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1. Preface

In the end of 1970’s the dynamical systems theory witnessed two great events:
discovery of the Universality phenomenon and discovery of the Mandelbrot set. At
first glance, they had little to do with each other. It was the remarkable paper
by Douady and Hubbard “On the dynamics of polynomial-like maps” [DH3] that
linked these two events tightly and penetrated deeply into their nature.

The Universality phenomenon discovered by Feigenbaum and independently by
Coullet and Tresser is concerned with rigidity of the dynamical and parameter
objects of various dynamical systems, and associated self-similarity of these ob-
jects. The underlying mathematical mechanism comes from hyperbolicity of the
renormalization operator that relates behavior of the system in different scales.
This Renormalization Conjecture became a central theme in dynamical systems for
several decades.

A striking feature of the Mandelbrot set M is presence of “babies” inside of
itself which are visually indistinguishable of the set M itself (see Figure 1). To
explain this self-similarity phenomenon, Douady and Hubbard defined a complex
renormalization operator. This operator first allowed them to account for all babies
in M , and then grew up into a key tool of the Renormalization theory, for complex
as well as for real systems.

Figure 1. A baby Mandelbrot set.
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2. Quadratic-like maps and complex renormalization

The renormalization theory requires a big enlargement of the one-parameter
family of quadratic polynomials Pc : z �→ z2 + c to an infinite-dimensional space
Q of quadratic-like maps.

Let U � U ′ be two topological disks in the complex plane. A degree two
holomorphic branched covering f : U → U ′ is called a quadratic-like map. We
normalize quadratic-like maps to put their critical points at the origin. The filled
Julia set of f is defined as the set of non-escaping points,

K (f ) = {z : f nz ∈ U, n = 0, 1, . . .},
and the Julia set J(f ) is defined as the boundary of K (f ). These sets are either
connected or Cantor depending on whether the critical point of f is non-escaping
or otherwise.

For instance, any quadratic polynomial can be restricted to a quadratic-like map.
In fact, according to the Straightening Theorem [DH3], these restrictions represent
all possible topological types of quadratic-like maps. Even better, let us say that
two quadratic-like maps are hybrid equivalent if they are topologically conjugate
by a quasiconformal map which is conformal a.e. on the filled Julia set. Then any
quadratic-like map f is hybrid equivalent to some (restricted) quadratic-polynomial
Pc : z �→ z2+χ(f ), and in the case of connected Julia set, this polynomial is unique.
This leads to the following picture: the connectedness locus C (of quadratic-like
maps with connected Julia set) is decomposed into hybrid classes Hc each of which
meets the quadratic family at a single point c of the Mandelbrot set (such that
c = χ(f ) for f ∈ Hc).

Now we can define the complex renormalization. Assume there exists a natural
number p � 2 and a topological disk V � 0 such that g = f p maps V onto its
image V ′ as a quadratic-like map with connected Julia set J ′, and such that the
“little Julia sets” f k(J ′), k = 0, 1, . . . , p−1, are “almost disjoint”1. Then the map
f is called renormalizable with period p, and the quadratic-like map g : V → V ′

(considered up to rescaling) is called the (complex) renormalization Rf of f . If
the little Julia sets are actually disjoint then the renormalization is called primitive,
otherwise it is called satellite.

There is some combinatorial data attached to this renormalization picture: the
period p of the renormalization and the “position” of the little Julia sets on the
sphere2.

It turns out that renormalizable parameters c ∈ M with a given combinatorics
form exactly one baby Mandelbrot copy (“M-copy”). Moreover, if the renormaliza-
tion is satellite then this copy is attached to some hyperbolic component of int M
(being born in a bifurcation that “creates” an attracting periodic orbit of period p
out of an attracting periodic orbit of a smaller period p/n). Otherwise, the copy is
born in a saddle-node bifurcation. Such a primitive copy has a distinguished cusp
c where fc has a parabolic periodic orbit of period p with multiplier 1.

1 “Almost disjointness” can be defined as the property that J′ � f k(J′) is connected for any
1 � k � p − 1, compare [Mc1, §7.3].
2 This can be defined as the homotopy class of f rel to the little Julia sets collapsed to the
points.
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Thus, to any quadratic map f we can associate a canonical sequence of periods
p1 < p2 < . . . for which f is renormalizable. Depending on whether the sequence
is empty, finite, or infinite, the map f is called respectively non-renormalizable, at
most finitely renormalizable, or infinitely renormalizable.

