
A Tale of Two Kernels:
Towards Ending Kernel Hardening Wars with Split Kernel

Anil Kurmus
IBM Research – Zurich, Switzerland

kur@zurich.ibm.com

Robby Zippel
IBM Research – Zurich, Switzerland

zip@zurich.ibm.com

ABSTRACT
Software security practitioners are often torn between choosing per-
formance or security. In particular, OS kernels are sensitive to the
smallest performance regressions. This makes it difficult to develop
innovative kernel hardening mechanisms: they may inevitably incur
some run-time performance overhead. Here, we propose building
each kernel function with and without hardening, within a single
split kernel. In particular, this allows trusted processes to be run
under unmodified kernel code, while system calls of untrusted pro-
cesses are directed to the hardened kernel code. We show such
trusted processes run with no overhead when compared to an un-
modified kernel. This allows deferring the decision of making use
of hardening to the run-time. This means kernel distributors, system
administrators and users can selectively enable hardening accord-
ing to their needs: we give examples of such cases. Although this
approach cannot be directly applied to arbitrary kernel hardening
mechanisms, we show cases where it can. Finally, our implementa-
tion in the Linux kernel requires few changes to the kernel sources
and no application source changes. Thus, it is both maintainable
and easy to use.

1. INTRODUCTION
It is no longer necessary to motivate the need for improved OS

kernel self-protection. Kernel memory corruption vulnerabilities
are routinely used for privilege escalation: To escape sandboxes,
as in the recent Chrome sandbox escape on Linux [15]; To bypass
code signing and secure boot, as in various “jailbreaks” on iOS; For
remote kernel exploitation, as in the ROSE and SCTP exploits on
Linux (CVE-2011-1493, CVE-2009-0065), and the kernel TrueType
Font vulnerability on Windows (CVE-2011-3402).

Following the success of user-space exploit mitigations, kernel-
specific hardening techniques were proposed [10, 16, 18, 19, 22, 25,
35]. Typically, these techniques render vulnerabilities either impos-
sible to exploit, or make exploitation significantly more difficult.

Kernel hardening can inherently incur noticeable overhead, de-
spite having clear security benefits. For instance, a simple approach
such as clearing the kernel stack at each stack frame allocation pre-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2957-6/14/11 ...$15.00. http://dx.doi.org/10.1145/2660267.2660331
.

vents uninitialized kernel stack variable-related vulnerabilities, but
its overhead is high.

To the security-conscious, performance overhead is an acceptable
trade-off for improved security. And, in some use cases, security
may prevail in practice (e.g., “free shell” providers, cloud providers).
However, kernel developers are often performance-conscious and
optimize the kernel as much as possible. Indeed, it is considered that
even a small overhead in kernel code tends to add up and degrade
system performance or power consumption noticeably, which in
turn impacts the vast majority of its users.

However, in a large number of use cases and threat models, kernel
hardening is only needed when kernel code is running on behalf
of specific processes or hardware. In the case of a sandbox escape
through a kernel privilege escalation exploit, the attacker will be
exploiting kernel code while running in the context of a sandboxed
process. Hence, there is an opportunity to take additional preventive
measures in the form of kernel hardening (such as clearing each
kernel stack frame) when system calls originate from a sandboxed
process. In contrast, it is not beneficial to perform these extra
operations when system calls originate from a trusted process (e.g.,
running as root).

In addition, the overhead of kernel hardening can vary greatly
depending on workloads. Although this overhead would be accept-
able on workloads involving low kernel processing, because existing
mechanisms cannot be disabled at run-time, kernel distributors have
to race to the bottom and disable hardening due to other workloads
which would be greatly impacted by kernel hardening.

In this paper, we modify the Linux kernel build process to produce
a SPLIT KERNEL that can be run either in hardened or base mode.
Run-time policies bind a particular process, system-call, or hardware
device to either mode, i.e., they specify whether kernel code running
on behalf of these entities will be hardened.

We achieve this by creating a copy of each kernel function,
and leverage the flexibility provided by Executable and Linkable
Format (ELF) symbols and relocations to ensure all function sym-
bols references are renamed. Only functions are copied while keep-
ing the same references to data locations. We statically instrument
all indirect function calls performed in hardened mode to ensure
that the kernel remains in hardened mode during the duration of a
kernel execution thread, even in the presence of function pointers
pointing to base kernel functions.

Indeed, SPLIT KERNEL is designed to have no significant over-
head when running in base mode, when compared to an unmodified
kernel. A naive implementation would instrument (statically) each
unmodified kernel function and redirect execution to a hardened
version by branching on a flag of the current process: this would
cause significant overhead when operating in base mode. Instead,
we build the hardened set of functions such that, if execution is

within any hardened function, it can only transfer control to a hard-
ened function. Hence, we only need to branch once per execution
thread (e.g., on system call entry for system calls). This makes it
possible to remain with a largely unmodified base kernel code.

Three distinct hardening features are added into the hardened
version of each function, by making use of assembly rewriting as
an assembler pre-processor step during kernel compilation. These
mechanisms (stack exhaustion protection, stack zeroing, function
pointer protection) can prevent or mitigate numerous attacks in
practice. However, we implement these mechanisms primarily as a
demonstration of the advantages of using SPLIT KERNEL when in
the presence of a kernel hardening mechanism that benefits security
but incurs significant performance costs.

Our evaluation shows a vanilla kernel hardened with these pro-
tection mechanisms will incur significant overhead: up to 200%
in micro-benchmarks, and ranging from 3% to 60% on real-world
workloads. Results show that, under SPLIT KERNEL, real-world
benchmark overhead can be significantly improved (e.g., 1% instead
of 33% overhead with OpenSSH), because the hardened code is
only run when necessary.

More importantly, SPLIT KERNEL defers the decision of which
processes should be “running a hardened kernel” to the run-time.
System administrators, distribution providers, or users can choose,
depending on the threat model, which processes/network interfaces
should be used with a hardened kernel, if any. Similarly, one may
also decide to run all non-kernel-intensive workloads (such as web
browsing) on the hardened kernel, as the overhead would be negli-
gible. Finally, on all benchmarks, running SPLIT KERNEL in base
mode incurs no significant overhead over a vanilla kernel.

The main contributions of this paper are summarized as follows.

• We propose SPLIT KERNEL, a build-time, extensible, operat-
ing system enhancement tool allowing to run some processes
(or hardware) under hardened kernel code, while simultane-
ously running others on base kernel code. This allows to select
at run-time when the hardened kernel code should be used.
As a consequence, it greatly improves overall system perfor-
mance. In the most extreme case, SPLIT KERNEL allows to
opt-out of kernel hardening at run-time without performance
costs when compared to running an unmodified kernel.

• We implement SPLIT KERNEL on a recent Linux kernel,
and describe challenges we have encountered. We port the
implementation to two distinct Linux variants and hardware
(Ubuntu on an x86-64 server, OpenWrt on a MIPS32-based
home router).

• We implement three assembly-rewrite-based kernel hardening
mechanisms. We evaluate results on different real-world use
cases and benchmarks.

2. SPLIT KERNEL
We start with the high-level design and goals of SPLIT KERNEL.

We then describe our modifications to a standard build system to
obtain split objects from source files, i.e., objects which contain two
versions of the code, with the data being shared. These modifications
are largely generic to any ELF-based build system, but we also de-
scribe Linux-kernel-specific changes that need to be made. Next, we
define bindings that we implemented to enable the use of hardened
kernel functions dynamically at run-time (e.g., to configure which
process will run in hardened mode). Finally, we showcase three
kernel hardening mechanisms we have implemented with SPLIT
KERNEL.

split-
base
code

split-
hardened

code
shared data

interrupt handlers

Process 2 (hdn)Process 1 (base)

Network interface (hdn)Disk (base)

system call entry
kernel

Figure 1: A SPLIT KERNEL at run-time. Process 2 and the
network interface are set to use hardened kernel code.

2.1 Overview and Goals
SPLIT KERNEL modifies the kernel’s build process to generate

two copies of each kernel function: a hardened version which is
compiled with additional processing to add kernel hardening code,
and a mostly unmodified, base version.

To distinguish between a base kernel (e.g., a Linux distribution
or vanilla kernel), a fully-hardened kernel, and SPLIT KERNEL, we
refer to the hardened version of the SPLIT KERNEL code as the
split-hardened code in the remainder of this paper. Similarly, the
largely unmodified SPLIT KERNEL code is referred to as split-base.

Some processes are solely restricted to use the split-hardened
kernel code (see Figure 1). We say they are bound to hardened
mode. A similar restriction is also applied to hardware devices: for
instance, the kernel can run in hardened mode when parsing packets
on behalf of a network device. During the kernel build, the data
sections are not copied or modified: they remain unchanged when
compared to a base kernel. In particular, the data relocations in the
split-base and split-hardened code must refer to the same data.

Hence, there is only one kernel running: no security isolation
exists between split-base and split-hardened kernel code, and if the
kernel is compromised in either of these execution contexts, it is
compromised in both. However, compromising it while running in
split-hardened mode is more difficult than in split-base mode.

