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Abstract. We consider simple cube-curves in the orthogonal 3D grid.
The union of all cells contained in such a curve (also called the tube of this
curve) is a polyhedrally bounded set. The curve’s length is defined to be
that of the minimum-length polygonal curve (MLP) fully contained and
complete in the tube of the curve. So far only one general algorithm called
rubber-band algorithm was known for the approximative calculation of
such an MLP. A proof that this algorithm always converges to the correct
curve, is still an open problem. This paper proves that the rubber-band
algorithm is correct for the family of first-class simple cube-curves.

1 Introduction

The analysis of cube-curves is related to 3D image data analysis. A cube-curve
is, for example, the result of a digitization process which maps a curve-like object
into a union S of face-connected closed cubes. The definition of length of a simple
cube-curve in 3D Euclidean space can be based on the calculation of the minimal
length polygonal curve (MLP) in a polyhedrally bounded compact set [3, 4].

The computation of the length of a simple cube-curve in 3D Euclidean space
was a subject in [5]. But the method may fail for specific curves. [1] presents
an algorithm (rubber-band algorithm) for computing the approximating MLP
in S with measured time O(n), where n is the number of grid cubes of the given
cube-curve.

The difficulty of the computation of the MLP in 3D may be illustrated by
the fact that the Euclidean shortest path problem (i.e., find a shortest obstacle-
avoiding path from source point to target point, for a given finite collection
of polyhedral obstacles in 3D space and a given source and a target point) is
known to be NP-complete [8]. However, there are some algorithms solving the
approximate Euclidean shortest path problem in 3D with polynomial-time, see
[9]. The rubber-band algorithm is not yet proved to be always convergent to the
correct 3D-MLP.

Recently, [6] developed an algorithm for calculation of the correct MLP (with
proof) for a special class of cube-curves. The main idea is to decompose a cube-
curve into arcs by finding “end angles” (see Definition 3 below).

More recently, [7] constructed an example of a (special - see title of reference)
simple cube-curve, and generalized this by characterizing the class of all of those



cube-curves. In particular, it is true that these cube-curves do not have any end
angle; and this means that we cannot use the MLP algorithm proposed in [6]
which is provable correct. This was the basic importance of the result in [7]: we
showed the existence of cube-curves which require further algorithmic studies.

Both [6] and [7] focus on a special class of simple cube-curves which are
called first-class simple cube-curves (defined below). This paper proves that the
rubber-band algorithm is correct for first-class simple cube-curves.

The paper is organized as follows: Section 2 defines the notations used in this
paper. Section 3 describes theoretical proofs of our results. Section 3 discusses
the computational complexity. Section 4 gives the conclusions.

2 Definitions

Following [1], a grid point (i, j, k) ∈ Z3 is assumed to be the center point of a
grid cube with faces parallel to the coordinate planes, with edges of length 1,
and vertices as its corners. Cells are either cubes, faces, edges, or vertices. The
intersection of two cells is either empty or a joint side of both cells. A cube-curve
is an alternating sequence g = (f0, c0, f1, c1, . . . , fn, cn) of faces fi and cubes ci,
for 0 ≤ i ≤ n, such that faces fi and fi+1 are sides of cube ci, for 0 ≤ i ≤ n and
fn+1 = f0. It is simple iff n ≥ 4 and for any two cubes ci, ck ∈ g with |i− k| ≥ 2
(mod n + 1), if ci

⋂
ck 6= φ then either |i− k| = 2 (mod n + 1) and ci

⋂
ck is an

edge, or |i− k| ≥ 3 (mod n + 1) and ci

⋂
ck is a vertex.

A tube g is the union of all cubes contained in a cube-curve g. A tube is
a compact set in R3, its frontier defines a polyhedron, and it is homeomorphic
with a torus in case of a simple cube-curve. A curve in R3 is complete in g iff it
has a nonempty intersection with every cube contained in g. Following [3, 4], we
define:

Definition 1. A minimum-length polygon (MLP) of a simple cube-curve g is a
shortest simple curve P which is contained and complete in tube g. The length
of a simple cube-curve g is defined to be the length l(P ) of an MLP P of g.

It turns out that such a shortest simple curve P is always a polygonal curve,
and it is uniquely defined if the cube-curve is not only contained in a single layer
of cubes of the 3D grid (see [3, 4]). If it is contained in one layer, then the MLP
is uniquely defined up to a translation orthogonal to that layer. We speak about
the MLP of a simple cube-curve.

A critical edge of a cube-curve g is such a grid edge which is incident with
exactly three different cubes contained in g.

