
Linear Logical Relations for Session-Based Concurrency

Jorge A. Pérez1, Luı́s Caires1, Frank Pfenning2, and Bernardo Toninho1,2

1 CITI and Departamento de Informática, FCT, Universidade Nova de Lisboa
2 Computer Science Department, Carnegie Mellon University

Abstract. In prior work we proposed an interpretation of intuitionistic linear
logic propositions as session types for concurrent processes. The type system ob-
tained from the interpretation ensures fundamental properties of session-based
typed disciplines—most notably, type preservation, session fidelity, and global
progress. In this paper, we complement and strengthen these results by develop-
ing a theory of logical relations. Our development is based on, and is remarkably
similar to, that for functional languages, extended to an (intuitionistic) linear type
structure. A main result is that well-typed processes always terminate (strong nor-
malization). We also introduce a notion of observational equivalence for session-
typed processes. As applications, we prove that all proof conversions induced by
the logic interpretation actually express observational equivalences, and explain
how type isomorphisms resulting from linear logic equivalences are realized by
coercions between interface types of session-based concurrent systems.

1 Introduction

Modern computing systems rely heavily on the concurrent communication of distrib-
uted software artifacts. Hence, to a large extent, guaranteeing their correctness amounts
to ensuring consistent dialogues between these artifacts—an extremely challenging task
given the complex interaction patterns they usually feature. Session-based concurrency
has consolidated as a foundational approach to communication correctness: dialogues
between participants are structured into sessions, the basic units of communication;
descriptions of the interaction patterns are then abstracted as session types [11], which
are statically checked against specifications. These specifications are usually given in
the π-calculus [16], so we obtain processes communicating through so-called session
channels connecting exactly two subsystems. The discipline of session types ensures
session protocols in which actions always occur in dual pairs: when one partner sends,
the other receives; when one partner offers a selection, the other chooses; when a session
terminates, no further interaction may occur. New sessions may be dynamically created
by invocation of shared servers. While concurrency arises in the simultaneous execution
of sessions, mobility is present in the exchange of session and server names.

In session-based concurrency, typing disciplines usually guarantee communication
correctness via (forms of) subject reduction and progress properties. The former states
that well-typed processes always evolve to well-typed processes (a safety property); the
latter says that well-typed processes will never run into a stuck state (a liveness prop-
erty). In addition to ensure that sets of interactions adhere to their prescribed behavior, it
is sensible to require such interactions to be finite: while from a global perspective sys-
tems are meant to run forever, at a local level we would like participants which always

2 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

respond within a finite amount of time, and never engage into infinite internal compu-
tations. Termination (more commonly known as strong normalization in the functional
setting) is indeed a most desirable liveness property; in session-based concurrency, it
may substantially improve the correctness guarantees provided by subject reduction
and progress. Ensuring termination in concurrent calculi, however, is known to be hard:
in (variants of) the π-calculus, proofs require heavy constraints on the language and/or
its types, often relying on ad-hoc machineries (see [8] for a survey).

In the first part of this paper, we study termination in session-based concurrency.
The starting point is our interpretation of (intutionistic) linear logic propositions as
session types [4], which has provided the first purely logical account of session types.
In the interpretation, types are assigned to names (denoting communication channels)
and describe their session protocol. This way, an object of typeA(B denotes a session
that first inputs a session channel of typeA, and then behaves asB—another interactive
behavior. An object of type A ⊗ B denotes a session that first sends a session channel
of type A and then behaves as B. The !A type is interpreted as a type of a shared server
for sessions of type A. The additive product and sum are interpreted as branch and
choice session type operators, respectively. The type system distinguishes two kinds of
type environments: a linear part ∆ and an unrestricted part Γ , where weakening and
contraction principles hold for Γ but not for ∆. A type judgment is then of the form
Γ ;∆ ` P :: z:C, with Γ,∆, and z:C having pairwise disjoint domains. We refer to
Γ ;∆ and z:C as the left- and right-hand side typings, respectively. Such a judgment
asserts: process P implements session C along channel z, provided it is placed in an
environment offering the sessions declared in Γ and ∆. The classic duality of session
types is retained via the multiplicative/additive nature of linear logic propositions. This
way, e.g., ⊗ and(are dual in that using a session of one type (in the left-hand side
typing) is equivalent to implementing a type of the other (in the right-hand side typing).

The interpretation establishes a tight correspondence between session types for the
π-calculus and intuitionistic linear logic: typing rules correspond to linear sequent cal-
culus proof rules and, moreover, process reduction may be simulated by proof con-
versions and reductions, and vice versa. As a result, we obtain subject reduction from
which session fidelity follows. The type system ensures global progress, beyond the
restricted progress on a single session property obtained in pure session type systems.
Examples illustrating the expressiveness of the type system can be found in [5, 4].

Our main contribution is a simple theory of logical relations for session types. The
method of logical relations has proved to be extremely productive in the functional set-
ting; in fact, properties such as termination, various forms of equivalence, confluence,
parametricity can be established via logical relations. In this presentation, we use logical
relations to prove termination for session-typed processes. Although our interpretation
assigns types to names (and not to terms, as in the typed λ-calculus), quite remarkably,
we are able to define linear logical relations which are truly defined on the structure
of types—as in logical relations for the typed λ-calculus [23, 24]. A salient aspect of
our proof is that it closely follows the principles of the (linear) type system. As hinted
at above, this is in sharp contrast with known proofs of termination in the π-calculus.
To our knowledge, ours is the first proof of termination of its kind in the context of
session-based concurrency.

Linear Logical Relations for Session-Based Concurrency 3

Certifying termination of session-typed interacting programs is very important in
practice. In server-client interactions, for instance, it is critical for clients to be sure
that running some piece of code provided by a server (say, code embedded in web
pages of a cloud application) will not cause it to get stuck indefinitely (as in a denial-
of-service attack, or just due to some bug). Furthermore, strengthening session-based
type disciplines with termination guarantees should be highly beneficial for the in-
creasingly growing number of implementations (libraries, programming language ex-
tensions) based on session types foundations—see, e.g., [12, 17, 20].

In the second part of the paper, we present two applications of the basic theory,
which bear witness to its complementarity with the other properties derived from the
interpretation. The applications rely on a notion of typed observational equivalence,
which we define following the intuitive meaning of type judgements. The first appli-
cation concerns the proof conversions induced by the logic interpretation. In [4] a set
of such conversions was shown to correspond to either structural congruence or reduc-
tion in the π-calculus. The conversions we study here (not considered in [4]) cannot
be explained similarly: they induce forms of “prefix commutation” on typed processes
which appear rather counterintuitive. We prove soundness of the proof conversions with
respect to the observational equivalence, i.e., processes induced by proof conversions
are shown to be observationally equivalent. This result thus elegantly explains subtle
forms of causality that arise in the (interleaved) execution of concurrent sessions. In
our second application, we explain how type isomorphisms resulting from linear logic
equivalences are realized by coercions between interface types of session-based concur-
rent systems. We provide a simple behavioral characterization of these isomorphisms,
by relying on typed observational equivalence. Type isomorphisms can be seen as a val-
idation of our interpretation with respect to basic linear logic principles. For instance,
the apparent asymmetry in the interpretation ofA⊗B is clarified here via an appropriate
isomorphism. The two applications thus shed further light on the relationship between
linear logic propositions and structured communications. Termination is central to both
of them, intuitively because in the bisimulation game strong transitions can be matched
by weak transitions which are always finite.

The rest of the paper is structured as follows. Section 2 presents our process model,
a synchronous π-calculus with guarded choice. Section 3 recalls the type system de-
rived from the logical interpretation and main results from [4]. Section 4 presents linear
logical relations and the termination result. Section 5 introduces a typed observational
equivalence for processes. Section 6 discusses soundness of proof conversions and type
isomorphisms. Section 7 discusses related work and Section 8 collects final remarks.

2 Process Model: Syntax and Semantics

We introduce the syntax and operational semantics of the synchronous π-calculus [22]
extended with (binary) guarded choice.

