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Preface 
 
The material in this book is presented to graduate students in Information-   
and Communication theory. The idea is that we give an introduction to 
particular applications of information theory and coding in digital 
communications. The goal is to bring understanding of the underlying 
concepts, both in theory as well as in practice. We mainly concentrate on our 
own research results. After showing obtainable performance, we give a 
specific implementation using Reed-Solomon (RS) codes.  The reason for 
using RS codes is that  they  can  be  seen  as  optimal  codes with maximum 
obtainable minimum distance. Furthermore, the structure of RS codes 
enables specific applications that fit perfectly into the developed concepts.  
We do not intend to develop the theory of error correcting codes. We 
summarize our idea in Figure 0.1. 
 
 
 

concept development 
 
 

performance estimation 
 
 

practical embodiment 
 
 

application of  
RS  codes 

 
 

    performance evaluation 
 
 
 Figure 0.1 Concept of the book 
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Chapter 1 considers networks where information is transmitted in packets. 
Reliable packet transmission can be realized via networking protocols using 
feedback and error control coding.  When the data in the packets are code 
words of an RS code and in addition the packets have an identification (ID) 
number, provided by the network protocol in use, we can use error control to 
improve the throughput efficiency especially in the situation where packets 
get lost.  Lost packets can be recovered by erasure decoding. 
 
The random access situation, where users transmit packets without 
knowledge about other users is solved using the Aloha protocol. We discuss 
different random access strategies. The first one is the classical Aloha 
protocol, where feedback is given to the users about successful or not 
successful transmission (collision). The theoretical throughput of the Aloha 
system η = Ge-G, where G is the total offered load by the users involved in 
the random access protocol, in packets per time slot, see Figure 2.   
 
  
 
                     e-1 

  
η 

 
 
 
 
         0 
                0                     1                               G 
 Figure 0.2 The throughput for the slotted Aloha 
 
 
We discuss a randomized scheme using RS codes, where there is no 
feedback, but collision detection. We also present a simple and efficient 
error correction scheme for array-like data structures. This scheme is used 
for packet transmission using the Aloha protocol without feedback and 
without collision detection.   
 
In Chapter 2 we develop the concepts of random access communications, 
where we are especially interested in the situation where users cannot use 
knowledge of the participants in the access situation. Information theory 
considers the capacity or maximum mutual information of multi access 



   

iii 
 

channels (MAC) for users that are permanently sending information. In 
random access the users are not permanently active, and in addition cannot 
communicate with each other. We discuss coding in a multi user concept 
where the set of active users is small compared to the total amount of 
potential users.  In this case, time - or frequency division is an inefficient 
way of communication. We introduce three models for “non-trivial” access. 
For these models we calculate the maximum throughput and the way how to 
obtain this maximum throughput. We consider transmission using 
signatures. For a simple construction we can calculate the performance and 
compare the results with random signatures. We give a class of codes that 
can be used to uniquely determine the set of active users from the composite 
signature at the channel output.   
 
Interesting applications for RS codes appear in Chapter 3, for channels that 
are not typical. One of the non-typical channels is the power line 
communications channel. In this channel we have all different types of noise 
and disturbances. RS codes give interesting optimal solutions to some of the 
problems. 
 
One of the dominant parameters in power line communications is that of 
attenuation. Attenuation can vary between 10-100 dB per kilometer. In 
power line communications, attenuation prevents signals to propagate over 
distances that are longer than say 500 meters. Investigations to overcome the 
high attenuation are therefore highly important. We discuss the efficiency of 
communication over links that are in tandem. This situation occurs when 
users in a power line communication network are connected to the same line 
and the power lines can be seen as “bus systems”, where all connected users 
can listen to the signals present on the bus. There is an interesting connection 
between links in tandem and the classical problem of broadcasting in 
information theory. We relate the tandem channel with the degraded 
broadcast channel and give the information theoretical capacities.  
 
A popular topic in coding is the application of soft decision decoding for 
additive white Gaussian noise channels. The reason for this is the 
performance improvements in the decoding error rate that can be obtained. It 
is well know that, due to complexity reasons, RS codes cannot be decoded 
using soft decision information. In Chapter 4, we first explain the idea of soft 
decision and then give examples of the applications. We combine RS codes 
with single parity check codes and show that a 3 dB gain can be attained at 
low complexity.  
In the second part of the chapter we consider a special class of codes, 
permutation codes. These codes are effective against different kinds of noise, 
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like impulse- and narrowband noise.  Extended RS codes with low rate (2/n) 
can be seen as an optimum class of permutation codes. We develop the 
concept of same-weight codes to be used for channels with permanent 
disturbances.  
 
In Chapter 5, we describe the classical problem of data transmission in the 
presence of a wiretapper listening to the communication between two 
parties. The encoder’s objective is to maximize the amount of information 
transmitted to the legal receiver, while keeping the wiretapper as uninformed 
as possible. We consider a noiseless - and a noisy main channel, see Figure 
0.1 and Figure 0.2, respectively. 
                                               
 
      key k          key k 
 
                                 cryptogram c 
               encrypt                                                                              decrypt 
             e(m,k) = c                d(c,k) = m 
 
 
 

message m                 message m
               

Figure 0.1  Schematic representation of  the noiseless Shannon 
cipher model. 

 
                                                       
                key k             key k 
         
                                                                     noise  
                                 cryptogram c      
              encrypt                                                                                decrypt 
            e(m,k) = c                 d(c,	k) = m 
 
 
 

message m                  message m 
               

Figure 0.2  Schematic representation of the noisy cipher system 
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For both situations, the use of a special form of RS encoding  gives  
optimum  results. 
 
In Chapter 6, we show that one of the interesting consequences of the 
developed theory is that there is a close connection with the problem of 
secure biometric authentication and verification. The biometric verification 
scheme as developed by Juels-Wattenberg can be seen as a noisy cipher 
system. The biometric properties act as a key at encryption, and as a noisy 
key at decryption.   
 
 
            enrollment                         en   noise                      verification   
                                                       
    bio bn             bio bn 

                                                               
                                                        

                       
                                 cn + bn          data base               
                      cn                                                                                cn + en 

              encoder        decoder 
  

 
         ?  X’    
random data X             Hash(X)          =         Hash(X’) 

      
    Figure 0.2  Schematic representation of the Juels-Wattenberg scheme 
 
 
We include the Juels-Sudan scheme and show that there is an interesting 
implementation of both schemes using RS codes. The chapter includes 
performance bounds for the False Acceptance Rate and the False Rejection 
Rate. 
 
Chapter 7 contains topics that can be seen as constrained coding. The first 
topic is the avoidance of certain symbols to occur in the output of an RS 
encoder. The second topic is the combination of RS and run-length 
constrained coding with application in bandwidth limited channels. In 
communication systems, coding is a fixed part of the design. To change a 
code is impossible due to standards and already implemented decoding 
algorithms. In cognitive systems, we want to adapt the efficiency of a 
transmission scheme to the actual circumstances. For this we have to be able 
to change the modulation and also the error correcting - or error detecting 
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code. Some concepts are well known, such as puncturing or 
shortening/lengthening an encoding matrix of a linear code. In this way, the 
efficiency of the code is changed by changing the length n of the code 
words. We choose another method: row extension/deletion of the encoding 
matrix for an (n,k) code, and thus change the parameter k.  
 
An important part of a computing system is the memory. Due to 
improvements in process technology and clever circuit design, we can 
produce large memory systems on a chip with a high packing density. A 
high packing density has its limits and may cause errors in the memory cell 
structure. A popular error model is that of defects. A defect always produces 
the same output when being read, irrespective of the input. The model for 
defective memory cells is given in Figure 0.3.  
 
   
   0            0 0  0 0  0 
 
   1  1 1  1 1  1 
       no defect            defect-0            defect-1 
 
 Figure  0.3 Model for the defects in a memory 
 
Kuznetsov and Tsybakov showed that, when the writer knows and the reader 
does not know the value and the position of the defect, the writing capacity 
is (1-p) bits/memory cell. In Chapter 8, we show how to use RS codes as 
optimum symbol defect matching codes.  
 
The appendix contains the background information about RS codes as 
needed for the understanding of the rest of the chapters where we discuss the 
different applications. We also give some basic properties of the concepts of 
entropy in information theory. We give a brief “engineering” summary of 
the theory for Galois fields as far as we need this. We include the necessary 
properties of the Vandermonde determinant and we complement the 
description of RS codes with a possible decoding procedure. In the last parts 
we explain the idea of water-filling for two and more parallel channels.  
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Chapter 1 
 
Packet Transmission 
 
In networks, data is transmitted in the form of packets. A packet consists of a 
block of data bits plus control information that helps in its proper routing and 
reassembly into the original form at the receiving end. We assume that 
packets have an identification number (ID) provided by the network protocol 
in use. Reliable packet transmission can be realized via networking protocols 
using feedback and error control coding. Error control coding can improve 
the throughput or transmission efficiency especially in the situation where 
packets get lost.    
 
We discuss different protocols depending on the actual networking situation: 
 
- the classical Aloha protocol [1], where feedback is given to the users 

about successful or not successful transmission; 
- a protocol with randomized packet transmission using Reed-Solomon 

(RS) codes, when there is no feedback but there is collision detection; 
- a simple and efficient error correction scheme for array-like data 

structures. This scheme is used for packet transmission using the Aloha 
protocol without feedback and without collision detection.   

 

1.1 Introduction 
 
RS codes play an important role in networking. We will highlight some of 
the “simple” applications. We first recall the main properties of linear error 
correcting codes that are needed for the protocol descriptions.  
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Property 1.1 The code words of a linear (n,k) error correcting code are 
linear combinations of the rows of a k × n encoding matrix Gk,n of rank k, i.e. 
cn = xkGk,n, where xk  and cn are of length k and n, respectively.  
 
We may distinguish between bit- and symbol oriented codes. For symbol 
oriented codes over GF(2m), the components of xk, cn and Gk,n are m bits 
wide. The minimum number of differences (measured in symbols) between 
any two code words is denoted as dmin. 
 
Property 1.2 For an (n,k) linear error correcting code, the minimum distance 
dmin is upper bounded by dmin ≤ n – k + 1. RS codes achieve the upper bound 
with equality. 
 
Property 1.3 An (n,k) error correcting code with minimum distance dmin is 
able to detect at least t symbol errors  for dmin ≥ t +1. 
 
Property 1.4 An (n,k) error correcting code with minimum distance dmin is 
able to correct at least t symbol errors  for dmin ≥ 2t +1. 
 
If the position of an error in a code word is known, without knowing the 
value of the error, we call this an erasure.  
 
Property 1.5 For an (n,k) linear code with minimum distance dmin, dmin-1 
erasures can be corrected.  
 
Property 1.6 As a consequence of property 1.5, any k × (n - (dmin -1)) sub-
matrix of the encoding matrix Gk,n has rank k.  
 
A non-zero input  gives a non-zero output, even if we delete dmin - 1 columns 
of the encoder matrix. This property plays an important role in the recovery 
of erased or missing packets.  
 
Error-detection is a powerful tool to decrease the decoding error rate. The 
idea is: 
  
- use a linear (n,k) block code to transmit information; 
- if the received word is not equal to one of the possible transmitted code 

words,  errors are detected. 
 
Misdetection occurs iff (if and only if) the error pattern changes a 
transmitted code word into another valid code word. For linear codes, the 
undetected error probability is determined by the probability that we do 
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receive a code word with dmin differences from the transmitted code word. In 
[4] we discuss the undetected error probability for linear block codes on 
channels with memory. 
 
For narrow band applications, packet transmission combined with Automatic 
Repeat reQuest (ARQ) is a very robust way of communicating in a point-to-
point connection. For this, data is encoded with an (n,k) linear error 
correcting code with code efficiency R = k/n < 1. Packets detected to be in 
error, are requested to be retransmitted. In general, for a packet error rate p 
and code efficiency R, the overall transmission efficiency for the basic ARQ 
is 
 
 ηARQ = (1-p) R. 
  
Since long packets are certainly received in error, the packet length needs to 
be adapted to the channel error behavior. This requires accurate modeling.  
 
A problem we do not touch is that of packet synchronization. It can be 
shown that there is a synchronization problem when there is a gap in time 
between the transmitted packets, see [5,6]. 
 
 

1.2 Transmission Using an Encoding Matrix 
 
 
1.2.1 Packets as symbols of an RS code 
 
We consider the transmission of n packets, where every packet contains a 
symbol (typically 8-16 bits) from an RS code word. Since the minimum 
distance of the RS code is n – k + 1, we can accept n - k erasures or we need 
k correctly received packets to be able to reconstruct (decode) the encoded 
information. 
 
 
1.2.2 Binary packet combination  
 
An alternative option is to encode k binary data words (P1, P2, , Pk) with a 
binary encoding matrix Gk,n for a code with minimum distance dmin. The ith 
data word Qi, 1  i  n, is encoded as 
 
 Qi  =  g1,i P1  g2,i P2     gk,i Pk, 
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where gj,i  is the binary component from Gk,n at row j and column i.  
 
Using Property 1.6, any sub-matrix with dimension k × (n - (dmin -1)) has 
rank k. Thus, if at the receiver we do receive at least dmin -1 correct packets, 
we are able to decode the transmitted k data words by using the ID of the 
lost (erased) packets.  
 
Example We use a (7,3)  encoding  matrix for a code with minimum 
distance 4, i.e. 
 
  1 0 0 0 1 1 1 
 G3,7  =  0 1 0 1 0 1 1                            (1.1) 
  0 0 1 1 1 0 1 
 
Any sub-matrix with dimension k × (n - (dmin -1))  = 3 x 4 has rank 3 and can 
thus be used to reconstruct the three encoded data words when not more than 
3 transmitted packets out-of -7  are lost (erased).  
 
Suppose that we use matrix (1.1) for the encoding of data words that are RS 
code words. The RS codes are good error detection codes and thus after 
transmission, the receiver knows whether a data word contains errors or not. 
The data words detected in error can be declared to be erased or missing. 
The same decoding principle applies as before. 
 
Example We encode three RS code words over GF(2m) as  
 

(RS1, RS2, RS3) G3,7 = (Q1, Q2, ···, Q7).  
 
For this encoding scheme, Q7 = (RS1 ⊕ RS2 ⊕ RS3), where ⊕	 denotes the 
exclusive-OR (XOR) of the code words RS1, RS2 and RS3. By linearity, Q7 is 
also a code word and can thus be treated as a code word from the RS code. If 
Q3, Q4 and Q5 are lost, we can use the columns 1, 2, 6 and 7 to reconstruct 
(RS1, RS2, RS3). The part of the encoding matrix 
 
  1 0 1 1 
 G3,4 =  0 1 1 1   ,  
  0 0 0 1 
 
has rank three and the 3 x 3 matrix formed by columns 1, 2 and 4 has an 
inverse. Multiplying the received vector of data words (Q1, Q2, Q7) with Ginv, 
we find back RS1, RS2 and RS3, i.e. 
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   1 0 1 

(Q1, Q2, Q7) ·     0 1 1    = (RS1, RS2, RS3).  
  0 0 1 

 
Another option for the receiver is to decode the received RS code words. 
After successful decoding of dmin - 1 received code words, we can do the 
inverse operation  and  reconstruct  the three  RS code words. 
 
  
1.2.3 Non-binary packet combination  
 
Suppose that we have k data words, each with symbols from GF(2m). We 
combine these data words using an encoding matrix for an RS code, again 
with symbols from GF(2m). Since the data words are multiplied with 
elements from GF(2m), the linear combinations are again data words with 
symbols from GF(2m). If the combining matrix has minimum distance dmin, 
we can reconstruct a maximum of dmin - 1 erased (or missing) data words.  
 
For an erasure rate of pn packets, (n - k) = pn redundant packets allow for 
correct decoding of the erased (missing) data words. The transmission 
efficiency of this scheme is thus 
 
 k/n  = ηcoded = (1- p), 
 
which is roughly the same as for ARQ. The disadvantage is that we have to 
wait for k correctly received packets before decoding can start. The 
advantage is that we do not need the feedback. 
 
Note This method can also be seen as a kind of parallel processing. Instead 
of working on packets, we could also work on a symbol level. If we consider 
only the ith symbol from each packet, we have the normal RS encoding, see 
1.2.1. In the present situation, the “side-information” is available for all 
symbols in a packet and not for each symbol individually. 
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Example Suppose that we have k = n - 2 data words. These words are 
encoded with the RS encoding matrix Gn-2,n as 
 
 
      (P1, P2, ···, Pn-2) • 1 0 0       0   αn-2  1       = (C1, C2,···, Cn). 
   0 1 0            0   αn-1  1 
       ···               ··· 
   0 0    ···      0  1  0   α2    1 
   0 0    ···          0  1   α     1  
 
 
The RS code has minimum distance 3 and thus 2 erasures or missing data 
words  can be corrected. Using the syndrome former,  
 

αn-2  1      
αn-1  1 

 HT=     ··· 
α     1 

  1     0 
  0     1 
 
one can also correct one data word that is in error. Suppose that we have one 
data word  in error and that the error word is E. Then,   
 

(C1, C2, ···, Ci  E, Ci+1, ···,  Cn) H
T = (S1, S2). 

 
The syndrome (S1, S2) can have the following output:  
 

(0, E)         error  E  in  Cn;  
(E, 0)  error  E in Cn-1;   
(αi E, E)  error  E in position  n – i - 1,  1 ≤ i ≤ n - 2. 

 
From the correct (C1, C2, ···, Cn) the words (P1, P2, ···, Pn-2) can be 
reconstructed.  
 
Note We can use RS code words as input words and since then the output 
words are also RS code words, these can be decoded first. A decoding error 
can then be corrected with the above method in a following step. 
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1.3 Feedback and Collision Detection 
 
One of the famous random access transmission protocols is the Aloha 
protocol [1]. We consider only a simplified version of the slotted Aloha 
protocol. Transmitters have an input buffer, where incoming packets are 
stored. In the simplified slotted Aloha protocol with T active users, we 
assume the following steps: 
 
1. an active user takes a packet from the input buffer with probability p. A 

packet is transmitted in the next available time slot. If no packet is taken 
from the buffer, with probability (1-p), we do not use the next time slot 
and repeat the procedure; 

2. if a collision (two or more users use the same time slot) is detected and 
reported back to the transmitter, via a noiseless feedback, the transmitter 
repeats the last packet in the next time slot with probability p; 

3. when no collision is detected, we go to step 1.  
 
The transmission efficiency for this Aloha protocol is given by the fraction 
of  successful packet transmissions (no collision), i.e. 

 
η  = pT( 1 – p )T-1,                (1.2) 

 
which approaches 1/e packet per time slot for T = 1/p. For our model, we can 
define G = pT as the total average traffic offered to the protocol by the users. 
We then have for small  p  
 

η  ~ Ge-G ,                             (1.3) 
 
which is illustrated in Figure 1.1. 
 
 
 
                     e-1 

  
                η 
 
 
 
 
         0 
                0                     1                               G 
 Figure 1.1 The transmission efficiency for the slotted Aloha 
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Complicated problems occur in the calculations, when the model is not as 
ideal as in our example. 
 
 

1.4 No Feedback, Collision Detection 
 
RS codes can be used in a collision detection protocol. It works as follows. 
Suppose that T ≤ Z active users from a large population transmit symbols 
from an RS code of length n using a transmission array with Z rows and n 
columns. Every user has a particular “random” signature of length n that 
indicates in which row and column a symbol can be transmitted. We denote 
nPe as the number of expected collisions. For a particular user, a collision 
occurs if at least one of the remaining T-1 users uses the same slot, i.e. the 
number of expected collisions 
 

).)
Z

1
(1n(1nP 1T

e
                                                          (1.4)

  
For nPe ≤ n-k, we expect correct decoding at the receiver. From (1.4) we 
have the condition that for correct decoding 
 

  .e)
Z

1
(1 

n

k Z

1-T
-1T  

 
 

The overall transmission efficiency of the protocol, for T users each sending 
k information symbols in an array  with dimension Z × n, is then   
 

.e
Z

T

Zn

Tk
η Z

1-T
 -

                                 (1.5)
 

 
For large Z, The maximum approaches e-1 for T/Z → 1, which is the same as 
for the slotted Aloha with collision feedback.  
 
Example In Figures 1.2, 1.3 and 1.4 we give the code array for four users 
with code words of length 6 symbols, the “spreading” code array with 6 
rows and 6 columns, and the received “de-spread” code array, respectively. 
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c11 c12 c13 c14 c15 c16 
c21 c22 c23 c24 c25 c26 
c31 c32 c33 c34 c35 c36 
c41 c42 c43 c44 c45 c46 

   
Figure 1.2 Code  array for 4 users, code words are horizontal 
 
 

c11   c24  c46 
 c22     
 c12  c34 c35  
c21  x  x x 
c41 c32  x  c16 
c31 c42 c43  c25 c26 

                                                      
    Figure 1.3 “Spreading” array, where x indicates collision 

 
 
c11 c12 x x x c16 
c21 c22 x c24 c25 c26 
c31 c32 x c34 c35 x 
c41 c42 c43 x x  c46  

 
    Figure 1.4 “De-spread”  code array for the active users 
 
 

1.5  No Feedback, no Collision Detection 
 
 
1.5.1 Error correction for array-like data structures 
 
Before we describe the protocol, we have to introduce error correction for 
array-like data structures, see also [2,3,7].  
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A packet array Pk,N  consists of N columns and k rows, as shown in Figure 
1.5a. Every column in this array belongs to a specific information word to be 
encoded. The elements of this array are symbols of GF(2m). 
 
 

P1      P2         •••          PN 
p11 p12 •••  p1N  row 1 
p21 p22 •••  p2N  row 2 
 
••• 

 
••• 

     
••• 

            
pk1 pk2 •••   pkN  row k 

   
   Figure 1.5a  Packet array Pk,N  with k rows and N columns 
 
 
A code array Cn,N with n rows and N columns is given in Figure 1.5b. The 
elements of this array are symbols of GF(2m). Every column contains the n 
symbols of an RS code word.  
 
 

C1     C2         •••          CN 
c11 c12 •••  c1N  row 1 
c21 c22 •••  c2N  row 2 
 
••• 

 
••• 

     
••• 

           
cn1 cn2 •••   cnN  row n 

   
   Figure 1.5b  Code array Cn,N  with n rows and N columns 
 
 
The encoding of an array of information is given in Figure 1.6. The 
information array, consisting of N columns of length k is multiplied by the 
encoding matrix GT leading to a code array of dimensions n × N. The 
arrangement of code words as columns of an array can be interpreted as 
block-interleaving. 
  
Transmission of the array Cn,N  is done row wise, symbol by symbol. We 
furthermore assume that channel output is binary (hard decision).  The errors 

Pk,N = 

Cn,N = 
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inserted by the channel can be described by an additive error array En,N,  
where Rn,N = Cn,N  En,N. The channel is assumed:  
 
- to behave such that each row of a received array is either error-free or 

corrupted by many symbol errors; 
- the errors which disturb the rows of the array Cn,N  are such that the rows 

of En,N  are linearly independent;  
- the number of erroneous rows is t.  
 
 
                    k                             N 
  
 
                        
            = 
     n              GT                       n   
             
 
 

                 N  
 
 

         Encoding matrix         packet  array             code array  Cn,N 

 
Figure 1.6 Encoding operations on a block of information 
 
 

At the receiver side, we can use the property of the check matrix Hn-k,n, and 
calculate the syndrome array  
 

Sn-k,N  = Hn-k,n Rn,N  
 

= Hn-k,n (Cn,N   E n,N)  
 
= Hn-k,n E n,N.   

