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Abstract—Supporting massive device transmission is chal-
lenging in machine-to-machine (M2M) communications. Partic-
ularly, in event-driven M2M communications, a large number of
devices become activated within a short period of time, which in
turn causes high radio congestions and severe access delay. To
address this issue, we propose a Fast Adaptive S-ALOHA (FASA)
scheme for random access control of M2M communication sys-
tems with bursty traffic. Instead of the observation in a single
slot, the statistics of consecutive idle and collision slots are used
in FASA to accelerate the tracking process of network status that
is critical for optimizing S-ALOHA systems. With a design based
on drift analysis, the estimate of the number of the active devices
under FASA converges fast to the true value. Furthermore, by
examining the -slot drifts, we prove that the proposed FASA
scheme is stable as long as the average arrival rate is smaller than

, in the sense that theMarkov chain derived from the scheme is
geometrically ergodic. Simulation results demonstrate that under
highly bursty traffic, the proposed FASA scheme outperforms
traditional additive schemes such as PB-ALOHA and achieves
near-optimal performance in reducing access delays. Moreover,
compared to multiplicative schemes, FASA shows its robustness
under heavy traffic load in addition to better delay performance.

Index Terms—Adaptive S-ALOHA, drift analysis, machine-to-
machine (M2M) communications, random access control, stability
analysis.

I. INTRODUCTION

M ACHINE-TO-MACHINE (M2M) communication or
machine-type communication (MTC) is expected to

be one of the major drivers of cellular networks [1] and has
become one of the focuses in 3GPP [2], [3]. Behind the pro-
liferation of M2M communication, the congestion problem in
M2M communication is becoming a big concern. The device
density of M2M communication is much higher than that in
traditional human-to-human (H2H) communication [2], [4].
For example, it is expected in [4] that 1000 devices/km are
deployed for environment monitoring and control. What is
worse, in event-driven M2M applications, many devices may
be triggered almost simultaneously and attempt to access

Manuscript received May 06, 2012; revised November 04, 2012; accepted
December 20, 2012; approved by IEEE/ACMTRANSACTIONS ON NETWORKING
Editor E. Ekici. This work was supported in part by the NKBRP under Grant No.
2010CB731803, theNSFC under Grant No. 60921001, theNSF under Grant No.
0917251, a Fujitsu Research Grant, and the UC Davis Chancellor’s Fellowship.
H. Wu and Y. Zhang are with the School of Electronic and Information Engi-

neering, Beihang University, Beijing 100191, China (e-mail: huasenwu@gmail.
com).
C. Zhu and R. J. La are with University ofMaryland, College Park,MD 20742

USA.
X. Liu is with University of California, Davis, Davis, CA 95616 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2013.2241076

the base station (BS) through the Random Access Channel
(RACH) [5]. These event-driven M2M applications, such as re-
mote control and alarm systems [3], [6], can be delay-sensitive.
However, high burstiness of the traffic can result in congestion
and increase access delays, which motivates our research.
Substantial efforts have been made in 3GPP to alleviate the

radio congestion caused by M2M communications. Access
Class Barring (ACB), which is a mechanism proposed for
Radio Access Network (RAN) overload control [7], has also
been accepted in M2M communications [3]. In ACB, devices
are divided into several access classes, and devices configured
for ACB are required to perform the access barring check
before establishing a connection. This checking process is
probability-based in the LTE/LTE-A system, i.e., a device
attempts to undergo a RACH procedure by randomly sending
a connection request with a given probability broadcast by
the BS. The BS adjusts this probability to control the offered
load. Recently, Extended Access Barring (EAB) mechanism is
proposed to provide M2M-specific enhancement of the legacy
ACB mechanism [3], and its practical barring procedures are
still under development. In addition to EAB, there are other
works trying to modify the RACH in LTE for M2M overload
control [8], [9]. For example, in [8], the authors propose a
cooperative ACB scheme to balance traffic load among BSs in
a heterogeneous multitier cellular network. With cooperation
among BSs, the congestion level can be reduced and the access
delay can be significantly improved. In [9], the authors propose
a code-expended scheme that combines preambles transmitted
in multiple subframes for higher capacity. However, a critical
step in implementing these schemes is to estimate the number
of active devices, i.e., devices triggered by an event, and
optimize the transmission probability. This problem is even
more important in event-driven M2M applications, which are
characterized by highly bursty traffic.
Essentially, the random access methods such as ACB are

derivatives of slotted-ALOHA (S-ALOHA), which is widely
applied for random access control. To address the instability
issue of S-ALOHA [10], plenty of work has been done to tune
the protocol parameters for stability, which is briefly summa-
rized in Section II. In these schemes, the previous outcome
is applied to estimate the network status and adjust protocol
parameters. A drift analysis is then used to design the schemes
and prove their stability [11]–[13]. However, these schemes
usually rely on the assumption that the traffic can be modeled
as a Poisson process and only apply the observation in the
previous slot for estimating the number of active devices. Due
to the burstiness, this assumption cannot be justified in the
context of M2M applications, and the observation in a single
slot is not satisfactory for adjusting the protocol parameters in
time. Thus, we try to make full use of the information provided
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by the past outcomes for improving the performance of access
control under bursty traffic.
In this paper, we study adaptive S-ALOHA scheme for

event-driven M2M communications and provide rigorous anal-
ysis about its stability. As our main contribution, we propose
a Fast Adaptive S-ALOHA (FASA) scheme for the random
access control of M2M devices. A key characteristic of FASA
is that the access outcomes in the past slots, in particular,
consecutive idle or collision slots, are collected and applied
to estimate the number of active devices. This enables a fast
update of transmission probability under highly bursty traffic
and thus reduces access delays. Furthermore, we prove the
stability of FASA under bursty traffic. This is accomplished by
examining the -slot drifts of the network status, which are the
expected changes of the network status, such as the number of
active devices and its estimate, over slots. Under interrupted
Poisson traffic model [14], we show that the -slot drifts of
FASA have the required properties for stabilizing the scheme,
and the system is stable when the arrival rate is less than .
Numerical results demonstrate that using the FASA scheme, the
transmission probability of S-ALOHA can be adjusted quickly,
and access delays can be reduced close to the theoretical lower
bound under highly bursty traffic.
The remainder of the paper is organized as follows. Section II

summarizes the related work. In Section III, we present the
system model, including the bursty traffic model for the event-
drivenM2M communications. In Section IV, after analyzing the
limitations of traditional fixed-step-size policies, we propose the
FASA scheme and design the parameters in the scheme based
on drift analysis. Then, in Section V, we study the -slot drifts
of FASA and prove its stability. In Section VI, simulation re-
sults are presented to evaluate the performance of the proposed
scheme, which is also compared to the theoretical optimumwith
full knowledge case and two traditional adaptive schemes. Fi-
nally, we conclude our paper in Section VII.