As such, the threat models in which SPLIT KERNEL can be used
should essentially assume that the attacker is restricted to using only
the split-hardened context. We will see more detailed threat models
in Section 3 for each use case, but this is essentially a reasonable
assumption. For instance, in the case of a sandboxed process, if the
process is bound by the kernel to execute in split-hardened context,
the attacker needs to first compromise another process that executes
in split-base mode. However, in doing so, the attacker needs to
escape the sandbox first, which is typically their initial motivation
for using a kernel exploit [15].

SPLIT KERNEL is designed with the following goals in mind:
No split-base overhead. Because SPLIT KERNEL aims to pro-

vide the choice between performance and security, we need the
performance of running a split-base kernel to closely match that of
a base kernel under most common workloads. This translates into
as little modifications to split-base code as possible: for instance it
would not be acceptable to instrument every split-base function.

No control-flow from split-hardened to split-base. Once the
kernel control-flow has been bound to the split-hardened code (e.g.,
during system call entry) it should never accidentally switch to split-
base code. Failing this would mean that under some code paths the

source
+headers

assembly assembly object

split object

symbol
modification

symbol
modification2

2

3

3

1 4

1 2 3Compiler AssemblerPre-Processor Linker4

Figure 2: Split build of a translation unit.

kernel code that is executed would not be hardened. This would
mean vulnerabilities in kernel code in such code paths would remain
as exploitable as in the base kernel. The converse (accidentally
switching from split-base to split-hardened code) is less of a problem
because it would only impact performance (and this is tolerable if it
happens in rare cases).

Run-time configurability. We need to be able to decide dynami-
cally which entities (e.g., processes, hardware-triggered interrupts)
will be bound to split-hardened kernel code.

Maintainability. We do not want to perform intrusive modifi-
cations to the kernel sources, as that would hinder maintainability
of the kernel code. Indeed, the Linux kernel is updated at a very
fast pace, which would make our approach quickly obsolete if it
depended on many patches to the kernel sources. In addition, since
the kernel is written in C and assembly language (specific to each
supported architecture), our changes must apply equally well to
code generated from C or assembler source files.

2.2 Split Kernel Builds: Split Objects
SPLIT KERNEL modifies Linux kernel builds mostly at the level

of the compilation of individual translation units (i.e., compilation of
“atomic” object code, usually from a single source file and multiple
header files). Figure 2 summarizes these modifications. We add an
assembler pre-processing step which applies to both the split-base
object and split-hardened object. Then the split-base, and split-
hardened undergo symbol modifications in preparation for a linking
step. After linking, we obtain a single split-object containing both
versions (split-base and split-hardened) of each function. These
split-objects can then be used transparently by the existing linking
phase of the kernel build. We then obtain the final kernel binary and
loadable kernel module (LKM) binaries for SPLIT KERNEL.

The goals of these build modifications are: (a) creating two copies
of each kernel function which also reference the same data locations
(b) when in split-hardened code, restricting control-flow to the split-
hardened code, i.e. fulfill the second goal described in Section 2.1.

Symbol modification. We leverage the flexibility provided by
ELF symbols and relocations to achieve most of these two goals.

ELF symbols can either be local (i.e., scoped to a translation unit),
global (i.e., they may be referred from another translation unit, and
are unique), or weak (i.e., they will be ignored and superseded if
another symbol with the same name exists). They can also corre-
spond to code (functions or other executable locations), or objects
(i.e., read-only or read-write data). Relocations instruct the linker
(or loader) where and how to fill in code and data addresses once
symbols are resolved (i.e., their addresses are known).

As shown in Figure 2, we first compile each translation unit two
times, and obtain two object files. For the split-hardened code:
(a) we rename all code symbols by adding an __hdn suffix to their

names, (b) we temporarily globalize all local data symbols, (c) we
weaken all data symbols. For the split-base kernel, we only need to
make all data symbols temporarily global.

Then, we link the split-hardened and split-base objects. The
linker ignores and replaces all split-hardened data symbols, because
they are superseded by the non-weakened split-base data symbols.
However, because of their distinct names, the split-hardened and
split-base functions co-exist in the split object. Because the split-
hardened code symbols have all been renamed, any direct intra-split-
object function call originating from a split-hardened function now
targets a split-hardened function.

Finally, the last symbol modification step makes all data symbols
that were made temporarily global once again local.

These steps are not sufficient to attain our goals. Mainly, we still
need to cope with: (a) indirect calls (through function pointers),
(b) calls to external functions (which are undefined once the split
object is obtained), (c) relocations which reference section symbols
instead of data symbols.

Assembler pre-processing. The pre-processor is comprised of
two halves: the first includes hardening features. This only applies to
the split-hardened build, and we detail this step in Section 2.4. The
second, that we detail here, performs indirect call instrumentation to
keep run-time control-flow contained within split-hardened code. It
also helps the symbol modification phase with respect to undefined
functions.

Indeed, function pointers are stored in the data sections which
are shared by both split-base and split-hardened code. By default,
these point to split-base functions. Hence, any function pointer
dereference would bring execution back in split-base mode, which
contradicts our goals. Therefore, we rewrite indirect calls in split-
hardened assembly to first lookup the corresponding split-hardened
function pointer.

Although the split-hardened code can tolerate some overhead, this
lookup needs to be efficient because function pointers are heavily
used in large code bases such as the Linux kernel. To achieve this
goal, we prefix an alternative function address to the prologue of
each kernel function, both in split-base and split-hardened code.
Then, instead of dereferencing function pointers directly, indirect
calls dereference the alternative function address, which points to
the split-hardened version of the function it precedes.

Listing 1: Modification to the declaration of a base function
(line 1 will contain the address of func__hdn).

1+ .quad func__hdn
2 .type func, @function
3 func:
4...

Listing 2: Indirect call instrumentation to use an alternative
function addresses.

1- call *0x10(%rax)
2+ movq 0x10(%rax), %rax
3+ movq -0x8(%rax), %rax
4+ call *%rax

This is implemented by adding a symbol address relocation, in
the code section, right before the prologue of each function (see List-
ing 1; note that all listings are unified diffs of GAS-syntax x86-64
assembly). In Listing 2, line 2 loads the address of func, and line
3 loads the address of func__hdn into register %rax. By merely
adding one memory reference, this makes the lookup for the indirect
functions efficient. (In addition to this, in the case of local func-
tions, we need to make use of the temporary globalization explained
previously, except that this time it applies to code symbols.)

Another benefit of the assembler pre-processing is the ability
to easily identify function calls to deal with undefined symbols

during split-object generation. The pre-processor makes a list of
all function symbols that are called, and this list is intersected, in
the symbol modification phase, with undefined symbols. Hence
we obtain a list of references to external functions, which are then
renamed in the split-hardened symbol modification phase.

Section-relative relocations. For local symbols, by default, the
GNU assembler (GAS) produces relocations that are relative to a
section symbol. For uninitialized data for instance, the relocation
might be of the form .bss+8, indicating that the value computed by
the loader should be the address of the .bss section, incremented by
an 8 byte addend. Therefore, the data symbol weakening approach
previously explained would not work for such local data, and the
corresponding local data symbol would be allocated at two different
locations in the .bss section.

To prevent such cases, we patch GAS to emit relocations that
are data-symbol-based, also for local data symbols. This results
in an increase of the number of symbols in the final kernel image.
However, in practice, this only impacts linking and kernel load time.

Object metadata for LKM support. The Linux kernel build cre-
ates a number of special ELF sections in each object file. ksymtab
and kstrtab are used for locating so-called exported symbols. The
kernel exports functions and data for use by LKMs: non-exported
should never be used in kernel modules. kstrtab is simply an
array of strings, whereas ksymtab is an array of (symbol address,
kstrtab address) couples.

Because these are created using GCC directives and CPP macros,
the symbol modification step is “too low-level” to automatically
trigger a modification of the corresponding strings for split-hardened
exported functions. This causes a problem when loading LKMs. To
fix this, the assembler pre-processor detects kstrtab section strings
and appends the __hdn suffix to each string. In addition, we also
need to rename ksymtab-related section names. (The explanation
in the previous paragraph is in fact simplified: each object initially
contains multiple sections of the format __ksymtab+symbol_name
for each exported symbol, they are only merged into a single section
when linking the kernel image). This is also part of the symbol
modification step.

We made a similar modification for kcrctab, which is used for
LKM module version information.

Init and exit sections discarded (optimization). Initialization
code used in the Linux kernel is stored in a separate section. This
is to optimize the size of the kernel: after initialization completes,
this section is unmapped from memory. As the initialization must
only be executed once, the linker creating the split object simply
discards init (and exit) sections from the split-hardened object (this
is implemented via a custom linker script). Note that this also applies
to LKMs.

Code segregation (optimization). Because SPLIT KERNEL builds
double kernel code size (without accounting for code increase due to
hardening), we optimize the code layout. This consists of a simple
kernel linker script modification to ensure split-base code is grouped
together in the .text section, and followed by the remaining split-
hardened code. Without this optimization, when executing split-base
code, split-hardened code could be fetched (unnecessarily) into the
CPU instruction cache due to spatial locality.

