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I. Life. At the end of XIX century Warsaw was the main city of a
border “Vistula Province” in the Russian Empire. The province was
underdeveloped, the Russian rule oppressive and anti- Polish, the general
progress slow. Born there on 22 May 1893 as a son to a popular hospital
physician, Bronistaw Knaster soon experienced himself difficulties of the
national life: his school years were marked by the 1904-1906 “school strike™,
whose main aim was to achieve teaching in Polish (official language was
Russian and it was not allowed to speak Polish in schools and offices).
Authorities answered by closing revolting schools and young Knaster
wandered around the city attending four of them before he got a secondary -
school certificate in 1911.

There was a university in Warsaw, but in those times it was Russian and
since the days of the “school strike” it has been boycotted by the patriotically
minded Polish youth. Like many other contemporaries of his — including
his later friends W. Sierpinski, Z. Janiszewski, K. Kuratowski — Knaster
went abroad. Following his own father’s example, he went to Paris and
began to study medicine there. The three years which followed gave him such
a close familiarity of the French way of life, of the language and culture, that
they soon became his second nature. )

The outbreak of World War I found him in Poland. In October 1914 he
married Maria Morska who later made her name as a journalist. When in
Summer 1915 Germans and Austrians took command over central Poland,
retreating Russians evacuated Warsaw University with all its professors and
most of students. And then, out of nothing and in a couple of months only,
the remaining Poles have organized a new Polish university. The university
started its activity in autumn 1915 and Bronistaw Knaster was among its
very first students. At first he studied logic under Professor J. Lukasiewicz
(in 1918 L. Condorcet’s Algebra of Logic appeared in his translation into
Polish), but soon changed his mind and started studying mathematics. For a
man well over twenty, the decision has been a little short of a drama. Not
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the least, it has wiped out several years of hard medicine studies and
shattered all previous plans. Asked later for motivation, Knaster used to say
that mathematics attracted him by the purity of its methods and certitude of
its results, in sharp contrast to medicine.

His mathematical studies were interrupted, shortly but fatally for him,
by the Polish-Soviet War of 1920. In July 1920, at the moment of greatest
advance of Soviet armies towards Warsaw, Knaster volunteered and made
the campaign as a corporal stretcher - bearer. He served until November 1920
and has been later awarded with the Legion Cross by Marshall Pilsudski.
However, at that war time he has also become infected with a rare type of a
tropical malaria. The disease has tormented him for ten years, bringing
almost to the verge of a physical ruine.

Knaster’s university years were a period of framing the Warsaw School
of Mathematics, designed by Zygmunt Janiszewski (1888-1920), since 1915
professor of mathematics at the Warsaw University. Janiszewski proposed a
program how “to win an independent place for Polish mathematics”. Its
main two features were: 1° concentration of all creative power upon a few
selected branches of mathematics, and 2° foundation of a new journal
devoted exclusively to the research in the chosen area. The choice was
topology, set theory, real functions, mathematical logic, and the new journal
was “Fundamenta Mathematicae”. Chosen branches were of a fresh origin
and so more easily accessible to the men with no sound mathematical
tradition behind and no good library at disposal. And the whole program
succeeded because three young men — Z. Janiszewski, S. Mazurkiewicz,
W. Sierpinski — have decided to work together and soon have found
followers, among the first of which were B. Knaster, K. Kuratowski and
S. Saks. Also the idea of a mathematical journal which covers only some
parts of mathematics, in those times quite unorthodox, proved successful.

Knaster was one of the first doctors of the Warsaw University, receiving
his Ph. D. degree in 1923 on the basis of the thesis [3]. And three years later
he received the title of an assistant professor, thus entering ranks of those
who have possessed recognized professor’s qualifications and have been
waiting for a permanent professor’s position. For the time being he could
deliver lectures, receiving some remuneration but no permanent salary.

However, with the development of malaria his health quickly
deteriorated. A special sanatory near Dresden did not help him and in 1924
he went to Italy, where he felt somewhat better. In Italy he lived and
worked for a couple of years but even there the fits of malaria have
gradually become hardly tenable. By a good chance, however, he learned a
new method of treating his illness and fully recovered within a 1930 year.

After returning to Warsaw, Knaster undertook duties of a teacher,
organizer, editor. In 1929 he has started his “advanced seminar in topology”,
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in temporary cooperation with S. Mazurkiewicz, K. Kuratowski, or
K. Borsuk, through which many Polish mathematicians passed, including
N. Aronszajn, S. Eilenberg, S. Hartman, E. Marczewski, R. Sikorski,
Z. Waraszkiewicz, M. Wojdystawski, and some others. The seminar has been
successfully continued after 1945 in Wroclaw, almost to the death of Knaster.

