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VEHICLE ROUTING WITH TIME WINDOWS 

A. W. J. KOLEN, A. H. G. RINNOOY KAN and H. W. J. M. TRlENEKENS 
Erusnzus University, Rotterdum, The Netherlunds 

(Received December 1984; revisions received October 1985, June 1986; accepted August 1986) 

In vehicle routing problems with time windows, a fixed fleet of vehicles of limited capacity is available at a depot to serve 
a set of clients with given demands. Each client must be visited within a given time window. We describe a branch-and- 
bound method that minimizes the total route length, and present some computational results. 

A set of clients with known demands must be 
served by a fixed fleet of vehicles of limited 

capacity. All vehicles are located at a common depot. 
The vehicle routing problem (VRP) is to serve each 
client exactly once, so as to minimize the total route 
length. 

The time-constrained vehicle routing problem 
(TCVRP) is an important generalization of the VRP. 
In the TCVRP, each client has a time window in 
which he must be served. Such windows arise, for 
instance, from traffic restrictions in city centers or 
from the special nature of the goods delivered by the 
vehicle. 

The VRP represents an  area of extensive research. 
The detailed survey compiled by Bodin et al. (1983) 
contains about 700 references, documenting optimi- 
zation as well as approximation methods proposed to 
solve this problem or  one of its many variations 
(including the important dial-a-ride problem). These 
references also bear witness to the many practical 
occurrences of the problem and to its economic sig- 
nificance. The TCVRP has received much less atten- 
tion, in spite of the fact that time window constraints 
are very common in practice. Christofides, Mingozzi 
and Toth (198 la)  and Baker (1983) proposed opti- 
mization methods for the single vehicle case (the time 
constrained traveling salesman problem). Desrochers 
and Soumis (1985) addressed the shortest path prob- 
lem with time windows. Desrosiers, Dumas and 
Soumis (1 984) describe a column generation approach 
to the time-constrained routing problem. Finally, Des- 
rosiers, Sauve and Soumis (1985) proposed a Lagran- 
gian approach. Heuristics for the VRP have been 
extended to the TCVRP (Solomon (1983, 1987) and 
Savelsbergh 1984). The analysis of their worst-case 
performance suggests that the TCVRP is fundamen- 
tally more difficult than the VRP. For example, it is 
not hard to see that finding a feasible solution to the 

Subjcjcr cicissifircif~on. 627 branch-and-bound, 837 routing with time win 

Operations Research 
Vol. 35, No. 2, March-April 1987 

TCVRP is itself an NP-complete problem (Savels- 
bergh). 

The contribution of this paper is to describe a 
branch-and-bound method for the TCVRP. It is the 
first optimization method for this problem and was 
partially inspired by the optimization method for the 
VRP developed by Christofides, Mingozzi and Toth 
(1981~) .  Among other things, we use a different im- 
plementation of the idea of a state space relaxation. 
Computational experience with the method will be 
described as well. 

1. The Branch-and-Bound Method 

Let us suppose that client i for i = 1, . . . , n has 
demand q, that must be satisfied within a time window 
[a,, b,];u, units of unloading time will be required. 
(Actually, u,can be taken to be equal to 0without loss 
of generality.) The distance and travel time between 
clients i and j are given by dl,and t,, respectively. The 
depot is indexed by 0;it can be used in the period 
[ao,bo]and houses m identical vehicles, each with an  
upper bound c on the total load carried. A vehicle 
route is feasible if it satisfies this capacity constraint 
as well as all time window constraints; if necessary, 
the vehicle can wait at  a client to ensure feasibility of 
the next time window on the route. We are interested 
in a set of feasible routes through which each client is 
sewed exactly once, such that the total length of these 
routes is minimal. 

Our description of the branch-and-bound method 
starts with the branching rule. Each node a in the 
search tree corresponds to a set F(a) of fixed routes 
starting and finishing at  the depot, a partial route P(a) 
starting at the depot and a set C(a) of clients that are 
forbidden to be next on P(a). Initially, of course, F(a) 
and C(a) are empty and P(a) consists only of the 
depot. 
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In a branching step, we first select a client j who 
does not appear in any fixed or partial route and is 
not forbidden. We do so according to a selection 
heuristic explained in the following paragraphs. We 
branch by creating two new nodes a '  and a". In a ' ,  
the partial route P(a) is extended by j and C ( a f )= 
C(a). In a", P(a") = P(a) and C(aM)= C(a) U ( j1. If 
j = 0, the extended partial route will be added to the 
set of fixed routes, and a new partial route is started 
(P(a) = (0), C(a) = 0 ) .  