2.3 Bindings
We now explain the modifications we have made to provide

users and administrators with the option of making use of the split-
hardened kernel code. These modifications are performed directly
on the kernel source files (as opposed to the kernel build system as
in Section 2.2).

System call entry modifications. We have shown the SPLIT
KERNEL build will ensure that the kernel will remain in split-
hardened mode once it starts executing any split-hardened function.
Hence, to switch to the split-hardened kernel code from the system
call interface, it is sufficient to call the split-hardened version of
each system call.

This requires modifying the system call entry code. Addresses
of system calls are stored in the system call table. The entry code
prepares registers and calls an offset in the system call table. The
offset corresponds to the system call number passed by the process
requesting the system call.

For the split-hardened system calls, we add a second system
call table. It contains addresses corresponding to the hardened
counterpart of split-base system calls, in the same order as the split-
base system call table.

Listing 3: Modifications for one system call entry point
1system_call_fastpath:
2 cmpq $__NR_syscall_max,%rax
3 ja badsys
4+ movq %gs:current_task, %rcx
5+ movq SPLITMODE-TASKOFFSET(%rcx), %rcx
6+ cmpq split_val, %rcx
7 movq %r10,%rcx
8- call *sys_call_table(,%rax,8)
9+ jne hdn_mode_syscall_fastpath
10+ call *sys_call_table(,%rax,8)
11+ jmp after_sys_call_fastpath
12+hdn_mode_syscall_fastpath:
13+ call *sys_call_table_hdn(,%rax,8)
14+after_sys_call_fastpath:
15 movq %rax,RAX-ARGOFFSET(%rsp)

As shown in Listing 3, we check that a value in task_struct

is equal to a non-zero split_val value (lines 4-6). If the value
matches, we execute base system calls (line 10). If it does not, we
execute hardened system calls (line 13).

The task_struct structure is essentially created by the kernel
for each process and stores process-specific information. We add
into this structure a split_mode field. For the first process to
execute in user-space, init, this field is initialized to split_val,
indicating that it will run in base mode.

As an implementation note, we cover all system call entry points:
the Linux x86-64 kernel has support for interrupt-based system
calls (int 0x80), fast system calls (syscall, shown in Listing 3),
and 32-bit compatibility mode system calls for 32-bit processes
running on a 64-bit kernel. In addition to the system call interface,
another kernel entry point for processes are exception handlers.
Exceptions can occur on operations such as a division by zero, a
page fault, or a general protection fault when accessing privileged
registers in user-space. The kernel registers handlers for each of
these exceptions. Although this interface exposes far less attack
surface to user-space when compared to the system call interface,
we also make a modification similar to Listing 3 for exception entry
points: hence, we treat exceptions in the same way as system calls.

Process binding. We make use of process boundaries and allow
binding a given process to a split-hardened kernel. This means all
system calls performed by a process must be routed to the split-
hardened system call table, i.e. replace the split mode address entry
in task_struct must point to the hardened system call table.

Since this is a per-process parameter, we extend the existing
/proc/pid interface which contains parameters and information
on a process with a given process ID (pid). We add a /proc

/pid/split_harden pseudo-file which can only be accessed by
the owner of the current process and root. On reading the file,
“1” is returned if the process is bound to the split-hardened ker-
nel code, and “0” otherwise. On writing a “1” to this file, the

process is bound to the split-hardened mode by the kernel setting
its task_struct split_mode entry to 0. Because this value is
different from split_val, the process will execute in hardened
mode.

Any other values written to the pseudo-file, in particular “0”,
has no effect: for security reasons, it is not possible to switch a
process back to split-base mode. Similarly, the hardening binding is
left unmodified across fork, clone and execve system calls. In
particular, the task_struct entry is essentially copied on fork.
Hence, an attacker cannot simply fork or execute another process to
escape the binding.

The process binding functionality is particularly useful for devel-
opers: e.g., when a sandboxed browser process is run, the developers
merely need to write to the pseudo-file, which is a simple change to
implement. In fact, this can even be performed by a wrapper shell
script, without any modifications to the application.

User ID binding. Process binding can be insufficient for system
administrators: typically, they do not have the possibility of mod-
ifying programs, and writing to the /proc/pid/split_harden

pseudo-file (as root) after the target program starts would be prone to
race conditions. Indeed, the process may already be compromised,
and an attacker may have already executed a vulnerable split-base
system call.

Therefore, we provide an additional interface that makes use of ex-
isting trust boundaries in the OS. The simplest is the traditional UID
(User ID). Indeed, many daemons, such as SSH, change UID to drop
privileges. When changing UIDs, e.g., through a setresuid() call,
We bind to split-hardened mode any process whose owner matches
a given set of UIDs

This list of UIDs is shared with user-space through sysfs. An
administrator can simply set these UIDs by writing to /sys/kernel
/split/hdn_uid_list.

Interrupt binding (for networking). Attackers can also target
the kernel when it is not running on behalf of a user-process (i.e.,
not in process context). In particular, remote attackers can take
advantage of the complexity of the kernel network stack. In the
past, network drivers as well as network stacks such as SCTP have
been prone to remotely exploitable kernel vulnerabilities. Hence,
we also provide the possibility of binding, to split-hardened mode,
the treatment by the kernel of network packets.

Most recent network drivers in Linux make use of NAPI: the new,
fast networking API. Upon packet reception, the device at first raises
an interrupt. Then, the interrupt handler schedules a polling kernel
thread (a softirq) and masks interrupts from the network device.
This thread then parses received network packets. The polling thread
is scheduled in a loop, parsing a given amount of packets at a time.
When no more packets are available, the driver re-enables interrupts
and the softirq is removed from the scheduling queue.

The initial interrupt handling code does not have much, if any,
attack surface: it does not perform any parsing. Hence, it would
not be beneficial to bind it to split-hardened mode (although it is
possible: we also implemented an additional sysfs interface to
allow binding specific interrupt handlers, based on their interrupt
vector identifier). However, the softirq parses network packets.
Therefore, we switch to hardened mode only the softirq polling
function.

We opted to make the configuration of this binding as easy as
possible, while maintaining the flexibility of only binding for pack-
ets coming from specific network devices. Hence, we use the
/sys/kernel/split /hdn_napi_if_list pseudo-file to allow
the system administrator to list all network devices (such as wlan0)
for which incoming network packet parsing should be done in the
split-hardened kernel.

Upon writing to this file, the kernel goes through the list of reg-
istered NAPI polling functions. If any polling function pointer
corresponds to a device with the given interface name, it is replaced
with the split-hardened function pointer. When the polling thread is
subsequently scheduled, it will execute in hardened mode.

2.4 Kernel Hardening
We now detail three hardening mechanisms that we implement

and that are used when the kernel operates in hardened mode. These
mechanisms serve as a demonstration of the advantages and limi-
tations of SPLIT KERNEL. Each mechanism is implemented in the
assembly pre-processor, essentially rewriting parts of the assem-
bly. The assembly input to the pre-processor is either that obtained
after compiling a translation unit (here, using GCC), or simply a
pure-assembler file.

For each hardening mechanism, we briefly describe the classes of
vulnerabilities that it mitigates, the general idea of the mitigation,
and give relevant details on our implementation. We only provide
examples of the instrumented listings in the Annex. Indeed, these
hardening mechanisms need many instructions and branches when
implemented thoroughly, and their implementation is not the main
contribution of this paper. We have deliberately tried to choose
costly hardening features to better showcase the benefits of SPLIT
KERNEL.

Stack exhaustion checks. Each Linux process has, in addition
to its user-space stack, its own kernel stack. This kernel stack is
used when the kernel is executing a system call on behalf of the
process. It is limited to a pre-defined size (8 KB on most modern
Linux kernels). In reality, the kernel also keeps process-specific
information, thread_info, at the end (lowest addresses) of this
stack, hence the stack size available to the kernel when executing
a system call is slightly less than 8 KB. If the call stack exceeds
the available size, (because of a particularly long call stack or be-
cause of a function using a large stack frame), thread_info can
be overwritten by the kernel, possibly with attacker-controlled con-
tent. Since thread_info contains sensitive data such as function
pointers, this is an interesting target for attackers. For instance, such
a vulnerability [6] was shown to be exploitable for local privilege
escalation by Nelson Elhage [12].

The Linux kernel sources include a static binary analysis tool,
checkstack.pl, that identifies the most stack-consuming kernel
functions (for the kernel configuration used for the build). In addi-
tion, kernel developers are discouraged from making use of recursive
calls or variable-length arrays. A build-time configuration option,
CONFIG_DEBUG_STACKOVERFLOW, also allows kernel developers to
enable kernel stack size checks at run-time. However, these checks
only occur when an interrupt preempts the kernel for performance
reasons (and, for performance reasons again, this configuration op-
tion is in any case disabled in distribution kernels that most users
run, as it is intended as a kernel developer debugging feature only).
Hence, these measures only alleviate the problem, and kernel stack
exhaustion can still occur.