Let us now pass to the theory of quadratic-like families which links renormaliza-
tion to the baby M-copies.

3. Quadratic-like families and baby Mandelbrot sets

Let us consider a holomorphic family

f = {fλ : Uλ → U ′
λ}, λ ∈ Λ,

of quadratic-like maps over a smooth Jordan disk Λ. For such a family we can
define a Mandelbrot-like set Mf of parameters λ ∈ Λ for which the Julia set J(fλ)
is connected. It turns out that if the family f possesses nice topological properties
then the set Mf is canonically homeomorphic to the standard Mandelbrot set M . (In
this sense, the Mandelbrot set presents a topologically universal bifurcation diagram
for quadratic-like maps!) The canonical homeomorphism Mf → M is given by the
straightening λ �→ χ(fλ) (and is also called straightening and is denoted by χ).

Here are assumptions that make our family nice:

– The disks Uλ and U ′
λ move holomorphically over Λ;

– The family is proper in the sense that fλ(0) ∈ ∂U ′
λ for λ ∈ ∂Λ;

– The family is unfolded in the sense that the critical value λ �→ fλ(0) winds
once around the critical point 0 as λ goes once around ∂Λ.

Theorem 3.1. Under the above assumptions on the family f, there exists a home-
omorphism χ from Λ onto a neighborhood of M that coincides with the canonical
straightening Mf → M on the Mandelbrot-like set. This homeomorphism is con-
formal on int M and quasiconformal on Λ � M.

Outline of the proof. The proof of this fundamental result comprises four basic
steps:

Step 1: Looking from the outside. In the very first work by Douady and Hubbard
on holomorphic dynamics [DH1], they constructed an explicit uniformization of
the complement of the Mandelbrot set by a “conformal position” of the critical
value c . A similar (quasiconformal) uniformization can be constructed for any
Mandelbrot-like family in question. This gives a natural correspondence between
the complements of Mf and M .

Step 2: Looking from the inside. Theoretically, there are two types of com-
ponents of intM : hyperbolic components (for which the polynomial fc has an
attracting cycle) and queer components (others: one of the central conjectures of
the field is that these in fact do not exist).

By another early result by Douady and Hubbard [DH1], any hyperbolic compo-
nent of intM is uniformized by the multiplier of the attracting periodic point. On
the other hand, by the work of Mañé-Sad-Sullivan [MSS], queer components can
be uniformized by the one-parameter family of invariant conformal structures on
the Julia set with constant dilatation. These results are still valid for quadratic-like
families under consideration, and they imply that the straightening is a conformal
isomorphism on each component of intMf .
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Step 3: Continuity. The above insights from outside and inside match contin-
uously on the boundary of M . It is shown by a simple argument making use of
compactness of the space of K -quasiconformal maps and quasiconformal rigidity
of parameters on ∂M . However, a similar result fails for higher degree polynomials.
As Douady famously put it, “only by miracle, it is true in the quadratic case”.

Step 4: Topological Argument Principle. What is left is to show that the map χ
is one-to-one. It is done by showing that the fibers of this map are discrete (using
the theory of holomorphic motions), that the map is “topologically holomorphic”
(in the sense that it has positive degree at any point), and applying the Topological
Argument Principle (using that the family is unfolded).

Now, let H be a primitive hyperbolic component of M with period p > 1. Then
one can find a domain Λ ⊃ H and topological disks U ′

λ � Uλ � 0 such that the
renormalizations f p

λ : Uλ → U ′
λ form a proper unfolded quadratic-like family f (see

[D]). According to Theorem 3.1, the Mandelbrot-like set Mf ⊂ Λ is canonically
homeomorphic to M . This is the desired primitive Mandelbrot copy.

In the satellite case, the situation is more subtle, as there is no proper quadratic-
like family that produces the satellite copy M ′. However, there is an almost proper
family: the only place where properness is lost is the root of M ′ (where M ′ is
attached to some hyperbolic component). One can adjust the above argument to
deal with such a family as well.