II. RELATED WORK

A. Radio Congestion Control in M2M Communications

Because of the high density of devices and event-driven
nature of their communication needs, a large number of M2M
devices may simultaneously attempt to access the BS and
result in radio congestion on the RACH. A classical scheme
for reducing congestion is the backoff-based scheme [5], where
devices retransmit after a backoff time if they have a colli-
sion. The backoff-based scheme can improve the performance
under low congestion level, but it cannot solve the high-level
congestions [15], [16]. In comparison, access-barring-type
schemes are effective in reducing radio congestion [15]. Hence,
the ACB mechanism is accepted as a baseline solution for
overload control in M2M communications, and EAB is being
developed to enhance the legacy ACB mechanism in M2M
applications [3], [7]. To implement these mechanisms, the
setting of operation parameters, e.g., transmission probability,
should be adjusted according to the network status and is left
to service providers. However, estimating the network status
is challenging especially in event-driven M2M communica-
tions due to traffic burstiness. By using the statistics of access
outcomes in the past, the proposed FASA scheme can track
the network status quickly and reduce access delays in M2M
communications with highly bursty traffic.

In addition to the efforts in 3GPP, there are a few publica-
tions addressing this issue. Since a group-based feature appears
in many M2M applications, some researchers propose hierar-
chical architectures, such as a grouping scheme [17] and relay
schemes [18], [19], for alleviating the radio congestion on the
RACH. In these architectures, group heads are selected for col-
lecting the messages from the group members. However, effi-
cient schemes for communications between the group heads and
their members are required to reduce the access delay. FASA
can be used in these architectures and is expected to provide
performance improvements of random access.

B. Adaptive S-ALOHA Schemes

S-ALOHA is a basic scheme for random access control,
and many random access methods in wireless networks, in-
cluding ACB, can be viewed as its derivatives. However, the
uncontrolled S-ALOHA scheme is unstable in the sense that
the number of backlogged devices grows unbounded over time
with probability one [10]. The instability issue of S-ALOHA
should be dealt with before being implemented in practical
networks.
Two typical classes of schemes, additive and multiplicative

schemes [12], [20]–[23], have been proposed for stabilizing
S-ALOHA systems. In these schemes, the estimate of the
network status is updated in an additive or multiplicative
manner, respectively, and the transmission probability is ad-
justed accordingly. However, as discussed in more detail later,
traditional additive schemes such as Pseudo Bayesian ALOHA
(PB-ALOHA) [22] estimate the number of active devices based
on the access outcome in the previous slot, but cannot adjust the
transmission probability in a timely manner under highly busty
traffic. On the other hand, because of the exponential increment
in consecutive collision slots or decrement in consecutive idle
slots, multiplicative schemes [23], e.g., Q-Algorithm [24] and
its enhanced version Q -Algorithm [25], can track the network
status in a short period. However, the throughput suffers in
these schemes due to the fluctuations in the estimation [23].
Therefore, we aim to design adaptive schemes that can track
the network status fast under bursty traffic while retaining high
throughput.
By using access outcomes in consecutive slots in the past,

the proposed FASA scheme provides a better tradeoff between
the convergence time and the estimation fluctuation and thus
reduces the access delays under bursty traffic. In our previous
work [26], we propose a preliminary version of FASA based on
some intuitive approximations and show its desirable properties
through numerical simulations. However, no rigorous analysis
on the stability of FASA is presented in [26], and we will inves-
tigate the stability of FASA based on drift analysis techniques
in this paper.

C. Drift Analysis for Stabilization of S-ALOHA

Drift analysis has been used to study the stability of adap-
tive S-ALOHA schemes [12], [13], [20], [21], [27], [28].
The network status, which is represented by the number of
active devices and its estimate, can be viewed as a stochastic
sequence, and the convergence of adaptive schemes can be
analyzed by examining the drift. In [12], it is shown that when
the network status drift satisfies certain conditions, the system
is stable in the sense that the returning time can be bounded
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Fig. 1. S-ALOHA-based access control of M2M communications.

with high probability. Using the conclusion in [12], the most
related work [13] studies the stability of PB-ALOHA scheme
by defining a Lyapunov function to represent the network status
and examining its drift. Later in [21], by applying the method
of stochastic Lyapunov function, sufficient conditions of recur-
rence and nonrecurrence of Markov chains are derived, and the
throughput of additive adaptive S-ALOHA schemes is analyzed
by checking the conditions. In all the work mentioned above,
the schemes update the parameters based on the observation
in the previous slot. Thus, the 1-slot drifts, i.e., drifts between
two adjacent slots, are sufficient for studying the stability of
the systems. When access outcomes in multiple slots are used,
however, the -slot drifts are required to deal with the memory
of our scheme. Unlike 1-slot drifts, calculating the exact -slot
drifts is impractical due to a large number of possible outcomes
in consecutive slots. Hence, we resort to approximations and
obtain desirable properties of the -slot drifts for showing the
stability of FASA.

