
A New Top-Down Parsing Algorithm to Accommodate
Ambiguity and Left Recursion in Polynomial Time

Richard A. Frost and Rahmatullah Hafiz
School of Computer Science, University of Windsor

401 Sunset Avenue, Windsor, Ontario Canada ON N9B3P4

rfrost@cogeco.ca

ABSTRACT

Top-down backtracking language processors are highly
modular, can handle ambiguity, and are easy to implement
with clear and maintainable code. However, a widely-held,
and incorrect, view is that top-down processors are in-
herently exponential for ambiguous grammars and cannot
accommodate left-recursive productions. It has been known
for many years that exponential complexity can be avoided
by memoization, and that left-recursive productions can be
accommodated through a variety of techniques. However,
until now, memoization and techniques for handling left
recursion have either been presented independently, or else
attempts at their integration have compromised modularity
and clarity of the code.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features — Control structures; Processors — Pars-
ing; F.4.2 [Mathematical Logic and Formal Lan-
guages]:Grammars and Other Rewriting Systems-grammar
types; parsing;I.2.7 [Artificial Intelligence]: Natural-
language Processing-language models; language parsing
and understanding

Keywords
Top-down parsing, left-recursion, memoization, backtrack-
ing, parser combinators.

1 INTRODUCTION

Top-down backtracking language processors have a num-
ber of advantages compared to other methods: 1) they are
general and can be used to implement ambiguous gram-
mars, 2) they are easy to implement in any language which
supports recursion. Associating semantic rules with the re-
cursive functions that implement the syntactic productions
rules of the grammar is straightforward, 3) they are highly
modular (Koskomies [8]) and components can be tested in-
dependently and easily reused, 4) the structure of the code

is closely related to the structure of the grammar of the lan-
guage to be processed, and 5) in functional programming,
higher-order functions, called parser combinators, can be
defined so that language processors can be implemented as
executable specifications of grammars, and in Logic Pro-
gramming, Definite Clause Grammars (DCGs) can be used
to the same effect.

However, a naive implementation of top-down process-
ing, results in the processor repeating much of its work. In
the worst case, this results in exponential complexity for
highly-ambiguous grammars, even for recognition which is
known to be polynomial. In addition, a naive implemen-
tation cannot accommodate left-recursive grammar produc-
tions as the top-down search would result in infinite descent.

This paper contains an informal description of a new
top-down parsing algorithm which accommodates ambigu-
ity and left recursion in polynomial time. The algorithm
is described using the notation of set theory, and informal
proofs of termination and complexity are provided. Results
of an implementation in programming language Haskell are
presented, more details of which are available in a techni-
cal report available from the School of Computer Science
at the University of Windsor [2]. A formal description of
the algorithm together with more-detailed proofs of partial
correctness, termination and complexity is in preparation.

1.2 Misconceptions
For many years it was assumed that the exponential com-
plexity of top-down recognition of ambiguous sentences
was inevitable. However, in 1991, Norvig [13] showed
that polynomial complexity for top-down recognizers, built
in LISP, could be achieved by use of memoization in which
the results of each step of the process are stored in a memo
table and made use of by subsequent steps.

It is also widely believed that top-down language pro-
cessors cannot accommodate left-recursive productions.
Using the search terms "top-down" and "left-recursion" on
Google returns over 14,000 hits. Review of the results
shows the extent to which it continues to be assumed that
left-recursion must be eliminated (by rewriting the gram-
mars) before top-down processing can be used. However,

ACM SIGPLAN Notices 46 Vol. 41 (5), May 2006

such rewriting is not strictly necessary, and several re-
searchers have proposed ways in which left-recursion can
be accommodated:

1. Kuno [9] appears to have been the first to use the length
of the input to force termination of left-recursive de-
scent in top-down processing. The minimal lengths of
the strings generated by the grammar on the continu-
ation stack are added and when their sum exceeds the
length of the remaining input, expansion of the current
non-terminal is terminated. However, Kuno’s method
is exponential in the worst case.

2. Shiel [14] noticed the relationship between top-down
and Chart parsing and developed an approach in which
procedures corresponding to non-terminals are called
with an extra parameter indicating how many termi-
nals they should read from the input. When a proce-
dure corresponding to a rule defining a non-terminal
n is applied, the value of this extra parameter is parti-
tioned into smaller values which are then passed to the
component procedures on the right of the rule defining
n. The processor backtracks when a procedure defin-
ing a non-terminal is applied with the same parameter
to the same input position. The method terminates for
left-recursion but is exponential in the worst case.