Definition 2. If e is a critical edge of g and l is a straight line such that e ⊂ l,
then l is called a critical line of e in g or critical line for short.

Definition 3. Assume a simple cube-curve g and a triple of consecutive critical
edges e1, e2, and e3 such that ei ⊥ ej, for all i, j = 1, 2, 3 with i 6= j. If e2

is parallel to the x-axis (y-axis, or z-axis) implies that the x-coordinates (y-
coordinates, or z-coordinates) of two vertices (i.e., end points) of e1 and e3 are



equal, then we say that e1, e2 and e3 form an end angle, and g has an end angle,
denoted by ∠(e1, e2, e3); otherwise we say that e1, e2 and e3 form a middle angle,
and g has a middle angle.

Definition 4. A simple cube-curve g is called first-class iff each critical edge of
g contains exactly one vertex of the MLP of g.

Figure 1 shows a first-class simple cube-curve (left) and a non-first-class
simple cube-curve (right). Because the vertices of the MLP must be in e0, e1,
e3, e4, e5, e6 and e7. In other words, the critical edge e2 does not contain any
vertice of the MLP of this simple cube-curve.

The rubber-band algorithm is published in [1, 2].

Definition 5. One iteration of the rubber-band algorithm is a complete pass
through the main loop of the algorithm.

Let g be a simple cube-curve. Let AMLPn(g) be an n-polygon of g, where n
= 1, 2, . . .. Let AMLP = limn→∞AMLPn(g). Let pi(ti0) be the i-th vertex of
AMLP , where i = 0, 1, . . ., or m + 1. Let di = de(pi−1, pi) + de(pi, pi+1), where
i = 1, 2, . . ., or m. Let d(t0, t1, . . . , tm, tm+1) =

∑m
1 di.

Definition 6. Let e0, e1, e2, . . . em and em+1 be all consecutive critical edges
of g and pi ∈ ei, where i = 0, 1, 2, . . ., m or m+1. We call the m+2 tuple (p0,
p1, p2, . . ., pm, pm+1) a critical point tuple of g. We call it an AMLP critical
point tuple of g if it is the set of the vertices of an AMLP of g.

Definition 7. Let P =(p0, p1, p2, . . ., pm, pm+1) be a critical point tuple of g.
Using P as an initial point set, and n iterations of the rubber-band algorithm,

Fig. 1. (1) A first-class simple cube-curve. (2) A non-first-class simple cube-curve.



we get another critical point tuple of g, say P ′ = (p′0, p
′
1, p

′
2, . . . , p

′
m, p′m+1). The

polygon with vertex set {p′0, p′1, p′2, . . . , p′m, p′m+1 } is called an n-polygon of g,
denoted by AMLPn(g), or AMLPn for short, where n = 1, 2, . . ..

Definition 8. Let ∂d(t0,t1,...,tm,tm+1)
∂ti

|ti0 = 0, where i = 0, 1, . . ., or m+1. Then
we say that (t00, t10, . . . , tm0, tm+10) is a critical point of d(t0, t1, . . . , tm, tm+1).

Definition 9. Let P =(p0, p1, p2, . . ., pm, pm+1) be a critical point tuple of
g. Using P as an initial point set, n iterations of the rubber-band algorithm, we
calculate an n-rubber-band transform of P , denoted by P

−−−−−→
(r − b)nQ, or P → Q

for short, where Q is the resulting critical point tuple of g, and n is an positive
integer.

Definition 10. Let P =(p0, p1, p2, . . ., pm, pm+1) be a critical point tuple of
g. For sufficiently small real ε > 0, the set

{ (p′0, p
′
1, p

′
2, . . . , p

′
m, p′m+1) : x′i ∈ (xi − ε, xi + ε) and y′i ∈ (yi − ε, yi + ε)

and z′i ∈ (zi − ε, zi + ε) and p′i = (x′i, y
′
i, z

′
i) and pi = (xi, yi, zi), where i =

0, 1, 2, . . . ,m, m + 1 }
is called P’s ε-neighborhood, denoted by U(P, ε).

Definition 11. Let n be a positive integer. Let x = (x1, x2, . . ., xn). Let T
be the family of subsets of Rn defined by open intervals, i.e., a subset K of Rn

belongs to T iff for each r = (r1, r2, . . ., rn) in K there are real numbers ai, bi

such that ai < ri < bi and

{x : x ∈ Rn, ai < xi < bi, i = 1, . . . , n} ⊂ K

The topological space (Rn, T ) is called the n-dimensional usual topology.

