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MSC Software Corporation, the worldwide leader in rubber analysis, would like to share some 

of our experiences and expertise in analyzing elastomers with you. 

This White Paper introduces you to the nonlinear finite element analysis (FEA) of rubber-like 

polymers generally grouped under the name “elastomers”. You may have a nonlinear rubber 

problem—and not even know it...

The Paper is primarily intended for two types of readers:

ENGINEERING MANAGERS who are involved in manufacturing of elastomeric components, 

but do not currently possess nonlinear FEA tools, or who may have an educational/

professional background other than mechanical engineering. 

DESIGN ENGINEERS who are perhaps familiar with linear, or even nonlinear, FEA concepts 

but would like to know more about analyzing elastomers.

It is assumed that the reader is familiar with basic principles in strength of materials theory.

The contents of this White Paper are intentionally organized for the convenience of these two 

kinds of readers.

For an “Engineering Manager”, topics of interest include, an Executive Summary to obtain an 

overview of the subject, the Case Studies to see some real-world rubber FEA applications, 

and any other industry specific topics.

The “Design Engineer”, on the other hand, can exami ne the significant features on analysis 

of elastomers (which constitute the bulk of the Paper). The Appendices describe the physics 

and mechanical properties of rubber, proper modeling of incompressibility in rubber FEA, and 

most importantly, testing methods for determination of material properties. Simulation issues 

and useful hints are found throughout the text and in the Case Studies.

Rubber FEA is an extensive subject, which involves rubber chemistry, manufacturing 

processes, material characterization, finite element theory, and the latest advances in 

computational mechanics. A selected list of Suggestions for Further Reading is included. 

These references cite some of the most recent research on FEA of elastomers and 

demonstrate practical applications. They are categorized by subject for readers convenience.

On the Cover

The cover shows a deformed configuration of a washing machine seal with fringe plots of 

deformation magnitude. You can observe the wrinkling the seal undergoes due to excessive 

deformation.
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1. EXEcutIvE Summary
This white paper discusses the salient features regarding the me-

chanics and finite element analysis (FEA) of elastomers. Although, 

the main focus of the paper is on elastomers (or rubber-like 

materials) and foams, many of these concepts are also ap-

plicable to the FEA of glass, plastics, and biomaterials. Therefore, 

this White Paper should be of value not only to the rubber and 

tire industries, but also to those involved in the following:

•	Glass, plastics, ceramic, and solid propellant industries

•	Biomechanics and the medical/dental professions—implant-
able surgery devices, prosthesis, orthopedics, orthodontics, 
dental implants, artificial limbs, artificial organs, wheelchairs 
and beds, monitoring equipment

•	Highway safety and flight safety—seat belt design, impact 
analysis, seat and padding design, passenger protection

•	Packaging industry

•	Sports and consumer industries—helmet design, shoe design, 
athletic protection gear, sports equipment safety.

Elastomers are used extensively in many industries because of 

their wide availability and low cost. They are also used because 

of their excellent damping and energy absorption characteristics, 

flexibility, resiliency, long service life, ability to seal against 

moisture, heat, and pressure, non-toxic properties, moldability, 

and variable stiffness.

Rubber is a very unique material. During processing and shaping, 

it behaves mostly like a highly viscous fluid. After its polymer 

chains have been crosslinked by vulcanization (or by curing), 

rubber can undergo large reversible elastic deformations. Unless 

damage occurs, it will return to its original shape after removal of 

the load.

Proper analysis of rubber components requires special material 

modeling and nonlinear finite element analysis tools that are 

quite different than those used for metallic parts. The unique 

properties of rubber are such that: 

1. It can undergo large deformations under load, sustaining 
strains of up to 500 percent in engineering applications.

2. Its load-extension behavior is markedly nonlinear.

3. Because it is viscoelastic, it exhibits significant damping 
properties. Its behavior is time- and temperature-dependent, 
making it similar to glass and plastics in this respect.

4. It is nearly incompressible. This means its volume does not 
change appreciably with stress. It cannot be compressed 
significantly under hydrostatic load.

For certain foam rubber materials, the assumption of near 

incompressibility is relaxed, since large volume change can be 

achieved by the application of relatively moderate stresses.

The nonlinear FEA program, Marc possesses specially-formu-

lated elements, material and friction models, and automated 

contact analysis procedures to model elastomers. Capabilities 

and uniqueness of Marc in analyzing large, industry-scale 

problems are highlighted throughout this white paper.

44
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Efficient and realistic analysis for design 

of elastomeric products relies on several 

important concepts outlined below:

1. Nonlinear material behavior—com-
pressible or incompressible material 
models, time and temperature effects, 
presence of anisotropy due to fillers or 
fibers, hysteresis due to cyclic loading 
and manifestation of instabilities.

2.  Determination of Material Parameters 
from Test Data—perhaps the single 
most troublesome step for most 
engineers in analyzing elastomers, 
that is, how to “curve fit” test data 
and derive parameters necessary to 
characterize a material.

3. Failure—causes and analysis of failure 
resulting due to material damage and 
degradation, cracking, and debonding.

4. Dynamics—shock and vibration isola-
tion concerns, damping, harmonic 
analysis of viscoelastic materials, 
time versus frequency domain viscoelastic analysis, and implicit versus 
explicit direct time integration methods.

5. Modern automated contact analysis techniques—friction effects, and the 
use of “contact bodies” to handle boundary conditions at an interface. 
Automated solution strategies—issues related to model preparation, 
nonlinear analysis, parallelization, and ease-of-use of the simulation 
software.

6. Automated Remeshing - for effective solution of problems involving 
distorted meshes which can lead to premature termination of analysis.

MSC Software Corporation offers a well-balanced combination of 

sophisticated analysis code integrated seamlessly with easy-to-use 

Graphical User Interface (GUI) Mentat and Patran, for the simulation of 

elastomeric products. This makes Marc uniquely suitable for the simulation 

of complex physics of rubber, foam, glass, plastics, and biomaterials. The 

following sections briefly explains the ‘insides’ of a nonlinear FEA code (and 

its differences from a linear FEA program) along with the accompanying 

GUI capabilities.

The Finite Element Method
The finite element method is a computer-aided engineering technique for 

obtaining approximate numerical solutions to boundary value problems 

which predict the response of physical systems subjected to external loads. 

It is based on the principle of virtual work. One approximation method is 

the so-called weighted residuals method, the most popular example of 

which is the Galerkin method (see any of the finite element texts listed in 

the Suggestions for Further Reading section at the back). A structure is 

idealized as many small, discrete pieces called finite elements, which are 

connected at nodes. In finite element analysis, thousands of simultaneous 

equations are typically solved using computers. In structural analysis, the 

unknowns are the nodal degrees of freedom, like displacements, rotations, 

or the hydrostatic pressure.

History of Nonlinear and Rubber FEA
A National Research Council report on computational mechanics research 

needs in the 1990s [Oden, 1991] emphasized the “materials” field as a 

national critical technology for the United States, and that areas such as 

damage, crack initiation and propagation, nonlinear analysis, and coupled 

field problems still require extensive research.

Before embarking on the issues related to the material behavior, it is 

interesting to review how the finite element method has matured in the past 

sixty years—paying special attention to recent improvements in nonlinear 

FEA techniques for handling rubber contact problems:

1943   Applied mathematician Courant used triangular elements 

to solve a torsion problem.

1947   Prager and Synge used triangular elements to solve a 2-D 

elasticity problem using the “hypercircle method”.

1954-55   Argyris published work on energy methods in structural 

analysis (creating the “Force Method” of FEA).

1956   Classical paper on the “Displacement (Stiffness) Method” 

of FEA by Turner, Clough, Martin, and Topp (using 

triangles).

1960   Clough first coined the term “Finite Element Method.”

1965   Herrmann developed first “mixed method” solution for 

incompressible and nearly incompressible isotropic 

materials.

1968   Taylor, Pister, and Herrmann extended Herrmann’s 

work to orthotropic materials. S.W. Key extended it to 

anisotropy [1969].

1971   First release of the Marc program by Marc Analysis 

Research Corporation, MARC. It was the world’s first 

commercial, nonlinear general-purpose FEA code.

1970s-    

today

Most FEA codes claiming ability to analyze contact 

problems use “gap” or “interface” elements. (The user 

needs to know a priori where to specify these interface 

elements—not an easy task!)

1974   MARC introduced Mooney-Rivlin model and special 

Herrmann elements to analyze incompressible behavior.

1979   Special viscoelastic models for harmonic analysis to 

model damping behavior introduced by MARC. General-

ized Maxwell model added shortly thereafter.

1985   •	Oden	and	Martins	published	comprehensive	treatise	on	

modeling and computational issues for dynamic friction 

phenomena.

•	MARC	pioneered	use	of	rigid	or	deformable	contact	

bodies in an automated solution procedure to solve 

2-D variable contact problems—typically found in metal 

forming and rubber applications. Also, first introduction of 

large-strain viscoelastic capabilities for rubber materials 

by MARC.
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1988   •	Oden	and	Kikuchi	published	monograph	on	contact	

problems in elasticity—treating this class of problems 

•	MARC	extended	automated	contact	FEA	capability	to	

3-D problems.

1990   Martins, Oden, and Simoes published exhaustive study 

on static and kinetic friction (concentrating on metal 

contact).

1991   MARC introduced Ogden rubber model and rubber 

damage model.

1994   MARC introduced Rubber Foam model.

MARC introduced Adaptive Meshing Capability.

1995   MARC and Axel Products, Inc. to create “Experimental 

Elastomer Analysis” course

1997   MARC introduced Narayanswamy model for Glass 

Relaxation behavior.

1998   MARC introduced fully parallel software based on domain 

decomposition.

1999   MARC was acquired by MSC Software

2000   Marc introduced the following:

•	Boyce-Arruda	and	Gent	rubber	models

•	Special	lower-order	triangular	and	tetrahedral	elements	

to handle incompressible materials

•	Global	adaptive	remeshing	for	rubber	and	metallic	

materials.

•	Coupled	structural-acoustic	model	for	harmonic	

analysis.

2003   Marc introduced the following:

•	Steady	state	tire	rolling

•	Cavity	pressure	calculation

•	Insert	option	for	tire	chords

•	Global	adaptive	meshing	in	3-D

•	The	J-integral	(Lorenzi	option)	now	supports	large	

strains,	both	in	the	total	and	the	updated	Lagrange	

formulation. This makes it possible to calculate the 

J-integral	for	rubber	applications.

•	Strain	energy	is	correctly	output	for	rubber	models	in	

total	Lagrangian	analysis.

2005   Marc introduced the following:

•	Global	adaptive	meshing	allows	general	boundary	

conditions in 3-D

•	New	unified	rubber	model	with	improved	volumetric	

behavior

•	Coupling	with	CFD	using	MPCCI

•	Global	adaptive	remeshing	enhanced	in	two-

dimensional analyses such that distributed loads and 

nodal boundary conditions are reapplied to the model 

after remeshing occurs.

2005    

(cont.)

•	A	framework,	based	on	the	updated	Lagrangian	

formulation, has been set up for hyperelastic material 

models. Within the framework, users can easily define 

their own generalized strain energy function models 

through	a	UELASTOMER	user	subroutine.

•	A	new	friction	model,	bilinear,	is	introduced	which	is	

more accurate than the model using the velocity-based 

smoothing function, arc tangent, and less expensive and 

more general than the stick-slip model.

2007   Marc introduced the following:

•	Virtual	Crack	Closure	Technique	with	remeshing	to	see	

crack growth during the loading.

•	Cohesive	zone	method	(CZM)	for	delamination

•	Connector	elements	for	assembly	modeling

•	Steady	state	tire	rolling

•	Puck	and	Hashin	failure	criteria

•	Crack	propagation	in	2-D	using	global	adaptive	

remeshing

•	Simplified	nonlinear	elastic	material	models

•	Solid	shell	element	which	can	be	used	with	elastomeric	

materials

•	Nonlinear	cyclic	symmetry

•	Rubber	example	using	volumetric	strain	energy	function

2008   Marc introduced the following:

•	Simple	material	mixture	model

•	Moment	carrying	glued	contact

•	Hilbert-Hughes-Taylor	Dynamic	procedure

•	Interface	elements	added	automatically	on	crack	

opening with adaptive meshing

2010   Marc introduced the following:

•	Incorporated	generalized	5th	order	Mooney-Rivlin	

hyperelastic model

•	Parallel	solver	technology	to	utilize	multi-core	proces-

sors

•	Segment	to	segment	contact

2011   A new directional friction model is introduced. It is 

beneficial to solve problems which have two friction 

behaviors due to either material surface behavior or 

geometric features

2013   Bergström-Boyce model to help analyze the time-

dependent large strain viscoelastic behavior of hyper-

eleastic materials. This model may also be combined with 

damage models to represent the permanent set of the 

elastomers

Marlow model to give the ability to directly enter the 

experimental stress-strain data representing incompress-

ible materials
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2013    

(Cont.)

Frequency dependent damping and stiffness for 

harmonic (frequency response) analysis. Support for 

damping as a function of the amount of static pre-

deformation/pre-stress is also included

General crack propagation in 3D solids

Insertion of cracks in solid mesh with the help of NURBS 

surface

Five new methods added to remove interference between 

contact bodies (applicable to both Node-to-Segment and 

Segment-to-Segment contact)

Three new models have been added to represent the 

behavior of anisotropic incompressibility of hyperelastic 

materials (Qiu and Pence, Brow and Smith, Gasser et al.)

The benefits of performing nonlinear FEA of elastomeric products are 

essentially the same as those for linear FEA. FEA should be an integral part 

of the design process, preferably from the CAD. The advantages of this 

enhanced design process include: improved performance and quality of 

the finished product; faster time to market; optimal use of materials; weight 

savings; verification of structural integrity before prototyping; and overall 

reduction of development and production costs. Furthermore, a good 

predictive capability can help to reduce the scrap rate in manufacturing 

stage; that is, “green” stage to the finally “molded” state, thereby ensuring a 

competitive edge.

2. matErIal BEhavIor
This section discusses the issues central to the description of material 

modeling of elastomers. Any material behavior must be determined 

experimentally, and the wide variety of rubber compounds make this 

experimental determination even more important. A brief overview of the 

concepts of nonlinearity and the stress-strain descriptions suitable for 

nonlinear analysis is presented first. The features of time-independent and 

dependent material 

behavior, anisotropy, 

hysteresis, and other 

polymeric materials 

are detailed next. In 

the final note, other 

polymeric materials 

which share common 

material characteristics 

with elastomers are 

reviewed. The most 

important concept to 

recognize about rubber 

is that its deformation 

is not directly propor-

tional to the applied 

load, in other words, it 

exhibits a ‘nonlinear’ 

behavior. 

Linear Elastic Behavior (Hooke’s Law) 
“As the extension, so the force” [Hooke 1660] suggested a simple linear rela-

tion exists between force (stress) and deflection (strain). For a steel spring 

under small strain, this means that the force is the product of the stiffness 

and the deflection or, the deflection can be obtained by dividing the force 

by the spring stiffness. This relation is valid as long as the spring remains 

linear elastic, and the deflections are such that they do not cause the spring 

to yield or break. Apply twice the load, obtain twice the deflection. For a 

linear spring, the typical force-displacement (or stress-strain) plot is thus a 

straight line, where the stiffness represents the slope. While we may think 

Hooke’s	Law	is	simple,	let’s	examine	how	to	measure	Young’s	modulus.	

What test should we use: tension, torsion, bending, wave speed? Perform-

ing these four tests shall yield four different values of Young’s modulus for 

the	same	material,	since	the	material	knows	nothing	about	Hooke’s	Law	

or these simple formulas. We must be careful in what we seek, how it is 

measured, and how what we measure is used in analysis. Changing the 

material from steel to rubber, the force-displacement curve is no longer 

linear; stress is never proportional to strain.

Hyperelastic (Neo-Hookean Law) 
It is very instructive to view the stress-strain behavior for rubber. Here a 

tensile test is preformed on a synthetic rubber called EPDM (Ethylene 

Propylene Diene Monomer) cycled to 10%, 20%, 50% and 100% strain 

with each cycle repeated twice. The stress-strain behavior of rubber is 

very	different	from	Hooke’s	Law	in	four	basic	areas.	First,	as	the	rubber	

is deformed into a larger strain territory for the first time, it is very stiff, but 

upon recycling in this same strain territory, the rubber softens dramati-

cally. This phenomenon is often referred to as the Mullins’ effect. In most 

applications this one time very stiff event is usually discarded where it is 

assumed in these applications repetitive behavior will dominate. Nonlinear 

elasticity has several stress and strain measures (Appendix B), however, it is 

most common to measure elastomeric experimental data using engineer-

ing stress and engineering 

strain measures, whereby 

the engineering stress is 

the current force is divided 

by the original area, and the 

engineering strain is the 

change in length divided by 

the original length. All test 

data presented and discussed 

herein will use engineering 

stress and engineering strain 

measures.

Secondly, there is always a 

viscoelastic effect present 

in rubber leading to a stable 

hysteresis loop when cycled 

over the same strain range. 

Hyperelastic models seek to 

find a simple equilibrium curve, 

not a hysteresis loop because 

viscoelastic effects may be 	  
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included as we shall see 

later. Also discarded with 

the “one time” stiffness 

event is the shifting of the 

data to go through the 

origin, a requirement for 

hyperelastic materials; this 

will cause an apparent 

change in gage length and 

original cross sectional 

area. This shift ignores 

irreversible damage in 

the material when first 

stretched. 

The third area of difference 

between hyperelastic 

laws and Hooke’s law, is 

the enormous difference 

between tension and 

compression of hyperelas-

tic materials. Hooke’s law 

always assumes that stress is proportional to strain, whereas this is never 

observed for elastomeric materials, hence Hooke’s law is inadequate for 

rubber. The incompressibility of rubber with its ratio of bulk to shear modu-

lus over 1,000 times larger than steel, causes the larger stress magnitudes 

in compression as compared to tension for the same strain magnitude.  

