
A COMPREHENSIVE GUIDE TO CREATING HEAD-

LESS CLIENT COMPATIBLE ARMA2 MISSIONS

by: Monsoon

rweezera@hotmail.com

February 22, 2013

mailto:rweezera@hotmail.com

Contents

1 Introduction 1

2 Mission design 1

2.1 Placing the player and HC . 1

2.2 Simple AI with waypoints . 3

2.3 Transferring units to the HC after mission launch 7

2.4 DAC Zones . 10

2.4.1 DAC Zones in script form . 10

2.4.2 Turning DAC on . 13

3 Execution 14

3.1 Starting & connecting the headless client . 14

3.2 Server settings . 14

4 Compatibility & considerations 14

5 Final thoughts 15

1 Introduction

Bohemia Interactive recently introduced the ability to offload ArmA2 AI calculations onto

what is called a ‘headless client’ or HC. It is essentially a connected client that does no

rendering. The advantage this brings is twofold: first it reduces the workload on the server

itself, and secondly it allows the AI their own dedicated processor - which makes them far

more deadly and responsive. As a mission creator this opens up an entirely new realm

of possibilities; previously if there were too many AI present then the game slowed down

considerably, degrading client performance. Now we can leave the server process to handle

communications while the HC handles the AI calculations. The improved responsiveness

was most famously shown by ShackTac member Dslyecxi1.

It is possible to ‘retrofit’ a mission to be HC compatible, but it takes some work. It is

far easier to actually design your mission with this process in mind. Today I am going to

walk through the creation of a simple mission that will be both HC and non-HC compatible.

I will incorporate both an activated & de-activated DAC2 zone, manually placed units that

start on the HC, and manually placed units that will be transferred to the HC after the

mission launches.

Disclaimer : I put this together due to a lack of comprehensive guides on

setting up and using headless clients. All of what follows is from personal ex-

perience retrofitting my own mission. This means that there very well may be

better ways to do this. If I’m doing something crazy, please let me know!

2 Mission design

When designing a mission with a HC in mind, things become quite simple once you under-

stand the process of which you go about it. Everything placed in the editor and remaining

in the editor when you create the PBO file will initially be controlled by the server. If we

want groups of AI to be controlled by the HC then we must somehow ‘transfer ownership’

to the HC from the server. There are two possible ways of accomplishing this: the first is to

have the HC actually spawn the AI, and the second it to have the server transfer ownership

to the HC after the mission is initialized. The second option is more of a pain, so for the

majority of the time we will stick with the first option.

2.1 Placing the player and HC

Before we start worrying about AI, let’s place our Player & HC units in the editor. Create

a new mission and name it ‘hc tutorial’, then place two units as shown:

1http://youtu.be/4RUkh5GO1Cg
2http://www.armaholic.com/page.php?id=10621

1

http://youtu.be/4RUkh5GO1Cg
http://www.armaholic.com/page.php?id=10621

Figure 1: [hc tutorial] Placing player - notice the name ‘s1’ to allow DAC to recognize it.

Figure 2: [hc tutorial] Placing the HC - notice the name ‘HC’ and Control=Playable, also
disallowing damage via ‘this allowDamage false;’.

You can make the HC any unit you like, but I chose a boar for fun. Once it is placed

you should manually edit the mission.sqm by locate the ‘HC’ unit, then add the bolded line

(line 11) at the bottom:

2

1 c l a s s Item0
2 {
3 po s i t i o n []={3690 .2991 ,19 ,3610 .8123} ;
4 id =1;
5 s i d e=”AMBIENT LIFE” ;
6 v e h i c l e=”WildBoar” ;
7 p laye r=”PLAY CDG” ;
8 s k i l l =0.60000002;
9 t ext=”HC” ;
10 i n i t=” t h i s allowDamage f a l s e ; ” ;
11 forceHeadlessClient=1;
12 } ;

Line 11 forces the headless client to join as this particular unit at mission start. Sometimes

this doesn’t work, so keep an eye on it if you’re admin’ing the mission. This step is not

necessary, but if not performed the admin will have to manually put the HC into the correct

spot at each mission start.

2.2 Simple AI with waypoints

As a simple example let’s place our first group of units, and give them some waypoints.

Figure 3: [hc tutorial] I’ve placed a BLUFOR rifle squad and ordered them to move in a
square along the airstrip.