 
We visualize the process as given in Figure 1.7 
 
In order to use the properties of Sn-k,N, we will take a closer look at the 
syndrome array. The t rows that are in error determine the sub-array Esub and 
the collection of row numbers form the set E.  Consequently, the numbers in 
E define t columns in Hn-k,n, called  the sub-array Hsub  and clearly, 
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Sn-k,N = HsubEsub. 

 
We now will consider the performance of the scheme. The assumption is that 
t independent error words of length N corrupt the code array Cn,N. For t ≤ ( n 

- k), t columns of Hn-k,n are linearly independent and hence rank(Hsub) = t. 
Furthermore, rank(Esub) = t because linearly independent error words are 
assumed. It thus follows that 
 
 rank(Sn-k,N) = rank(Hsub · Esub) = t. 
 
For t < (n-k) the syndrome array Sn-k,N does not have maximum rank. 
Consequently, (n-k-t) all-0 rows can be constructed from Sn-k,N by 
performing elementary row operations according to Gaussian elimination. 
Let the resulting array with (n-k-t) all-0 rows be denoted by S0.  Performing 
on Hn-k,n the same row operations that were performed on Sn-k,N we get the 
matrix H0 where H0 Rn,N = S0.  
 
 
                                     N           N 
 
 
 
 n-k                  Hn-k,n                                 E n,N             =        Hn-k,n E n,N           
 
     
   
                        n  
 
 
 
 

Figure 1.7  Array syndrome forming 
 
 
The reconstruction of the original information follows immediately. We use 
the following observations: 
 
- we need k correct positions in a code word to be able to reconstruct the 

original code word;  
- an RS code with minimum code word weight k+1 is generated by Hn-k,n; 
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- the product H0 × En,N = 0n-k-t, N, can only be true if the non-zero symbols 
of H0  correspond to error free rows of En,N.  

 
Hence, H0 indicate at least k+1 error free positions in Cn,N and thus the 
original encoded information can be reconstructed. For RS codes, we need 
only one row from H0. For general linear codes, we refer to [2].   
 
Remark We want to state that the main ideas of the presented algorithm 
were presented in a publication of J. J. Metzner and E. J. Kapturowski [7]. 
 
  
1.5.2  The access algorithm  
 
The Aloha system is a simple random access scheme, but it requires collision 
detection and feedback from the receiver or channel to the transmitters. We 
will now use the proposed decoding algorithm to construct a random access 
scheme that requires no feedback. No collision detection is required because 
our decoding algorithm performs this collision detection inherently by 
searching for error-free rows. Consequently, we do not need redundancy in 
the rows for error detection. In conclusion, collisions are not detected as 
such, but appear as errors. Therefore, normal erasure decoding is not 
possible. 
 
 

C1    C2     C3     C4   ••• 
c11 c12     row 1 
c21 c22     row 2 
c31 c32      
c41 c42        
c51 c52      row 5 
 
  N 

 
   Figure 1.8 Code  array for a particular user 
 
 
Assume that we have T independent users that have access to Z parallel and 
independent transmission channels. Each user encodes his data as described 
in Figure 1.8. Let C be an RS code with code symbols from GF(2m). In 
addition, every user possesses a signature sequence (s(1), s(2), ···, s(n)), of 
integers s(i),  with  1  s(i)  Z . They are chosen with  
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 Probability(s(i) = j, 1  j  Z) = 1/Z. 
 
The signature connected with each user is known at the receiver side. At 
time interval i the transmitter selects channel s(i) for the transmission of the 
ith code row. Furthermore, the users are assumed to be row-synchronized. If 
two or more users use the same channel at the same time, we assume that the 
received row is erroneous. Hence, we have exactly the same situation as is 
required for the proposed decoding algorithm.  

                               
 

r11   r42  
 r22    
 r21  r43 r53 
r12  x  x 
r14 r23  x  
r13 r24 r34  r52 
  

Figure 1.9 Randomized transmission (6 rows, 5 columns), where x 
indicates collision, T = 4 active users, Z = 6 parallel channels 

 
 

C1    C2     C3    C4    ••• 
c11 c12 c13 c14   row 1 
c21 c22 c23 c24   row 2 
 x  x  x c34    
 x c42 c43  x      
 x c52 c53  x    row 5 

 
Figure 1.10 Received code array  for a particular user 

 
 
A user manages to decode the received array correctly if not more than (n-k-
1) code rows are corrupted by the other users and if the error vectors that 
result from the collisions are linearly independent. Whether the second 
condition is fulfilled depends on how the channel reacts in the case of a 
collision. We consider the case where a collision as channel output is a 
random sequence. Hence, all error vectors are equally likely.  
 
The probability that a row is received as a collision is given by 
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 .         

 
We can expect correct decoding with an arbitrary small decoding error 
probability for large block length n and constant rate k/n if  
 

nPe <  (dmin – 2) = (n – k - 1),   
 
or  
 

Pe < 1 – k/n.               
 
The transmission of one code array per user requires a total of Z×n×N  
symbol slots. The total transmitted un-coded information is T×k×N = 
T×n×N×r symbols. Substituting Pe = 1- k/n, we get the following expression 
for the transmission efficiency of this random access scheme    
 

1T

Z

1Z

Z

T
η









 

 .                

 
For  large  Z we get  
 

.
Z

T
Gwith ,Ge G                  

 
The efficiency of the proposed system is the same as the efficiency of the 
Aloha protocol. The maximum transmission efficiency is equal to e-1. 
 
 

1.6 Concluding remarks 
 
The classical way of handling corrupted packets in a point-to-point 
connection in a network is that of error detection and retransmission. We call 
this method ARQ. For an error rate of p packets per time slot, the 
transmission efficiency approaches (1-p)R, where R is the loss in code 
efficiency due to the needed redundancy. We can also apply ARQ for 
missing packets with a more complicated protocol.  
 
Packets can be transmitted in combination with an error correcting code. The 
RS encoding can be used with a redundancy equal to the amount of lost, 
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erased or collided packets. We can use the erasure option in the decoding 
process when missing or erroneous packets can be identified. Furthermore, 
feedback is not necessary.  
 
The Aloha protocol is a basic random access protocol in networking when 
feedback and collision detection is available. This probabilistic repeat 
request protocol has a maximum transmission efficiency of e-1 packets per 
packet slot. A simple interleaved RS coding scheme can obtain the same 
performance without feedback. We describe a protocol that corrects packet 
errors without feedback and collision detection. The protocol was part of a 
PhD thesis by Christoph Haslach1. We acknowledge the fact that, in 
principle, the protocol was described by Metzner and Kapturowski [7].  
 
The packet reconstruction methods are summarized in Figure 1.11. 
 
 
            ARQ  + feedback 
     + erasure information 
 
 
 
   block encoding  -  feedback 
     + erasure information 
  
     
 
           Aloha random access + feedback 
     + erasure information 
 
 
 
  coded interleaving - feedback 
     + erasure information 
 
 
 
  coded interleaving - feedback 

             - erasure information 
 
 
Figure 1.11 Overview of described communication protocols 
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A problem, not considered here, is that of error detection. Packet 
transmission protocols very often depend on the availability of error 
detection via a Cyclic Redundancy Check (CRC).  A report on this topic  can 
be found in Kuznetsov et al.2  
 
Packets usually contain a header (prefix) for synchronization purposes. Jim 
Massey3 derived the conditions for the best prefix for continuous 
transmission of packets. However, when there is a time gap between packets, 
called burst mode, this prefix has to be changed. A new optimum design rule 
is therefore necessary4.  This topic was part of the PhD thesis of Adriaan van 
Wijngaarden5. When markers are used in the header, these markers are not 
allowed as a pattern in the packet itself. This reduces the transmission 
efficiency and optimum markers have to be found.  Results were obtained in 
a cooperation with  Hiro Morita6 . In [50] we consider a symbol oriented 
method for synchronization to be combined with RS codes.  
 
1 Christoph Haslach, Array-Codes auf der Basis Interleavter Block codes, Universität Essen, 
1999 
2 A. Kuznetsov, F. Swarts, A.J. Han Vinck and H.C. Ferreira, "On the Undetected Error 
Probability of Linear Block Codes on Channels with  Memory," IEEE Trans. on Information  
theory, Vol. 42, No. 1, pp.  303-309, Jan. 1996 
3  J. L. Massey. "Optimum frame synchronization ". IEEE trans. comm., com-20(2):115-119, 
April 1972 
4  A.J. Han Vinck  and A.J. van Wijngaarden, “On Synchronization for Burst Transmission,”  
IEICE,  pp. 2130-2135, Nov. 1997  
5  Adriaan van Wijngaarden, Frame Synchronization Techniques, Universität Essen, 1998 
6  Hiroyoshi Morita, Adriaan J. van Wijngaarden and A.J. Han Vinck, ”On the Construction 
of Maximal Prefix-Synchronized Codes,” IEEE Trans. on Information Theory,  pp. 2158-
2166, Nov. 1996 
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Chapter 2 
 
Random Access 
 
We discuss coding in a multi user concept where the set of active users is 
small compared to the total amount of potential users.  The active 
transmitters use signatures to be transmitted over a common channel. We 
introduce the concept of q-ary superimposed codes, and we give a class of 
codes that can be used to uniquely determine the set of active users from the 
composite signature at the channel output. The so called T-user M-frequency 
noiseless multiple access channel without intensity information, as defined 
by Chang and Wolf [8],  is an example of such a channel.  
 
Information theory considers the capacity or maximum mutual information 
of multiple access channels (MAC) for users that are permanently sending 
information. In random access the users are not permanently active, and in 
addition do not cooperate with each other. As a reference, we recommend 
[96]. 
  
 

2.1 Channel Capacity and Access Models 
 
In Information theory we model random access communications using 
simple channel models.  In Figure 2.1 we give three models for “non-trivial” 
binary multiple access channels, the OR, the XOR and the θ channel, 
respectively. We assume that a user has as input the symbol 0 or 1, and the 
channel input is 0 in case a user is not active. 
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OR channel:      Y = X1.OR.X2.OR.    .OR.XT    

 
    XOR channel:   Y = X1.XOR.X2.XOR.     .XOR.XT  
            
    θ channel:  Y = 1 if more than θ inputs are 1, otherwise Y = 0 
 
                Figure 2.1  Three different binary multiple access models 
 
 
Uncoordinated access 
In uncoordinated multiple access one assumes that T individual users, out of 
a large community of U users, can access the communications channel 
without knowledge of the identity of the other users. Furthermore, the 
number of active users T is small compared with the total number of 
potential users in the network. The users are time aligned, i.e. have the same 
clock. The decoder for a particular user does not use the knowledge it might 
have about the other users and also considers the influence of the other users 
as interference or noise. The general model is given in Figure 2.2.  
 
 
  X1       R1 

X2     Y  R2 
                MAC           
              XT                                          RT 
         
 
 Figure 2.2  The T-user random multiple access channel model 
 
 
To calculate an achievable rate (transmission efficiency or throughput at a 
vanishing error probability) in a random access situation, we assume that 
every user has the same input probability distribution. Furthermore, we 
consider the problem as a “normal” channel coding problem and thus the 
achievable sum rate for the random access channel is equal to the sum of the 
individual achievable rates, i.e. 
 
 Y);I(XmaxTR i

)P(X
teduncoordina

i

 .                          (2.1) 

 
The maximum achievable rate is also called capacity. 
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Coordinated access 
In the situation where the users are coordinated, i.e. know each other’s 
identity, the decoders can use the information simultaneously transmitted by 
all users. The capacity region [22] is given by the closure of the convex hull 
of all rate pairs R1 , R2, , RT satisfying 
   
       Ri  I(Y;Xi | all Xj, Xj  Xi),                        (2.2a) 
 
 R1 + R2 +  + RT  I(Y ; X1, X2,  , XT),           (2.2b) 
 
for a probability product distribution f(X1, X2, , XT) = f(X1)f(X2)f(XT).  
 
In a fully coordinated situation, the number of available time slots or carrier 
frequencies (dimensions) determine the number of users and all dimensions 
are  used by the participants. Examples of this method are Time Division 
Multiple Access (TDMA) and Frequency Division Multiple Access 
(FDMA).  The transmission efficiency is optimal if all users do indeed use 
the communication channel. In all other situations, the channel contains idle 
or not-used dimensions. The principle drawback of dimension division is 
that each of the U potential users gets only 1/Uth of the dimensions. The 
channel contains idle or not-used dimensions when less than U users are 
active. Furthermore, the DMA schemes suffer from inflexibility inherent in 
pre-assigned dimensions. To accommodate more users than the available 
number of dimensions, a demand assignment protocol must be established.  
 
 
2.1.1 The binary OR channel   
 
The channel mostly investigated in literature is the binary OR access 
channel. The binary-input/binary-output relation for this channel is given by  
 
 Y = X1.OR.X2.OR..OR.XT.                                       (2.3) 
 
For the binary input T-user OR-channel, the output Y is 1 if at least one 
input is equal to 1. If all inputs are 0, the output is also 0. This model can be 
seen as a model for optical pulse modulation. The equivalent “AND“ 
channel can be found in communication busses like the “Wired-AND” 
computer connection or the CAN (Controller Area Network) network. In 



 Chapter 2-Random Access  

22 
 

Figure 2.3 we give the transmission channel as it is seen by a particular user 
for p0 = 1 – p1 = p.  
 
         pT-1 

         p0 = p 0   0 
 
          Xi         1-pT-1                         Y 

       
 
         p1= 1-p 1   1 
          1 
 
 Figure 2.3 The binary OR channel model for  user i 
 
 
Under the specified conditions, the achievable rate (2.1) for the 
uncoordinated OR channel becomes  
 

)},ph(p){h(pmaxT  

Y);I(XmaxT  R

1TT

p

i
)iP(X

OR





                                      (2.4) 

 
where h(p) = - plog2p - (1- p)log2(1- p) is the binary entropy function.   For 

(1 - p) = 
T
1  ln2, we obtain that for large T the sum rate is lower bounded by 

 
 ROR, T    ln2 = 0.6931 bits/transmission.              (2.5) 
 
Numerically, one can show that (2.4) approaches (2.5) from above and we 
postulate that (2.5) is indeed the limiting capacity for the uncoordinated OR 
channel [9].  
 
Evaluation of (2.2) in the coordinated case, gives a maximum sum rate of 1 
bit/transmission. This rate can easily be obtained by using a time-sharing 
transmission strategy, where every user gets a unique assigned time slot. 
Hence, the rate loss due to the uncoordinated access is about 30%. 
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2.1.2 The M-ary OR channel   
 
The M-ary OR channel has M-ary inputs and at each time instant the 
detector outputs which subset of symbols occurred as input  to the channel at 
that time instant, but not how many of each occurred. For M symbols, we 
can thus have 2M – 1 different sets of outputs.  
 
Coordinated access 
Chang and Wolf [8] showed that capacity of the coordinated M-ary OR 
channel approaches (M-1) bits per transmission. This capacity can be 
obtained by a very simple time-sharing strategy. Assume that we divide the 
T active users into groups of size (M-1). Within one group the users are 
numbered from 1 up to M-1. User i, 1  i  M-1, uses as the transmitting 
symbols 0 and i. At the receiver, we are able to detect whether user i uses 
position 0 or i and thus, for M-1 users we transmit M-1 bits per transmission. 
Note that here we have a “central“  symbol 0. 
 
 

0 0 
 

0,1 
 

0,2 
                    in       out 
    0,1,2 
 
     1  1                 
 
    1,2    

 
2  2 

 
 

Figure 2.4  The 3-ary OR  channel model 
 
 
Example For M = 3, T/2 users use the pair (0 or 1) as channel input, the 
other T/2 users use as input (0 or 2).  The output of the channel is thus (0), 
(0,1), (0, 2), or (1, 2).  Note that in this coordinated situation the input of the 
channel is uniquely decodable. 
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Uncoordinated access  
Suppose that for the uncoordinated M-ary OR channel, some coordination 
between the T users exists. Namely, a fraction T/(M-1) of users uses the 
input symbol pair (0,i), 1  i  M - 1. According to the previous section, 
transmission per group can be considered as transmission over a Z-channel, 
where one output contains the symbol i and the other outputs contain only 
symbols not equal to i. The achievable sum rate for this channel is ln2 bits 
per transmission. Hence, for M-1 groups we obtain a normalized sum rate of 
(1 - 1/M ) ln2 bits per dimension.  
 
Example For the example M = 3, as given in Figure 2.4, we have 7 subsets 
at the output: {0}, {1}, {2}, {0,1}, {0,2}, {0,1,2}, and  {1,2}. The input 
probability distribution is chosen as: P(0) = 1 - 2 ln2/T, and P(1) = P(2) = 
ln2/T. The limiting input distribution shows that for one symbol the 
probability approaches 1. The asymptotic rate R(3,T) approaches 2 ln2 bits 
per channel use, or a total of 2/3 ln2 bits per dimension.  
 
For M > 3, we postulate a probability distribution. For this distribution we 
calculate the maximum mutual information which is, from an information 
theoretical point of view, equivalent to the achievable rate or -error rate. 
This result is thus a lower bound for the capacity, since channel capacity is 
the maximum mutual information over all possible input probability 
distributions. We give an achievable rate for the uncoordinated M-ary OR 
channel in Theorem 2.1.1. The achievable rate reduces from (M-1) bits per 
channel use in the fully coordinated multiple access situation, see Chang and 
Wolf [8], to (M-1)ln2 bits per channel use if we assume no coordination 
between users or one-to-one communication 
 
Theorem 2.1.1 For the input probability distribution that puts a probability 
1-(M-1)ln2/T on one symbol and a probability ln2/T on each of the 
remaining (M-1) symbols, the total achievable rate R for T users becomes 
(M-1)ln2 bits per transmission or (1-1/M)ln2 bits per dimension for  T  . 

 
Example In Figure 2.5a, for M = 2 the output is ternary: 0, 1, or (0,1). The 
transitions are a result of the interference of the other users. Optimizing with 
respect to p and letting T go to infinity, the achievable rate for this channel 
becomes R(2,T)  ln2 bits per channel use, or a total of  0.5ln2 bits per 
dimension. For each individual user, the 2-symbol input multiple access 
channel is, from a rate point of view, equivalent to the binary input-binary 
output Z-channel. Although the 2-symbol input multiple access channel has 
a ternary output, the achievable sum rate is the same as if we make a hard 
decision in case of an ambiguous reception of two symbols. The limiting 
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input distribution for both examples puts all probability mass on one symbol. 
For M = 2, P(0) = 1 - ln2/T, P(1) = ln2/T, respectively.   
 
                         pT-1 
      0                    0 
 
   

 

             1                    1, (0,1) 

 

           Z-Channel 

 

Figure 2.5a  Binary Z access channel model 
 
 
              pT-1            
      p        0                    0             
 
                      (0,1) 

 

1-p      1                  1             
 

       3-ary output            
 

Figure 2.5b  Binary input ternary output  access model 
 
 
Remark  The 3-ary output channel as given in Figure 2.5b looks like an 
erasure channel, where the symbol pair (0,1) can be considered as the 
erasure. One normally uses these channels with symmetric input probability 
distribution to obtain channel capacity. However, in this case, the rate of the 
channel would give a value of C = (1/2)T-1  for p = ½, which goes to zero for 
large T. The reason for this discrepancy is the fact that the transition 
probability is a function of the input probability.  In information theory, 
capacity is a convex cap function of the input probability distribution for 
constant transition probabilities. In our situation, this is no longer the case 
and we have to search for the global optimum. The problem is to express the 
transition probabilities as a function of the input probabilities.  
 
The M-ary Erasure-channel has as inputs Xi {0,1, ..., M-1}, and as outputs 
Y {0, 1, ..., M-1, E}, where E occurs if two or more different symbols 
occur at the output. We conjecture that the M-ary Erasure-channel as given 
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in Figure 2.6 has a capacity of ln2 bits per transmission for T  . This 
result was checked for M = 2, 3 and 4.   
 
  

            0    0 

 
 
           1     1 

 
     
 
      M-1      M-1 

 

      E 
 
     Figure 2.6  M-ary Erasure-channel   
 
 
Example An example of a practical M-ary OR channel is that generated by 
Pulse Position Modulation (PPM). Pulse position modulation divides the 
transmission time into time slots of length τ and further sub-divides every 
time slot into M sub-slots of time τ/M. An  M-ary symbol is modulated as a 
pulse in one of the M available sub-slots.  
  
                           1                                     4        2            position in slot 
     
 
   

          /M                                            
      

Figure 2.7  Pulse Position Modulation for one user, M = 4 
 
If we consider the M positions in a slot as M independent parallel channels, 
the uncoordinated sum rate for T users is Runc(M,T) = ln2 bits per position. 
For M positions we thus have a sum rate of  M ln2 bits per slot. Note that the 
number of possible different combinations in a slot is equal to 2M.  
 
If we consider a time slot as a channel where we put a pulse in a particular 
position, we have a total of  M different inputs and the channel is equivalent 
to the M-ary OR channel. The maximum number of different combinations 
in a slot is now equal to  2M-1, since users have to give a pulse as input. 
However, instead of using one out of 2M combinations of M symbols, the 
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same rate can be achieved by using only a single symbol from M, which is 
the advantage of the PPM modulation. The total achievable rate R for T 
users becomes (M-1)ln2 bits per transmission, or (1-1/M)ln2 bits per 
dimension for  T  . A vanishing loss compared with the unrestricted case 
for large values of  M. To obtain this  rate, we  generate a  pulse  with  

probability (1 – ln2) for one specific position in a time slot, whereas all 

other positions have a probability ln2/T of having a pulse. 
  
For the transmission scheme of Figure 2.7, we may consider transmitting 1 
pulse of duration /M in  seconds using a theoretical “bandwidth” of 2B = 
M/ Hz. For M-ary Frequency Shift Keying (MFSK) we transmit one 
frequency out of M possible frequencies with a duration of  seconds, using 
a theoretical bandwidth of 2B = M/ Hz. Hence, from a “bandwidth” point of 
view PPM and MFSK are equivalent, and the rate results apply to both 
systems. Instead of using time, we can thus also use the frequency domain.  
 
 

2.2 Signaling with Random Signatures 
 
Access schemes for PPM using M-ary signatures can be found in [10,11].  In 
Figure 2.8 we give the M-ary scheme as described by Cohen, Heller and 
Viterbi [10], where an active user is allowed to transmit an M-ary signature 
in L slots. Users are assumed to be frame aligned, i.e. every user knows the 
starting time for the L slots. In general, the receivers look for a particular 
signature connected with a message that belongs to their respective 
transmitter.  A decoder makes an error if it detects a valid signature that is 
the result of  the  “OR“ of the other users.  Codes are to be designed to 
minimize the decoding error probability for a given number of active users.  
 
 
    L = 3 
 
                           1                                     4        2            position in slot 
     
 
   

          /M                                     
    

Figure 2.8  Access model with signature (1,4,2) 
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2.2.1 Signatures with a symmetric input distribution 
 
We first describe a transmission scheme using random signatures. We 
assume that T users are connected with their T respective receivers. The 
starting and end point of transmission is known to all transmitters and 
receivers, and they are time aligned. The parameters of the transmission 
scheme are: 
 
- every user has its own set of  M-ary signatures of length L. The 

cardinality of the set is M; 
- every symbol in a signature is chosen with probability 1/M and 

corresponds  with a pulse in the respective time sub-slot position. 
 