Definition 2.1 (Processes). Given an infinite set Λ of names (x, y, z, u, v), the set of
processes (P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| [x↔y] | x.inl;P | x.inr;P | x.case(P,Q)

4 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

The operators 0 (inaction), P | Q (parallel composition), and (νy)P (name restriction)
comprise the static fragment of any π-calculus. We then have x〈y〉.P (send name y on
x and proceed as P), x(y).P (receive a name z on x and proceed as P with parameter y
replaced by z), and !x(y).P which denotes replicated (persistent) input. The forwarding
construct [x↔ y] equates names x and y; it is a primitive representation of a copycat
process, akin to the link processes used in internal mobility encodings of name pass-
ing [3]. Also, this construct allows for a simple identity axiom in the type system [25].
The remaining three operators define a minimal labeled choice mechanism, comparable
to the n-ary branching constructs found in standard session π-calculi (see, e.g., [11]).
Without loss of generality we restrict our model to binary choice. In restriction (νy)P
and input x(y).P the distinguished occurrence of name y is binding, with scope P . The
set of free names of a process P is denoted fn(P). A process is closed if it does not con-
tain free occurrences of names. We identify process up to consistent renaming of bound
names, writing ≡α for this congruence. We write P{x/y} for the capture-avoiding sub-
stitution of x for y in P . While structural congruence expresses basic identities on the
structure of processes, reduction expresses the behavior of processes.

Definition 2.2. Structural congruence (P ≡ Q) is the least congruence relation on
processes such that

P | 0 ≡ P P ≡α Q⇒ P ≡ Q
P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
(νx)0 ≡ 0 x 6∈ fn(P)⇒ P | (νx)Q ≡ (νx)(P | Q)
(νx)(νy)P ≡ (νy)(νx)P [x↔y] ≡ [y↔x]

Definition 2.3. Reduction (P → Q) is the binary relation on processes defined by:

x〈y〉.Q | x(z).P → Q | P{y/z} x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
(νx)([x↔y] | P)→ P{y/x} (x 6= y) Q→ Q′ ⇒ P | Q→ P | Q′
P → Q⇒ (νy)P → (νy)Q P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q
x.inr;P | x.case(Q,R)→ P | R x.inl;P | x.case(Q,R)→ P | Q

By definition, reduction is closed under ≡. It specifies the computations a process
performs on its own. To characterize the interactions of a process with its environment,
we extend the early transition system for the π-calculus [22] with labels and transition
rules for the choice and forwarding constructs. A transition P α→ Q denotes that P may
evolve to Q by performing the action represented by label α. Labels are given by

α ::= x(y) | x〈y〉 | (νy)x〈y〉 | x.inl | x.inl | x.inr | x.inr | τ

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-
actions, respectively the output x〈y〉 and bound output (νy)x〈y〉 actions, and the left/
right selections x.inl and x.inr. The bound output (νy)x〈y〉 denotes extrusion of a fresh
name y along (channel) x. Internal action is denoted by τ . In general, an action α (α)
requires a matching α (α) in the environment to enable progress, as specified by the
transition rules. For a label α, we define the sets fn(α) and bn(α) of free and bound
names, respectively, as usual. We denote by s(α) the subject of α (e.g., x in x〈y〉).

Linear Logical Relations for Session-Based Concurrency 5

(out)

x〈y〉.P x〈y〉−−−→ P

(in)

x(y).P
x(z)−−−→ P{z/y}

(id)
(νx)([x↔y] | P)

τ−→ P{y/x}

(par)
P

α−→ Q

P | R α−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q′

P | Q τ−→ P ′ | Q′

(res)
P

α−→ Q

(νy)P
α−→ (νy)Q

(open)

P
x〈y〉−−−→ Q

(νy)P
(νy)x〈y〉−−−−−→ Q

(close)

P
(νy)x〈y〉−−−−−→ P ′ Q

x(y)−−−→ Q′

P | Q τ−→ (νy)(P ′ | Q′)

(rep)

!x(y).P
x(z)−−−→ P{z/y} | !x(y).P

(lout)

x.inl;P
x.inl−−→ P

(rout)

x.inr;P
x.inr−−→ P

(lin)

x.case(P,Q)
x.inl−−→ P

(rin)

x.case(P,Q)
x.inr−−→ Q

Fig. 1. π-calculus Labeled Transition System.

Definition 2.4 (Labeled Transition System). The relation labeled transition (P α→ Q)
is defined by the rules in Fig. 1, subject to the side conditions: in rule (res), we require
y 6∈ fn(α); in rule (par), we require bn(α) ∩ fn(R) = ∅; in rule (close), we require
y 6∈ fn(Q). We omit the symmetric versions of rules (par), (com), and (close).

We write ρ1ρ2 for the composition of relations ρ1, ρ2. Weak transitions are defined as
usual: we write =⇒ for the reflexive, transitive closure of τ−→. Given α 6= τ , notation
α

=⇒ stands for =⇒ α−→=⇒ and τ
=⇒ stands for =⇒. We recall some basic facts about

reduction, structural congruence, and labeled transition: closure of labeled transitions
under structural congruence, and coincidence of τ -labeled transition and reduction [22]:
(1) if P ≡ α−→ Q then P α−→≡ Q, and (2) P → Q if and only if P τ−→≡ Q.

3 Session Types as Dual Intutionistic Linear Logic Propositions

As anticipated in the introduction, the type structure coincides with intuitionistic linear
logic [10, 2], omitting atomic formulas and the additive constants > and 0.

Definition 3.1 (Types). Types (A,B,C) are given by

A,B ::= 1 | !A | A⊗B | A(B | A N B | A⊕B

Types are assigned to (channel) names, and are interpreted as a form of session types;
an assignment x:A enforces the use of name x according to discipline A. A⊗B types a
session channel that first performs an output to its partner (sending a session channel of
type A) before proceeding as specified by B. Similarly, A(B types a session channel
that first performs an input from its partner (receiving a session channel of type A)
before proceeding as specified by B. Type 1 means that the session terminated, no
further interaction will take place on it; names of type 1 may still be passed around
in sessions, as opaque values. ANB types a session channel that offers its partner a
choice between anA behavior (“left” choice) and aB behavior (“right” choice). Dually,
A⊕ B types a session that either selects “left” and then proceeds as specified by A, or

6 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

Γ ;x:A ` [x↔z] :: z:A
(Tid)

Γ ;∆ ` P :: T

Γ ;∆,x:1 ` P :: T
(T1L)

Γ ; · ` 0 :: x:1
(T1R)

Γ ;∆, y:A, x:B ` P :: T

Γ ;∆,x:A⊗B ` x(y).P :: T
(T⊗L)

Γ ;∆ ` P :: y:A Γ ;∆′ ` Q :: x:B

Γ ;∆,∆′ ` (νy)x〈y〉.(P | Q) :: x:A⊗B (T⊗R)

Γ ;∆ ` P :: y:A Γ ;∆′, x:B ` Q :: T

Γ ;∆,∆′, x:A(B ` (νy)x〈y〉.(P | Q) :: T
(T(L)

Γ ;∆, y:A ` P :: x:B

Γ ;∆ ` x(y).P :: x:A(B
(T(R)

Γ ;∆ ` P :: x:A Γ ;∆′, x:A ` Q :: T

Γ ;∆,∆′ ` (νx)(P | Q) :: T
(Tcut)

Γ ; · ` P :: y:A Γ, u:A;∆ ` Q :: T

Γ ;∆ ` (νu)(!u(y).P | Q) :: T
(Tcut!)