Now we can think about offloading these AI to the headless client. However, we must

first make adjustments to our description.ext and init.sqf files if we would like this mission

to be both HC and non-HC compatible. The server currently has no way to dynamically

determine if a HC is present or not, so we must set this by hand. We start by creating a

lobby parameter that turns the HC off and on. From the mission directory open or create

the file named ‘description.ext’. Add this snippet of the code to the bottom of the file:

3

1 c l a s s Params
2 {
3 c l a s s Head l e s sC l i en t
4 {
5 t i t l e = ”Headless C l i en t ” ;
6 va lue s []= {0 ,1} ;
7 t e x t s [] = {”OFF” , ”ON” } ;
8 d e f au l t = 0 ;
9 } ;
10 } ;

This creates a new ‘Parameters’ button in the mission’s lobby which will allow us to set the

headless client to ON(1) or OFF(2) wherein the default is OFF. Now we must retrieve this

parameter in the ‘init.sqf’ file which will allow us to inform the server and all clients. Either

create or open ‘init.sqf’ and add the following segment to the very top, we want this to be

the first thing your mission executes:

1 i f (i s N i l ”paramsArray”) then{ paramsArray = [0 , 0 , 0]} ;
2
3 // get miss ion parameter to see i f
4 // Head l e s sC l i en t i s pre sent and a s s i gn i t s name
5 i f (paramsArray s e l e c t 0 == 1) then{
6 i f (i s S e r v e r) then{
7 HCPresent = true ;
8 pub l i cVar i ab l e ”HCPresent” ;
9 } ;
10 i f (! h a s I n t e r f a c e && ! i s S e r v e r) then{
11 HCName = name p layer ;
12 pub l i cVar i ab l e ”HCName” ;
13 } ;
14 } e l s e {
15 i f (i s S e r v e r) then{
16 HCPresent = f a l s e ;
17 HCName = ”NOONE” ;
18 pub l i cVar i ab l e ”HCPresent” ;
19 pub l i cVar i ab l e ”HCName” ;
20 } ;
21 } ;

This code snippet will be executed by all clients, the server, and the headless client. The

goal of this snippet is to determine if the HC is set to ON, and if it is then get the actual

player name of the HC. Line 5 is a simple if statement that retrieves the variable that will

be set in the mission lobby. If 1 is returned then the server knows a HC is present. The

server will then set ‘HCPresent’ to true and make the variable global so all clients can see

the value (lines 7-8). We next check to see if each client has an interface and is not the

server (line 10). This means that only the HC will execute the next two lines, which retrieve

that player’s name (lines 11-12). In the case of our example mission, the name of the HC

is simply ‘HC’ as we set in the editor. If the HC is set to OFF in the mission lobby, then

the server sets ‘HCPresent’ to false, and ‘HCName=”NOONE”’ (lines 16-19). This will be

very important later when we begin to construct DAC zones.

4

But for now let’s focus on the small group of soldiers. We want to spawn these via script

so they can easily be spawned on the HC or the server. The easiest and most automated way

is to use A2MC3. You simply point this executable to your mission.sqf, and it essentially

outputs a script version. The most convenient way I’ve found is to delete all NON-HC

compatible (I’ll discuss compatibility in Chapter 4) AI, players, triggers, logics, etc from the

mission, and save it as a copy such as ‘hc tutorial aionly’. So now the AI-only copy of the

mission may look something like Figure 4:

Figure 4: [hc tutorial aionly] Only AI and their waypoints remain (compared to Figure 3).

Open ‘a2mc.exe’ (must have java installed), and point it to your mission.sqf for the

AI-only mission as shown here:

3http://www.armaholic.com/page.php?id=18012

5

http://www.armaholic.com/page.php?id=18012

Click open, and it will prompt you with another dialog asking you where to save the new

file. Save it anywhere you like, preferably in the MAIN mission directory. For this example

I will name it ‘firstgroup aionly.sqf’

Open the file and take a look at the structure. It has a section for Markers, Empty

Vehicles, & Units. Under the Units category you will see that it has created a new group

followed by the creation of each unit within that group individually. After all units have

been created you will find each group waypoint individually created. This is the script we

will be calling from init.sqf to spawn these units in. But now that we have these units in a

script, we need to delete them from the actual mission. The main mission should now look

like Figure 5:

Figure 5: [hc tutorial] AI have been deleted and only the player and HC units remain.
(compared to Figure 3).