The decoder for a particular user has to detect a valid signature that belongs 
to the user. Suppose that a user transmits a particular signature. The 
decoding error probability Pe for this particular user is upper bounded by the 
probability that the T-1 other users together generate one of the M-1 other  
valid signatures  in  L slots, i.e. 
 

     Pe   L1T ))
M

1
(1(11)(M  .                           (2.6) 

 
 
For   M =  2(1 - ε)L and T = M·ln2, the error probability  
 

Pe   2 - ε L, ε  0,  
 
and the normalized rate 
 

 = T ε)ln2(1
LM

Mlog2         bit/transmission. 

 
In order to decrease the symbol error probability, we have to increase L and 
thus, also M.  
 
One sees from (2.6), that the average error probability for T users 
simultaneously, TPe, does not approach zero for increasing L. If we change 
the variables such that  MT =  2(1 - ε)L  and T = M·ln2, then the average error 
probability for T users is given by 
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 TPe     2 - ε L, ε  0,                                                                     (2.7) 
 
 but the normalized rate  
 

 = T ln2
2

ε1

LM

Mlog2 
 .       bit/transmission. 

 
This is roughly 50% of the maximum achievable rate.  
 
 
2.2.2 Signatures with an asymmetric input distribution 
 
We can improve the rate by using a different probability assignment and 
signature scheme. For this, the signatures for a particular user consist of (M-
1) signatures with symbols not equal to 1. We reserve the all-1 signature for 
message m = 1. In Figure 2.9a, we transmit the position 1 in three subsequent 
time intervals. In Figure 2.9b we transmit a “spread“ sequence of three 
positions.    
 
    L = 3 
 
  
 
 
                   M = 4   time   
                                     
 

Figure 2.9a Cohen, Heller and Viterbi model, the message is m = 1 
 

 
    L = 3 
 
  
 
 
                   M = 4                          time 
    

Figure 2.9b Signature (2,4,3)  
 
 

For a message probability  
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 Pr(m = 1)  = 1 -  ln2 = 1 – p, 

 

 Pr(m = k)  = , 2  k  M,  

 
the amount of information that is transmitted per user is R = h(p) + plog2(M-
1), where h(p) is the binary entropy function. The decoder estimates  m’ = k 
if the valid signature for message k is detected in L slots. The decoder is 
assumed to always decode message 1, unless another valid signature is 
detected. The decoding error probability Pe for a particular user is then upper 
bounded by the probability that the other users together generate one of the 
other valid signatures in L slots, i.e. 
 

     Pe   L1pT ))
1M

1
(1(11)(M 


 .               (2.8) 

 
We  can approximate (2.8) as 
 

         Pe   LpT/M)e(1M  .                                                   (2.9) 
  
 

For  p =  ln2,  M = 2εL and T = 2(1-2ε)Lln2, the error probability (2.8) 

vanishes as  
 
 Pe  2 - ( 1 - ε )L, ε  0.                                        (2.10) 
 
From (2.10) it also follows that the average error probability for T users 
simultaneously goes to zero for increasing L, since  
 
 TPe 2-ε L ln2  0, ε  0.                                     (2.11) 
 
At the same time the normalized rate 
 

     = T×
LM

1)(Mplogh(p) 2 
 (1 - 2) ln2 bit/transmission      (2.12) 

 
The signature scheme with an asymmetric distribution clearly performs 
better than the signature scheme with a symmetric distribution. As before, 
one position is selected as a common position for all users. 
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Remark The asymmetric input probability distribution scheme has M =  2εL. 
We can keep the value of M constant by choosing ε = O(1/L) leading to a 
vanishing probability of error and also  a constant M. 
 
 

2.3 Signaling with Constructed Signatures 
 
 
2.3.1 The Titlebaum construction 
 
The first signature construction we discuss is the Titlebaum [13] 
construction. Suppose that we extend the first two rows of an RS encoding 
matrix as 
 
 
  1 1   1       1     …           1         
       G2,M  =       .        (2.13) 
       0    1         2 … M-2 

 
 
It is easy to see that the minimum distance of the code is M-1, where M is 
the length of the extended code.  The number of different non-zero code 
words formed with the second row only is M-1. These code words are used 
as signatures for M-1 different users. We assume that the users are fully 
synchronized. In addition, every user may send one of M messages by 
adding a multiple of the first row to his signature, and create a modulated 
signature. At the receiver side, we assume error free detection of the 
transmitted symbols. For the encoding matrix as given in (2.13), we have the 
following properties: 
 
- the Hamming distance between the modulated signatures for a particular 

user is M; 
 
- the Hamming distance between signatures for  two different users is at 

least M-1.  
 

Since the dmin  M-1, the maximum number of agreements between two 
signatures from different users is equal to 1. Consequently, M-2 or less 
active users can never produce a valid signature for another particular user, 
since at least one symbol is left for the unique  identification.  
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Example For M = 5, we can form the 4 signatures: C1
  = (0,1,2,3,4), C2

  = 
(0,2,4,1,3), C3

  = (0,3,1,4,2) and C4
  = (0,4,3,2,1). These 4 signatures have a 

minimum distance of 4 and are used as the signatures for 4 different users. 
From these signatures we can easily form the set of 5 possible transmitted 
modulated signatures for a particular user.  For user 1, with signature 
(0,1,2,3,4)  these are  
 
       C = {( 0,1,2,3,4 ), ( 1,2,3,4,0 ) , ( 2,3,4,0,1 ), ( 3,4,0,1,2 ), ( 4,0,1,2,3 )}. 
    
Remark If we shorten the signatures from length M to length L, the 
minimum distance within a set of signatures is reduced from M to L and the 
minimum distance between different sets of signatures is reduced from M-1 
to L-1. Shortening can be used to influence the efficiency of the modulation 
scheme. Therefore, we can give the normalized efficiency or rate of a 
transmission scheme using the Titlebaum construction for T active  users as    
 

.
ML

Mlog
T 2


    

The receiver consists of a bank of M energy detectors matched to the M 
chips of the M-ary signaling scheme. The M energy detectors provide ML 
outputs per received word. The decoder for a particular user compares the 
demodulator output with its M possible transmitted signatures.  It outputs the 
signature for which the maximum number of agreements with the symbols at 
the demodulator output occurs (minimum distance decoding).   
 
 
2.3.2 Decoding error probability for the Titlebaum construction 
 
We consider the situation when only user interference occurs. Furthermore, 
we assume that the demodulator for a particular user always outputs the 
transmitted symbols. These assumptions make the analysis easier. Due to the 
structure of the demodulation process, decoding errors may occur if and only 
if the other users together cause the occurrence of a modulated signature  for 
a particular user.   
 
Since the minimum distance between signatures is L-1,  a signature for a 
particular user  interferes in exactly one position with a signature from 
another user. This enables us to calculate the error probability. For T active 
users, an error may occur if at least L out of T-1 users together generate an 
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additional valid signature for the remaining active user. Assuming random 
selection of the messages, this probability is given by 
 

].!L
L

1T
))[(1M(P L

M
1

e 






 
                          (2.14) 

 
This follows from the fact that, for a particular set of L users, L! 
permutations can give a particular signature with probability (1/M)L. 
Furthermore, we can choose L out of T active users that will produce the 
particular signature.  

 
In Figure 2.10, we plot (2.14) for several values of  M, T and L.   
      
                                                    
     
                                                          

Pe                            
                        
                                                           

                                      M = 256, L = 10 
          
                        
                               
                                       M=32, L=6          
 
 
    .05         .06         .07        .08         .09        0.1 

  
ML

Mlog
T 2


  

 
Figure 2.10  Pe  as a function of the efficiency  

 
 
 Note that for large T and small L, (2.14) can be approximated as  
  

.)(MP L
M
T

e                                                                 (2.15) 

 
The asymptotic behavior of (2.15) is the same as that of (2.6) where we use 
random signatures. The above transmission scheme assumes that the number 
of active users T < M.  Extension to T  >  M is straightforward. 

 

10--2

1.0 

10--3

10--1
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2.3.3 Superimposed Codes 
 
Kautz-Singleton (KS) [11] introduced the class of binary superimposed 
codes (SIC) to construct signatures.  A binary superimposed code SIC(U, n, 
2, T) consists of  U binary code words of length n, with the property that the 
Boolean sum (OR) of any T-subset does not cover any word not in the T-
subset.  
 
We extend the definition of  binary SICs to the situation where code words 
have q-ary symbols and the channel output is a symbol which identifies 
which subset of symbols occurred as input to the channel (no how many of 
each). We first have to give some additional definitions. 
 
Definition The union of a set {a,b, ···,c} denoted as (a,b, ···,c) is defined as 
the set of different symbols of the argument (a,b, ···,c).   

 
Example  (1,2,3,3,2) = {1,2,3}. 

 
Example   (0,1,1,0,0) = {0,1}.  

 
Let V  { 0, 1, ···, (q-1) }n, V = U, be a code book with U q-ary code 
words. 
 
Definition The union of T code words in V,  n (rn, sn,  ···, tn) is defined as 
the component wise  of the symbols.    

 
Example  4(1223,1321,1111) = ({1},{1,2,3},{1,2},{1,3}). 
 
Definition The union n of T code words n(rn, sn, ···, tn) covers a code 
word vn if  
 

n(rn, sn, ···, tn) = n(rn, sn, ···, tn, vn).  
 

Example The word ({1},{1,2,0},{1,0}) covers the code word vn = (1,0,0).  
 
Definition A q-ary superimposed code with parameters U, n, q, T contains U 
q-ary code words of length n with the property that the n of any set S 
containing T or less code words does not cover any code word not in S.  
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The following proposition then follows. 
 
Proposition  
 

.
i

U
)12(

T

1i

nq 










               (2.16) 

 
Another lower bound on n can be obtained as follows. We first consider (for 
simplicity) the situation where  n = T·s.  
 
n = T·s  
We partition the code words into T parts of length s. Every code word must 
have a part different from the corresponding part of all other code words. 
This part contains at least one symbol, called special element, that can be 
used to distinguish a code word from the union of any set S of T or less code 
words. If the number of special elements in a particular part is exactly qs, we 
have U = qs. We must therefore assume that every part contains at most qs-1 
special elements. The maximum number of different parts is an upper bound 
for the number of code words in the code, and thus U  T(qs-1).  Since n = 
Ts we obtain 
 

T

U
log

qlog

T
n 2

2

 ,                          (2.17) 

 
which improves on (2.16). 
 
We can also give a lower bound for n using a probabilistic approach. 
Consider a U ˟ n matrix containing q-ary elements that are uniformly and 
independently distributed. An error occurs if a selection of T or less rows 
covers a row not in the selection. For a q-ary SIC the probability that this 
happens can be bounded by 

 

Pe(q-ary SIC )  

nT

q

1q
1

T

U
T)(U



















 









 .                       (2.18) 

 
For T = q ln2, n(1+) > Tlog2U, the probability Pe(q-ary SIC ) → 0 for  
increasing n.  
 
 



 Chapter 2-Random Access  

36 
 

 
T > n 
For T > n, every code word must have a special element in at least one of its 
positions. Again, if one of the positions for all code words contains exactly q 
special elements, then U = q. Therefore, every position must contain no more 
than q-1 special elements. Hence, we obtain as a lower bound for n,  
 

U  n(q-1). 
 
Example  The following example gives a q-ary SIC(U = 15, n = 5, q = 4, T), 
where n  T < n(q-1) and U = n(q-1). The SIC(15, 5, 4, T) contains the 
following code words 
 

    10000   01000   00100   00010   00001 
SIC(15, 5, 4, T) =  20000  02000   00200   00020   00002      . 

    30000   03000   00300   00030   00003 
 
The example can easily be generalized to other values of n and q.   

 
We now consider the construction of q-ary SICs using RS codes due to 
Kautz-Singleton [11]. The parameters for these codes are: 
 
- RS “outer“ codes over GF(q) with length n = q-1, dimension k,  

minimum distance dmin  = n-k+1; 
- a mapping of every RS code symbol to a binary word of length q  and 

weight 1. 
 
Note that the number of disagreements between two code words is larger or 
equal to dmin and thus, the  number of agreements is less than or equal to  n - 
dmin = k – 1.  As a consequence, the Boolean sum of T code words agrees 
with an arbitrary code word in at most T(k-1) positions.  If  T(k-1) < n, we 
have the following theorem. 
 
Theorem 2.3.1 There exists a  
 

   SIC ).
1k

n
T q, 1),q(qn ,q(U KS

k


  

 
We compare the KS codes in rate with TDMA for T active users. We give 
every user a set of qi code words out of qk. The number of potential users is 
thus qk-i.  If a SIC exists, the normalized rate is 
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.

)1q(q

qlogT i
2

KS 


 

For TDMA every user gets a slot where a symbol can be sent. The rate is  
 

 .
q

T
η ikTDMA   

 
We can see that,  for k  >  i  + 1, the KS codes are superior in rate. 
 
Example  Let k = 4, i = 2,  q = 25.  For these parameters:  
  
 T = 7 < n/(k-1);  
 The number of  possible users  is  q4/q2 = 210 ;   
 The rate ηKS ≈ 0,08;  ηTDMA ≈ 0.007.. 
 
Theorem 2.3.2 The extended RS code with parameters (n = qs, k = qs-1, dmin 
= n –k + 1) code over GF(qs), where q is any prime and T  q, defines a 
superimposed code SIC(qsk, qs, qs, T).  
 
Proof  It is easy to check that for  T  q, the condition of Theorem 2.3.1 is 
fulfilled.  
 
Remark The condition on T in Theorem 2.3.1 is sufficient but not necessary 
for the existence of a q-ary SIC. This follows from the next example.  
 
Example Let q = 3, T = 2 and n = 4. The following code has minimum 
distance 2. The corresponding q-ary SIC  
 
                    0  0  0  0     0  1  1  0       0  2  2  1      1 1  2  2  
 
          q-SIC(12, 4, 3, 2) =  1  2  0  1     1  0  1  0       2  2  1  1     2  0  2  1     
 
                2  1  0  1     2  2  2  0       0  0  1  2      2  2  0  2 
 
does not satisfy the condition on T in Theorem 2.3.1. 
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The following theorems construct longer codes from shorter ones. 
 
Theorem 2.3.3 If there exists a SIC(U0, n0, q0, T) and a  SIC(U1, n1, q1, T), 
where q1  U0 ,  then there also exists a  SIC(U1, n0 n1, q0, T). 
 
Proof Assign to each symbol {0, 1, ···, q1-1} a different code word from  
SIC(U0, n0, q0, T).   Replace the symbols in SIC(U1, n1, q1, T) by these code 
words. Since we replaced all q1-ary elements by different code words from 
SIC(U0, n0, q0, T) we thus obtain a SIC(U1, n0 n1, q0, T), see also Figure 2.11. 
 
 

      SIC(U0, n0, q0, T)            SIC(U1, n1, q1, T),  
 
 
 
    U0 

   U1 
        
                   n0 
 

  n1 
     
             SIC(U1, n0 n1, q0, T). 

 
      
 

    U1 
 
                                   n0            n0           •••       n0 
                              
 
                                                 n0 ˟ n1 
 
 Figure 2.11 Construction of a SIC out of two others 
 
 
Corolary  If there exists a SIC(U0, n0, 2, T) and a SIC(U1, n1, q1, T), where 
q1  U0, then there also exists a SIC(U1, n0 n1, 2, T). 
          
The codes constructed in Theorem 2.3.3 can be seen as a generalization of 
the Kautz-Singleton codes [11]. 
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Example  
1. Suppose that we have the following starting SIC(4, 3, 2, T = 2 ) with the 

4 code words  
 

(1 0 0, 0 1 0, 0 0 1, 1 1 1 )  ( 0, 1, a, b ).  
 
2. The second code to be used is an RS code over GF(22) with parameters 

(n, k, dmin) = (3, 2, 2).  For this code, T < n/(k-1). Hence, we can 
construct a SIC(16, 3, 22, 2). We  replace every element with a code 
word from the first code and obtain a SIC(16, 9, 2, 2) with 16 code 
words, i.e. 
 

 
         000, 01a, 0ab, 0b1, 1a0, ab0, b10, a01 
 SIC(16, 9, 2, 2) =            . 
         b0a, 10b, 1ba, a1b, ba1, 111, aaa,  bbb 
 
 
3. As a third code we construct an RS code over GF(24) with parameters (n 

= 15, k = 8, dmin = 8), where T < n/(k-1). From this code we obtain a 
SIC(232, 15, 24, T = 2). For the combination with the second code we 
obtain a SIC(232, 9×15 = 135, 2, 2).   

 
Example  Let q = 4 and T = 3.  
1. The first code we use is an RS code over GF(22) with parameters  (n = 4, 

k = 2, dmin = 3). Since T < n/(k-1), we obtain a SIC(24, 4, 22, 3).  
2. The second code we choose is a shortened RS code over GF(24) with 

parameters (n = 13, k = 5, dmin = 9). Since T < 13/4, we obtain a SIC(220, 
13, 16, 3).  

3. Combining both codes, we obtain a SIC(U = 220, 4×13 = 42, q=4, T = 3). 
 
These examples show that we can construct a series of codes, see also [12]. 
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2.4 Signatures for the  XOR Channel 
 
We consider the situation where T active users from a population of size U 
transmit signatures over the XOR multiple access channel. The symbols in a 
signature are elements from GF(q = 2m).  We furthermore assume that the 
users are block synchronized.  
 
    U – k  columns 
                   
 user i               si

U-k 
  
 user j    sj

U-k 
                        
    ···               ···                   U rows 
 
 user h    sh

U-k 
 
                                      
 
                                                    zU-k = si

U-k + sj
U-k + sh

U-k  
 
 Figure 2.12 RS syndrome former used for random access  
 
 
Every user has a unique q-ary signature si

U-k, 1 ≤ i ≤ U, that corresponds to a 
particular row of the parity check matrix HT of a (U,k) RS code over GF(2m) 
with (U - k) columns and U rows. We use the property that for a minimum 
distance dmin = (U – k + 1) any (U – k) rows of HT are linearly independent.  
 
Suppose that we have a set S of T = pU active users, each transmitting their 
signature multiplied with the information ti, ti ϵ GF(2m), ti  0. At the 
receiver we have 
 

  ,stz
Si

kU
ii

kU 


       

    
where the addition is in GF(2m). For T ≤ (U – k)/2 active users, the receiver 
uses the RS decoding algorithm, and decodes the information (noise) 
transmitted by the active users. Hence, the maximum sum rate becomes 
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ission.bit/transm
2

1

k)m2(U

1)(qk)log(U
η 2 




  

 
In case the decoder knows the active users, the transmission efficiency η = 1 
bit/transmission, since every user can transmit log2q bits/transmission. This 
is the maximum possible over this binary output channel.  We visualize the 
access scheme in Figure 2.12. 
 
We calculated the achievable rate for this channel in the same way as we did 
for the OR channel. For a particular user, we have a binary symmetric 
channel with crossover probability  
 
          Pe = ½ ( 1 – (1 – 2p)T-1),  
 
where p is the probability of an input symbol equal to 0. Note that for p = ½, 
Pe =1/2 and the normal channel capacity is zero. We have to assume an 
asymmetric distribution for p to improve the result. The following 
achievable rate was obtained. 
  

              
mission.bits/trans 0.3138

e1

e1
logce  

Y);I(XmaxTlim  R

2c

2c

2
2c

i
)P(XT

XOR
i






























 

for the input probability distribution   
 
              p = P(0) =  c/T;  P(1) =  1 - c/T; c = 0.1999. 
 
Observe that a positive rate remains for T  . For more information about 
the applications and background of the XOR channel, we refer to  
[80,81,82,83].    
 
 

2.5 Concluding Remarks 
 
In this chapter, for which we summarize the concept in Figure 2.13,  we start 
with calculating the maximum achievable transmission efficiency 
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(throughput) in a random access situation. The considered problem is 
different from the classical information theory problem, in the sense that 
users do not know each other and thus cannot cooperate. Furthermore, in a 
multiple user situation, the interference depends on the channel input 
probability distributions and thus classical maximization methods using 
concavity arguments to obtain channel capacity do not work. 
 
  

capacity/throughput 
OR channel 

 
 
 

capacity/throughput 
M-ary OR channel 

 
 

 
random signatures 

 
 
 
 

signature construction  
 
 
 Figure 2.13 Concept of the chapter 
 
For the binary OR channel and for the M-ary OR channel, the throughput 
approaches ln 2 bits per channel use. This throughput has to be shared by the 
number of active users. The loss in efficiency, compared with fully 
coordinated access, is about 30%. Remark, that the M-ary OR channel is 
equivalent to the Pulse Position Modulation scheme. By using only one 
pulse in M time slot, we obtain the same throughput as if we are using M 
parallel binary OR channels. These topics were considered by Jeroen 
Keuning2, a student form the University of Eindhoven, the Netherlands, and 
Peter Gober3 a PhD student from the University of Duisburg-Essen. 
 
An interesting approach was taken by Young-Gil Kim in [85], where the OR 
channel model was used to improve a collision arbitration algorithm in RFID 
(Radio Frequency Identification) applications. 
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Chapter 3 
 
Cooperative Coding 
 
3.1 Introduction 
 
One of the dominant parameters in power line communications is that of 
attenuation. Attenuation can vary between 10-100 dB per kilometer. In 
power line communications, attenuation prevents signals to propagate over 
distances that are longer than say 500 meters. Investigations to overcome the 
high attenuation are therefore highly important, see [14,15,16].  
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Figure. 3.1  L links connecting T and R 
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We discuss the efficiency of communication over links that are in tandem 
[17]. This situation occurs when users in a power line communication 
network are connected to the same line and the power lines can be seen as 
“bus systems”, where all connected users can listen to the signals present on 
the bus. An injected signal can be observed by all connected users.  
 
Figure 3.1 gives a model for L links connecting T and R using the power 
line. We assume for simplicity that all links have the same length, same 
attenuation as well as the same noise variance. The attenuation factor f is a 
function of the length of a link, i.e. f = f(d), where d = D/L and D is the 
distance between transmitter T and user R. 
 
To illustrate the problem, consider an AWGN channel with signal 
attenuation factor f and PSK modulation with Eb the energy per information 
bit and N0/2 the noise variance. The detection error probability at the 
receiver    
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where the Q-function is the tail probability of the standard normal 
distribution. If we have L links in tandem, then the attenuation is f  and the 
detection error probability after L  links becomes 
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             (3.2)	

    
We can see a dramatic degradation in performance for f < 1, even with only 
two links. To overcome this degradation, we can use the fact that every user 
can observe the signal and thus can possibly act as a repeater or relay. We 
investigate several possibilities in Section 3.2.  
 
 

3.2  Communication Strategies 
 
In the following, we discuss possible communication strategies to efficiently 
use - and operate repeaters under the condition that not more than one user 
can use the bus simultaneously.  The first two strategies fall into the category 
of conventional multi-hop, while the third makes use of incremental 
redundancy.  
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Detect-and-forward 
In the connection between the transmitter T and receiver R, the intermediate 
receivers can act as detect-and-forward repeaters. After taking a hard 
decision on the received signal, repeater i sends the re-modulated signal to 
receiver i + 1. Therefore, if at the first repeater the detection error probability 
is Pe, then the error probability at the Lth receiver is approximately LPe. 
While this linear increase of error probability with distance is far better than 
the exponential growth experienced without repeaters, the use of repetitions 
reduces the overall transmission efficiency by a factor of L.  Since Pe is 
determined by the attenuation factor f(d), and d = D/L, the number and 
location of repeaters can be optimized such that L is minimized subject to an 
upper bound on the error rate LPe at the destination. 
 