Definition 12. ([12], Definition 4.1) Let Y ⊂ X, where (X, T) is a topological
space. Let T ′ be the family of sets defined as follows: A set W belongs to T ′ iff
there is a member U in T such that W = Y ∩ U . The family T ′ is called the
relativization of T to Y, denoted by T |Y .

3 Proofs

We provide mathematical fundamentals to prove that the rubber-band algorithm
is correct for any first-class simple cube-curve. We start with citing a basic
theorem from [1]:

Theorem 1. Let g be a simple cube-curve. Critical edges are the only possible
locations of vertices of the MLP of g.

Let de(p, q) be the Euclidean distance between points p and q.
Let e0, e1, e2, . . ., em and em+1 be m+2 consecutive critical edges in a simple

cube-curve, and let l0, l1, l2, . . ., lm and lm+1 be the corresponding critical lines.



We express a point pi(ti) = (xi +kxi
ti, yi +kyi

ti, zi +kzi
ti) on li in general form,

with ti ∈ R, where i = 0, 1, . . ., or m + 1.
In the following, pi(ti) will be denoted by pi for short, where i = 0, 1, . . ., or

m + 1.

Theorem 2. ([10], Theorem 8.8.1) Let f = f(t1, t2, . . . , tk) be a real-valued func-
tion defined on an open set U in Rk. Let C = (t10, t20, . . . , tk0) be a point of U.
Suppose that f is differentiable at C. If f has a local extremum at C, then ∂f

∂ti
= 0,

where i = 1, 2, . . ., k.

Lemma 1. (t00, t10, . . . , tm0, tm+10) is a critical point of d(t0, t1, . . . , tm, tm+1).

Proof. d(t0, t1, . . . , tm, tm+1) is differentiable at each point (t0, t1, . . . , tm, tm+1) ∈
[0, 1]m+2. Because AMLPn(g) is a n-polygon of g, where n = 1, 2, . . .. and
AMLP = limn→∞AMLPn(g), so d(t00 , t10 , . . . , tm0 , tm+10) is a local minimum
of d(t0, t1, . . . , tm, tm+1). By Theorem 2, ∂d

∂ti
= 0, where i = 0, 1, 2, . . ., m+1. ut

Theorem 3. ([7], Theorem 2) If ei ⊥ ej, where i, j = 1, 2, 3 and i 6= j, then
e1, e2 and e3 form an end angle iff the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has a

unique root 0 or 1.

Theorem 4. ([7], Theorem 3) If ei ⊥ ej, where i, j = 1, 2, 3 and i 6= j, then
e1, e2 and e3 form a middle angle iff the equation ∂(de(p1,p2)+de(p2,p3))

∂t2
= 0 has

a root t20 such that 0 < t20 < 1.

Theorem 5. ([7], Theorem 4) e0 and em+1 are on different grid plane iff 0 <
t10 < t20 < . . . < tm0 < 1.

Let pi(ti0) be i-th vertex of an AMLP , where i = 0, 1, . . ., or m + 1.
By Lemma 1 and Theorems 3, 4 and 5, we immediately prove the following

theorem.

Theorem 6. If ei−1, ei and ei+1 form an end angle, then ti0 = 0 or 1 ; other-
wise, 0 < ti0 < 1, where i = 1, 2, . . ., or m.

By the proofs of the two lemmas (Lemmas 1 and 2) of [7], we have

Lemma 2. If e1 ⊥ e2, then ∂de(p1,p2)
∂t2

can be written as t2−α√
(t2−α)2+(t1−β)2+γ

,

where α, β, and γ are reals.

Lemma 3. If e1 ‖ e2, then ∂de(p1,p2)
∂t2

can be written as t2−t1√
(t2−t1)2+α

, where α is

a real.

Theorem 7. ([6], Theorem 4) ∂d2
∂t2

= 0 implies that we have one of the following
representations for t3: we can have

t3 =
−c2t1 + (c1 + c2)t2

c1



if c1 > 0; we can also have

t3 = 1−

√
c2
1(t2 − a2)2

(t2 − t1)2
− c2

2

or

t3 =

√
c2
1(t2 − a2)2

(t2 − t1)2
− c2

2

if a2 is either 0 or 1, and c1 and c2 are positive; and we can also have

t3 = 1−

√
(t2 − a2)2[(t1 − a1)2 + c2

1]
(t2 − b1)2

− c2
2

or

t3 =

√
(t2 − a2)2[(t1 − a1)2 + c2

1]
(t2 − b1)2

− c2
2

if a1, a2, and b1 are either 0 or 1, and c1 and c2 are positive reals.

Lemma 4. The number of critical points of d(t0, t1, . . . , tm, tm+1) in [0, 1]m+2

is finite.