3. Leermakers [10] has developed a functional approach
to memoized parsing which avoids the left-recursion
problem through "recursive ascent" rather than a top-
down search process. Although maintaining polyno-
mial complexity, the approach compromises modular-
ity and clarity of the code.

4. In earlier work, one of the authors of this paper no-
ticed that rewriting left-recursive recognizers to non-
left-recursive form is relatively simple but that rewrit-
ing attributed grammars (which contain semantic as
well as syntactic rules) can be very difficult. To avoid
this difficulty, a method was developed in which non-
left-recursive recognizers are used as guards to pre-
vent non-termination of the left-recursive executable
attribute grammars which they guard [4]. However,
the method is exponential in the worst case.

5. Nederhof and Koster [12] have developed a method
called "cancellation" parsing in which grammar rules
are translated into DCG rules such that each DCG
non-terminal is given a "cancellation set" as an extra
argument. Every time that a new non-terminal is
derived in the expansion of a rule, this non-terminal
is added to the cancellation set and the resulting set
is passed on to the next symbol in the expansion. If
a non-terminal is derived which is already in the set
then the parser backtracks. This technique prevents
non-termination of left-recursion. However, by itself,
it would miss certain parses. Therefore, the method

also requires that for each non-terminal N, which has
a left-recursive alternative 1) a function is added to the
parser which places a special token N at the front of
the input to be Recognized, 2) a DCG corresponding
to the rule N ::= N is added to the parser, and 3) the
new DCG is invoked after the left-recursive DCG has
been called. The approach accommodates explicit left-
recursion and maintains modularity. An extension to
it also accommodates hidden left recursion which can
occur when the grammar contains rules with empty
right-hand sides. The shortcoming of Nederhof and
Koster’s approach is that it is exponential in the worst
case and that the resulting code is less clear as it
contains additional production rules and code to insert
the special tokens.

6. Lickman [11] has developed a technique by which pure
functional monadic parser combinators can be modi-
fied to accommodate left recursion. The method is
based on an idea put forward by Wadler in an un-
published paper in which he claimed that fixed points
could be used to accommodate left recursion. Lick-
man fleshes out Wadler’s idea by providing a formal
mathematical justification of termination. The method
involves constructing a fixed-point combinator for the
set monad and then using this function to build an
efficient fixed-point combinator for the parser monad
(again based on an idea by Wadler). Lickman has also
developed a program which automatically generates
parsers in the pure functional programming language
Haskell from the BNF specification of the grammar.
The method accommodates left recursion whilst main-
taining modularity and clarity of the code. However,
it has exponential complexity.

7. Johnson [6] has developed a method by which mem-
oized top-down parser combinators can accommodate
left recursion in the impure-functional programming
language Scheme. The basic idea is to use the CPS,
continuation-passing style, of programming so that the
parser computes multiple results, for ambiguous cases,
incrementally. Johnson demonstrates how CPS can
be integrated with memoization so that polynomial
complexity and termination with left recursion can be
achieved with top-down parsing. Surprisingly, John-
son’s paper has not been widely cited and his approach
does not appear to have been used by others. One ex-
planation for this could be that the approach is some-
what convoluted and extending it to return packed rep-
resentations of parse trees, as in Tomita’s Chart parser
[27], could be too complicated.

8. Camarao, Figueiredo, and Oliveiro [1] claim to have
built a monadic combinator compiler generator called
Mimico which accommodates left recursion. However
it does not handle ambiguous grammars.

ACM SIGPLAN Notices 47 Vol. 41 (5), May 2006

1.3 Left-Recursion?
There are two reasons why we want to implement left-
recursive grammars: firstly, it is often easier to add attribute
computations to language processors that implement left-
recursive grammars. As a trivial, but illustrative example,
consider a processor which converts numbers represented
as character strings to their values. The left-recursive
formulation is as follows:

number ::= digit
number.VAL = digit.VAL

| number’ digit
number.VAL = (10 * number’.VAL

+ digit.VAL)

digit ::= ’0’
digit.VAL = 0

| ’1’
digit.VAL = 1 etc.

The right-recursive formulation is more complex and
requires an additional attribute.