In each node a of the search tree, the method will 
calculate a lower bound on all possible feasible exten-
sions of the partial solution characterized by F(a), 
P(a) and C(a) by relaxing the condition that each 
client not yet on a route must be served exactly once. 
In fact, in the following sections we shall see how to 
compute the cheapest extension of the current partial 
solution to a set of routes so that the total load on 
these routes is equal to Q = CY=, q, and so that each 
route has a different last client (i.e., the one visited 
directly before the return to the depot). In Section 4, 
we consider the extension that also requires that these 
routes do not contain 2-loops, i.e., subroutes in which 
the same client appears twice separated only by a 
single intermediate one. Larger loops with associated 
multiple visits to the same client will not be excluded. 

Given the nature of the lower bound, the selection 
heuristic just referred to will be to select next the client 
with whom the partial route P(a) was extended in the 
lower bound calculation. If there is no partial route, 
(P(a) = 0 ) ,  a new one is started by selecting the client 
who appears most frequently as the first client in the 
routes computed for the lower bound. Initially and 
whenever ties occur, preference is given to the client 
with the largest demand, since this choice reduces the 
size of the directed graphs appearing in the lower 
bound computations. 

2. Computation of the bower Bound 

We now describe the computation of the lower bound 
in the root node; we discuss extension to arbitrary 
nodes at the end of this section. 

To compute the lower bound, we construct a di-
rected graph with vertices u(i, q, k), for i = 0, . . . , n, 
q = 0, . . . ,Q, and k = 0, . . . , m, so that each directed 
path from u(0, 0, 0) to u(i, q, k) will correspond to 
a set of k routes with total load q, and with different 
last clients each one belonging to (1, . . . , i ) .  The 
arc lengths in the directed graph will be defined so 
that the length of this directed path is equal to the 
total length of the corresponding routes. The lower 

bound is then given by taking the minimum over k = 

1, . . . , m of the shortest-path lengths from u(0, 0, 0) 
to u(n, Q, k ) .  

There are two ways to extend a set of k routes with 
total load q and last clients from ( 1, . . . , i J  to a set 
whose last clients come from (1, . . . , i + 1).The first 
way is not to include client i + 1 at all. This approach 
is represented by a type I arc from u(i, q, k) to 
u(i + 1, q, k) of length 0. The second way is to take 
client i + 1 as the last client on a route of total 
load q'. This approach is represented by a tjpe 11arc 
from u(i, q, k) to u(i + 1, q + q', k + I)  of length 
F(i + 1, 4'). Here, F(i, q) is defined in general to be 
the minimum length of a feasible route with total load 
q and last client i; we will show how to compute these 
quantities in the next section. 

To discuss the adjustment required in an arbitrary 
node a of the search tree, let us first assume that 
P(a) = 0. Let k* be the number of fixed routes (i.e., 
k* = I F(a) I), let q* be their total load and I*be 
their set of clients (these can be eliminated from 
the lower bounding problem). The diagraph now 
has vertices u(i, q, k) for i = 0, . . . , n - I I *  I (after 
renumbering), q = q*, . . . , Q and k = k*, . . . , m. 
The lower bound is given by taking the minimum 
over k = k* + 1, . . . , m of all shortest path lengths 
from u(0, q*, k*) to u(n - I I*  1 ,  Q, k). 

If P(a) # 0,then exactly one of the routes appearing 
in the lower bound must be an extension of P(a). Let 
F(i, q) be the minimum length of such an extension 
with total load q and last customer i; again, we will 
show in Section 3 how to compute F(i, q). The digraph 
is now expanded to contain vertices u(i, q, k) and 
C(i, q, k) for i = 0, . . . ,n - I I*1 (after renumbering); 
4 = q*, . . . , Q (q* is still defined by F(a)); k = 

k*, . . . ,m and the following arcs: 

type I arcs of length 0 from 
u(i, q, k) to u(i + 1, q, k) and from 
C(i, q, k) to C(i + 1, q, k); 

type I1 arcs of length F(i + 1, q ')  from 
u(i, q, k) to u(i + 1, q + q', k + 1) and from 
C(i, q, k) to C(i + 1, q + q', k + 1); 

type 111 arcs of length F(i + 1, q') from 
u(i, q, k) toC(i+ 1, q +  q', k +  1). 