The final difference between hyperelastic laws (there are many) and 

Hooke’s law is the sensitivity of the hyperelastic constants to deformation 

states. As Treloar [1975] points out, any comprehensive treatment of rubber 

behavior should address these different strain states. For example, uniaxial, 

biaxial and planar shear are show here with their corresponding stress-

strain responses. As the hyperelastic laws become more sophisticated with 

more constants to be determined experimentally, data from these three 

modes becomes more important to prevent spurious analytical behavior 

not observed experimentally. If you only have one mode, say tension, 

stick to the Neo-Hookean (one constant Mooney), Gent or Arruda-Boyce 

hyperelastic material models to be safe. 

2.1 tImE-INDEPENDENt NoNlINEar ElaStIcIty
This section discusses aspects of nonlinear elasticity: namely, strain energy 

density functions and incompressibility constraint. The strain energy density 

is usually represented as a product of two functions, one that depends 

on strain (or stretch ratio), another that depends on time. This section is 

referring to only that function of the product that depends on strain.

Stretch Ratio
Strain is the intensity of deformation. If we pull a slender rubber rod along 

its length, the stretch ratio, λ , (or stretch) is defined as the ratio of the 

deformed gauge length L  divided by the initial gauge length L0 , namely, 
λ = = + − = + − = −L L L L L L L L L e/ ( ) / 1 ( ) / 10 0 0 0 0 0 , where e  is the 

engineering strain. Generally, if we apply an in-plane, biaxial load to a piece 

of rubber, we can define three principal stretch ratios in the three respective 

principal directions. In large deformation analysis of nonlinear materials 

(such as elastomers), the stretch ratios are a convenient measure of 

deformation and are used to define strain invariants, I j  for =j 1, 3 , which 

are used in many strain energy functions.

Strain Energy Density Functions
Elastomeric material models are characterized by different forms of their 

strain energy (density) functions. Such a material is also called hyperelastic. 

Implicit in the use of these functions (usually denoted by W ) is the as-

sumption that the material is isotropic and elastic. If we take the derivative 

of W  with respect to strain, we obtain the stress, the intensity of force. The 

commonly available strain energy functions have been represented either 

in terms of the strain invariants which are functions of the stretch ratios or 

directly in terms of the stretch ratios themselves. The three strain invariants 

can be expressed as:

λ λ λ
λ λ λ λ λ λ
λ λ λ

= + +

= + +

=

I
I
I

1 1
2

2
2

3
2

2 1
2

2
2

2
2

3
2

3
2

1
2

3 1
2

2
2

3
2

In case of perfectly incompressible material, −I 13  . In Marc, the strain 

energy function is composed of a deviatoric (shear) and dilitational 

(volumetric) component as: = +W W Wtotal dilitation , where the dilitational part, 
W , is of most concern for elastomers, whereas the dilitation component is 

of most concern for foams. We shall discuss the deviatoric component first.

From statistical mechanics and thermodynamics principals, the simplest 

model of rubber elasticity is the Neo-Hookean model represented by a 

strain energy density of: = −W c I( 3)10 1 .

This model exhibits a single modulus =C G(2 )10 , and gives a good correla-

tion with the experimental data up to 40% strain in uniaxial tension and up 

to	90%	strains	in	simple	shear.	Let’s	now	suppose	our	uniaxial	rod	above	is	

stretched so λ λ=1  where λ  is an arbitrary stretch along the rods length. 

Furthermore if our rod is incompressible, then λ λ λ= = 1 /2 3  so that 

λ λ λ = 11
2

2
2

3
2 . Assuming a Neo-Hookean material, the rod would have a 

strain energy density function of:  

λ λ λ λ
λ

= − = + + − = −



W C I C C( 3) ( 3) 2 310 1 10 1

2
2
2

3
2

10
2
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and the stress becomes:  

σ
λ

λ
λ

= ∂
∂

= + −





W C2 2 310
2

Plotting stress versus strain 

for our Neo-Hookean rod 

along side a Hookean rod 

(whose Poisson’s ratio is 0.5, 

so Young’s modulus becomes  

), has the linear Hookean 

behavior tangent at the origin to the Neo-Hookean curve. Notice how much 

compression differs from tension for Neo-Hookean behavior.  

The earliest phenomenological theory of nonlinear elasticity was proposed 

by Mooney as: = − + −W C I C I( 3) ( 3)10 1 01 2 .

Although, it shows a good agreement with tensile test data up to 100% 

strains, it has been found inadequate in describing the compression mode 

of deformation. Moreover, the Mooney-Rivlin model fails to account for the 

hardening of the material at large strains.

Tschoegl’s investigations [Tschoegl, 1971] underscored the fact that the 

retention of higher order terms in the generalized Mooney-Rivlin polynomial 

function of strain energy led to a better agreement with test data for both 

unfilled as well as filled rubbers. The models along these lines incorporated 

in Marc are:

Three term Mooney-Rivlin:

= − + − + − −W C I C I C I I( 3) ( 3) ( 3)( 3)10 1 01 2 11 1 2

Signiorini:

= − + − + −W C I C I C I( 3) ( 3) ( 3)10 1 01 2 20 1
2

Third Order Invariant:

= − + − + − + −W C I C I C I C I( 3) ( 3) ( 3) ( 3)10 1 01 2 11 1 20 1
2

Third Order Deformation (or James-Green-Simpson):

= − + − + − + − + −W C I C I C I C I C I( 3) ( 3) ( 3) ( 3) ( 3)10 1 01 2 11 1 20 1
2

30 1
2

This family of polynomial strain energy functions has been generalized to a 

complete 5th order, namely:

∑∑= − −
==

W C I I( 3) ( 3)ij
i j

ji
1 2

1

5

1

5

All the models listed above account for non-constant shear modulus. 

However, caution needs to be exercised on inclusion of higher order terms 

to fit the data, since this may result in unstable energy functions yielding 

nonphysical results outside the range of the experimental data. Please see 

Appendix B for issues regarding material stability.

The Yeoh model differs from the above higher order models in that it 

depends on the first strain invariant only:

= − + − + −W C I C I C I( 3) ( 3) ( 3)10 1
20

1
2

30 1
3

This model is more versatile than the others since it has been demonstrated 

to fit various modes of deformation using the data obtained from a uniaxial 

tension test only for certain rubber compounds. This leads to reduced 

requirements on material testing. However, caution needs to be exercised 

when applying this model for deformations involving low strains [Yeoh, 

1995]. The Arruda-Boyce model claims to ameliorate this defect and is 

unique since the standard tensile test data provides sufficient accuracy for 

multiple modes of deformation at all strain levels.

In the Arruda-Boyce and Gent strain energy models, the underlying mo-

lecular structure of elastomer is represented to simulate the non-Gaussian 

behavior of individual chains in the network thus representing the physics of 

network deformation, as such they are called micro-mechanical models. 

The Arruda-Boyce model is described as:   

= Θ − + − + − + − + −





W nk I
N

I
N

I
N

I
N

I1
2

( 3) 1
20

( 9) 11
1050

( 27) 19
7000

( 81) 519
673750

( 243)1 1
2

2 1
3

3 1
4

4 1
5

 

where n  is the chain density, k  is the Boltzmann constant, Θ  is the 

temperature and N  is the number of statistical links of length 1 in the chain 

between chemical crosslinks.

The constitutive relation from Gent can be represented as: 

= − −









∗

W EI I
I6

log 1m m

m

1
  

where E  is the small-strain tensile modulus, = −∗I I 31 1  and Im  is the 

maximum value of ∗I1  that the molecular network can attain. 

Ogden proposed the energy function as separable functions of principal 

stretches, which is implemented in Marc in its generalized form as:  
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where J ,	is	the	Jacobian	measuring	dilatancy,	defined	as	the	determinant	

of deformation gradient F  (Appendix B). The Neo-Hookean, Mooney-Rivlin, 

and Varga material models can be recovered as special cases from the 

Ogden model. The model gives a good correlation with test data in simple 

tension up to 700%. The model accommodates non-constant shear 

modulus and slightly compressible material behavior. Also, for α < 2  or 

> 2 , the material softens or stiffens respectively with increasing strain. The 

Ogden model has become quite popular; it has been successfully applied 

to the analysis of O-rings, seals and other industrial products. Other strain 

energy functions include Klesner-Segel, Hart-Smith, Gent-Thomas, and 

Valanis-Landel for modeling the nonlinear elastic response. 

While the above classical representations of the strain energy function 

indicate no volumetric changes occur, three different models have been 

incorporated facilitating different levels of compressibility. The simplest is to 

introduce a constant bulk modulus such that, = −W J4.5( 1)dilitation
2 . The 

second form is to introduce a fifth order volumetric strain energy function:  

∑= −
=

W D J( 1)2dilitation n
n

n 1

5  

Finally, for materials going through large volumetric deformations, several 

models have been suggested; for example, Blatz-Ko’s, Penn’s, and 

Storaker’s. Marc has adopted the foam model for compressible materials 

with the following representation:  

∑∑ µ
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λ λ λ µ
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where α n , µn , and βn  are material constants, and the second term 

represents volumetric change. This model [Hill-1978, Storakers-1986]  

with =n 2  provides good correspondence with data in uniaxial and 

equibiaxial tension. The Blatz-Ko model [Blatz and Ko, 1968] proposed  

for polymers and compressible foam-like materials is a subcase of above 

model with =n 2 .

Editor’s Comment: Many hyperelastic models have been proposed 

since Ronald Rivlin began with the Neo-Hookean model in 1948, some 

of these models proclaim needing only one test, usually tension. If that 

model only has one modulus, that one test claim is most likely correct. 

However, should that hyperelastic model require several moduli, politely 

ignore the claim and test other deformation modes. What single test can 

simultaneously determine both Young’s modulus and the shear modulus for 

a Hookean material? - None. Be skeptical of such claims particularly for the 

phenomenological hyperelastic models.

Incompressible Behavior
Exact (or total) incompressibility literally means the material exhibits zero 

volumetric change (isochoric) under hydrostatic pressure. The pressure in 

the material is not related to the strain in the material; it is an indeterminate 

quantity as far as the stress-strain relationship is concerned. Poisson’s ratio 

is exactly one-half, while the bulk modulus is infinite. Mathematically, the 

incompressibility of the material can be represented by: =I 13 , λ λ λ = 11 2 3 , 

and =Fdet 1 , where F  is the deformation gradient (Appendix B).

Incompressibility was first considered in FEA by [Herrmann, 1965]. Analyti-

cal difficulties arise when it is combined with nonlinearities such as large 

displacements, large strains, and contact. “Near incompressibility” means 

that Poisson’s ratio is not exactly one-half; for example, 0.49+. Perfect 

incompressibility is an idealization to make modeling more amenable for 

obtaining closed form solutions. In the real world, natural as well as filled 

rubbers are slightly compressible, thereby, facilitating development of 

algorithms with greater numerical stability. Special formulation for lower-

order	triangular	and	tetrahedral	elements	satisfying	the	LBB	condition	

(Appendix B) or simply the Babuska-Brezzi stability condition effectively 

handles	analysis	of	incompressible	materials	[Liu,	Choudhry,	Wertheimer,	

1997]. These elements exist in Marc and show a very close correlation of 

results when compared to their quadrilateral or hexahedral counterparts.

 In addition to rubber problems, the engineer may also encounter aspects 

of incompressibility in metal plasticity and fluid mechanics (Stokes flow) 

problems. Appendix B provides more details about the FEA of incompress-

ible materials, and gives an overview of analytical approaches.
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Most people had probably never heard of an “O-ring”—until the failure of 

an O-ring was blamed for the Challenger disaster	in	January,	1986.	In	the	

subsequent televised failure investigation, we witnessed (the late) Professor 

Richard Feynman of California Institute of Technology dipping a small 

O-ring into a glass of ice water to dramatize its change in properties with 

temperature.

This study demonstrates only one of the complexities involved in analyzing 

2-D rubber contact, where an axisymmetric model of an O-ring seal is 

first compressed by three rigid surfaces, then loaded uniformly with a 

distributed pressure. The O-ring has an inner radius of 10 cm and an outer 

radius of 13.5 cm, and is bounded by three contact surfaces. During the 

first 20 increments, the top surface moves down in the radial direction of a 

total distance of 0.2 cm, compressing the O-ring. During the subsequent 

50	increments,	a	total	pressure	load	of	2	MPa	is	applied	in	the	Z-direction,	

compressing the O-ring against the opposite contact surface. The 

deformed shapes, equivalent Cauchy stress contours and the final contact 

force distribution are shown below. The Ogden material parameters are 

assigned values of:

µ = 0.631  MPa, µ = 0.00122  MPa, µ = 0.013  MPa, =a 1.31 , =a 5.02 , 

and =a 2.03  (see Section 2).

 At the end of increment 70, the originally circular cross-section of the 

O-ring has filled the rectangular region on the right while remaining circular 

on the left (where the pressure loading is applied).

This type of elastomeric analysis may encounter instability problems 

because of the large compressive stresses; the solution algorithm in the 

FEA code must be able to pinpoint such difficulties during the analysis 

and follow alternative paths. Otherwise, the FEA code may give incorrect 

results!

The O-ring is also analyzed using a 2-term Mooney-Rivlin model. It is found 

that the CPU and memory usage are about the same per iteration as for the 

3-term Ogden model. 

Notes: For this type of rubber contact analysis, the nonlinear FEA code 

must be able to handle “deformable-to-rigid” contact, the incompressibility 

of the material, friction, mesh distortions (especially at the two corners), and 

potential instability problems as the analysis progresses. The important 

point to note about this example is that the applied pressure is many times 

larger than the shear stiffness ( µ10 1 ). Although the analysis is 2-D, the 

solution of this rubber problem is not trivial.

MSC Software: Case Study - A

O-Ring Under Compression
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2.2. vIScoElaStIcIty
This section introduces the concept of viscoelasticity and mentions some 

important mechanisms through which temperature and fillers influence 

rubber behavior. Rubber exhibits a rate-dependent behavior and can be 

modeled as a viscoelastic material, with its properties depending on both 

temperature and time. When unloaded, it eventually returns to the original, 

undeformed state. When subjected to a constant stress, it creeps. When 

given a prescribed strain, the stress decreases with time; this phenomenon 

is called stress relaxation. Hysteresis refers to the different stress-strain 

relationship during unloading (as compared to the loading process) in such 

materials when the material is subjected to cyclic loading (see Section 

2.4). Collectively, these features of hysteresis, creep, and relaxation—all 

dependent upon temperature—are often called features of “viscoelasticity” 

[See the texts by Fung-1965, Christensen-1982, and Ferry-1970.]

Linear Viscoelasticity
Linear	viscoelasticity	refers	to	a	theory	which	follows	the	linear	superposi-

tion principle, where the relaxation rate is proportional to the instantaneous 

stress. Experimental data shows that “classical” linear viscoelasticity (ap-

plicable to a few percent strain) represents the behavior of many materials 

at small strains. In this case, the instantaneous stress is also proportional 

to the strain. Details of the material test data fitting, to 

determine input data required for viscoelastic analysis (such 

as calculating the necessary Prony series coefficients for a 

relaxation curve), are discussed in Section 3. 

Mechanical models are often used to discuss the 

viscoelastic behavior of materials. The first is the Maxwell 

model, which consists of a spring and a viscous dashpot 

(damper) in series. The sudden application of a load 

induces an immediate deflection of the elastic spring, which 

is followed by “creep” of the dashpot. On the other hand, a 

sudden deformation produces an immediate reaction by 

the spring, which is followed by stress relaxation according 

to an exponential law. The second is the Kelvin (also called 

Voigt or Kelvin-Voigt) model, which consists of a spring and 

dashpot in parallel. A sudden application of force produces 

no immediate deflection, because the dashpot (arranged 

in parallel with the spring) will not move instantaneously. 

Instead, a deformation builds up gradually, while the spring 

assumes an increasing share of the load. The dashpot 

displacement relaxes exponentially. A third model is the 

standard linear solid, which is a combination of two springs 

and a dashpot as shown. Its behavior is a combination 

of the Maxwell and Kelvin models. Creep functions and 

relaxation functions for these three models are also shown 

[Fung, 1981]. The Marc program features a more compre-

hensive mechanical model called the Generalized Maxwell 

model, which is an exponential or Prony series representation of the stress 

relaxation function. This model contains, as special cases, the Maxwell, 

Kelvin, and standard linear solid models.

Nonlinear Viscoelasticity
Nonlinear viscoelastic behavior may result when the strain is large. A finite 

strain viscoelastic model may be derived by generalizing linear viscoelas-

ticity in the sense that the 2nd Piola-Kirchhoff stress is substituted for 

engineering	stress,	and	Green	Lagrange	strain	is	used	instead	of	engineer-

ing strain. The viscoelasticity can be isotropic or anisotropic. In practice, 

modified forms of the Mooney-Rivlin, Ogden, and other polynomial strain 

energy functions are implemented in nonlinear FEA codes. The finite strain 

viscoelastic model with damage [Simo, 1987] has been implemented in 

Marc.

Temperature Effects
Temperature effects are extremely important in the analysis of elastomers, 

and affect all aspects of rubber behavior, including viscoelasticity, hyster-

esis, and damage. Temperature has three effects: (1) temperature change 

causes thermal strains, which must be combined with mechanical strains, 

(2) material moduli have different values at different temperatures, (3) heat 
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flow may occur. A modern nonlinear FEA code such as Marc accounts for 

heat flow and offers the capability to conduct coupled thermo-mechanical 

analysis. In other words, the analyst uses the same finite element model 

for both the thermal and stress analyses, and both thermal and force 

equilibrium are satisfied in each increment before the nonlinear analysis 

proceeds to the next increment.