Γ, u:A;∆, y:A ` P :: T

Γ, u:A;∆ ` (νy)u〈y〉.P :: T
(Tcopy)

Γ, u:A;∆ ` P{u/x} :: T
Γ ;∆,x:!A ` P :: T

(T!L)
Γ ; · ` Q :: y:A

Γ ; · ` !x(y).Q :: x:!A
(T!R)

Γ ;∆,x:A ` P :: T Γ ;∆,x:B ` Q :: T

Γ ;∆,x:A⊕B ` x.case(P,Q) :: T
(T⊕L)

Γ ;∆ ` P :: x:A Γ ;∆ ` Q :: x:B

Γ ;∆ ` x.case(P,Q) :: x:ANB
(TNR)

Γ ;∆,x:A ` P :: T

Γ ;∆,x:ANB ` x.inl;P :: T
(TNL1)

Γ ;∆ ` P :: x:A

Γ ;∆ ` x.inl;P :: x:A⊕B (T⊕R1)

Γ ;∆,x:B ` P :: T

Γ ;∆,x:ANB ` x.inr;P :: T
(TNL2)

Γ ;∆ ` P :: x:B

Γ ;∆ ` x.inr;P :: x:A⊕B (T⊕R2)

Fig. 2. The Type System πDILL.

else selects “right”, and then proceeds as specified by B. Type !A types a shared (non-
linearized) channel, to be used by a server for spawning an arbitrary number of new
sessions (possibly none), each one conforming to type A.

A type environment is a collection of type assignments of the form x:A, where x is a
name and A a type, the names being pairwise disjoint. Two kinds of type environments
are subject to different structural properties: a linear part ∆ and an unrestricted part Γ ,
where weakening and contraction principles hold for Γ but not for ∆. A type judgment
is of the form Γ ;∆ ` P :: z:C where name declarations in Γ are always propagated
unchanged to all premises in the typing rules, while name declarations in∆ are handled
multiplicatively or additively, depending on the nature of the type being defined. The
domains of Γ,∆ and z:C are required to be pairwise disjoint. Such a judgment asserts:
P is ensured to safely provide a usage of name z according to the behavior specified by
type C, whenever composed with any process environment providing usages of names
according to the behaviors specified by names in Γ ;∆. As shown in [4], in our case
safety ensures that behavior is free of communication errors and deadlock. A client Q
that relies on external services and does not provide any is typed as Γ ;∆ ` Q :: −:1.
In general, a process P such that Γ ;∆ ` P :: z:C represents a system providing
behavior C at channel z, building on “services” declared in Γ ;∆. A system typed as
Γ ;∆ ` R :: z:!A represents a shared server. Interestingly, the asymmetry induced by
the intuitionistic interpretation of !A enforces locality of shared names but not of linear
(session names), which exactly corresponds to the intended model of sessions.

Linear Logical Relations for Session-Based Concurrency 7

The rules of our type system πDILL are given in Fig. 2. We use T, S for right-
hand side singleton environments (e.g., z:C). Rule (Tid) defines identity in terms of
the forwarding construct. Since in rule (T⊗R) the sent name is always fresh, our typed
calculus conforms to an internal mobility discipline [3], without loss of expressiveness.
The composition rules (Tcut/Tcut!) follow the “composition plus hiding” principle [1],
extended to a name passing setting. Other linear typing rules for parallel composition
(as in, e.g., [13]) are derivable—see [4]. As we consider π-calculus terms up to struc-
tural congruence, typability is closed under ≡ by definition. πDILL enjoys the usual
properties of equivariance, weakening, and contraction in Γ . The coverage property also
holds: if Γ ;∆ ` P :: z:A then fn(P) ⊆ Γ ∪∆∪{z}. In the presence of type-annotated
restrictions (νx:A)P , as usual in typed π-calculi [22], type-checking is decidable.

Session type constructors thus correspond directly to intuitionistic linear logic con-
nectives. By erasing processes, typing judgments in πDILL correspond to DILL, a
sequent formulation of Barber’s dual intuitionistic linear logic [2, 6]. Below we only
provide some intuitions of this correspondence; see [4] for details.

DILL is equipped with a faithful proof term assignment, so sequents have the form
Γ ;∆ ` D : C, where Γ is the unrestricted context,∆ the linear context,C a formula (=
type), andD the proof term that faithfully represents the derivation of Γ ;∆ ` C. Given
the parallel structure of the two systems, if Γ ;∆ ` D:A is derivable in DILL then there
is a process P and a name z such that Γ ;∆ ` P :: z:A is derivable in πDILL. The
converse also holds: if Γ ;∆ ` P :: z:A is derivable in πDILL there is a derivation D
that proves Γ ;∆ ` D : A. This correspondence is made explicit by a translation from
faithful proof terms to processes: given Γ ;∆ ` D : C, we write D̂z for the translation
of D such that Γ ;∆ ` D̂z :: z:C. More precisely, we have typed extraction: we write
Γ ;∆ ` D P :: z:A, meaning “proof D extracts to P ”, whenever Γ ;∆ ` D : A
and Γ ;∆ ` P :: z:A and P ≡ D̂z . Typed extraction is unique up to structural con-
gruence. As processes are related by structural and computational rules, namely those
involved in the definition of ≡ and →, derivations in DILL are related by structural
and computational rules, that express certain sound proof transformations that arise in
cut-elimination. Reductions generally take place when a right rule meets a left rule for
the same connective, and correspond to reduction steps in the process term assignment.
Similarly, structural conversions in DILL correspond to structural equivalences in the
π-calculus, since they just change the order of cuts.

We now recall some main results from [4]: subject reduction and progress.
For any P , define live(P) iff P ≡ (νñ)(π.Q | R), for some sequence of names ñ, a
process R, and a non-replicated guarded process π.Q.

Theorem 3.2 (Subject Reduction). If Γ ;∆ ` P ::z:A and P→Q then Γ ;∆ ` Q::z:A.

Theorem 3.3 (Progress). If ·; · ` P ::z:1 and live(P) then exists aQ such thatP → Q.

4 Linear Logical Relations and Termination of Typed Processes

A process P terminates (written P⇓) if there is no infinite reduction path from P . Here
we introduce a theory of linear logical relations for session types, and use it to prove that
well-typed processes always terminate. The proof can be summarized into two steps:

8 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

(i) Definition of a logical predicate on processes, by induction on the structure of types.
Processes in the predicate are terminating by definition. (ii) Proof that every well-typed
process is in the logical predicate.

We begin by stating an extension to ≡, which will be useful in our developments.

Definition 4.1. We write ≡! for the least congruence relation on processes which re-
sults from extending structural congruence ≡ (Def. 2.2) with the following axioms:

1. (νu)(!u(z).P | (νy)(Q | R)) ≡! (νy)((νu)(!u(z).P | Q) | (νu)(!u(z).P | R))

2.
(νu)(!u(y).P | (νv)(!v(z).Q | R))

≡! (νv)((!v(z).(νu)(!u(y).P | Q)) | (νu)(!u(y).P | R))
3. (νu)(!u(y).Q | P) ≡! P if u 6∈ fn(P)

These axioms are called the sharpened replication axioms [22] and are known to
express sound behavioral equivalences up to strong bisimilarity in our typed setting.
Intuitively, (1) and (2) represent principles for the distribution of shared servers among
processes, while (3) formalizes the garbage collection of shared servers which cannot
be invoked by any process. Notice that ≡! was defined in [4] (Def 4.3), and noted 's.
Proposition 4.2. Let P and Q be well-typed processes.

1. If P −→ P ′ and P ≡! Q then there is Q′ such that Q −→ Q′ and P ′ ≡! Q
′.

2. If P α−→ P ′ and P ≡! Q then there is Q′ such that Q α−→ Q′ and P ′ ≡! Q
′.

Proposition 4.3. If P⇓ and P ≡! Q then Q⇓.

First Step: The Logical Predicate and its Closure Properties. We define a logical pred-
icate on well-typed processes and establish a few associated closure properties. More
precisely, we define a sequent-indexed family of sets of processes (process predicates)
so that a set of processes L[Γ ;∆ ` T] enjoying certain closure properties is assigned
to any sequent Γ ;∆ ` T . The logical predicate is defined by induction on the structure
of sequents. The base case, given below, considers sequents with empty left-hand side
typing, where we abbreviate L[Γ ;∆ ` T] by L[T]. We write P 6−→ to mean that P
cannot reduce; it can perform visible actions, though.