Decode-and-forward 
As in point-to-point connections, we can also use coding to improve the 
communication efficiency. Given the model described above, we have the 
capacity C(d) = 1 – h2(Pe) for a link of distance d, where h2(·) is the binary 
entropy function. Assuming that C(d) is a measure for the achievable rate 
with coding, which is monotonically decreasing with increasing d, and 
considering that L  hops reduce the overall achievable rate to 
 

Cdf = C(d)/L,                                (3.3) 
 
we again have an optimization problem for the number and thus location of 
repeaters. 
 
Cooperative coding   
Since we have a bus structure, we can use the fact that all users connected to 
the bus are able to hear the communication and cooperate to improve the 
communication efficiency, see also [19]. The achievable rate for the 
communication between transmitter T  and the first receiver is k/n1 = C(d), 
i.e., after n1 transmissions the first receiver can decode the transmitted k bits 
of information. Simultaneously, the amount of information received at the 
second receiver is n1C(2d). To assist the second receiver in decoding the 
transmitted message, repeater 1 sends n2 encoded symbols, such that k = 
n1C(2d)+n2C(d). For the third transmission, repeater 2 transmits n3 encoded 
symbols such that k = n1C(3d)+n2C(2d)+n3C(d) and the third receiver can 
decode (in theory) the message. For the destination, we have 
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In summary, given k and the link capacities C(id), the lengths ni, i = 1, 2, ···, 
L, are obtained from 
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The overall achievable rate is 
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If we do not use the cooperative coding, we have from (3.3),  
 

Cdf = k/(Ln1). 
 
Example Let us consider L = 2. With decode-and-forward the rate is Cdf = 
½C(d) = k/(2n1). With cooperative coding we obtain 
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                                     (3.7) 

 
Clearly, for f = 1, C(2d) = C(d) and thus n2 = 0 and the repeater is not used. 
However, for f < 1, C(2d) < C(d), and cooperative coding has an advantage.  
 
Example If for example, Pe = 10−3 and f = −10 dB, then C(d) = 0.99 
bit/transmission and C(2d) = 0.36 bit/transmission. Hence, cooperative 
coding increases the rate from 0.36 bit/transmission using no repetition or 
0.49 bit/transmission using decode-and-forward to C(d)/(2 − C(2d)/C(d)) = 
0.60 bit/transmission. 
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We observe that cooperative coding achieves a higher rate for a given 
number of repeaters. In particular, conventional multi-hop reaches a 
maximum rate at a certain repeater distance d = D/N, which decreases when 
repeater distance decreases through the addition of repeaters. Cooperative 
decoding, however, experiences a continuing increase in achievable rate for 
increasing N and thus decreasing repeater distance d. 
 
Example We use the (7,4) Hamming code to illustrate an implementation of 
cooperative coding with a fixed-rate code. Suppose that we have a bus with 
only L = 2 links. The length of the links is such that we expect a single error 
in a received code word per link. For the transmission using two links in 
tandem via detect-and-forward we expect two errors to occur, which cannot 
be corrected using the Hamming code. Applying decode-and-forward would 
allow error free transmission. But in both cases, the rate is only 4/14 bits per 
transmission. For cooperative coding, we use the Hamming code generated 
by the encoding matrix 
 

G =



















111

011

010

001

1111

0100

1010

1001

.                           (3.8) 

 
The reason for this choice of encoding matrix will be made clear in the 
following.  
 
1. The first receiver can decode the transmitted code word if it has no more 

than a single error. The second receiver also receives a signal, but it 
cannot reliably decode the transmitted code word since the number of 
errors might be above the correcting capacity.  

2. The first receiver (repeater), after decoding, encodes the first three 
information bits with a minimum-distance 3 shortened Hamming code of 
length 6, generated by the code words [100110], [010101], [001011] 
(see (3.8)).  

3. The second receiver can decode the received code word, since it contains 
no more than a single error. After decoding, the second receiver can 
subtract the code word connected to these three information bits from 
the first reception and decodes the fourth information bit using the 
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minimum distance 7 code generated by [1111111] which is able to 
correct three errors. The overall efficiency is 4/(7 + 6) > 4/14.  

 
The example shows the importance of the encoding matrix representation. 
Following this strategy, the optimum distance profile (ODP) of linear block 
codes is defined in [18]. Using the ODP, for particular codes, we are able to 
specify the maximum minimum distance of a sub-code. The ODP depends 
on the initial encoding matrix, as in the example. 
 
The extension to RS codes can be explained using the k/n RS encoding 
matrix 
 

1       1  1  . . .      1 
1       α       α2  . . .     αn−1 

G =       1       α2      α4  . . .    α2(n−1)     ,            (3.9) 
... 

1       αk−1   α 2(k−1)  . . .  α (k−1)(n−1) 
  
where the α is a primitive element from the GF(2m) and n ≤ 2m − 1. Suppose 
again that L = 2 and that we start with the k × n encoding matrix G at T. The 
repeater has an encoding matrix generating the (m2,k2) RS code consisting of 
the top k2 rows of length m2 of G, where m2 < n. T encodes k symbols and 
forwards the code word to the repeater. The repeater can decode the received 
word from T, whereas R2 can listen but not decode since the reception is too 
noisy. The repeater then encodes the first k2 symbols, and forwards the code 
word that corresponds to the (m2,k2) RS code. R2 is assumed to be able to 
decode these k2 symbols and subtracts the influence from the first received 
code word. Since the minimum distance of the remaining code is increased, 
R2 can decode the whole code word. The performance of this method 
depends on the knowledge of the respective channel parameters and can be 
optimized for particular values of the channel parameters. 
 
 
     k2 

 
                        m2 
     k1 
      
                                         n 
 

Figure 3.4 Dimensions for the RS encoding 
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Suppose that the link error rate is upper bounded by t1 and the two link error 
rate is upper bounded by t2, where ½ > t2 > t1.  The dimensions of the RS 
canonical encoding matrix that we are going to use are given in Figure 3.4.  
The relations between the dimensions and error rate are as follows: 
 
 n – (k1 + k2) = 2t1 n,                                           (3.10a) 

n – k1 = 2t2 n,                                                                       (3.10b)  
m2 – k2 = 2t1 m2.                                                  (3.10c) 

 
The encoded information to be transmitted to user R2 is given by k = (k1 + 
k2) symbols.  The communication uses three steps.  
 
1. In the first step we encode k information symbols and transmit the n 

code symbols to R1. Using (3.10a), R1 can decode. Receiver R2 receives 
a noisy version of the code word with a maximum of  t2 ˟ n errors, which 
is assumed to be beyond the error correcting capability of the code with 
the given parameters.  

2. In the second step, receiver R1 forwards the code word, that corresponds 
to k2 information symbols, of length m2. Using the RS encoding matrix 
properties, this is again an RS code word.  

3. From (3.10c), it follows that R2 is able to decode the k2 information 
symbols. Since R2 can subtract the influence of the decoded information 
from the code word in the first step, R2 is able to decode the remaining 
k1 information symbols using property (3.10b).  

 
We can evaluate the transmission efficiency for simple repeating and RS 
encoded retransmission as 
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                                               (3.11) 

Since ½ > t2 > t1, we can see the improvement that depends on the error rate 
t2 and t1. For t2 close to t1 the efficiency is close to the situation without 
repeater. For t2 close to ½, the un-coded repeating efficiency appears.  
 
Remark For error rates larger than t2 or t1, we accept decoding errors.  
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3.3. Multi User Tandem Communication 
 
In this section, we first look at the communication from one transmitter to 
two receivers (see Figure 3.5a).  We give the efficiency for time-sharing as a 
reference value for further comparisons and we use the water-filling 
argument [22] to find the optimum frequency-sharing power allocation. We 
use  principles  from   information  theory  to  translate  the  tandem channel 
into a degraded broadcast channel and calculate its performance [20]. We 
show that this translation improves the performance compared with the time- 
and frequency-sharing results.  
 
 
                f                f 
 
                                                      ••• 
                                                           
 
 
                N(0,2)                                  N(0,2) 
 
                   
 
                                    R1              R2 
 
    Figure. 3.5a  One transmitter to two receivers. 
 
 
In Section 3.2 we describe the use of a repeater and its consequences for the 
transmission efficiency. It is interesting to compare the repeater strategy with 
the broadcast results and determine the condition for which it is not 
beneficial to use a repeater.  Since practical coding to achieve the capacity 
region for broadcast channels is not a solved problem yet, we conclude that 
for the tandem channel without repeater, time-sharing is the best option.  
 
Finally, we introduce a multiple access model for the communication 
between two transmitters and one receiver using the tandem channel model, 
see Figure 3.5b. Information theoretical principles are used to show 
equivalence between the broadcast and the multiple access models. 
 

T 
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3.3.1 Point-to-point communication 
 
In this section we consider only two links and study several communication 
topologies. For simplicity, we assume that the attenuation factor f, f < 1, is 
the same for both links. The noise is considered to be additive white 
Gaussian noise (AWGN) with power spectral density 2 W/Hz and average 
value 0. The bandwidth and transmit power are denoted by B and P, 
respectively.   
 
The Gaussian channel capacity C1 for a single link and C2 for 2 links in 
tandem, are  given by 
 

nat/s,   
B2σ

Pf
1Bln   C

nat/s,   
B2σ

Pf
1Bln   C

2

4

2

2

2

1































                                       (3.12) 

 
respectively. All further derived transmission efficiencies (capacities) are 
expressed in a similar way. 
           
     
 
       T2          T1      
                              f             f 
 
                                                      ••• 
                                                          
 
 
                                N(0,2) 
               
                                                 
                                                R 

Figure 3.5b Two  transmitters to one receiver. 
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3.3.2. Communication strategies 
 
A. Time-sharing. 
If we use time-sharing (TS) with time-sharing parameter  from transmitter 
to both the receivers, then the achievable communication rate or 
transmission efficiency is given by 
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B. Frequency-sharing. 
For frequency-sharing, we use the water-filling (see Appendix 8.8) concept 
from information theory to obtain the power allocation that maximizes the 
efficiencies. We divide the frequency band into the part α and β, α + β ≤ 1. 
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           (3.14) 

 
where P = P1 + P2. To obtain the efficiency region for the frequency-sharing 
using the water-filling argument, we have to maximize (3.14) for all 
different values of α and β, α + β ≤ 1 under the sum power constraint. This 
problem was solved in [99]. The key point in the optimization is the 
assumption that α + β can be smaller than 1. The conclusion is that the 
envelope of all solutions dominates the time sharing performance.  The 
general behavior is given by the dashed line in Figure 3.8. Analyzing the 
results from A and B, we conclude that frequency-sharing is always better 
than time-sharing. Note that both efficiency regions have the same boundary 
points. For α + β = 1, we can use the approach from Appendix A.8.3. 
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furthermore, for P1 = αP and  P2 = (1- α)P, we obtain the “naïve” time-
sharing result as given in 3.13. 
 
C. Receiver  R1 acts as relay. 
If receiver R1 can act as an intelligent relay, a simple decoding and re-
encoding strategy would give a transmission rate region 
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where  acts as a time-sharing parameter.  Comparing the limiting points, 
i.e. for  = 0 or for  = 1, we can conclude that repeating is worse than time-
sharing for  
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We see that in a situation where power is large and bandwidth is small, time-
sharing is better than repeating. For small f, repeating is preferable. 
 
Example:  For σ2 = 10-8 W/Hz and B = 105 Hz, P = 25 W, an attenuation 
factor f > 0.2 satisfies the condition. 
 
We show in [17] and (3.7), that the performance for the repetition strategy 
can be improved to 
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In general, this improved repetition strategy needs a complex encoding and 
decoding strategy.  In a practical situation, we can use RS codes. 
 
D. The Gaussian Broadcast channel. 
The two link model can be transformed into a broadcast model, i.e. 
 
 y1 = x f + n1, 
    y2 = x f2 + n2, 
 
where n1 and  n2  represent the Gaussian noise with variance 2 and η2, 
respectively. The input average power constraint is given by E(X2)  P. The 
capacity region for the Gaussian broadcast channel has been determined [22] 
 

 
                              f                  n1     N(0, 2 ) 
  
                        y1       R1 
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    Figure 3.6  The 2-link broadcast model. 
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Note that for (,) = (1,1) or (0,0) we have the same result for the broadcast 
efficiency as for time- or frequency-sharing. However, simple calculations 
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show that the capacity region for the broadcast channel is strictly larger than 
the frequency- and time-sharing result for all other values of . The rate 
regions approach each other for B  . This conclusion can also be found 
in [21]. 
 
Example For σ2 = 10-8 W/Hz,  B = 105 Hz, P = 25 W, f = 0.3, α = 1/2 and γ 
= 0.02 we obtain RTS(T→R1) = RBC(T→R1) but RBC(T→R2) ≈ 2 RTS(T→R2).  
 
Hence, we obtain a clear improvement of the broadcast efficiency over time-
sharing.  The challenging problem is to design practical coding strategies 
that achieve this gain in efficiency. This is still an open problem. 
 
In [20] a general tandem channel model with more than 2 receivers is given. 
In this case the broadcasting capacity is given by 
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where  α1 + α2 + ··· + αN = 1. Calculation of the capacity then becomes an 
optimization problem. 
 
 
E. The multiple access channel. 
The two transmitter one receiver concept of Figure 3.5b, can be transformed 
into  a multiple access channel as shown in Figure 3.7. The output y at the 
receiver can be written as 
 

y  = f x1 + f2 x2 + n,                                                     
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where n is the additive white Gaussian noise with variance 2. The  average  
power is P = P1 + P2, where P1 = δP and P2 = (1-δ)P. The capacity region for 
the 
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           T1                      
                                                    
  
 
 
 
                                                        n 
                                                         N(0,2) 

           T2                                    
 
                               f2                        y      Receiver 
                                                
Figure 3.7  The 2-link multiple access model. 

 
 
two access channel [22] is given by  
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To achieve the capacity, the receiver first decodes x2, then subtracts x2 from 
y and decodes x1.  
 
As was observed in [23], the multiple access capacity region and the 
broadcast capacity region can be shown to be equivalent when the sum of the 
average power in the two transmitters is the same as the sum power in the 
broadcast channel model. As a consequence, any point in the capacity region 
for the broadcast channel can also be achieved in the multiple access channel 
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capacity region. The proof is based on the transformation of power from the 
access- to the broadcast domain. 
 
For the time- and frequency-sharing, we refer to the first part of the section. 
The results are the same, since for this situation, the links in tandem can be 
considered to be point-to-point connections. 
 
 
     R(TR1) 
       
           C1 

 
 
 
 
 
 
 
                                       simple repeater (3.15) 
 
       (3.13)  TS         (3.17)                 

                                               broadcast 
          (3.14)  FS                                repeater + cooperative coding 
                                                                                                                        (3.16)   

 
 
  

 
      0                        C2                           ½C1   Ccoop (3.16)   
                                     R(TR2) 

 
Figure 3.8  Overview of transmission efficiencies   

 
 
In Figure 3.8 we present the results for the different strategies in a general 
way. FS and TS are the frequency- and the time-sharing regions, 
respectively. We also indicate the performance for the degraded broadcast 
channel together with the repeating strategies. Of course, the different points 
have to be evaluated for particular link channel parameters and conditions. 
We show that frequency-sharing is preferable over time-sharing. Time-
sharing also outperforms repeating for specific values of the link attenuation 
factor f.  From the presented material, it follows that there is an interesting 
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connection between multi-user information theory and real communications, 
such as communication over links in tandem.  
 
 

3.4 Concluding remarks 
 
This chapter originated from actual problems in power line communications.  
The concept of the chapter is summarized in Figure 3.9.  
 
 
 

transmission model 
 
 

communications: capacity and coding 
 
 

detect-and-forward 
decode-and-forward 
cooperative coding 

 
 

multi-user information theory:  capacity 
 
 
 

time- and frequency-sharing 
relay 

broadcast 
multiple-access 

 
 Figure 3.9 Structure of the material presented in Chapter 3 
 
 
High attenuation hinders reliable transmission using power lines beyond 500 
meters. Improving this number is the target of many investigations. Research 
in this area started in 1994 with Olaf Hooijen1, a PhD student in the Institute 
for Experimental Mathematics. We developed several models and described 
the power line channel parameters. Measurements were carried out to 
confirm the theory.   
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Chapter 4 
  
Modulation and Detection 
 
One of the popular topics in coding is the application of soft decision 
decoding for additive white Gaussian noise channels. The reason for this is 
the performance improvements in the decoding error rate that can be 
obtained. We explain the idea of soft decision and then give examples of the 
applications in combination with RS codes.  
 
 
                                                 ei 
 
     si { + d/2, - d/2 }      ri  = si + ei   
                                               
 
  

Figure 4.1  The additive white Gaussian noise channel 
 
 
The second part of this chapter is concerned with non-Gaussian noise 
channels. As an example, we assume that in addition to Gaussian noise, the 
channel can have impulse noise, narrowband disturbances and fading. We 
give a specific sub-class of RS codes that can be used to avoid degradation 
due to these atypical disturbances. 
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symbols has to be equal to the amount of energy for k un-coded symbols, i.e. 
nEs = kEb.   
 
A code with minimum distance dmin can correct a maximum of t errors where 
dmin > 2t. An indication of the behavior of the decoding error probability is 
then given by 
 

 

.e ee

)(PP

1)(t
2σ

RE
1)(t

2σ

E
1)(t

8σ

d'

1t
BSCBSCe,

2
b

2
s

2

2








 

 
We can observe, that the product R(t+1) determines the performance of the 
coded system. 
 
 
4.1.2 Error and erasure decoding 
 
An (n,k) error correcting code with minimum distance dmin is able to decode 
correctly, if for the number of erasures E and the number of errors t, the 
following relation holds: 
 

dmin ≥ E + 2t + 1. 
 

The decision process is illustrated in Figure 4.4. The area where we declare 
the detected symbols as erasure is denoted as E1 and E2.  
 
 
 
 
 
 
                                
                                      
                                                     E1  E2              E3 
                                 
                           
                                    - d’/2              0           + d’/2 
 
    Figure 4.4 Decision regions for erasure and error decoding 
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- The probability of an erasure is thus given by the probability that the 

received symbol is in the region E1 or E2. This probability is determined 
by the probability density function of the noise given the transmitted 
symbol.  

- The probability that an error occurs is equal to the probability that we 
are in region E3 given that we transmit si = - d’/2.  Hence, using Figure 
4.4, we can say that for reliable decoding we have the condition that 

  
dmin  >  n (P(E1 + E2) + 2P(E3)). 

 
For hard decision decoding we make an error if the received signal is 
positive given that we transmit si = - d’/2. The condition on correct decoding 
then becomes  
 

dmin  > n (2P(E2) + 2P(E3)). 
 

Since P(E1 + E2) > 2P(E2), we conclude that hard decision is the better 
option.  
 
 
4.1.3 Soft decoding 
 
The Maximum Likelihood (ML) detector, searches for the code word that 
maximizes L:= p(rn  | sn), where  
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This is equivalent to minimizing the squared Euclidean distance between rn 
and sn, which is defined as  
 

 d2(sn, rn) =  



n

1i

2
ii .)rs(  

 
If sn is a code word of length n, then the squared Euclidean distance between 
cn, and  sn is defined as 
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 d2(sn, sn) =  , d'|D|  )ŝ(s 22
j
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where D is the set of positions where jj ŝs  .  

 
The probability of error, given sn is transmitted and  rn = sn + en  is received, 
is given by: 
 
     P{ p(rnsn)  <   p(rnsn ) }  
 

      = P{ p(en  =  rn - sn )  <  p(en  = rn  -  sn ) }, 
 
where, 
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From  p(en) < p(en) it follows, that a decision error occurs when  
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For linear codes, the distance spectrum (number of code words of a certain 
weight) is the same for all code words. Therefore, we can calculate the 
probability of error for the all-0 code word where all symbols are transmitted 
as +d’/2. From this it follows that for si  =  - si a decision error occurs when 
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Now we use two properties of independent zero-mean Gaussian random 
variables (GRV): 
 
1. the sum of, zero-mean, independent GRV’s is again a GRV   

with mean zero; 
2. the variance of the sum is the sum of the variances.  
 
From which, 
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The probability of error is thus given by 
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For kEb = nEs and Es = 2/'d  we then have the un-coded bit error 
probability   
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             (4.1.2) 

 
 
and the  probability that we decode a specific code word at distance dmin 

from the transmitted code word 
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One can observe a gain in the decoding error probability when the product 
Rdmin is larger than 1.  If dmin  is the minimum value of |D| for any pair of 
code words, the union bound on the error probability for a binary (n,k) code  
is given by 

Punion  (2k)• .
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d

Q
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            (4.1.4) 

The problem is to find codes for which the net gain is positive. We define 
the coding gain Gc  in dB  as 
 

 .dB    
n

k
dlog10:G min10c             (4.1.5) 

 
For practical codes, the product of the minimum distance and efficiency R 
must be maximized to get the highest coding gain.  
 
For binary or hard quantized decoding of an error correcting code, the 
asymptotic decoding error probability is upper bounded by the probability 
that we have more than dmin/2 errors for every code word, i.e. 
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For soft decision decoding  
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From this, we see that soft decision brings a coding gain of 3 dB [30] (factor 
of 2 in energy). 
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               1        0         ···        1 
          
                                                      parity 
                              +                   
 
 Figure 4.5  The Single Parity Check (SPC) code 
 
 
Example The simplest code that we can find is the single parity check code 
(SPC). For this code all code words have even Hamming weight and thus the 
minimum distance is 2. Adding a parity bit to k = (n-1) information bits 
gives the code word of length n and thus a code efficiency of (n-1)/n.  
 
The asymptotic coding gain over the un-coded case is Gc = 10log102 = 3 dB.  
In practice, the gain is less because we have to take the number of code 
words into account. From simulation results, it follows that for n = 7 or 8, a 
net coding gain of about 2 dB can be realized. If we fix the rate and increase 
the code word length, the number of code words increases exponentially, and 
the coding gain disappears. 
 
 
Decoding for the SPC 
To find the code word cn at minimum squared Euclidean distance from the 
received word rn we act as follows:  
 

1) take a hard (binary) decision on the received values. If the word is a 
code word with even parity, stop and output the word as correct; 

2) if the hard decision word is not a code word (odd parity), search for 
the position with the smallest received absolute value, say rmin. Invert 
the decision at this position. 

 
Inversion of the hard decision value increases the squared Euclidean distance 
with the smallest possible amount and the resulting hard decision word is a 
code word.  
 
These two steps are the basis for soft decision algorithms to be discussed 
later. The SPC decoding is characterized by its extremely low complexity 
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since, the decoder has simply to invert the least reliable bit (corresponding to 
the smallest absolute demodulator output) whenever a parity error occurs in 
the binary quantized received word. 
Example  Using the previous AWGN assumptions: 
 
 Encode   +5 +5 -5 +5 -5 +5 
 
 Receive  +4 +3 -4 -1 -3 +5 
 
 Hard decision  1 1 0 0 0 1 
 
 Correct  1 1 0 1 0 1 
 
We change the decision at position four, since the hard decision at  this 
position is most likely to be wrong.              
 