The latter type of arc corresponds to the addition of 
the single route extending P(a). The lower bound is 
given by taking the minimum over k = k* + 1, . . . , 
m of the shortest-path lengths from u(0, q*, k*) to 
C(n - I I*  I, Q, k). 



3. Computation of the Shortest Routes 

Let p(i, q, T )  denote a path with total load q < c that 
is feasible with respect to the time windows and arrives 
at client i at time T; the clients on this path are not 
necessarily all different, and each time that a particular 
client occurs his demand is added to the current 
load. The shortest of all such paths is denoted by 
p,(i, 4, T ) ;  its length is denoted by l(i, q, T ) .  Then 
F(i, q), introduced in the previous section, is given by 

= min (l(i, 4, T )  + die I T + 14, + ti0 G bol. ( I )  
~.(1,4,T) 

In computing F(i, q), we can actually restrict ourselves 
to a subset of feasible paths, namely, those without 
needless waiting time. This subset is characterized by 
the property that, if client j is visited directly after 
client i, then the arrival times T, and Ti satisfy 

It is easy to see that any path whose client arrival 
times Tirespect the time windows can be transformed 
in a path without needless waiting time, with client 
arrival times TI s Ti.Hence, from now on we assume 
that all paths p(i, q, T )  have this property. 

Let us call p(i(+), q(+), T(+)) an extension of 
p(i, q, T )  if i(+)# i and 

In order to calculate F(i, q), we shall construct a 
directed graph with vertices w(i, q, T ) ,  so that 
the length of the shortest path from w(0, 0, 0 )  to 
w(i, q, T )  is equal to l(i, q, T ) .  

This shortest path will be calculated by a labeling 
method, similar to Dijkstra's method, which will have 
to be described in some detail. In each iteration of this 
algorithm, we have a set of vertices w(i, q, T )  with a 
permanent or tentative label L(i, q, T ) .  A permanent 
label L(i, q, T )  will be equal to l(i, q, T ) .  A tentative 
label L(i, q, T )  will always have the property that it is 
equal to min{l(i(-), q(-), T( - ) )  + dl,-,,I, where the 
minimum is taken over all p(i(-), q(-), T( - ) )  for 
which I(i(-), q(-), T ( - ) )  has been established and 
for which p(i, q, T )  is an extension. (It is equal to 
+a, if no such path p(i(-), q(-), T( - ) )  exists.) 

In each iteration, the overall smallest tentative 
label, say L(i, q, T ) ,  will be made permanent. We 
then consider all extensions p(i(+), q(+), T(+))  of 

and proceed to the next iteration. It is easy to see that 
this procedure maintains the previous mentioned 
property of the label. 

Note that throughout this scheme the vertices 
w(i, q, T )  can be created as we go along; the arc 
(w(i, q, T ) ,  w(i(+), 4(+), T(+)))  of length dl,(+,is 
implicitly created in (6). 

Since we are interested only in small l(i, q, T )  values 
(cf. ( I ) ) ,  extensions of p(i, q, T )  can be eliminated if, 
for some T* Q T, we have that l(i, q, T*) G l(i, q, T ) .  
The validity of this dominance rule can be easily 
verified by observing that, for every extension of 
p(i, q, T ) ,  we can construct one of p(i, q, T*)  of at 
least the same quality. 

To calculate F(i, q), let us assume that the given 
partial P(a)route has total load q* and arrives at client 
i* at time T*. We now simply start our calculations 
at w(i*, q*, T*) instead of at w(0, 0,  0 )  by giving this 
vertex a permanent label equal to the length of P(a) 
and excluding clients in C(a).  

4. Improvements in the Lower Bound 

As in Christofides, Mingozzi and Toth (198 lc), our 
lower bound can be improved substantially by consid- 
ering only routes without 2-loops. Let G(i, q) denote 
the minimum length of such a route with total load q 
and last client i. In this section, we shall show how 
G(i, q) can be computed by an extension of the 
labeling algorithm. The adaptation to G(i, q) is similar 
to the one sketched in the last paragraph of the pre- 
vious section. 

