are not readily applicable to
bottom-up pointer analysis since the algorithms used to construct
the summary can work only when the calling contexts are avail-
able. For example, Wilson and Lam [13,14] considered similar
problems to those that we have addressed, such as introducing
only the relevant alias contexts into the summary on demand.
However, such an ability is restricted to top-down analysis, since
the parameterized memory locations (extended parameters
[13,14]) referenced inside a procedure and the alias relations be-
tween these extended parameters can be determined only when
the calling context is given. In contrast, the update history can
abstract memory states of a procedure independently of the
information on the calling context, helping the analysis to effec-
tively identify relevant alias contexts. The lazy strong update
scheme (postponing the decision to kill the side effects performed
on the must-aliasable access paths until the procedure is invoked
using the update history) did not need to be considered in
[13,14], since the summary-construction algorithms used operated
with given calling contexts. However, those studies inspired the
method we used to perform strong updates on the unique
unknown access paths inside a procedure independently of the
calling context.
7. Conclusions

We have presented an update history based approach for the
bottom-up and flow- and context-sensitive pointer analysis of C
programs. The update history based memory representation could
effectively guide the strong updates and relevant context searches
of the presented bottom-up pointer analysis. We have also pro-
vided a formal proof of the soundness of the analysis and the
experimental results obtained from a pilot implementation
thereof.

There are at least two directions for future work:

	 There could be several ways to utilize our update history based
states abstraction and analysis techniques: (1) it could be used
to abstract side effects of other languages such as Java and (2)
it could be used to design a bottom-up analysis that traces state
changes of resources where the aliases between abstract
resources can occur, which is our ultimate goal [37].

	 Our memory type system could represent a framework for
designing (formalizing) a bottom-up target analysis for C pro-
grams that can be formally proved to be sound based on the
techniques used in our work. Only a bottom-up pointer analy-
sis can provide the points-to information for the bottom-up
target analysis, since such information should be computed
in the bottom-up manner and be represented in a modular
way.
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