Material constants associated with the strain rate independent mechanical 

response, such as Mooney-Rivlin, Ogden and rubber foam constants, vary 

with temperature, as do the coefficient of thermal expansion, Poisson’s 

ratio, thermal conductivity, etc. The time-dependent phenomena of creep 

and relaxation also depend on temperature. The viscoelastic analysis is 

thus temperature-dependent. In contact problems, friction produces heat, 

which would be included in the analysis. Another important consideration 

is the heat generation of rubber components in dynamic applications, since 

after each deformation cycle some fraction of the elastic energy is dis-

sipated as heat due to viscoelasticity. (Dynamic applications are discussed 

in Section 5.)

 A large class of materials exhibit a particular type of viscoelastic behavior 

which is classified as thermo-rheologically simple (TRS). TRS materials are 

plastics or glass which exhibit in their stress relaxation function a logarith-

mic translational property change with a shift in temperature (as shown in 

the figure). This shift in time t as a function of temperature T is described 

by the so-called “shift function”. An example of such a shift function is the 

Williams-Landel-Ferry	shift.	The	WLF-shift	function	depends	on	the	glass	

transition temperature of the polymer [Williams et. al., 1955]. (The Marc 

code allows TRS-materials for both linear and large strain viscoelasticity.) 

Another	well-known	shift	function	is	the	BKZ-shift	[Bernstein,	Kearsley,	

and	Zapa,	1963].	Note	that	with	TRS	materials,	the	relaxation	function	is	

independent of the temperature at very small times—which implies that the 

instantaneous properties are not temperature dependent.

For glass-like materials, a multi-parameter viscoelastic model incorporating 

the memory-effect and nonlinear structured relaxation behavior [Naraya-

naswamy, 1970] has been implemented in Marc. The model also predicts 

the evolution of physical properties of glass subjected to complex, arbitrary 

time-temperature histories. This includes the nonlinear volumetric swelling 

that is observed during typical glass forming operations. 

2.3. comPoSItES
Rubber composites can be classified as particulate, laminated, or fibrous 

depending on their construction. It is well known, that such composites 

usually exhibit highly anisotropic response due to directionality in material 

properties.

The most commonly available particulate composites are filled elastomers 

where the carbon black particles are dispersed in a network of polymeric 

chains. Fillers are added to rubber products such as car tires and shock 

mounts to enhance their stiffness and toughness properties. Common fill-

ers include carbon black and silica where the carbon particles range in size 

from a few hundred to thousands of angstroms. They influence the dynamic 

and damping behavior of rubber in a very complex and nonproportional 

manner. The unique behavior of carbon black-filled elastomers results due 

to a rigid, particulate phase and the interaction of the elastomer chains 

with this phase [Bauer and Crossland, 1990]. Unlike unfilled rubbers, the 

relaxation rate (in filled rubbers) is not proportional to the stress, and one 

may need a general nonlinear finite-strain time-dependent theory. Current 

research on the characterization of filled rubber shows promising results 

[Yeoh, 1990]. Yeoh derived 

a third-order strain energy 

density function which does 

not depend on the second 

strain invariant; features 

a shear modulus that can 

change with deformation; 

and can represent both 

tension and compression 

behavior equally well. Unfor-

tunately, among the existing 

strain energy functions, both 

the polynomial as well as 

Ogden models are unable to 

capture the sharp decrease 

in shear modulus for filled 

rubbers at small strains. 

On the computational side, a numerically efficient phenomenological model 

has been developed to analyze carbon black-filled rubber which accounts 

for the Mullins’ effect [Govindjee and Simo, 1992]. This damage model has 

been extended to include the Ogden strain energy function; results agree 

well with experimental data for cyclic tension tests with quasi-static loading 

rates. Marc offers a damage model capability in conjunction with the large 

strain viscoelastic model for all strain energy functions. This makes it an 

extremely useful tool to simulate the energy dissipation or hysteresis in filled 

rubbers.

	Laminated	composites	occur	in	rubber/steel	plate	bearings	used	for	

seismic base isolation of buildings and bridges where horizontal flexibility 

coupled with vertical rigidity is desired (right - shear strain contours). 

Another area of application is composite sheet metal forming where a 

layer of rubber may be sandwiched between two metal sheets for desired 

stiffness and damping characteristics. Computationally, this problem is 

handled by Marc using a nonlinear elasticity model within a total or updated 

Lagrangian	framework	for	the	rubber	while	resorting	to	large	deformation	
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plasticity	within	an	updated	Lagrangian	framework	for	the	metallic	sheets.	

Laminated	structures	can	be	modeled	using	the	lower-	or	higher-order	

continuum composite elements in Marc. The standard failure criterion for 

composite materials can be used in analysis with brittle materials.

An important class of composites arises due to the presence of textile 

or steel cords in the rubber matrix [Clark, 1981]. Applications of such 

composites can be found in tires, air springs, shock isolators, and hoses. 

Such composites pose a challenge, both from a manufacturing perspective, 

where adhesion of the fibers to the rubber matrix can occur, as well as from 

a numerical point of view in which numerical ill-conditioning can occur due 

to stiffness differential between rubber and cords. Such cord reinforced 

rubber composites can be modeled using the membrane or continuum 

rebar	elements	[Liu,	Choudhry,	and	Wertheimer,	1997].

Typical cord-rubber composites have a fiber to matrix modulus ratio of 

104 - 106: 1. This gives rise to an internal constraint of near-inextensibility 

of cords which is analogous to the near-incompressibility of rubber. Such 

composites have a volume fraction of cords less than a typical stiff fiber 

composite (used in aerospace applications). This is primarily to provide 

added flexibility to the system and to prevent frictional sliding between the 

cords in large deformation situations. Adding further complications is the 

fact that the cords themselves are composed of twisted filaments. This 

rise to a bimodular system dependent on the tension or compression due 

to microbuckling of the fibers. Material modeling of such composites has 

traditionally been carried out by smearing or averaging out material proper-

ties over the domain of the composite structure. [Walter-Patel, 1979] have 

shown good correlation of the experimental data with Halpin-Tsai, Gough-

Tangorra, and Akasaka-Hirano equations to derive equivalent mechanical 

properties for cord-rubber composites.

Marc offers several options to model the large strain behavior of cord-

rubber composites. The most popular ones include modeling the com-

posite plies as anisotropic membranes sandwiched between continuum 

or brick elements representing the rubber. If the composite structure is 

thin,	anisotropic	layered	shell	elements	provide	a	viable	option.	Likewise,	

the rebar element, designed originally for concrete reinforced with steel 

rods and then extended for cord-rubber composites has recently gained 

popularity due to its computational economy.

On a final note, although the phenomenological theories of elastomers 

are quite satisfactory in the gross design of structures, they cannot be 

expected to accurately model microscopic effects such as debonding, 

cracks, and free-edge effects.
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MSC Software: Case Study - B

Car Tire

Analyzing the interaction of an automobile tire with the road is one of the 

most challenging problems in computational mechanics today. It is a very 

complex 3-D contact analysis, involving a complicated shape (tire cross 

section), composite materials (comprised of polyester or steel cords, 

steel wire beads, and rubber—leading to anisotropic behavior), uncertain 

loading conditions (mounting loads, inflation pressure, car weight, side 

impact, hitting a curb, temperature effects for a car cruising, etc.), and large 

deformations. Friction, dynamic, and fatigue effects are also important. 

All leading tire manufacturers use nonlinear FEA to help design safer and 

better tires...but none has, as of yet, abandoned full-scale testing. Finite ele-

ment analysis allows them to minimize the number of prototypes required 

by eliminating designs which are not structurally correct or optimal.

The tire (right) is modeled using rubber continuum elements, a collection of 

15 different isotropic and orthotropic materials. The metal wheel is modeled 

with continuum elements. The road is assumed to be rigid. The complete 

load history consists of: mounting the tire on the rim; internal pressurization 

up to 1.5 bar; applying the axial car load; and rolling down the road. The 

deformed tire shape is shown, and the contours are of the displacement 

magnitude as the tire begins rolling to the left. A good tire model is, by 

definition, very complex and typically consists of hundreds of thousands of 

3-D elements. 

Notes: In addition to the complexities of tire analysis mentioned here, car 

and tire manufacturers also need to worry about: occasional “buckling” of 

the bead region; tire wear for different tread designs; noise transmitted to 

the passenger cabin; ride comfort; tire puncture by a nail or glass; and trac-

tion effects due to rain, snow, and ice. Passenger safety, manufacturability 

at reasonable cost, and tire life are the most important design objectives.

Contact Bodies and Mesh Orientations Displacement Contours
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2.4. hyStErESIS
Under cyclic loading, rubber dissipates energy—due to hysteresis effects. 

The steady-state response is quite different from the initial response. Filled 

rubber undergoes so-called stress-induced softening (sometimes referred 

to as damage), a phenomenon caused by a breakdown of crosslinks 

and a progressive detachment of rubber molecules from the surfaces of 

reinforcing fillers. Although rubber will stiffen under load in certain situations, 

here we will only discuss the more common case of rubber softening. A 

typical one-cycle force-extension plot for rubber in biaxial tension is shown 

on the right.

The five primary, underlying mechanisms responsible for hysteresis of 

rubber are:

1. Internal Friction

The internal friction is primarily a result of rearrangement of the molecular 

structure under applied load and subsequent sliding of chains, past each 

other. The phenomenon of internal friction or internal viscosity is highly 

temperature dependent and its temperature dependence may be de-

scribed by the concept of flow viscosity. The flow viscosity, ηv , decreases 

as temperature increases and at temperature >T Tg , it is related to its 

value at the glass transition temperature, Tg , typically given by the 

Williams-Landel-Ferry	equation: 
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An increase in temperature results in increased chain mobility, thereby, 

leading to decreased viscosity and reduced hysteresis. Presence of 

particulate filler, for example, carbon black, leads to decreased segmental 

mobility and hence increased viscosity and increased hysteresis.

2. Strain-induced Crystallization

Large	extension	and	retraction	of	elastomeric	material	gives	rise	to	

formation and melting of crystallized regions. Such a strain-induced crystal-

lization produces hysteresis effects. During the retraction phase, the stress 

relaxation rate usually exceeds the rate at which the molecular chains 

disorient leading to an extended period of crystallization. In this regard, an 

unfilled natural rubber exhibits more hysteresis than its unfilled synthetic 

counterpart as shown in the figure.

3. Stress Softening

Modification and reformation of rubber network 

structures in the initial loading stages can show 

a lower stiffness and changes in damping 

characteristics. This strain-induced stress 

softening in carbon black-filled rubbers is called 

the Mullins’ effect [Mullins-1969; Simo-1987; 

Govindjee and Simo, 1992] although, such a 

phenomenon has been observed in unfilled 

rubbers also. It manifests itself as history-

dependent stiffness. The uniaxial stress-strain 

curve remains insensitive at strains above the 

previous achieved maximum, but experiences a 

substantial softening below this maximum strain. The larger the previously 

attained maximum, the larger the subsequent loss of stiffness. In a  

cyclic test, the material is loaded in tension to a strain state labeled “1” 

along path “a”.

If the material is again loaded, the stress-strain curve now follows path “b” 

to point “1” and not path “a”. If additional loading is applied, path “a” is fol-

lowed to a point labeled “2”. Upon unloading, path “c” is followed, thereby 

resulting in an even greater loss of stiffness in the material. Features 

contributing to the stress-softening behavior include the modification and 

reformation of rubber network structures involve chemical effects, micro-

structural damage, multi-chain damage, and microvoid formation. These 

mechanisms are considerably enhanced by strain amplification caused by 

rigid particles in filled rubbers. 

4. Structural Breakdown

In a filled rubber with carbon black filler particles, the carbon black particles 

tend to form a loose reticulated structure because of their surface activity or 

mutual interactions. They are also interlaced by the network of rubber chain 

molecules which are crosslinked during vulcanization. The breakdown of 

these aggregates, and of the matrix/filler interfacial bonds due to loading, 

gives rise to hysteresis.

5. Domain Deformation

Viscoelastic stress analysis of two-phase systems [Radok and Tai, 1962] 

has shown that dispersed inclusions or domains in a viscoelastic medium 

contribute to an increase in the energy loss even when the domains 

are themselves perfectly elastic in nature. In some instances, however, 

the domains are themselves capable of exhibiting energy dissipating 

mechanism. Certain elastomers also contain domains of dispersed hard 

inelastic inclusions. Such rubbers exhibit an inelastic deformation leading to 

permanent set due to shear yielding and typically show very high levels of 

hysteresis.

Fracture Behavior of Polymers

Cyclic Tension Test 
Demonstrating Mullins’ Effect

Hysteresis Effects in Rubber
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Finally an example of hysteresis due to large-strain viscoelasticity is 

demonstrated here for three rubber samples with identical static behavior 

but different time-dependent behavior [Konter et al., 1991]. A series of 

identical load histories with constant time steps are applied: first, loading 

in 10 steps of 0.1 second; next, unloading of 10 steps of 0.1 second; then, 

loading another 10 steps of 0.1 second, etc. Calculations show very differ-

ent behavior for the three samples. Case X exhibits a “short term response” 

behavior—with a high stiffness. Case Y shows a “transition” type of 

behavior, with an initial increase in displacement followed by a cycle around 

a “permanent set”. (This permanent set is caused by rubber network 

modification and reformation, which is primarily developed during the initial 

loading.)	Case	Z	exhibits	a	typical	“long	term	response”	behavior—with	a	

lower stiffness.

2.5. othEr PolymErIc matErIalS
Many of the concepts used to analyze rubber behavior are also applicable 

to glass, plastics, foams, solid propellants, and biomaterials [Harper, 1982]. 

These include: large deformations, strain energy density functions, near 

incompressibility, and viscoelastic effects. Here, we’ll briefly note some 

important considerations in the modeling and design/analysis of these 

materials. 

BIOMATERIALS include human tissues and polymeric materials used in 

modern medical/dental implants and devices (for example, cardiac pace-

maker seals, filled dental composite resins). Plastics and other synthetic 

polymeric materials are viscoelastic. Human tissues may also be treated 

as viscoelastic materials; these include blood vessels, heart muscles, 

articular cartilage, mucus, saliva, etc. [Fung, 1981]. They creep and relax. 

Many of the concepts introduced in this White Paper are also applicable to 

biomechanics studies. These include, for instance: curve-fitting of test data 

to determine material parameters for FEA, viscoelastic modeling, response 

of a viscoelastic body to harmonic excitation, large deformations, hysteresis 

and softening; and so forth. The figure shows typical room-temperature 

stress-strain curves in loading and unloading for four species. Notice that, 

in all four cases, softening occurs and the unloading behavior is different 

from the loading behavior (as in the case of rubber).

FOAMS, often made of 

polyurethane, are soft and 

spongy. Techniques now exist 

for making three-dimensional 

cellular solids out of polymers, 

metals, ceramics, and even 

glasses. Man-made foams, 

manufactured on a large scale, 

are used for absorbing the 

energy of impacts (in packaging 

and crash protection) and in 

lightweight structures (in the 

cores of sandwich panels, for 

instance). Unlike rubber, foam 

products are highly compress-

ible, and are porous with a 

large portion of the volume 

being air. Elastomeric foams 

are fully elastic (resilient), metal 

foams may have plastic yield, and 

ceramic foams are brittle and 

crushable. Resilient foams are 

used for car seats, mattresses, 

shipping insulation materials, 

and other applications which 

undergo repeated loading where 

light weight and high compliance 

is desirable. Some foams (for 

example, rigid polymer foams) 

show plastic yielding in compres-

sion but are brittle in tension

Crushable foams are used widely in shock-isolation structures and 

components. These are sometimes analyzed by “foam plasticity” models. 

In compression, volumetric deformations are related to cell wall buckling 

processes. It is assumed that the resulting deformation is not recoverable 

instantaneously and the process can be idealized as elastic-plastic. In ten-

sion, these cell walls break easily, and the resulting tensile strength of the 

foam is much smaller than the compressive strength. Strain rate sensitivity 

is also significant for such foams.

GLASS is brittle, isotropic, and viscoelastic. Crack initiation and propaga-

tion are important concerns (even though most glass products are not 

ordinarily	used	as	load-carrying	members).	Like	concrete	and	plastics,	

glass creeps with time.

The proper FEA of glass products must pay attention to several important 

characteristics of glass when considering various forming processes and 

environmental conditions. (1) Glass exhibits an abrupt transition from its 

fluid to its glassy state—known as the glass transition temperature.

(2) Transient residual stresses are developed during manufacturing, thus 

requiring a time-dependent analysis. (3) For safety reasons, many common 

glass products (such as car windshields and show doors) are tempered: 

in which the glass is intentionally heated, then cooled in a controlled 

manner to develop a thin surface layer under compressive stress, in order 

to resist crack propagation and tension-induced cracking. (4) For optical 

applications such as lenses and mirrors, the curvature of the surface and its 

birefringence are of crucial importance. Here, the critical design parameter 

is deflection, not stress. (5) In hostile environments, such as those faced 

by solar heliostats in deserts, the adhesive bond cementing the mirror to 

its substrate is highly susceptible to deterioration by ultraviolet radiation, 

intense heat, moisture, etc.—usually leading to a change of the mirror’s 

intended curvature or flatness after continued exposure. (6) Many glass 

products in their service life experience a combination of thermal and 

mechanical loads, thus requiring a coupled thermo-mechanical analysis as 

part of the design procedure.

PLASTICS	behave	similarly	to	rubber	in	some	aspects,	but	differently	in	

others. For instance, plastics and rubber exhibit no real linear region in 

their	stress-strain	behavior	except	at	very	small	strains.	Load	duration	and	

temperature	greatly	influence	the	behavior	of	both.	Like	elastomers,	plastics	

are viscoelastic materials. Both are dependent on strain rate. Although, 

while the elastomers typically undergo large deformations even at room 

temperature, plastics usually do not.

