
Vehicle Routing with Time Windows

A. W. J. Kolen; A. H. G. Rinnooy Kan; H. W. J. M. Trienekens

Operations Research, Vol. 35, No. 2. (Mar. - Apr., 1987), pp. 266-273.

Stable URL:

http://links.jstor.org/sici?sici=0030-364X%28198703%2F04%2935%3A2%3C266%3AVRWTW%3E2.0.CO%3B2-G

Operations Research is currently published by INFORMS.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/informs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Jan 25 09:51:52 2008

http://links.jstor.org/sici?sici=0030-364X%28198703%2F04%2935%3A2%3C266%3AVRWTW%3E2.0.CO%3B2-G
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/informs.html

VEHICLE ROUTING WITH TIME WINDOWS

A. W. J. KOLEN, A. H. G. RINNOOY KAN and H. W. J. M. TRlENEKENS
Erusnzus University, Rotterdum, The Netherlunds

(Received December 1984; revisions received October 1985, June 1986; accepted August 1986)

In vehicle routing problems with time windows, a fixed fleet of vehicles of limited capacity is available at a depot to serve
a set of clients with given demands. Each client must be visited within a given time window. We describe a branch-and-
bound method that minimizes the total route length, and present some computational results.

A set of clients with known demands must be
served by a fixed fleet of vehicles of limited

capacity. All vehicles are located at a common depot.
The vehicle routing problem (VRP) is to serve each
client exactly once, so as to minimize the total route
length.

The time-constrained vehicle routing problem
(TCVRP) is an important generalization of the VRP.
In the TCVRP, each client has a time window in
which he must be served. Such windows arise, for
instance, from traffic restrictions in city centers or
from the special nature of the goods delivered by the
vehicle.

The VRP represents an area of extensive research.
The detailed survey compiled by Bodin et al. (1983)
contains about 700 references, documenting optimi-
zation as well as approximation methods proposed to
solve this problem or one of its many variations
(including the important dial-a-ride problem). These
references also bear witness to the many practical
occurrences of the problem and to its economic sig-
nificance. The TCVRP has received much less atten-
tion, in spite of the fact that time window constraints
are very common in practice. Christofides, Mingozzi
and Toth (198 la) and Baker (1983) proposed opti-
mization methods for the single vehicle case (the time
constrained traveling salesman problem). Desrochers
and Soumis (1985) addressed the shortest path prob-
lem with time windows. Desrosiers, Dumas and
Soumis (1 984) describe a column generation approach
to the time-constrained routing problem. Finally, Des-
rosiers, Sauve and Soumis (1985) proposed a Lagran-
gian approach. Heuristics for the VRP have been
extended to the TCVRP (Solomon (1983, 1987) and
Savelsbergh 1984). The analysis of their worst-case
performance suggests that the TCVRP is fundamen-
tally more difficult than the VRP. For example, it is
not hard to see that finding a feasible solution to the

Subjcjcr cicissifircif~on. 627 branch-and-bound, 837 routing with time win

Operations Research
Vol. 35, No. 2, March-April 1987

TCVRP is itself an NP-complete problem (Savels-
bergh).

The contribution of this paper is to describe a
branch-and-bound method for the TCVRP. It is the
first optimization method for this problem and was
partially inspired by the optimization method for the
VRP developed by Christofides, Mingozzi and Toth
(1981~) . Among other things, we use a different im-
plementation of the idea of a state space relaxation.
Computational experience with the method will be
described as well.

1. The Branch-and-Bound Method

Let us suppose that client i for i = 1, . . . , n has
demand q, that must be satisfied within a time window
[a,, b,];u, units of unloading time will be required.
(Actually, u,can be taken to be equal to 0without loss
of generality.) The distance and travel time between
clients i and j are given by dl,and t,, respectively. The
depot is indexed by 0;it can be used in the period
[ao,bo]and houses m identical vehicles, each with an
upper bound c on the total load carried. A vehicle
route is feasible if it satisfies this capacity constraint
as well as all time window constraints; if necessary,
the vehicle can wait at a client to ensure feasibility of
the next time window on the route. We are interested
in a set of feasible routes through which each client is
sewed exactly once, such that the total length of these
routes is minimal.