Unlike the situation in Section 3, we can no longer 
claim that if p,(i(+), q(+), T(+))  is an extension of a 
path p,(i 4, T ) ,  then the latter path must be optimal 
as well; the reason is that the second to last client on 
p*(i, 4, T )  (i.e., the client directly preceding i ) can be 
equal to i(+).Consequently, for each vertex, in addi- 
tion to the true shortest-path length, which we will 
continue to denote by l(i, q, T ) ,  we shall also have to 
know the length of the shortest path subject to the 
additional constraint that its second to last client is 
different from the second to last client on p,(i, q, T ) .  
This latter client will be denoted by s(i, q, T ) .  

Before describing a labeling procedure to find 
G(i, q), let us first redefine an extension of p(i, q, T) 
to be a path p(i(+), 4(+), T(+))  for which (3), (4) 
and (5) hold and, in addition, the second to last 
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client on p(i, q, T )  is not equal to i(+). In the 
labeling procedure, three labels will be associated 
to each vertex MI(;, q, T): L(i, q, T), M(i, q, T) and 
S(i, q, T). Each can be permanent or tentative. Per-
manent labels L(i, q, T )  and S(i, q, T )  will be equal 
to I(i, q, T )  and s(i, q, T)  respectively. A permanent 
label M(i, q, T)  will be denoted by m(i, q, T )  and will 
correspond to the shortest-path length subject to its 
second to last customer being different from s(i, q, T). 
A tentative label L(i, q, T )  will have the property that 
it is equal to the minimum of 

and 

The latter minima are taken over all those paths 
p(i(-), q(-), T(-)) for which I(i(-), q(-), T(-)) and 
m(i(-), q(-), T(-)), respectively, have been estab-
lished and for which p(i, q, T )  is an extension. If the 
minimum is attained by (i(-), q(-), T(-)), then 
S(i, q, T )  will be equal to i(-). A tentative label 
M(i, q, T )  satisfies the same property as L(i, q, T )  
under the additional constraint that its second to last 
customer is not equal to S(i, q, T). 

These properties again justify our turning the small-
est tentative L, M-label into a permanent one in every 
iteration. In case of ties, we prefer L-labels to 
M-labels. To ensure that they continue to hold from 
one iteration to the next, however, requires a much 
more complicated updating schema. 

We first consider the case that L(i, q, T )  (and 
simultaneously S(i, q, T)) are made permanent. If 
p(i(+), q(+), T(+)) is an extension of p,(i, q, T )  
(i.e., i(+) # s(i, q, T)), then we have to update the 
label L(i(+), q(+), T(+)) (see Equation 6) by 

L(i(+),q(+), T(+)) 

:= min(L(i(+),q(+), T(+)), I(i, q, T)  + di,(+)l.(7) 

There are two possibilities to be considered. 

(a) If the minimum in the expression (7) is attained 
by L(i(+), q(+), T(+)), then it is still possible that 
M(i(+), q(+), T(+)) can be improved, provided 
that S(i(+), q(+), T(+)) # i: 

(b) If the minimum in the expression (7) is 
attained by I(i, q, T)  + dl,(+)and S(i(+), q(+), 
T(+)) # i, then the old value of L(i(+), q(+), 

T(+)) will be the new value of M(i(+), q(+), 
T(+)) and S(i(+), q(+), T(+)) := i. 

We now consider the case that M(i, q, T )  is made 
permanent. (Note that, since we prefer L-labels to 
M-labels and M(i, q, T)  2 L(i, q, T), this situation 
implies that L(i, q, T)  and S(i, q, T )  have been made 
permanent earlier.) Let p(i(+), q(+), T(+)) be an 
extension of the path corresponding to m(i, q, T )  (i.e., 
the second to last customer , I ( - )  of the path corre-
sponding to m(i, q, T )  is not equal to i(+); it will turn 
out that we do not have to know j ( -)) .  