In 1931 the series “Mathematical Monographs” was founded and Kna-
ster has become one of its editors. In particular, it was he who translated
Banach’s Théorie des opérations linéaires and Saks’ Théorie de lintégrale into
French. With the passing of time the editorial work has preoccupied him
more and more.

“Till 1939 he has written nearly 100 reviews for the “Zentralblatt fiir
Mathematik und ihre Grenzgebiete” and has been collecting reprints of all
topological papers of that time. The collection was burned in the Warsaw
Uprising 1944.

Since 1935 he has been also Secretary of the Polish Mathematical
Society.

Knaster’s favourite diversion were long evening walks. Extensive literary
reading, love of music, vivid intelligence, acquaintance with foreign cultures,
sharp tongue — all these have afforded a great pleasure to all who took part in
those walks. He and his wife have also established closed relations with the
poets of the Scamandrite group, where his wit, intelligence, ardent pursuit
after an apt word have won him an admiration and friendship of Tuwim,
Wittlin, Slonimski — eminent Polish poets and writers.

The life of Knaster, as of all people of his generation, has been changed
abruptly and decisively by the outbreak of World War II. Knaster and his
wife have fled from Germans to Lvov, soon taken by the Soviets who opened
there the Ukrainian University. Some Poles have become professors in that
University and among them was Knaster.

The first Soviet period was relatively short. When in June 1941 Germans
came in, Knasters did not flee. During subsequent three long years of the
German occupation of Lvov Knaster has nourished lice in the medical
institute of Prof. Weigel, needed to produce vaccines against typhoid fever.
Rather unusual job of spending several hours a day in the institute with a
box of lice attached to a forearm, in those gloomy days was a rather good
one: yellow “Ausweis” with a blue bar and the stamp of the “Institut fiir
Fleck fieber” had been securing to its owner an almost perfect safety.

When Soviets came back in 1944, the Ukrainian University has been
reopened and Knaster has been reaffirmed as its professor. He could stay in
Lvov, but after the establishment of new borders of Poland he has decided to
leave that city and in 1945 went to Cracow. There he lectured in the
Jagiellonian University, simultaneously helping to reestablish the University’s
printing - office. It was mainly due to him that in December -1945 there
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appeared the XXXIII® volume of Fundamenta Mathematicae, a vivid
evidence that Polish mathematics was arising from ashes and persisting to
exist.

In the autumn 1945, when old universities of Cracow, Warsaw and
Poznan were reopened and new ones in Wroclaw, Lublin, £6dZ and Torun
established, Knaster received invitations from all the latter four. After some
hesitations, he decided in favour of Wroclaw.

When Knaster came to Wroclaw, he left behind 52 years full of events
and dramas, including a cruel war which brought the painful death of his
mother and tragic death of his beloved wife. A mathematician of world
renown, an energetic organizer of scientific life, an experienced mathematical
editor — Knaster was a man of greatest importance for the new university.
He married there Regina Szpalerska, a widow of an underground Home
Army soldier, and soon devoted himself completely to didactical, organizing
and editorial tasks.

He was not alone in that matter. Besides him there were also
E. Marczewski, H. Steinhaus, W. Slebodzinski. Those four men, “the great
four”, were pioneers of the Polish mathematical life in Wroctaw.

In those early days in Wroclaw Knaster’s greatest passion was the
organization of scientific editorial work. This included the printing - house
which was organized in 1947. In that year resumed here its existence Studia
Mathematica (transferred first from Lvov to Wroctaw and then, after some
years, to Warsaw), as well as the series “Mathematical Monographs”, and a
new journal Colloquium Mathematicum, founded by the “great four” in a kind
of reminiscence of the program of Janiszewski. The journal has been intended
to be a mean for integration of Wroclaw mathematics. After 1949, when the
newly founded State Mathematical Institute (now the Institute of Mathema-
tics of the Polish Academy of Sciences) took over the care of all the editorial
work in Polish mathematics, Knaster withdrew himself to a large extent from
that area.

He was one of the founders of the Wroclaw Scientific Society in 1946,
remaining in its board and acting as its editor for many years to come. In
particular, in the thirty years 1949-1978 he edited 131 volumes of the Series
B of that Society. His editorial passion can be seen in the article [21]
describing scientific printing - houses in Poland.