Definition 4.4 (Logical Predicate - Base case). For any type T = z:A we inductively
define L[T] as the set of all processes P such that P⇓ and ·; · ` P :: T and

P ∈ L[z:1] if ∀P ′.(P =⇒ P ′ ∧ P ′ 6−→)⇒ P ′ ≡! 0

P ∈ L[z:A(B] if ∀P ′y.(P z(y)
=⇒ P ′)⇒ ∀Q ∈ L[y:A].(νy)(P ′ | Q) ∈ L[z:B]

P ∈ L[z:A⊗B] if ∀P ′y.(P (νy)z〈y〉
=⇒ P ′)⇒

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ L[y:A] ∧ P2 ∈ L[z:B])

P ∈ L[z:!A] if ∀P ′.(P =⇒ P ′)⇒ ∃P1.(P
′ ≡! !z(y).P1 ∧ P1 ∈ L[y:A])

P ∈ L[z:ANB] if (∀P ′.(P z.inl
=⇒ P ′)⇒ P ′ ∈ L[z:A])

∧ (∀P ′.(P z.inr
=⇒ P ′)⇒ P ′ ∈ L[z:B])

P ∈ L[z:A⊕B] if (∀P ′.(P z.inl
=⇒ P ′)⇒ P ′ ∈ L[z:A])

∧ (∀P ′.(P z.inr
=⇒ P ′)⇒ P ′ ∈ L[z:B])

Linear Logical Relations for Session-Based Concurrency 9

Some comments are in order. First, observe how the definition of L[T] relies on
both reductions and labeled transitions, and the fact that processes in the logical pred-
icate are terminating by definition. Also, notice that the use of ≡! in L[z:1] is justified
by the fact that a terminated process may be well the composition of a number of shared
servers with no potential clients. Using suitable processes that “close” the derivative of
the transition, in L[z:A(B] and L[z:A ⊗ B] we adhere to the linear logic interpreta-
tions for input and output types, respectively. In particular, in L[z:A ⊗ B] it is worth
observing how≡! is used to “split” the derivative of the transition, thus preserving con-
sistency with the separate, non-interfering nature of the multiplicative conjunction. The
definition of L[z:!A] is also rather structural, relying again on the distribution principles
embodied in ≡!. The definition of L[z:ANB] and L[z:A⊕B] are self-explanatory.

Below, we extend the logical predicate to arbitrary typing environments. Observe
how we adhere to the principles of rules (Tcut) and (Tcut!) for this purpose.

Definition 4.5 (Logical Predicate - Inductive case). For any sequent Γ ;∆ ` T with a
non-empty left hand side environment, we define L[Γ ;∆ ` T] to be the set of processes
inductively defined as follows:

P ∈ L[Γ ; y:A,∆ ` T] if ∀R ∈ L[y:A].(νy)(R | P) ∈ L[Γ ;∆ ` T]
P ∈ L[u:A,Γ ;∆ ` T] if ∀R ∈ L[y:A].(νu)(!u(y).R | P) ∈ L[Γ ;∆ ` T]

We often rely on the following alternative characterization of the sets L[Γ ;∆ ` T].

Definition 4.6. Let Γ = u1:B1, . . . , uk:Bk, and ∆ = x1:A1, . . . , xn:An be a non-
linear and a linear typing environment, resp. Letting I ={1, . . . , k} and J ={1, . . . , n},
we define the sets of processes CΓ and C∆ as:

CΓ
def
=
{∏
i∈I

!ui(yi).Ri | Ri ∈ L[yi:Bi]
}

C∆
def
=
{∏
j∈J

Qj | Qj ∈ L[xj :Aj]
}

Because of the rôle of left-hand side typing environments, processes in CΓ and C∆
are then logical representatives of the behavior specified by Γ and ∆, respectively.

Proposition 4.7. Let Γ and ∆ be a non-linear and a linear typing environment, resp.
Then, for all Q ∈ CΓ and for all R ∈ C∆, we have Q⇓ and R⇓. Moreover, Q 6−→.

The proof of the following lemma is immediate from Definitions 4.5 and 4.6.

Lemma 4.8. Let Γ ;∆ ` P ::T , with Γ=u1:B1, . . . , uk:Bk and∆=x1:A1, . . . , xn:An.
We have: P ∈ L[Γ ;∆ ` T] iff ∀Q ∈ CΓ ,∀R ∈ C∆, (νũ, x̃)(P | Q | R) ∈ L[T].

The following closure properties will be of the essence in the second step of the
proof, when we will show that well-typed processes are in the logical predicate. We
first state closure of L[T] with respect to substitution and structural congruence:

Proposition 4.9. Let A be a type. If P ∈ L[z:A] then P{x/z} ∈ L[x:A].

Proposition 4.10. Let P,Q be well-typed. If P ∈ L[T] and P ≡ Q then Q ∈ L[T].

10 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

The next proposition provides a basic liveness guarantee for certain typed processes.

Proposition 4.11. Let P ∈ L[z:T] with T ∈ {A ⊗ B,A(B,A ⊕ B,A N B}. Then,
there exist α, P ′ such that (i) P α

=⇒ P ′, and (ii) if T=A ⊗ B then α = (νy)z〈y〉; if
T=A(B then α = z(y); if T=A⊕B then α = z.inr or α = z.inl; if T=ANB then
α = z.inr or α = z.inl.

We now extend Proposition 4.10 so as to state closure of L[T] under ≡!.

Proposition 4.12. Let P,Q be well-typed. If P ∈ L[T] and P ≡! Q then Q ∈ L[T].

We now state forward and backward closure of the logical predicate with respect to
reduction; these are typical ingredients in the method of logical relations.

Proposition 4.13 (Forward Closure). If P ∈ L[T] and P −→ P ′ then P ′ ∈ L[T].

Proposition 4.14 (Backward Closure). If for all Pi such that P −→ Pi we have Pi ∈
L[T] then P ∈ L[T].

The final closure property concerns parallel composition of processes:

Proposition 4.15 (Weakening). Let P,Q be processes such that P ∈ L[T] and Q ∈
L[−:1]. Then, P | Q ∈ L[T].

Second Step: Well-typed Processes are in the Logical Predicate. We now prove that
well-typed processes are in the logical predicate. Because of the definition of the pred-
icate, termination of well-typed processes will follow as a consequence.

Lemma 4.16. Let P be a process. If Γ ;∆ ` P :: T then P ∈ L[Γ ;∆ ` T].

Proof. By induction on the derivation of Γ ;∆ ` P :: T , with a case analysis on the last
typing rule used. We have 18 cases to check; in all cases, we use Lemma 4.8 to show that
every M = (νũ, x̃)(P | G | D) with G ∈ CΓ and D ∈ C∆, is in L[T]. In case (Tid),
we use Proposition 4.9 (closure wrt substitution) and Proposition 4.14 (backward clo-
sure). In cases (T⊗L), (T(L), (Tcopy), (T⊕L), (TNL1), and (TNL2), we proceed in two
steps: first, using Proposition 4.13 (forward closure) we show that every M ′′ such that
M =⇒ M ′′ is in L[T]; then, we use this result in combination with Proposition 4.14
(backward closure) to conclude that M ∈ L[T]. In cases (T1R), (T⊗R), (T(R),
(T!R), (T⊕R1), and (T⊕R2), we show that M conforms to a specific case of Defini-
tion 4.4. Case (T1L) uses Proposition 4.15 (weakening). Cases (T⊗L), (T(L), (T⊕L),
and (TNL1) use the liveness guarantee given by Proposition 4.11. Cases (Tcopy), (T!L),
and (Tcut!) use Proposition 4.10 (closure under ≡). Cases (Tcut), (T(R), and (T!R)
use Proposition 4.12 (closure under ≡!). See [18] for details. ut

We now state the main result of this section: well-typed processes terminate.

Theorem 4.17 (Termination). If Γ ;∆ ` P :: T then P⇓.