Secondly, and perhaps more importantly, the advan-
tages of top-down backtracking parsers make them ide-
ally suited for the investigation of compositional theo-
ries of natural language. Such investigation is necessary
in order to provide more-powerful natural-language inter-
faces than are currently available. For example, although
some NL interfaces can handle various constructs contain-
ing transitive verbs, the processing of verb adjuncts is still
very limited (e.g “When and with what did Hall discover
Phobos?"). There is no widely-accepted linguistic theory
which accounts for verb adjuncts. Ideally a compositional
Montague-like theory will be developed but this will require
an environment in which variations of grammars and se-
mantic rules can be investigated. Because natural language
is inherently ambiguous, and both leftmost and rightmost
parses are required, the accommodation of left-recursive
grammars will facilitate such investigation.

1.4 Overview
The goal of this research is to develop a method by which
top-down parsers can accommodate ambiguity and left re-
cursive grammars and be efficient enough for prototyping
natural-language processors whilst maintaining modularity
and clarity of code, None of the approaches, referred to ear-
lier, have achieved all of these objectives. However, they
have shed light on the problem and the solution that we
have developed owes much to this earlier work.

The new algorithm uses memoization to improve com-
plexity in a manner similar to that proposed by Norvig [13].
The new idea, introduced for the first time in this paper, is
to integrate a bound into the memoization process, which

is used to fail a parse branch when that branch contains a
cycle introduced through left recursion. This is similar to
the approaches proposed by Kuno [9], Shiel [14] and Lick-
man [11]. However, the new approach allows left-recursive
productions to be accommodated whilst achieving polyno-
mial complexity and preserving the modularity and clarity
of the processors.

The memotable that is created during the parsing process
contains much of the information that is required to con-
struct the potentially exponential number of parse trees. We
show how more information can be gathered by memoizing
parsers which correspond to each alternative right-hand side
of the productions in the grammar. The result is a useful
polynomial-sized compact representation of the parse trees.

2 TOP-DOWN PARSING/RECOGNITION

We describe top-down backtracking parsing from a perspec-
tive that corresponds to the construction of such parsers as
recursive-descent processors. For simplicity, we begin by
describing the algorithm with respect to recognizers, and
discuss parsers later.

We assume that the input is a sequence of tokens in-
put, of length input#, the members of which are accessed
through an index j. Irrespective of the programming lan-
guage used, the recursive-descent approach can be thought
of as requiring a recognizer to be built for each terminal of
the grammar, and the subsequent combination of these and
other recognizers to build recognizers for the non-terminals
of the grammar. For ambiguous grammars, the recognizers
can be thought of as functions which take an index j as
argument and which return a set of indices as result. Each
index in the result set corresponds to the position at which
the recognizer finished successfully recognizing a sequence
of tokens that began at position j. An empty result set in-
dicates that the recognizer failed to recognize any sequence
beginning at j.

As a running example, we consider a recognizer corre-
sponding to the grammar sS ::= ’s’ sS sS | empty

and input = “ssss”. We have chosen to use this exam-
ple grammar throughout the paper as it is highly ambiguous.
According to Aho and Ullman sS generates

2n
n

different leftmost parses of strings consisting of n s’s. For
example, for n = 16 there are over 35 million parses.
Although natural language is not as ambiguous as this, large
numbers of parses can be generated during lexical analysis.
We give a natural-language example later.

ACM SIGPLAN Notices 48 Vol. 41 (5), May 2006

2.1 Recognizers for single tokens

A recognizer term_t for a single terminal t of the grammar
takes an index j as input. If j is greater than the length of
the input, the recognizer returns an empty set. Otherwise,
it checks to see if the token at position j in the input
corresponds to the terminal t. If so, it returns a singleton
set containing j + 1, otherwise it returns the empty set.
For example, a basic recognizer for the terminal ’s’ is
defined as follows

term_s j = {} , if j > length of input
= {j + 1}, if input!j = ’s’
= {} , otherwise

2.2 Empty

The empty recognizer always succeeds and returns its input
index in a singleton set as result.

empty j = {j}

2.3 Alternate recognizers

A recognizer corresponding to a construct p | q in the
grammar is built by combining recognizers for p and q.
When the composite recognizer is applied to an index j, it
first applies p to j, then applies q to j, and then unites the
results. We introduce the operator orelse to denote the
process of combining alternate recognizers. This operator
can be implemented in various ways depending on the
programming language used.