In the 1950s Knaster returns to active mathematical work, publishes
over twenty original papers, and raises many open problems both in the New
Scottish Book and in Colloquium Mathematicum. 1t is also the period of
second rise of his “advanced topology seminar” which becomes then the
converging point of talented mathematical youth including Jan Mycielski
(now Boulder, Colorado), K. Urbanik (Wroctaw), M. Reichaw (Jerusalem),
A. Lelek (Houston, Texas), J. Mioduszewski (Katowice), and many others.

In spite of some face stiffness, he was a deeply good man. He loved
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mathematics and university life above all and it sufficed, either for a student
or a beadle, to reveal a similar passion to acquire his most vivid sympathy.
Intolerable to a passive attitude of mind, he strongly favoured creative work
of a very concrete type. Everywhere. In garden, where he tried to get new
sorts of roses, in editorial work, where he exhibited perfectionism difficult to
meet, in music, which he liked to play for himself, in conversation, where he
admired a sharp wit and verbal dispute, and above all in mathematics, his
greatest love. Favouring creativity, he disliked history, philosophy and all
kinds of reflection upon past and dead.

With all his sensitivity to a talent, he highly treasured a character in a
man. He admired Bertrand Russell and Albert Einstein, although he grieved
at the latter’s involvement in the work on atomic bomb. Among his close
friends were P. S. Aleksandrov, R. H. Bing, K. Borsuk, E. Cech, K. Menger.

On his 85th birthday’s eve there came a cerebral haemorrhage. Although
he later regained consciousness and, partly, ability to speak and to move
around — his last year and a half were heavy to him. He died at home on
3 November 1980.

II. Work. Knaster was proud to be called a topologist and in
topology, the new and much influential branch of XX -century mathematics,
which he also considered the most important one, he was a master of
geometric constructions. His main area of interest was the study of the
connectedness and his major contributions were some peculiar constructions
in making of which he revealed a special talent. Here is a list of some of
them (for a more detailed account see below):

a) a biconnected set [1], i.e. a connected set which is not a union of two
disjoint connected subsets,

b) a hereditarily indecomposable plane continuum [3], ie. the
pseudo - arc, as the re-inventors have called it,

c) a connected and locally connected subset of the Sierpiniski triangle
curve, which contains no perfect subset [9],

d) an irreducible continuum with a continuous decomposition into
layers [14],

e) for each n > 1, a biconnected subset of n-dimensional euclidean
space which divides that space [18],

f) an effective (i.e, without AC) decomposition of the square into two
dense, connected, locally connected and punctiform subsets [30].

It has been a deep Knaster’s conviction that constructions are an
important form of the existential theorems in mathematics and that the less
they could be expected, the more important they are.

Although his main object of interest had always been connectedness, we
divide it, for the sake of clarity, into three sections: continua, general
connected spaces, continuous functions. Outside topology he made
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contributions to foundations of mathematics, functional equations etc. and
they are collected in the fourth section. The fifth and last is devoted to his
problems.

1. Continua. After initial impulses from Cantor and Poincaré, the
decades on the turn of XIX century saw a slow and difficult progress in
establishing the basic concepts of topology. One of them was connectedness.

The first modern ideas leading to the concept of connectedness appeared
in the mid - XIX century by B. Bolzano, but the first explicit definition is due
to G. Cantor (for a wider covering of that story see [37]). In 1883 the latter
defined [8] a subset X of a euclidean space R" to be connected if for every
two points ¢ and t' of X and for arbitrary ¢ > O there exists a finite sequence
of points t,, ..., t,e X such that all distances tt,, t,t,, ..., t,t' are smaller
than &. Cantor considered only perfect (i.e., closed and dense-in -itself)
subsets of R" and in this way he initiated the study of continua as of perfect,
connected, bounded (or general continua, if not bounded) subsets of euclidean
spaces.

In 1904 A. Schonflies started publishing a series of papers [30], an
important step in the development of the theory of continua by introducing
new concepts, bringing new results, and even making some fault assertions.
Relying heavily on intuition, Schonflies has claimed that there do not exist
three regions in the plane with the common boundary. The claim was refuted
by L. E. J. Brouwer [7] who constructed continua which are the common
boundary of three regions and showed that they are indecomposable, i.e. they
are “closed curves, which cannot be divided into two proper subcurves”.
Besides Brouwer, indecomposable continua were announced also by
A. Denjoy [10] and by Yoneyama [39], the latter .describing the examples
due to Wada.