III. SYSTEM MODEL

A. S-ALOHA Based Random Access

We consider a cellular network based M2M communication
system for event detection. As shown in Fig. 1, the system con-
sists of a BS and a large number of M2M devices. At any time,
a device can be in one of two states: idle or active. Devices stay
in the idle state until triggered by an event, and then go to the
active state. The active devices attempt to undergo the RACH
procedure for the initial network entry by sending connection
requests.
We model the RACH procedure as an S-ALOHA system.

Time is divided into slots, and each slot is indexed by an in-
teger . We assume that all M2M devices
are configured for ACB. Hence, in each slot , active devices
transmit connection requests with a given probability , which
is broadcast by the BS at the beginning of the slot. We assume
that all connection requests are transmitted on a single channel.
This corresponds to the case where all devices access the BS
with a single preamble in LTE/LTE-A [5], [29]. The proposed
scheme can be extended to multichannel system by borrowing
the idea of [30], where a multichannel PB-ALOHA scheme is
proposed.
In slot , there may be zero, one, or more than one devices

transmitting on the channel. We note that the transmission
power of the request is set based on an open-loop estimation
with full compensation for the path loss [29]. However, for the
sake of tractability, we ignore the impact of power ramping and
assume the transmission power of each device is fixed during
the RACH procedure. Hence, we assume identical received

Fig. 2. Simplified interrupted Poisson process.

power for all devices and use an ideal collision channel model,
where a transmitted request will be successfully received
by the BS if and only if no other requests are being trans-
mitted in the same slot. Let denote the access outcome in
slot , and , or depending on whether is an idle,
success, or collision slot. We assume that energy detection
techniques [31], [32] are applied at the BS to distinguish the
idle and collision slots, and thus the BS can tell which of the
three possible outcomes has occurred. The BS broadcasts a
message identifying the access outcome at the end of the slot.
Devices that suffer a collision can retransmit their requests in
the following slots. Let represent the maximum number of
retransmissions. We set when analyzing the stability of
the proposed scheme in Section V, and set its value according
to the suggestions of 3GPP when evaluating the access perfor-
mance in Section VI.
The BS coordinates the random access by adaptively ad-

justing the transmission probability . At the end of slot , the
BS decides the transmission probability for next slot based on
the past access outcomes , i.e.,

The objective of the BS is to maximize the throughput and min-
imize the access delays, where the throughput is the average
number of successful accesses in a unit time, and the access
delay experienced by a successful device is the delay between
the time of activation and the completion of the random access.
It is well known that when the number of active devices ,
using a transmission probability in slot maximizes
the throughput of the S-ALOHA system [22]. However, the BS
does not know and has to obtain its estimate based on the
access outcomes in the past. The main focus of our paper is the
estimation of .

B. Traffic Model

In order to capture the burstiness of event-drivenM2M traffic,
instead of a traditional Poisson process, the arrival process is
modeled as an interrupted Poisson process (IPP), which was
suggested for simulating overflow traffic [14].
IPP can be viewed as a Poisson process modulated by a

random switch and will be discretized according to the slotted
structure of the scheme. We focus on a simplified version of the
IPP model, where the event process is a Bernoulli process, as
shown in Fig. 2. Specifically, let and denote the number
of events happening and the number of devices triggered in
slot , respectively. Assume that events happen independently
in each slot with fixed probability . Namely, in each slot ,

and . In addition, assume
that the number of triggered devices follows a Poisson distri-
bution with mean when an event happens, and no devices
become active otherwise, i.e., when (ON
state), and when (OFF state). Therefore, random
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variables are independent and identically dis-
tributed (i.i.d.), and the long-term arrival rate can be calculated
as

(1)

We will design and analyze an adaptive S-ALOHA scheme
based on this model because it captures the ON–OFF nature
of events and provides tractability. We note that the classical
Poisson process is included as a special case of the simplified
IPP model when . Indeed, as we will show later, the
scheme proposed in this paper can stabilize the network under
more general traffic models. It is worth noting that a limitation
of the IPP model is that devices are triggered simultaneously
when an event occurs, which is not valid in practice. To eval-
uate the performance of the proposed scheme for more realistic
traffic, we also present simulation results in Section VI for
beta-distributed pattern traffic, which is suggested by 3GPP for
M2M communications [3], [4].

IV. FAST ADAPTIVE S-ALOHA

In this section, we first analyze the drift of traditional fixed-
step-size estimation schemes and show their limitations. Then,
we propose a fast adaptive scheme, referred to as FASA.

A. Drift Analysis of Fixed-Step-Size Estimation Schemes

Many schemes have been proposed to estimate the number of
active devices [11], [33]. Reference [11] mentions that a unified
framework of additive schemes is proposed and studied in [20],
where the estimate is updated by the recursion

(2)

where , , and are constants and is the indicator
function of event .
With the estimate , the BS sets the transmission proba-

bility to for all active devices. Thus, the offered
load, which is the expected number of devices attempting to
access the channel, is . To stabilize the
S-ALOHA system, needs to drift toward the actual number
of active devices , especially when is large.When
and , the drift of the estimate can be calculated as
follows [11], [20], [21]:

as , with fixed.
With properly chosen parameters , the drift
satisfies if and if , and

the estimate will drift toward the true value. However, these
fixed-step-size schemes are not suitable for systems with bursty
traffic. When the estimate deviates far away from the true
value , we have and .
These limits indicate that the drift tends to be constant even
when the deviation is large, which could result in a large

tracking time. Thus, it is necessary to design fast estimation
schemes for event-driven M2M communications.

B. Framework of FASA

As discussed above, fixed-step-size estimation schemes such
as PB-ALOHA may not be able to adapt in a timely manner
for systems with bursty traffic because they always use a con-
stant step size evenwhen the estimate deviates far away from the
true value. We note that in addition to the access outcome in the
previous slot, the access outcomes in several consecutive slots
can be used for improving the estimation performance as they
reveal additional information about the true value. Intuitively,
collisions in several consecutive slots are likely caused by a sig-
nificant underestimation, i.e., , and the BS should ag-
gressively increase its estimate. In contrast, several consecutive
idle slots may indicate that the estimate , and it should
be reduced aggressively.
Motivated by this intuition, we propose the FASA scheme.