(p orelse q) j = (p j) (q j)

For example, assuming that the input is “ssss”

(empty orelse term_s) 2 => {2, 3}

2.4 Sequence recognizers

A recognizer corresponding to a construct p q in the gram-
mar is built by combining recognizers for p and q. When
the composite recognizer is applied to an index j, it first
applies p to j, then applies q to each index in the set of
the results returned by p. It returns the union of each of
these applications of q. We introduce the operator then to
denote the process of sequencing recognizers.

(p then q) j = (map q (p j))

For example, assuming that the input is “ssss”

(term_s then term_s) 1 => {3}

2.5 An example recognizer
The operators orelse and then can be used to define
recognizers through recursion and mutual recursion. For
example, the following recognizer sS corresponds to the
example grammar sS ::= ’s’ sS sS | empty:

sS = (term_s then sS then sS)
orelse empty

Assuming that the input is “ssss”, the recognizer sS
returns a set of 5 results, the first 4 results corresponds to
proper prefixes of the input being recognized as an sS. The
result 5 corresponds to the case were the whole input is
recognized as an sS.

sS 1 => {1, 2, 3, 4, 5}

2.6 Limitations of the approach
described so far
The reader may have noticed that the number of entries in
the output list of the recognizer is less than the number of
possible parses. This is owing to the fact that the results
generated during the process are united. Although this re-
duces the amount of work done in recognition, the process
still has exponential time complexity with respect to the
length of the input. This is because recognizers may be
repeatedly applied to the same index during the backtrack-
ing process which is induced by the operator orelse. In
section 3, we show how Norvig’s method can be used to
achieve polynomial complexity “memoizing” the recogni-
tion functions so that they reuse previously-computed re-
sults.

The second limitation is that the approach cannot be
used to build recognizers that correspond directly to left
recursive grammars. That is grammars in which a non-
terminal p derives the expression p Application of the
corresponding recognizers would result in infinite descent.
We show how to avoid this problem, without having to
transform the grammars, in section 5.

We conclude thsi section by noting that we have tried to
make the above description of top-down parsing indepen-
dent of programming-language or paradigm. However, our
formalism is influenced by the “parser combinator” style
which has been developed by the functional-programming
community. See for example Hutton [5], Koopman and
Plasmeijer [7], and Wadler [16].

3 MEMOIZATION

Norvig [22] has shown how the worst-case complexity of
top-down recognition can be improved from exponential to
cubic through a process of memoization. The basic idea

ACM SIGPLAN Notices 49 Vol. 41 (5), May 2006

is that a memotable is constructed during the recognition
process. At the beginning of the process the table is empty.
During the process it is updated with an entry for each
recognizer ri that is applied. The entry consists of a set of
pairs, the first component of each pair is an index j at which
the recognizer ri has been applied, the second component
is the set of results of the application of ri to j.

The memotable is used as follows: whenever a recog-
nizer ri is about to be applied to an index j, the memotable
is checked to see if that recognizer has ever been applied
to that index before. If so, the results from the memotable
are returned. If not, the recognizer is applied to the in-
dex and the memotable is updated with those results before
they are returned by the recognizer. For non-left-recursive
recognizers, this process ensures that no recognizer is ever
applied to the same index more than once.

One method of implementing memoization, that was
suggested by Norvig, is to have a global memotable, and
to encapsulate the recognizers which are to be memoized
in a function which performs the memotable lookup and
update. In general the process can be implemented in var-
ious ways depending on the programming language used.
We introduce the operator memoize to indicate that a rec-
ognizer has been memoized. This operator takes a string
which denotes the name of the recognizer, together with
the recognizer itself as arguments. The name is used for
memotable lookup and update. For example, consider the
following memoized recognizer:

msS = memoize "msS"
((ms then msS then msS)
orelse empty)

ms = memoize "ms" term_s

The operator memoize is defined as follows:

memoize name ri j
if lookup succeeds,

return memotable result
else

apply ri to j
update’ table with results
return results

The recognizer msS is the same as sS in all respects
except that it has cubic complexity (see later).

