A 7.8MB/s 64Gb 4-Bit/Cell NAND Flash Memory on 43nm CMOS Technology

Cuong Trinh¹, Noboru Shibata², Takeshi Nakano², Mikio Ogawa², Jumpei Sato², Yoshikazu Takeyama², Katsuaki Isobe², Binh Le¹, Farookh Moogat¹, Nima Mokhlesi¹, Kenji Kozakai¹, Patrick Hong¹, Teruhiko Kamei¹, Kiyoaki Iwasa², Jiyun Nakai², Takahiro Shimizu², Mitsuaki Honma², Shintaro Sakai², Toshimasa Kawaai², Satoru Hoshi², Jonghak Yuh¹, Cynthia Hsu¹, Taiyuan Tseng¹, Jason Li¹, Jayson Hu¹, Martin Liu¹, Shahzad Khalid¹, Jiaqi Chen¹, Mitsuyuki Watanabe¹, Hungszu Lin¹, Jeff Yang¹, Keith McKay¹, Khanh Nguyen¹, Trung Pham¹, Yasuyuki Matsuda², Keiichi Nakamura², Kazunori Kanebako², Susumu Yoshikawa², Wataru Igarashi², Atsushi Inoue², Toshiyuki Takahashi², Yukio Komatsu², Chiyumi Suzuki², Kazuhisa Kanazawa², Masaaki Higashitani¹, Sam Lee¹, Takashi Murai¹, Ken Nguyen¹, James Lan¹, Sharon Huynh¹, Mark Murin¹, Mark Shlick¹, Menahem Lasser¹, Raul Cernea¹, Mehrdad Mofidi¹, Klaus Schuegraf¹, Khandker Quader¹

> ¹SanDisk Corp., Milpitas, California, USA ²Toshiba Corp., Yokohama, Kanagawa, Japan

SanDisk[•]

Outline

- □ Introduction
- □ 4-Bit/Cell (16LC) Distribution
- Performance Features
- Silicon Results
- Summary of Key Features
- Conclusion

Outline

□ Introduction

- □ 4-Bit/Cell (16LC) Distribution
- Performance Features
- Silicon Results
- Summary of Key Features
- Conclusion

Memory Density Trend

Memory density previously reported

SanDisk[•]

□ 64Gb X4 provides a 2 times density improvement

Comparison with Previous Works

(K. Kanda, et al., ISSCC '08)

43nm 16Gb D2

(Drawings not to scale)

43nm 64Gb X4 (This Work)

Chip Size	120 mm ²	244.5 mm ²
Density	133 Mb/mm ²	262 Mb/mm²
Architecture	8 Gb / plane	32 Gb / plane
MLC	4LC	16LC
Program/Sense	ABL	ABL

64Gb is highest capacity single die reported!

Comparison with 3Xnm Products

Device	32Gb D2	64Gb X4	32Gb D3
Technology	34nm	43nm	32nm
Die Size	172mm ²	244.5mm ²	113mm ²
Density Comparison	186Mb/mm² <mark>0.71</mark>	262Mb/mm ² 1.0	283Mb/mm ² 1.08
	R. W. Zeng, et al.,	This Work	T. Futatsuyama, et al.,

ISSCC '09

ISSCC '09

X4 Benefits

- □ X4 enables highest capacity
 - Expand in capacity where D2 and D3 cannot
- 2 times improvement in memory density (over previously reported works)
- Compared to published 32nm generation of technology, 43nm 64Gb X4 enables:
 - Much lower cost than 34nm D2
 - Comparable in cost effectiveness with 32nm D3

4-Bit/Cell Considerations

- More ECC parity bits to support strong ECC requirements
- □ Four sets of data latches
- □ Design challenges 16 levels of distribution
 - Precise control of voltages and timings
 - Performance Many levels to verify

Project Objectives

- □ High density in 4-bit/cell (16LC)
 - ➔ Very narrow distribution
- Performance target of 8MB/s, comparable to other MLCs Designs
 - 8MB/s D3 reported at 2008 ISSCC (Y. Li, et al., ISSCC '08)
 - 9MB/s D2 reported at 2009 ISSCC (R. Zeng, et al., ISSCC '09)

Outline

Introduction

□ 4-Bit/Cell (16LC) Distribution

- Performance Features
- Silicon Results
- Summary of Key Features
- Conclusion

Distribution Requirements

For similar Vt window, 16LC requires much tighter distribution.

- Vt window cannot be increased too much due to device reliability considerations (Program Disturb, Read Disturb, …)
- Major obstacle in obtaining tight distribution is <u>cell-to-cell coupling (CCC)</u>.

Cell-to-Cell Coupling

□ Three components of CCC:

- Diagonal
- ◆ WL WL
- BL BL
- □ CCC greatly affects final distribution width.
- With technology scaling, all 3 components of CCC increase.

Cell-to-Cell Coupling Trend

- □ With technology scaling, CCC increases dramatically
- □ To obtain tight distribution, need to overcome CCC

SanDisk^{*}

Issue with CCC

2-Pass Programming

- □ Previous Method: 2-Pass Programming
 - First pass programs roughly to lower level
 - Second pass programs to final level
 - Vth movement of second pass is small, minimizing CCC on its neighbors

N. Shibata, et al., Symp. VLSI Circuit '07

2-Pass Programming

Vth distribution of WLn+1

2-Pass Programming

WW-UCSD

April 11-13, 2010

Vth distribution of WLn

SanDisk[•]

- 2-Pass is not enough to handle high CCC of technology scaling
 - CCC₁ increases
 Needs to lower V_{Low}
 - Lower V_{Low} increases DV₂
 - CCC_{Final} α DV₂
 → Wider distribution
- Improved algorithm to achieve tight distribution
 - Three-Step Programming (TSP)