To prevent stack exhaustion and thread_info overwrites, the
pre-processor instruments each function prologue (i.e., function en-
try) and stack allocation (stack decrement) instruction. It verifies that
the current stack pointer is not less than the top of thread_info,
plus a guard zone. In the common case where a function makes
use of stack variables, the check is added after stack allocation is
performed (but before writing to the stack). The guard zone (128
bytes) is used as a safety net to prevent thread_info overwrites
that could occur due to registers that are saved on the stack prior to
function calls.

We instrument not only each function prologue, but also each
stack decrement instruction. In the common case where these two
operation follow each other (prior to a call), the check is done only
once. In other cases where stack decrement occurs again, for ex-
ample when using inner-C-block stack variables, we instrument
again. We instrument function prologues because it is possible to
also exhaust the stack by merely performing recursive calls with no
stack allocation (due to spilled registers). In addition, this instrumen-
tation is not valid for the interrupt stack. Hence, the instrumentation
contains a check in case the function is executing in interrupt mode:
if so, the check always passes.

Stack clearance. Missing initialization is a widespread C pro-
gramming error [29], including among Linux kernel programmers [7,
30]. For instance, a data structure can be padded with optional bytes,
and these bytes are not zeroed before being copied to user-space or
sent over the network. This means that, potentially sensitive data
from previous stack-frames, such as cryptographic keys that should
remain protected in the kernel can be leaked. Leaking kernel ad-
dresses and offsets can also be useful to attackers: for instance, this
can defeat randomization-based exploit mitigation techniques [18].
Such vulnerabilities have been exploited in the Linux kernel recently
(e.g., CVE-2010-4158).

Alternatively, a function can make use of an uninitialized pointer.
Of course, this uninitialized data has in fact the value that was
assigned to it in a previous use. For instance, when the uninitialized
data is on the stack, it corresponds to data from a previous stack
frame of another function. With careful sequencing of functions,
an attacker may place attacker-chosen data at the correct location
on the stack. When the vulnerable function is executed, it will use
the attacker-provided pointer. If it is a function pointer, this directly
leads to code execution in kernel mode for the attacker [8].

A simple approach can mitigate most vulnerabilities based on
use of uninitialized stack data: zeroing the current stack frame at
each function call, after it is allocated (by decrementing the stack
pointer on systems where the stack grows towards low addresses).
An alternative approach is to zero-out the kernel stack corresponding
to the executing process, on each system call. The latter approach
provides better performance, but will still allow information leaks or
uninitialized data use originating from a function executing within
the same system call. In the spirit of SPLIT KERNEL, we have imple-
mented the former, more secure approach; the latter is implemented
in the grsecurity-patched Linux kernel [35].

The assembly pre-processor simply identifies a stack decrement
assembly instruction. It then inserts instructions zeroing the allo-
cated stack. On x86-64, we make use of the stosq instruction to
zero eight bytes at a time when possible. Stack allocations can
either be static (i.e., compiler-computed) or dynamic (i.e., use of
C99 variable-length arrays, or alloca()). In the common case
where the allocation is static, the size computation is done in the pre-
processor. In the dynamic case, the pre-processor adds instructions
to compute the adjusted count from the register holding the size.

Function pointer protection. After an arbitrary kernel write vul-
nerability is found, attackers will often overwrite a function pointer
used by the kernel. In case of local privilege escalation exploits,
attackers will point the function pointer to attacker-crafted code in
user-space. The attacker will then trigger this function (through an
appropriate system call) and achieve kernel-mode arbitrary code
execution. This is a common pattern in many publicly available
kernel privilege escalation exploits.

We add a verification that all function-pointer-dereferencing calls
target a valid kernel function (much like a limited form of control
flow integrity (CFI) [1]). Because the pre-processor already instru-
ments each indirect function call, this modification is added on top

of it. First, to identify valid function pointer targets, we add an
8-byte verification label prior to the prologue of each split-hardened
function (right before the 8 bytes of the alternate function address
described in Section 2.2, as seen in Listing 4). Then, on each indirect
call, we insert a compare instruction that checks that the verification
value matches.

Listing 4: Pre-function prologue modifications for a hardened
function. Note that func will be renamed to func__hdn during
symbol modification.

1+ .quad 0x13660e4b12b74208
2+ .quad func__hdn
3 .type func, @function
4 func:

The verification value is the same for all split-hardened functions.
It is generated randomly at build-time, after checking that this byte
sequence does not occur in other kernel object files. The value
does not need to be secret: an attacker can learn the verification
value, and attempt to insert data (either in user-space or in kernel
data sections) with an attacker-chosen pointer value followed by
the verification value. However, we also check that the verification
value is located in the kernel text section, or within a module. These
kernel segments are all mapped either read-only or non-executable,
hence an attacker cannot bypass this check with the aforementioned
technique.

2.5 Implementation Summary
Table 1 summarizes our modifications: (a) split builds consist in

about 600 lines of architecture-independent additions; (b) bindings
result in about 1000 lines of kernel source changes, with about 300
lines of architecture-independent changes; (c) the three hardening
mechanisms and the pre-processor additions for the split builds
consists of about 800 lines of Perl code for x86-64.

To demonstrate the generality of SPLIT KERNEL, we port this
vanilla-Linux 3.2.48 based implementation to OpenWrt (based on
Linux 2.6.39.4). OpenWrt is a Linux kernel distribution for em-
bedded systems and also contains the toolchain necessary to cross-
compile and flash a new firmware on routers. Our port to the MIPS32
architecture results in the following modifications: (a) split builds
only need a different patch for GAS (50 lines), (b) bindings incur
about 500 lines of kernel source changes, mostly in MIPS system
call entries (c) we only port function pointer protection as hardening
mechanism, it consists in about 250 lines of Perl code.

Finally, for purposes of evaluation and benchmarking, we create
a fully hardened kernel. This consists in only keeping the hard-
ening mechanisms: no split builds or bindings (we also remove
the alternative function values prior to each function call). As an
implementation note, it also requires to add verification values to
functions in the init sections: this is not required for SPLIT KERNEL
because kernel initialization is performed in base mode.

3. USE CASES AND EVALUATION

3.1 Use Cases
For each use case, we first provide a description, then explain the

threat model we consider, and finally describe the corresponding
binding configuration we have made.

All three first use cases are run on an x86-64 Intel Xeon E5440
server with 20 GB of RAM running Ubuntu 12.04 with the Linux
3.2.48 vanilla kernel (compiled with Ubuntu configuration options).

In cases where the benchmark involves networking, we consider
that attackers may be in a position to exploit a remote kernel vul-
nerability in either the network driver or the network stack of the

Source file Modification Description

include/asm-generic/vmlinux.lds.h 4 lines added Segregate base and hardened code when linking
scripts/Makefile.build 147 lines added/modified Split build modifications
scripts/symbol/globalize.sh 39 lines Globalize data/relocation symbols
scripts/symbol/metadata.sh 109 lines Section renaming for ksymtab-like sections
scripts/symbol/renamesym.sh 97 lines Renaming text symbols
scripts/symbol/preproc.pl 64 lines Pre-processor for build modifications
scripts/symbol/weaken.sh 26 lines Weaken split-hardened data symbols
scripts/symbol/linker.lds 72 lines Linker script for split-object linker
GNU assembler patch 37 lines added Symbol-relative relocations only

arch/x86/kernel/entry_64.S 166 lines modified/added Split system call entry and exception handlers
arch/x86/kernel/syscall_64.c 14 lines added Additional system call table
arch/x86/ia32/ia32entry.S 392 lines (code + data) 32-bit compatibility system-call modifications
kernel/cred.c 8 lines added UID binding: check on UID change
fs/proc/base.c 44 lines added /proc/pid/ binding
include/linux/split.h 1 file added (31 lines) Header file for SPLIT KERNEL
include/linux/init_task.h 2 lines modified/added init starts in split-base mode
kernel/split/kobject.c 102 lines sysfs binding interfaces
kernel/split/hdn.c 62 lines Custom error handling functions (for hardening)

scripts/asrewrite/func_base.pl 105 lines Pre-processor for base functions
scripts/asrewrite/func_hdn.pl 114 lines Pre-processor for hardened functions
scripts/asrewrite/call_hdn.pl 230 lines Pre-processor for indirect call instrumentation
scripts/asrewrite/stack_hdn.pl 348 lines Pre-processor for stack clearance and exhaustion

Table 1: Breakdown of our modifications to the Linux kernel builds, sources and the assembler pre-processor.

kernel. Hence, we bind the network interface to hardened mode
by simply writing the interface name to /sys/kernel/split

/hdn_napi_if_list. We perform benchmarks both with this
binding enabled and disabled. Indeed, an administrator may decide
to disable this binding for improving performance, based on the
observation that remote kernel exploits are rare compared to local
ones.

OpenSSH. We use the distribution-provided OpenSSH daemon
and run two benchmarks. The first measures the remote login wall-
clock time (this is run from a client machine with low-latency net-
work access to the server). The second measures the time taken to
transfer a 100 MB file over scp.