Let and be the numbers of consecutive idle and colli-
sion slots leading up to slot , respectively. The estimate is
updated as follows:

if
if
if

(3)
where is an integer, , is
the exponential factor we use to control the adjusting speed, and

and are functions of that guarantee the right direc-
tion of the estimation drift and will be designed in Section IV-C.
In order to make the scheme implementable and its stability
analysis tractable, we bound the update step size with in this
paper, which is different from that we proposed in [26]. How-
ever, the two schemes behave similarly if we choose a suffi-
ciently large .
FASA belongs to the class of additive schemes. Under FASA,

the estimate stays unchanged in a success slot, is decre-
mented in an idle slot, and is incremented in a collision slot.
However, the key difference of FASA lies in the use of outcomes
in consecutive slots to adjust the update step size. Specifically,
for a sufficiently large , the step size will be incremented
during consecutive idle or collision slots, and the estimation
process is sped up. Furthermore, with proper functions
and that guarantee the convergence, the estimate will
converge quickly to the true value, and thus the response time
under FASA is expected to be reduced.

C. Design of and

The functions and are critical to guarantee the
convergence of FASA. Next, we design and by an-
alyzing the drift of . According to the structure of FASA,
the evolution of depends not only on the access outcome
in the previous slot, but also on the outcomes in the past
slots. Therefore, unlike the fixed-step-size schemes, accurate
drift analysis is difficult for FASA because of its memory of ac-
cess outcomes over multiple slots. Thus, to make the problem
tractable, we resort to an approximation based on Lemma 1,
which indicates the feasibility of approximating the distribution
of access outcomes in the past slots using the network status
in the previous slot.
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Lemma 1: For given , , and , there exists some
such that, for any , where
or , we have

(4)

and

(5)

where .
Proof: The proof of this lemma follows the classic ap-

proach of showing the limit and is omitted here due to space
limit. Details can be found in the technical report [34].
Note that the distribution of the access outcome in slot

is decided by and . In addition, for any given
, we have
, and is bounded with high

probability, i.e., as . Thus,
according to Lemma 1, when and are known and at least
one of them is sufficiently large, the distribution of access out-
comes in the past slots as well as those of and can
be approximated. Therefore, in this section, we do not assume
any knowledge of or in slot and approximate the drift
of conditioned on and utilizing the bounds in Lemma
1 instead. In addition, we assume that is large enough in the
past slots, and hence we can approximate in (3)
as in the analysis later. An analysis provided in Section V
will show that the design with these approximations stabilizes
the proposed scheme.
Suppose that in slot , the number of active devices and its

estimate are and , respectively, and thus the
offered load . When or is large, the drift of estimate
can be approximated as

(6)

where , , and
are the approximate probabilities of an idle, success, and

collision slot, respectively; are
the expected changes in resulting from the corresponding
updates when .
Obviously, since the estimated number

remains unchanged when a packet is successfully transmitted
in slot . On the other hand, rather than maintaining the record
of access outcomes in the past slots, and are treated
as random variables. Hence, we estimate and

based on the approximate distributions of
and .

First, we calculate the drift of estimate in an idle slot,
i.e., . Suppose that no packet is transmitted
in slot , then the estimated number will be reduced by

. Therefore

(7)

Notice that holds when slots
, are all idle while slot is

not. Thus, for , we have

According to Lemma 1, when or is sufficiently
large, the distribution of access outcomes in the past slots
can be approximated as that in the previous slot, i.e.,

and

Consequently, for

(8)

Similarly, holds if slots , ,
are all idle, and we can approximate the probability as

(9)

Substituting (8) and (9) into (7), we can calculate the drift of
in an idle slot as follows:

(10)

where is defined as

(11)

and is the approximate expectation of
conditioned on .

Second, we can calculate the drift of estimate in a collision
slot in a similar fashion and obtain

(12)

The drift of estimate for FASA can be approximated by sub-
stituting the expressions of into
(6)

(13)

In order to keep the offered load in the neighborhood of the
optimal value , it is reasonable to require that .
In other words, letting and

, we expect that

(14)
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Fig. 3. Drift of estimation.

Hence, for given , to satisfy the condition in (14), we
can select the following and :

(15)

(16)

where is the linear factor we use to control the adjusting
speed.
The chosen and guarantee that and

thus provide a necessary condition for FASA to track the
number of active devices. Furthermore, Theorem 1 shows a
desirable property of FASA; it states that the estimated number

roughly drifts toward to the true value , eventually
yielding .
Theorem 1: Given that and are defined in (15)

and (16), respectively, the approximate drift of FASA is
a strictly increasing function of . In addition, when

and when .
Proof: It is similar to the proof of [26, Proposition 1] and

omitted here due to space limit.
In order to understand better the behavior of the scheme, we

now present the approximate drift of estimate for FASA with
and . Assume that is large, and thus the

distribution of can be approximated using a geo-
metric distribution with success probability . In addi-
tion, for , is approximately the th mo-
ment of a geometrically distributed random variable with suc-
cess probability , and its closed-form expression can
be obtained. Consequently, the results obtained in our previous
work [26] can be applied directly. Fig. 3 shows the approximate
drift of the estimate as a function of the offered load, where the
subscript of FASA represents the values of . Note that the
drift of multiplicative schemes such as Q -Algorithm is not il-
lustrated here since it depends not only on the offered load , but
also on the estimate . It can be observed from the figure that
when the estimated number deviates far away from the actual
number of active devices, i.e., or , FASA adjusts
its step size accordingly, while PB-ALOHA still uses the same
step size. Though large step sizes can bring large fluctuations in
a steady state [35], if we choose proper parameters, the FASA
scheme will result in shorter adjusting times than PB-ALOHA,
and thus improve the performance of M2M communication sys-
tems with bursty traffic.