SanDisk Confidential

17/36

Three-Step Programming (TSP)

□ Each WL programming consists of 3 steps:

- Step 1 Program to 4 levels (V_{Low1})
- Step 2 Program roughly to 16 levels (V_{Low2})
- Step 3 Program to final 16 levels (V_{Tar})

TSP – The Concept

Step1: Program to V_{Low1}

Distribution after Step 1 of neighbor cells

Step2: Program to V_{Low2}

Distribution after Step 2 of neighbor cells

Step3: Program to V_{Tar}

Distribution after Step 3 of neighbor cells

TSP – Programming Sequence

Vth distribution of WLn

Step1: Program to 4 levels (V_{Low1})

Distribution after Step 1 of neighbors

Step2: Program to 16 levels (V_{Low2})

Distribution after Step 2 of neighbors

Step3: Program 16 levels to V_{Tar}

Distribution after Step 3 of neighbors

TSP – Benefits

□ Additional step minimizes the effect of CCC

- Cell Vt movement during each step is small, reducing CCC of its neighbors.
- V_{Low2} of 2nd step can be closer to V_{Tar} of 3rd step.
- Cell Vt movement during last step is minimal and has negligible effect on its neighbors.
- TSP reduces CCC effect to ~ 5%.
- Allows bigger programming step size during 1st & 2nd steps
 - ➔ Minimal impact on programming time

Outline

Introduction

□ 4-Bit/Cell (16LC) Distribution

Performance Features

- Silicon Results
- Summary of Key Features
- Conclusion

Performance Techniques

- □ Performance enhancement techniques:
 - <u>All BitLine (ABL) architecture</u>
 - Optimization of Verification Matrix
 - Optimization of internal timing and operations
 - » Cell Source noise tracking
 - » WL noise cancellation
- ABL is the main reason for achieving our performance objective.
- Sequential Sense Concept (SSC) further improves performance of both read and verify operations.

Performance Comparison

ABL Architecture

(R. Cernea, et al., ISSCC '08)

- Conventional Even / Odd architecture
 - One Sense Amplifier handling two bitlines
 - Alternating bitlines shielded during sensing
- □ ABL architecture
 - Simultaneous Read and Program of all bitlines
 - No shielding necessary

Sequential Sense Concept (SSC)

- □ Fixed sensing order from start to final levels
- □ For each read and verify sequence, charging of un-selected WLs and Select gates is done only once
 → WL stabilization time is minimized
- Same sequence is used for both read and verify
 Matching of read and verify conditions
- □ Less Source Line (SL) current (see example next page)

SanDisk[•]

Sequential Sense Concept (SSC)

Example: Sensing level 8 (WL potential = Level 8)

- Conventional sensing, cells of levels 0 7 are on
- With SSC, only cells of level 7 are on
- SSC generates less SL current
 - » Smaller SL bounce
 - » Less SL stabilization time
 - » Less current consumption

Sequential Sense Concept (SSC)

- After sensing of level 8 is complete, page (0) data is available for shifting out.
- After sensing of level C, page (1) data is available; after level E, page (2) data is ready.
- With SSC, data can be shifted out in parallel with internal sensing, supporting cache operation.

SanDisk[•]

Outline

Introduction

- □ 4-Bit/Cell (16LC) Distribution
- Performance Features

Silicon Results

- Summary of Key Features
- Conclusion

16LC Distribution

- □ Measured Distribution of 16 LC
- □ Tight distribution is achieved with TSP

Performance

- □ Total Tprog for 3 steps = 8.41ms
- □ <u>7.8MB/s</u> with 2-plane (16KB x 4) programming
 - ABL is the main contributor to high performance

Outline

- Introduction
- □ 4-Bit/Cell (16LC) Distribution
- Performance Features
- Silicon Results
- Summary of Key Features
- □ Conclusion

Summary of Key Features

- 43nm CMOS Flash technology
- □ 64Gb, 4-bit/cell
 - ABL with 2-sided SA
- Organization
 - Dual Plane array
 - 32Gb / plane
 - 2K blocks / plane
 - Block size = 16Mb (4M cells)
 - 66 NAND string
 - 8KB page size

Summary of Key Features

Architecture	ABL
Write Throughput	7.8MB/s
Tprog (per page)	2.1ms
Tread (per page)	60us
Terase	3ms
Burst Cycle Time	25ns
Power Supply	2.7 to 3.6V
Technology	3-Metal 43nm
Die Size	244.45 mm ²

Conclusion

- □ A high performance 64Gb 4-bit/cell is reported.
 - Developed on 43nm CMOS technology
 - Highest capacity ever reported
- □ 16LC tight distribution is achieved with TSP.
- Able to achieve performance on par with other MLC designs by leveraging:
 - ABL architecture
 - Sequential Sense Concept (SSC)
 - Extensive optimization of verification matrix and internal operations

Acknowledgments

The authors thank E. Harari¹, S. Mehrotra¹, Y. Cedar¹, A. Koike¹,
Y. Fong¹, Y. Li¹, F. Pan¹, C. Hook¹, N. Thein¹, B. Raghunathan¹,
S. Lobana¹, L. Tu¹, H. Wakita¹, M. Horiike¹, C. Chen¹, T. Pham¹,
L. Rowland¹, M. Momodomi², H. Nakai², S. Mori², T. Tanaka²,
H. Domae², T. Kimura², H. Kadosawa², and the entire Design,
Layout, Device, Evaluation, Test, Process, and x4 System teams for supporting the development of this project.

¹SanDisk Corp., Milpitas, California, USA ²Toshiba Corp., Yokohama, Kanagawa, Japan