The OpenSSH daemon is privilege separated [31]. Although SSH
needs root privileges to spawn user-privileged shells, the part of the
authentication process receiving direct input from an unauthenti-
cated remote client is performed in a forked process, after dropping
privileges. This unprivileged, sandboxed process runs as user sshd.
Therefore, it would not make sense to harden the kernel from attacks
coming from the main ssh daemon running as root. However, it
makes sense to bind the unprivileged process to hardened mode in
order to prevent an attacker that has gained code execution in the
sandboxed process to escape via a kernel exploit.

This requires no changes to the OpenSSH daemon: the admin
can simply add a line in system initialization scripts to execute
id -u sshd >> /sys/kernel /split/hdn_uid_list.

Apache. We set-up an Apache web server in its default settings
(however, we disable access logging to prevent filling up storage
space during extended benchmarks), and run ab (Apache Bench-
mark) with 100 requesting threads while serving static web page.

We consider an attacker that gained code execution with the privi-
leges of the Apache process (e.g., through a vulnerable PHP script),
and attempts to elevate his privileges through a kernel exploit.

Therefore, we bind the apache daemon to split-hardened kernel.
We achieve this simply by writing the UID corresponding to Apache
to the /sys/kernel /split/hdn_uid_list file exposed through
sysfs on system initialization.

Kernel Code Size

Vanilla (Linux 3.2.48) 6475k
– with SPLIT KERNEL 16644k
– with full hardening 10003k

OpenWrt (Linux 2.6.39) 1849k
– with SPLIT KERNEL 3829k

Table 2: Comparison of kernel code sizes at load time (exclud-
ing init sections).

Firefox. We use Firefox to browse popular websites (Amazon,
BBC, CNN, Craigslist, eBay, Google, MSN, Slashdot, Twitter,
YouTube) with the BBench benchmark [20].

We consider an attacker that aims to gain execution of the browser.
This can be due, for example, to a Flash plugin exploit. We consider
two bindings. The first binds the entire Firefox process to hardened
mode. The second binds solely Firefox’s flash player process to
hardened mode. This requires no changes to Firefox: we simply
rename the flash player process and create a shell wrapper that writes
to its PID pseudo-file before executing the flash plugin process.

3.2 Evaluation
Micro-benchmarks. We measure performance for system calls

with the LMBENCH 3 benchmarking suite. We perform between
50 and 80 runs for each kernel, and calculate 95% confidence inter-
vals. Results are shown in Figure 3, normalized to the base kernel.
Split-base mode incurs no measurable overhead: indeed, the only
difference in executed code is a branch and memory reference on sys-
tem call entry, and there are no cache effects due to code segregation.
The fully hardened and split-hardened (we set the process perform-
ing to hardened mode before starting the benchmark) results are
comparable, and both incur high overheads on micro-benchmarks
(between 1.2x and 3x slower). This is explained by the significant
amount of additional instrumenting code that is executed due to the
three hardening mechanisms we selected (average of 55% increase
in code size, see Table 2).

Figure 4: Use-case benchmark results.

Figure 3: Micro-benchmark results.

Use case benchmarks. We run each macro benchmark at least
50 times, and report 95% confidence intervals.

We consider two binding settings for each SSH and Apache bench-
mark: binding 1 is only with the UID sandboxing, binding 2 is with
UID sandboxing and network interface binding. For Firefox, bind-
ing 1 is with flash plugin sandboxing only, while binding 2 is with
full browser sandboxing.

In Figure 4, we observe two groups of results: less than 5% fully-
hardened overhead benchmarks on the left, and more than 30%
overhead on the right. Indeed, some workloads are more kernel-
intesive than others: here, the file transfer and Firefox benchmark
spend comparatively more time waiting for I/O, or performing user-
space processing, than the SSH login and Apache benchmarks which
are more kernel-intensive. Hence, a potential deployment strategy
for a performance-conscious system administrator can be to disable
hardening only on all kernel-intensive applications.

As predicted by the micro-benchmarks, split-base incurs no sig-
nificant overhead on any benchmark. Split-hardened benchmarks
demonstrate that, depending on the threat-model one adopts, one
can modulate performance overhead between split-base results and
the fully-hardened results. In particular, on the right, the difference
between binding 1 and 2 is only the handling of network softirq

polling threads in hardened mode. This indicates that most of the
overhead incurred by the fully-hardened kernel is in fact in interrupts,
especially for the SSH login benchmark. Finally, split-hardened
under binding 2 is still significantly faster than the fully hardened
kernel. This is due to other kernel execution threads (e.g., the kernel
scheduler or kernel threads such as kflushd which writes back dirty
pages) that are not running in hardened mode for SPLIT KERNEL,
but are solicitated heavily for this workload.

One may consider whether switching back and forth between base
and hardened kernel code may create a significant performance loss
due to cache effects. In fact, this is reflected in the split-hardened

benchmarks of Firefox and SSH with binding 1. Indeed, in these
benchmarks, some of the processes run in base mode while others
in hardened mode. In particular, in the case of SSH with binding 1
the performance is comparable to the split-base performance. This
is because the the SSH authentication process (which runs in split-
hardened mode) performs two orders of magnitude less system calls
that the main SSH process (1K vs. 100K system calls). Because
the split-base and split-hardened performance are very close, we
conclude that the performance impact of such kernel code-caching
effects is insignificant in practice, especially when compared to
running in full-hardened mode.

Testing. To test our implementation, we made use of the Linux
testing project (LTP) [27], in addition to all aforementioned bench-
marks. We did not observe any crashes or errors specific to the
SPLIT KERNEL and fully hardened kernels. To test that no control
flow from hardened to base occurs, we also collected kernel stack
traces from hardened-mode system calls and verified that all called
functions are hardened.

3.3 Security Considerations
We discuss here first the ways in which an attacker can potentially

bypass SPLIT KERNEL or the implemented hardening mechanisms.
Stack exhaustion checks. The stack exhaustion check covers all

possible cases (with the exception of exhaustions of an interrupt
stack, however this is not in scope). Indeed, we have covered the
case of recursive calls (by instrumentation function prologues, even
in the absence of stack allocation), the case of variable length arrays,
the case of inner-block local C variables, and register spills on the
stack due to stack switches.

Stack clearance. As explained in Section 2.4, for stack clearance,
there are two types of vulnerabilities to mitigate: information disclo-
sure, and use of uninitialized data. We zero the stack at each stack
allocation. This means that all uninitialized stack variables will be
initialized to 0: there can be no information disclosure. However,
in the case where the uninitialized stack variable is made use of in
the kernel, in some rare cases, this value could be detrimental: e.g.,
a variable that control whether access control should be performed.
In the case of a function pointer, this may result in a NULL-pointer
dereference. Although NULL-pointer dereference vulnerabilities
were still easily exploitable in 2009 on Linux, the restrictions on
mmap made them much less likely to be so (an attacker needs to
find, in addition, a way to bypass this mechanism). Note also this is
caught by the function pointer protection.

Function pointer protection. The function pointer protection
implemented here only considers the case where an attacker has
a vulnerability that permits them to overwrite a specific function
pointer. Therefore, this protection does not apply in case the attacker
has a vulnerability that directly allows him to arbitrarily modify
other control data (such as return addresses on the stack) or sensitive
non-control data (such as the UID of the current process).

There are a few indirect calls we do not instrument, because we
manually identified it to be unnecessary. Some kernel function point-
ers are declared as constant, and are therefore mapped in a read-only
kernel page. For instance, in the system call entry (Listing 3), we
do not check before dereferencing in the system call table. How-
ever, both system call tables there are read-only: they cannot be
overwritten directly by the attacker.

When compared to return-to-user protections [16, 22, 35], this
protection has advantages. This protection mitigates to some ex-
tent code-injection-based and return-oriented-programming (ROP)-
based exploit payloads (but only when the attacker overwrites a
function pointer). This is achieved in two steps. First, the check that
the address where control is transferred is either in the core kernel
text section or in an address mapped for kernel modules guarantees
that the target address and the verification value are either in a non-
executable or read-only page. A simple check that the target address
is within the kernel [16, 22] is not sufficient to achieve this. Indeed,
we have verified that the recent kernel we use maps a few kernel
pages (such as the BIOS) read-write and executable [25]. This means
this protection works even if an attacker could inject code into these
pages (potentially through the same, or another vulnerability), and
then overwrite the function pointer with the injected code’s address.
In addition, we essentially implemented a simpler form of CFI by us-
ing verification values. This means that an attacker can only transfer
control to “valid” function entry points. As a consequence, ROP in
its general form becomes impossible (e.g., the attacker cannot make
use of a stack pivot gadget to make the switch the stack pointer to
its ROP payload, because no legitimate function is likely to perform
a stack pivot). However, return-to-libc-type attacks (but with kernel
functions) may remain possible. Indeed, in contrast to proper CFI [1,
14], we do not perform any control-flow-graph analysis to narrow
down possible branch targets at a fine granularity.

The above are standard considerations [37]. We now discuss
SPLIT KERNEL-specific weaknesses: we implemented this mecha-
nism also to illustrate limitations of SPLIT KERNEL. The function
pointer that is overwritten by the attacker can be in a (writable) data
section shared with base kernel code. Note that this is not the case
if the function pointer is on the kernel stack, since each process has
its own and can only be either in base or hardened mode. In such
cases, the attacker-provided address can be dereferenced by another
process, in base mode, with no instrumentation. Nevertheless, recall
that by assumption, the attacker does not control any base-mode pro-
cesses. Hence, in such cases, the attacker remains with a challenge:
it can redirect the control-flow in kernel mode via a specific function
pointer, but does not control either the process address space, the
system calls that the process performs, or even the inputs to the
system calls.