Remark If we compare the bit error rate for the coded situation using soft 
decision and the un-coded situation using hard decision, we can expect a 
gain of 3 dB. In theory, we can have a gain of 2 dB in channel capacity for 
low signal to noise ratios (bad channels). Remark that the gain in channel 
capacity is 2 dB at  a decoding error probability approaching zero.  
 
  

4.2  The Combination RS and SPC  
 
We give several attempts to include “soft decision” decoding into the 
decoding of RS codes. We do this by combining the SPC code with the RS 
code, called concatenation. The SPC code has a minimum distance 2, and 
thus the combination can in principle double the distance of the RS code. 
This gain is the maximum that we can expect to achieve when using the RS 
code only and performing “soft decision” RS decoding, which is considered 
to be impossible due to its complexity and algebraic decoding structure. In 
our combination, the 3dB gain is obtained by the SPC decoding at the cost of 
a small rate loss. 
 
 
4.2.1 RS symbols extended with a parity bit 
 
We en- and decode in the following way: 
 
Encoding Every symbol of the RS code is extended with a parity bit.  
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Decoding The decoding steps are: 
1. apply soft decision decoding  to the symbols; 
2. decode the symbols with the RS decoder. 
 
Performance can be predicted from the results from SPC decoding. 
 
 
                                                                    parity bits of the symbols 
 
 
                                                    ··· 
                                                                    RS code word symbols 
 
 
 
 
 Figure 4.6  RS code word combined with the SPC 
 
 
4.2.2 Block wise RS-SPC coding 
 
In this scheme, we encode and decode in the following way: 
 
 
 
                  RS1                                    ••• 
                  RS2      1    2      3              ••• 
 
 
                  •••                                       •••         
       
 
 
 
                  RSN                                     ••• 
 
 
 
                                                    1 2 ••• m    RS code symbol 3 with m bits 
 
         Figure 4.7  Structure of the concatenated RS-SPC code 
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Encoding We assume transmission of (N-1) RS code words from an (n,k) 
code over GF(2m) followed by a word that is the bit wise modulo-2 sum of 
the previous words. By linearity, this is also an RS code word. 
 
Decoding For each received block of transmitted RS code words, the 
decoder performs the following three major steps: 
 
1. apply soft decision for each individual column (each column is an SPC 

code word); 
2. apply RS decoding for each row. If a detected, but uncorrectable error 

pattern occurs, mark the row with a flag. 
3. After receiving a block of N words Ri , i = 1,···, N, we calculate the word 

En as the modulo-2 sum of the N rows, i.e. 
 

  



N

flaggednot  R
1i          

i
n

i

R:E . 

 
Initially, En = 0n. 

Four different situations can occur: 
- no flag, En = 0n. No erasures and no detected errors. Continue with the 

next block;  
- no flag, En   0n. In this case we assume that there is only one RS code 

word in error.  
- one flag. Hence, one erasure occurs which can be solved by using the 

fact that the modulo-2 sum of all the code words is 0n and thus the erased 
RS word is equal to modulo-2 sum of the non-erased words; 
Suppose that we define the initial block likelihood (equivalent to 
Euclidean distance) as 
 





N

1k
kk0 )RS|R(pL . 

 
If only one code word is assumed to be in error, we have to add to one of 
the decoded words the error word En.  The best choice is the one that 
maximizes the likelihood of the modified block. Hence, the decoder 
determines the position that maximizes the corresponding likelihood, i.e.  
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)RS|p(R)ERS|p(Rmaxargmax ,            (4.2.1) 

 
and gives as output RSmax + En instead of RSmax for the RS code word 
according to  eq. (4.2.1).  The decoder thus calculates 

 






N

maxk
1k

kk
n

maxmaxmax )RS|p(R)ERS|p(RL  .         (4.2.2) 

 
Note that in (4.2.1) we only have to consider the locations in RSk where 
En has nonzero components;  

- more than one flag. More than one erasure occurs. Since the sum of all 
RS code words is equal to 0n, we can calculate the modulo-2 sum of the 
erased RS code words. For this block, given En, we can start again to do 
the soft column decoding, followed by RS-row decoding. To avoid 
looping, we put the condition that for the new block, the number of 
erased RS code words is less than before. If not, decoding is stopped. 

 
 
4.2.3 Performance  
 
In this section, we discuss the performance of the different coding schemes. 
 
A. We first consider RS-SPC (Section 4.2.1) decoding for an AWGN 

channel with noise variance N0/2. The symbol error rate can be 
approximated (4.1.3) as 
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where R =  ×  denotes the overall code rate, k/n is the code rate of 

the (n,k) RS code over GF(2m) and Eb is the transmitted energy per 
information bit. 
 

B. For the concatenated RS-SPC coding scheme (Section 4.2.2)  the symbol 
error rate for high signal-to-noise ratios is approximately 
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with R =  × . Since the symbol error rate for hard decision RS 

decoding can be approximated by 
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an asymptotic gain due to soft decision decoding of 10log10(2m/m+1))      
dB (structure A) and 10log10(2(N-1)/N) dB (structure B) is expected: for 
n = 31 (m=5) that is about 2.2 dB.  

 
Since the minimum distance of the concatenated code (structure B) is twice 
the minimum distance of the (n,k) RS code, an additional gain corresponding 
to distance doubling can be expected. For exploiting this potential gain 
erasure RS decoding as given by structure B is employed in addition to soft 
decision SPC inner decoding. 
 
The simulation results, for the different coding schemes that are based on the 
use of antipodal signaling with coherent detection in a channel with additive 
white Gaussian noise, are given in Figure 4.17. The RS code employed is the 
short (31,21) code. For block structure B, N = 9 is chosen in the simulations; 
in addition the maximum number of iterations is limited to 3. As can be 
seen, symbol wise soft decision SPC decoding (curve 3) results in a gain 
over the hard decision RS decoding of to about 1.5 dB at a bit error rate  
(BER) of 10-5; this corresponds to an overall coding gain of about 4 dB.  For 
code structure B the best performance (curve 4) for BER < 10-3 is obtained. 
Compared with the symbol wise soft decision SPC decoding, the gain is 
about ½ dB at a BER = 10-5.  
 
Remarks We applied the same technique to the concatenation of 
convolutional codes and a single parity check code. We consider a 
concatenated coding scheme that is characterized by a set of N multiplexed 
convolutional codes forming the inner code and an outer (N,N-1) single-
parity-check (SPC) code. The inner convolutional codes are maximum-
likelihood (ML) decoded via N parallel, independently operating Viterbi 
decoders. The decoded overall parity check sequence is used to correct 
decoding errors resulting from Viterbi decoding. This outer soft decision 
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SPC decoding can be realized exploiting the analogue demodulator output 
used for Viterbi decoding before, with only a small amount of additional 
hardware [31]. 
 
 

4.3 Non-Gaussian Disturbances 
 
Soft decision decoding is based on the fact that the channel noise is Gaussian 
distributed and additive. Furthermore, the channel parameters must be 
known to the receiver, otherwise a mismatch will occur. In practice, channel 
noise can be non-Gaussian and/or non-additive. Examples are narrowband- 
and impulse noise. In addition, channel characteristics might be unknown to 
the receiver, see [16,24]. We consider MFSK modulation combined with 
coding as an efficient way to handle these disturbances. 
 
 
4.3.1 MFSK modulation  
 
MFSK modulation schemes [26,27] modulate symbols as one of the 
sinusoidal waves described by 
       

 si
s

s
i Tt0t);fcos(2

T

2E
(t)s 

,                                         (4.3.1) 

where i = 1, 2, , M. The signal energy per modulated symbol is represented 
by Es and  
 

 fi  = f0 + 
sT

1i 
 , 1 i   M. 

 
The signals are orthogonal and for non-coherent reception the frequencies 
are spaced by 1/Ts Hz. Every Ts second we transmit a new symbol. We 
restrict ourselves to the ideal MFSK modulation signaling as given in 
(4.3.1). The bandwidth B required is approximately  
 

                                           .
T

M
B

s


    
    
For an information rate of b bits per second, we have a symbol duration time  
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     ,
b

Mlog
T 2

s   

 
and thus a bandwidth efficiency of  
 

    bits/s/Hz.
M

Mlog

B

b 2  

 
For large M, MFSK is spectrally inefficient.  
 
MFSK modulation can provide for:  
 
- a constant envelope modulation signal, to enable a transmitter's power 

amplifier to operate at or near saturation levels; 
- frequency spreading to avoid bad parts of the frequency spectrum;  
- time spreading to facilitate correction of frequency disturbances and 

impulse noise simultaneously.  
 
 
                      cos2πfit  
     
 

    	                     (  )2       

        received                 y 
 

	                  (  )2     
 
 

sins2πfit                         sample at t = Ts 
 

Figure 4.8 Basic envelope  detector for frequency fi  
 
 
4.3.2 Detection 
 
Non-coherent MFSK detection is implemented by using a bank of 2M 
correlators, with a quadrature pair for each frequency. For each quadrature 
pair the output is added together using the square law to produce a metric for 
the corresponding frequency candidate, see Figure 4.8. Non-coherent MFSK 
detection measures received energy for M possible frequencies used. The M 
detected envelopes can be used in the decoding process in several ways.  
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Soft “envelope” detection  
Normally, one chooses from a set of frequencies the one with the highest 
energy present at a sampling instance Ts, assuming that all the M frequencies 
are transmitted with energy Es. For a fair comparison with un-coded 
transmission, we set Es/log2M  = Eb, where Eb is the energy per information 
bit. Furthermore, the Signal-to-Noise Ratio (SNR) for such a system is 
defined as Es/N0 (refer to [26], p. 258).  
 
The symbol error probability for transmission over an Additive White 
Gaussian Noise (AWGN) channel with single sided noise power spectral 
density N0, at high values of Es/N0, can be approximated as  
 

  

,e                 

MeP

]
N2

E
2[ln Mlog

2N

E

uncoded-s

0

b
2

0

s








           (4.3.2)

    
where the energy per bit Eb = Es/log2M. Note that we transmit log2M bits per 
MFSK symbol.  For AWGN channels the probability of a symbol error can 
thus be made arbitrarily small by increasing M, provided that Eb/2N0  >  ln2.   
The cost for increasing M is the bandwidth required to transmit the signals.  
 
In a coded situation, for an (n,k) code, where k = log2|C|,  (4.3.2) becomes 
 

 .e|C|oglP 0

b2
min 2N

E

n

|C|log
d

coded-s


           (4.3.3) 

 
Example Suppose that we have an RS code with M-ary symbols, length M, 
|C| = Mk  and   dmin = M – k + 1.Then, for large M, (4.3.3) is  
 

,eP
]

2N

E
R)(1M[ln2MRlog

coded-s 0

b
2 

  
 

where k/M = R. For (1 - R)·Eb/2N0 > ln2, the error rate goes to zero for 
increasing M. 
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A sub-optimum detector 
As indicated before, spectral noise disturbs the demodulation process of M-
ary FSK. To overcome this problem, we give a possible structure for a sub-
optimum demodulator using a threshold after every envelope detector, under 
the assumption of equal energy - and noise distribution for all M frequencies. 
 
We modify the demodulator for our modulation/coding scheme as follows. 
After every envelope detector we introduce a threshold T. For practical 

reasons the value of T  is set equal to /2Es , where sE  is the envelope 

detector output for a transmitted frequency when no noise is present. For 
noisy channels, we have to add a positive constant, which incorporates the 
variance of the noise, to the threshold [24]. Envelopes that are larger than the 
respective thresholds are given are marked with a symbol 1, otherwise we 
assign the symbol 0. Thus, for a particular time instant, the output of the 
envelope detector is a binary vector of length M.  
 
We assume that we transmit M-ary code words of length n. These code 
words can be represented in a binary matrix of dimension M x n, where 
every column contains exactly one single symbol 1. In a hard decision 
detector (detecting presence of a frequency), we therefore also put the binary 
outputs in an M x n decoding matrix. We output the message corresponding 
to the code word that has the maximum number of agreements with the 
demodulator output.  
   
The influence of the channel disturbances on the demodulator output can be 
summarized as:  
 
- narrowband noise causes large demodulator envelopes for particular 

frequencies hit by the narrowband noise and thus may cause an envelope 
detector output to be equal to 1 during many time instants. Narrowband 
noise sources are emergency services, radio amateurs, etc. The 
disturbance may be intentionally, or caused by an unknown source of 
interference;    
 

- impulse noise may put energy in larger parts of the spectrum in use for a 
short period. Impulse noise can also have a periodic character. Impulse 
noise results mainly from switching transients and is characterized by its 
duration, amplitude and the inter-arrival time. We assume that impulse 
noise causes all M outputs of the demodulator output vector  to be equal 
to 1; 
 



 Chapter 4-Modulation and Detection  

81 
 

- the additive white Gaussian noise, also called the “background” noise, 
introduces incorrect decisions, i.e., insertion or deletion of a symbol 1;  
 

- in frequency selective fading, some frequencies may be in deep fade, or 
experience high attenuation. As a consequence, the particular detector 
output will be 0 for a long time (assuming this is the only disturbance). 
In this case, an entire row of the decoding matrix is set to 0.  
 

The effect of the different kinds of noise on the multi valued detector output 
can be seen from Figure 4.9. We assume that M = 4 and transmit the code 
word (1, 2, 3, 4) as frequencies (f1, f2, f3, f4).  
 
 

1 0 0 0   1 0 1 0   1 0 0 0 
0 1 0 0  0 1 0 0   0 0 0 0 
0 0 1 0   0 0 1 0   0 0 1 0 
0 0 0 1   0 0 0 1   0 0 0 1 
no noise     background noise 
 
1 1 1 1   1 0 0 1  1 0 0 0 
0 1 0 0   0 1 0 1   0 0 0 0 
0 0 1 0   0 0 1 1   0 0 1 0 
0 0 0 1   0 0 0 1   0 0 0 1 

                       narrowband         impulse              fading 
 
Figure 4.9 Several types of noise in the channel. 

 
 
As one can see from Figure 4.9, row errors can be catastrophic for RS codes. 
This can be explained as follows. Let EN denote the energy detected at the 
demodulator due to a narrowband noise source. If EN exceeds the threshold 
T, the demodulator will have a symbol that is “always on”. This poses a 
problem, since the all-c vector (that is, the vector with all its symbols equal 
to c, where c  GF(2m) is a valid code word for the RS code. Therefore, the 
presence of narrowband noise disturbances will result in undetected errors. 
We will discuss further consequences in the next section. 
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 4.4 COMBINED MODULATION and CODING 
 
 
4.4.1 Permutation codes 
 
Consider again an M-ary FSK signal set that consists of an orthogonal set of 
M frequency-shifted signals that is used to encode information. We may 
assume non-coherent demodulation and thus the bandwidth required is given 
by B = M/Ts. For a code of cardinality |C| and code words of length n, the 
number of information bits transmitted per second is given by  
 

bits/sec.
nT

|C|log
b

s

2 ,  

 
where Ts is the signal duration time. The transmission efficiency per second 
per Herz is given by 
 

 z.bits/sec/H
nM

|C|log

B

b 2  

 
We consider a special class of codes, permutation codes, that is very well 
suited for the noise problems mentioned before.  
 
Definition A permutation code C consists of  |C| code words of length M, 
where every code word contains M different symbols. 
 
Example M = 4, |C| = 4. 
 
                           message    transmit 
 

1 ( 1, 2, 3, 4 )  
2 ( 2, 1, 4, 3 ) 
3 ( 3, 4, 1, 2 )  
4 ( 4, 3, 2, 1 ) 

 
 
As an example, message 3 is transmitted in time as the series of frequencies 
(f3, f4, f1, f2). Note that the code C has 4 words with the property that any two 
words always differ in 4 positions.  
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            TABLE 1 
 
                 Code book for M = 4, dmin = 3 
   
               Message     Code word        Message            Code word 
  1 (1, 2, 3, 4)     7  (4, 2, 1, 3) 

2 (1, 3, 4, 2)     8  (4, 3, 2, 1) 
3 (2, 1, 4, 3)     9  (1, 4, 2, 3) 
4 (2, 4, 3, 1)    10  (2, 3, 1, 4) 
5 (3, 1, 2, 4)    11  (3, 2, 4, 1) 

    6 (3, 4, 1, 2)        12   (4, 1, 3, 2) 
 
 
    TABLE 2 
 
       Two code books for M = 3 
               
               dmin =  2                          dmin =  3 
  
     (1, 2, 3)        (1, 2, 3) 
     (1, 3, 2) 
     (2, 1, 3)      (2, 3, 1) 
     (2, 3, 1) 
     (3, 1, 2)        (3, 1, 2) 
     (3, 2, 1) 
  
 

TABLE  3 
 
  Code book sizes for M = 2, 3, 4, 5 
      M         dmin =   
 

2        3       4      5 
2 2 

   3 6        3 
   4 24     12      4 
   5        120   60     20     5 
 
 
The code as given in Table 1 has 12 words, each with M=4 different 
numbers and a minimum difference between any two words or minimum 
Hamming distance dmin of  3. For M = 3 we have the code books as given in 
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Table 2. An interesting problem is the design of codes and the effect of 
coding on the transmission efficiency. In Table 3 we give the code 
construction results for M < 6. To maximize the efficiency, we have to find 
the largest |C| for a given M and dmin. It is easy to see that for a code with 
code words of length M each having M different numbers dmin  2. The 
cardinality  |C| of this code is M!.  Hence, the bandwidth efficiency can be 
defined as 
 

 
M

Mlog

M

M!log

B

b 2
2

2  ,           

 
for large M. This is the same efficiency as un-coded M-ary FSK.  The next 
theorem gives an upper bound on the number of code words in a permutation 
code.  
 
Theorem For a permutation code of length M with M different code 
symbols in every code word and minimum Hamming distance dmin, the code 
cardinality  is upper bounded by 
 

 |C|  
1)!(d

M!

min 
.            

 
Proof Choose (M - dmin) different code symbols and put them at (M - dmin ) 
different positions. Then, with the remaining dmin symbols at the remaining 
dmin positions, we can construct a maximum number of dmin code words at a 
distance dmin  apart.  For every set of positions we can distribute the chosen 
(M - dmin) different code symbols in (M-dmin)! different ways. We can choose 
 









 mindM

M
  

 
different sets of positions. Hence, the overall product gives the maximum 
number of code words with a minimum Hamming distance dmin , 
 

|C|    dmin 







 mindM

M
( M - dmin )! 

      = 
)!1d(

!M

min 
.        
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It can be shown mathematically, that for M = 6 and dmin = 5 the upper bound 
cannot be met with equality. For dmin = 2, we always have equality for any 
M.  Blake [28] uses the concept of sharply k-transitive groups to define 
permutation codes with distance M – k + 1. The structure of all sharply k-
transitive groups is known for k  2.  In [28] it is also shown that the group 
of even permutations on M letters is a permutation code with |C| = M!/2 code 
words and minimum Hamming distance 3. To find good codes in general 
appears to be quite difficult [29,74]. 
 
 
4.4.2 Permutation codes derived from RS codes  
 
We put a constraint on the code words of an RS code over GF(2m), namely 
that all symbols in a word must be different. This code will be a permutation 
code. To construct a simple permutation code we use the first two rows of 
the extended RS encoding matrix given by 
 
 
  1 1   1       1     …           1         
       GT =                 . 
       0    1         2 … M-2 

 
The minimum distance of the code is M-1, where M = 2m is the length of the 
extended code.  If only the second row is used to generate code words, the 
minimum distance is M-1. Including the first row, the last M-1 columns 
generate a code with minimum distance M-2. Since the symbol at the first 
position is non-zero, the overall minimum distance is (M-1).  
 
Property Suppose that for the M-ary information pair (x,y) the information 
symbol y ≠ 0. Then, the code words contain every symbol { 0, 1, ,  2, …, 
M-2 } only once. Every code word is a permutation of another code word. 
 
This property follows from that fact that multiplication of the second row 
with a nonzero element of GF(2m) realizes a permutation of the last (M-1) 
symbols. Adding the same constant (first row) to all symbols realizes a 
permutation over all M symbols.   
 
The construction thus generates a permutation code with minimum distance 
(M-1), and M(M-1) code words, which meets the upper bound with equality. 
It furthermore allows the decoding using the regular RS decoding 
algorithms. More constructions can for instance be found in [28,74]. 
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4.4.3 Performance for permutation codes 
 
A message is encoded as a code word of length M with the integers 1,2, , 
M as symbols. The symbols of a code word are transmitted in time as the 
corresponding frequencies.  
 
Example For M = 4 and dmin= 4, a permanent disturbance (narrowband 
noise) present at the sub-channel for frequency f4 and transmission of code 
word  {3, 4, 1, 2} could lead to a demodulator output {(3,4), (4), (1,4), 
(2,4)}.  
 
The decoder compares the demodulator output with all possible transmitted 
code words. It outputs the code word for which the maximum number of 
agreements with the symbols at the demodulator output occurs.  For the 
example, all symbols corresponding to code word 3 are present and thus 
correct decoding follows. Since code words are different in at least dmin  

positions,  dmin – 1 errors of this type still allow correct decoding.  The 
example code has dmin = 4 and  hence, we can tolerate the presence of 3 
permanent disturbances in the demodulator output.  
 
Example  Suppose that we transmit the example code word {3, 4, 1, 2}. If 
an impulse noise causes all envelopes to be present at three symbol 
transmissions, then we may have as a demodulator output {(1,2,3,4), 
(1,2,3,4), (1,2,3,4), (2)}.  
 
Comparing this output with the possible transmitted code words gives a 
difference (distance) of zero to the correct code word and one to all other 
code words.  Thus, even if three of these multi-valued outputs occur, we are 
still able to find back the correct code word since there is always a remaining 
symbol that gives a difference of one to the incorrect code words.  
 
Example Background noise degrades performance by introducing unwanted 
(called insertions) demodulator outputs or by causing the absence (called 
deletion) of a transmitted frequency in the demodulator output.  
 
For this type of “threshold” demodulation, the decoding is still correct for  
dmin – 1 errors of  the insertion/deletion type, since: 
 
- The absence of a frequency in the demodulator output always reduces 

the number of agreements between a transmitted code word and the 
received code word by one.  The same is true for the other code words 
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4.5 Other Code Combinations 
 
The original idea of code concatenation can be found in the work of David 
Forney [33]. The raw channel together with an inner decoder behaves like a 
super channel, see Figure 4.10. It turns the raw channel into another channel, 
the super channel that is suited for the decoding process of the outer coder.   
The goal of concatenation is thus to make the coding schemes suitable for 
the particular channel conditions.  
 
 

Information 
 
 
 

RS decoding 
 

independent errors   
 

de-interleaver 1 
 

                 decoding errors 
 

convolutional  
decoder 

                                                                     independent noise    
 

de-interleaver 2 
 

                                                               noise with memory                  
 

digital channel 
 
 
 

data from the encoding operations 
 
 Figure 4.11 General concatenated coding scheme  
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4.5.1 RS-Convolutional code combination 
 

In Figure 4.11 we give a concatenation scheme with an RS outer code and a 
convolutional inner code. The de-interleaving is supposed to change an 
arbitrary channel noise distribution into a distribution that looks completely 
“random” to the decoder. In this way, only average error probabilities are of 
importance, not the distribution itself. In this way, complicated channel 
modeling can be avoided. What remains is the design of the interleaving 
procedure. 
 