Our description of the branch-and-bound method
starts with the branching rule. Each node a in the
search tree corresponds to a set F(a) of fixed routes
starting and finishing at the depot, a partial route P(a)
starting at the depot and a set C(a) of clients that are
forbidden to be next on P(a). Initially, of course, F(a)
and C(a) are empty and P(a) consists only of the
depot.

0030-364X/87/3502-0266 $0 1.25
G 1987 Operations Research Society of' America

Vehicle Routing with Time Windows / 267

In a branching step, we first select a client j who
does not appear in any fixed or partial route and is
not forbidden. We do so according to a selection
heuristic explained in the following paragraphs. We
branch by creating two new nodes a ' and a". In a ' ,
the partial route P(a) is extended by j and C (a f)=
C(a). In a", P(a") = P(a) and C(aM)= C(a) U (j1. If
j = 0, the extended partial route will be added to the
set of fixed routes, and a new partial route is started
(P(a) = (0), C(a) = 0) .

In each node a of the search tree, the method will
calculate a lower bound on all possible feasible exten-
sions of the partial solution characterized by F(a),
P(a) and C(a) by relaxing the condition that each
client not yet on a route must be served exactly once.
In fact, in the following sections we shall see how to
compute the cheapest extension of the current partial
solution to a set of routes so that the total load on
these routes is equal to Q = CY=, q, and so that each
route has a different last client (i.e., the one visited
directly before the return to the depot). In Section 4,
we consider the extension that also requires that these
routes do not contain 2-loops, i.e., subroutes in which
the same client appears twice separated only by a
single intermediate one. Larger loops with associated
multiple visits to the same client will not be excluded.

Given the nature of the lower bound, the selection
heuristic just referred to will be to select next the client
with whom the partial route P(a) was extended in the
lower bound calculation. If there is no partial route,
(P(a) = 0) , a new one is started by selecting the client
who appears most frequently as the first client in the
routes computed for the lower bound. Initially and
whenever ties occur, preference is given to the client
with the largest demand, since this choice reduces the
size of the directed graphs appearing in the lower
bound computations.

2. Computation of the bower Bound

We now describe the computation of the lower bound
in the root node; we discuss extension to arbitrary
nodes at the end of this section.

To compute the lower bound, we construct a di-
rected graph with vertices u(i, q, k), for i = 0, . . . , n,
q = 0, . . . ,Q, and k = 0, . . . , m, so that each directed
path from u(0, 0, 0) to u(i, q, k) will correspond to
a set of k routes with total load q, and with different
last clients each one belonging to (1, . . . , i) . The
arc lengths in the directed graph will be defined so
that the length of this directed path is equal to the
total length of the corresponding routes. The lower

bound is then given by taking the minimum over k =

1, . . . , m of the shortest-path lengths from u(0, 0, 0)
to u(n, Q, k) .

There are two ways to extend a set of k routes with
total load q and last clients from (1, . . . , i J to a set
whose last clients come from (1, . . . , i + 1).The first
way is not to include client i + 1 at all. This approach
is represented by a type I arc from u(i, q, k) to
u(i + 1, q, k) of length 0. The second way is to take
client i + 1 as the last client on a route of total
load q'. This approach is represented by a tjpe 11arc
from u(i, q, k) to u(i + 1, q + q', k + I) of length
F(i + 1, 4'). Here, F(i, q) is defined in general to be
the minimum length of a feasible route with total load
q and last client i; we will show how to compute these
quantities in the next section.

To discuss the adjustment required in an arbitrary
node a of the search tree, let us first assume that
P(a) = 0. Let k* be the number of fixed routes (i.e.,
k* = I F(a) I), let q* be their total load and I*be
their set of clients (these can be eliminated from
the lower bounding problem). The diagraph now
has vertices u(i, q, k) for i = 0, . . . , n - I I * I (after
renumbering), q = q*, . . . , Q and k = k*, . . . , m.
The lower bound is given by taking the minimum
over k = k* + 1, . . . , m of all shortest path lengths
from u(0, q*, k*) to u(n - I I* 1 , Q, k).