V. STABILITY ANALYSIS OF FASA

In this section, we use drift analysis to study the stability of
the proposed FASA scheme. The M2M traffic is modeled as an
IPP presented in Section III. However, as we will demonstrate
later, the proposed scheme can maintain stability under more
general arrival processes.
Unlike traditional adaptive schemes, the access outcomes in

the past consecutive slots are used in FASA to accelerate the
speed of tracking, which makes it difficult to obtain the accurate
drift of estimate. However, from the stability point of view, we
concern mostly with the scenarios where the number of active
devices or its estimate is large, and hence approximation can
be applied in these cases. To deal with the issues caused by the
memory property of FASA, we analyze its -slot drifts rather
than 1-slot drifts, which are introduced for analyzing traditional
adaptive ALOHA schemes [12], [13], [21], [23], [28]. By con-
structing a virtual sequence, we show that the -slot drifts of
FASA have the properties required for stabilizing the system,
and these are similar to the properties of PB-ALOHA. There-
fore, with a slight modification, the Lyapunov-function-based
method proposed for PB-ALOHA [13] can be used to prove the
stability of FASA.
Consider the FASA scheme proposed in (3) under IPP arrival

process with average arrival rate . We define a sequence
, where represents the access outcomes in the

past consecutive slots and is given by and, for

if
if
if .

Recall that and are the numbers of consecutive
idle and collision slots up to slot . Given initial value

, each component of evolves as follows:

if
if
if
if
if

(17)

(18)

if
if
if .

(19)

From (17)–(19), we know that the distribution of de-
pends only on , implying that is a Markov chain on a
countable state space . The main result of this section re-
veals the geometric ergodicity [12] of , which is described in
Theorem 2. As pointed out in [12], the geometric ergodicity is a
weaker form of ergodicity and indicates the existence of steady
distribution for each initial state.
Theorem 2: If , , , and are

given by (15) and (16), then the Markov Chain is geometri-
cally ergodic.

Proof: The proof of Theorem 2 is based on drift analysis.
Specifically, the proof involves three steps, which are outlined
as follows and presented afterwards.
Step 1—Approximation of drifts: To deal with the impact of

the memory in FASA, rather than 1-slot drifts examined in the
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existing works, we study the -slot drifts of FASA. The -slot
drifts are approximated by analyzing a virtual sequence
that is constructed based on the state of .
Step 2—Properties of drifts: Based on the approximation of
-slot drifts for FASA, we obtain the properties of the -slot
drifts that are used to prove the stability of the scheme.
Step 3—Stability analysis based on Lyapunov function: The

Lyapunov function defined in [13] is adopted for the proposed
scheme. Then, with the properties obtained in Step 2, we show
the geometric ergodicity of by analyzing the drift of the Lya-
punov function.
1) Step 1—Approximation of Drifts: In order to analyze the

stability of FASA, we evaluate the change of from slot to
slot . Let denote the estimate error in slot .
Conditioned on the state of , we define the -slot drifts of
, , and as follows:

(20)

(21)

(22)

It is difficult to calculate the drifts defined above, and we try
to obtain their properties by introducing an approximate version
of . Let be a ternary value i.i.d. random
sequence, whose distribution is given by

where . Then, we construct a virtual sequence
based on and as follows: When

, ; when , , , and
are updated in a similar way as (17)–(19), respectively,

with replaced with . However, unlike the updates in ,
we allow to be negative and to be less than 1.
Obviously, is a Markov chain, and its transition proba-

bilities are determined by the state of . We define its -slot
drifts , , and similarly to
(20)–(22). Given , we show in Lemma 2 that the drifts of

can be used to approximate the drifts of from slot to
slot , when either or is sufficiently large.
Lemma 2: Given and , there exists some ,

such that if or , then

(23)

(24)

Proof: See Appendix A.
According to Lemma 2, for given , the differences between

the -slot drifts of and can be made as close to
zero as desired by letting or be sufficiently large. Next, we
analyze the drifts of .
1) : Since in the virtual sequence , is

allowed to be negative, we have

2) : In slot , the update of depends
on both and . Notice that the sequence is a
Markov chain on a finite state space

. Since the distribution of is fixed, by

showing the ergodicity of , we are able to approximate
the -slot drift by analyzing the stationary behavior of .
Specifically, the transition of depends on the value of
and the 1-step transition probabilities are given by

if
if
if
if
if
else.

When , is irreducible and aperiodic. Thus,
is ergodic and there is a unique stationary distribution. It can be
verified that the stationary distribution of is

where each component represents the sta-
tionary probability of and is given by

if

if
if
if
if .

Using the expression of , we can verify that defined in
(13) represents the stationary drift of , which is the 1-slot
drift of when is in the steady state. With the ergod-
icity of , we have

Moreover, in order to use Lemma 2, we expect to find a
common such that (23) and (24) hold for given and for
all . This requires the uniform convergence of

. In fact, by analyzing the evolution of , we
can show that converges uniformly in .
First, by multiplying the transition probability matrix times,
we can see that for any , the -step transition
probability . Consequently, for any state

, we have for . Thus,
when , the drift of in each slot is exactly .
Then, with the fact that for any

we know that as tends to infinity, converges
to uniformly in . Thus, the difference between

and can be made as close to zero as desired
by choosing a common for all .
3) : Since

, we introduce the following function to ap-
proximate :



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

With the uniform convergence of , we know that
for any given , as

uniformly in .
2) Step 2—Properties of Drifts: The evolution of estimate

error is critical for showing the stability of the scheme. We
first show in Lemma 3 that the approximate drift has the
same properties as those for the 1-slot drift of PB-ALOHA and
then present the required properties of -slot drifts of FASA in
Lemma 4.
Lemma 3: Given as a positive integer, has the

following properties.
a) For any , the function is strictly increasing in .
b) For any , there exists a unique

, such that .
c) If , then .
Proof: See Appendix B.