 

Information 
 
 

RS encoding 
 

8-bit symbols  
 

interleaver  
 

8-bit symbols  
 

constrained  
encoder 

       17 bits RLL 
 

  to the recording medium 
 
 Figure 4.12 Concatenation of RS with RLL 
 
 
The digital channel delivers data for the convolutional decoder. The memory 
in the data can be removed by the de-interleaver 2, such that the 
convolutional decoder receives independent symbols. Convolutional 
decoders are sensitive to dependencies between noise symbols. The 
convolutional decoder, in general, produces decoding errors that have a burst 
nature.  We collect the output in symbols to be processed by the RS 
decoding. To be able to decode long bursts of errors, we spread the symbols 
over different RS decoders. In this way, simple low complexity parallel RS 
decoders, each decoding a small number of errors, can handle bursts of 
symbol errors.   
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If the channel has AWGN, we do not need de-interleaver 2. The 
convolutional decoder does the soft decision decoding, whereas the RS 
decoding takes care of the burst decoding errors. 
 
 
4.5.1 RS-constrained code 
 
In recording, we have to generate constrained sequences that can be stored 
into or written onto a medium. Here, RS codes also play an important role. 
For disk applications, very often an RS code over GF(28) is used, because 
the 8-bit symbols can be translated in an efficient way into, for instance,  
Run Length Limited (RLL) blocks, see [32]. An RLL block puts constraints 
on the runs of bits. There can be a minimum and a maximum run of the same 
type of bits for synchronization or control purposes. An encoding scheme is 
given in Figure 4.12. The idea is that at reading, errors in the RLL sequence 
produce symbol errors after mapping back to the 8-bit symbols. The RS code 
can also be combined with other constrained codes, like equal weight codes. 
 
 
4.5.2 RS Product code 
 
A classical combination of codes is that of a product code. The idea, 
generated by Peter Elias [34], of a product code is given in Figure 4.13, 
where code words are formed by n rows and N columns. A column of kr 
information symbols is converted into a column of n code symbols. Then, 
every row with kc symbols is converted into a row with N symbols. We end 
with a n × N matrix. The row and/or the column code can be an RS code. 
 
                        kc 

C1     C2              •••     CN 
c11 c21 •••  cN1  row 1 
c12 c22 •••  cN2  row 2 
 
••• 

 
••• 

     
••• 

           
c1n c2n •••   cNn  row n 

   
 Figure 4.13  A product code with n rows and N columns 
 
 
The minimum distance of the product code is larger than or equal to the 
product of the distances of the individual codes. This can be seen as follows. 
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extended with 16 parity symbols which give a total of 208 rows. Every row 
is extended with 10 parity symbols which give a total of 182 columns. This 
procedure gives an RS product code with 208 rows and 182 columns.   
 
If we do a simple row and column decoding, the combination can correct 8 
column errors and 5 row errors. By using iterative decoding where row and 
column decoding is repeated, performance improvements can be obtained.  
In Figure 4.15 we give a general concept for such an approach (source: 
Scholarpedia, G.D. Forney) 
 
 
      
  outer    inner  
              interleaver    
  encoder                encoder 
 
 
        channel 
 
 
  outer    inner  

          de-interleaver  
decoder                decoder 

 
                        interleaver  
 
 

Figure 4.15  Concept of iterative decoding of concatenated codes  
 
 

4.6 Concluding remarks 
 

Soft decision decoding based on additive white Gaussian noise promises an 
asymptotic 3 dB gain in the decoding error probability.  This is equivalent to 
a distance doubling using the regular hard decision decoding. Therefore, it is 
interesting to see how this gain can be realized. The gain for a simple R = 
7/8 single parity check code is about 2 dB1. About the same gain can be 
expected for a concatenated SPC-RS coding scheme.  
 

1 Peter Foerster, Soft Decision Decoding,  PhD University of Darmstadt 
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The problem of the soft decision decoding is the knowledge of the noise 
source. If the noise is pure AWGN, then the soft decision metrics are correct. 
However, in practical systems this knowledge is not often available and thus 
the advantages of soft decision decoding disappear or soft decision decoding 
even makes the performance worse.  
 
RS codes are symbol oriented codes and thus, in principle the transmission 
over an AWGN channel with independent transmissions does not exploit the 
power of an RS code. Therefore, concatenation with a short high rate inner 
code that performs the soft decision decoding or that decodes single errors is 
preferred. The RS code can act as an outer code that corrects the symbol 
errors caused by decoding errors from the inner code or caused by channel 
symbol errors.  
 
In the second part of the chapter we consider non-Gaussian noise. Practical 
communication systems using wireless or power line communications are 
disturbed by impulse- or narrowband noise. We chose diversity in time and 
frequency to facilitate correct decoding. As a modulation scheme we use 
MFSK for frequency spreading. The permutation code performs the time 
spreading. We show that several types of noise can be corrected using a 
simple detection scheme. We give a simple (n-1,n) RS code that can be seen 
as a permutation code with dmin =  n-1. Further constructions using trellis 
codes can be found in [95].  
 
We summarize the content of this chapter in Figure 4.16. 
 
 
 
     AWGN    soft decision  SPC or SPC-RS 
 
 
 
 
 non-Gaussian    time/frequency  permutation 
 noise    diversity  coding 
 
 
 Figure 4.16  Overview of the content of Chapter 4 
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                     (1) 
 
 
                                                       (3)       (2) 
     
                                              (4) 
 
       

              0           2            4            6           8          10    dB 
                              10 log10(Eb/No) 
 

Figure 4.17  Bit error rate versus signal-to-noise ratio for antipodal 
signaling in AWGN channels: (1) un-coded; (2) hard decision 
(31,21) - RS decoding; (3) concatenated(31,21) - RS - (6,4) SPC soft 
decoding as in structure A, R = 0.56; (4) concatenated (9,8) SPC, 
(31,21) - RS decoding, R = 0.6   
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Chapter 5 
  
The Wiretap Channel 
 
A classical problem in data transmission is that of wiretapping. The  wiretap 
channel was introduced by Wyner [35], see Figure 5.0. The idea is that a 
wiretapper can listen to the normal communication between two parties. The 
encoder’s objective is to maximize the amount of information transmitted to 
the legal receiver, while keeping the wiretapper as uninformed as possible 
[39,40]. Another option is the transmission of a secret to the legal receiver 
without giving any information to the wiretapper. One of the interesting 
consequences of the developed theory is that there is a close connection 
between wiretap communication and the problem of secure biometric 
authentication - and verification schemes, see also Chapter 6.  
 
In the wiretap communication model, the message sk is encoded as xn, 
transmitted via a noisy channel and received as yn by the legal receiver. The 
wiretapper also receives a disturbed word  zn.   
 
                     encoder                                            decoder (legal) 
     message 
                                              channel 
             sk                            xn                              yn                        s k 

             
 
 
                                              channel           zn   
                                                              wiretapper 
 
 Figure 5.0 Classical wiretap channel model 
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Practical encoding schemes are to be designed that achieve the goal of 
privacy and transmission efficiency.  
 
 

5.1 Wiretap Channel Models 
 
We consider two basic communication models each with a different position 
for the wiretapper, see Figure 5.1 and Figure 5.2. We only deal with discrete 
wiretap channels, and we assume that the transmission is binary, using 
Binary Symmetric Channels (BSC) with  cross over- or transition  
 
 
                   encoder                BSC (p)                  decoder (legal) 
     message 
                                                 
            sk                               xn                                  yn                      s k 
                                                                        en                                       

                                                                           bn   BSC (q)                   
 
                                                                                                  zn   
                                                                                        wiretapper 
           
    Figure 5.1  Binary wiretap channel model A 
 
 
                   encoder               BSC(p)                   decoder (legal) 
     message 
                                                 
            sk                             xn                                     yn                        s k   

en 
 
 
                                                                           zn   
                                                              wiretapper 
                                    BSC (q')   bn                 
 
              Figure 5.2  Binary wiretap channel model B 
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probabilities p, q’ and q. For p < q’, p < ½, the configuration B can be 
converted into configuration A by substituting q = (q’- p)/(1 - 2p), see Figure 
5.3.   
 
A message sk of length k bits is transmitted as a code word xn of length n. 
The wiretapper, receiving zn, tries to estimate the selected input message sk.   
 
The first problem is the maximization of the amount of transmitted 
information to the receiver, I(Sk;Yn) over the main channel from X to Y, 
while at the same time minimizing the amount of information, I(Sk;Zn), 
leaked to the wiretapper. As usual in cryptography, the wiretapper knows the 
encoding scheme for the transmitter and the decoding scheme used at the 
receiver.  
 
 
          0                                          0                    0                    0 
  
                p                   q                     ≡                   q' 
 
          1                                          1                    1                     1 
 
 Figure 5.3 Transformation of two “tandem” channels 
 
 
In information theory, we express the uncertainty about the message sk given 
the received vector zn by the equivocation H(Sk | Zn), i.e. 
 
  H(Sk | Zn) = H(Sk) - I(Sk;Zn).                   (5.1) 
 
The information sk  is encoded as a code word xn and we assume that this 
code word is transmitted to the legal receiver at an efficiency I(Xn;Yn). The 
mutual information I(Sk;Zn) = I(Xn;Zn) when we assume that every sk 
uniquely determines xn. Hence, (5.1) can be written as  
 

H(Sk | Zn) =  I(Xn;Yn)  -  I(Xn;Zn).              (5.2) 
 
The goal of the transmitter is thus to maximize H(Sk | Zn). It has been shown, 
that for a binary symmetric main - and a binary symmetric wiretap channel 
the maximum is given by the secrecy capacity Cs,  
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where we assume that the main channel is less noisy than the wiretap, i.e. 
I(Xn;Yn)  ≥  I(Xn;Zn) for all input distributions P(Xn).  We can reformulate 
(5.3) as 
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Figure 5.4 gives a graphical illustration of (5.3).  
 
 
 
            1 
         
 
 
 
 
           

                            Cs             Cmain  
                                  R 
 

Figure 5.4  Information rate R versus equivocation  
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The secrecy capacity Cs is thus the maximum difference between the 
information transmitted to the legal receiver and the information transmitted 
to the wiretapper.  
 
For binary symmetric channels, the normalized capacity for the main 
channel with transition probability p is Cmain = 1- h(p) bit/transmission, 
where h(p) is the binary entropy function. For the wiretap channel the 
normalized capacity is Cwt = 1 – h(q) bit/transmission. Hence, according to 
the definition, the normalized secrecy capacity  
 

Cs = h(q) – h(p) bits/transmission.                    (5.5) 
 
The interpretation is, that the wiretapper, after observing a block of n 
received symbols, has an uncertainty of n(h(q) - h(p)) bits for the transmitted 
message.  
 
In Chapter 6, we describe the concept of biometric authentication.  This 
concept can be modeled as a wiretap channel. Performance improvements 
can be obtained by using the fact that the legal receiver can also observe the 
data received by the wiretapper. The legal receiver thus has the availability 
of two parallel channels: from X to Y and from X to Z, see also Figure 6.5. 
We therefore reformulate the secrecy capacity for the binary symmetric 
channels as 
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which enlarges the secrecy capacity as given  in (5.3), since conditioning 
makes the entropy smaller.     
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5.2 Noiseless Main Channel 
 
We first consider the noiseless main channel, where p = 0 and thus the 
secrecy capacity is h(q) bits per transmission.  
 
 

     n-1 message bits 
 
                 1         0         ···         1 
          
          
                   Parity  

       
                                       
                         

            Secret bit 
 
Figure 5.5  One bit secrecy using the Single Parity Check code 

 
 
5.2.1 Single Parity Check code (SPC) 
 
For this channel a simple strategy that allows transmission of one secret bit 
to the legal or main receiver can be explained as follows. The transmitter 
uses a single parity check code of length n with n-1 information bits and one 
parity bit. The transmitter adds his secret bit modulo-2 to the parity, see 
Figure 5.5.   
 
The wiretapper can try to recover the secret bit by adding up, modulo-2, the 
received n bits. The probability that the secret bit is incorrect is the 
probability that an odd number of errors occurred during the transmission of 
the n bits, since this  changes the parity of the word, i.e. 
 
 Pe = 1 – ½ (1+(1-2p)n), 
 
which converges quickly to ½ for appropriate values of n. For Pe = ½, the 
wiretapper has a probability of ½ of being correct. This is equivalent to an 
entropy of  one bit, which is exactly the purpose of the coding.   
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Note  We transmitted  (n-1) message bits and 1 secret bit to the legal 
receiver. The wiretapper only has a corrupted message (errors occur with 
probability p) . 
 
 
5.2.2 Hamming code  
 
Before we discuss the application of RS codes, we give an example using  
the  Hamming code.  
 
For the (7,4) Hamming code, we choose the encoding matrix G4,7 and the 
syndrome former HT as given by 
 
  1 0 0 0 1 1 1  1 1 1 
     1 1 0 

0 1 0 0 1 1 0  1 0 1 
G4,7 =    , HT =  0 1 1      . 

  0 0 1 0 1 0 1  1 0 0 
     0 1 0 
  0 0 0 1 0 1 1  0 0 1 
 
A message m4 is encoded with G4,7 and a secret of three bits, s3, is added to 
the last bits of the code words.  Since the legal receiver has a noiseless 
channel he can recover the message and secret without any decoding errors.  
 
The wiretapper obtains    
 

r7  = m4G4,7 + (04, s3) + e7. 
 

To recover the secret, the wiretapper may calculate the syndrome 
 
z3 =  r7 HT  
 
     = e7HT +  s3 . 

 
After calculating the syndrome at the receiver, we estimate the secret s3 

equal to the syndrome  z3.  This is equivalent to the estimation of the most 
likely noise sequence e7 = 07, the all-zero sequence. The probability of error 
is then  equal to the probability that a noise sequence occurs that is not equal 
to a code word, since this would give the incorrect estimate.  Hence,  
 
 Pe = Probability(e7 HT  03)  
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C

ini
i p)(1pA1 ,                (5.6) 

 
where Ai is the number of code words of weight i. For the Hamming code 
the weight distribution is known and can be used to estimate the error rate. 
For the sixteen possible code words, we have A0 = 1, A3 = A4 = 7, and A7 = 
1. A first approximation for Pe gives Pe ≈ 1 – (1 - p)7. 
 
Note The wiretapper can of course use another strategy that gives him a 
lower error rate. 
 
In general, for linear codes, we encode the information  mk  and secret sn-k as 
 
 
 

xn = (mk, sn-k) ·  Ik T 
                               , 
   0 In-k 
 
 

where we use the systematic encoding matrix Gk,n = [ Ik, T].  We continue 
with RS codes using the general encoding method.  
 
 
5.2.3 Reed-Solomon codes 
 
We investigate the more complicated situation where we transmit symbols.  
 
Suppose that we use a systematic symbol error correcting RS code over 
GF(2m) with a redundancy of (n-k) symbols. The equally probable messages 
mk are encoded as mk Gk,n, where Gk,n is the systematic encoding matrix of an 
RS code.  The schematic representation is given in Figure 5.6. We add to the 
(n-k) check symbols the equally probable secrets of length (n-k) symbols, 
represented as (0k, sn-k).  
 
During transmission, we assume that a symbol transmission error occurs 
with probability p < ½.  At the receiver side we thus obtain 
 
 rn  = mkGk,n + (0k, sn-k) + en. 
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where en and 0k are the noise- and the all-zero symbol sequence, 
respectively.  As before, the wiretapper calculates the syndrome 
 

zn-k =  rn HT  = enHT +  sn-k.  
 
For equally probable secrets sn-k, every syndrome is connected to a secret and 
thus a decodable noise sequence. The minimum error probability receiver 
would chose the secret equal to the syndrome, for this connects the  secret 
with the most likely noise sequence, the all-0 sequence. The probability of a 
decision error can be estimated as the probability that a noise sequence 
occurs that is not equal to a code word, i.e. 

 

Pe  
C

ini
i p)(1pA1  

 
     1 - (1- p)n  - ((2m)k -1) · pdmin·(1-p)n - dmin,                                (5.7) 

 
where we lower bounded the error probability by assuming that all non-zero 
code words have minimum weight dmin.  The bound (5.7) can be close to 1 
for large values of n, but needs precise evaluation for specific values of k 
and n. The uncertainty that remains at the wiretapper is then equal to (n-k) 
symbols for equally probable messages.   
 
 

5.3 Noisy Main Channel 
 
For the noisy main channel a more complicated situation occurs. We modify 
the strategy as given in section 5.2. The goal is to transmit a message and a 
secret to the legal receiver over a noisy main channel, while keeping the 
wiretapper  uninformed about the secret. 
 
Suppose that the maximum fraction of channel symbol errors for the main 
channel is p < ½ and that for the wiretap channel the symbol error fraction is 
q > p. In the encoding procedure, we use an RS code with a redundancy n – 
k = 2pn.  
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         k  message symbols       n-k “check” symbols 
 
 
                                  ···          
          
                                                                     
                                                                      +                   
 
   
 

                               n-k   secret symbols 
 

Figure 5.6  Encoding for (n-k) secrecy symbols. 
 
 
To achieve the goal, we use the following RS encoding matrix 
representation. The  standard encoding matrix Gk,n for an RS code as given 
in (A4.1) with dimension k × n, can be brought into semi-systematic form as 
follows.  
 
Step 1. Consider the first u rows and bring this part of the matrix Gk,n in 
systematic form using only the first u rows. The sub-matrix formed by the 
top u rows in called Gu,n. The matrix Gu,n is an RS encoding matrix with 
minimum distance (n – u + 1).  With the systematic part we can create a zero 
sub-matrix in the bottom part of Gk,n. The resulting matrix Gk,n is given by 
 
              u           k-u         n-k 
    
  Iu  A B      u 

Gk,n =           . 
  0 C D     k-u 
 
 
Gk,n generates an RS  code with minimum distance (n-k+1) and therefore, the 
bottom part must have rank equal to v = (k - u). If not, the minimum distance 
cannot be equal to (n-k+1). Hence, by using row and column operations we 
arrive at step 2. 
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Step 2. The bottom v rows of the matrix can be manipulated in such a way 
that  Gk,n  is equivalent to 
 
                                                                  u        k-u      n-k 
 
            Gu,n  Iu         T         U              u 
   Gk,n ≡ Gs-sys :=                             =                                                                             
         0     Gv,n-u  0         Iv         W    v= k-u 
 
 
Property The RS codes generated by the matrix Gs-sys, Gu,n and Gv,n-u have 
minimum distance (n-k+1), (n-u+1) and (n-k+1), respectively.    
 
The transmitted word cn for the information word mu and the secret word sv 
of length u and v, respectively, is given by 
 
 
             cn  = (mu , sv)  •       Iu     T    U       
                                                                                
                  0     Iv     W   
 
 

     = (mu, mu T + sv, mu U + sv W ).   
    
The word cn is transmitted and corrupted by the noise word e1

n
  in the main 

channel and by the noise word e2
n in the wiretap channel. When the number 

of errors in the main channel is less than  (n-k)/2, where k =  u + v, these 
errors are correctable and the legal decoder can recover mu and sv.   
 
The wiretapper has a channel that is worse than the main channel, and thus is 
assumed not to be able to decode the message. However, the wiretapper may 
try to imitate the legal receiver and calculate a syndrome, using the 
syndrome former HT  for Gu,n, as   
 

zn-u  =   (cn + e2
n) • HT   

 
 

       =  [(mu, mu T + sv, mu U + sv W) + e2
n ]  •     T    U+TW       

                                                                                
                        Iv   W   
 
                   0    In-k 
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=   (sv, 0 ) + e2

n • HT . 
 
To minimize the error probability, the receiver would choose the secret equal 
to the first v symbols of the syndrome, for this connects the secret with the 
most likely noise sequence, the all-0 sequence. The probability of a decision 
error can be estimated as the probability that a noise sequence occurs that is 
not equal to a code word and is given in (5.7). For Pe→1, the uncertainty that 
remains at the wiretapper is then equal to v = k – u = (2q – 2p)n symbols.   
 
The wiretapper may try to profit from the fact that the number of correctable  
error patterns is less than the number of possible syndromes. However, for 
code word symbols from  GF(2m), code word length n = 2m - 1, and a 
redundancy 2qn = n – k + v = n - u, the number of correctable error patterns 
can be estimated as 
 

 .1)(n1)(n
t

n
)(2 |e| un2qn

qn

0t

t mn
2













               (5.8) 

 
Hence, every possible syndrome pattern corresponds with a correctable error 
patterns. In fact, for every different sv a different decodable error pattern can 
be given. Given sv and the error pattern, a unique mu can be determined. 
Since the sv word is of length v, we say that the wiretapper has v symbols of 
uncertainty, where v = k – u = 2q – 2p.  This is the same result as given in 
the Gelfand-Pinsker [36] bound for the wiretap channel. 
 
 
  1 1 1 1 1 1 1   
 G = 1   2     3 4  5 6  
  1 2  4     6   3 5 
  
      Figure 5.10a  RS encoding matrix for n = 7 k = 3 
 
 
Example We conclude with two simple examples of codes, based on the 
minimum distance 5, two symbol error correcting  RS code for GF(23) 
generated by the minimal polynomial 1 + X2 + X3, see appendix A2, Figures 
5.10a, 5.10b, and 5.10c. 
 
 
 



 Chapter 5-The Wiretap Channel  

107 
 

 
 
  1 0      6 5  2 4   
 G = 0 1 5     4   3 6  
  0 0 1 4     1 6 4 
 
    Figure 5.10b Reed-Solomon encoding matrix for one symbol security 
 
  
  1 1 1 1 1 1 1   
 G = 0 1 0 5 1      
   0 0 1 4 1  6 4  
 
     Figure 5.10c  Reed-Solomon encoding matrix for  two symbol security 
 
 

5.4 Noiseless Main Channel and Partly Observed 
Message 
 
Suppose that code words are transmitted over a wiretap channel of type II 
[36], where  the main channel is noiseless, xn =  yn, and the wiretapper can 
examine a subset  of  size- of the code word symbols of his choice. 
Ozarow and Wyner [36] examined this situation and defined the 
equivocation for the wiretapper as 
 

).Z|H(SminΔ μk

μτ:
  

 
The concept of equivocation is equivalent to the average number of source 
symbols that cannot be found given  code word symbols. The minimization 
in the definition of the equivocation reflects the best possible situation for 
the wiretapper. A system designer tries to find a coding scheme that provides 
an optimal tradeoff between the rate of transmission and the equivocation. 

 
We will discuss the properties for the case when we transmit symbols from 
an RS code over GF(q = 2m). To explain the coding strategy, we make use of 
a systematic RS code with dimensions k × n. The four encoding/decoding 
steps are: 
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1. randomly generate a code word; 
2. add the secret of length n-k symbol wise to the last n-k code 

symbols; 
3. the legal receiver immediately retrieves the secret by subtracting the 

code word, identified by the first k symbols, from the received word; 
4. the wiretapper tries to find the secret based on a subset   of  size- 

of the code word symbols. 
 