More precisely, a continuum is decomposable if it is a union of two
proper subcontinua, otherwise it is indecomposable. Although originally
indecomposable continua were considered rather pathological, in later years
they gained importance.

Apparently the most simple indecomposable continuum is that of
Brouwer. Following Knaster’s description (cf. [20], p. 209), we can define it
in the following way. Take Cantor ternary set C in the segment [0, 1] of the
X -axis and consider its subsets P and Q, where P consists of all extremities
of complementary segments, and Q = C\ P. Attach to C all semicircles lying
in the upper ‘half - plane, with the centre 1/2 in X -axis and ends in P. Now
consider C as the union of a sequence of Cantor’s ternary sets C,, C,, Cs, ...
and of point 0, where C, is the “right half” of C, i.e. the subset of C lying in
the segment [2/3, 1], C, is the “right half’ of C\ C,, i.e. the subset of C lying

2

in the segment [2/9, 2/3], C; is the “right half” of C\ |J C;, and so on. And
i=1
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to each C; attach all semicircles lying in the lower half - plane, with the centre
in the mid - point of C; and ends in P C;. The union of all thus attached
semicircles (to C as a whole and to each C; separately) is a sort of a
selfwinding line. Since P is not compact, the line is not a continuum. To get
Brouwer’s example B, one must take the closure of that line in the plane.
One can prove that B is a union of continuum many similarly looking
disjoint selfwinding lines, each of which is simultaneously boundary and
dense in B. If we try to decompose B into two proper subcontinua A and D,
we have two possibilities: either 4 is a subset of one of those lines, and then
D =B, or A meets at least two such lines and then A = B. Therefore
continuum B is indecomposable.

The discovery of indecomposable continua inevitably led to several new
problems. First came the question which Knaster posed himself: Does there
exist a hereditarily indecomposable continuum, i.e. an indecomposable
continuum whose every subcontinuum is also indecomposable. If it existed,
it could not contain any continuum known so far, neither arc nor any
continuum containing arc. And Knaster showed that it does exist! He
succeeded by a tremendous work in analytic geometry which consisted in
constructing a sequence of more and more complicated versions of
continuum B and passing to the limit. The masterpiece later became his Ph.
D. thesis [3].

The success was so great that when some twenty years later the
continuum was rediscovered by R. H. Bing [3] and E. E. Moise [26] under
the name of a pseudo-arc and with the elegant and powerful inverse limit
procedure, the new inventors could hardly believe that it had been done
much earlier when no such procedure was available.

Knaster continuum (as Russians called it, cf. [34]) or pseudo -arc (the
name now commonly accepted) soon became a standard, in a way, answer to
many questions. Does there exist a continuum which contains no arc? Yes, it
does: pseudo -arc. Does there exist a continuum, distinct from an arc, which
is homeomorphic to each of its proper subcontinua? Yes, it does: pseudo -arc
[26]. Does there exist a continuum, distinct from a circle, which is
homogeneous? Yes, it does: pseudo -arc [3]. And it turned out that it is not
a rare phenomenon, since pseudo-arcs form a G; dense subset of the
hyperspace of all subcontinua of the square [23].

One of the standard theorems in plane topology is the Janiszewski
theorem [18] on cuts of the plane R? i.. on continua C < R? such that
there are two points in R?\ C which cannot be joined by a continuum lying
outside C. Kuratowski proved [21] that each cut of the plane into finitely
many regions contains an irreducible cut. And Knaster constructed [6] a cut
into countably many regions which contains no irreducible cut. Answering
one of the earlier questions he also showed (ibidem) that there exists a
common boundary of arbitrarily many (finite or countable in number)
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regions and that there exists a family of continuum many disjoint cuts, each
of which is homeomorphic to a curve called “Warsaw circle”.

G. T. Whyburn constructed [35] a hereditary cut of the plane. Knaster
noticed [15] that Whyburn’s cut is a rational curve, i.e. that each point of it
has arbitrarily small neighbourhoods with countable boundaries.

In the theory of curves a point is called an end of a curve, if it has
arbitrarily small neighbourhoods (in that curve) with one - point boundary.
K. Menger proved ([24], p. 97) that the set of all end - points of any curve is
a 0O-dimensional G,-set. Knaster and Reichbach showed [23] that the
condition is also sufficient, i.e. for each 0-dimensional G,-set B there exists a
plane curve, the set of end-points of which is homeomorphic to B. The
result was later improved by Knaster and Urbanik [25] who showed that
each 0-dimensional and metrisable G;-set is homeomorphic to a closed
subset of the Cantor set C which differs from C for some points of P only
(see the definition above). As such, it is the set of end - points of a dendrite,
the ramification points of which have all order 3.