Proof. Follows from previously proven facts. By assumption, we have Γ ;∆ ` P :: T .
Using this and Lemma 4.16 we obtain P ∈ L[Γ ;∆ ` T]. Pick any G ∈ CΓ , D ∈
C∆: combining P ∈ L[Γ ;∆ ` T] and Lemma 4.8 gives us (νũ, x̃)(P | G | D) ∈
L[T]. By using this, together with Definition 4.4, we infer (νũ, x̃)(P | G | D)⇓. Since
Proposition 4.7 ensures thatG⇓ andD⇓, this latter result allows us to conclude P⇓. ut

Linear Logical Relations for Session-Based Concurrency 11

5 An Observational Equivalence for Typed Processes

Here we introduce typed context bisimilarity, an observational equivalence over typed
processes. It is defined contextually, as a binary relation indexed over sequents. Rough-
ly, typed context bisimilarity equates two processes if, once coupled with all of their
requirements (as described by the left-hand side typing), they perform the same actions
(as described by the right-hand side typing). To formalize this intuition, we rely on a
combination of inductive and coinductive arguments. The base case of the definition
covers the cases in which the left-hand side typing environment is empty (i.e., the pro-
cess requires nothing from its context to execute): the bisimulation game is then defined
by induction on the structure of the (right-hand side) typing, following the expected be-
havior in each case. The inductive case covers the cases in which the left-hand side
typing environment is not empty: the tested processes are put in parallel with processes
implementing the behaviors described in the left-hand side typing.

Below, we use S to range over sequents of the form Γ ;∆ ` T . In the following,
we write ` T to stand for · ; · ` T . The definition of typed context bisimilarity relies on
type-respecting relations, which are indexed by sequents S.

Definition 5.1 (Type-respecting relations). A type-respecting binary relation over proc-
esses, written {RS}S , is defined as a family of relations over processes indexed by S.
We often writeR to refer to the whole family. We write Γ ;∆ ` P RQ ::T to mean that
(i) Γ ;∆ ` P :: T and Γ ;∆ ` Q :: T , and (ii) (P,Q) ∈ RΓ ;∆`T .

Definition 5.2 (Typed Context Bisimilarity). A symmetric type-respecting binary re-
lation over processesR is a typed context bisimulation if
Base Cases
Tau ` P RQ ::T implies that for all P ′ such that P τ−→ P ′, there exists a Q′ such

that Q =⇒ Q′ and ` P ′RQ′ ::T
Input ` P RQ ::x:A(B implies that for all P ′ such that P

x(y)−−−→ P ′, there exists a

Q′ such that Q
x(y)
=⇒ Q′ and for all R such that ` R :: y:A,

` (νy)(P ′ | R)R (νy)(Q′ | R) ::x:B.

Output ` P RQ ::x:A ⊗ B implies that for all P ′ such that P
(νy)x〈y〉−−−−−→ P ′, there

exists a Q′ such that Q
(νy)x〈y〉
=⇒ Q′ and for all R such that ·; y:A ` R :: −:1,

` (νy)(P ′ | R)R (νy)(Q′ | R) ::x:B.

Replication ` P RQ ::x:!A implies that for all P ′ such that P
x(z)−−−→ P ′, there exists

a Q′ such that Q
x(z)
=⇒ Q′ and, for all R such that ·; y:A ` R :: −:1,

` (νz)(P ′ | R)R (νz)(Q′ | R) ::x:!A.
Choice ` P RQ ::x:ANB implies both:

– If P x.inl−−−→ P ′ then ` P ′RQ′ ::x:A, for some Q′ such that Q x.inl
=⇒ Q′; and

– If P x.inr−−−→ P ′ then ` P ′RQ′ ::x:B, for some Q′ such that Q x.inr
=⇒ Q′.

Selection ` P RQ ::x:A⊕B implies both:

– If P x.inl−−−→ P ′ then ` P ′RQ′ ::x:A for some Q′ such that Q x.inl
=⇒ Q′; and

– If P x.inr−−−→ P ′ then ` P ′RQ′ ::x:B for some Q′ such that Q x.inr
=⇒ Q′.

12 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

Inductive Cases
Linear Names Γ ;∆, y:A ` P RQ ::T implies that

for all R such that ` R :: y:A, then Γ ;∆ ` (νy)(P | R)R (νy)(Q | R) ::T .
Shared Names Γ, u:A;∆ ` P RQ ::T implies that for all R such that ` R :: z:A,

then Γ ;∆ ` (νu)(!u(z).R | P)R (νu)(!u(z).R | Q) ::T .

We write ≈ for the union of all typed context bisimulations, and call it typed context
bisimilarity.

In all cases, a strong action is matched with a weak transition. In proofs, we shall
exploit the fact that by virtue of Theorem 4.17 such a weak transition is always finite.
In the base case, the clauses for input, output, and replication decree the closure of the
tested processes with a process R that “complements” the continuation of the tested be-
havior; observe the very similar treatment for output and replication (where R depends
on some behavior), and contrast it with that for input (where R provides the behav-
ior). Also, notice how all clauses but that for replication are defined coinductively for
the tested processes (in the sense that closed evolutions should be in the relation), but
inductively on the type indexing the relation—the clause for replication may be thus
considered as the only fully coinductive one. Also worth noticing is how the closures
defined in such clauses (and those defined by the clauses in the inductive case) follow
closely the spirit of (Tcut/Tcut!) rules in the type system.

Definition 5.2 immediately suggests a proof technique for typed context bisimilar-
ity. First, close the processes with representatives of their context, applying repeatedly
the inductive case until the left-hand side typing is empty. Then, following the usual
co-inductive proof technique, show a type-respecting relation containing the processes
obtained in the first step. The following results are useful to realize these intuitions.

We use K,K ′ to range over (process) contexts, i.e., processes with a hole [·]. In
particular, we use parallel contexts: contexts in which the hole can only occur in parallel.

Definition 5.3. Let Γ and ∆ be non-empty typing environments. The set of parallel
contexts KΓ ;∆ is defined by induction on the typing environments as follows:

K ∈ K∅;∅ if K = [·]
K ∈ KΓ,u:B;∆ if K ≡ (νu)(K ′ | !u(y).R) for some K ′ ∈ KΓ ;∆ and ` R :: y:B

K ∈ KΓ ;∆,x:A if K ≡ (νx)(K ′ | S) for some K ′ ∈ KΓ ;∆ and ` S :: x:A

Proposition 5.4. Let Γ = u1:B1, . . . , uk:Bk and ∆ = x1:A1, . . . , xn:An be typing
environments. Letting I = {1, . . . , k} and J = {1, . . . , n}, we say that K ∈ KΓ ;∆ if

K ≡ (νũ, x̃)([·] |
∏
i∈I

!ui(yi).Ri |
∏
j∈J

Sj) with ` Ri :: yi:Bi and ` Sj :: xj :Aj

The following proposition allows us to move from an (inductive) proof under non-
empty typing environments Γ,∆ to a (coinductive) proof under empty environments,
with pairs of processes within parallel contexts in KΓ ;∆.

Proposition 5.5. Γ ;∆ ` P ≈ Q ::T implies ` K[P] ≈ K[Q] ::T , for every parallel
context K ∈ KΓ ;∆.