Proof. Let d = d(t0, t1, . . . , tm, tm+1).
Case 1. The simple cube-curve g has some end angles.
Assume that ei, ei+1, and ei+2 form an end angle, and also ej , ej+1, and

ej+2, and no other three consecutive critical edges between ei+2 and ej form an
end angle, where i ≤ j and i, j = 0, 1, 2, . . . ,m−2. By Theorem 6 we have ti+3 =
fi+3(ti+1, ti+2), ti+4 = fi+4(ti+2, ti+3), ti+5 = fi+5(ti+3, ti+4), . . . , tj , and tj+1 =
fj+1(tj−1, tj). This shows that ti+3, ti+4, ti+5, . . . , tj , and tj+1 can be represented
by ti+1, and ti+2. In particular, we obtain an equation tj+1 = f(ti+1, ti+2), or

g(tj+1, ti+1, ti+2) = 0,

where tj+1, and ti+1 are already known, or

g1(ti+2) = 0. (1)

By Lemmas 2 and 3, function g1(ti+2) can be decomposed into finitely many
monotonous functions. Therefore, Equation( 1) has finite solutions. This implies
that the system formed by ∂d

∂ti
= 0 (where i= 0, 1, . . ., and m + 1.) has finite

solutions.
Case 2. The simple cube-curve g does not have any end angle.
Analogous to Case 1, the system formed by ∂d

∂ti
= 0 (where i= 0, 1, . . ., and

m + 1.) implies a two variables system formed by



h1(t0, t1) = 0 (2)

h2(t0, t1) = 0 (3)

Again by Lemmas 2 and 3, Equations ( 2) and ( 3) can be decomposed into
finite monotonous functions, so the system formed by Equations ( 2) and ( 3)
has finite solutions. This implies that the system formed by ∂d

∂ti
= 0 (where i=

0, 1, . . ., and m + 1.) has finitely many solutions.
ut

By Lemmas 4 and 1, we have

Lemma 5. g has only a finite number of AMLP critical point tuples.

Let e0, e1 and e2 be three consecutive critical edges. Let pi(pi1 , pi2 , pi3) ∈ ei,
where i = 0, 1, 2. Let the two endpoints of ei be ai(ai1 , ai2 , ai3) and bi(bi1 , bi2 , bi3),
where i = 0, 1, 2.

Lemma 6. There is an algorithm such that its computing complexity of finding a
point p1 ∈ e1 with de(p1, p0)+de(p1, p2) = min{p1|de(p1, p0)+de(p1, p2), p1 ∈ e2}
is O(1).

Proof. p1 can be written as (a11 +(b11−a11)t, a12 +(b12−a12)t, a13 +(b13−a13)t).
Note that

de(p1, p0) =

√√√√ 3∑
i=1

((a1i − p1i) + (b1i − a1i)t)2

can be simplified. In fact, the straight line a1b1 is parallel to one coordinate
axis (x, y or z axis) So, only one element of the set {b1i

− a1i
: i =1,2,3 } is 1

and the other two should be 0. Without loss of generality, we can assume that
de(p1, p0) =

√
(t + A1)2 + B1, where A1 and B1 are functions of a1i , b1i and p1i ,

where i = 0, 1, 2. Analogously, de(p1, p2) =
√

(t + A2)2 + B2, where A2 and
B2 are functions of a1i

, b1i
and p2i

, where i = 0, 1, 2. In order to find a point
p1 ∈ e1 such that de(p1, p0) + de(p1, p2) = min{p1|de(p1, p0) + de(p1, p2), p1 ∈
e1}, we can solve the equation ∂(de(p1,p0)+de(p1,p2))

∂t = 0: the unique solution is
t = −(A1B2 + A2B1)/(B2 + B1). ut

By the proof of Lemma 6, and if we represent pi as (ai1 + (bi1 − ai1)ti, ai2 +
(bi2 − ai2)ti, ai3 + (bi3 − ai3)ti), then we have

Lemma 7. t2 = t2(t1, t3) is a continous function at each tuple (t1, t3) ∈ [0, 1]2.

Lemma 8. If P
−−−−−→
(r − b)1Q, then for every sufficient small real ε > 0, there is

a sufficient small real δ > 0 such that P ′ ∈ U(P, δ) and P ′
−−−−−→
(r − b)1Q′ implies

Q′ ∈ U(Q, ε).