In an attempt to characterize topologically the segment [0, 1] L. Zoretti
introduced [40] the concept of irreducibility: a set is said to be irreducible
between its points a and b provided that it is connected and these two points
cannot be joined by any closed connected subset different from the whole
set. For continua the definition sounds simpler: continuum is irreducible
between a and b, if the points a and b cannot be joined by any proper
subcontinuum. The study of general irreducible continua was initiated by
Janiszewski [17] and Kuratowski proved [20] that there exists an upper
semicontinuous decomposition of an irreducible continuum into subcontinua
called layers, the hyperspace of which is an arc (layers of arc are obviously
points). Knaster constructed [14] an irreducible continuum, the
decomposition of which into layers is continuous (like in an arc) but no layer
is a point. Irreducible continua like that of Knaster were later investigated
and Moise proved [27] that there must be layers which are not arcs,
Hamstrom proved [14] that some of them are not locally connected, and
Dyer proved [12] that among them are indecomposable continua.

In an isolated paper [13] Hurewicz and Knaster showed that each
compact metrizable space can be extended, by an addition of at most 2-
dimensional set, to a locally connected and unicoherent continuum.
(A continuum 1is called unicoherent, if for each decomposition of it into two
subcontinua their common part is connected; unicoherence is another
generalization of a property seen in simple objects: arc is unicoherent, circle
is not.) :

In his last paper [31] (published when he was 86), Knaster constructed a
singular plane curve, answering a question raised by S. M. Nadler.

2. General connected spaces. As we have seen, the study of continua as
of perfect (in particular, closed) and connected subsets of euclidean spaces



BRONISLAW KNASTER 93

started already in 1880s and it was only some twenty years later that there
appeared first attempts at the definition of a connectedness of a set (still lying
in a euclidean space) which is not necessarily closed. Cantor’s definition of
connectedness is obviously invalid for such sets (consider rationals) and the
men who made noticeable contributions here were N. J. Lennes [22] and
F. Riesz [29]. In 1914, apparently unaware of either Lennes’ or Riesz’ work,
F. Hausdorff [15] defined connected sets as those which cannot be divided
into two non-empty, closed and disjoint subsets. And it is essentially that
definition that ever since became commonly accepted (for metric compact
spaces, in particular for continua, it is obviously equivalent to that of
Cantor).

Thus in the early 1920s there was a definition of a general connected
space, there were also known some variants of that definition like local
connectedness, some properties of (locally) connected spaces were recognized
— but there was no systematic study of that concept alone, no theory of
connected spaces. It is upon this background that one must look upon the
paper [1] which undertook such a study, established many fundamental
properties of connected spaces which have ever since become classic, and
provided some extraordinary examples.

The paper starts with a foreword which reveals the authors’ attitude:

The study of the concept of a connected set is important from two different
points of view. First, simplicity of the very definition of that concept is
remarkable from the logical point of view. Second, it is interesting to investigate
relations which exist between theorems true for general connected sets and
those related to continua.

Connected sets have not yet become the object of a systematic study. It is
the aim of this article to provide such by a methodical examination of some
Jundamental problems concerning those sets, without any claim to exhaust the
subject.

Chapter 1 is on general theorems, Chapter 2 on connected sets
irreducible between two points, Chapter 3 on unions and common points of
connected sets irreducible between two points, Chapter 4 on sets
complementary to plane connected sets, and Chapter 5 provides examples.

Sets A and B are called separated if

AnBuAnB=0.

A set is called connected if it contains more than one point and cannot
be decomposed into two separated subsets. The first theorem of Chapter 1
says that if a connected set is contained in a union of two separated sets,
then it is contained entirely in one of them. Having it, it is easy to show the
next theorem: If connected sets §; and S, are not separated, then their union
is also a connected set. Follows the corollary: If a class of connected sets
contains a set which is not separated with any other set of the class, then the
union of all sets of that class is connected. And so, step by step, it goes.
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How methodically the authors proceeded, can be seen in the following
example. After having proved that each connected set is a union of two
different connected sets, they asked whether a connected set can be the union
of two disjoint connected sets. And answered that question negatively by
providing an example of a biconnected set, i.c. of a connected set which is
not a union of two disjoint connected subsets.