Let denote the root of for given .
Similarly to the method in [13], we partition the state space into
the following four parts:

and let .
With Lemmas 2 and 3, we present the properties of the -slot

drifts in these regions in the following lemma.
Lemma 4: There exist some , , , and

, such that and

(25)

(26)

(27)

Proof: See Appendix C.
Intuitively, according to Lemma 4, when the estimate is

close enough to , there will be more departures than arrivals
in the following slots. On the other hand, the deviation of the
estimate from is expected to decrease when it is larger
than a certain threshold. These properties guarantee the stability
of FASA, as presented in Step 3.
3) Step 3—Stability Analysis Based on Lyapunov Function:

Lemma 4 shows that with a sufficiently large , the -slot drifts
have similar properties to the drifts of PB-ALOHA. Hence,
when observing the system every slots, the Lyapunov-func-
tion-based method for PB-ALOHA can be used for analyzing
the stability of FASA. Next, we provide an outline of using
the Lyapunov-function-based method to prove the stability of
FASA. For more details about this method, please refer to [13].
We choose , , , and such that (25)–(27) hold. We use

the Lyapunov function defined in [13]

if
if

if .
(28)

We will show that if is sufficiently large, there exists some
such that

(29)

where is the -field generated by
. Note that for a random variable and an event , the nota-

tion stands for .
For given and an integer , let

Similarly to [13], we then analyze the drift of the Lyapunov
function by considering the unlikely event and likely
event separately.
Using Chernoff bound [36], we can show that the following

results also hold for IPP traffic:

(30)

(31)

where , are arbitrary given constants. Thus, for any
, as , we have

(32)

implying that this expectation can be made as close to 0 as de-
sired by choosing a sufficiently large .
Now consider the event . Based on the value of

, we study the drift of the Lyapunov function in the
following five cases:
a) ;
b) ;

c) ;

d) ;

e) .
In any of these cases, following the approach in [13], we can

show that when is sufficiently large, there exists some ,
such that (29) holds.
Take case (a) as an example. According to [13, Lemma 3.4],

if , then we choose a sufficiently
large , such that for all

, and

for all

Thus, choosing a sufficiently large such that
, we have
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(33)

Combining (32) and (33), we know that there exists some such
that (29) holds for some .
Now, we can complete the proof by using the results on the

hitting time bounds [12], [13]. Let

Note that for any , if , then
and hence (29) holds. More-

over, is exponential-type. Then,
[13, Proposition 2.1] applies. Therefore, for any initial state,
the returning time
is exponential-type, which implies that is geometrically
ergodic and concludes the proof of Theorem 2.
Similarly to the discussion in [13], from the proof of

Theorem 2, we know that the proposed FASA scheme is stable
under more general traffic, as long as the average arrival rate

and the traffic model satisfies the conditions in (30)
and (31).

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
scheme through simulations. We first examine the tracking per-
formance and the effect of control parameters. We then study
the delay performance of the proposed scheme, including both
cases of single-event and multiple-events reporting.
We compare the performance of FASA, the ideal policy

with perfect network state information, PB-ALOHA [22], and
Q -Algorithm [25]. With perfect knowledge of , the ideal
policy sets transmission probability at for .
Thus, the ideal policy achieves the minimum access delay of
S-ALOHA and serves as a benchmark in the comparison. For
PB-ALOHA, we use the estimated arrival rate , as
suggested in [13]. In Q -Algorithm, is updated by

, where
and are suggested

in [25] for optimal performance.

A. Performance of Tracking

In order to gain insights into the operation of the estimation
schemes, we treat adaptive S-ALOHA schemes as dynamic sys-
tems and study their step responses, where the number of active
devices when and for all . We ex-
amine the tracking performance of schemes for , 500,
and 1000.
1) Evolution of Estimation: Before quantitive analysis, we

first show in Fig. 4 the evolution of the estimate under dif-
ferent conditions, which helps us understand the behavior of
these schemes. In this figure, average values of in each slot
are obtained from 4000 independent experiments, and the max-
imum number of consecutive slots is set at unless it is
expressly stated.
From Fig. 4, when comparing the evolution of for dif-

ferent schemes with , we can see that unlike the al-
most linear increment under PB-ALOHA, the estimate given

Fig. 4. Estimation process under different settings.

by FASA increases slowly at the beginning, but speeds up due
to consecutive collisions, i.e., increasing of . When the es-
timate gets close to the true value, success and idle slots occur
more often, and hence the increment of the estimate slows down.
The estimate of Q -Algorithm follows the same trend as FASA
and speeds up even faster on average than FASA because of the
exponential increment. However, Q -Algorithm will result in
large fluctuation especially in heavy traffic.
Next, we examine the effect of the control parameters in

FASA. First, in Fig. 4, we present the evolution of for
under FASA with different values of and . From

the curves, we can see that with larger or , the estimate
adjusts faster. However, this faster convergence of the estimates
comes at the price of large fluctuations in the estimates. Second,
we also present the evolution of for under FASA
with , 16, and 32, respectively. We can see from Fig. 4
that, while increasing improves the convergence speed
initially, the estimation becomes insensitive to the value of

beyond a certain threshold. This is because the number of
consecutive idle or collision slots rarely becomes very large
due to the underlying geometric distribution. In particular,
exceeds only a few times in the simulation, and the
evolution of estimate is almost the same with and 32.
Therefore, we set in the following simulations.
2) Evolution of Instantaneous Throughput: Because the ac-

cess delay depends on the throughput, two throughput-oriented
metrics are introduced to measure the convergence speed and
steady state performance: 0%– % throughput rising time and
stationary throughput. The 0%– % throughput rising time is
defined as the time required for the expected throughput to rise
from 0% to % of the optimal value . For , 50, and
90, they are equal to the time required for the estimated number
of active devices to rise from 0% to 20.45%, 37.34%, and
65.25% of the true value , respectively. Stationary throughput
is the average throughput after the time that the expected
throughput reaches 90% of the optimal value.
As shown in Table I, given , the 0%– % rising time of

PB-ALOHA increases almost linearly in and is much larger
than that of Q -Algorithm and FASA. For instance, when