To generalize, if an attacker is powerful enough to arbitrarily
access kernel data shared between hardened and base, hardening
mechanisms implemented within SPLIT KERNEL may not be ef-
fective. Fortunately, many hardening mechanisms, such as the two
others we implement, do not assume such a strong attacker. In such
cases, hardening mechanisms implemented with SPLIT KERNEL
are as useful as their full-kernel implementations.

Bypassing SPLIT KERNEL. Because there are two sets of kernel
functions, we consider whether an attacker that controls an unprivi-
leged process running in hardened mode may instead execute base
kernel code, potentially exploiting vulnerabilities without hardening
mechanisms. Assume the attacker aims to exploit such a kernel
vulnerability to escape from its current security domain (e.g., ssh
authentication sandbox). As explained in Section 2.3, a fork or
execution of a new process cannot result in a transition to base mode.
Similarly, the sysfs and procfs interfaces cannot be used to transi-

tion to base mode. The attacker may attempt to gain code execution
in an existing base-mode running process. However, this already
corresponds to bypassing the security domain of the current process,
and, would often correspond to the end goal of the attacker (e.g.,
escaping the ssh authentication sandbox, and gaining code execution
in the main sshd process running as root). Finally, an attacker may
exploit a kernel vulnerability to disable SPLIT KERNEL. This ker-
nel vulnerability may either be unexploitable due to the hardening
mechanisms implemented in hardened mode, or not. In the latter
case, the vulnerability needs to allow the attacker to modify entries
in task_struct (split_mode, more precisely), which contains
other sensitive data. Hence, such powerful vulnerabilities would
also be exploitable for sandbox escapes in a fully-hardened kernel.

4. DISCUSSION AND FUTURE WORK
Portability across architectures. Parts of our implementation

have CPU architecture-dependent components. However, as demon-
strated by our effort to port to OpenWrt, porting SPLIT KERNEL
builds to other architectures is possible. In particular, bindings af-
fecting architecture-dependent code (such as the system call entry)
require extra work. Clearly, compiler hardening mechanism that are
inherently portable would not need such adaptation, and one can
envision making use of such approaches in the future, also for better
optimizing the generated assembly code.

Split builds on other OSes. Our implementation is Linux-specific,
but the core idea of SPLIT KERNEL, building two versions of kernel
code and deferring the decision of which to use to run-time, can be
applied to any OS. In fact, it could also be applied to user-space
applications, provided that there are motivations for doing so. In
terms of the implementation, only part of SPLIT KERNEL builds is
Linux specific: e.g., when dealing with LKMs and discarding init

sections. The rest of the implementation depends on the ELF format,
which is used in most current UNIX-like OSes (OS X and AIX are
notable exceptions). For example, a port to a BSD kernel would not
require any major overhaul.

Other hardening mechanisms. Not all hardening mechanisms
can be used, especially unmodified, with SPLIT KERNEL. As we
discuss in Section 3.3, the guarantees of CFI-like mechanisms are
weakened because control-data is shared between the base and hard-
ened kernels. However, mechanisms that protect data accesses (such
as stack exhaustion and stack clearance) are well adapted. As an
example, mechanisms that protect out-of-bounds accesses, such as
AddressSanitizer for the Linux kernel [19], could be implemented
in future work. However, this may require instrumenting some
base code as well: namely for each kernel heap (de-)allocation
from the base kernel, to update associated metadata. Because data
accesses would not be instrumented in the base kernel and only
allocations would, this should limit the impact on overall split-base
performance.

Alternative bindings. The bindings we show (process, UID,
network interface) can be extended to the many other flavors of
process trust boundaries available on Linux. LSM [39] framework-
based access control mechanisms such as SELinux [34] provide
“security contexts” which are dynamically computed (depending
on policies and labels on programs), and it would be possible to
extend these frameworks to bind specific security contexts to split-
hardened mode. For instance, any process with a given SELinux
type can be bound to a split-hardened kernel. Closer to the spirit
of such access control systems, running in base mode can be a new
permission. By default, processes could then run in hardened mode,
except when they have the base permission. Finally, SPLIT KERNEL
could be used together with an anomaly detection mechanism, such

as KRAZOR [23], to transition execution to split-hardened mode
when an unusual kernel function is executed.

5. RELATED WORK
To the best of our knowledge, SPLIT KERNEL-modified Linux is

the first kernel that can be dynamically configured, at a system-call-
or interrupt-granularity, to be run in hardened mode or not. However,
it is inspired from and builds on research in areas we describe below.

OS and VMM research. Micro-kernels [5, 13, 26] aim for ex-
tensibility and configurability by design: much of the functionality
provided in kernel-mode in monolithic OSes is modularized and is
run as verified [5] or deprivileged “processes” known as services.
In exokernels [13], applications can make use of specialized library
OSes. Such specialization enables sophisticated optimizations (e.g.,
different page cache management or thread scheduling algorithms
for each process).

Closer to our commodity OS-based approach, Proxos [36] splits
the Linux kernel interface in two for a group of private processes:
private and traditional system calls. A VMM is used to spawn a
private OS, and private processes will see their private system calls
routed to the private OS, while its other system calls will be routed
to the untrusted commodity OS. Because the two OSes are isolated,
compromising the untrusted OS is not sufficient to access private
data. In contrast, SPLIT KERNEL is in a single protection domain:
it does not aim for isolation between split-hardened and split-base
code. Rather, it makes the exploitation of vulnerabilities more dif-
ficult for a configurable group of processes (or interrupts). One
can consider that it trades-off isolation for better performance and
maintainability: no latencies due to VM context switches, no depen-
dencies on a VMM or micro-kernel, no modification of applications.

Kernel hardening. Hardening techniques (such as NX, ASLR,
SSP, format string and heap hardening, see references in [38])
emerged as a successful counter to memory corruption exploits
against privileged processes. Because this made privilege escalation
through user-land attacks more challenging, some attackers shifted
their focus towards OS kernels which remained easier to exploit.
Hence, kernel hardening only recently attracted interest, despite ker-
nel memory corruption vulnerabilities such as unsafe user pointer
dereferences being known as early as 1972 [2].

Kemerlis, Portokalidis, and Keromytis [22] discuss return-to-user
attacks in depth, and propose instrumentation of indirect branches
(using GCC plugins) to prevent them. In contrast to the x86-64
Supervisor Mode Execution Protection (SMEP) [16] feature avail-
able since Ivy Bridge CPUs, their approach is easily applicable
to other architectures. Grsecurity [35] also provides Linux kernel
patches that prevent return-to-user attacks (KERNEXEC) on x86,
x86-64 and ARM architectures. In addition, it provides numerous
kernel hardening features including: kernel stack randomization at
each system call entry, removal of read-write-execute kernel map-
pings, prevention of unsafe user pointer dereferences (similar to the
recent Supervisor Mode Access Protection (SMAP) [10] feature to
appear in future x86-64 CPUs), prevention of reference-counting
overflows, and, recently, a stack exhaustion prevention feature.

Liakh, Grace, and Jiang [25] analyze the enforcement of the write
exclusive-or execute regime for Linux kernel pages, and propose
fixes for each violation. However, on the 3.2.48 x86-64 vanilla
Linux kernel we used, we were able to verify (by performing a page
table dump) that writable and executable kernel pages remain. Li et
al. [24] take a compiler-based approach to generate a kernel without
any return opcodes to mitigate return-oriented programming [32].
Secure Virtual Architecture (SVA) [11] compiles the kernel sources
into a safe instruction set architecture using LLVM, which is trans-
lated to native instructions by the SVA VM. This provides among

other guarantees, a variant of type safety and control flow integrity
for the Linux kernel. Giuffrida, Kuijsten, and Tanenbaum [18] pro-
poses randomization and periodic live re-randomization of kernel
data structures, kernel stack, static and dynamic data, and basic
code blocks to mitigate ROP payloads and the impact of informa-
tion leakage vulnerabilities. They also leverage LLVM and apply
the approach to MINIX 3 [21]. AddressSanitizer [33] is a GCC
and LLVM extension that instruments memory accesses to detect
object-based out-of-bounds reads and writes. It has recently been
adapted to work with the Linux kernel and was used to uncover
many vulnerabilities [19].

Compiler function cloning. In compiler research and develop-
ment, function cloning [4, 9, 17] consists of the compiler generating
a copy of a function to optimize it. For instance, that copy could
be used by some callers after the compiler performs constant prop-
agation on it, while keeping the original version of the function
intact for the rest of the callers (because other callers do not call the
function with a constant parameter). In existing research, the aim
of function cloning is to optimize binaries (e.g., for performance
or power-consumption), but not to provide a second set of security
hardened functions. This explains the differences between SPLIT
KERNEL and compiler function cloning. Indeed, SPLIT KERNEL
does not merely perform function cloning for each function: it also
ensures that control flow remains within the base set of functions or
the hardened set of functions (through renaming function symbols
at compile-time and instrumenting indirect calls).