Let C be the Cantor ternary set in the segment [0, 1] of X -axis, and let
P and Q be its subsets defined as above. Consider the segments L(c) joining
points ce C to the point p =(1/2, 1/2), and in each such segment take all
points of the second coordinate rational if ce P and all points of the second
coordinate irrational if ce Q. All those points form the set S.

It is not obvious that the set S is connected (in fact, the proof is rather
long) but it is easy to see that each connected subset of S must contain the
“explosive” point p (later on, such a point p was called a dispersion point of a
connected set), for the set S\(p) clearly contains no connected subset.

The paper [I] stimulated a vivid research in the area of general
connected spaces, in particular on biconnected sets. (For more details on
biconnected sets with dispersion points, see [11].) There were also discovered
biconnected sets without dispersion point [25]. Like pseudo-arc, also
biconnected set of Knaster and Kuratowski has become a standard example.
For instance with the help of it, Knaster answered [5] a question of R. L.
Wilder [36].

Paper [7] gives an example of a G; biconnected set (with dispersion
point), thus answering a question of S. Mazurkiewicz who proved that there
can be no F, biconnected set. The construction relies on some properties of
real functions: graph of a pointwise limit function of continuous functions is
a connected set if and only if the function satisfies the Darboux property;
such a graph is always a G,-set.

Any biconnected set with a dispersion point shows that a complement of
one point in a connected set can have rather complicated structure. On the
other hand, however, such a complement differs a little, for a point only,
from a connected set and P. Aleksandrov put the question to characterize
such complements internally, i.e. without referring to a connected set in
which it lies. In [17] Knaster answered that question by showing that a set S
can be made connected by adjoining one point only if and only if it contains
a descending sequence of closed and diffused subsets, the common part of
which is empty (a subset 4 of a space X is called diffused in X if, for every
decomposition of X into two non-empty separated subsets, the set 4 meets
both of them).

In still another paper [I8] Knaster constructed, for each n>2, a
biconnected set with a dispersion point which cuts the euclidean space R".

Paper [8] contains the following, rather unexpected theorem: a
continuum C, irreducible between the points a and b, contains a connected
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set, irreducible between a and b, if and only if each subcontinuum of C,
which is not a continuum of condensation in C, is decomposable.

It is known that each locally connected continuum is arcwise connected.
However, without the assumption of compactness it need not be so and R. L.
Moore [28] was the first to show that there exists a set which is connected
and locally connected but contains no arc. That result was strengthened in a
short joint note [9] which shows that the Sierpinski triangle curve contains a
connected and locally connected set with no perfect subset. The construction
depends on the axiom of choice and is rather straightforward but examples
of that kind were important. They showed the limits of the concept, in the
case of connectedness, rather broad. As a result, theory of general connected
sets was not pursued very strongly and much more research, at least in the
Warsaw School, was concentrated upon compact connected spaces, i.e.
continua.

Peculiar connected sets were always of much interest to Knaster and he
returned to them also much later by showing [30] that the square can be
effectively decomposed into two dense, connected, locally connected and
punctiform subsets.

In the joint paper of three authors [29] it was noticed that some
connected sets possess a much stronger property than that of connectedness
itself: they cannot be decomposed not only in two but even into countably
many mutually separated subsets. A set with that property was called o -
connected and the three authors investigated that concept a little. By a
known result of Sierpinski [31] each continuum is ¢ -connected, but o-
connected is also original biconnected set of Knaster and Kuratowski.
Examples of sets which are not ¢ -connected had already existed [4], but the
authors provided also new ones.

3. Continuous mappings. Scientific  interests of Knaster  were
concentrated upon connectedness, and continuous mappings were another
tool for him rather than a new area of research.

In the joint paper [11] the three authors provided a short proof of the
Brouwer’s fixed point theorem, elegancy and simplicity of which has not been
surpassed to this day.

It is known that a continuous image of an arcwise connected continuum
is again an arcwise connected continuum. A generalization of an arc is a 4-
continuum, i.e. an irreducible continuum, each layer of which is boundary,
and a generalization of an arcwise connected continuum is a A-connected
continuum, i.e. a continuum, any two points of which can be joined by a /-
continuum. Knaster and Mazurkiewicz showed [12] that a continuous image
of a A-continuum need not be A-connected.

An interest in homogeneity can be seen in the joint paper [24] which
shows that each homeomorphism between two boundary and closed subsets
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of the Cantor set C can be extended to a homeomorphism of C onto itself.