Typical	Stress/Strain	Curves	in	Loading	
and Unloading for Four Species 
From Fung [1981], by permission

Blatz Ko Model for Foams



18

MSC Software: Nonlinear Finite Element Analysis of ElastomersWHITEPAPER

Additional complications arise in the characterization of plastics. Two 

generic types of plastics exist: thermosets and thermoplastics. Thermosets 

(such as phenolics) are formed by chemical reaction at high temperatures. 

When reheated, they resist degradation up to very high temperatures 

with minimal changes in properties. However, at extremely elevated 

temperatures, this type of plastic will char and decompose. At this point, 

the thermal and mechanical properties degrade dramatically. Phenolic 

materials are often used in thermal protection systems. Thermoplastics, 

when heated, will soften and then melt. The metamorphosis is more 

continuous. The relative variation in properties is more significant for 

thermoplastics than thermosets for temperatures below the point at which 

the latter decomposes. Thermoplastics generally exhibit a broad “glass 

transition” range over which the material behaves in a viscoelastic manner. 

This behavior is contrasted with thermosets that exhibit an abrupt transition. 

Some plastics (such as certain polyethylenes) deform inelastically and may 

be analyzed with standard metal plasticity models (for example, Drucker-

Prager model). One important distinction from a modeling standpoint is that 

plastics, unlike most metals, behave differently in tension and compression. 

In this respect, plastics are similar to rubber and composite materials. 

The proper FEA of plastic products requires the analyst to be aware 

of certain important characteristics of plastics. (1) The plastic forming 

process (for example, injection molding) results in a deformed shape with 

residual stresses. Coupled thermal-mechanical analysis is necessary, 

and automated contact analysis becomes very important. Properties 

are dependent upon temperature and time. (2) “Non-equilibrium” rapid 

heating and cooling effects are also important. In this respect, plastics 

are similar to glass. For most plastics, the bulk modulus and coefficient of 

thermal expansion are known to be sensitive to pressure. (3) Before actual 

cracking, a phenomenon called crazing often occurs. This is associated 

with localized regions where polymer chains have become excessively 

stretched due to high local stress concentrations. Rupture is most often 

initiated there. Crazing is associated with a region of altered density which 

is detrimental to the desired optical or aesthetic qualities of plastic products 

such as transparent utensils and containers. (4) Birefringence is important, 

as for glass. (5) Plastics are also susceptible to damage due to hostile 

environments, such as ultraviolet radiation and steam. Plastic products 

used in sterilization and autoclave applications often fail due to steam ef-

fects. They exhibit significant reduction in ductility with continued exposure 

to steam. (6) In some cases, linear FEA may be satisfactory when designing 

plastic materials under low-level loading and low strains. However, for those 

problems involving large deformations, buckling/postbuckling, contact/

impact, high loading, or where residual stresses are to be determined, 

nonlinear FEA is a must.

Snap Fit of Plastic Part
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MSC Software: Case Study - C

Constant-Velocity Rubber Boot Compression 
and Bending

Rubber boots are used in many industries to protect flexible connections 

between two bodies. The boot itself should have enough stiffness to retain 

its shape; on the other hand, it must not have too much stiffness so as to 

interfere with the flexible connection. In the automotive industry, “constant-

velocity” joints on drive shafts are usually sealed with rubber boots in 

order to keep dirt and moisture out. These rubber boots are designed to 

accommodate the maximum possible swing angles at the joint, and to 

compensate for changes in the shaft length. Proper design dictates that 

during bending and axial movements, the individual bellows of the boot 

must not come into contact with each other, because the resultant wear 

would produce failure of the rubber. Such undesirable contact would mean 

abrasion during rotation of the shaft, leading to premature failure of the 

joint.	Local	buckling	can	also	occur	in	one	of	the	bellows.

The FEA of rubber boots presents many interesting features: (1) large 

displacements; (2) large strains; (3) incompressible material behavior; (4) 

susceptibility to local buckling; and (5) varying boundary conditions caused 

by the 3-D contact between various parts of the boot. Proper design 

should also consider bellows shape optimization, fatigue life, maintainability 

and replaceability, and cost.

This example (panels a-d) shows the analysis of the axial compression 

and bending of a rubber boot. The boot is clamped on one side to a rigid 

surface, and on the other side to a translating and rotating shaft. Axial 

compression is first applied (panel b), followed by bending (panels c-d). The 

Cauchy stress contours on the deformed shapes are shown for the axial 

compression and rotation of the shaft. Once in place, the shaft rotates and 

the boot must rotate about the axis of the shaft in the tilted position.

Notes: One leading U. S. rubber boot manufacturer has applied such 3-D 

contact analysis techniques to evaluate and optimize new boot designs 

(one design has a longitudinal seam to facilitate installation). Improved 

fatigue life was the design goal, and nonlinear FEA was successfully 

used to minimize time and cost—and come up with a boot design which 

achieved an acceptable product life cycle. The analysis was correlated 

with test results, and showed that a modified design with a seam attained 

a similar fatigue life as the original design (without a seam). The new 

design with a seam substantially reduced the installation costs. Note that 

“do-it-yourself” kits using this split boot design are now available to replace 

worn-out boots.

Cauchy Stress Contours

a b c d
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3. DEtErmINatIoN of matErIal ParamEtErS 
from tESt Data
Successful modeling and design of rubber components hinges on the 

selection of an appropriate strain energy function, and accurate determina-

tion of material constants in the function. Appendix C describes the tests 

required to characterize the mechanical response of a polymeric material. 

Marc offers the capability to evaluate the material constants for nonlinear 

elastic and viscoelastic materials in its graphical user interface, Mentat.

Rubber Elasticity
For time-independent nonlinear elasticity, the fitting procedure may be 

carried out for polynomial representations of incompressible materials, the 

generalized Ogden model for slightly compressible materials, and the Foam 

model for compressible materials. Six different types of experiments are 

supported: uniaxial tension, uniaxial compression, equibiaxial, planar shear, 

simple shear, and volumetric tests. The significance of (non-equivalent) 

multiple tests for material modeling cannot be overemphasized. In general, 

a combination of uniaxial tension/compression and simple shear is required 

in the very least. Data from equibiaxial tension or planar shear may also be 

needed depending on the deformation modes of the structure. Volumetric 

data must be included for materials undergoing large compressible 

deformations, for example, foams. Also, the curve fitting in Mentat allows 

a combined input of more than one test to obtain the appropriate material 

constants.

After selecting appropriate test data for the application and adjusting the 

data to become comply with hyperelastic assumptions (see Appendix C), 

typical behavior of many elastomeric materials have stress-strain curves 

as shown here. This particular data set came from a silicone rubber where 

each of the three strain states or deformation modes (biaxial, planar shear, 

and tension) have decreasing stresses for the same strain level.  

Mentat computes the constants of any of the ten hyperelastic strain energy 

functions using all the adjusted data from any of the one to six different 

types of experiments mentioned above simultaneously. Once the constants 

of the selected hyperelastic material are determined, Mentat will plot both 

the data and curve fit together, including any modes not tested to facilitate 

selecting the best curve fit. Other than a rubber band, or balloon, most 

rubber applications experience mixed deformation modes, and a good fit 

must take more than one deformation mode into consideration as we shall 

see.

The importance of performing multiple mode tests is to assure that hyper-

elastic model predicts the correct behavior of other modes. The curve-

fitting in Mentat shows how other (non-measured) modes would behave. 

The example here shows how what appears to be a great tension fit for a 2 

term Ogden material greatly overpredicts the biaxial and planar response. 

More sophisticated hyperelastic materials seeking more constants require 

more modes to be tested. 

From a mathematical point of view, determining the material constants for 

an incompressible material is relatively easy, since they follow from the least 

squares method in a straight forward fashion. However, the material con-

stants may turn out to be negative and therefore physically not meaningful. 

The phenomenon is a numerical serendipity and not a fundamental material 

behavior. In this case, a constrained optimization process can be invoked, 

based on sequential linear programming [Press, Tenkolsky, Vetterling, and 

Flannery, 1992] in order to obtain non-negative constants. Forcing positive 

constants for the “poor” 2 constant Ogden fit here, improves its behavior, 

but still biaxial and planar modes are too stiff. Of course, you really don’t 

know unless you test the other modes.

Automated facilities are available to help the user determine these material 

parameters from test data. The curve-fitting program is interactive and con-

sists of four steps: (1) data entry—where the user inputs experimental data; 

(2) evaluation—where the program mathematically fits the data; (3) plotting/

display—where the user sees graphical verification of the results and is able 

to observe the behavior beyond the test range; and (4) write—where the 

program automatically creates a data set and the necessary coefficients for 

the strain energy density function of choice. Typical curve-fitting results are 

shown.
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For the generalized Ogden as well as 

the Foam model (principle stretch-

based models), the material constants 

follow from a set of nonlinear equations 

and the data is fitted based on the 

Downhill-Simpson algorithm.

Example 1: Determining 
Mooney-rivlin Constants 
The figure on the right shows typical 

Mooney plots for various vulcanized 

rubbers in simple extension. The 

fitted lines are straight, with constant 

slope C01 , and intercepts C10 , which 

typically vary according to the degree 

of vulcanization or crosslinking.

Example 2: Determining Ogden 
Constants 
The figure on the right shows how a 

3-term Ogden model compares with 

Treloar’s data [Treloar, 1975] in simple 

tension, simple shear, and biaxial 

tension. The Ogden constants in this 

case were determined to be [for details, 

see Ogden, 1972]:

µ = 0.631  MPa, µ = 0.00122  MPa, 
µ = 0.013  MPa

α = 1.31 , α = 5.02 , α = 2.03

For this example, it is clear that the 

3-term Ogden model gives the best fit. 

Practically, more than a 3-term Ogden 

model is rarely used.

Example 3: Determining Rubber Foam Constants
The figure on the right shows how a 3-term rubber foam model fits a rubber 

foam in uniaxial compression. The coefficients were determined to be: 

µ = 1.117651  MPa, µ = 1.119832  MPa, µ = −x0.125023 103
4
 MPa

α = 7.831731 , α = 0.7158322 , α = 7.002433

β = −5.417551 , β = −5.416842 , β = −6.858852

Viscoelasticity

The data representing 

a time-dependent or 

viscoelastic response 

of materials can be 

approximated by a 

Prony series, based on 

a relaxation or creep 

test. If the deformation 

is large, a relaxation test 

is more accurate. If the 

data is obtained from 

a creep test, a Prony 

series inversion must be 

performed before using 

it as an input to Marc. 

For a linear viscoelastic 

material, either the shear 

and bulk moduli, or the 

Young’s modulus and 

Poisson’s ratio may be 

expressed in terms of a Prony series. For large strain viscoelasticity, the 

elastic strain energy or the stress is expressed in terms of Prony series. 

Mentat attempts to fit the entered data based on a procedure described in 

[Daubisse, 1986].

Example 4: Determining Viscoelastic Constants
 The figure on the right shows a typical stress-time plot for a large strain 

viscoelastic material in relaxation test. The Prony coefficients are obtained 

from fitting the relaxation test data. 

4. DamagE aND faIlurE
The most important and perhaps the most difficult aspect of design 

analysis is failure prediction. Failure in rubber can occur because of flaws 

introduced during the manufacturing processes (for example, compound 

mixing, extrusion, molding, or vulcanization, etc.) or fatigue caused by ser-

vice loads and/or material degradation due to environmental/mechanical/

thermal conditions. Along these lines, [Simo, 1987] developed a damage 

model incorporated in a large-strain viscoelasticity framework to simulate 

the stiffness loss and energy dissipation in polymers. This model is cur-

rently implemented in Marc. Damage and Mullins’ effect in filled polymers 

was simulated by Govindjee and Simo, using a fully micromechanical 

damage [1991] and continuum micromechanical damage [1992] models.  

Recently, researchers have calculated tearing energy to simulate crack 

growth in an elastomeric material using the popular fracture mechanics 

concept	of	J-integral	[Cheng	and	Becker,	1992].	Using	the	virtual	crack	

extension method [Pidaparti, Yang, and Soedel, 1992] predicted the critical 

loads for crack growth. Also, the initiation and the initiation direction was 

found in good agreement with the experimental data for filled Styrene 

Butadiene Rubber. In a study of the fracture of bonded rubber blocks 

under compression, 

[Gent, Chang, and 

Leung,	1993]	found	

that: (1) Under static 

compression, two 

modes of fracture are 

possible—circumfer-

ential tearing at or near 

the bonded edges, 

and splitting open 

of the free surface; 

Example 1: Determination 
ofMooney-RivlinConstants for 
VulcanizedRubber in Simple Tension

Example 2: Correlation of 3-Term 
Ogden Model with Treloar’sData in 
Simple Tension, simple Shear, and 
Equibiaxial Tension From Ogden [1972]

Example 3: Curve Fit to Foam Data

Example 4: Curve Fit to Viscoelastic Relaxation Data

Tearing Near the Bonded Edges 
From Gent et. al. [1992]
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and, (2) under cyclic 

compression, the most 

likely fracture mode of 

the rubber is by crack 

propagation, breaking 

away the bulged volume.

For cord-reinforced 

composites, besides 

damage and fracture 

of the rubber matrix, 

the critical modes of 

failure are ply separation, 

debonding between 

layers of dissimilar 

materials, fiber pull-out 

due to lack of adhesion 

and microbuckling of 

cords. Besides mechani-

cal loading, thermal and 

viscoelastic effects play 

a critical role in failure of 

cord-rubber composites. 

Frictional heating at 

cord-rubber interface 

and internal heat buildup 

due to hysteresis in rub-

ber cause the tempera-

ture of the material to 

rise. Due to low thermal 

conductivity of rubber, 

the temperatures can 

rise to a very high value causing adhesion failures and microcracking in 

the rubber matrix. No good models exists currently in open literature to 

simulate the above failures.

5. DyNamIcS, vIBratIoNS, aND acouStIcS
A widespread use of rubber is for shock/vibration isolation and noise 

suppression in transportation vehicles, machinery, and buildings. These 

common rubber components include: snubbers, load bearing pads, engine 

mounts, bearings, bushings, air springs, bumpers, and so forth. Recent 

seismic isolation applications have seen increased usage of laminated rub-

ber bearings for the foundation designs of buildings, highway and bridge 

structures	(especially	in	the	United	States	and	Japan).	These	applications	

take advantage of well-known characteristics of rubber: energy absorption 

and damping, flexibility, resilience, long service life, and moldability.

A dynamic analysis is required whenever inertial effects are important, for 

example, high speed rolling of tires or sudden loss of contact in a snap-

through buckling analysis. When inertial effects are unimportant, such as 

for engine mounts and building bearings, performing a dynamic analysis 

is unnecessary. When the viscous effects are important for such cases, a 

quasi-static analysis is performed to obtain the overall deformation which is 

followed by a harmonic analysis to obtain frequencies and mode shapes.

Damping

The nature of damping is complex and 
is still poorly understood. Common 
damping models include:

•	Proportional (Rayleigh) Damp-
ing—assumes that damping may be 
decomposed as a linear combination 
of the stiffness and mass matrices. 

•	Coulomb Damping—or dry friction, 
comes from the motion of a body on 
a dry surface (for example, on the 
areas of support).

•	Viscous Damping—occurs when 
a viscous fluid hinders the motion 
of the body. The damping forces 
are proportional to velocity in the 
equations of motion.

•	Joint Damping—results from internal 
friction within the material or at 
connections between elements of a 
structural system.

Internal friction in the elastomer 

accounts for the damping nature of 

elastomeric parts. Because of the 

viscoelastic behavior of rubber, damp-

ing is dependent on frequency of the 

excitation. The presence of damping 

forces progressively reduces the amplitude of vibration, and ultimately 

stops the motion when all energy initially stored in the system is dissipated. 

Although it also exists in metals, damping is especially important in the 

design of rubber components. In the Maxwell and Kelvin models discussed 

in Section 2.2, damping is represented by the dashpot and is usually 

assumed to be a linear function of the velocity in the equations of motion. 

The treatment of damping in dynamics problems may be found in any book 

on vibrations or structural dynamics. 

Modal Extraction
A popular, accurate and efficient modal (eigenvalue) extraction method 

for	small	to	medium	size	problems	in	FEA	codes	is	the	Lanczos	method.	

For full vehicle models, the automatic component modes synthesis or 

automated multilevel substructuring are effective for models with millions of 

degrees of freedom, when thousands 

of modes are extracted. For the 

case of proportional damping, real 

modes give useful information (the 

natural frequencies). In the case of 

nonproportional damping, complex 

modes result. Natural frequencies 

are dependent upon pre-stress and 

material properties; both of these 

would require nonlinear analysis. This 

factor is important in the design of 

isolation mounts for buildings.

Splitting Open of the Free Surface 
From Gent et. al. [1992]

Fatigue Failure of BondedElastomer Block 
From Gent et. al. [1992]

Finite Element Solution:Torque vs. Twist 
From Morman and Nagtegaal [1983]
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Small-amplitude Vibrations In Viscoelastic Solids: Use Of  
“phi-functions” and Time vs. Frequency Domain Analysis
In the analysis of an engine mount, it is often important to model small-

amplitude vibrations superimposed upon a large initial deformation. The 

problem of small-amplitude vibrations of sinusoidally-excited deformed 

viscoelastic solids was studied by [Morman and Nagtegaal, 1983] using the 

so-called method of Phi-functions. The method was applied to improve the 

design of carbon black-filled butyl rubber body mounts and carbon black 

filled natural rubber suspension bushings in several car designs. The mate-

rial was assumed to be isotropic, isothermal, incompressible, and behaving 

according to a “fading memory” finite-deformation linear viscoelasticity 

theory.