If P(a) # 0,then exactly one of the routes appearing
in the lower bound must be an extension of P(a). Let
F(i, q) be the minimum length of such an extension
with total load q and last customer i; again, we will
show in Section 3 how to compute F(i, q). The digraph
is now expanded to contain vertices u(i, q, k) and
C(i, q, k) for i = 0, . . . ,n - I I*1 (after renumbering);
4 = q*, . . . , Q (q* is still defined by F(a)); k =

k*, . . . ,m and the following arcs:

type I arcs of length 0 from
u(i, q, k) to u(i + 1, q, k) and from
C(i, q, k) to C(i + 1, q, k);

type I1 arcs of length F(i + 1, q ') from
u(i, q, k) to u(i + 1, q + q', k + 1) and from
C(i, q, k) to C(i + 1, q + q', k + 1);

type 111 arcs of length F(i + 1, q') from
u(i, q, k) toC(i+ 1, q + q', k + 1).

The latter type of arc corresponds to the addition of
the single route extending P(a). The lower bound is
given by taking the minimum over k = k* + 1, . . . ,
m of the shortest-path lengths from u(0, q*, k*) to
C(n - I I* I, Q, k).

3. Computation of the Shortest Routes

Let p(i, q, T) denote a path with total load q < c that
is feasible with respect to the time windows and arrives
at client i at time T; the clients on this path are not
necessarily all different, and each time that a particular
client occurs his demand is added to the current
load. The shortest of all such paths is denoted by
p,(i, 4, T) ; its length is denoted by l(i, q, T) . Then
F(i, q), introduced in the previous section, is given by

= min (l(i, 4, T) + die I T + 14, + ti0 G bol. (I)
~.(1,4,T)

In computing F(i, q), we can actually restrict ourselves
to a subset of feasible paths, namely, those without
needless waiting time. This subset is characterized by
the property that, if client j is visited directly after
client i, then the arrival times T, and Ti satisfy

It is easy to see that any path whose client arrival
times Tirespect the time windows can be transformed
in a path without needless waiting time, with client
arrival times TI s Ti.Hence, from now on we assume
that all paths p(i, q, T) have this property.

Let us call p(i(+), q(+), T(+)) an extension of
p(i, q, T) if i(+)# i and

In order to calculate F(i, q), we shall construct a
directed graph with vertices w(i, q, T) , so that
the length of the shortest path from w(0, 0, 0) to
w(i, q, T) is equal to l(i, q, T) .

This shortest path will be calculated by a labeling
method, similar to Dijkstra's method, which will have
to be described in some detail. In each iteration of this
algorithm, we have a set of vertices w(i, q, T) with a
permanent or tentative label L(i, q, T) . A permanent
label L(i, q, T) will be equal to l(i, q, T) . A tentative
label L(i, q, T) will always have the property that it is
equal to min{l(i(-), q(-), T(-)) + dl,-,,I, where the
minimum is taken over all p(i(-), q(-), T(-)) for
which I(i(-), q(-), T (-)) has been established and
for which p(i, q, T) is an extension. (It is equal to
+a, if no such path p(i(-), q(-), T(-)) exists.)

In each iteration, the overall smallest tentative
label, say L(i, q, T) , will be made permanent. We
then consider all extensions p(i(+), q(+), T(+)) of

and proceed to the next iteration. It is easy to see that
this procedure maintains the previous mentioned
property of the label.

Note that throughout this scheme the vertices
w(i, q, T) can be created as we go along; the arc
(w(i, q, T) , w(i(+), 4(+), T(+))) of length dl,(+,is
implicitly created in (6).