4 ACCOMMODATING LEFT RECURSION

In order to accommodate left recursive productions, we
simply use another table ctable during the memoization
process. The new table contains a set of values value cij

denoting the number of times each recognizer ri has been
applied to an index j. For non-left-recursive recognizers
this count will be at most one, as the memotable lookup
will prevent such recognizers from ever being applied to
the same input twice. However, for left-recursive recogniz-
ers, the count is increased on recursive descent (owing to
the fact that the memotable is only updated on the recursive
ascent after the recognizer has been applied). Application
of a recognizer N to an input j is failed whenever the ap-
plication count already exceeds the length of the remaining
input plus 1. When this happens no parse is possible (other
than spurious parses which could occur with circular gram-
mars). As illustration, consider the following branch being
created during the parse of two remaining tokens on the
input:

N
/ \

N A
/ \

N B
/ \

P C
/

Q
/

N

The last call of N should be failed owing to the fact
that, irrespective of what A, B, and C are, either they must
require at least one input token, orelse they must rewrite to
empty. If they all require a token, then the parse cannot
succeed. If any of them rewrite to empty, then the grammar
is circular (N is being rewritten to N) and the last call should
be failed.

Notice that simply failing a parse when a branch is
longer than the length of the input is incorrect as this can
occur in a correct parse if recognizers are rewritten into
other recognizers which do not have “token requirements
to the right”. For example, we cannot fail the parse at
P or Q as these could rewrite to empty without indicating
circularity.

To make use of the new table, we simply modify the
memoize operator to check and increment the cij counters
at appropriate points in the computation: if the memotable
lookup for the recognizer ri and the index j produces
a non-empty result, that result is returned with the two
tables unchanged. However, if the memotable does not
contain a result for that recognizer and that input, cij is
checked to see if the recognizer should be failed because
it has descended too far through left-recursion. If so,
memoize returns an empty set as result with the tables
unchanged. Otherwise, the counter cij is incremented and
the recognizer ri is applied to j, and the memotable is
updated with the result before it is returned.

ACM SIGPLAN Notices 50 Vol. 41 (5), May 2006

memoize name ri j
if lookup succeeds,

return memotable results
else

if cij > (input length)-j+1
return {},

else
increment cij counter in ctable
apply ri to j
update’ memotable with results
return results

The memotable update function update’ is slightly dif-
ferent from the update function given in section 3. This
is owing to the fact that, on the recursive descent a recog-
nizer is only applied to an input if there is no entry in the
memotable. In the original memoization function, the re-
sults returned by the recognizer on ascent are simply added
to the memotable. However, if left-recursion occurs, the
memotable may have been updated by the same recognizer
for the same input lower in the parse tree. Therefore on as-
cent it is necessary to unite the results of each application
of the recognizer with memotable results which may have
been added by calls lower in the parse tree.

Using this approach, recognizers may now be defined
using explicit (as in mSL) or hidden (as in mZ) left recursion.
For example:

mSL = memoize "mSL"
((mSL then mSL then2 ms)
orelse2 empty2)

ms = memoize "ms" term_s

mZ = memoize "mZ" (mz orelse mY)

mY = memoize "mY" (mZ then mSL)
mz = memoize "mz" term_z

The following are example applications of mZ, assuming
that the tables were initially empty. The second component
is the table showing for each recognizer the number of times
it visited each position in the input. The last component is
the table showing for each recognizer the positions at which
it was applied and the results of that application.

Grammar mZ ::= ’z’| mY
mY ::= mZ mSL

input = "zss"

mZ 1 ([],[]) => {2,3,4}
ctable =

{("mZ", {(1,3)}),
("mz", {(1,1)}),
("mY", {(1,4)}),
("mSL",{(2,2),(3,1),(4,0)}),
("ms", {(2,1),(3,1),(4,1)})}

memotable =
{("mz", {(1,{2})}),
("mY", {(1,{2,3,4})}),
("mZ", {(1,{2,3,4})}),
("mSL",{(2,{2,3,4}),(3,{3,4}),(4,{4})}),
("ms" ,{(2,{3}),(3,{4}),(4,{})})}))