Kernel live patching. Kernel live-patching techniques [3, 28]
have been proposed to prevent rebooting kernels on updates. Be-
cause live-patching techniques create a patched copy of kernel func-
tions (and redirect control-flow to the patched version), they bear
similarities to the techniques used in SPLIT KERNEL builds. In
addition, such techniques could be investigated to live-patch a distri-
bution kernel into a split kernel by merely loading a kernel module
(without needing to reboot or recompile the kernel).

6. CONCLUSION
This paper challenges the established wisdom that OS kernels

are too sensitive to performance and can only include lightweight
kernel self-protection mechanisms. We show it is possible (at least
in some cases) to have a best-of-both-worlds approach by allowing
kernel hardening to be enabled selectively at run-time.

The design of SPLIT KERNEL is simple and effective: we provide
two versions of the kernel code. By design, we do not instrument
any code in the base version of the kernel code by making it the
hardened version’s responsibility to ensure control is not transferred
from hardened code to base.

We implement on Linux x86-64, and then port our implementa-
tion to an embedded router. We implement three distinct hardening
mechanisms. We implement a fully-hardened kernel without SPLIT
KERNEL, but with all hardening mechanisms. We consider three
use cases with different threat models, and evaluate performance.
Our implementations are fully functional, and the resulting kernels
work with any existing application.

Our results demonstrate SPLIT KERNEL is a useful approach: it
can be used in practice to put the decision of using hardening in
the hands of OS distributors, system administrators or users. Under
different real-world workloads, SPLIT KERNEL running in base
mode incurs no significant overhead. We also show that in some
cases the split-hardened kernel code has negligible overhead, unlike
a fully-hardened kernel.

Finally, we hope SPLIT KERNEL will pave the way for new
kernel self-protection mechanisms that may have been disregarded
for being unlikely to be performant and practical.

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.

“Control-flow Integrity Principles, Implementations, and
Applications”. In: ACM Trans. Inf. Syst. Secur. 13.1 (2009), 4:1–4:40.
ISSN: 1094-9224.

[2] James P Anderson. Computer Security Technology Planning Study.
Volume 2. Technical report. DTIC Document, 1972.

[3] Jeff Arnold and M. Frans Kaashoek. “Ksplice: Automatic Rebootless
Kernel Updates”. In: Proceedings of the 4th ACM European
Conference on Computer Systems. EuroSys ’09. 2009,
pages 187–198. ISBN: 978-1-60558-482-9.

[4] Andrew Ayers, Richard Schooler, and Robert Gottlieb. “Aggressive
Inlining”. In: Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation. PLDI ’97.
1997, pages 134–145. ISBN: 0-89791-907-6.

[5] Brian N. Bershad, Craig Chambers, Susan J. Eggers, Chris Maeda,
Dylan McNamee, Przemyslaw Pardyak, Stefan Savage, and
Emin Gun Sirer. “SPIN — An Extensible Microkernel for
Application-specific Operating System Services”. In: ACM SIGOPS
European Workshop. 1994, pages 68–71.

[6] Phil Blundell. Econet: fix CVE-2010-3848. http://git.
kernel.org/cgit/linux/kernel/git/torvalds/
linux.git/commit/?id=a27e13d370415add34879.

[7] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou,
Nickolai Zeldovich, and M. Frans Kaashoek. “Linux Kernel
Vulnerabilities: State-of-the-art Defenses and Open Problems”. In:
Proceedings of the Second Asia-Pacific Workshop on Systems. APSys
’11. 2011, 5:1–5:5. ISBN: 978-1-4503-1179-3.

[8] Kees Cook. Kernel exploitation via uninitialized stack. DefCon 19
https://www.defcon.org/images/defcon-19/dc-
19-presentations/Cook/DEFCON-19-Cook-Kernel-
Exploitation.pdf.

[9] Keith D Cooper, Mary W Hall, and Ken Kennedy. “A Methodology
for Procedure Cloning”. In: Comput. Lang. 19.2 (1993),
pages 105–117. ISSN: 0096-0551.

[10] Intel Corp. Intel Architecture Instruction Set Extensions
Programming Reference. http://software.intel.com/
sites/default/files/319433-014.pdf. 2012.

[11] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and
Vikram Adve. “Secure Virtual Architecture: A Safe Execution
Environment for Commodity Operating Systems”. In: Proceedings of
the 21st ACM Symposium on Operating Systems Principles (SOSP

’07). (Stevenson, WA, USA). 2007, pages 351–366. ISBN:
978-1-59593-591-5.

[12] Nelson Elhage. Econet local privilege escalation.
http://www.exploit-db.com/exploits/15704/.

[13] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole.
“Exokernel: An Operating System Architecture for Application-Level
Resource Management”. In: Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP ’95). ACM
SIGOPS Operating Systems Review. 1995, pages 251–266.

[14] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. “XFI: Software Guards for System Address
Spaces”. In: 7th Symposium on Operating System Design and
Implementation (OSDI ’06). (Seattle, WA, USA). 2006, pages 75–88.
ISBN: 1-931971-47-1.

[15] Chris Evans. Pwnium 3 and Pwn2Own Results.
http://blog.chromium.org/2013/03/pwnium-3-
and-pwn2own-results.html. 2012.

[16] Stephen Fischer. Supervisor Mode Execution Protection. NSA
Trusted Computing Conference and Exposition.
https://www.ncsi.com/nsatc11/presentations/
wednesday/emerging_technologies/fischer.pdf.
2011.

[17] Grigori Fursin, Cupertino Miranda, Sebastian Pop, Albert Cohen,
and Olivier Temam. “Practical Run-time Adaptation with Procedure
Cloning to Enable Continuous Collective Compilation”. In: GCC
Developers’ Summit. 2007, page 39.

[18] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum.
“Enhanced Operating System Security Through Efficient and
Fine-grained Address Space Randomization”. In: Proceedings of the
21st USENIX Conference on Security Symposium. Security’12. 2012,
pages 40–40.

[19] Google. AddressSanitizer for the Linux kernel.
http://bit.ly/TdRoab. 2014.

[20] A. Gutierrez, R.G. Dreslinski, T.F. Wenisch, T. Mudge, A. Saidi,
C. Emmons, and N. Paver. “Full-System Analysis and
Characterization of Interactive Smartphone Applications”. In: the
proceedings of the 2011 IEEE International Symposium on Workload
Characterization (IISWC). 2011, pages 81–90.

[21] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and
Andrew S. Tanenbaum. “MINIX 3: a highly reliable, self-repairing
operating system”. In: SIGOPS Oper. Syst. Rev. 40.3 (2006),
pages 80–89. ISSN: 0163-5980.

[22] Vasileios P. Kemerlis, Georgios Portokalidis, and
Angelos D. Keromytis. “kGuard: Lightweight Kernel Protection
Against Return-to-user Attacks”. In: Proceedings of the 21st USENIX
Conference on Security Symposium. Security’12. 2012, pages 39–39.

[23] Anil Kurmus, Sergej Dechand, and Rüdiger Kapitza. “Quantifiable
Run-Time Kernel Attack Surface Reduction”. In: Proceedings of the
11th DIMVA Conference. 2014, pages 212–234.

[24] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram.
“Defeating Return-oriented Rootkits with "Return-Less" Kernels”. In:
Proceedings of the 5th European Conference on Computer Systems.
EuroSys ’10. 2010, pages 195–208. ISBN: 978-1-60558-577-2.

[25] Siarhei Liakh, Michael Grace, and Xuxian Jiang. “Analyzing and
Improving Linux Kernel Memory Protection: A Model Checking
Approach”. In: Proceedings of the 26th Annual Computer Security
Applications Conference. ACSAC ’10. 2010, pages 271–280. ISBN:
978-1-4503-0133-6.

[26] Jochen Liedtke. “On µ-Kernel Construction”. In: Proceedings of the
15th ACM Symposium on Operating Systems Principles (SOSP ’95).
ACM SIGOPS Operating Systems Review. 1995.

[27] LTP – Linux Test Project. https://linux-test-project.github.io/.
[28] Kristis Makris and Kyung Dong Ryu. “Dynamic and Adaptive

Updates of Non-quiescent Subsystems in Commodity Operating
System Kernels”. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007. EuroSys ’07.
2007, pages 327–340. ISBN: 978-1-59593-636-3.

[29] MITRE. CWE-457: Use of Uninitialized Variable. https:
//cwe.mitre.org/data/definitions/457.html.

[30] Vegard Nossum. Documentation of the Linux kernel kmemcheck
configuration option. https://www.kernel.org/doc/
Documentation/kmemcheck.txt.

[31] Niels Provos, Markus Friedl, and Peter Honeyman. “Preventing
Privilege Escalation”. In: Proceedings of the 12th Conference on
USENIX Security Symposium - Volume 12. 2003, pages 16–16.

[32] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
“Return-Oriented Programming: Systems, Languages, and
Applications”. In: ACM Trans. Inf. Syst. Secur. 15.1 (2012), 2:1–2:34.
ISSN: 1094-9224.