Since we are interested only in small l(i, q, T) values
(cf. (I)) , extensions of p(i, q, T) can be eliminated if,
for some T* Q T, we have that l(i, q, T*) G l(i, q, T) .
The validity of this dominance rule can be easily
verified by observing that, for every extension of
p(i, q, T) , we can construct one of p(i, q, T*) of at
least the same quality.

To calculate F(i, q), let us assume that the given
partial P(a)route has total load q* and arrives at client
i* at time T*. We now simply start our calculations
at w(i*, q*, T*) instead of at w(0, 0, 0) by giving this
vertex a permanent label equal to the length of P(a)
and excluding clients in C(a).

4. Improvements in the Lower Bound

As in Christofides, Mingozzi and Toth (198 lc), our
lower bound can be improved substantially by consid-
ering only routes without 2-loops. Let G(i, q) denote
the minimum length of such a route with total load q
and last client i. In this section, we shall show how
G(i, q) can be computed by an extension of the
labeling algorithm. The adaptation to G(i, q) is similar
to the one sketched in the last paragraph of the pre-
vious section.

Unlike the situation in Section 3, we can no longer
claim that if p,(i(+), q(+), T(+)) is an extension of a
path p,(i 4, T) , then the latter path must be optimal
as well; the reason is that the second to last client on
p*(i, 4, T) (i.e., the client directly preceding i) can be
equal to i(+).Consequently, for each vertex, in addi-
tion to the true shortest-path length, which we will
continue to denote by l(i, q, T) , we shall also have to
know the length of the shortest path subject to the
additional constraint that its second to last client is
different from the second to last client on p,(i, q, T) .
This latter client will be denoted by s(i, q, T) .

Before describing a labeling procedure to find
G(i, q), let us first redefine an extension of p(i, q, T)
to be a path p(i(+), 4(+), T(+)) for which (3), (4)
and (5) hold and, in addition, the second to last

Vehicle Routing with Time Windows / 269

client on p(i, q, T) is not equal to i(+). In the
labeling procedure, three labels will be associated
to each vertex MI(;, q, T): L(i, q, T), M(i, q, T) and
S(i, q, T). Each can be permanent or tentative. Per-
manent labels L(i, q, T) and S(i, q, T) will be equal
to I(i, q, T) and s(i, q, T) respectively. A permanent
label M(i, q, T) will be denoted by m(i, q, T) and will
correspond to the shortest-path length subject to its
second to last customer being different from s(i, q, T).
A tentative label L(i, q, T) will have the property that
it is equal to the minimum of

and

The latter minima are taken over all those paths
p(i(-), q(-), T(-)) for which I(i(-), q(-), T(-)) and
m(i(-), q(-), T(-)), respectively, have been estab-
lished and for which p(i, q, T) is an extension. If the
minimum is attained by (i(-), q(-), T(-)), then
S(i, q, T) will be equal to i(-). A tentative label
M(i, q, T) satisfies the same property as L(i, q, T)
under the additional constraint that its second to last
customer is not equal to S(i, q, T).

These properties again justify our turning the small-
est tentative L, M-label into a permanent one in every
iteration. In case of ties, we prefer L-labels to
M-labels. To ensure that they continue to hold from
one iteration to the next, however, requires a much
more complicated updating schema.

We first consider the case that L(i, q, T) (and
simultaneously S(i, q, T)) are made permanent. If
p(i(+), q(+), T(+)) is an extension of p,(i, q, T)
(i.e., i(+) # s(i, q, T)), then we have to update the
label L(i(+), q(+), T(+)) (see Equation 6) by

L(i(+),q(+), T(+))

:= min(L(i(+),q(+), T(+)), I(i, q, T) + di,(+)l.(7)

There are two possibilities to be considered.

(a) If the minimum in the expression (7) is attained
by L(i(+), q(+), T(+)), then it is still possible that
M(i(+), q(+), T(+)) can be improved, provided
that S(i(+), q(+), T(+)) # i:

(b) If the minimum in the expression (7) is
attained by I(i, q, T) + dl,(+)and S(i(+), q(+),
T(+)) # i, then the old value of L(i(+), q(+),

T(+)) will be the new value of M(i(+), q(+),
T(+)) and S(i(+), q(+), T(+)) := i.