Consider a mapping f: X — R, where X is a metric space and R is the
reals. Point xe X is called a limit - point of f if and only if there is ae R such
that f(x,) — a for each sequence x, — x. And if a = f(x), the point x is called
a point of continuity of f. It is known that the mapping f is a limit of
continuous mappings if and only if each partial mapping f|F, where F is a
closed subset of X, has a point of continuity. Answering a question of
E. Marczewski, three authors showed [26] that for X metric complete the
condition can be weakened: it suffices if f|F has a limit point.

Continuous mappings f: X — Y are related to upper semi-continuous
decompositions of X parametrized by Y: elements of decomposition are sets
f~Y(y) and if f is continuous, then the sets f~!(y) are closed and y,— y
implies Ls f~'(y,) = f ~'(y), which is equivalent to upper semicontinuity.
Such decompositions had become the subject of vivid research and Knaster
added to it an interesting concept of fixation [27]. A decomposition of a
metric space is called fixable if for each ¢ > 0 there exists a finite family of
closed sets which are pairwise disjoint, have diameters < ¢, and their union
meets each element of the decomposition. He has also constructed an upper
semicontinuous decomposition of a continuum into continua of large
diameters which is not fixable.

Paper [28] is related to that of Borsuk and Molski [6], where there
were considered simple mappings, i.e. mappings such that each counter-
image of a point consists of one or two points only. Answering one of the
questions stated there, Knaster and Lelek showed that the carpet of
Sierpinski can be obtained from the segment by a simple mapping.

4. Other topics. Here we will discuss Knaster’s work in the set theory,
functional equations, and applied mathematics.

In the early years of topology, and especially in the Warsaw School, set -
theoretical methods were prevailing and Knaster was one of those who had
a deep understanding of the set theory. His insight was highly valued by such
masters as A. Tarski and W. Sierpinski.

Knaster’s first paper in that area was written jointly with W. Sierpinski
[2]. It deals with the classes % of Fréchet, now abandoned and forgotten
attempt at the definition of a general space. The two authors prove that
there exists a class % with the following property: each of its elements is a
limit of every uncountable subset, and show some of its features.

In the 1920s, of much interest in Warsaw and Lvov was the Cantor—
Bernstein theorem on 1-1 mappings. S. Banach has generalized it and
applied, together with A. Tarski, to their paradoxical decomposition of a ball
[2]. In 1927 both Tarski and Knaster published short notes [32], [10],
devoted to the subject. Knaster’s idea was to consider set - valued functions.
He reduced some theorems to the following lemma: if a function h, defined
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on subsets of A and with the values which are subsets of A4, is monotone,
then there is a fixpoint, i.e. a set D such that h(D) = D. See [4] and [33].

In [16] Knaster considered the famous problem (stated in the first
volume of Fundamenta Mathematicae) of M. Suslin: let X be a linearly
ordered set such that the order is continuous, without the first and the last
elements, and satisfies the condition

(S) each family of pairwise disjoint intervals is at most countable;
is then X isomorphic to the reals?

Condition (S) can be expressed also in the form: each uncountable
family of intervals contains two intervals, the common part of which is not
empty.

Knaster proposed to consider the following stronger condition:

(K) each uncountable family of intervals contains an uncountable
family of intervals, any two of which have a non-empty intersection.

Since (K) implies separability, one gets a new characterization of the
reals: linear and continuous order, without the first and the last element,
condition (K). Consequently, implication (S) = (K) is equivalent to Suslin’s
hypothesis. As is known, Suslin’s hypothesis is independent of ZF.

One of the problems of pragmatic partition can be expressed in this
way: consider a sandwich with a layer of cheese and bacon, is it possible to
cut it with a knife into two parts, equivalent with respect to the amount of
-bread, cheese and bacon? In the paper [19] there is an elegant solution to
that problem, and the paper [20] reviews this and some other pragmatic
partition problems.

Paper [22] contains an ingenious proof that for each linearly ordered
set and each monotone binary operation, the distribution -in -itself

x(yz) = (xy)(zx)
implies bisymmetry

(xy)(zu) = (x2)(yu).

5. Problems. Knaster has been well known for his habit to ask
questions. Reading a paper or listening to a lecture, he was continuously
asking whether this or that hypothesis were essential, whether the thesis
cannot be strengthened, whether the construction cannot be simplified etc.
They were often quite simple questions at the beginning, with often quite
simple answers, but it could also happen that such an unexpected question
led to a vivid discussion, involving all present, and afterwards to a new
problem. Sometimes quite hard.