We claim that an update is required only if i(+) = 

s(i, q, T). For if i(+) # s(i, q, T), then the path 
p(i(+), q(+), T(+)) is also an extension of p,(i, q, T), 
so that a possible update of L(i(+), q(+), T(+)) has 
been considered already. And an update of the tenta-
tive label M(i(+), q(+), T(+))would be conceivable 
only if S(i(+), q(+), T(+)) # i; but in this case, (8) in 
conjunction with m(i, q, T )  z I(i, q, T) implies that 
again such an update will not be required. 

If i(+) = s(i, q, T), then, since,/(-) # i(+), the label 
L(i(+), q(+), T(+)) must be updated: 

and the same two possibilities arise again. 

(a) If the minimum in the expression (9) is attained 
by L(i(+), q(+), T(+)), then, provided that the 
label S(i(+), q(+), T(+)) # i, M(i(+), q(+), T(+)) 
must be updated: 

(b) If the minimum in the expression (9) is attained 
by m(i, q, T )  + d;,(+)and S(i(+), q(+), T(+)) # i, 
then the old value of L(i(+), q(+), T(+)) will 
be the new value of M(i(+), q(+), T(+)) and 
S(i(+), q(+), T(+)) := i. 

As in Section 3, various dominance rules can be used 
to speed up the calculations. 

If m(i, q, T )  2 I(i, q, T*) ( T  2 T*) and s(i, q, T)  # 
s(i,q, T*), then extensions ofthe path corresponding 
to m(i, q, T )  need not be considered (these exten-
sions are relevant only if the next client is s(i, q, T), 
in which case they are dominated by extensions of 
P*U, 4, T*)); 
If I(i, q, T )  2 I(i, q, T*) ( T  3 T*) and s(i, q, T)  = 

s(i, q, T*), then any extension of p,(i, q, T)  is 
dominated by one of p,(i, q, T*); if s(i, q, T )  # 
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s(i, q, T*), then the only next client on p,(i, q, T )  
that need be considered is s(i, q, T*); 

If m(i, q, T )  3 m(i, q, T*) ( T  2 T*), then any 
extension of the path corresponding to m(i, q, T)  is 
dominated by one corresponding to m(i, q, T*) or 
to 41, 9, T*)); 
If l(i, q, T )  2 m(i, q, T*) ( T  2 T*), then for similar 
reasons no extensions ofp,(i, q, T )  need be consid-
ered. 

These dominance rules can be incorporated in the 
shortest-path calculations in an obvious fashion. 

Formula (12) is inspired by the subgradient step 
familiar from Lagrangian relaxation (see Fisher 1981). 
In accordance with empirical experience from that 
area, P("+')is chosen to satisfy P(p+')- 2P(P)+ p(P-l)= 

c for some is a constant c, 8")is empirically chosen to 
be 0.2 in the original node of the branch-and-bound 
tree and 0.02 in all other nodes, and P' ' )  := 0 where s 
is the given number of iterations of the penalty 
procedure. 

In our algorithm we use the fact that distances are 
nonnegative. If some of the d Q  given by (1 1) are 
negative, then we adjust the corresponding penalties 
by 

5. A Penalty Procedure r,:= r,- ' /2  ma~(min,,~jd;),min,]d;, d,*,{{). (13) 
The optimal solution ofthe TCVRP is invariant under 
the transformation Use of the penalty procedure greatly improved the 

lower bound. 
d :=dl ,+r ,+r j  ( i , j=O, . . . ,  n;ro=O), ( 1  1) 

in that this transformation simply adds the constant 
term 2 C:=o r, to the objective function. We can make 
use of this property by interpretating the r, as penalties, 
depending on the degree 6, of client i, i.e., twice the 
number of times that he is visited. If 6, is larger 
(smaller)than 2, then a visit to client i should be made 
less (more)attractive. In iteration p + 1, rjP+"is chosen 
according to 

"(P+'), (PI 
I " I  

+p(pi.1). z,,- z(") 
( p - 2 ) .  (12)(C;=l (6jP)- 2)2)1'2 

In this expression z,,is an upper bound on the optimal 
solution value and 2'") is the lower bound obtained in 
iteration p. In our algorithm we fix the number of 
steps of the penalty procedure in the root of the 
branch-and-bound tree as well as in all other nodes. 
Several pairs of parameters have been tested. Section 
7 describes our computational experience. 