[33] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. “AddressSanitizer: A Fast Address Sanity Checker”.
In: Proceedings of the 2012 USENIX Conference on Annual
Technical Conference. USENIX ATC’12. 2012, pages 28–28.

[34] Stephen Smalley, Chris Vance, and Wayne Salamon. Implementing
SELinux as a Linux security module. Technical report. NAI Labs
Report, 2001.

[35] Brad Spengler and PaX team. grsecurity kernel patches.
www.grsecurity.net.

[36] Richard Ta-Min, Lionel Litty, and David Lie. “Splitting Interfaces:
Making Trust Between Applications and Operating Systems
Configurable”. In: Proceedings of the 7th Symposium on Operating
Systems Design and Implementation. OSDI ’06. 2006,
pages 279–292. ISBN: 1-931971-47-1.

[37] PaX team. Future direction of PaX.
pax.grsecurity.net/docs/pax-future.txt.

[38] Victor van der Veen, Nitish dutt Sharma, Lorenzo Cavallaro, and
Herbert Bos. “Memory Errors: The Past, the Present, and the Future”.
In: Proceedings of the 15th International Conference on Research in
Attacks, Intrusions, and Defenses. RAID’12. 2012, pages 86–106.
ISBN: 978-3-642-33337-8.

[39] Chris Wright, Crispin Cowan, James Morris, Stephen Smalley, and
Greg Kroah-Hartman. “Linux security module framework”. In:
Ottawa Linux Symposium. Volume 8032. 2002.

Annex
Here, we provide a step-by-step explanation of the pre-processor-
generated instrumentation for each hardening mechanism.

Listing 5: Stack exhaustion check with stack clearance
1 movq %rsp, %rbp
2
3 subq $0x50, %rsp
4+ pushq %rdi
5+ pushq %rax

http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a27e13d370415add34879
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a27e13d370415add34879
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=a27e13d370415add34879
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf
http://software.intel.com/sites/default/files/319433-014.pdf
http://software.intel.com/sites/default/files/319433-014.pdf
http://www.exploit-db.com/exploits/15704/
http://blog.chromium.org/2013/03/pwnium-3-and-pwn2own-results.html
http://blog.chromium.org/2013/03/pwnium-3-and-pwn2own-results.html
https://www.ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf
https://www.ncsi.com/nsatc11/presentations/wednesday/emerging_technologies/fischer.pdf
http://bit.ly/TdRoab
https://cwe.mitre.org/data/definitions/457.html
https://cwe.mitre.org/data/definitions/457.html
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://www.kernel.org/doc/Documentation/kmemcheck.txt
www.grsecurity.net
pax.grsecurity.net/docs/pax-future.txt

6+ pushq %rcx
7+ pushf
8+ movq $0x2000, %rdi
9+ dec %rdi

10+ not %rdi
11+ andq %rsp, %rdi
12+ movq %rdi, %rax
13+ addq $0x68, %rdi
14+ addq $0x80, %rdi
15+ cmpq %rsp, %rdi
16+ jl .hdn_stack_check_ok_6
17+ movq %gs:current_task, %rax
18+ movq 16(%rax), %rdi
19+ movq 28(%rdi), %rdi
20+ movq $0x100, %rax
21+ andq $0xff00, %rax
22+ orq $0x3ff0000, %rax
23+ orq $0x4000000, %rax
24+ andq %rax, %rdi
25+ jnz .hdn_stack_check_ok_6
26+ call __hdn_stack_chk_failed
27+.hdn_stack_check_ok_6:
28+ cld
29+ movq %rsp, %rdi
30+ addq $0x20, %rdi
31+ xorq %rax, %rax
32+ movq $0xa, %rcx
33+ rep stosq
34+ popf
35+ popq %rcx
36+ popq %rax
37+ popq %rdi
38 movq %rbx, -0x28(%rbp)
39 movq %r12, -0x20(%rbp)
40 movq %r13, -0x18(%rbp)

In line 3, this function allocates 80 bytes on the stack; this is the
instruction we instrument. In lines 4 to 7, we save registers we use
in the next instructions. In lines 15 and 16, we check that the stack
pointer is lower than a calculated address, to make sure the stack
pointer points to a safe address. Hence, we calculate first the lowest
possible address of the bottom of the stack, thread_info+size
of thread_info+guard zone size: In lines 9-11, we calculate the
address of the current process’s thread_info in the same way it
is performed in the Linux kernel: aligning the stack pointer %rsp
to 0x2000 byte boundaries (THREAD_SIZE constant in the Linux
kernel, 8 KB). In line 13, the size of the thread_info structure
is added. In line 14, the size of the guard zone is added. If the
stack pointer is lower than the guard zone, we continue by per-
forming the stack zeroing (line 27). Otherwise, we check if the
kernel is executing in interrupt mode and is therefore on the in-
terrupt stack. To perform the check we use a bitmask against
preempt_count (retrieved from in lines 17-19). The bitmask is cre-
ated on lines 20-23; SORTIRQ_MASK (line 20), SOFTIRQ_OFFSET
(line 21), HARDIRQ_MASK (line 22) and NMI_MASK (line 23). In lines
24-25, we check if any of these bits are set. If so, we are in interrupt
mode and the previous check’s result is irrelevant: we proceed with
stack zeroing (line 27). If we are not in interrupt mode, we call our
custom error handler function in line 24.

In lines 28-33, we set up and perform stack zeroing. In line 28,
we clear the direction flag to perform the zeroing in the correct
direction. In line 29, we take the current stack pointer as the position
to start the zeroing. We add 32 bytes to skip the four registers we
saved on the stack at the beginning (line 30). These do not need to
be zeroed afterwards, because they are outside the stack frame of the
current function. In line 31, we zero %rax, the value the memory
is going to be overwritten with. The number of repetitions in %rcx

(line 32). In line 33, the rep stosq instruction writes repeatedly 8

bytes at once. In lines 34 to 36, we need to restore the registers to
continue execution.

(Although this is not figured in this listing, if in presence of
VLAs or if the static stack allocation is greater than the size of
thread_info, we check in addition whether the stack pointers,
before and after the stack allocation, are within the same stack.
Indeed, if we would not cover these cases, an attacker could directly
pass below the guard zone and thread_info, passing the checks
and overwrite data from another stack, or thread_info.)

Listing 6: Function pointer protection
1- call *0x10(%rax)
2+ pushq %r13
3+ pushq %rdi
4+ movq 0x10(%rax), %rax
5+ movq $0x13660e4b12b74207, %rdi
6+ inc %rdi
7+ movq -0x8(%rax), %rax
8+ movq -0x10(%rax), %r13
9+ cmpq %rdi, %r13
10+ jne .hdn_fptr_err_1
11+ leaq _shdntext, %r13
12+ leaq _etext, %rdi
13+ cmpq %r13, %rax
14+ jb .hdn_check_if_module_1
15+ cmpq %rdi, %rax
16+ ja .hdn_check_if_module_1
17+.hdn_do_the_call_1:
18+ popq %rdi
19+ popq %r13
20+ call *%rax
21+ jmp .hdn_fptr_done_1
22+.hdn_check_if_module_1:
23+ movq _modulestart, %r13
24+ movq _moduleend, %rdi
25+ cmpq %r13, %rax
26+ jb .hdn_fptr_err_1
27+ cmpq %rdi, %rax
28+ ja .hdn_fptr_err_1
29+ jmp .hdn_do_the_call_1
30+.hdn_fptr_err_1:
31+ movq %r13, %rdi
32+ movq %rax, %rsi
33+ call __hdn_function_pointer_err
34+.hdn_fptr_done_1:

The indirect call in line 1 is instrumented as follows: In lines 2
and 3, we save the registers we use for calculation. In line 4, we
dereference the indirect address and store the destination address in
%rax. In lines 5 and 6, we put the verification value (minus one) in
a different register and increment this value (this prevents creating
the verification value in the generated machine code). In line 7,
we overwrite the destination address in %rax by the corresponding
hardened function address. Note that, in case %rax already stores an
address to a hardened function, it is overwritten by the same value
again. In line 8, we fetch the verification value from the pre-function
prologue and compare it in line 9 to the previously (line 5) stored
value. We call the error handler function in lines 31 to 33 if the
values don’t match. In lines 11 to 16, the new destination address
(see line 7) is checked. If it is in the hardened kernel text section,
we proceed to line 18 to make the call. If not, we additionally check
in lines 23 to 29 if the call address is in a kernel module (this range
can also contain kernel module data, however this check is far more
efficient and short). In lines 31 to 33 we call the error handling
function if the previous test was negative. If all tests pass, the call is
done by restoring the pushed registers (lines 18 and 19) followed by
the indirect call in line 20. Finally, in line 21, a jump is performed
to continue execution after the call returns.

	Introduction
	Split Kernel
	Overview and Goals
	Split Kernel Builds: Split Objects
	Bindings
	Kernel Hardening
	Implementation Summary

	Use Cases and Evaluation
	Use Cases
	Evaluation
	Security Considerations

	Discussion and Future Work
	Related Work
	Conclusion