We now consider the case that M(i, q, T) is made
permanent. (Note that, since we prefer L-labels to
M-labels and M(i, q, T) 2 L(i, q, T), this situation
implies that L(i, q, T) and S(i, q, T) have been made
permanent earlier.) Let p(i(+), q(+), T(+)) be an
extension of the path corresponding to m(i, q, T) (i.e.,
the second to last customer , I (-) of the path corre-
sponding to m(i, q, T) is not equal to i(+); it will turn
out that we do not have to know j (-)) .

We claim that an update is required only if i(+) =

s(i, q, T). For if i(+) # s(i, q, T), then the path
p(i(+), q(+), T(+)) is also an extension of p,(i, q, T),
so that a possible update of L(i(+), q(+), T(+)) has
been considered already. And an update of the tenta-
tive label M(i(+), q(+), T(+))would be conceivable
only if S(i(+), q(+), T(+)) # i; but in this case, (8) in
conjunction with m(i, q, T) z I(i, q, T) implies that
again such an update will not be required.

If i(+) = s(i, q, T), then, since,/(-) # i(+), the label
L(i(+), q(+), T(+)) must be updated:

and the same two possibilities arise again.

(a) If the minimum in the expression (9) is attained
by L(i(+), q(+), T(+)), then, provided that the
label S(i(+), q(+), T(+)) # i, M(i(+), q(+), T(+))
must be updated:

(b) If the minimum in the expression (9) is attained
by m(i, q, T) + d;,(+)and S(i(+), q(+), T(+)) # i,
then the old value of L(i(+), q(+), T(+)) will
be the new value of M(i(+), q(+), T(+)) and
S(i(+), q(+), T(+)) := i.

As in Section 3, various dominance rules can be used
to speed up the calculations.

If m(i, q, T) 2 I(i, q, T*) (T 2 T*) and s(i, q, T) #
s(i,q, T*), then extensions ofthe path corresponding
to m(i, q, T) need not be considered (these exten-
sions are relevant only if the next client is s(i, q, T),
in which case they are dominated by extensions of
P*U, 4, T*));
If I(i, q, T) 2 I(i, q, T*) (T 3 T*) and s(i, q, T) =

s(i, q, T*), then any extension of p,(i, q, T) is
dominated by one of p,(i, q, T*); if s(i, q, T) #

270 / KOLEN,RINNOOYKANAND TRIENEKENS

s(i, q, T*), then the only next client on p,(i, q, T)
that need be considered is s(i, q, T*);

If m(i, q, T) 3 m(i, q, T*) (T 2 T*), then any
extension of the path corresponding to m(i, q, T) is
dominated by one corresponding to m(i, q, T*) or
to 41, 9, T*));
If l(i, q, T) 2 m(i, q, T*) (T 2 T*), then for similar
reasons no extensions ofp,(i, q, T) need be consid-
ered.

These dominance rules can be incorporated in the
shortest-path calculations in an obvious fashion.

Formula (12) is inspired by the subgradient step
familiar from Lagrangian relaxation (see Fisher 1981).
In accordance with empirical experience from that
area, P("+')is chosen to satisfy P(p+')- 2P(P)+ p(P-l)=

c for some is a constant c, 8")is empirically chosen to
be 0.2 in the original node of the branch-and-bound
tree and 0.02 in all other nodes, and P' ') := 0 where s
is the given number of iterations of the penalty
procedure.