6. An Upper Bound 

As proved by Savelsbergh, finding a feasible solution 
to the TCVRP is itself an NP-complete problem. 
Hence, unlike the VRP, we should not expect a simple 
heuristic to produce feasible solutions that yield upper 
bounds on the optimal solution value. However, the 
following simple insertion rule was successful on all 
our test problems. Clients are inserted according to 
increasing value of 

(ql,  92 constant) so that clients with small time 
windows and large demands get the highest priority. 
Starting with m empty routes, we determine for each 
successive client the amounts added to traveled dis-
tance and waiting time if this client is inserted in 
position k on route j. We would like both quantities, 

Table I 
Test Problems for the Computational Experiments 

Problem No. of No, of No. of Capacity of Total Optimal 
Clients Time Windows Vehicles One Vehicle Demand Solution 
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Table I1 
Influence of the Penalty Procedure 

"Optimal solution value. 

CPU time in minutes (VAX 1 1/785). 

'Number of nodes in the branch-and-bound tree. 


Initial lower bound. 

'Stack overflow. 


DJkand W J k  respectively, to be small. Hence, we choose 
the ( j ,  k) combination that minimizes 

q3DJk + q 4  W J k ,  (1 5) 

(q3, q4 constant). 
The constants q,, q,, 4, and 4, are set and reset 

interactively by the programmer. If the heuristic fails, 
then a trivial upper bound is, for instance, given by 

7. Computational Results 

We investigated the computational performance of 
the branch-and-bound algorithm just described, using 
nine test problems that ranged from n = 6 to n = 15. 
In each problem, the travel time between two clients 
is proportional to the distance between them. 

Problem A was derived from Christofides, Mingozzi 
and Toth (1981~)  by adding time windows for two of 
the clients. These time windows were chosen so as to 
make the optimal solution of the problem without 



time constraints infeasible in the time constrained 
problem. Problems B, C, D, E, F are extracted from 
examples in Eilon, Watson-Gandy and Chris-
tofides (1971); again we added time windows for 
some or all of the clients in the previously described 
manner. 

The last three problems were random test problems. 
Using a two-dimensional uniform distribution, we 
generated points in the plane. The distance between 
two clients was defined to be the euclidean distance 
in the plane. We then constructed a few arbitrary 
routes feasible with respect to the capacity constraints, 
in which each client was visited exactly once. Finally, 
we constructed the time windows in such a way that 
these routes would be feasible in the time-constrained 
problem. While solving these random test problems, 
we discovered that these routes were not the optimal 
ones. 

Table I contains the specific data for each test 
problem. A " + I "  in the column with the number of 
time windows means that the depot also had a time 
window. Except for the first three problems, none of 
the problems could be solved without time windows, 
due to stack overflow during the computation of the 
lower bound. All test problems are available on 
request. 

In Table I1 we show the performance of the algo- 
rithm excluding 2-loops for different pairs of pa- 
rameters p l and p 2  for the penalty procedure; p l 

corresponds to the number of iterations during the 
computation of the lower bound in the root of the 
branch-and-bound tree, and p2 corresponds to the 
number of iterations in all other nodes. The first 
number in the table indicates the CPU time in minutes 
on the VAX 111785 using the VAX-Pascal compiler 
with optimization but also with run-time checks dur- 
ing execution. The second number is the number of 
nodes in the branch-and-bound tree generated by the 
algorithm, and the last number indicates the value of 
the initial lower bound found. 

Table I11 specifies the performance of the algorithm 
with and without 2-loops for p 1 = 25 and p2 = 6; the 
value with 2-loops allowed is given between parenthe- 
ses. As can be seen from the table, computations for 
the last five problems could not be completed when 
2-loops were allowed. 

These and other experiments revealed that the rel- 
ative width and number of time windows were the 
problem parameters that had the most significant 
influence on the running time of the algorithm. As 
the time windows (including the one for the depot) 
become larger, or as the number of time windows 
becomes smaller, the number of feasible q-routes in- 
creases with a corresponding increase in running time 
of the algorithm and a decrease in the quality of the 
lower bounds. Neither the number of vehicles m nor 
their capacity c had anywhere near the same influence 
on the computational results. 

Table I11 
Influence of 2-Loop Elimination 

Optimal 
Solution Value Heuristic Initial 

Lowerbound CPU Time No. of 
Nodes 

"The performance of the algorithm with 2-loops allowed. 
Stack overflow. 
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