Remember how earlier we setup the mission lobby parameter to determine if a HC was

present or not? Well now we’re going to use those variables to determine who spawns this

6

group of units. In your init.sqf file insert this snippet of code below the previous (and below

briefing if present):

1 i f (! i s S e r v e r) then {wai tUnt i l { ! i sNu l l p laye r }} ;
2
3 i f (HCPresent) then{
4 i f (! h a s I n t e r f a c e && ! i s S e r v e r) then{
5 execVM ” f i r s t g r o u p a i o n l y . s q f ” ;
6 } ;
7 } e l s e {
8 i f (i s S e r v e r) then{
9 execVM ” f i r s t g r o u p a i o n l y . s q f ” ;
10 } ;
11 } ;

Line 3 checks if HCPresent is set to true. If so, we execute line 5 ONLY on the HC. This

will spawn the units with their waypoints we created in ‘firstgroup aionly.sqf’ on the HC. If

HCPresent is set to false, then this script is executed on the server only (line 9), and the

units are controlled by the server. Now we have a mission that will be fully compatible with

HC and non-HC configurations depending on the parameter set in the mission lobby.

2.3 Transferring units to the HC after mission launch

Occasionally you’ll want to transfer units to the HC from the server afterthe mission launches.

One such example is the placement of units in a guard tower. As I’ll mention in Chapter 4,

units placed above sea level (ASL) do not work out so well when placed by a script.

For this example I will go back to ‘hc tutorial’ and place two units in a guard tower,

they will remain in the editor. You can very easily nab building positions with the Visual

House Position Module4 by Grizzle; I highly recommend this addon for editing if you plan on

manually placing units anywhere on the map. I’ve nabbed two positions in a nearby tower

and added two units. The first guard placement can be see in Figure 6.

4http://www.armaholic.com/page.php?id=11288

7

http://www.armaholic.com/page.php?id=11288

Figure 6: [hc tutorial] Placing tower guard named ‘tower guard1’ using setPosASL.

The next part is relatively easy. I’ve included the script ‘setowner.sqf’ that should do

the bulk of the work for you in transferring the units to the HC. It looks like so:

1 i f ! (i s S e r v e r) exitWith {} ;
2 HC = t h i s s e l e c t 0 ;
3 l i s t = t h i s s e l e c t 1 ;
4 OC pass = 0 ;
5 OC fa i l = 0 ;
6 f o r ” i ” from 0 to ((count l i s t)−1) do{
7 un i t = l i s t s e l e c t i ;
8
9 i f (un i t setOwner (owner HC)) then{
10 OC pass = OC pass + 1 ;
11 }
12 e l s e {
13 OC fa i l = OC fa i l + 1 ;
14 } ;
15 } ;
16 pub l i cVar i ab l e ”OC pass” ;
17 pub l i cVar i ab l e ”OC fa i l ” ;

The goal here is to pass an array of object (units in this case) to this script along with the

HC’s name. Then, the script will only run on the server, and cycle through each unit (line

6) transferring ownership to the headless client (line 9). The variables OC pass and OC fail

are simply for debugging purposes. Every client connected to the server gets a unique ID

number. This ID number is only revealed to the server via the ‘owner’ command. In line 9

we see that each unit is given the command ‘setOwner’, followed by the client ID number of

‘ HC’. If this comes back as true, then the transfer completed successfully and we add one

to OC pass variable.

8

To call this script, we simply create a trigger with the condition that HCPresent=true as

is seen in Figure 7. Two conditions must be true in order to activate this trigger. The first

is a specified time period which I change depending on the complexity of the mission, and

the second is HCPresent=true determined in the init.sqf. In the ‘On Act.’ portion of this

trigger there are two commands. The first calls the script, and the second simply prints out

the value for OC pass for verification and is not always needed. Once the trigger is activated

we pass the object HC, and an array of units (tower guard1 & tower guard2) to the variables

‘ HC’ and ‘ list’ in the script itself. If HCPresent=true the script will execute transferring

ownership to the HC, if not then the trigger will never be activated and those units will

continue to be controlled by the server. The unfortunate part however, is that all waypoints

and synchronizations will be lost when transferring to the HC in this manner. So I would

recommend that you only use this method when transferring stationary units manually placed

in or around buildings.

Figure 7: [hc tutorial] Transfer of units to HC after mission launch.

9

2.4 DAC Zones

Spawning units via DAC on the HC can be a bit tricky. Things get even more complicated

when you realize that you can spawn zones that are already activated (AI present), or

zones that are deactivated (and activated later). Deactivated zones can be important when

considering non-HC missions as it can free up CPU time for the server. In the next subsection

I’ll outline how to handle both activated and de-activated DAC zones.