, the 0%–50% rising time of FASA with and
is about 1/10 of that of PB-ALOHA. Moreover, due

to the aggressive update in FASA, the 0%– % rising time in-
creases more slowly than linearly with the number of devices .
Comparing the rising time of FASA with different and , we
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TABLE I
0%– % THROUGHPUT RISING TIME (UNIT: SLOTS)

TABLE II
STATIONARY THROUGHPUT

observe that the increment of or results in a decrease in
rising time. For Q -Algorithm, with multiplicative adjustment,
it takes longer time than FASA to reach 10% of the optimal
value, but shorter time to increase the expected throughput
from 10% to 90% of the optimal value. However, aggressive
adjustment of the estimate usually results in large fluctua-
tions. This fact becomes clear when comparing the stationary
throughput shown in Table II. Particularly, when the number of
devices is small, e.g., , the fluctuation of the estimate
is comparable to , and the stationary throughput suffers. Note
that the access delay is affected by both convergence speed
and stationary throughput. We will see in Section VII that the
performance of FASA is not sensitive to the values of and .

B. Delay Performance

In this section, simulation results about the access delay
of adaptive S-ALOHA schemes are presented. In some
event-driven M2M applications, a response can be taken with
messages from a smaller subset of the devices, and not all
devices need to report an event. Thus, both the distribution
of access delay for single-event reporting and the long-term
average delay for repetitive-event reporting are evaluated.
1) Single-Event Reporting: We evaluate the performance of

FASA in the scenarios where a large number of devices are acti-
vated to report a single event.We use the beta-distributed pattern
traffic proposed in 3GPP [3]. Assume that devices are
triggered when an event is detected and their active times follow
beta distribution [3]. We note that in event-driven M2M com-
munications, devices can be triggered in a very short time, e.g.,
from 500ms to 10 s [6]. Thus, we assume that the devices are ac-
tivated in 2 s rather than 10 s as suggested in [3]. Similar to [3],
the Physical Random Access Channel (PRACH) period is con-
figured to be 5 ms, implying that there are 200 slots per second.
The maximum number of retransmissions is . We study
the scenarios with the number of active devices , 500,
and 1000. When there are 30 preambles allocated to M2M ap-
plications, these are corresponding to the total number of 6000,
15 000, and 30 000, respectively, which are typical numbers of
devices considered in 3GPP [3].
Table III presents the average access delay and access

delay under different schemes. The access delay is the ac-
cess delay achieved by of the active devices, and is set to

TABLE III
ACCESS DELAY (UNIT: SLOTS)

10 and 90. From Table III, we can see that the proposed FASA
scheme outperforms other schemes when the number of active
devices is large. In particularly, for , the performance
of the proposed FASA scheme is close to the benchmark with
perfect information. For PB-ALOHA,when the average number
of arrivals is large, it takes a long time to track the number of
active devices, and few devices can access successfully during
this period. Hence, the 10% delay of PB-ALOHA is much larger
than that of other schemes. For example, when , the
10% delay of PB-ALOHA is 322.0 slots while that of
is 136.0 slots. The Q -Algorithm can track the number of active
devices in a short time because of the exponential increment in
consecutive collision slots. However, it takes longer for all the
devices to access the channel under Q -Algorithm than under
FASA due to the large estimation fluctuations in Q -Algorithm.
Comparing the access delay achieved by FASA with different
and , we observe that the 10% access delay is slightly smaller
for larger or since they provide a quicker response. How-
ever, the larger fluctuations cause the 90% and average access
delay for larger and to be close to, or even larger than, that
for smaller and . We also note that in the case with
triggered in 400 slots, the performance of FASA is comparable
to or slightly worse than PB-ALOHA. This is because, in this
case, the fluctuation of the estimate is comparable to the number
of devices in the system and the throughput is reduced.
2) Repetitive-Events Reporting With IPP Traffic: The events

happen sequentially in the real system, and we now study the
long-term average delay of adaptive schemes under IPP traffic
with different arrival rates and bursty levels. In addition to av-
erage delay, we also define the normalized divergence to quan-
tify the divergence from the theoretical optimum performance,
i.e., , where is the average delay of a partic-
ular scheme and is the delay achieved by the ideal policy. As
pointed out in the single-event reporting case, the performance
of FASA with different and is rather close. Thus, only the
performance of FASA with and is shown here for
more concise presentation.
Fig. 5 compares the average delay and the normalized di-

vergence of adaptive schemes under different arrival rates with
fixed ON-probability . From Fig. 5(a), we observe
that both PB-ALOHA and FASA are stable when the average
arrival rate and experience finite access delays. For
Q -Algorithm, however, when the arrival rate is larger than
about 0.352, the access delay grows unbounded, indicating that
the algorithm with the given parameters is unstable for some

. As pointed out in [12], the parameters in Q -Algo-
rithm should be chosen according to the value of to stabi-
lize the scheme, which is not required in either PB-ALOHA or
FASA. As shown in Fig. 5(b), when the arrival rate is close to
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Fig. 5. Average access delay with different arrival rates. (a) Average delay
(b) Divergence .

zero, the divergence of Q -Algorithm and FASA is larger than
that of PB-ALOHAdue to the fluctuation in estimation, while all
the delays are very small. As the average arrival rate increases,
the divergence of FASA decreases and the average access delay
gets close to the optimal value since the estimate error becomes
relatively small compared to the increasing number of active
devices in the system. For larger than 0.1, the divergence of
FASA is about 2.5%, while that of PB-ALOHA is about 20%.
We point out that since the average access delay could be

dominated by the time waiting in the system after the estimate
catches up the true value, the improvement of performance by
FASA does not seem to be significant from the average delay
point of view. However, as discussed in the single-event re-
porting cases, the 10% access delay can be improved signifi-
cantly by FASA, which is very important in event-driven M2M
communications.
For given , the burstiness is reflected by , which is the

ratio between the arrival rate in ON state and the long-term av-
erage arrival rate. In order to examine the impact of bursti-
ness, we present in Fig. 6 the divergence of access delay versus

for and 0.35. In the light traffic scenarios with
, when the bursty level is low, the access delays ob-

tained under all these schemes are close to the optimal value.
The reason is that there is usually only one device triggered
in one slot when the estimate is usually set to 1 after several
idle slots. As the traffic becomes more bursty, the divergence