Linear Logical Relations for Session-Based Concurrency 13

(νx)(D̂ | (νy)z〈y〉.(Ê | F̂)) 'c (νy)z〈y〉.((νx)(D̂ | Ê) | F̂)

(νx)(D̂ | y(z).Ê) 'c y(z).(νx)(D̂ | Ê)

(νx)(D̂ | y.inl; Ê) 'c y.inl; (νx)(D̂ | Ê)

(νx)(D̂ | (νy)u〈y〉.Ê) 'c (νy)u〈y〉.(νx)(D̂ | Ê)

(νx)(D̂ | y.case(Ê, F̂)) 'c y.case((νx)(D̂ | Ê), (νx)(D̂ | F̂))

(νu)((!u(y).D̂) | 0) 'c 0
(νu)((!u(y).D̂) |(νz)x〈z〉.(Ê | F̂)) 'c (νz)x〈z〉.((νu)((!u(y).D̂) | Ê) |(νu)((!u(y).D̂) | F̂))

(νu)((!u(y).D̂) | y(z).Ê) 'c y(z).(νu)((!u(y).D̂) | Ê)

(νu)((!u(z).D̂) | y.inl; Ê) 'c y.inl; (νu)((!u(z).D̂) | Ê)

(νu)((!u(z).D̂) | y.case(Ê, F̂)) 'c y.case((νu)((!u(z).D̂) | Ê), (νu)((!u(z).D̂) | F̂))

(νu)((!u(y).D̂) | !x(z).Ê) 'c !x(z).(νu)((!u(y).D̂) | Ê)

(νu)((!u(y).D̂) | (νy)v〈y〉.Ê) 'c (νy)v〈y〉.(νu)((!u(y).D̂) | Ê))
(νw)z〈w〉.(R | (νy)x〈y〉.(P | Q)) 'c (νy)x〈y〉.(P | (νw)z〈w〉.(R | Q))

x(y).z(w).P 'c z(w).x(y).P

Fig. 3. A sample of process equalities induced by proof conversions

Definition 5.6. A type-respecting relationR is an equivalence if it enjoys the following
three properties:

– Reflexivity: Γ ;∆ ` P :: T implies Γ ;∆ ` P RP ::T ;
– Symmetry: Γ ;∆ ` P RQ ::T implies Γ ;∆ ` QRP ::T ;
– Transitivity: Γ ;∆ ` P RP ′ ::T and Γ ;∆ ` P ′RQ ::T imply Γ ;∆ ` P RQ ::T .

Proposition 5.7. ≈ is an equivalence relation.

In our setting, a notion of congruence for type-respecting relations turns out to be
quite type-directed: both right- and left-hand side typings are quite explicit on the com-
positionality properties of processes. Defining such a notion is relatively straightfor-
ward: unsurprisingly, it mirrors the structure of the typing rules. For space reasons, we
elide the details; see [18] for the definition and proof that ≈ is indeed a congruence.

6 Soundness of Proof Conversions and Type Isomorphisms

We use typed context bisimilarity—together with termination, subject reduction, and
progress results—to clarify two issues derived from the logical interpretation: sound-
ness of proof conversions and observational characterizations of type isomorphisms.

Soundness of Proof Conversions. Derivations in DILL are related by structural and
computational rules that express sound proof transformations that arise in cut-elim-
ination. As mentioned in Section 3 (and fully detailed in [4]), in our interpretation re-
ductions and structural conversions in DILL correspond to reductions and structural
congruence in the π-calculus. There is, however, a group of conversions in DILL not
considered in [4] and which do not correspond to neither reduction or structural congru-
ence in the process side. We call them proof conversions: they induce a congruence on

14 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

typed processes, denoted 'c. In this section, we show soundness of 'c with respect to
≈, that is, processes extracted from proof conversions are typed contextually bisimilar.

We illustrate the proof conversions and their associated π-calculus processes; Fig. 3
presents a sample of process equalities extracted from them. Each equality M 'c N
is associated to appropriate right- and left-hand side typings; this way, e.g., the last
equality in Fig. 3—associated to two applications of rule (T⊗L)—could be stated as

· ;x:A⊗B, z:C ⊗D ` x(y).z(w).P 'c z(w).x(y).P :: T

where A,B,C,D are types and T is a right-hand side typing. For the sake of illus-
tration, however, in Fig. 3 these typings are elided, as we would like to stress on the
consequences of conversions on the process side. Proof conversions describe the inter-
play of two rules in a type-preserving way: regardless of the order in which the rules are
applied, they lead to typing derivations with the same right- and left-hand side typings,
but with syntactically different processes. We consider two kinds of proof conversions.
The first kind captures the interplay of left/right rules with Tcut/Tcut! rules; the first
twelve rows in Fig. 3 are examples (the first five involve (Tcut), the other seven involve
(Tcut!)). The second kind captures the interplay of left and right rules with each other;
typically they describe type-preserving transformations which commute actions from
non-interfering sessions inside a process (the last two rows in Fig. 3 are examples).

Let us comment on the fifth process equality in Fig. 3. It corresponds to the in-
terplay of rules (Tcut) and (T⊕L), under typing assumptions Γ ;∆1 ` D̂ :: x:C,
Γ ;∆2, y:A, x:C ` Ê::T , and Γ ;∆2, y:A, x:C ` F̂ ::T . Letting ∆ = ∆1, ∆2, we have:

Γ ;∆, y:A⊕B ` (νx)(D̂ |y.case(Ê, F̂))︸ ︷︷ ︸
(1)

'c y.case((νx)(D̂ | Ê), (νx)(D̂ | F̂))︸ ︷︷ ︸
(2)

:: T

with types T,A,B, and C, linear environments∆1, ∆2, and non-linear environment Γ .
Read from (1) to (2), this conversion can be interpreted as the “promotion” of the

choice at y, which causes D̂ to get “delayed” as a result. However, such a delay is seen
to be only apparent once we examine the individual typing of D̂ and the whole typing
derivation. The first typing assumption says that D̂ is able to offer behavior C at x (a
free name in D̂), as long as it is placed in a context in which the behaviors described
by names in Γ,∆1 are available. The left-hand side typing for both processes says that
they can offer some behavior T , as long as the behaviors declared in Γ,∆ and behavior
A⊕ B at y are provided. Crucially, since x is private to (1), type T cannot correspond
to x:C. That is, even if D̂ is at the top-level in (1) its behavior is not immediately
available. Also because of the left-hand side typing, we know that (1) and (2) are only
able to interact with some selection at y; only then, D̂ will be able to interact with either
Ê or F̂ , whose behavior depends on the presence of behavior C at x. A conversion of
(1) into (2) could be seen as a “behavioral optimization” if one considers that (2) has
only one available prefix, while (1) has two parallel components.

For all proof conversions, the apparent phenomenon of “prefix promotion” induced
by proof conversions can be explained along the above lines. In our soundness result
(Theorem 6.2 below), the crucial point is capturing the fact that some top-level pro-
cesses may not be able to immediately exercise their behavior (cf. D̂ in (1) above). We

Linear Logical Relations for Session-Based Concurrency 15

use the following notations on type-respecting relations. IΓ ;∆`T stands for the relation
{(P,Q) : Γ ;∆ ` P :: T, Γ ;∆ ` Q :: T} which collects pairs of processes with
identical left- and right-hand side typings. Based on the logical interpretation of types,
we introduce a notion of “continuation relation” for pairs of typed processes:

Definition 6.1. Using � to range over ⊗,(and � to range over ⊕,N, we define the
type-respecting relationW`x:A by induction on the right-hand side typing, as follows:

W`x:1 = I`x:1 W`x:A�B = I`x:B ∪W`x:B
W`x:!A = I`x:!A W`x:A�B = I`x:A ∪W`x:A ∪ I`x:B ∪W`x:B

This way, e.g., the continuation relation for ` x:A⊗B is I`x:B ∪W`x:B : it contains
all pairs typed by ` x:B (as processes of type x:A⊗B are to be typed by x:B after the
output action) as well as those pairs in the continuation relation for x:B.

Theorem 6.2 (Soundness of Proof Conversions). Let P,Q be processes such that (i)
Γ ;∆ ` D P :: T ; (ii) Γ ;∆ ` E Q :: T ; (iii)P 'c Q. Then, Γ ;∆ ` P ≈ Q ::T .

Proof. By coinduction, exhibiting appropriate typed context bisimulations for each
proof conversion. In the bisimulation game, we exploit termination of well-typed pro-
cesses (Theorem 4.17) to ensure that actions can be matched with finite weak transi-
tions, and subject reduction (Theorem 3.2) to ensure type preservation under reductions.