This method is available in the Marc code and uses the third-order invariant 

form	of	the	James-Green-Simpson	strain	energy	function.	Morman	and	

Nagtegaal’s FEA results using Marc for the steady-state vibrations of a 

stretched and twisted viscoelastic cylinder which is subjected to a large 

initial deformation can be seen to agree well with observed results. The 

finite element model is a 30° wedge.

The same type of dynamic analysis of a viscoelastic body subjected to 

harmonic excitation may also be applied to many materials, including 

biomaterials such as human tissues [Fung, 1981].

Time vs. Frequency Domain Viscoelastic Analysis
In viscoelastic problems, both time and frequency domains are used. In 

time domain analysis, experimental data is required over the time domain 

of interest and a Prony series is usually used to represent the data. In 

frequency	domain	analysis,	Laplace	transform	techniques	and	harmonic	

excitation are commonly used. The storage modulus and loss modulus 

are dependent upon frequency (and amplitude for filled rubbers), and one 

needs to be aware of the in-phase and out-of-phase concepts [Christensen, 

1982]. In linear viscoelastic problems with harmonic loading, the behavior 

can be characterized in the frequency domain in terms of the storage and 

loss moduli as shown in the figure. Notice that in viscoelastic materials 

(assuming harmonic loading), the storage modulus typically increases 

with frequency, but the loss modulus first increases with frequency and 

then decreases to zero. As the frequency increases, the state of the 

rubber changes from an 

elastomer to a glass, with 

the maximum in the loss 

modulus signaling the 

transition to the glassy 

state. In unfilled rubbers, the 

storage and loss moduli are 

dependent on the frequency, 

but the former is largely 

independent on the strain 

amplitude. In filled rubbers, 

the storage modulus 

depends significantly on the 

strain amplitude. 

Direct Time Integration Methods
In transient nonlinear dynamics, both implicit and explicit direct integration 

methods are available for solving the equations of motion. Explicit methods 

include Central difference while the implicit schemes include Newmark-

beta, Wilson-theta, Hilber-Hughes-Taylor, and Houbolt methods. The 

choice of whether to use an implicit or explicit method is very subtle and 

depends on: the nature of the dynamic problem and the material; the type 

of finite elements making up the model; and the magnitude of the speed of 

sound in the material.

Implicit Methods—In an implicit method, the nonlinear matrix equations 

of motion are solved at each time step to advance the solution. Treatment 

of	boundary	nonlinearities	must	occur	within	a	time	step.	Large	time	steps	

may be used in implicit, dynamic analysis. Popular implicit methods (offered 

in several FEA codes) include: the Newmark-beta method, single-step 

and multi-step Houbolt, Hilbert-Hughes-Taylor, and the generalized Alpha 

method. These methods have different behavior in terms of stability, 

accuracy and damping. For oscillatory behavior, the time step should be 

a fraction of the period. For many problems, the adaptive time stepping 

procedure can be used advantageously.

As for the use of dynamic methods in viscoelastic analysis, no additional 

damping should be introduced because viscoelastic effects are already 

included in the material properties.

Explicit Method—In this method, the solution is advanced without 

forming a stiffness matrix, which makes the coding much simpler, reduces 

storage requirements, and improves computational efficiency. Explicit 

methods are conditionally stable for undamped linear systems. For a given 

time step, an explicit operator requires fewer computations per time step 

than an implicit one.

Explicit methods possess some known disadvantages, and it is important 

for users to bear in mind that a definite stability limit exists, which means 

that sometimes extremely small time steps may be required—resulting in 

higher computer costs. In nearly incompressible problems, the speed of 

sound in the material approaches infinity, and hence an extremely small 

time step is required. A common solution to overcome these numerical 

difficulties using explicit methods is to conjure up a scaled mass matrix—

which	is	very	often	assumed	to	be	diagonal.	Finally,	if	Lagrange	multipliers	

are included in the analysis, special formulations are required because they 

do not have any associated mass.

Coupled Acoustic-structural Analysis
 Coupled acoustic-structural analysis is of great interest to the automobile 

industry. Typical application areas would include—determination of sound 

transmission in an enclosed deformable structural cavity; for example, 

interior noise level in a car compartment. A typical case is modeling the 

deformation of an automobile door seal by the glass window in order 

to analyze the static deformation (Case Study E) and conduct acoustic 

harmonic analysis. The eigenfrequencies, mode shapes, and pressure 

amplitude in the compartment thus calculated can be used to design  

better door seals. A coupled acoustic-structural analysis capability also 

exists in Marc.
Frequency-Dependent 
Storageand	Loss	Moduli
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In a coupled acoustic-structural analysis (see figure), both the acoustic me-

dium and the structure are modeled. In this way, the effect of the acoustic 

medium on the dynamic response of the structure and of the structure on 

the dynamic response of the acoustic medium can be taken into account. 

Such a coupled analysis is especially important when the natural frequen-

cies of the acoustic medium and the structure are in the same range. Since 

the interface between the acoustic medium and the structure is determined 

automatically by Marc based on the CONTACT option, setting up the finite 

element model is relatively easy since the meshes do not need to be identi-

cal	at	the	interface.	The	ADAPT	GLOBAL	option	may	be	used	to	remesh	

the acoustic regions when large deformations occur in the cavity walls.

This functionality is suited for modeling of coupled structural acoustics 

where the acoustic medium is undergoing small pressure vibrations. It is 

applicable to ‘interior problems’ (for example, deformable cavity) and can 

simulate a steady state harmonic response. Modeling of ‘exterior problems’ 

like acoustic radiation and scattering is not considered.

Coupled Structural - Acoustic Analysis
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MSC Software: Case Study - D

Rubber Mount

Rubber is widely used in engine mounts and suspension bushings for 

shock/vibration isolation and noise reduction purposes. It possesses 

significant damping properties which are very useful in such applications. 

Damping can generate heat during cyclic loading. When a piece of rubber 

is stretched a few times, a certain amount of stress softening occurs—

which reduces its stiffness and alters its damping characteristics. Fillers 

in the rubber also influence the damping behavior. Rubber is viscoelastic 

and is usually analyzed using quasi-static methods (See more detailed 

discussions on rubber viscoelasticity in Section 4 and Section 5.) The 

usual design goal is to prolong a component’s service life, implying that an 

optimized design should have as low stress levels as possible. Sometimes, 

a rubber shock mount is designed to buckle (in order to absorb a large 

amount of energy), followed by eventual stiffening.

This bushing example assumes a Mooney-Rivlin strain energy function. 

As with the other case studies, the analysis is static. Automated contact 

analysis is used, where the top rigid surface moves downwards, causing 

the rubber to contact itself. Mesh distortion is usually a problem in such 

analyses. The figures show the deformed geometry and equivalent Cauchy 

stress distributions after various increments (panels a and b). The FEA code 

must be able to handle such variable contact automatically. This analysis 

was performed both with and without adaptive meshing. One may observe 

that in using local adaptive meshing techniques, additional elements are 

automatically located in regions of stress concentrations and high stress 

gradients (panel c). This improves the accuracy of the solution.

Notes: In order for the stress analysis to be rigorous and complete, the en-

gineer may need to take into account several real-life phenomena ignored in 

this example: material damage; viscoelastic behavior—to account for creep 

and relaxation effects; actual service environments—which typically include 

combined axial, radial, and torsional loadings, and very often, a metallic 

sleeve around the rubber insert; bushing preload (if any); dynamic (inertial) 

effects; and fracture and tearing effects.

Equivalent Cauchy 
Stresses:

Using	Local	Adaptive	
Meshing

Chriteria Used:

1. Strain	Level

2. Nodes in Contact

3. Nodes in Box (red)
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6. coNtact aNalySIS tEchNIquES
Rubber products always seem to involve “contact” versus “no-contact” 

conditions—for instance, rubber gaskets and the contact of a car tire with 

the road. To see applications of Marc to analyze typical 2-D rubber contact 

problems, see Case Studies A, D, and E. For 3-D examples, look at Case 

Studies B, C, and F.

Contact as a Nonlinear Constraint Problem
Contact, by nature, is a nonlinear boundary value problem. During contact, 

both the forces transmitted across the surface and the area of contact 

change. Because rubber is flexible, this change in the contact area is both 

significant and difficult to model using earlier methodologies (such as gap 

elements). The contact stress is transmitted in the normal direction. If 

friction is present, shear stress is also transmitted. 

Mathematically, the contact problem occurs as a constrained optimization 

problem where contact conditions occur as inequalities described as 

Kuhn-Tucker conditions. Among the approaches within the finite element 

framework that have been used to model the frictional contact and impose 

the nonpenetration constraint (to prohibit the overlap of contact bodies), 

the most popular ones include: Penalty Methods [Peric and Owen, 1992], 

Langrange	Multiplier	[Chaudhary	and	Bathe,	1986],	Augmented	Lagrangian	

[Laursen	and	Simo,	1993],	Perturbed	Lagrangian	[Simo,	Wriggers,	and	

Taylor, 1985], Hybrid Methods [Wunderlich, 1981], Gap Elements, Interface 

Elements, direct application of contact forces, and Solver Constraints. 

One important point to recognize is that the use of interface elements of 

any kind requires the user to know a priori where contact will occur. Since 

rubber is flexible, guessing the location of the contact area is very difficult, 

thereby resulting in incorrect loads being transmitted across the surfaces. 

An improper choice of penalty parameter in the penalty methods can lead 

to either penetration (low penalty number) or numerical ill-conditioning 

(high	penalty	number).	The	Langrange	multiplier	method	leads	to	high	

solution cost due to extra variables for contact pressure, in addition to the 

possible numerical ill-conditioning. In this regard, Marc bypasses the above 

objectives by the solver constraint method to solve the general 2-D/3-D 

multibody contact. This method allows an accurate modeling of contact 

without the problems associated with other methods.

Both deformable-to-rigid and deformable-to-deformable contact situations 

are allowed in Marc. The user needs only to identify bodies which are 

potential candidates for contact during the analysis. Self-contact, common 

in rubber problems, is also permitted. The bodies can be either rigid or 

deformable, and the algorithm tracks variable contact conditions automati-

cally. Besides modeling the rigid bodies as analytical, Marc also allows the 

analytical treatment of deformable bodies. This improves the accuracy of 

the solution by representing the geometry better than the discrete finite 

elements. This is important for concentric shafts or rolling simulation. The 

user no longer needs to worry about the location and open/close status 

checks of “gap elements,” or about “master-slave” relationships. Also, 

coupled thermo-mechanical contact problems (for example, rolling, casting, 

extrusion, car tire) and dynamic contact problems can be handled.

Friction
Friction is a complex phenomenon. Martins and Oden have published 

two comprehensive studies on the physics of static and kinetic friction, 

and computational models [Martins and Oden, 1985, 1990]. Surface 

imperfections, stick-slip motions, material softening due to heat in the 

contact area, time- and rate-dependence of the coefficient of static friction, 

and the oscillatory and unstable nature of sliding should all be considered 

when performing sophisticated rubber contact analysis. Use of a carefully 

measured friction coefficient will also help to achieve success. Experience 

has shown that the proper simulation of friction is extremely important for 

the success in rubber contact analyses.

When friction is present, bodies in contact develop frictional shear stresses 

at the interface. As for the value of the coefficient of friction, “steel-to-steel” 

contact results in a significantly lower coefficient than “rubber-to-steel” or 

“rubber-to-rubber” contact. Experiments have confirmed that the various 

components contributing to friction force in rubber are:

F F F F Ffriction adhesive deformation viscous tearing= + + +

Ffriction  is caused by surface adhesion kinetics and bulk mechanical 

properties. 

Fdeformation  is due to partial irreversibility (damping loss) during the deforma-

tion of rubber. 

Fviscous  represents the existence of a layer of either absorbed or liquid 

species between rubber and contact surface. 

Ftearing  is due to the fact that some solid surfaces (due to roughness 

characteristics) tear off particles from rubber. This phenomenon is also 

responsible for the wear.

In many rubber applications, however, the design objective is to increase 

the friction and, hence, the traction (for example, transmission belt, car tire).

Marc offers two friction models: Coulomb friction and shear friction. 

Coulomb friction is where the friction force depends upon the normal force, 

whereas shear friction is where the friction force depends upon the shear 

strength of the material. Coulomb friction suits elastomeric contact, where 

as shear friction is more appropriate for metal forming. In addition, a user 

subroutine is available in Marc, permitting the user to constantly monitor 

the interface conditions and modify the friction effect if necessary. In this 

way, friction can be made to vary arbitrarily—as a function of location, 

Pin Insertion and Extraction Forces with and without Friction
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pressure, temperature, amount of sliding, and other variables. In order to 

reduce numerical instabilities in the transition between sticking and slipping, 

a regularization procedure is applied. Sometimes, the physics of deforma-

tion dictates modeling the regions of sticking fairly accurately (for example, 

driver pulley transferring torque through the belt to a driven pulley). For such 

cases, a stick-slip, bilinear, or arc tangent friction model based on Coulomb 

friction is also available. Because friction generates heat, a coupled 

thermo-mechanical analysis is often required in rubber contact problems.

 Rigid bodies that participate in contact always have generalized force and 

moment components resolved to their center; these components of force, 

moment, and center position may be plotted over the load history. Consider 

a rigid pin inserted into and extracted from an axisymmetric rubber seal. 

Here we seek the force necessary to insert and extract the pin with and 

without the effects of friction. This particular problem, demonstrates this 

visualization of friction forces; more importantly it illustrates how a small 

amount of friction can dramatically affect insertion and extraction forces in 

rubber components. If you have ever tried to install and remove a rubber 

hose from a steel housing, or a steel pin from a rubber housing you may 

have experienced that insertion is usually easier than extraction. For 

instance, here friction along with the incompressibility of rubber conspire to 

make the extraction force magnitude of 135 N much larger than the 90 N 

necessary to insert the pin. Imagine if the fingers of the seal were backward 

facing, the extraction force would be even larger. The frictionless case (blue 

curve)	conserves	energy,	whereas	a	significant	amount	of	energy	(2.5	J	

some 10x larger than energy to compress the seal) is lost for the friction 

case (red curve). The energy lost by the work done by friction generally 

dissipates in the form of heat.

Visualization of relevant contact variables, such as normal and friction 

forces, are available in Mentat. Here rotational motion is transferred using 

an elastomeric belt between two pulleys. Panel a shows the belt and pulley 

assembly where the right pulley is stretched placing the belt into tension 

(Component 11 of Cauchy stress of 0.842 MPa in panel b). The drive 

pulley begins to rotate transferring torque to the driven pulley via friction 

until the belt rotates to 180o (panel c). Friction can be visualized by the 

ratio of the force in the top and bottom portions of the pulley. The ratio of 

these two forces will yield the coefficient of friction between the belt and 

pulley as shown (panel c). Furthermore, the components of contact and 

friction forces are added in a user subroutine and displayed in panel d. The 

tangent of the angle between the contact force vector and the normal of 

the surface also yields the coefficient of friction, 0.51 (panel d). 

Automatic Boundary Condition Handling  
for 3-D Contact Problems

“Real-world” contact problems between rigid and/or deformable bodies are 

three-dimensional in nature. To solve such contact problems, one must 

define bodies and their boundary surfaces. In Marc, the definition of bodies 

is the key concept in automatically analyzing 3-D contact. For rigid bodies, 

one can define the following surfaces: 4-point patch, ruled surface, plane, 

tabulated cylinder, surfaces of revolution, Bezier surfaces and NURBS. 

These surfaces can be converted into NURBS which have the advantage of 

continuity of the normal vector along the surface and the flexibility to model 

complex surfaces with a single mathematical description. Such a descrip-

tion of contact bodies is an essential requirement for robustness of solution 

algorithm. Virtually all common surface entities as defined by the latest 

IGES (Initial Graphics Exchange Standard) are included. Two examples of 

curved surfaces that can be used to define the shape of contact bodies are 

the ruled surface and the Bezier surface, as shown in the figures here. 

Deformable bodies are 

defined by the elements 

of which they are made. 

Once all the boundary 

nodes for a deformable 

body are determined by 

Marc, four-point patches 

are automatically cre-

ated and are constantly 

updated with the body 

deformation. Contact is 

determined between a 

node and all body pro-

files—deformable or rigid. 

A body may fold upon 

itself, but the contact 

will still be automatically 

detected; this prevents 

self-penetration.

Cauchy Stress (11 component) Contours

Cauchy Stress (11 component) Contours

Cauchy Stress (11 component) Contours
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MSC Software: Case Study - E

Car Door Seal: Automatic Multibody Contact

Automotive body seals are necessary due to the presence of openings in 

the car body such as passenger doors, windows, engine and trunk lids, 

and sunroofs. The requirements of static seals, such as those around wind-

shields, are important but relatively simple. On the other hand, dynamic 

seals, such as door and window seals, are complex in function. They must 

not only maximize the seal between fixed and movable components, but 

must also compensate for the manufacturing tolerances of various body 

parts.

Material requirements for automotive seals include: resilience, weather 

resistance (including ultraviolet radiation effects), bonding strength, tear 

and abrasion resistance, surface finish, and strain resistance. Mechanical 

requirements include: sealing of components against water, air, dust, and 

noise; ease of installation; and closing/cycling effort. 

Historically, the design and prototyping of automotive seals have relied 

on experience, empirical data, and “trial and error”. Today, however, most 

leading seal manufacturers use nonlinear FEA to optimize their seal designs 

early in the design cycle.

A typical car door seal (panel a) is subjected to three loading conditions:

1. install seal onto door frame

2. door closure

3. window closure

The rubber is assumed to be isotropic, with a Mooney-Rivlin strain energy 

density function. Panel b shows the deformed geometry and the equivalent 

Cauchy stress (see Appendix B) distribution when the door frame moves 

downward. The window and door approach the seal simultaneously. Panel 

c shows the effects of door closure and panel d 

shows both door and window in their final position.