In our algorithm we use the fact that distances are
nonnegative. If some of the d Q given by (1 1) are
negative, then we adjust the corresponding penalties
by

5. A Penalty Procedure r,:= r,- ' /2 ma~(min,,~jd;),min,]d;, d,*,{{). (13)
The optimal solution ofthe TCVRP is invariant under
the transformation Use of the penalty procedure greatly improved the

lower bound.
d :=dl ,+r ,+r j (i , j=O, . . . , n;ro=O), (1 1)

in that this transformation simply adds the constant
term 2 C:=o r, to the objective function. We can make
use of this property by interpretating the r, as penalties,
depending on the degree 6, of client i, i.e., twice the
number of times that he is visited. If 6, is larger
(smaller)than 2, then a visit to client i should be made
less (more)attractive. In iteration p + 1, rjP+"is chosen
according to

"(P+'), (PI
I " I

+p(pi.1). z,,- z(")
(p - 2) . (12)(C;=l (6jP)- 2)2)1'2

In this expression z,,is an upper bound on the optimal
solution value and 2'") is the lower bound obtained in
iteration p. In our algorithm we fix the number of
steps of the penalty procedure in the root of the
branch-and-bound tree as well as in all other nodes.
Several pairs of parameters have been tested. Section
7 describes our computational experience.

6. An Upper Bound

As proved by Savelsbergh, finding a feasible solution
to the TCVRP is itself an NP-complete problem.
Hence, unlike the VRP, we should not expect a simple
heuristic to produce feasible solutions that yield upper
bounds on the optimal solution value. However, the
following simple insertion rule was successful on all
our test problems. Clients are inserted according to
increasing value of

(ql, 92 constant) so that clients with small time
windows and large demands get the highest priority.
Starting with m empty routes, we determine for each
successive client the amounts added to traveled dis-
tance and waiting time if this client is inserted in
position k on route j. We would like both quantities,

Table I
Test Problems for the Computational Experiments

Problem No. of No, of No. of Capacity of Total Optimal
Clients Time Windows Vehicles One Vehicle Demand Solution

Vehicle Routing with Time Windows / 27 1

Table I1
Influence of the Penalty Procedure

"Optimal solution value.

CPU time in minutes (VAX 1 1/785).

'Number of nodes in the branch-and-bound tree.

Initial lower bound.

'Stack overflow.

DJkand W J k respectively, to be small. Hence, we choose
the (j , k) combination that minimizes

q3DJk + q 4 W J k , (1 5)

(q3, q4 constant).
The constants q,, q,, 4, and 4, are set and reset

interactively by the programmer. If the heuristic fails,
then a trivial upper bound is, for instance, given by

7. Computational Results

We investigated the computational performance of
the branch-and-bound algorithm just described, using
nine test problems that ranged from n = 6 to n = 15.
In each problem, the travel time between two clients
is proportional to the distance between them.

Problem A was derived from Christofides, Mingozzi
and Toth (1981~) by adding time windows for two of
the clients. These time windows were chosen so as to
make the optimal solution of the problem without

time constraints infeasible in the time constrained
problem. Problems B, C, D, E, F are extracted from
examples in Eilon, Watson-Gandy and Chris-
tofides (1971); again we added time windows for
some or all of the clients in the previously described
manner.

The last three problems were random test problems.
Using a two-dimensional uniform distribution, we
generated points in the plane. The distance between
two clients was defined to be the euclidean distance
in the plane. We then constructed a few arbitrary
routes feasible with respect to the capacity constraints,
in which each client was visited exactly once. Finally,
we constructed the time windows in such a way that
these routes would be feasible in the time-constrained
problem. While solving these random test problems,
we discovered that these routes were not the optimal
ones.

Table I contains the specific data for each test
problem. A " + I " in the column with the number of
time windows means that the depot also had a time
window. Except for the first three problems, none of
the problems could be solved without time windows,
due to stack overflow during the computation of the
lower bound. All test problems are available on
request.

In Table I1 we show the performance of the algo-
rithm excluding 2-loops for different pairs of pa-
rameters p l and p 2 for the penalty procedure; p l

corresponds to the number of iterations during the
computation of the lower bound in the root of the
branch-and-bound tree, and p2 corresponds to the
number of iterations in all other nodes. The first
number in the table indicates the CPU time in minutes
on the VAX 111785 using the VAX-Pascal compiler
with optimization but also with run-time checks dur-
ing execution. The second number is the number of
nodes in the branch-and-bound tree generated by the
algorithm, and the last number indicates the value of
the initial lower bound found.