Proof. By Lemma 6 and note that g has m + 2 critical edges, so by using Lem-
mas 1 repeatedly m + 2 times we prove this lemma. ut



By Lemma 8, we have

Lemma 9. If P
−−−−−→
(r − b)nQ, then for every sufficiently small real ε > 0, there

is a sufficiently small real δε > 0 and a sufficiently large integer Nε such that
P ′ ∈ U(P, δε) and P ′

−−−−−→
(r − b)n′Q′ implies Q′ ∈ U(Q, ε), where n′ is an integer

and n′ > Nε.

By Lemma 5, let Q1, Q2,. . . , QN with N ≥ 1 be the set of all AMLP critical
point tuples of g. Let ε be a sufficiently small positive real such that U(Qi, ε) ∩
U(Qj , ε) = ∅, where i, j = 1, 2, . . ., N and i 6= j. Let Di = {P : P → Q′, Q′ ∈
U(Qi, ε), P ∈ [0, 1]m+2}, where i = 1, 2, . . ., N .

The following two lemmas are straightforward.

Lemma 10. If N > 1 then Di ∩Dj = ∅, where i, j = 1, 2, . . ., N and i 6= j.

Lemma 11. ∪N
i=1Di = [0, 1]m+2.

We consider the usual topology T = Rm+2|[0,1]m+2 .

Lemma 12. Di is an open set of T , where i = 1, 2, . . ., N with N ≥ 1.

Proof. By Lemma 9, for each P ∈ Di, there is a sufficiently small real δP > 0
such that U(P, δP ) ⊆ Di. So we have ∪P∈DiU(P, δP ) ⊆ Di.

On the other hand, for P ∈ U(P, δP ), we have Di = ∪P ⊆ ∪P∈DiU(P, δP ).
Note that U(P, δP ) is an open set of T . So Di = ∪P∈Di

U(P, δP ) is an open set
of T .

ut

Lemma 13. ([11], Proposition 5.1.4) Let U ⊂ R be an arbitrary open set. Then
there are countably many pairwise disjoint open intervals Un such that U = ∪Un.

Lemma 14. g has a unique AMLP critical point tuple.

Proof. By contradiction. Suppose that Q1, Q2,. . . , QN with N > 1 are all AMLP
critical point tuples of g. Then there exists i ∈ {1, 2, . . . , N} such that Di|ej

⊂
[0, 1], where ej is a critical edge of g, i, j = 1, 2, . . ., N . Otherwise we have
D1 = D2 = · · · = DN . This is a contradiction to Lemma 10.

Let E = {ej |Di|ej ⊂ [0, 1]}, where ej is a critical edge of g. We can select a
critical point tuple of g as follows: go through each e ∈ {e0, e1, . . ., em, em+1 }.
If e ∈ E, by Lemmas 12 and 13, select the minimum left endpoint of the open
intervals whose union is Di|e. Otherwise select the midpoint of e. We denote the
resulting critical point tuple as P =(p0, p1, p2, . . ., pm+1). By the selection of
P , we know that P is not in Di. By Lemma 11 there is j ∈ {1, 2, . . . , N} − {i}
such that P ∈ Dj . Therefore there is a sufficiently small real δ > 0 such that
U(P, δ) ⊂ Dj . Again by the selection of P , there is a sufficiently small real δ′ > 0
such that U(P, δ′) ∩Di 6= ∅. Let δ′′ = min{δ, δ′}. Then we have U(P, δ′′) ⊂ Dj

and U(P, δ′′)∩Di 6= ∅. This implies that Di ∩Dj 6= ∅, and it is a condtradiction
to Lemma 10.

ut



Let g be a simple cube-curve. Let AMLPn(g) be an n-polygon of g, where n
= 1, 2, . . .. AMLP = limn→∞AMLPn(g).

Theorem 8. The AMLP of g is the MLP of g.

Proof. By Lemma 14 and the proof of Lemma 1, d(t0, t1, . . . , tm, tm+1) has a
unique local minimal value. This implies that the AMLP of g is the MLP of
g. ut

4 Computational Complexity

Assume that a simple cube-curve g has m critical edges. By Lemma 6, the
computational complexity of each iteration of running the rubber-band algo-
rithm is O(m). Let AMLPn(g) be an n-polygon of g, where n = 1, 2, . . ..
Then the computational complexity of finding AMLPn(g) is nO(m). Suppose
limn→∞AMLPn(g) = AMLP . By Theorem 8, we can use AMLPN(ε)(g) as an
approximate MLP of g, where ε is the error between the length of AMLPN(ε)(g)
and that of MLP. The computational complexity is N(ε)O(m).

5 Conclusions

We have proved that the rubber-band algorithm is correct for the family of first-
class simple cube-curves and that the algorithm’s computational complexity of
finding an approximate MLP of a simple cube-curve is linear for this family of
curves.
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