Notes: In this type of analysis, sliding contact 

and potential contact of the body with itself are 

important. This example illustrates how a modern 

nonlinear FEA code can easily handle difficulties 

with complex boundary conditions. An automated 

solution procedure which keeps track of the multi-

body movements and variable contact conditions 

is crucial for success here. Such an analysis helps 

the designer to understand and improve the seal 

behavior by providing information about stresses, 

strains, reaction forces, and deformation histories. 

It also tells the designer where the rubber material 

is best used—leading to an optimum design of 

the car door seal for its expected dynamic loading 

histories.

Equivalent Cauchy Stress Contours
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7. SolutIoN StratEgIES
The core of a typical design process 

encompasses three phases: 

preprocessing of data, solution, and 

postprocessing. In the preprocessing 

phase, besides the data required in 

a typical linear analysis, a user must 

specify certain nonlinear analysis 

controls (analysis procedures, “contact” 

control parameters, convergence 

controls, etc.) and additional material 

properties (for example, Mooney-Rivlin 

and Ogden coefficients) required for a 

nonlinear rubber analysis.

In the solution phase, the key differ-

ence between nonlinear and linear FEA 

is that the solver performs the analysis 

in load steps (called increments). Within 

each increment, for implicit analysis the 

program seeks a solution by iteration 

until equilibrium is achieved, before 

proceeding on to the next increment. A modern nonlinear FEA code like 

Marc helps the user achieve success by first querying for acceptable 

tolerances in force, displacement strain energy, or other parameters. Then, 

it automatically increases or decreases the step size in order to achieve 

a	converged	solution	using	a	minimum	number	of	increments.	Lack	of	

convergence can take place due to input errors, improper modeling of 

physical phenomenon, or real physical instabilities. Therefore, the objective 

of a successful nonlinear analysis is to obtain an accurate, converged 

solution at the least cost.

Adaptive solution strategies run into three classes, the first is a procedure 

where if convergence is not achieved the time step is reduced, such that 

convergence is achieved. The applied excitation will be scaled down, or 

re-evaluated if the boundary condition is a function of a table. The second 

procedure is similar to the first, but additionally artificial damping is added 

to the solution. This is an effective process when rubber components are 

present. The third method is the use of arc-length or continuation methods 

(Chrisfield, Riks, Ramm, etc.), that effectively use mathematical methods to 

get a sense of the direction of the solution. These methods are often very 

successful when there is effectively one source of the external load present.

On the computational front, several key features distinguish Marc from 

other existing nonlinear FEA codes. Features on the materials side include, 

a very robust singularity-free implementation for case of equal stretches of 

the Ogden model, and special treatment for extremely large compressive 

stresses generated during deformation. Fast, efficient elements incorporat-

ing special treatment for incompressibility and hourglassing modes, and 

solution schemes which are able to analyze buckling and post-buckling 

regime.

For ease-of-use and computational savings, Marc allows a data transfer 

capability from axisymmetric to 3-D analysis. In many cases, the compo-

nent has an initially axisymmetric geometry and is initially axisymmetrically 

loaded (axial motion) and, hence, is truly axisymmetric. The second stage 

of the problem invokes asymmetric loading (radial motion) and needs to be 

fully three-dimensional. This function transfers the results from the nonlinear 

axisymmetric	model	to	the	3-D	analysis.	Large	savings	in	computational	

cost can be expected. This feature can be used with lower- and higher-

order displacement and Herrmann elements in static, dynamic, and heat 

transfer analysis. This feature can be used with both rubber elasticity and 

metal plasticity. 

The role of graphics (pre- and postprocessing) capabilities cannot be 

underestimated. Rapid developments in the nonlinear finite element 

technology has brought the modeling of full scale industry problems 

within reach. Hence, it is not uncommon for the model preparation stage 

to be more time consuming than the actual analysis itself. The interactive 

graphics program, Mentat, is tightly coupled with the analysis program, 

Marc. Analysis with Marc can also be done via Patran. Besides a wide array 

of geometry modeling features, both Mentat and Patran offer a variety of 

mesh-generation capability in 2-D and 3-D.

Augmenting the array of visualization techniques are the animation and 

movie capabilities in Mentat. In addition, interfaces to other commercial 

CAD systems allow designers to access the nonlinear capabilities of Marc 

while operating in their familiar environment.

Data Transfer from Axisymmetric to 3-D Analysis
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8. aDaPtIvE rEmEShINg
In the analysis of metal or rubber, the materials may be deformed from 

some initial (maybe simple) shape to a final, very often, complex shape. 

During the process, the deformation can be so large that the mesh used to 

model the materials may become highly distorted, and the analysis cannot 

go any further without using some special techniques. Global adaptive 

remeshing in Marc is a useful feature to overcome these difficulties.

When the mesh becomes too distorted because of the large deformation 

to continue the analysis, the analysis is stopped. A new mesh is created 

based on the deformed shape of the contact body. A data mapping is 

performed to transfer necessary data from the old, deformed mesh to 

the new mesh. The contact conditions are redefined, and the analysis 

continues.

Now the above steps are done automatically (see figure). Based on the 

different remeshing criteria you specified, the program determines when 

the remeshing is required. Remeshing can be carried out for one or 

more contact bodies at any increment. Different bodies can use different 

remeshing criteria.

Besides global adaptive remeshing, Marc also offers an h-method based 

adaptive mesh refinement capability called local adaptive remeshing (an 

automated process in which mesh is repetitively enriched until the error 

criterion is satisfied) for both linear as well as nonlinear analysis. Several 

error criteria are available to the user for subdividing the mesh adaptively. 

This is demonstrated in Case Study D.

A successful rubber analysis requires: a state-of-the-art nonlinear FEA 

code with automated contact analysis capabilities; availability of the 

necessary test data and friction coefficients; an experienced user; careful 

evaluation and application of the analysis results; and good pre- and 

postprocessing software which is closely coupled to the solver.

 Here the automatic remeshing of a rubber seal demonstrates what is 

called global adaptive remeshing. The original rectangular rubber seal only 

uses one element to begin (panel a). As the material is pushed into the 

horizontal channel (panels b - f) the automatic global adaptive meshing 

option automatically generates new meshes as many times as needed 

(38 remeshes here) until the seal fills the horizontal channel. Although this 

illustrative problem is two dimensional, global adaptive remeshing can also 

be done in three dimensions.

Global Adaptive Remeshing of a Rubber Seal
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MSC Software: Case Study - F

Downhole Oil Packer

Downhole packers seal off the region between casing and production 

tubing helping prevent flow of corrosive fluids upstream. Because of their 

location underground, they are subjected to harsh environmental conditions 

and high temperatures and pressures, making physical testing difficult 

and expensive. Simulation provides a superior alternative both in terms of 

cost advantage and testing safety. However, simulation of these products 

presents a challenge as their designs incorporate multiple nonlineari-

ties: material, large deformations and strains, contact between multiple 

components and self-contact, and friction, to name a few. 

In this case study, model of a fictitious packer assembly is analyzed 

demonstrating the benefits of automatic remeshing. The simplified packer 

design shown here contains packing elements, loaded and fixed cones, left 

and right v-rings and the casing walls. While packers are three dimensional, 

many are very nearly axisymmetric and may be simulated using an 

axisymmetric finite element model as shown here. The packing element is 

an elastomer, the v-rings are made of steel and the cones and casing are 

assumed to be rigid.

The packer is compressed by the 

loads on the cone until it reaches 

100% of its setting and fills the 

volume between the inner and outer 

walls. During this process, all the 

components of the packer as-

sembly experience contact, including 

self-contact of the packer elements. 

Because of the high pressures on 

the packer, the original finite ele-

ment mesh becomes too distorted; 

automatic global adaptive meshing is 

activated in this analysis whereby new 

meshes are automatically generated 

as many times as needed. Use of this 

advanced capability of Marc leads to 

a successful completion of the analysis, which would otherwise have been 

a very challenging problem to solve. 

Once the packer seats, the maximum stress and strain in the packer may 

be examined to determine possible failure locations. Total equivalent strain 

contours are shown here for 25%, 50%, and 100% of the compression set. 

Subsequently, a system pressure is applied to the packer (left end at red 

arrow) to analyze packer performance at operating pressures. In this case, 

a pressure subroutine assures that the pressure loading will advance only 

along the downstream direction as the packer separates from the outer 

casing. As the packer continues to deform, automatic remeshing facilitates 

quality mesh enabling superior 

convergence and accuracy. 

For larger pressures, more 

volumetric compression of 

the rubber packer occurs, as 

shown in increased blue and 

green colored regions in the 

total equivalent strain contours. 

At operating pressure, about 

50% of the packer separates 

from the outer casing; subse-

quent studies can determine if 

the seal continues to operate 

within tolerances under material 

relaxation and creep. 

Marc capabilities used: 

Elastomer material properties, 

Rigid-deformable contact, 

deformable-deformable 

contact, Self-contact, User 

subroutine for customized 

pressure loads, Automatic 

global remeshing.
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Solution

Incremental Loop
•	Update Configuration

•	Update Contact  
Conditions

Iteration Loop

Rezoning

DATA PREPERATION
•	FE model (nodes, elements)

•	material properties

•	loads

•	boundry conditions

linear fEa

PREPROCESSINg

Nonlinear fEa
(same as for linear FEA)

Nonlinear Analysis  
controls required

Material data to represent 
nonlinear behavior  
required, e.g.:

“Material Constants for strain 
energy functions”

OUTPUT
•	displacements

•	strains

•	stresses

•	strain energy density

RESULTS EVALUATION
•	deformed geometry

•	strain distributions

•	stress distributions

•	tempaturature distributions

POSTPROCESSINg

•	thermal strains

•	creep strains

•	plastic strains

•	Cauchy stresses

•	failure criteria

•	contact forces distribution

•	strain rates

•	history plots

•	derived variables
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9. currENt trENDS aND futurE rESEarch
Nonlinear FEA of elastomers has come a long way in the past twenty five 

years. Previous difficulties in the 1970-1985 period with handling complex 

contact boundary conditions have now been solved, recently, significant 

progress also has been made in 2-D and 3-D automated adaptive meshing, 

and these automated procedures are now being used in the design/

analysis of rubber components. Areas which still require further research 

and development include:

•	Global and local adaptive meshing for nonlinear FEA (especially for 3-D 
problems)

•	Coupling of design optimization methods with nonlinear FEA

•	Methods for dealing with crack or void initiation and propagation in 
elastomers

•	 Improved modeling of friction effects

•	Material instabilities–for example., surface folds and wrinkling

•	Viscoelastic effects in filled rubbers

•	 Improved plastics and other polymer models (to model large elastic as 
well as inelastic deformations)

•	Coupled processes involving interaction between mechanical, chemical, 
thermal, and electrical phenomena.

 Sometimes rubber seals have closed air pockets, or in the case of air 

springs the closed cavity is actively pressurized. Here the crush force 

increases dramatically and the deformed shape of the tube changes as 

well when the cavity of air is closed. The compression of the air inside the 

closed cavity of the tube plays an important role in the analysis.

10. uSEr coNvENIENcES aND SErvIcES
MSC Software offers an array of tools and services to help the customer 

design their products efficiently:

Material Characterization. Very often, obtaining the correct material 

parameters for analysis from test data is the major obstacle to a successful 

simulation. In such cases, Marc can refer the customer to materials testing 

firms which specialize in this type of testing (the same firm can also be used 

for testing the structural integrity of the finished elastomeric product). The 

required tests to characterize a material are given in Appendix C (Courtesy: 

Akron	Rubber	Development	Lab	and	Axel	Products,	Inc.).	In	addition,	a	

curve fitting procedure is required to determine the coefficients of the 

selected model. Details of the curve fitting program in Mentat, used along 

with Marc, are described in Section 3.

Training. Attendees Performing Analysis Using MSC Software.  

MSC Software offers 

training with a wide variety of 

workshops, including MAR 

103 “Experimental Elastomer 

Analysis”. This is a hands-on 

workshop covering material 

testing, material modeling 

and finite element analysis 

of elastomers. Instructors 

from MSC Software and 

Axel Products, Inc. present 

an integrated testing and 

analysis workshop featuring 

the experimental facilities 

of Axel Products, Inc. and 

the MSC Software Corpora-

tion. Attendees perform 

elastomer experiments using 

laboratory instruments to 

create data appropriate for 

use in building elastomer 

material models in FEA. 

Material models are then 

developed and examined 

on workstations running the 

Marc software.

Customer Support. Recognizing the complex nature of FEA of elasto-

mers, MSC Software Corporation offers prompt and professional customer 

support. For rubber FEA, the user should expect help from a knowledge-

able support person or, in some complicated cases, the particular 

developer who created that part of the analysis capability. The availability of 

competent support is often crucial to success in nonlinear FEA.

Consulting. Most nonlinear FEA software developers, such as MSC Soft-

ware Corporation also offer consulting services to assist an organization in 

performing rubber FEA. This service is especially valuable for a company 

that either does not possess an FEA capability or their in-house engineers 

do not have nonlinear analysis expertise. The scope of such consulting 

work usually includes the development of a model(s), analyzing the rubber 

problem, writing a final report, and sometimes, an oral presentation of the 

key results.

Elastomeric Tube Crush

MAR 103 Experimental Elastomer 
Analysis Training Class in Action
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Documentation. In addition to the reference documentation; MSC 

Software Corporation also offers tutorial documentation. The latter allows 

new users to try a rubber analysis similar to their own, and become familiar 

with the recommended procedure before venturing into a difficult rubber 

contact problem using a large 3-D model.

Error Checks And Warning Messages. FEA programs all contain built-

in input error checks. In rubber FEA, the program checks for items such as: 

the completeness of input coefficients for a certain strain energy density 

function, contact body definition correctness, consistency of the nonlinear 

analysis controls (tolerances, step size, etc.), friction definition, whether 

a user subroutine is used and if the required data for that subroutine is 

completely defined, etc. To help detect potential instability problems, the 

code also issues warnings to the user during the analysis about possible 

snap-through, negative eigenvalues, non-positive definiteness, etc.

User Subroutines. These are a must in nonlinear FEA that involve 

complex geometric, material, and boundary nonlinearities (such as in 

rubber and metal forming problems). They allow the user to define arbitrary 

variations of material properties, loads, and boundary conditions as a 

function of time, space, and temperature or some other state variable. 

User subroutines give the flexibility to users to tailor the nonlinear analysis 

specifically to their exact problem requirements. The coding and accuracy 

verification of user subroutines is best left to the experienced user. In 

rubber FEA, user subroutines can be used, for instance, to define the 

dependence of friction coefficient or some other material property on time, 

temperature, or location. More importantly, they can be also used to define 

a new material model.

11. coNcluSIoN
In the final analysis, the FEA of elastomeric or viscoelastic structures is a 

nontrivial undertaking. This White Paper has presented a lot of information 

about what one should know about analyzing rubber. But, where does one 

go from here? By that, we mean what types of questions should be asked 

when selecting a code for rubber FEA?

•	Does the FEA code contain the proper material models? Which is the 
proper model?

•	Are there suitable finite elements for incompressible analysis?

•	Does the code have modern automated contact analysis capabilities?

•	Does the code offer the best choice of elements, material models,  
solution algorithms, and convergence criteria for your situation?

•	Does the code developer have an extensive track record in analyzing  
applications similar to yours? If so, the developer should possess 
examples and verification problems similar to your application.

All these questions relate to the quality of the nonlinear FEA code and the 

support. After the code has been selected, the user should bear in mind 

that there are other additional considerations which help to ensure success. 

These are “tricks of the trade” that come with experience in analyzing 

rubber parts. For instance, some important considerations about model 

definition include: mesh refinement, specification of the incremental load 

schedule, and tolerance selection in the convergence criterion used. These 

subtleties very often mean the difference between success and failure.

Modeling of real world rubber parts is often complicated by a lack of good 

material data, boundary conditions, and knowledge of the actual field 

service conditions. Finally, a professional engineering judgment must be 

applied to interpret the numerical simulation results.
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 Early applications of a material which 

came to be known as natural rubber 

(NR) with C H5 8  , cis-polyisoprene, as a 

basic monomer unit involved a product 

derived from the Hevea Brazieliensis tree. 

Other varieties of NR came from balta, 

guayule, and gutta-percha. The superior 

heat dissipation properties under cyclic 

loading, resilience, electrical insulation, 

high tensile strength, and wear resistance 

make NR an attractive choice over the 

synthetics in many applications even today. Some common uses of NR can 

be found in golf-ball covers, cable insulation, tires, etc.

However, the desire to improve certain properties like resistance to 

environmental factors such as ozone degradation and ultraviolet rays, aging, 

and protection against industrial oils, led to the discovery of synthetic 

rubber. The advent of World War II saw an increased interest and necessity 

of the development of synthetic rubber compounds. Commonly known 

synthetic rubbers are Neoprene, Isoprene, Styrene-Butadiene, Butyl, Nitril, 

Acrylic, Butadiene, and Urethanes. The basis of modern synthetic rubbers 

lies in synthesis of macromolecules by way of step-growth or chain-growth 

polymerization.

Rubber products are manu-

factured via a vulcanization 

process. In an unvulcanized 

(green) state, rubber does 

not have the desired 

tensile strength, is sticky 

and deforms permanently 

under large deformations. 

Rubber is vulcanized at high 

temperatures with addition 

of sulfur, accelerators, and 

curatives under application 

of pressure. The sulfur and 

carbon atoms, together 

with metal ions and organic 

radicals, form the crosslinks 

between polymer chains. 

This crosslink network 

determines the physical properties and is controlled by vulcanization time 

and temperature. Mechanically, the process manifests itself by an increase 

of retractile force and a possession of “rubbery” properties such as 

increased elasticity.