Fig. 6. Divergence of average access delay under different burstiness. (a)
. (b) .

first increases due to the rising time and fluctuation of estimate.
Then, the divergence of FASA and Q -Algorithm decreases for
highly bursty traffic because with aggressive update, they are
able to track the status of the network quickly while the fluctu-
ation becomes smaller compared to the total number of active
devices. In the heavy traffic scenarios with , the diver-
gences keep decreasing as the bursty level increases, while the
proposed FASA scheme performs better than both PB-ALOHA
and Q -Algorithm under highly bursty traffic. For pure Poisson
traffic, i.e., , the burstiness is low, and the performance
of is close to or even worse than PB-ALOHA. How-
ever, FASA outperforms Q -Algorithm under heavy traffic,
regardless of the bursty level.
From the above analysis, we can see that the proposed FASA

scheme outperforms PB-ALOHA under bursty traffic, e.g.,
when 500 devices are triggered in 400 slots. In particular, the
10% delay can be reduced significantly by FASA. On the other
hand, compared to Q -Algorithm, FASA performs much better
under heavy traffic with both high and low burstiness. Since
the traffic in the event-driven M2M applications is expected to
be bursty, we believe that our proposed scheme will perform
well for these applications.

VII. CONCLUSION

In this paper, we proposed the FASA scheme for event-driven
M2M communications. By adjusting the estimate of network
status with statistics of consecutive idle and collision slots, a BS
can track the number of active devices more quickly. This is a
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main advantage compared to fixed-step-size additive schemes,
e.g., PB-ALOHA. Moreover, we studied the stability of FASA
under IPP traffic. By analyzing the -slot drifts of FASA,
we showed that without modifying the values of parameters,
FASA is stable for any average arrival rate less than , in the
sense that the system is geometrically ergodic. This property
results in a much better long-term average performance under
heavy traffic loads, compared to that of multiplicative schemes.
In summary, the proposed scheme is an effective and stable
S-ALOHA scheme and is suitable for the random access con-
trol of event-driven M2M communications and other systems
characterized by bursty traffic. For future work, we will study
the impact of noise and capture effect on the estimation, and
a generalization of the scheme to multiclass systems, where
different classes of users transmit with different probabilities.

APPENDIX A
PROOF OF LEMMA 2

Because of the similarity, we present a complete analysis for
(23) and briefly discuss (24) at the end.
Recall that we assume identical realization of arrival process

for and . Hence, the difference between
the -slot drifts of and is bounded by , i.e.,

. Therefore, for any given
, there exists a such that

(34)
Now we consider the event .

Let ,
, and .

and have the same possible
value set, which is finite and denoted by . Each pair

results in cor-
responding drifts in both and , denoted by

and , respectively.
A difference between and is that al-

ways holds in , but is allowed in the virtual se-
quence. However, if , will not occur in ,
and hence for any
in this case. We first study the case where , and analyze
later the other cases where is not large enough.
Conditioned on , we define the following

probabilities:

Thus, when , we have

where is the maximum value of for all
and .

Moreover, by checking the state in each slot, we have

where is the number of active devices and its
estimate in slot , given the initial state ,

, and .
According to the construction of , the distribution of
is fixed, i.e., . On the

other hand, and are bounded in , for
all . Therefore, using Lemma 1, we know
that there exists a , such that if or , then for
all , and

where is the number of elements in . Hence

and thus

(35)
Therefore, combining (35) with (34) implies that (23) holds

when , and either or .
Now consider the cases where . In these cases,

is an impossible event for the
that result in . For these , we set

, which does not affect the
calculation of drifts since the corresponding probabilities are
zero in . Notice that for these , there is at least
one component of equal to 1. Because ,
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there exists , such that
for all . Then, the difference between

and is bounded
by , and the same conclusion holds when
and .
Consequently, from the analysis above, we know

that (23) holds when or , where
.

Finally, we discuss about (24). For given , de-
note the corresponding -slot drifts of and by

and , respectively. In this case,

may occur for some
when or is not large enough. Since for all ,
both and are bounded uniformly

in , the impact of can
be made ignorable by making the probability of this event as
close to zero as desired with the facts that
and . Hence, similarly to (23), we can analyze
the following three cases to obtain the threshold for (24):
a) , ;
b) , ;
c) , .
Therefore, the proof of this lemma can be concluded by

choosing as the greater threshold for (23) and (24).

APPENDIX B
PROOF OF LEMMA 3

a) Let

Then, .
First, because

is strictly increasing in .
In addition, using a similar approach in [26, Appendix], we

can show that is strictly decreasing in and
is strictly increasing in . Thus, and

are strictly increasing in .
b) For any , we have ,

and as . In addition,
the function is continuous and strictly monotonic in . Thus,
there is a unique solution for .
c) For given , and are both strictly

increasing in . In addition, when .
Because the solution , we have

, and thus
, i.e., .

APPENDIX C
PROOF OF LEMMA 4

We have shown that the -slot drifts of can be approxi-
mated by the drifts of , which can be further approximated

by closed-form expressions. Thus, we first examine the prop-
erties of these expressions, and then show that the actual drifts
have the same properties as their approximations by properly
choosing the parameters.
Notice that when or . In addition,

it is a continuous and monotonically increasing in .
Therefore, there exist some and such that for
all . For , with its strict monotonicity
in , we conclude that for all

and for all .
Thus, there exists some such that

(36)

(37)

(38)

Now, fix and . Using the uniform convergence of
, we can choose a sufficiently large , such that

for any

(39)

where .
According to Lemma 2, with the chosen , there exists some

, such that if or , then

(40)

(41)

and thus

(42)

With , (36) and (40) together imply
that for any , we have
and, thus, (25) holds.
Similarly, (26) follows by combining (37), (39), and (42);

(27) follows by combining (38), (39), and (42).
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