2.4.1 DAC Zones in script form

Activated DAC zones are very similar to placing AI with waypoints as was shown in in

Chapter 2.2. We are going to create a DAC zone in the editor, delete everything BUT that

DAC zone, then export to a script via A2MC as we did before. To kill two birds with two

stones, I’ll show you how to handle de-activated zones as well, which are zones later activated

by an in-game trigger. Let’s first create two DAC zones, one BLUFOR (activated), and an

adjacent OPFOR (deactivated). These can be seen in Figures 8&9 respectively.

Figure 8: [hc tutorial] BLUFOR DAC zone creation

10

Figure 9: [hc tutorial] OPFOR DAC zone creation

Nearby we’ll create a trigger grouped to ‘s1’ that will activate the deactivated zone

(Figure 10):

Figure 10: [hc tutorial] Activate the de-active OPFOR DAC zone. This trigger is grouped
with the unit ‘s1’.

The overall mission should currently look something like this if you’ve been following

along:

11

Figure 11: [hc tutorial] Overview of BLUFOR & OPFOR DAC zone positions along with
the activation trigger.

Now delete everything except for the DAC zones, and save a copy of the mission as

‘hc tutorial daconly’. We can then run the mission.sqm of the DAC-only mission through

A2MC, and produce ‘dac zones.sqf’ in the main mission directory.

This file has some issues though. You have to change the setTriggerStatements sec-

tions; they currently look like this:

. . .
[”” t rue ; ”” , ” nu l l =[”” ac t i v e zone ”” , [1 , 0 , 0] , [1 0 , 5 , 2 5 , 2 5] , [1 0 , 2 , 2 0 , 1 0] , [] , [] ,

[1 , 1 , 1 , 0]] spawn DAC Zone” , ””] ;
. . .
[”” t rue ; ”” , ” nu l l =[”” deac t ivezone ”” , [1 , 1 , 0] , [1 0 , 5 , 2 5 , 2 5] , [1 0 , 2 , 2 0 , 1 0] , [] , [] ,

[0 , 0 , 0 , 0]] spawn DAC Zone” , ””] ;
. . .

It must be changed to look like this:

. . .
[” t rue ; ” , ” nu l l =[”” ac t i v e zone ”” , [1 , 0 , 0] , [1 0 , 5 , 2 5 , 2 5] , [1 0 , 2 , 2 0 , 1 0] , [] , [] ,

[1 , 1 , 1 , 0]] spawn DAC Zone” , ””] ;
. . .
[” t rue ; ” , ” nu l l =[”” deac t ivezone ”” , [1 , 1 , 0] , [1 0 , 5 , 2 5 , 2 5] , [1 0 , 2 , 2 0 , 1 0] , [] , [] ,

[0 , 0 , 0 , 0]] spawn DAC Zone” , ””] ;
. . .

Notice I changed from double quotes to single quotes on the trigger’s init: ””true”” →
”true”. Without these manual edits the DAC zones will not spawn.

12

The last modification we must make, is to declare the zone objects as a ‘publicVariable’

when the headless client creates them. If this is not done, then de-activated DAC zones may

not properly activate when triggered. At the bottom of ‘dac zones.sqf’ add:

1 // i f HC i s i n a c t i v e − make t r i g g e r s g l oba l
2 i f (! HCPresent) then{
3 i = 0 ;
4 f o r ” i ” from 0 to ((count c r e a t edTr i g g e r s)−1) do{
5 pub l i cVar i ab l e format [”%1” , (c r e a t edTr i g g e r s s e l e c t i)] ;
6 } ;
7 } ;

immediately after the last trigger creation, and before ‘//return all created units in an array’.

Once this file is created & modified, we need to load up the main mission and remove the

DAC zones from the editor as they will now be spawned via script (REMEMBER to keep

the trigger grouped to ‘s1’). We’ll add a script execute command in our init.sqf in the next

section.

2.4.2 Turning DAC on

Before DAC will execute on a HC, we must make some modifications to the actual DAC

scripts. They’re a bit of a pain so I recommend using the DAC folder included in the sample

mission directory as I have made the modifications for you. But simply put you would

need to change the if(isServer) statements to if(isServer ‖ (name player == HCName))

throughout the code. But as I said before, the DAC directory in the sample mission folder

has this already done for you.