Table I11 specifies the performance of the algorithm
with and without 2-loops for p 1 = 25 and p2 = 6; the
value with 2-loops allowed is given between parenthe-
ses. As can be seen from the table, computations for
the last five problems could not be completed when
2-loops were allowed.

These and other experiments revealed that the rel-
ative width and number of time windows were the
problem parameters that had the most significant
influence on the running time of the algorithm. As
the time windows (including the one for the depot)
become larger, or as the number of time windows
becomes smaller, the number of feasible q-routes in-
creases with a corresponding increase in running time
of the algorithm and a decrease in the quality of the
lower bounds. Neither the number of vehicles m nor
their capacity c had anywhere near the same influence
on the computational results.

Table I11
Influence of 2-Loop Elimination

Optimal
Solution Value Heuristic Initial

Lowerbound CPU Time No. of
Nodes

"The performance of the algorithm with 2-loops allowed.
Stack overflow.

Acknowledgment

The authors gratefully acknowledge constructive sug-
gestions from Jacques Desrosiers. Professor Rinnooy
Kan was partially supported by a NATO Senior
Scientist Fellowship.

References

BAKER,E. K. 1983. An Exact Algorithm for the Time-
Constrained Traveling Salesman Problem. Opns.
Res. 31,938-945

BODIN,L., B. GOLDEN, A. ASSAD A N D M. BALL. 1983.
Routing and Scheduling of Vehicles and Crews: The
State of the Art. Comput. Opns. Res. 10, 69-2 1 1.

CHRISTOFIDES, AND P. TOTH. 1981a. N., A. MINGOZZI
An Algorithm for the Time Constrained Travelling
Salesman Problem. Technical Report, Imperial
College, London.

CHRISTOFIDES,N., A. MINGOZZI A N D P. TOTH. 198 Ib.
State-Space Relaxation Procedures for the Compu-
tation of Bounds to Routing Problems. Networks 11,
145-164.

CHRISTOFIDES, AND P. TOTH. 1981~. N., A. MINGOZZI
Exact Algorithms for the Vehicle Routing Problem.
Math. Program. 20, 255-282.

DESROCHERS, 1985. A Generalized M., AND F. SOUMIS.
Permanent Labelling Algorithm for the Shortest

Vehicle Routing with Time Windows / 273

Path Problem with Time Windows. Technical Re-
port 394A, Centre de Recherche sur les Transports,
Montrhl.

DESROSIERS,J., Y. DUMASA N D F. SOUMIS. 1984. The
Multiple Vehicles Many to Many Routing Problem
with Time Windows. Technical Report 684- 13,
Ecole des Hautes Etudes Commerciales, Montreal.

DESROSIERS,J., M. SAUVE A N D F. SOUMIS.1985. Lagran-
gean Methods for Solving the Minimum Fleet Size
m-TSP with Time Windows. Technical Report 396,
Centre de Recherche sur les Transports, Montreal.

EILON, S., C. WATSON-GANDY N. CHRISTOFIDES.A N D

1971. Distribution Management: Mathematical
Modelling and Practical Analysis. Griffin, London.

FISHER,M. L. 1981. Langrangian Relaxation Methods
for Solving Integer Programming Problems. Mgmt.
Sci.27, 1-18.

SAVELSBERGH,M. 1984. Local Search in Routing Prob-
lems with Time Windows. Report 05-R 8409, Center
for Mathematics and Computer Science, Amster-
dam.

SOLOMON,M. 1983. On the Worst-Case Performance of
Some Heuristics for the Vehicle Routing and Sched-
uling Problem with Time Window Constraints. Re-
port 83-05-03, Department of Decision Sciences,
The Wharton School, University of Pennsylvania.

SOLOMON,M. 1987. Algorithms for the Vehicle Routing
and Scheduling Problems with Time Window Con-
straints. Opns. Res. 35, 254-265.