We detail the case for the first proof conversion in Fig. 3—see [18] for other cases.
This proof conversion corresponds to the interplay of rules (T⊗R) and (Tcut). We have
to show that Γ ;∆ `M ≈ N :: z:A⊗B where

∆ = ∆1, ∆2, ∆3 Γ ;∆1 ` D̂ :: x:C Γ ;∆2, x:C ` Ê :: y:A Γ ;∆3 ` F̂ :: z:B (1)
M = (νx)(D̂ | (νy)z〈y〉.(Ê | F̂)) N = (νy)z〈y〉.((νx)(D̂ | Ê) | F̂)

Using Proposition 5.5, we have to show that for every K ∈ KΓ ;∆, we have ` K[M] ≈
K[N] :: z:A ⊗ B. In turn, this implies exhibiting a typed context bisimulation R con-
taining the pair (K[M],K[N]). We defineR =W`z:A⊗B ∪ S ∪ S−1, with

S = {(K1[M
′],K2[N]) : M =⇒M ′, K1,K2 ∈ KΓ ;∆}

andW`z:A⊗B is as in Definition 6.1. Notice that S is a type-respecting relation indexed
by ` z:A ⊗ B. In fact, using the typings in (1)—with Γ = ∆ = ∅—and exploiting
subject reduction (Theorem 3.2), it can be checked that for all (P,Q) ∈ S both ` P ::
z:A⊗B and ` Q :: z:A⊗B can be derived.

We now show that R is a typed context bisimulation. Pick any K ∈ KΓ ;∆. Using
Proposition 5.4, we can assume K = (νũ, x̃)(KΓ | K∆ | [·]) where

– KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Di, for every ui:Di ∈ Γ ;

– K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆.

Clearly, (K[M],K[N]) ∈ S, and so it is in R. Now, suppose K[M] moves first:
K[M]

α−−→ M?
1 . We have to find a matching action α from K[N], i.e., K[N]

α
=⇒ N?

1 .
Since ` K[M] :: z:A⊗B, we have two possible cases for α:

16 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

1. Case α = τ . We consider the possibilities for the origin of the reduction:
(a) KΓ

τ−−→ K ′Γ and K[M]
τ−−→ K ′[M]. However, this cannot be the case, as

by construction KΓ corresponds to the parallel composition of input-guarded
replicated processes which cannot evolve on their own.

(b) K∆
τ−−→ K ′∆ and K[M]

τ−−→ K ′[M]. Then, for some l ∈ J , Sl
τ−−→ S′l :

K[M]
τ−−→ (νũ, x̃)(KΓ | K ′∆ |M) = K ′[M] =M?

1

Now, context K is the same in K[N]. Then K∆ occurs identically in K[N],
and this reduction can be matched by a finite weak transition (Theorem 4.17):

K[N] =⇒ (νũ, x̃)(KΓ | K ′′∆ | N) = K ′′[N] = N?
1

By subject reduction (Theorem 3.2), ` S′l :: xl:Cl; hence,K ′,K ′′ are inKΓ ;∆.
Hence, the pair (K ′[M],K ′′[N]) is in S (as M =⇒M) and so it is inR.

(c) M τ−−→M ′ and K[M]
τ−−→ K[M ′]. Since M = (νx)(D̂ | (νy)z〈y〉.(Ê | F̂)),

the only possibility is that there is a D̂1 such that D̂ τ−−→ D̂1 and M ′ =
(νx)(D̂1 | (νy)z〈y〉.(Ê | F̂)). This way,

K[M]
τ−−→ (νũ, x̃)(KΓ | K∆ |M ′) = K[M ′] =M?

1

We observe thatK[N] cannot match this action, butK[N] =⇒ K[N] is a valid
weak transition. Hence, N?

1 = K[N]. By subject reduction (Theorem 3.2),
we infer that ` K[M ′] :: z:A ⊗ B. We use this fact to observe that the pair
(K[M ′],K[N]) is included in S. Hence, it is inR.

(d) There is an interaction betweenM andKΓ or betweenM andK∆: this is only
possible by the interaction of D̂ with KΓ or K∆ on names in ũ, x̃. Again, the
only possible weak transition fromK[N] matching this reduction isK[N] =⇒
K[N], and the analysis proceeds as in the previous case.

2. Case α 6= τ . Then the only possibility, starting from K[M], is an output action of
the form α = (νy)z〈y〉. This action can only originate in M :

K[M]
(νy)z〈y〉−−−−−→ (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | F̂))) =M?

1

Process K[N] can match this action via the following finite weak transition:

K[N]
(νy)z〈y〉
=⇒ (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′) | F̂ ′)) = N?

1

Observe howN?
1 reflects the changes inK[N] due to the possible reductions before

and after the output action. By definition of ≈ (output case), we consider the com-
position of M?

1 and N?
1 with any V such that y:A ` V :: −:1. Using the typings in

(1) and subject reduction (Theorem 3.2), we infer both

`M?
2 = (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | V | F̂))) :: z:B

` N?
2 = (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′ | V) | F̂ ′)) :: z:B

Hence, the pair (M?
2 , N

?
2) is inW`z:A⊗B and so it is inR.

Linear Logical Relations for Session-Based Concurrency 17

Now suppose that K[N] moves first: K[N]
α−−→ N?

1 . We have to find a matching action
α from K[M]: K[M]

α
=⇒ M?

1 . Similarly as before, there are two cases: either α = τ
or α = (νy)z〈y〉. The former is as detailed before; the only difference is that reductions
from K[N] can only be originated in K∆; these are matched by K[M] with finite weak
transitions originating in both K and in M . We thus obtain pairs of processes in S−1.
The analysis for the case for output mirrors the given above and is omitted. ut

Type Isomorphisms. In type theory, types A and B are called isomorphic if there are
morphisms (proofs in our case) πA of B ` A and πB of A ` B which compose to the
identity in both ways—see, e.g., [9]. We adapt this notion to our setting, using typed
context bisimilarity to account for isomorphisms in linear logic. (Below, we write P 〈x̃〉

for a process parametric on a sequence of names x1, . . . , xn.)

Definition 6.3 (Isomorphism). Two typesA andB are called isomorphic, notedA'B,
if, for any names x, y, z, there exist processes P 〈x,y〉 and Q〈y,x〉 such that:
(i) · ;x:A ` P 〈x,y〉 :: y:B; (ii) · ; y:B ` Q〈y,x〉 :: x:A;
(iii) · ;x:A ` (νy)(P 〈x,y〉 | Q〈y,z〉) ≈ [x↔z] :: z:A; and
(iv) · ; y:B ` (νx)(Q〈y,x〉 | P 〈x,z〉) ≈ [y↔z] :: z:B.

Thus, intuitively, if A,B are service specifications then by establishing A ' B
one can claim that having A is as good as having B, because we can build one from
the other using an isomorphism. Isomorphisms in linear logic can then be used to sim-
plify/transform service interfaces in the π-calculus. They can also help validating our
interpretation with respect to basic linear logic principles. As an example, let us con-
sider multiplicative conjunction ⊗. A basic linear logic principle is A ⊗ B ` B ⊗ A.
Our interpretation of A ⊗ B may appear asymmetric as, in general, a channel of type
A ⊗ B is not typable by B ⊗ A. Theorem 6.4 below states the symmetric nature of ⊗
as a type isomorphism: symmetry is realized by a process which coerces any session
of type A⊗ B to a session of type B ⊗ A. Other sensible isomorphisms, such as, e.g.,
(A⊕B)(C ' (A(C) N (B(C), can be handled similarly.

Theorem 6.4. Let A,B be any type, as in Def 3.1. Then A⊗B ' B ⊗A.