After prolonged exposure to the sun, rubber parts become discolored, 

brittle, and exhibit crazing and stress cracks. To inhibit these ultraviolet ra-

diation effects, rubber manufacturers typically use “stabilizers” (for example, 

carbon black, an excellent absorber) and “masks” (for example, urethane-

based paint). These are used, for instance, in exterior rubber gaskets and 

seals for cars. In the United States, federal regulations require that exposed 

rubber components must withstand exposure to ultraviolet radiation for 

approximately five years. The most damaging effect is due to ozone, which 

causes exposed rubber 

to become brittle. To 

simulate these effects 

and to improve the 

design of rubber parts, 

manufacturers subject 

specimens to xenon (or 

carbon) arcs, where the 

specimen is typically 

stretched 20% at certain 

prescribed temperatures.

Fillers play an extremely important role in the manufacturing of rubber to 

impart the desired properties. On one hand, several properties of unfilled 

rubbers such as hardness, abrasion resistance, tensile, tear strength [Mark, 

Erman, and Eirich, 1994] and a possible redistribution of rubber network 

stresses can be enhanced by use of carbon black and silica. On the other 

hand, the viscoelastic response and hysteresis losses are greatly enhanced 

by fillers (since the material properties depend on the strain history). There 

is, nevertheless, a correlation between the above two characterizations of 

carbon black. It is hypothesized that carbon black particles act as stress 

concentrators and originators of microscopic flaws which precede a 

gross macroscopic tearing. However, stress relaxation and creep reduce 

the stress concentration at the crack tip. The increased stresses at the 

particles produce molecular orientation or alignment; thereby, blunting 

the crack tip and diverting the tear from a rapid fracture. Other fillers like 

wax, paraffin, and mineral oil are added to increase the heat dissipation 

capability. 

APPENDIX A
Physics of rubber

cis-polyisoprene

Typical Polymer Molecules

Carbon Black Filled Rubber 
From Govindjee and Simo [1991]
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The distinctive features of rubber elasticity have a thermodynamical basis:

δ
δ

δ
δ

= 



 − 



F E

L
T S

LT T

Thus, at equilibrium, the force ( F ) exerted on stretching a rubber strip 

equals the rate of change of internal energy ( E ) and entropy ( S ) with length 

( L ) for a given temperature ( T ). It has been concluded from experiments 

that rubber elasticity manifests itself in the second term of the above 

equation, except at low elongations (<10%) at which the thermal expansion 

masks the entropy effect resulting in thermoelastic inversion or at very 

large elongations, at which molecular chain orientation and strain-induced 

crystallization occurs.

Rubber is composed of long chain of molecules, oriented randomly due to 

thermal agitation of their segments. Breakdown of chains, due to straining, 

results in damage and stiffness reduction of the elastomer. Entangled 

chains have significant impact on the viscoelastic properties such as creep 

and stress relaxation and melt viscosity.

The following table shows how some mechanical properties of rubber 

compare with other materials:
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Stress and Strain Measures
In large deformation analysis of 

elastomers, two equivalent methods 

may be used to describe material 

behavior,	the	total	Lagrange	or	the	

updated	Lagrange	procedure.	When	

using	the	total	Lagrange,	the	original	

configuration is the material reference 

frame,	whereas	updated	Lagrange,	

the current deformed configuration 

is the material reference frame. In 

such cases, most nonlinear FEA 

codes such as Marc use a strain 

measure	called	the	Green-Lagrange	

strain, E  [Fung, 1965], which for 

uniaxial behavior is defined as: 
λ= −E 1 / 2( 1)2

 and a correspond-

ing “work conjugate” stress called  

the 2nd Piola-Kirchhoff stress, S2 ;  
=S P A L L/ ( / )2 0

2
. Although the 2nd Piola-Kirchhoff stress is useful for 

the mathematical material model, it has little physical significance and 

is difficult to use for the interpretation of results. Therefore, the engineer 

resorts to either the Cauchy (true) stress, σ ; σ = P A/  with energetically 

conjugate strain measure the logarithmic (true) strain, ε ; ε = L Lln( / )0  or 

one can utilize the familiar engineering (Biot) stress, S1 ; =S P A/1 0  with 

energetically conjugate strain measure being engineering strain, =e L L/ 0

.	As	an	alternative	one	can	use	the	updated	Lagrange	formulation,	where	

stress and strain measures are with respect to the current deformed 

configuration. Then the Cauchy stress and logarithmic strain are naturally 

used.	It	should	be	noted	that	the	Green	Lagrange	strain	is	often	expressed	

with respect to the deformation gradient, = ∂ ∂F x X/  where x  and X  

refer to the deformed and original coordinates of the body. Marc provides 

all of these strain and stress measures to the analyst. It is important to note 

that at small strains, the differences between various measures of stresses 

and strains are negligible.

Numerical Treatment of Incompressibility
This part explains the principles underlying the behavior and numerical 

treatment of incompressible materials. (For more details, see any of the 

finite element textbooks—for example, [Hughes, 1987]—listed in the 

Suggestions for Further Reading.) Incompressibility is one of the most 

troublesome areas in the finite element analysis of elastomers. Modern 

computational mechanics practice in the analysis of incompressible 

materials is to suppress the volumetric component of the strain field by 

appropriately selected variational principles.

Incompressible Elasticity
A simple way to understand why incompressibility results in numerical 

problems is to examine the familiar elasticity relationship: 

= +
−

K
G

v
v

Bulk modulus ( )
Shear modulus ( )

2(1 )
3(1 2 )

For nearly incompressible materials, Poisson’s ratio v  approaches 0.5, and 

the bulk modulus becomes large relative to the shear modulus. In the limit, 

when the material is completely incompressible ( =v 0.5 ), all hydrostatic 

deformation is precluded. In this limiting case, it is, therefore, not possible 

to determine the complete state of stress from strain only. This indetermi-

nacy difficulty applies not only to isotropic materials, but also to orthotropic 

and anisotropic materials.

Most rubbery and polymeric materials are not completely incompressible. 

Typical values of Poisson’s ratio are in the range of 0.49 to 0.49999. It is 

important to note that the use of these values in finite element codes that 

have not been tailored for incompressibility analysis will lead to very serious 

numerical errors, caused by the ill-conditioning resulting from the division 

by a value which is nearly zero. More importantly, “mesh locking” may 

occur when using conventional displacement based formulations. Filled 

elastomers, however, often have Poisson’s ratios of approximately 0.49 and 

may be considered “nearly incompressible”. Whenever the material is nearly 

or completely incompressible, special finite element formulations must be 

used to obtain reliable results, as explained in the following subsections.

Mesh Locking and Constraint Counting
Whether a particular finite element code is suitable for analyzing 

incompressible problems depends on the type of element used and its 

formulation. For instance, standard lower-order quadrilateral isoparametric 

elements found in many FEA codes exhibit extremely poor performance 

in analyzing incompressible or nearly incompressible problems and exhibit 

a pathological behavior called mesh locking. “Mesh locking” refers to the 

inability of an element to perform accurately in an incompressible analysis 

regardless how refined the mesh is, due to an over-constrained condition 

and insufficient active degrees of freedom. Specifically, if a standard 

element is distorted into an hourglass mode, it will lock as the bulk modulus 

becomes infinite. Note that the element locks despite the fact that its 

area has remained constant, resulting in the prediction of too small of a 

APPENDIX B
mechanics of 
rubber
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displacement and too large of a 

stress. Hence, the locking is a 

peculiarity of the finite element 

discretization, and special 

techniques have been used to 

improve the behavior of the ele-

ments. Some effective analytical 

approaches to overcome mesh 

locking are discussed in the next 

subsection.

To check whether an element will 

lock, a method called constraint 

counting has proven to be quite 

effective [Nagtegaal, Parks, and 

Rice, 1974]. The constraint ratio 

r is defined as the ratio of the 

active degrees of freedom to the 

number of constraints. Optimal 

constraint ratios are r = 2 for two-

dimensional problems, and r = 3 

for three-dimensional problems. 

A tendency to lock occurs if r is 

less than these values. While 

constraint ratios are a helpful 

engineering tool, they do not 

ensure convergence. A mathematically rigorous approach instead makes 

use of the so-called Babuska-Brezzi stability condition [Hughes, 1987]. 

Before embarking on an incompressible analysis, therefore, the user must 

exercise extreme care and fully understand the limitations of the elements 

to be used. 

Overview of Analytical Approaches
Modern analytical techniques used in treating incompressibility effects in 

finite element codes are based on the Hellinger-Reissner and Hu-Washizu 

variational	principles	[Zienkiewicz	and	Taylor,	1989].	Well-known	applica-

tions of these principles include assumed strain methods, such as: the 

mixed method of [Herrmann, 1965]; the constant dilatation method of 

[Nagtegaal, Parks, and Rice, 1974]; the related B-bar methods of [Hughes, 

1980] and [Simo, Taylor, and Pister, 1985]; the Hu-Washizu methods of 

[Simo and Taylor, 1991]; the mixed assumed strain methods used with 

incompatible modes by [Simo and Rifai, 1990]; and selective-reduced 

integration methods. Another class of approaches is the so-called as-

sumed stress methods, which are used by researchers such as T.H.H. Pian 

and S.N. Atluri and their co-workers. 

Mixed methods usually have the stresses, strains, dilatancy, or a combina-

tion of variables as unknowns. The earliest mixed method is the so-called 

Herrmann formulation. A modified form of the Hellinger-Reissner variational 

principle is used to derive the stiffness equations. A pressure variable 

(energetically conjugate to the volumetric strain) is introduced in the form 

of	a	Lagrange	multiplier.	Herrmann’s	approach	has	been	used	since	the	

mid-1960s and 1970s in FEA codes such as Marc, TEXGAP, and various in-

house codes developed by leading solid rocket propellant manufacturers.

The constant dilatation method of [Nagtegaal et al., 1974] decouples 

the dilatational (volumetric) and distortional (isochoric) deformations and 

interpolates them independently. Appropriately chosen functions will 

preclude mesh locking. The B-bar method of Hughes is a generalization of 

this method for linearized kinematics. Selective-reduced integration under 

integrates the volumetric terms. However, all these methods can be shown 

to be equivalent under certain 

conditions [Malkus and Hughes, 

1978].

Stability
Instabilities that arise in the FEA of 

elastomers can be either “physical” 

or “numerical”. Physical instabilities 

include buckling of a structure. 

Possible onset of buckling may be 

characterized by a limit point when 

the rubber structure can snap-

through from one equilibrium configuration to another, or a bifurcation point 

which is characterized as an intersection of two equilibrium paths. Other 

types of instabilities would include necking of a sheet; or sudden folds or 

wrinkles which occur due to high compressive stresses near a surface. 

Marc has extensive post buckling capability to analyze rubber-to-rubber 

contact beyond the initial stage of folding. These instabilities which result 

in a sudden change in stiffness pose a severe test of a code’s solution 

algorithm. 

[Padovan et al., 1991] have studied the occurrence of physical instabilities 

associated with surface wrinkles and local bifurcations in seals and gaskets. 

Typical mesh densification results are shown for those elements bordering 

the folds. In studying surface instabilities of oil well valve rubber packings, 

Padovan has found that strains will reach 400 to 450 percent and that low 

cycle fatigue becomes important. With valve closure, a hierarchy of folds 

appears: single folds, folds of folds, and multiple foldings. In those cases 

where folds occur near a rigid or very stiff boundary, refining the model 

would not help to achieve a converged solution!

Cord-rubber composites present yet another example of instability that may 

arise due to treatment of internal constraints, that is, near inextensibility of 

the fibers. In fact, buckling and warping of surfaces of a reinforced material 

may result from the loading, which if applied to unconstrained material, 

would cause no instability at all [Beatty, 1990]. Inflatable cord-reinforced 

rubber products present an example of structure whose stability limits are 

governed by air pressure and construction parameters in addition to the 

material properties.

2-D Hourglassing Mode

3-D Hourglassing “Eggcrate” Mode

Surface Instability
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Numerical instabilities include: instabilities in the mathematical description 

of the material law, and instabilities in the numerical enforcement of the 

incompressibility constraint. The material model must satisfy certain 

restrictions on its elastic moduli [Rivlin, 1980] to produce physically 

acceptable modes of deformation. In short, the material must satisfy the 

Drucker Stability criterion that the change of energy in a closed cycle is 

non-negative. For isotropic, incompressible materials, the Drucker Stability 

criterion is expressed as: 

∑∑ σ ε ≥d d 0ij ij
ji

For elastic materials without energy dissipation, the above criterion reduces 

to an equality. Marc material parameter evaluation solves a constrained 

optimization problem to assure the stability of energy functions. [Tabad-

dor, 1987] has shown the existence of multiple solutions with more than 

one stable solutions in pure, homogeneous modes of deformation using 

perturbation method. These instabilities do not usually occur in the actual 

structure and are often the result of the mathematical abstraction of the real 

material. The numerical algorithms in Marc enable the user to avoid these 

instabilities.

Mesh Densification During Folding 
From Padovan et. al. [1991]

Wrinkling of Seal
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The testing described herein is 

to define and to satisfy the input 

requirements of hyperelastic 

material models that exist in 

nonlinear finite element software 

like Marc. Although the experiments 

are performed separately and the 

strain states are different, data from 

all of the individual experiments 

is used as a set. This means that 

the specimens used for each of 

the experiments must be of the 

same material. This may seem 

obvious but if the specimens are 

specially molded to accommodate 

the differing instrument clamps for 

different experiments, it is possible 

that you may be inconsistently 

testing the material. Remember 

to cut specimens from the same 

material as the application. 

The testing of elastomers for the 

purpose of defining material models 

is often mis-understood. There are 

several standards for the testing 

of elastomers in tension. However, 

the experimental requirements for 

analysis are somewhat different 

than most standardized test 

methods. The appropriate experi-

ments are not yet clearly defined by 

national or international standards organizations. This difficulty derives from 

the complex mathematical models that are required to define the nonlinear 

and the nearly incompressible attributes of elastomers, and hence the 

experimental procedures are very intimately tied to elastomeric material 

model development.

Physical Measurements 
Basic physical measurements discussed here are limited to force, length, 

temperature and time. Force is usually measured by a load cell. The load 

cell actually measures changes in resistance of strain gages placed in a 

bridge on a metal shape that deforms slightly as the specimen is loaded. 

The change of resistance is calibrated to report force. The load cell can be 

seen at the top of the specimen in the right 

top figure. The output from the load cell 

enters the data acquisition system in the 

computer along with the initial specimen 

area. The recorded force is divided by the 

initial specimen area automatically by the 

data	acquisition	system.	Length	or	posi-

tion is best measured by a non-contacting 

device such as a video extensometer as 

show in the middle right figure. The video 

extensometer senses differences in color 

between two marks on the specimen. The 

length between these two marks is con-

tinuously recorded by the data acquisition 

system. Another non-contacting technique 

is the use of a laser extensometer. The 

laser sends out a planar light which is 

reflected back from reflector tags attached 

to the specimen as shown in the bottom 

right figure. At the start of the test, the 

initial gage length is entered into the 

data acquisition system, and as the test 

progresses the change in gage length is 

recorded by the data acquisition system. 

Time is recorded by the data acquisition 

system that synchronizes the force and 

length measurements. The data recorded 

can be output in ascii files that contain the 

engineering stress, engineering strain and 

time that are later used for the hyperelastic 

material model fitting.

In the fol-

lowing tests, 

the material, 

temperature, 

strain range, 

strain rates, 

and precondi-

tioning should 

be deter-

mined by the 

application to 

be modeled.

APPENDIX C
material testing 
methods

Testing Machine

Specimen Cutouts

Cut Specimens From 
Same Material 150mm x 

150mm x 2mm Sheet

Dramatic Change in Properties with Temperature

Laser	Extensometer	with	
Tags on Specimen

Video Extensometer Readings

Video Extensometer
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Uniaxial Tension Test 
a. Deformation state:

λ λ= = L L/2 0 , λ λ= = A A/1 3 0

b. Stress state:

σ σ= = P A/2 0 , σ σ= = 01 3

Simple tension experiments are 

very popular for elastomers. The 

most significant requirement is 

that in order to achieve a state of 

pure tensile strain, the specimen 

be much longer in the direction of 

stretching than in the width and 

thickness dimensions. The objective 

is to create an experiment where 

there is no lateral constraint to 

specimen thinning. One can per-

form finite element analysis on the 

specimen geometry to determine 

the specimen length to width ratio. 

The results of this analysis will show 

that the specimen needs to be at 

least 10 times longer than the width 

or thickness. Since the experiment 

is not intended to fail the specimen, 

there is no need to use a dumbbell 

shaped specimen that is commonly 

used to prevent specimen failure 

in the clamps. There is also not an 

absolute specimen size requirement. 

The length in this case refers to 

the specimen length between the 

instrument clamps. Specimen 

clamps create an indeterminate 

state of stress and strain in the region surrounding the clamp in the process 

of	gripping.	Therefore,	the	specimen	straining,	L/L0,	must	be	measured	

on the specimen, but away from the clamp, where a pure tension strain 

state is occurring. A noncontacting strain measuring device such as a 

video extensometer or laser extensometer is required to achieve this. The 

load, P, is measured by a load cell. Calipers can be used to measure the 

instantaneous area, A, normal to the load. If this area is not measured, the 

material is assumed to be incompressible, V=V0.

Uniaxial Compression Test (Simple Compression) 
a. Specimen size: 25.3 mm diameter x 17.8 mm thickness

b. Deformation state:

λ λ= = L L/2 0 , λ λ= = A A/1 3 0

c. Stress state:

σ σ= = P A/2 0 , σ σ= = 01 3

Uniform states of strain are desired and this is especially difficult to achieve 

experimentally in compression. There are two basic reasons that make 

the compression test difficult. For the compression button depicted the 

first difficulty is making the button 

so that it becomes thick enough to 

measure the gage length. This may 

require a molded specimen, rather 

than extruded or poured sheet. 