5 INFORMAL DISCUSSION
OF TERMINATION

Basic recognizers such as term_s and the recognizer
empty clearly terminate for finite input. Other recogniz-
ers that are defined through mutual and nested recursion
are applied by the memoize function which takes a rec-
ognizer and an index j as input and which accesses two
tables ctable and memotable. If a recognizer has an en-
try in memotable for the index j, it is not applied and
therefore we do not need to consider the size of the argu-
ments. If it does not have an entry in memotable, we must
consider two cases of possible recursion: 1) it is not a left-
recursive call and therefore at least one other recognizer
must have been applied before it which consumed at least
one token and increased the index by at least one before
the call, 2) it is a left-recursive call and the index argument
has not been changed. In this case, memoize increments
the left-recursion counter in ctable for that recognizer and
that index before the recursive call is made. Therefore an
appropriate measure function maps the index and ctable

values to a number which increases by at least one for each
recursive call. The fact that the number is bounded by con-
ditions imposed on the size of the index and on the sizes
of the left-recursion counters establishes termination.

6 COMPLEXITY

In the following complexity analysis, we assume that the
sets of results are represented as ordered lists, as are the
entries in the tables. We now show that memoized non-
left-recursive and left-recursive recognizers have a worst-
case time complexities of O(n3) and O(n4) respectively,
where n = input#.

Assumption 2 — Elementary operations: We assume that
the following operations require a constant amount of time:

1. Testing if two values are equal, less than, etc.

2. Extracting the value of a tuple.

3. Adding an element to the front of a list.

4. Obtaining the value of the ith element of a list whose
length depends on R# but not on input#.

ACM SIGPLAN Notices 51 Vol. 41 (5), May 2006

Assumption 3 — Merging of lists depends on their length.

Lemma 4 — Memotable lookup and update, checking and
incrementing left-recursion counters: From lemma 1 and
the definition of memoize, memotable has size O(n2)
and ctable has size O(n) and . The function lookup is
O(n) requiring a search of memotable for the recognizer
name and then a search of the O(n) list of results (one for
each index). The function update is O(n) requiring the
same O(n) search as lookup plus a possible O(n) merge
of results. Checking for the value of a left-recursion counter
in ctable and increment of such a counter is clearly O(n).

Lemma 5 — Basic recognizers Application of a basic rec-
ognizer is at most O(n) requiring the use of an index j
into the input. Application of empty is also O(n), simply
enclosing a single index in a list.

Lemma 6 — Alternation: Assuming that the recognizers rp
and rq have been applied to an index j and that the results
have already been computed, application of a memoized
recognizer rp orelse rq to j involves the following
steps:

1. one memotable lookup — O(n)

2. and, if the recognizer has not been applied before:

a. one left-recursion counter check — O(n)
b. and, if the counter check permits:

• merging of two result lists — O(n)
• one memotable update — O(n)

Lemma 7 — Sequencing: Assume that the recognizer rp
has been applied to an index j and that the results res
have been computed. In the worst case, res = [j,
j+1,j+2, .. n+1]. Assume also that j’ res rq
j’ has been computed. Then, application of a memoized
recognizer (rp then rq) to an index j involves:

1. one memotable lookup — O(n)

2. and, if the recognizer has not been applied before:

a. one left-recursion counter check — O(n)
b. and, if the counter check permits:

• application of rq to each index in res and
merging of the result lists— O(n2).

• one memotable update — O(n)

Proof of O(n3) complexity for non-left-recursive recogniz-
ers.
In the worst case, each recognizer ri R is applied to
each of the n indices at most once. The cost of an appli-
cation to one index is:

Case 1: For basic recognizers the cost is O(n) — Lemma 5.
Case 2: For recognizers of the form (rp orelse rq)
the cost is O(n) — Lemma 6.
Case 3: For recognizers of the form (rp then rq) the
cost is O(n2) — Lemma 7.
In practice recognizers can be a combination of more than
two recognizers. However, from definition 2 the number of
component recognizers is finite and is independent of n.

It follows that the total cost is O(n3).

Proof of O(n4) complexity for left-recursive recognizers.
In the worst case, each recognizer ri R is applied to each
of the n indices at most n times before being curtailed. It
follows that the total cost is O(n4).

7 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

The approach described in this paper has been implemented
using parser combinators in the pure functional program-
ming language Haskell using an method called “monadic
memoization” [3]. Details, including proofs of termination
and complexity, are available in Frost and Hafiz [2]. An
example recognizer was constructed corresponding to the
grammar sS ::= ’s’ sS sS | empty and applied to se-
quences of ’s’s of varying length. The results in the table
at the end of this paper were obtained using the Haskell
interpreter Hugs 98 on a PC with 0.5 GB of RAM. The
results appear to support our claim that we have avoided
exponential behaviour.