3.1. MLC Conjecture

Besides many wonderful results, Douady and Hubbard contributed to holomor-
phic dynamics a great conjecture widely known under the name MLC (“Mandelbrot
set is Locally Connected”). There are several good reasons that make this conjec-
ture so prominent:

– If it is true then there is an explicit topological model for the Mandelbrot
set. Namely, let us consider the Riemann mapping ϕ : C � D̄ → C � M . If the
Mandelbrot set is locally connected then by the classical Carathéodory Theorem,
it extends continuously to the unit circle T. So the boundary of M becomes the
quotient of T by a certain equivalence relation (that can be nicely visualized by
means of a Thurston’s geodesic lamination of the unit disk [Th]). Remarkably,
this equivalence relation can be explicitly described: Douady and Hubbard, Orsay
Notes [DH2].

– It was also shown in [DH2] that MLC would imply another central conjecture
in the field: that hyperbolic maps are dense in the quadratic family.

– The MLC can be formulated as a Rigidity Conjecture: two combinatorially
equivalent3 non-hyperbolic quadratic polynomials Pc and Pc′ must coincide. This
conjecture is a dynamics counterpart of Thurston’s Ending Lamination Conjecture
(ELC) in hyperbolic three-dimensional geometry, which in turn is a deep extension
of the classical Mostow Rigidity Theorem. The ELC has been recently proved
completing a ten-years long effort by Yair Minsky with several collaborators (see
[BCM] for the final shot). But MLC still resists.

3 Two quadratic polynomials are “combinatorially equivalent” if the landing property of rational
external rays (which always land at some points of the Julia set, even in the non-locally connected
case) defines the same equivalence relation on the rational circle Q/Z.
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A deep breakthrough in the MLC Conjecture was made in the late 80’s - early 90’s
by J.-C. Yoccoz:

Theorem 3.2 (see [H, M]). If a a quadratic map Pc , c ∈ M, is not infinitely
renormalizable then the Mandelbrot set is locally connected at c.

This result reduces the MLC to infinitely renormalizable parameters, and thus
(surprisingly) embeds it into the Renormalization Theory. A class of locally con-
nected infinitely renormalizable parameters was described in [L1]. It led, in par-
ticular, to a proof of the real counterpart of the MLC with an implication that
hyperbolic parameters are dense in the real quadratic family.

The MLC Conjecture shed a beautiful new light on the field of holomorphic
dynamics and influenced its mainstream development for the past two decades.
For recent advances in this problem see Kahn [K] and Kahn-Lyubich [KL].

3.2. Proof of the Renormalization Conjecture

The complex renormalization (with a given combinatorics) can be viewed as an
operator R acting in the space Q of quadratic-like maps. Then the Feigenbaum-
Coullet-Tresser Renormalization Conjecture (adapted to this setting) asserted that
R has a unique fixed point f∗ ∈ Q, and it is hyperbolic with a one-dimensional
unstable direction (see Figure 2).

Importance of the Douady-Hubbard theory of quadratic-like maps for the Renor-
malization theory was articulated by Dennis Sullivan in his address to the Berkeley
ICM-1986 [S1]. Here Sullivan laid down a program of constructing the renormal-
ization fixed point f∗ by the methods of Teichmüller theory. In this framework, the
hybrid class of f∗ gets nicely interpreted as the stable manifold of the renormaliza-
tion operator R at f∗. This program was realized in [S2, S3]. Another approach to
the construction (but still within the quadratic-like framework) was then suggested
by C. McMullen [Mc2]. It was also proved in this work that the renormalization
operator is strongly contracting on the hybrid class of f∗. Finally, hyperbolicity of
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Figure 2. Renormalization fixed point.

R at f∗ (in the space of quadratic-like maps) was established in [L2]. A good part
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of [L2] is concerned with endowing the space of quadratic-like maps (or rather,
“quadratic-like germs”) with a complex analytic structure that turns hybrid classes
into codimension-one analytic manifolds, thus enhancing the picture described in
[DH3] with a precise analytic content. Among other consequences of this structure
is the fact that all primitive M-copies are quasiconformally equivalent to the whole
Mandelbrot set.

We see that the Douady-Hubbard theory of quadratic-like maps played a promi-
nent role in the progress made in several central themes in holomorphic and one-
dimensional dynamics. By now it has become a classical background that young
researchers in holomorphic dynamics learn in the graduate school along with the
principles of hyperbolic metric and the Measurable Riemann Mapping Theorem
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