Hence the wrong material may be 

tested. Secondly, because there is 

friction between the test specimen 

and the instrument platens, the 

specimen is not completely free to 

expand laterally during compression. 

Even very small friction coefficient 

levels such as 0.1 between the 

specimen and the platen can cause 

substantial shearing strains that 

alter the stress response to straining. 

Often, the maximum shear strain 

exceeds the maximum compression 

strain! Because the actual friction 

is not known, the data cannot be 

corrected.

Other compression tests include the split Hopkinson pressure bars 

designed for soft materials such as polymers and elastomers which 

measures high strain rate data.

For incompressible or nearly incompressible materials, equal biaxial 

extension of a specimen creates a state of strain similar to pure compres-

sion. Although the actual experiment is more complex than the simple 

compression experiment, a pure state of strain can be achieved which will 

result in a more accurate material model. The equal biaxial strain state may 

be achieved by radial stretching a circular or square sheet.

Biaxial Tension Test (Circular) 
a. Deformation state:

λ λ λ= = = L L/1 2 0 , λ = t t/3 0

b. Stress state:

σ σ σ= =1 2 , σ = 03

The equal biaxial strain state may 

be achieved by radial stretching a 

circular disc. The nominal equibiaxial 

stress contained inside the specimen 

inner diameter is calculated as: 
σ = P A/ 0  where: π=A Dt0 0 , D  

is the original diameter between 

punched holes, P  is the sum of 

radial forces, and t0  is the original 

thickness. Since the deformation 

state is uniform in the plane of the 

sheet, the radial components of 

stress and strains are constant with 

the polar and in-plane rectangular 

components of stress being the 

same value. In other words, if a 

square or circle are drawn on the 

Compression Machine

Specimen Sizes

Tensile Machine

Tensile Specimen

Specimen Response

Biaxial Machine
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specimen, they deform into a larger 

square or circle as the specimen is 

stretched. Once again, a non-

contacting strain measuring device 

must be used such that strain is 

measured away from the clamp 

edges. Finally if the instantaneous 

thickness, t, is not measured, the 

material is assumed to be incom-

pressible, =V V0 . For more details 

about this test and specimen, see:

http://www.axelproducts.com/

downloads/BiaxialExtension.PDF

Biaxial Tension Test 
(Rectangular)
a. Deformation state:

λ λ λ= = = L L/1 2 0 , λ = t t/3 0

b. Stress state:

σ σ σ= =1 2 , σ = 03

The equal biaxial strain state 

may also be achieved by 

radial stretching a square sheet. 

The nominal equibiaxial stress 

contained inside the specimen 

calculated as: σ = P A/ 0  where: 

=A Wt0 0 , and W  is the width and 

height of the specimen, P  is the 

average of the forces normal to the 

width and height of the specimen, 

and t0  is the original thickness. 

Once again, a non-contacting strain 

measuring device must be used 

such that strain is measured away 

from the clamp edges. Finally if the 

instantaneous thickness, t, is not 

measured, the material is assumed 

to be incompressible, =V V0 .

Planar Shear Test 
a. Deformation state:

λ = 11 , λ λ= = L L/2 0 , λ = t t/3 0

b. Stress state:

σ ≠ 0 , σ σ=2 , σ = 03

The planar shear experiment used 

for analysis is not what most of 

us would expect. The experiment 

appears at first glance to be nothing 

more than a very wide tensile test. 

However, because the material is 

nearly incompressible, a state of 

planar shear exists in the specimen 

at a 45 degree angle to the stretch-

ing direction. The most significant 

aspect of the specimen is that it 

is much shorter in the direction 

of stretching than the width. The 

objective is to create an experiment 

where the specimen is perfectly 

constrained in the lateral direction 

such that all specimen thinning 

occurs in the thickness direction. 

This requires that the specimen 

be at least 10 times wider than the 

length in the stretching direction. 

This experiment is very sensitive to 

this ratio. A non-contacting strain 

measuring device must be used to 

measure strain away from the clamp 

edges where the pure strain state 

is occurring (top right figure). If the 

instantaneous thickness, t, is not 

measured, the material is assumed 

to be incompressible, =V V0 . 

Below illustrates how analysis can 

be used to verify experimental 

assumptions. Modeling the actual 

specimen shows that λ = 11  to within 

30 parts per million as the specimen 

deforms.

Biaxial Specimen

Biaxial Specimen

Biaxial Machine

Planar Shear Test With 
Laser	Reflection	Tags

Planar Shear Specimen

Laser	Extensometer
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Simple Shear Test 
a. Deformation state:

λ γ γ γ

λ γ γ γ

λ

= + + +

= + − +
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2 2
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b. Stress state:

σ τ= = V A/12 0

The dual lap simple shear test is used in the tire industry. As a result of 

low shear strains, the end plates do not move in the vertical direction in 

this test. The quad lap simple shear test is used by the bearings industry. 

Since the material shear requirements are much higher, the end plates in 

the quad lap shear test are allowed to move in the vertical direction due to 

development of very high normal stresses (in mechanics, this phenomenon 

is termed as Poynting Effect). This test does not allow for the measurement 

of compressibility and as such this the volumetric compression test can be 

performed or the material assumed to be incompressible.

Volumetric Test 
a. Specimen size: 3 mm diameter 

x 2 mm thickness. Eight buttons 

stacked and lubricated with silicone 

oil.

b. Deformation state:

λ = 11 , λ = 12 , λ = L L/3 0

c. Stress state:

σ σ σ= = = − P A/1 2 3 0

A0  is the cross-sectional area of the 

plunger and P is the force on the 

plunger. Information regarding the 

bulk modulus can also be obtained 

by measuring relative areas in an 

uniaxial tensile or biaxial test. In 

this case, volumetric tests need 

not be performed. Otherwise this 

volumetric test may be performed. 

Furthermore, if a bulk modulus is 

not supplied, Marc will estimate it. 

For example, when using Mooney-

Rivlin forms of the strain energy 

density, Marc estimates the bulk 

modulus as = +K C C10000( )10 01

. Whereas for Ogden models, Marc 

estimates the bulk modulus as: 

∑ µ α=
=

K n n
n

N

1

Plotting volumetric along side 

simple compression expresses 

rubber’s incompressibility. 

Quad	Lap	Shear	Test

Dual	Lap	Shear	Test

K >>> G for Rubber

Volumetric Compression Test
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For materials where compressibility is very significant, for example, foams, 

volumetric tests may be performed by using a pressurized incompressible 

fluid such as water and the corresponding deformation and stress states 

are:

a. Deformation state:

λ λ=1 , λ λ=2 , λ λ=3

b. Stress state:

σ σ σ= = = − p1 2 3

where: λ = V V( / )0
1/3 , and p  is the fluid pressure.

Viscoelastic Stress  
Relaxation Test 
When a constant strain is applied 

to a rubber sample, the force 

necessary to maintain that strain 

is not constant but decreases with 

time, this behavior is called stress 

relaxation. Conversely, when a 

rubber sample is subjected to a 

constant stress, an increase in the 

deformation takes place with time, 

this behavior is called creep. Stress 

relaxation of a material can be 

measured in tension, biaxial tension, 

compression, or shear. Fortunately 

visocelastic behavior not being 

sensitive to the deformation mode 

can be determined by a tensile test 

being the easiest to perform. A 

simple loading experiment where 

the a specimen is stretched to a set 

strain and allowed to relax may be 

performed to provide sufficient data 

to model this behavior. The material 

data is typically fitted using a Prony 

or exponential series expansion. 

The accuracy with which this may 

be fitted is sensitive to the number 

of decades of time data. This means 

that the relaxation data from 0.1 

second to 1 second is as valuable 

to the fit as the relaxation data from 

1 second to 10 seconds and so 

on. As such, proper data collection 

early in the experiment can provide several decades of time data without 

running the experiment over several days.

The link below is a discussion of stress relaxation testing and the use of 

Arrhenius plots to estimate the useful lifetime of elastomeric components.

http://www.axelproducts.com/downloads/Relax.pdf

Friction
Because elastomers are commonly 

used in sealing applications, friction 

plays an important role in the 

performance of these applications. 

Friction is the force that resists 

the sliding of two surfaces relative 

to each other. The friction force 

is: (1) approximately independent 

of the area of contact over a wide 

limits and (2) is proportional to 

the normal force between the two 

surfaces. These two laws of friction 

were discovered experimentally 

by	Leonardo	da	Vinci	in	the	13th	

century, rediscovered in 1699 by 

G. Amontons and latter refined 

by Charles Coulomb in the 16th 

century. Coulomb performed many 

experiments on friction and pointed 

out the difference between static 

and dynamic friction. This type of 

friction is referred to as Coulomb friction today. In order to model friction 

in finite element analysis, one needs to measure the aforementioned 

proportionally factor or coefficient of friction, µ . The measurement of µ  

is depicted here where a sled with a rubber bottom is pulled along a glass 

surface. The normal force is known and the friction force is measured. Vari-

ous lubricants are placed between the two surfaces which greatly influence 

the friction forces measured.

Viscoelastic Tensile Test

Friction Data

Friction Test
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Adjusting Raw Data

The stress strain response of a 

typical test are shown at the right as 

taken from the laboratory equip-

ment. In its raw form, the data is 

not ready for fitting to a hyperelastic 

material model. It needs to be 

adjusted.

The raw data is adjusted as shown 

by isolating a stable upload cycle. 

In doing this hysteresis is ignored. 

This cycle needs to be shifted such 

that the curve passes through the 

origin. Remember hyperelastic 

models must be elastic and have 

their stress vanish to zero when 

the strain is zero.This shift changes 

the apparent gauge length and 

original	cross	sectional	area.	Letting	
σ ε( )′ ′,  be the raw data selected 

and defining σ ε σ ε( ) ( )= ′ ′Min,  ,  p p , 

then the adjusted data becomes:

ε ε ε ε

σ σ σ ε

( ) ( )
( ) ( )

= ′ − +

= ′ − +

/ 1

/ 1
p p

p p

There is nothing special about using 

the upload curve, the entire stable 

hysteresis cycle can be entered 

for the curve fit once shifted to 

zero stress for zero strain. Fitting a 

single cycle gives an average single 

equilibrium curve to represent the 

hysteresis of that cycle. Also one 

may enter more data points in important strain regions than other regions. 

The curve fit will give a closer fit were there are more points.

After shifting each mode to pass through the origin, the adjusted data 

curves are shown here. Very many elastomeric materials have this basic 

shape of the three modes, with uniaxial, planar shear and biaxial having 

increasing stress for the same strain, respectively. Typically examining the 

shifted curves, one observes that the ratio of equal biaxial to uniaxial stress 

is about 2. With the adjusted data, a hyperelastic fit can be generated like 

the Arruda-Boyce material shown here.
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1. What can one expect from the 
Finite Element Analysis?
The quality of the finite element results depends on several factors 

including computational technology in the code, experience and 

level of understanding of the analyst, and the interpretation of the 

results. Deficiencies in any of the above can lead to erroneous 

results or a poor design. However, an experienced analyst, who has 

a good understanding of the design process and the mechanics 

involved, can use the analysis judiciously as a verification as well as 

a predictive tool for better product and process design.

2. How do analysis and testing 
compliment each other?
Testing comes at two different levers:

i. Material Testing: Depending on the anticipated deformation, dif-
ferent types of tests can be chosen for determination of material 
coefficients. The quality of results is significantly affected by 
appropriate choice of tests and equally importantly, maintaining 
material stability with obtained coefficients.

ii. Product Testing: Several iterations in the development cycle can 
be bypassed if the design is first simulated by analysis. Only 
incremental changes will then be necessary to fine tune the 
prototype.

3. How do you know the answer is correct 
in a nonlinear Finite Element Analysis?
Previous experience, laboratory testing, code verification against 

analytical solution and simpler problems, and, above all, the 

intuition and engineering judgement of the analyst are the key 

factors in obtaining an accurate answer.

4. Why is Finite Element Analysis 
necessary along with testing?
Analysis does not replace component testing, but it will significantly 

reduce the product testing for performance and integrity. Several 

parametric sensitivity analysis before the mold design stage can 

significantly reduce the development cycle of the product. Typically, 

analysis and testing can be used hand-in-hand to iterate for a better 

design for manufacturing.

5. Which rubber material data is needed for 
nonlinear analysis (Uniaxial, Equibiaxial, Shear)?
For characterizing the time independent behavior of rubber, the 

following tests can be done:

i. Uniaxial tension or compression

ii. Equibiaxial tension

iii. Simple shear

iv. Planar shear

v. Volumetric

Calculation of the material coefficients for strain energy function 

requires simultaneous fitting to more than one deformation mode. 

Besides the uniaxial tension (or compression), another deformation 

mode should be selected depending on the application of the 

rubber component. For foam-like materials, a volumetric test is 

required.

To include strain-rate effects into the model (viscoelasticity), one 

requires either:

i. Stress-Relaxation test or

ii. Creep test

The stress-strain data must be obtained by applying ramp type 

loading if damage or stiffness degradation is to be considered in 

the elastomer.

Finally, during the fitting of the experimental data, care must be 

taken to insure the positive-definiteness of the material matrix as 

dictated by Drucker’s Stability Postulate.

6. How realistically will the code simulate 
multiple deformation modes (for example, 
Tension, Compression, and Shear)?
Multiple deformation modes can be accurately predicted by fitting 

experimental data of these deformation modes simultaneously. The 

kinematics of deformation in Marc is general enough to accom-

modate any deformation mode.

APPENDIX D
answers to commonly asked questions 
in rubber Product Design
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7. How to incorporate stress relaxation and creep 
behavior of rubber in Finite Element Analysis?
Stress relaxation and creep phenomenon can be modeled by a 

finite strain viscoelasticity model in Marc. The viscous response is 

characterized by a linear rate equation leading to a convolution rep-

resentation generalizing viscoelastic models. For extremely small or 

very large relaxation times, general finite elasticity is recovered.

8. What type of elements should be used for 
Finite Element Analysis of incompressible 
materials such as rubber?
Typically in elastomeric analysis, the nearly incompressible 

material behavior is modeled by using two- or three-field variational 

principle giving rise to the mixed elements. In Marc, either standard 

displacement based or Herrmann elements can be used for 

elastomer analysis since they treat the incompressibility constraint 

the same way. Compressible foam material can be modeled with 

standard displacement elements. The cord-rubber composites 

can be analyzed by using rebar elements. Analysis can be done 

using continuum, shell, or membrane elements depending on 

the kinematics of deformation. Computational efficiency can be 

obtained by reduced integration elements (requiring hourglass 

control for the lower-order elements). Thermal effects can be mod-

eled using the heat transfer elements. Recently, special triangular 

and tetrahedral elements satisfying incompressibility conditions 

have been introduced to model elastomers.

9. What are the material models 
available in the program?
Marc offers a rich library of several material models, namely:

i. Generalized Mooney-Rivlin, Ogden, Boyce-Arruda, and Gent 
models for elastomers.

ii. Foam

iii. Finite strain viscoelasticity model appropriate for elastomers and 
Narayanswamy nonlinear viscoelasticity model for glass 

iv. User subroutines allow the user to implement his/her own model 
(finite strain kinematics information is passed to the user) which 
may include temperature effects or internal variables in the model.

v. Discontinuous and Continuous Damage models to represent 
progressive stiffness loss, Mullins’ effect, and fatigue behavior of 
the elastomer.

10. What are the major strategies for getting 
convergence for a rubber model?
Typically, full Newton-Raphson or secant methods are used to solve 

the nonlinear system of equations. When instabilities, buckling, 

snap-through phenomenon exist, then an arc length procedure 

needs to be used. Marc includes the full Newton-Raphson as well 

as arc length procedure for the analysis.

11. What are the convergence criteria?
Several convergence criterion exist in Marc, based on:

i. Displacement

ii. Rotation

iii. Residual force

iv. Residual moment

v. Strain energy

12. How to incorporate damage phenomena 
into Finite Element Analysis?
Damage effects can be incorporated in the analysis in two different 

ways. In a phenomenological model, the Kachanov factor for dam-

age can be modified to accommodate the degradation of material 

properties	with	time	through	the	Marc	UELDAM	user	subroutine.	

Both, Mullin’s model for discontinuous damage and Miehe’s model 

for continuous damage are available in Marc.

13. How to consider fatigue in a rubber 
Finite Element Analysis?
Fatigue behavior due to cyclic loading and unloading of a rubber 

component can be simulated by Marc through the Continuous 

Damage Model due to C. Miehe. The model is available for all 

elastomeric strains energy functions in Marc. It allows modeling 

hysteresis and progressive loss of stiffness due to cyclic loading

14. How to model a dynamic rubber 
part with large deflection?
Small amplitude vibrations superposed on large static deflection 

can be analyzed by frequency domain dynamic analysis. Marc uses 

the phi-function approach to modal the vibrations in a sinusiodally 

excited, deformed viscoelastic solid.

15. How to incorporate a failure criteria 
into a Finite Element Analysis?
Simple fatigue, damage crack growth, and wear models can be 

used to analyze failure. Marc offers two different damage models: 

discontinuous damage model (to model Mullins’ effect) and the 

continuous damage model (simulate fatigue behavior). Crack 

propagation is modeled using the energy release rate method using 

the quarter-point elements. The wear models can be constructed 

with the information regarding relative slip between contact bodies 

and the frictional forces given out in the program. Several subrou-

tines exist in Marc to facilitate the user in developing his/her own 

failure models.
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16. Do you have a quick summary of the 
deformation modes, deformation 
gradient, and principal stretch ratios?
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