Next we must modify our init.sqf to initialize DAC, and our new DAC zones. The bottom

of your init.sqf should be changed to look like so:

1 i f (! i s S e r v e r) then {wai tUnt i l { ! i sNu l l p laye r }} ;
2
3 DAC Zone = compile preprocessFile ”DAC\Scripts\DAC Init Zone.sqf”;
4 DAC Objects = compile preprocessFile ”DAC\Scripts\DAC Create Objects.sqf”;
5 execVM ”DAC\DAC Config Creator.sqf”;;
6
7 // execute DAC on HC i f present , o the rw i se on Server
8 i f (HCPresent) then{
9 dac on = f a l s e ;
10 i f (! h a s I n t e r f a c e && ! i s S e r v e r) then{
11 execVM ”dac zones.sqf”;
12 execVM ” f i r s t g r o u p a i o n l y . s q f ” ;
13 } ;
14 } e l s e {
15 i f (i s S e r v e r) then{
16 execVM ”dac zones.sqf”;
17 execVM ” f i r s t g r o u p a i o n l y . s q f ” ;
18 } ;
19 } ;

Here I’ve added the initialization of DAC (lines 3-5), and the script to spawn the DAC zones

for the HC (line 11) or Server (line 16).

13

3 Execution

3.1 Starting & connecting the headless client

Starting the HC is quite simple. You just need to alter your batch file to include the ‘-client’

flag, along with the IP address and password of your server. I would also recommend making

a new player profile for the HC. Here’s an example batch file (be sure to include any needed

mods!):

arma2oa . exe -client -connect=127.0.0.1 -password=YourServerPassword
−cpucount=2 −nosound −p r o f i l e s=HC −name=HC −mod=@ACE;@ACEX;@ACEXRU . . .

3.2 Server settings

The HC itself is treated like a regular client by the server. Consequently the bandwidth

between the HC & server will be limited. This will result in some latency between the two,

and hence latency with your HC AI. Fortunately, it is a very simple fix. Edit your server’s

configuration file and add the following line:

l o c a l c l i e n t []={ ” 1 2 7 . 0 . 0 . 1 ” } ;

This tells the server to not restrict bandwidth coming from this IP address (127.0.0.1 is known

as the localhost and points back to the same computer). If you’re like me and you sometimes

change which computer handles the HC, you can add multiple IP addresses delimited by a

comma like so:

l o c a l c l i e n t []={ ” 1 2 7 . 0 . 0 . 1 , 1 9 2 . 1 6 8 . 1 . 2 0 0 ” } ;

Another consequence of connecting with the ‘-client’ switch is that the HC needs its own

CD-Key for Arma or the server will detect a duplicate and reject the connection (assuming

you are connecting as well). To avoid this you can have your server stop reporting to the

GameSpy servers via altering the ‘reportingIP’ line in your server’s config file to read:

r epor t ing IP=”<>” ;

WARNING: your game will not show up in the game browser, people must connect man-

ually. It will also allow banned, pirated, and duplicate CD-Keys to connect. Obviously only

do this if you trust your players.

4 Compatibility & considerations

When converting units, triggers, and game logics via A2MC there are some things you need

to consider:

• Units placed using ‘setPosASL’ on or around buildings will not end up in the correct

spot

• Any synchronized or grouped trigger will not transfer to the HC properly.

14

• Units transferred to the HC after mission launch will lose all waypoints.

• There may be other things I am missing, but that’s all I can think of for now.

5 Final thoughts

Any mission can be adapted to work with HC once you understand the locality of who

controls what. Things need to be either created on the HC or Server via script. Otherwise

you need to transfer ownership after mission launch if you want them to reside on the HC.

Remember though, you don’t have to put everything on the HC. A well designed mission will

have AI residing on both the server & the HC. Headless clients are not going to solve all of

your problems, but they sure do help.

Thank you for reading, I certainly hope this has helped in some way shape or form. If you

have any questions or comments please feel free to shoot me an email: rweezera@hotmail.com.

-Monsoon

15

mailto:rweezera@hotmail.com

In the included example mission, the two DAC zones are set to spawn hundreds of infantry

and vehicles for both BLUFOR and OPFOR. Here’s how things look without the HC:

Figure 12: [hc tutorial] hundreds of units controlled by the server. Average server FPS∼12.

16

Here’s the server with the AI offloaded to the HC. In this shot the HC’s processor was at

100% and could no longer spawn any units, but the server’s performance was still excellent:

Figure 13: [hc tutorial] hundreds of units controlled by the HC. Average server FPS∼43.

17

	Introduction
	Mission design
	Placing the player and HC
	Simple AI with waypoints
	Transferring units to the HC after mission launch
	DAC Zones
	DAC Zones in script form
	Turning DAC on

	Execution
	Starting & connecting the headless client
	Server settings

	Compatibility & considerations
	Final thoughts