Performance can be analyzed using the following observation: Let i and j, 0 
≤  i+j = μ ≤ n, be the number of symbols in yn known to the wiretapper from 
the first k and the last n-k symbols (check part), respectively. We distinguish 
the following two cases. 
 
 
                    encoder                                               decoder (legal) 
     message 
                                                 

            sk                               xn                               yn                      kŝ    

 
                                                                       
 
 
                                                                  zμ   
                                                       wiretapper 
           

Figure 5.7 The general wiretap channel  II 
 
 
Case 1:  μ ≤ k (Figure 5.8a) 
 
For the RS encoding matrix the rank of any k × k sub-matrix is equal to k,  
and thus there are qj possible different segments at the j positions, specified 
by the wiretapper in the check part. Every particular segment, together with 
the observation, corresponds to j secret symbols. Since there are qj possible 
different segments, the wire- tapper does not gain any information about the 
transmitted secret by observing the j symbols. For equally probable code 
words the total equivocation, or logarithm (base q) of the number of possible 
segments, is thus 1 = (n-k) symbols. We visualize case 1 in Figure 5.8a. 
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Case 2: μ > k (Figure 5.8b) 
 
The wire tapper chooses j positions in the check part. For k < μ = i + j ≤ n,  
we have j > k – i. Since k positions uniquely determine the code word there 
are j – k + i  positions with symbol values determined by the specific code 
word. The total number of unknown symbols, equivocation, for the wire 
tapper is thus (k – i) + (n – k) – j = n – (i + j) = n – μ. We visualize case 2  in 
Figure 5.8b. 
 
 
                                  k                     n-k 
 
 
 
                                  Ik 

 
 
                            i                             j 
 
 Figure 5.8a  Selection of  i + j columns in G, where i + j ≤ k  
 
 
                                  k                     n - k 
 
 
 
                                  Ik 

 
                                                           k-i 
                             i                               j 
 
 Figure 5.8b  Selection of  i + j columns in G, where k < i + j ≤  n 
 
 
For  μ ≤ k, the equivocation is (n - k) symbols. For  μ = n,  the equivocation 
is zero symbols.  For μ > k the equivocation is n – μ. We summarize the 
results in the “minimum possible equivocation” region as given in Figure 5.9 
which was derived by Ozarow and Wyner. We conclude that RS codes 
perform according to the bound! 
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Example We use the RS code of length 3 over GF(22). The encoding matrix 
looks like 
 
   1 0 α  
 G2,3 =      . 
   0 1 α2 
 
The  word  
 

y3 =  x2  • G2,3 +  (0, 0, s1),  
 
where s1 is the secret symbol to be protected. It is easy to verify, that the 
possible observation of μ = 1 symbol by the wiretapper does not reveal the 
secret symbol.  
 
 
                           
 
                     n - k 
                       
  
 
   
 
          k          n         μ 
                         
      Figure 5.9  The capacity region for μ observations by the wiretapper 
 
 
For general linear block codes, the equivocation depends on the rank of the 
selected sub-matrix. In [37], Forney introduced the concept of Inverse 
Dimension/Length Profile (IDLP) of an (n,k) linear block code C, which 
demonstrates the dependency of the equivocation on the structure of the 
matrix G generating the code.  The IDLP of C is defined as a sequence of 
length n + 1 with components 

    ,n0 ,(C)Prank min(C)k τ
τ

μ    
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where )C(P   is the selected sub matrix defined by the μ positions.  For our 

example, k(C) = {0, 1, 2}. An upper bound on IDLP is given by Forney in 
[37] as 
 
   k,          k ≤ μ ≤ n 
 kμ(C) =                                                . 
    μ, 0 ≤ μ ≤ k 
 
The RS codes are codes that meet the upper bound. In the situation where the 
wiretapper has additional information on the encoded data, an extension of 
the IDLP has been defined in [38].  
 
 

5.5 Concluding Remarks 
 
We describe the classical wiretap channel model with a legal receiver and a 
wiretapper. For this model we derive the secrecy capacity for the noiseless 
main channel and for the noisy main channel. We give a coding method 
using RS codes and compare the performance with the optimum capacity 
results.  As a special case, we explain the idea of a wiretapper observing 
only a specific number of symbols from the transmitted message to the legal 
receiver. Here we also conclude that RS codes obtain optimum performance. 
The content is given in Figure 5.10. 
 
 

Wiretap channel models 
  
 

Secrecy capacity 
 
 

Coding for noiseless main channel 
 
 

Coding for noisy main channel 
 
 

Noiseless main channel and partly observed messages 
 
 

 Figure 5.10 Overview of the content of Chapter 5 
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An interesting result was obtained by Bin Dai in [89], where he considered 
the wiretap channel with noiseless feedback. Feedback can increase the 
secrecy capacity region! Further basic research in this area has been carried 
out by Chai Mitrpant1, Yanling Chen2, and Bin Dai3. They showed that side 
information available at the transmitter enlarges the secrecy capacity region 
in the Gaussian case, whilst in the discrete case the problem is still open. 
 
1 Chai Mitrpant, PhD,  University Duisburg-Essen, Information Hiding, 2003 
2 Yanling Chen, PhD, University Duisburg-Essen, Wiretap Channel With Side Information, 
2007 
3 Bin Dai, PhD, Jiao Tong University, Shanghai, 2013 
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Chapter 6 
 
Biometrics 
 
In Shannon’s  cryptography landmark paper [50], he defines a cryptosystem 
as depicted in Figure 6.1. A message m is encrypted with a private key into a 
cryptogram c. At decryption we use the same key and reconstruct the 
message m. A cryptosystem is said to have “perfect secrecy” when for every 
message m and ciphertext c (cryptogram) the probability P(m | c) = P(m). In 
this case, it can be shown that the entropy H(M) = H(M | C).  In all other 
cases, the difference H(M) – H(M | C) is positive and we call the difference 
the leakage of a system.   
                                                         
 
      key K          key K 
 
                                 cryptogram C 
             encrypt                                                                                decrypt 
             e(M,K)=C                 d(C,K)=M 
 

 
 
message M                  message M

               
Figure 6.1  Schematic representation of  the Shannon cipher model 

 
 
Without loss of too much generality, we assume that the message M and 
cryptogram C are connected via one unique key K. Then, the condition for 
“perfect security” can be given as 
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 H(M) = H(M | C) = H(M,C | C) = H(K | C) ≤ H(K). 
 
The interpretation is that the minimum average description length of the 
message must be smaller than that for the key in order to have “perfect 
secrecy”.  
 
In the following situation, we assume that the receiver has a noisy version of 
the key, see Figure 6.2. 
 
 

   noise  
                                                       
                key K             key K 
         

                 
                                 cryptogram c      
             encrypt                                                                                  decrypt 
            e(M,K)=C                 d(C,	K)=M 
 

 
 
message M                  message M 
               
Figure 6.2  Schematic representation of the noisy cipher system 

 
 
Again, we assume that a message M and cryptogram C together also 
uniquely determine the key K. In addition, we expect that for the noisy key  
K and C uniquely determine M. Hence, there is no decryption error. For 
“perfect secrecy”, we have the relation H(M) = H(M | C) and thus for (M,C) 
→ K and (K,C) → M,  we have 
 
 H(M | C) = H(M,C | C)  = H(K | C) 
 

 = H(M,K	| C) – H(K	| M,C)  
   
   = H(K	| C) + H(M |	K,C) – H(K	| K)  
 
   = H(K	| C) – H(K	| K) 
 
   ≤ H(K) – H(K	| K)       
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 = H(K) – H(K |	K).   (from manipulating the H function) 
 
Hence, for “perfect secrecy”, we have the conditions 
 
 H(M)  = H(M | C) = H(K | C) ≤  H(K)  – H(K |	K), 
 
where the maximum source entropy and the key entropy, given the cipher 
text,  are  reduced with the amount H(K |		K). This is the price for having a 
noisy key. 
 
 

6.1 Biometric Authentication 
 
Biometric identifiers are the distinctive, measurable characteristics used to 
label and describe individuals. The biometric authentication scheme as 
developed by Juels-Wattenberg (JW) [41] can be seen as a noisy cipher 
system, see Section 6.3. The biometric bn acts as a binary key of length n at 
encryption and as a noisy binary key at decryption. The message mk of k bits 
is encoded as code word cn of length n using an error correcting code. The 
result (bn  cn) is stored in a data base (enrollment), where  is modulo-2 
addition. At authentication, the code word is retrieved from the data base and 
added to the “noisy” biometric. The decoder gives the correct mk in case the 
number of errors is within the error correcting capability of the code. We 
will analyze the performance later. 
 
 

         en   noise 
                                                         
    bio bn             bio bn 

                                                               
                                                        

                  data      
                                 cn + bn          base               
                      cn                                                                                cn + en 

              encoder        decoder 
  
          
      mk                mk 

      
    Figure 6.3  Schematic representation of the JW scheme 
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The JW biometric authentication scheme can also be seen as a wiretap 
channel, see Figure 6.4. Encoding is done as in Figure 6.3. The legal 
“receiver” has the observations zn = cn  bn and bn  =  bn  en, where en is an 
error vector (the difference between bn and b n). This legal receiver can 
calculate yn = cn  bn  bn  = cn  en.  A data base observer has the 
availability of zn = cn  bn.  Therefore, Figure 6.3 can be redrawn as the 
wiretap model of Figure 6.4.  For binary inputs and binary symmetric 
channels, the maximum “secrecy capacity” is 
 

 

)),E(H)B(H(n

))Z;C(I)Y;C(I(maxC nnnn

)nC(P
s





                                    (6.1)
 

 
which is the difference in biometric - and noise entropy.  
 
The observation that the legal user has the availability of the output of two 
parallel channels, see Figure 6.5, can also be applied to the wiretap channel 
to improve the secrecy capacity, see Chapter 5. In this case, 
 

             )}YC|Z(H)Y|Z(H{max))E(H)B(H(nC nnnnn

)C(P
s

n
   (6.2) 

 
which enlarges the secrecy capacity as given in (6.1). The problem that 
remains is the quantification of  (6.2).  
 
                                                       
                                                            en 
        mk                         cn                                          legal 
                  encoder                                yn = cn+en      
 
 
                                                                 
                                                                                       illegal  

   zn = cn+bn     
          

    bn 
 

Figure 6.4 Wiretap representation for the JW scheme 
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6.2 Biometric Reconstruction 
 
The first problem we consider is that of reconstructing original biometric 
data given a noisy version of the biometric data and some related data 
previously stored in a data base. The condition is that it is difficult or almost 
impossible to guess the original biometric data from the stored data 
[44,45,46,49].  
 
Enrollment 
The reconstruction scheme uses the parity check matrix HT for a length n 
linear block code with k information symbols [42]. The parity check matrix 
HT has n rows and (n-k) columns. Hence, the inner product of a biometric 
vector bn with the parity check matrix gives as a result a “syndrome vector” 
sn-k = bn HT of reduced length (n-k), which a server stores in the data base.   
 
 
                                                                 en 
        mk                         cn                           
                encoder                              yn = cn+en     legal 
 
 
                                                                 
                                                                                             zn = cn+bn    
                                                                                     wiretapper 

           bn 
 

Figure 6.5 Wiretap representation for the improved JW scheme 
  
 
Reconstruction 
We assume that, at the legal reconstruction phase, the noisy vector bn is 
offered to the server, where bn = bn  en and en is an error vector changing bn 
at positions where the error vector en has ones. To reconstruct the original 
biometric vector bn, the server calculates  bn HT    sn-k  = bn HT    bnHT  =  
enHT.  A regular decoding algorithm for the corresponding error correcting 
code subsequently produces en and thus reconstructs bn = bn  en. Of course, 
knowledge of the statistical properties of en is very important for the 
decoding algorithm. 
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The correct vector bn can be used for en- or decryption in a key-based 
entrance system. Incorrect decoding, caused by a bn with un-correctable 
errors, leads to the impossibility to the further use of  bn.  
 
We use as an example an RS code over GF(q = 2m) of length n = 2m - 1. The 
redundancy is n-k symbols, and p is the symbol error probability. The 
important performance parameters to consider are the False Rejection Rate 
(FRR) and the False Acceptance Rate (FAR).  
 
 
              bn = bn  en                                                           bn 

 
                           authentication                              reconstruction 
 
                                                         HT 

 

         enrolment 
            bn                                                   enHT                        en 

                         HT                                                                            decoder      

 
 
   Figure 6.6  Biometric reconstruction scheme 
 
 
False Rejection Rate  
The FRR is defined as the probability that a legal user is not accepted by the 
system. It can be upper bounded by the probability that more than (n-k)/2 
errors occur, i.e.   

 

  (np)  p)(1p
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   .                    (6.3)                         

 
 
False Acceptance Rate  
Suppose that a decoding algorithm only accepts syndromes resulting from 
correctable error patterns and an illegal person is assumed to produce a 
random syndrome. Then, the FAR is the probability that a random syndrome 
is accepted as valid, i.e.  
 



 Chapter 6-Biometrics  

119 
 

 
.q)1(n

i

n
FAR

k)/2-(n

0i

k)/2(nk)(n


 







                            (6.4) 

 
From (6.3) and (6.4), we see that the FRR and FAR can be reduced by 
increasing (n-k). Calculation of the FAR and the FRR are the same as for a 
noisy communication channel with the same parameters.  
 
Correct guessing probability 
Another measure of performance is the probability that an illegal user of the 
system guesses the correct biometric with or without the stored syndrome 
from the data base. Assume that an illegal user always guesses the biometric 
bn  Bn, where Bn is the set of possible biometrics, with the highest 
probability of occurrence, thus minimizing the average probability of 
guessing error (Maximum Aposteriori Probability, MAP). Using this 
principle, without data base knowledge, the correct guess probability  
 

)P(bmax(correct)P n

 B b
guess

nn 
 .                                 (6.5) 

 
An illegal user, with data base knowledge of sn-k, can improve this 
probability by guessing the bn for which P(bn stored as sn-k| sn-k) is maximum. 
Let Sn-k be the set of possible syndromes,  then 
  

)s|P(bmax)s|(correctP k-nn

sb:B

k-n
guess

k-nnn 
 . 

 
The average probability of correct guessing is 
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  (6.6)               
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The upper bound on the correct guessing probability in equation (6.6) is a 
factor qn-k  higher  than  (6.5).   
 
For every particular syndrome, there are only qk candidate biometric words 
and thus, the average probability that we have a correct biometric bn can be 
bounded as 
  

).P(b  maxq    )s| (correct   P  q n

B

knk-n
guess

k
n

                              

(6.7)
     

                                                        
For a small value of k, a high correct guessing probability for the illegal user 
can be expected, whereas a large value of k makes it more difficult to guess 
the correct biometric.  
 
Using the concept of entropy with base q, the entropy H(Bn | Sn-k)  k 
symbols, because there are only qk candidate biometrics for a particular 
syndrome vector sn-k. The entropy H(Sn-k) ≤ (n-k), since there are qn-k 
possible syndromes.  Thus, since H(Sn-k) + H(Bn | Sn-k) = H(Bn) + H(Sn-k | Bn) 
= H(Bn), we obtain 
 

k  H(Bn | Sn-k) , 
 
    H(Bn) – (n - k).                                               ( 6.8) 

 

We call (n-k) the entropy loss or leakage rate, see also (6.6), where we lose a 
factor (2m)n-k in the guessing probability.  In information theory, the concept 
of typicality can be used to show equivalence between (6.6) and (6.8). 
 
 
6.3 The Juels-Wattenberg Scheme 
 
There are several ways to describe biometrics for authentication purposes. 
Biometric data can be given as a collection of different symbols in an 
ordered or un-ordered way. In particular cases, biometric data is given by the 
possession of particular important properties. At authentication these 
properties are checked on their presence. The properties might change, 
disappear or other properties appear as important. When the biometrics are 
used as a password, one has to deal with these errors without sacrificing the 
security. JW  designed a scheme where both aspects, are incorporated.  
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6.3.1 Juels-Wattenberg Scheme with a biometric of length n 
 
The original JW scheme using general linear codes is described for 
biometrics bn of length n.  
 
 
                                                                ? 
       Pk           hash(Pk)  = hash(Pk)                               Pk 
 
 
 encoder                      decoder 
 
                      cn  
    corrupted code word       cn      

         
 
 
      bn            bn 
Figure 6.7  JW scheme for linear codes 

 
 
Enrollment 
We add a biometric vector bn of length n with components from GF(2m)  to a 
randomly chosen code word cn from a scheme specific RS code. The code 
word is generated by a random vector Pk. We store the sum cn = bn  cn in a 
data base.  In addition, we also store the hash(Pk) in the data base. 
 
Authentication 
At authentication we add again the relevant biometric and the result is cn  
bn = bn  cn  bn =  en  cn, see Figure 6.7.  From this, we can retrieve the 
original code word cn and thus Pk if the number of errors is within the 
decoding region. The hash(Pk) can be used to check for correct decoding. 
 
False Rejection Rate  
The FRR is upper bounded by the probability that we have more than dmin/2 
errors in the biometric	bn. For RS codes over GF(2m) with minimum distance 
dmin= n-k+1,  
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which is the same as (6.3) 
 
False Acceptance Rate  
For the FAR, we calculate the probability that a random vector bn is such 
that bn  bn = en  is within the decoding radius of the code word cn, i.e.   
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This FAR is a factor q-k better than (6.4). The calculation is based on a 
random biometric b, whereas it can be expected that the vector bn probably is 
not a random vector, but drawn from the same set of biometrics as the 
original one.  
 
Correct guessing probability 
The correct guessing probability is the same as given in Section 6.2. 
 
 
6.3.2 Juels-Wattenberg scheme with  a biometric of fixed length t < n 
 
We describe a particular implementation that uses RS codes as basic 
component. Let the RS code be over GF(q = 2m), i.e. length n = 2m - 1. The 
biometric is characterized by t different values less than 2m and is specified 
by bt = (b1, b2, ···, bt), bi  GF(2m),  bi  bj,  The scheme works as follows. 
 
Enrollment 
1. generate a random word Pk of k symbols from GF(2m),  and store the 

corresponding hash value, hash(Pk), in the data base. The hash(Pk) 
produces a value from which we cannot reconstruct Pk; 

2. encode Pk with an RS encoding  matrix as cn; 
3. the t different values from bt are used as indicators for the positions in cn 

where the code word symbols are fixed. In all other (n-t) positions, the 
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symbols are changed in a random way from their original value. A code 
word cn is created with n - t errors; 

4. the word cn is stored in the data base.  
 

Authentication 
We assume that the biometric has r error symbols. Hence, the biometric 
points at t – r correct positions and r incorrect positions. For the decoding the 
remaining positions are considered to be erasures. Since the code has 
dimensions (n,k), minimum distance n-k+1, the correct code word cn and 
thus Pk can be decoded for  

 
(n – k + 1) – (n - t)  2r +1.   

 
For (t – k)  2r no decoding error can occur. After decoding Pk, the hash(Pk) 
can be calculated and compared with the stored value from the data base at 
enrollment.  
 
Note We can also let bt determine t incorrect positions. Correct decoding is 
then guaranteed for  

 
(n – k + 1) – t  2r + 1, 

 
or (n – t - k)  2r.  A schematic representation is given in Figure 6.8.  
 
                                                               ? 
       Pk         hash(Pk) = hash(Pk)                              	Pk 

 
 
  encoder                   decoder 
 
 
 error          corrupted code word   position 

generator       selector 
 
 
position                              bt 

selector             
 
      bt 

 
    Figure 6.8  Representation of the JW scheme using RS codes 
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We use this description of the JW scheme, because it fits the use of RS codes 
very well and it relates the JW scheme with the Juels-Sudan (JS) hereafter.  
 
 

6.4 The Juels-Sudan (JS) Scheme 
 
The JS scheme [47]  is a biometric authentication scheme also based on RS 
codes. We describe a particular version of the JS scheme. 
 
Code words of an RS code over GF(q = 2m) are generated by evaluating a 
random information polynomial P(X) of degree k-1 (equivalent to a vector 
Pk of length k with elements from GF(2m)),  for X = i, i = 0,1, …, n-1;  a 
primitive element of GF(2m); n = 2m -1. The k symbols from P(X) can be 
hashed, as for the JW scheme [41] and stored as hash(P(X)) in the data base 
for further use.  
 
Enrollment  
We assume that bt = (b1, b2, ···, bt), bi  GF(2m),  bi  bj, represents the 
biometric at enrollment. Then:   
 
1 choose random P(X) of degree k-1;  
2 store : cn  = (c0, c1, ··· , cn-1 ), where   

 ci    = P(i)               for  i  bt, 
 ci 

    P(i)             in (n – t) other  positions. 
 
As mentioned before, after enrollment the word bt can change due to errors 
like measurement imprecision, aging, etc. We assume that for a particular 
user at authentication we offer a word bt from t biometric properties. The 
procedure at authentication is described as follows.  
  
Authentication 
Given bt  = (b1, b2 , ···, b t), bi   GF(2m),  bi   bj . 
 
1 evaluate P(i ),  for  i  bt; 
2 declare the remaining positions as erasure; 
3 decode  P X); 
4 give Reject when hash(P(X)) unequal hash(P(X)), otherwise Accept. 
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Note, that bt determines t positions in cn, whereas the values at these 
positions are uniquely determined by the polynomial P(X). The values at the 
(n - t) other positions differ from the evaluation of P(X).  
 
False Rejection Rate 
The legal user, having a biometric bt, considers t positions, of which possibly 
a maximum of r positions are wrong. The remaining (n - t) positions are 
considered as erasures. Correct decoding (the hash values comparison gives 
Accept) is guaranteed if  (n–t+2r+1)    (n–k+1)  or 2r    (t–k).  The 
probability that there are more than (t-k)/2 symbol errors in t positions, for a 
symbol error rate p, thus gives an approximation of the  FRR 
 

FRR  (tp)1+(t-k)/2..  
 
Making k larger will reduce the error correcting capability of the decoder 
and thus the FRR will increase. 
 
False Acceptance Rate 
For the FAR we assume that an illegal person produces a random vector of t 
positions. The FAR is then given by the probability that a random vector at 
authentication has at least k correct positions from cn that lead to the 
reconstruction of  P(X).   Hence, under this condition,  
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                (6.9) 

 
For t = k, the FAR is roughly equal to q-k, the same as for a direct guess 
without using the biometric.  
 
Correct guessing probability 
Since the data is stored in a public data base, an illegal user of the data base, 
trying to decode on the basis of the observed data, has n-t errors in n 
symbols and thus correct decoding is “not” possible for  2(n-t)+1 > n–k+1  
or  2t  <  n+k.  One possibility is to guess k correct positions out of n and try 
to decode  P X  with (n-k) erasures. Note that t positions out of n are correct. 
Hence, the probability of success  
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Without biometric, the probability of a correct guess is q-k. Hence, we have a 
loss due to the fact that the biometric bt  has t properties. An illegal user 
could also guess P(X) given cn using the Maximum Aposteriori Probability 
(MAP)  principle and thus: 
 

 

 
As in (6.7) we have 

 
   
          (6.11) 

 
 
Comparing (6.11) with (6.7) we see an exponent (t-k) instead of (n-k). 

 
 
6.5 An Improved Version of the Juels-Sudan Scheme 
 
Dodis et al. [43] published an improved version of JS. In this version only t  
instead of n symbols are stored in the data base. Performance can be shown 
to be the same as for the original scheme, when n symbols are stored. It can 
be described as follows: 
 
Enrollment:  
Given the biometric bt =(b1,b2,···,bt), bi GF(2m),  bi  bj. 
1. choose a random secret P(X) of degree k-1;   
2. calculate  Q(X) = P(X) + (X-b1)(X-b2) ···(X- bt);  
3. store  Q(X) of degree (t-1). 
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Authentication:  
Given bt  = (b1, b2 , ···, b t), bi   GF(2m),  bi   bj . 
1. evaluate Q(bi ), i = 1,t. Q(bi ) = P(bi ) for bi  = bi; 
2. decode P(X).   
 