It should be noted that the example grammar that we
have used so far is highly ambiguous, far exceeding any am-
biguity found in natural language. Also, many constructs in
natural language are defined without use of left recursion.
Consequently, we have also investigated the performance
of our approach with respect to a small natural-language
grammar. The following is the definition of the recognizer
in Haskell. This example illustrates the close correspon-
dence between the grammar and the program code when
parser combinators are used (obviating the need to give
the grammar separately in this example). The recognizer
sent recognizes sentences in a very small subset of Eng-
lish. tp stands for termphrase, det for determiner, and vp

for verbphrase:

sent = memoize "sent"
(tp ‘then2‘ vp ‘then2‘ tp)

tp = memoize "tp"
(simple_tp
‘orelse2‘ (tp ‘then2‘ join ‘then2‘ tp))

join = memoize "join"
(term2 "and" ‘orelse2‘ term2 "or")

ACM SIGPLAN Notices 52 Vol. 41 (5), May 2006

simple_tp = memoize "simple_tp"
(proper_noun
‘orelse2‘ det_phrase)

proper_noun = memoize "proper_noun"
(term2 "helen
‘orelse2‘ term2 "john"
‘orelse2‘ term2 "pat")

det_phrase = memoize "det_phrase"
(det ‘then2‘ noun)

det = memoize "det"
(term2 "every"
‘orelse2‘ term2 "some")

noun = memoize "noun"
(term2 "boy"
‘orelse2‘ term2 "girl"
‘orelse2‘ term2 "man"
‘orelse2‘ term2 "woman")

vp = memoize "vp"
(verb
‘orelse2‘ (vp ‘then2‘ join ‘then2‘ vp))

verb = memoize "verb"
(term2 "knows"
‘orelse2‘ term2 "respects"
‘orelse2‘ term2 "loves")

Application of tp to the ambiguous termphrase:

["every","boy","or","some","girl",
"and","helen","and","john","or","pat]

requires 57,131 reductions, 102,477 cells, and returns the
following result:

([3,6,8,10,12],

([("tp",[(1,11),(4,8),(7,5),(9,3),(11,1)]),
("simple_tp" ,[(1,1),(4,1),(7,1),etc.]),
("proper_noun",[(1,1),(4,1),(7,1),etc.]),
etc.

[("proper_noun",[(1,[]),(4,[]),(7,[8]),
(9,[10]),(11,[12])]),

("det", [(1,[2]),(4,[5]),(7,[]),
(9,[]), (11,[])]),

("noun", [(2,[3]),(5,[6])]),
("det_phrase", [(1,[3]),(4,[6]),(7,[]),

(9,[]),(11,[])]),

("simple_tp" ,[(1,[3]),(4,[6]),(7,[8]),
(9,[10]),(11,[12])]),

("tp", [(1,[3,6,8,10,12]),
(4,[6,8,10,12]),
(7,[8,10,12]),
(9,[10,12]),(11,[12])]),

("join", [(3,[4]),(6,[7]),(8,[9]),
(10,[11]),(12,[])])]))

Application of sent to the list of tokens corresponding
to the highly-ambiguous sentence “every boy or some girl
and helen and john or pat knows and respects or loves every
boy or some girl and pat or john and helen" took 408,454
reductions, used 691,504 cells, and returned results in less
approximately 0.5 seconds.

The prototype processor is clearly not fast. However,
the combinators were not optimized, and Hugs 98 is an
interpreted version of Haskell. Our approach to top-down
parsing could be implemented in a more efficient program-
ming environment.

8 COMPACT REPRESENTATION
OF PARSE TREES

Reference to the example application given above shows
that most of the information for reconstructing the parse
trees is already available in the memotable. For example,
the memotable output shows that the input contains three
proper nouns at positions 7, 9 and 11, etc. Additional infor-
mation could be collected during the recognition process by
naming and memoizing the alternative recognizers on the
right-hand sides of grammar productions. This, together
with the grammar, would provide all of the information
necessary to extract the potentially exponential number of
parses from the memotable. The memotable is bounded by
the number of recognizers, the number of indices, and the
sizes of the result sets. The latter two of which depend
on the length of the input. Consequently, the memotable
has worst-case size O(n2) and provides a compact repre-
sentation of the possibly-exponential number of parse trees
which appears to be similar to that proposed by Tomita [24].