Proof. We check conditions (i)-(iv) of Def. 6.3 for processes P 〈x,y〉, Q〈y,x〉 defined as

P 〈x,y〉 = x(u).(νn)y〈n〉.([x↔n] | [u↔y])

Q〈y,x〉 = y(w).(νm)x〈m〉.([y↔m] | [w↔x])

Checking (i)-(ii), i.e., · ;x:A⊗B ` P 〈x,y〉::y:B⊗A and · ; y:B⊗A ` Q〈y,x〉::x:A⊗B
is easy; rule (Tid) ensures that both typings hold for any A,B.
We then show (iii) and (iv). We sketch only the proof of (iii); the proof of (iv) is
analogous. Let M = (νy)(P 〈x,y〉 | Q〈y,z〉) and N = [x ↔ z]; we need to show
· ;x:A ⊗ B ` M ≈N :: z:A ⊗ B. By Proposition 5.5, we have to show that for
every K ∈ K · ;x:A⊗B , we have ` K[M] ≈ K[N] :: z:A ⊗ B. In turn, this im-
plies exhibiting a typed context bisimulation R containing (K[M],K[N]). Letting
S = {(R1, R2) : K[M] =⇒ R1, K[N] =⇒ R2}, we set R=W`z:A⊗B ∪ S ∪ S−1.
Following expected lines,R can be shown to be a typed context bisimulation. ut

18 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

7 Related Work

Termination in the π-calculus using logical relations has been studied in [26, 21]. Nei-
ther of these works considers session types; hence, the technical details of the logical
relations are very different, with semantic interpretations of types relying on constraints
on the syntax and the types of processes. Here we started from a well-established type
discipline for the π-calculus and showed termination of well-typed processes. In con-
trast, both [26, 21] follow a somewhat opposite path, and aim at type disciplines that
guarantee termination. The interpretation of intuitionistic linear logic as session types
allows for intuitive logical relations, truly defined on the structure of types. In this sense,
our approach is more principled than in [26, 21], as it is not an adaptation of the method,
but rather an instantiation of the method on our canonical linear type structure.

Another interpretation of session types as linear logic propositions is proposed
in [7]. It is based on soft linear logic [15], and so the exponential “!” is treated following
a non canonical discipline that uses two different typing environments. Hence, typing
rules and judgements in [7] are rather different from ours. A bound on the length of re-
ductions starting from well-typed-processes is obtained; the proof uses techniques from
Implicit Computational Complexity. Notions of observational equivalence and their ap-
plications are not addressed in [7]. Although here we do not provide a similar bound,
it is remarkable that our proof of termination follows only the principles and proper-
ties of [4]; in contrast to [7], our proof does not appeal to extraneous technical devices,
and preserves a standard, intuitive treatment of “!”. This is particularly desirable for
extensions/generalizations of our framework, such as the proposed in [25, 19].

Loosely related to typed context bisimilarity is [27], where a form of linear bisim-
ilarity is proposed; following a linear type structure, it treats some visible actions as
internal actions, thus leading to an equivalence larger than standard bisimilarity which
is a congruence. The only work on behavioral equivalences for session-based concur-
rency we are aware of is [14]. It studies the behavioral theory of a π-calculus with
asynchronous session communication and an event inspection primitive for buffered
messages. The aim is to capture the distinction between order-preserving communi-
cations (inside already established connections) and non-order-preserving communica-
tions (outside established connections). Such a behavioral theory accounts for principles
for prefix commutation that appear similar to those induced by our proof conversions.
However, the origin and the nature of these commutations are quite different. In fact,
while in [14] prefix commutation arises from the distinction mentioned above, commu-
tations in our (synchronous) framework are due to causality relations captured by types.

8 Concluding Remarks

By relying on the principles established by an interpretation of linear logic as session
types [4], we have introduced a theory of logical relations for session-typed disciplines.
Our development is remarkably similar to that for functional languages; although in our
setting types are assigned to names (and not to terms), our linear logical relations are
defined on the structure of types, relying both on process reductions and labeled tran-
sitions. A main application of this theory is a proof that well-typed processes always

Linear Logical Relations for Session-Based Concurrency 19

terminate. This way, in addition to safety properties (nothing bad happens, cf. subject
reduction), we have shown that session-typed processes also enjoy an important liveness
property such as termination. Certifying termination of interacting concurrent systems
is indeed important, from foundational and practical standpoints. We developed two
applications of these results, which complement the results in [4]. Both of them rely
on a novel observational equivalence for typed processes. First, we have shown sound-
ness of proof conversions with respect to observational equivalence—an issue left open
in [4]. Second, we studied type isomorphisms resulting from linear logic equivalences
in our setting. The basic properties of the interpretation—especially, the combination of
subject reduction and termination—were of the essence in both applications. Ongoing
work concerns sound and complete axiomatizations of typed context bisilmilarity via
proof conversions. Having introduced the method of logical relations for session types,
we plan to explore it further for obtaining other results, such as parametricity.

Acknowledgments. This research was supported by the Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie
Mellon Portugal Program, under grants INTERFACES NGN-44 / 2009 and SFRH / BD
/ 33763 / 2009, and CITI. We thank the anonymous reviewers for their useful comments.

References

1. S. Abramsky. Computational interpretations of linear logic. Theor. Comput. Sci., 111:3–57,
April 1993.

2. A. Barber. Dual intuitionistic linear logic. Technical report, LFCS-96-347, Univ. of Edin-
burgh, 1996.

3. M. Boreale. On the expressiveness of internal mobility in name-passing calculi. Theor.
Comput. Sci., 195:205–226, March 1998.

4. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CON-
CUR’2010, volume 6269 of LNCS, pages 222–236. Springer, 2010.

5. L. Caires, F. Pfenning, and B. Toninho. Towards concurrent type theory. In Proc. of 7th
Workshop on Types in Language Design and Implementation – TLDI’12, 2012.

6. B.-Y. E. Chang, K. Chaudhuri, and F. Pfenning. A judgmental analysis of linear logic. Tech-
nical report, CMU-CS-03-131R, Carnegie Mellon University, 2003.

7. U. Dal Lago and P. Di Giamberardino. Soft session types. In Proc. of 18th Workshop on
Expressiveness in Concurrency – EXPRESS’11, volume 64 of EPTCS, pages 59–73, 2011.

8. R. Demangeon, D. Hirschkoff, and D. Sangiorgi. Mobile processes and termination. In
Semantics and Algebraic Specification, volume 5700 of LNCS. Springer, 2009.

9. R. Di Cosmo. A short survey of isomorphisms of types. Mathematical Structures in Com-
puter Science, 15(5):825–838, 2005.

10. J.-Y. Girard and Y. Lafont. Linear logic and lazy computation. In TAPSOFT’87, Vol.2,
volume 250 of LNCS, pages 52–66. Springer, 1987.

11. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
122–138. Springer, 1998.

12. R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in java. In Proc.
of ECOOP, volume 5142 of LNCS, pages 516–541. Springer, 2008.

13. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In POPL, pages
358–371, 1996.

20 Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho

14. D. Kouzapas, N. Yoshida, R. Hu, and K. Honda. On asynchronous session semantics. In
Proc. of FMOODS-FORTE’2011, volume 6722 of LNCS, pages 228–243. Springer, 2011.

15. Y. Lafont. Soft linear logic and polynomial time. Theor. Comput. Sci., 318(1-2):163–180,
2004.

16. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, part I/II. Inf. Comput.,
100(1):1–77, 1992.

17. N. Ng, N. Yoshida, O. Pernet, R. Hu, and Y. Kryftis. Safe parallel programming with session
java. In Proc. of COORDINATION, volume 6721 of LNCS, pages 110–126. Springer, 2011.

18. J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear Logical Relations for Session-
Based Concurrency (Extended Version), 2012. http://goo.gl/iQVZu.

19. F. Pfenning, L. Caires, and B. Toninho. Proof-carrying code in a session-typed process
calculus. In Proc. of CPP ’11, volume 7086 of LNCS, pages 21–36. Springer, 2011.

20. R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In Proc. of ACM
SIGPLAN Symposium on Haskell, pages 25–36. ACM, 2008.

21. D. Sangiorgi. Termination of processes. Mathematical Structures in Computer Science,
16(1):1–39, 2006.

22. D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press, New York, NY, USA, 2001.

23. R. Statman. Logical relations and the typed lambda-calculus. Information and Control,
65(2/3):85–97, 1985.

24. W. W. Tait. Intensional Interpretations of Functionals of Finite Type I. J. Symbolic Logic,
32:198–212, 1967.

25. B. Toninho, L. Caires, and F. Pfenning. Dependent session types via intuitionistic linear type
theory. In Proc. of PPDP ’11, pages 161–172, New York, NY, USA, 2011. ACM.

26. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the pi -calculus. Inf. Comput.,
191(2):145–202, 2004.

27. N. Yoshida, K. Honda, and M. Berger. Linearity and bisimulation. J. Log. Algebr. Program.,
72(2):207–238, 2007.