In the first years of its existence, Fundamenta Mathematicae used to
publish open problems. They were not numerous, but included some
magnificent ones like that of Suslin. In the 8th volume there is a problem of

7 - Colloquium Mathematicum 51
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Knaster: Let D be a closed subset of the plane, lying in the 3 -dimensional
euclidean space. Is it true that each point of D is accessible in the space?
(A point d of D is accessible in E if there exists a continuum C < E such that
d=CnD)

Later Fundamenta Mathematicae abandoned the custom but it was
revived in this journal (Collogquium Mathematicum), where the problems
department is alive to this day and the number of problems surpassed
twelve hundred. It is here that most of Knaster problems have appeared in
print. Let us mention some of them.

ProBLEM 4 (Collog. Math. 1 (1947), p. 30). (...) Let be given three points
Pi, P2, P3 on a 2-dimensional sphere S? and a continuous mapping of S? into
the real line E'. Do there exist three points q,, q,, q3 on S* which are
isometric to p,, p,, ps and have the common image on E', i.e.

f(@1) = f(a2) = f(q3)?

(...) More generally, is it true that for any given k points p,, p,, ..., Px On
S" and any continuous mapping of S" into E""**2 where k =2,3, ..., n+1,
there exists a set of points q,, q,, ..., q, isometric to p,, p,, ..., p, which has
the same image in E" **2? And how many such sets are there?

The problem asks for a possible generalization of Borsuk’s
“Antipodensatz” [5]. The case was shown to be true by H. Hopf [16] and
Knaster asks for a general k. As noted in volumes 4 and 5 of Colloguium, the
case k = 3, n = 2, had been proved by E. E. Floyd [13] and the case k = 3, n
arbitrary, had been proved by Chung-Tao Yang [38]. And finally, the
problem was answered positively in its full generality by R. P. Jerrard [19].

ProsLEMs 177 and 178 (Collog. Math. 4 (1957), p. 243). Let us say
that sets lying in a space can be threaded if there exists an arc (...) which
contains at least one point of each of the sets. If a compact set lying in a cube
of n > 1 dimension is decomposed in a continuous way into disjoint continua,
can they always be threaded? And is this still possible if the decomposition is
only semicontinuous, in particular into components?

The problems seem to be still open.

As we have noted before, E. Dyer proved [12] that an irreducible
continuum with a continuous decomposition into layers must contain an
indecomposable continuum as a layer. Knaster asks (Problem 202, Collog.
Math. 5 (1957), p. 118) whether it must contain a hereditarily indecom-
posable continuum. The problem is still open(*).

ProBLEM 264 (Collog. Math. 6 (1958), p. 334). Let f be a function
defined on a space X, with the values in a Hausdorff space Y. We say that f

(') The answer is negative. See L. Mohler and L. G. Oversteegen, On the structure of
tranches in continuously irreducible continua, this journal 54 (to appear). [Note of the Editors]
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has multiplicity n at a point ye Y if the set f~'(y) consists of n points. Let X
be the segment [0, 1]. Is any continuous function of a finite multiplicity, at
most n at each point, a superposition of finitely many continuous functions on X
of multiplicity at most 2 at each point?

The problem seems to be still open.

ProBLEM 284 (Collog. Math. 7 (1960), p. 108). Does there exist a
connected and hereditarily connected set of dimension greater than 1?

The problem is still open.

ProsLem 304 (Collog. Math. 7 (1960), p. 310). Is any locally connected
subcontinuum of an n-dimensional Sierpinski carpet its retract?

The problem is still open.

ProBLEM 323 (Colloq. Math. 8 (1961), p. 139). Let us call a dendroid
each continuum which is arcwise connected and hereditarily unicoherent.
Characterize topologically (by internal properties) the family of all dendroids
which have homeomorphic images in the plane.

The problem, still open, contains the first definition of a dendroid, the
general study of which has become so much extensive since that time.
Problems 340 (Collog. Math. 8 (1961), p. 278), 370 (ibidem 9 (1962), p. 169),
480 and 481 (ibidem 12 (1964), p. 294-295) also pertain to dendroids.

Problems 554 and 562 (Collog. Math. 15 (1966), p. 160 and 320) ask
whether a hereditarily indecomposable continuum, in particular a pseudo -
arc, contains a non-trivial retract. Answering the problem J. L. Cornette
showed [9] that each subcontinuum of the pseudo-arc is its retract. The
general answer is not yet known.
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