The major advantage of creating compact representation
of parse trees is that syntactic agreement rules, together with
semantic rules, can be used to prune out sub-trees which
are shared by many possible parses.

9 CONCLUDING COMMENTS

Future work includes:

1. Extending the approach to parsers and evaluators.

2. Optimizing the combinators used in the Haskell im-
plementation, using the techniques of Koopman and
Plasmeijer [14]

3. Testing the approach on large natural-language gram-
mars.

10 ACKNOWLEDGEMENTS

Richard Frost acknowledges the support of NSERC the Nat-
ural Sciences and Engineering Research Council of Canada.

ACM SIGPLAN Notices 53 Vol. 41 (5), May 2006

length of
input n

number of leftmost parses with
S ::= ’s’ S S | empty

2n
n

Note that the number of partial parses
consistent with sn is larger than this

number of reductions
mS ::= ’s’ mS mS | empty

mSL ::= mSL mSL ’s’ | empty

mS without
memoization

(checks all partial
parses)

mS with
memoization

mSL

3 5 2,781 2,834 5,990

6 132 65,049 7,081 28,366

12 20,812 out of space 23,297 206,903

24 128,990,414,734 99,469 2,005,561

48 1.313278982422e+26 424,929 17,125,991

96 huge 2,620,807 out of space

192 18,119,356

384 134,091,390

11 REFERENCES

1. Camarao, C., Figueiredo, L. and Oliveira, R.,H. (2003) Mim-
ico: A Monadic Combinator Compiler Generator. Journal of
the Brazilian Computer Society Vol 9(1).

2. Frost, R. A. and Hafiz, R. (2006) Using monads to accom-
modate ambiguity and left recursion with parser combinators.
Technical Report 06–007 School of Computer Science, Uni-
versity of Windsor, Canada.

3. Frost, R. A. (2003) Monadic memoization — Towards
Correctness-Preserving Reduction of Search. AI 2003 eds.
Y. Xiang and B. Chaib-draa. LNAI 2671 66–80.

4. Frost, R. A. (1993) Guarded attribute grammars. Software
Practice and Experience.23 (10) 1139–1156.

5. Hutton, G. (1992) Higher-order functions for parsing. J.
Functional Programming 2 (3) 323–343.

6. Johnson, M. (1995) Squibs and Discussions: Memoization in
top-down parsing. Computational Linguistics 21 (3) 405–417.

7. Koopman, P. and Plasmeijer, R. (1999) Efficient combinator
parsers. In Implementation of Functional Languages, LNCS,
1595:122 138. Springer-Verlag.

8. Koskimies, K. (1990) Lazy recursive descent parsing for mod-
ular language implementation. Software Practice and Experi-
ence, 20 (8) 749–772.

9. Kuno, S. (1965) The predictive analyzer and a path elimination
technique. Communications of the ACM 8(7) 453 — 462.

10. Leermakers, R. (1993) The Functional Treatment of Parsing.
Kluwer Academic Publishers, ISBN 0–7923–9376–7.

11. Lickman, P. (1995) Parsing With Fixed Points. Master’s
Thesis, University of Cambridge.

12. Nederhof, M. J. and Koster, C. H. A. (1993) Top-Down Pars-
ing for Left-recursive Grammars. Technical Report 93–10 Re-
search Institute for Declarative Systems, Department of Infor-
matics, Faculty of Mathematics and Informatics, Katholieke
Universiteit, Nijmegen.

13. Norvig, P. (1991) Techniques for automatic memoisation with
applications to context-free parsing. Computational Linguis-
tics 17 (1) 91 - 98.

14. Shiel, B. A. 1976 Observations on context-free parsing. Tech-
nical Report TR 12–76, Center for Research in Computing
Technology, Aiken Computational Laboratory, Harvard Uni-
versity.

15. Tomita, M. (1985) Efficient Parsing for Natural Language.
Kluwer, Boston, MA.

16. Wadler, P. (1985) How to replace failure by a list of successes,
in P. Jouannaud (ed.) Functional Programming Languages
and Computer Architectures Lecture Notes in Computer Sci-
ence 201, Springer-Verlag, Heidelberg, 113.

ACM SIGPLAN Notices 54 Vol. 41 (5), May 2006