For  bt, with at least k correct values, we have correct decoding of P(X). If 
we look at the vector Qt that corresponds to Q(X), we conclude that Qt  plays 
exactly the same role as the vector cn in the JS scheme.   One of the problems 
with the JS scheme is the choice of biometrics in the application. A 
fingerprint-based fuzzy vault implementation can be found in Nandakumar 
et al. [48].  
 
Note The JS scheme is close to the JW scheme when we consider RS codes. 
In the JW scheme, we store cn + bn in the data base, where cn  is generated by 
Pk. At authentication, we add bn to the stored result and thus we obtain cn + 
en. If we assume not more that t errors, we can decode the original code 
word. The difference with the JS scheme is that bn can change the whole 
code word cn, whereas in the JS scheme only a particular set of values is 
changed. If bn contains exactly t positions, the two schemes are exactly the 
same.  
 

 
noiseless Shannon encryption 

 
 

noisy Shannon encryption 
 
 

biometrics as a key 
 
 

description as a wiretap channel 
 
 

coding: probabilistic biometrics 
 
 

coding: fixed set of biometric 
 

 
Figure 6.9  Schematic form of the content of Chapter 6 
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6.6 Concluding Remarks 
 
This chapter gives an interesting application for the wiretap channel. We 
start with a noisy crypto scheme as defined by Shannon and relate this 
scheme with the noisy fingerprint authentication as developed by Juels and 
Wattenberg. The scheme uses a probabilistic description of the biometric. 
Therefore, we can describe this biometric authentication principle using a 
wiretap channel model. In [79], an algorithm is described that estimates the 
entropy of finite length biometric data. 
  
We conclude with an authentication scheme derived by Juels and Sudan. 
This scheme is based on a maximum number of properties from the 
biometric.  It is interesting to see the connection between the Juels-Sudan 
scheme and the Juels-Wattenberg scheme. We derive and compare the 
performance parameters False Acceptance Rate, False Rejection Rate and 
probability of a successful attack. In schematic form, the content of Chapter 
6 is given in Figure 6.9. 
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Chapter 7 
 
RS Codes with Constraints 
 
This chapter contains four topics that can be seen as coding with restrictions, 
also called constrained coding. The first topic is the avoidance of certain 
symbols to occur in the output of an RS encoder. The second topic is the 
combination of RS and Run-length constrained coding with application in 
bandwidth limited channels. The third topic introduces the distance profile of 
a code and we conclude with RS codes for which the maximum number of 
symbols of the same type is bounded.   
 
 

7.1 Symbol Avoidance  
 
The first problem is to generate RS code words over GF(q) in such a way, 
that particular symbols do not occur in the code word. To achieve this, we 
use a method described in a paper by G. Solomon [57]. The method is 
described for the avoidance of one symbol, but can be extended to exclude a 
particular set A of symbols with cardinality |A|. 
 
 
  Iκ        0       P     
              Gk,n =                             k      
  0        Ir       Q 
 
                                      n 
 
    Figure 7.1  Parameters for a systematic RS-encoding matrix  
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For instance, if we want to use an RS code over GF(11) with code words of 
length 10 and code word symbols from {0, 1, ···, 9}, we have to exclude the 
symbol 10 in the encoder output.   
 
In Figure 7.1 we give the parameters of the RS code in systematic form that 
are of importance for the description. Note that, κ + r = k. We encode a 
message as  
 
 (mκ,sr) Gk,n = cn, 
 
where mκ is the information to be encoded and sr a control word of length r. 
The κ q-ary information symbols are pre-coded such that they do not contain 
a particular set A of symbols. The r control bits are used to manipulate the 
check part (last n-k symbols of a code word) such that symbols from A do 
not occur in the check part. From the constraint it follows, that the maximum 
number of control words we can choose is (q - |A|)r.  
 
 
 
          κ    RS   (mκ,0r)Gk,n 
          information  check part  
          symbols ϵ Ac generation 

  
             n-k        (mκ,sr)Gk,n  
             check symbols 
 

construct  (0κ,sr)Gk,n  
control 

       word sr 

 
  
 Figure 7.2 Concept of the control word generation 
 
 
Property A control word sr can be used to create any symbol in a particular 
position in the check part. 
 
The property follows from the fact that, the minimum distance for this 
systematic RS code is dmin = (n - k + 1), and thus the last (n - k) symbols of 
any row are non-zero. Furthermore, since every element in the Galois Field 
has an inverse, we can create any symbol in a particular position in the check 
part by using a particular control word sr. 
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Encoding 
Let the first κ pre-coded information symbols (no symbol from A) generate a 
check part. A particular set of control words has to be selected that generate 
check parts such that the symbols from A do not occur in the summation of 
the check parts generated by the information and control input, see also 
Figure 7.2. Every symbol in the check part generated by the information, 
eliminates a maximum of |A|(q-|A|)r-1 control words that cannot be used. If 
the total number of eliminated control words is less than (q - |A|)r, we can 
always find a particular choice for the control input that realizes a check part 
without the undesired symbols. Thus,  for 
 
         |A|(n-(κ +r)) (q-|A|) r-1  <  (q-|A|)r 

 
or 
    








 


|A|

|A|q
r)(κn  ,                  (7.1) 

 
this condition is fulfilled. 
 
Example For |A|  = 1, r = 1, q = n+1 (RS), the condition is always fulfilled.  
 
Example  For  |A| = 2, r = 1, the redundancy n-(κ+1) < (n-1)/2, or κ > (n-
1)/2. 
 
Example Take an (n = 7, k = κ + r = 3) RS code over GF(23). The field 
GF(23) is defined by a primitive polynomial, P(X) = X3 + X + 1.  
The generator matrix  

 
               1 0 0  6 1 6 7 

 G3,7  =   0 1 0  4 1 5 5 . 
                            0 0 1  3 1 2 3 
 
By choosing r = 1, we have  κ  = 2. Let A = {7}.  From G3,7, we have  the 
following control words we can use when we encounter an information 
check part containing the symbol 7, 
 
    [ 0 0 0   0 0 0 0],  [ 0 0 1   3 1 2 3], [ 0 0 2   6 2 4 6],  

[ 0 0 3   5 3 6 5],  [ 0 0 4   7 4 3 7], [ 0 0 5   4 5 1 4],  
[ 0 0 6   1 6 7 1]. 
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The word  
 

[ 0 0 7  2 7 5 2 ]  
 
cannot be used to eliminate the symbol 7 since it has 7 in its systematic part.  
To illustrate the elimination of symbol 7, we pick one code word with the 
symbol 7 (in the check part) from the list of code words produced by G3,7 
using the two information digits (0,3).  The specific code word is  
 

c7 = [0 3 0  7 3 4 4].  
 
Taking a suitable  control word as  [0 0 3  5 3 6 5]  from G3,7, we obtain the 
final encoded word without the symbol 7 as [ 0 3 3  5 6 3 2 ]. It can also be 
verified that either [0 0 5 4 5 1 4] or [0 0 6 1 6 7 1] is a suitable control word 
 
 

7.2 Constrained Coded Modulation 
 
Run Length Limited (RLL) codes are used in communication channels with 
power spectral limitations. The limitations (constraints) are translated into a 
longest (k-constraint) and a shortest run of transmitted symbols that are the 
same (d-constraint). The maximum run guarantees a variability in the 
transmitted symbols that improves the synchronization. In our case we 
assume k = ∞. The shortest run length constraint limits the power spectral 
density in the higher frequency part of the power spectrum. For further 
information, we refer to the textbook by Schouhamer-Immink [32].  
 
We describe the application of constrained coded binary modulation in the 
time domain. We combine error correcting codes and RLL codes before 
binary modulation. The RLL code is designed in such a way, that the 
minimum spacing between two transitions in the binary RLL word is at least 
the same as for the un-coded symbol duration. In this way, we obtain a 
system where we have almost no change in the Power Spectral Density 
function but a net positive coding gain as for coded modulation invented by 
Ungerböck [58].  
 
 
7.2.1 System design 
 
In CD type of recording systems one often combines an error correcting 
code RS code with an RLL constrained code [55]. The advantage is that 
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errors in the constrained code can be seen as symbol errors for the error 
correcting code RS code.  
 
Example An example of a combination is given in Figure 7.3, where we 
encode 223 x 8 bits into RS code words of length  255 symbols of 8 bits and 
convert each RS symbol into a constrained RLL code word of length 14.  
The RLL code words are constructed in such a way that they can be 
concatenated without violating the d-constraint. For this, one can use stuff 
bits (3 bits for the CD length-14 RLL code) or the principle of  RLL 1-
symbol look-ahead encoding, see Hollmann [59]. The resulting bits are 
binary modulated, where the carrier period is a multiple of the RLL symbol 
duration.  
 
The RS code needs an expansion of the time needed to transmit the 
information, whereas the constrained RLL code reduces the transmission 
time. The goal is not to change the total time to transmit the k information 
symbols. Since we aim at short code word lengths, we can apply soft-
decision decoding on the constrained RLL code words if in addition to the d-
constraint, we also have a minimum distance between any two RLL code 
words  larger than 1.  
 
 
                                   error  conversion                   modulator     
                              correction         to RLL                       signal 
          code              generator 
         Information                                                           
                                    RS                   RLL                         
                 223 x 8                255 x 8            255 x (14+3)                       
      
                
        Figure 7.3  Principle encoding/modulation scheme  
 
 
7.2.2 Idea for the modulation 
 
We use binary modulation to transmit the constrained words. The RLL 
constraint d and the RLL symbol duration ’ are chosen such that  ’(d+1) = 
. As a consequence, the RLL symbol  is repeated at least d+1 times to give 
a new symbol of minimum duration . The minimum separation between 
two transitions in the binary RLL word is at least . Therefore, the Power 
Spectral Density (PSD) can be expected to stay roughly the same as for the 
original un-coded binary word. In addition, the modulator output also has a 
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constant envelope output. In Figure 7.4 we give the Power Spectral Density 
of the modulated RLL words as a function of the parameter d using Binary 
Phase Shift Keying (BPSK).  
 

 
 
 

Figure 7.4  Normalized Power Spectral density for different values 
of d for BPSK signaling 

 
 
7.2.3 Idea for the RLL-encoding 
 
We use Figure 7.5 to explain the main idea in more detail.  
 
1. we first convert binary words of length k information bits into code 

words of length n from an error correcting code and symbol duration . 
The efficiency of encoding is k/n; 

2. the n symbols are converted into constrained binary words of length m 
with symbol duration ’ and a minimum run of d+1 symbols that are the 
same. The efficiency of the conversion is RRLL = n/m.  

 
Now, consider a time frame of length T with n = T/ code word symbols. In 
the same time T, we can have m = T/’ symbols from the constrained RLL 
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code. Hence, in this case we have the relation T = n = m’ and using the 
condition that ’(d+1) =  we have RRLL (d+1) = 1. If in addition we use an  
 
 

                                                           T 
 
            Figure 7.5a  Message of length 6, encoded with rate 6/8 
 

 
                                                             T 
 
 Figure 7.5b RLL code, d+1=2,  with 64 code words of length 12 
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error correcting code with efficiency k/n, the final condition of no change in 
the PSD or “no bandwidth” expansion is  
 
 (k/n) RRLL (d+1) = 1.                                                                (7.1) 
 
Figure 7.5 illustrates the idea in the time domain. Six information symbols 
are encoded into eight code symbols. The eight code symbols are translated 
into twelve RLL symbols. The overall rate satisfies (7.1). 
 
The research problem to solve, is the design of the combination of error 
correcting codes and constrained codes such that (7.1) is fulfilled (the d-
constraint). The additional problem is the design of a demodulator. We will 
discuss a particular system design in the next section. 
 
 
    Table 7.1 
 
  Code Table: RLL(d+1=2), RRLL=3/5 
 

message code word message code word 

0 
1 
2 
3 

00011 
00111 
11000 
11100 

4 
5 
6 
7 

00001 or 00110 
11110 or 11001 
01111 or 10011 
10000 or 01100 

 
 
Example In Table 7.1 we give the RLL words for (d + 1) = 2 that can be 
implemented using a 1-symbol look-ahead method. For instance, if we store 
message 4 we can choose between 00001 and 00110. The code word is 
selected in such a way that the next code word does not violate the d-
constraint. Thus, if the next message is 00011 we use 00110, whereas for 
message 2 we use 00001. In this way, we do not have to use extra bits 
between the RLL words to satisfy the d-constraint as is in recording systems 
like CD, Hollman [59].  
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If we use an RS code over GF(23), the binary code symbols are of length 
three. Every symbol can be converted into an RLL code word. For  k = 5 and 
n = 6,  dmin = 2 and  the value of  RRS RRLL (d+1) = 1. After demodulation, 
the RLL symbols can pass the likelihoods for every possible symbol to the 
RS decoder. Since dmin = 2, we expect a coding gain of 3 dB without any 
bandwidth expansion, see Ungerböck [58]. 
 
Example The RS code we focus on is of length n = 255 symbols of 8 bits. 
The code has minimum distance n – k + 1, where k is the number of 
information symbols. For the constrained code, we select an RLL code with 
parameter d = 1 or 2. The research problem, solved by Mengi [60,61], is the 
construction of RLL codes that satisfy the following constraints: 
  
1. RLL code words can be concatenated without violating the d-constraint; 
2. RLL code  words  must have a minimum distance larger than 1, to 

facilitate soft-decision RLL decoding; 
3. the number of code words is at least 256; 
4. the combination RS, RLL satisfies  (7.1). 
 
Ad 1). The first condition can be solved using the approach by Hollmann 
[59] for the construction of block decodable RLL codes.  
 

Table 7.2 
 

                  Example of RLL, RS combinations that 
                  satisfy RRS RRLL (d+1) = 1 and dmin = d+1 

 
d      RRLL       dmin       RRLL (d+1)       RRS 

 
   1       8/14        2           8/7              223/255 
   2       8/21        3           8/7              223/255 

 
  
Ad 2). The Hollmann construction is given for dmin = 1. In [60,61], an 
extension can be found for dmin > 1. The fact that the minimum distance is 
larger than one, gives the opportunity to do soft-decision on the RLL code 
words.  
 
Ad  3). RLL codes are generated that satisfy the d-constraint. Then, we make 
a selection of the resulting code words that lead to an increase in minimum 
distance. The number of resulting code words should be larger than 255 to 
be able to make a concatenation with the 8-bit RS symbols.  
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Ad  4). If the product RRLL(d+1) < 1, we can select the corresponding RS 
code to satisfy (7.1). In Table 7.2, we give some of the constructed RLL 
codes such that (7.1) is satisfied. More constructions can be found in [60,61].  
 
Demodulation The last part of the system is the demodulator. We assume 
that the carrier frequencies are multiples of 1/’ instead of 1/ to obtain 
phase continuity. At the receiver the demodulator therefore changes the 
integrate-and-dump time-interval to ’. For non-coherent FSK we assume 
furthermore, that there is a constant phase within an RLL-block. After 
demodulation, we have 255 blocks of m soft values. For every block we find 
the RLL code word index i that maximizes 
 

,1,2i  1;/c,scS 8i
jj

m

1j

i
ji 


                                           (7.2) 

 
where sj is the soft output of the demodulator per interval ’ and cj

i  the j-th 
symbol for block i. The complexity of this action is proportional to the 
number of code words times the code word length m. After this operation, 
we can apply hard-decision RS decoding.  
 
 
Performance 
The performance depends on the soft-decision decoding of the RLL code 
words and the decoding of the RS code. We assume Gaussian noise with 
PSD = No/2. Since  = (d+1)’, the RLL soft-decision error rate PRLL is given 
by 
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For dmin = d+1, the RLL symbol error rate is of the same order as for un-
coded transmission. Therefore, we expect the coding gain to come from the 
RS code. In Figure 7.6, we give the resulting “waterfall” curves for the 
system. Three RS codes are simulated with dmin = 1, 2, 3 respectively.  The 
best performance is given by the (255,223) RS code combined with the RLL 
d = 2 and dmin = 3 code. The RS code has minimum distance 255 - 223 = 32, 
and the decoder can correct up to 16 symbol errors. Different code 
constructions and combinations can be found  in [60,61]. 
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 Figure 7.6 Performance curves for several RS-RS combinations 

 

Conclusion 

We describe a coded modulation scheme where the redundancy for error 
correction is obtained from relaxation of the timing. The encoded symbols 
have the same minimum spacing between two transitions as for the un-coded 
case, but the symbols might be longer in discrete steps depending on the 
parameter d. For a particular example, we show a coding gain of about 4 dB. 
An additional advantage is that we have a constant envelope modulated 
signal.  This can be of importance for systems where we have an absolute 
power constraint as for instance in the “Power-line Communications 
CENELEC band.” Our system is considered for AWGN, but will also work 
for other types of noise, since we have a block wise detection and decoding 
without error propagation. 
 
 
 
 
 
 



 Chapter 7-Codes with Constraints  

140 
 

7.3 Optimum Distance Profile 
 
Motivation Error control coding is very often a fixed part of a 
communication systems design. To change a code is impossible due to 
standards and already implemented decoding algorithms. In cognitive 
systems, we want to adapt the efficiency of a transmission scheme to the 
actual circumstances. For this we have to be able to change the modulation 
and also the error-correcting or error-detecting code.   
 
 
    

Specify a code 
↓ 

Start with an encoding matrix 
↓ 

Generate the equivalent matrices 
↓ 

Calculate the distance profiles 
↓ 

Output the Optimum Distance Profile 
 

 
 Figure 7.7 Concept of the optimum distance profile generation 
 
 
The transport format combination indicators (TFCIs) are widely applied in 
CDMA systems, see [55,56]. In the realization of TFCI, input bits are used 
to combine some basis code words of a linear block code. When the number 
of the input bits increases or decreases, some basis code words will be 
included or excluded, respectively. In this process, a general consideration is 
how to realize large minimum distances of the generated sub-codes.  
 
Some concepts are well known, such as puncturing or 
shortening/lengthening an encoding matrix of a linear code. In this way, the 
efficiency of the code is changed by changing the length n of the code 
words. We choose another method: row extension/deletion of the encoding 
matrix for an (n,k) code, and thus change the parameter k.  
 
Row deletion means that we delete one row from the encoding matrix such 
that it generates a new (n,k-1) code. Here, the effect is reduction in the code 
efficiency from k/n to (k-1)/n but at the same time a possible improvement in 
the minimum distance [71].  
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We first consider one-by-one row deletion from a generator matrix Gk,n that 
generates the starting “mother code”. The mother code has minimum 
distance dk.  We delete a row from this matrix and obtain Gk-1,n with 
minimum distance dk-1.   From Gk-1,n we can again delete a row and obtain 
Gk-2,n with minimum distance dk-2. The process ends when we obtain a single 
row from G1,n. This process generates a distance profile 
 
 DPBdel(G) = (dk, dk-1, ···, d1). 
 
A distance profile DPBdel(G) is optimum ( ODPBdel ) if   
 

 di = id
~

,  for   k  i  t+1, t   1,    

 dt  > td
~

 , 

for any equivalent encoding matrix n,kG
~

 generating the same “mother 

code”.  
 
Example The (7,4) Hamming code can be generated by the encoding matrix 
 
 
  1 0 0 0 1 1 1 
 
  0 1 0 0 1 1 0 
 G4,7 =   . 
  0 0 1 0 1 0 1 
 
  0 0 0 1 0 1 1 
 
 
The minimum distance is three. Deleting row-by-row, starting from the 
bottom, we get the distance profile 
 
 DPBdel(G) =  (3, 3, 3, 4).                 (7.4) 
 

The same code can be generated by an equivalent matrix G
~

, i.e. 
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  1 0 1 1 1 0 0 
 
  1 1 1 0 0 1 0 

 G
~

4,7 =   .   
  0 1 1 1 0 0 1 
 
  1 1 1 1 1 1 1 
 
 
Deleting the last row at first, gives the distance profile 
 

 DPBdel( G
~

)= (3, 4, 4, 4),                                        (7.5)
              
which is better than (7.4) and the best possible for this code. For any linear 
code, we can find the Optimum Distance Profile, ODPBdel, by taking the best 
possible distance profile over all possible equivalent encoder matrices, see 
Figure 7.7. Of course, this is a complicated task. In [54] Johannesson defines 
the Optimum Distance Profile  for  convolutional codes.  
 
Row extension means that we add a row to the encoding matrix such that it 
generates a new (n,k+1) code. The effect is an improvement in the efficiency 
from k/n to (k+1)/n, but at the same time a possible degradation in the 
minimum distance.  
 
We start with a single particular row from a code generator matrix and 
extend the matrix row-by-row. Every matrix extension must generate code 
words from the desired “mother code”. In every step, we select a row such 
that we maximize the minimum distance of the constructed code generated 
by code generator matrix. The starting code has minimum distance δ1, 
determined by the Hamming weight of the first selected row. We add a row 
to this matrix and obtain G2,n with minimum distance δ2. We can add a row 
to G2,n and obtain G3,n with minimum distance δ3. The process ends when we 
obtain the final code generator matrix Gk,n. We generate a distance profile 
 
 DPBext

 (G) = (δ1, δ2, ···, δk). 
 

A distance profile DPBext(G) is better than DPBext( G
~

) when  
 

 δ i  = i
~
     for  1 ≤  i ≤   t-1, t ≤  k,  
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 δ t   > t
~
  . 

 
Example The (7,4) Hamming code can be generated by the encoding matrix 
 
   1 1 1 1 1 1 1 
 
   1 0 1 1 1 0 0 
 G4,7 =                . 
   1 1 1 0 0 1 0 
 
   0 1 1 1 0 0 1 
 
The matrix G4,7 generates a distance profile  
 

DPBext(G) = (7, 3, 3, 3). 
 
Again, this is the best possible profile for the Hamming code. Remark that dk 
= dmin, whereas δ1 equals the maximum Hamming weight of a code word.  
 
Example For RS codes, we take as a starting generator matrix 
 
  1 1 1   1   
  1   2       n-1  
 Gk,n  = 1 2  4  2(n-1)   .           
     
  1 k-1  2(k-1)  (n-1)(k-1) 
 
Deleting row by row gives as a distance profile 
 
 DPBdel(GRS) = (n-k+1,n-k+2, , n). 
 
If we start with the first row and extend the matrix row by row, we get 
 
 DPBext(GRS) = (n, n-1, , n-k+1). 
 
Note that both these profiles are optimum.  
 
Remark There is an extensive report on the Optimum Distance Profile for 
Block codes in [51,52,53,71].  
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7.4  Same-weight Code Construction 
 
We give a particular code construction using an (n,k) RS code, such that the 
generated code words have the property that all code words have a 
maximum of  k symbols that are the same.  
 
Motivation In MFSK modulation, symbols from a code word are 
transmitted as one of the M possible frequencies. The transmission can be 
disturbed by permanent narrowband noise in such a way that the 
demodulator outputs a symbol that is always present [62]. An (n,k) RS 
encoding matrix containing the all-ones row produces code words that have 
n symbols that are the same. Hence, correct decoding will not be possible. 
We describe an encoding method that avoids this problem. An extensive 
description is given in [63]. 
 
Let an RS code be generated by the standard RS encoding matrix given by: 
 

 1  1       1      …           1               
       1        2  … n-1 

       Gk+1,n =      1  2     4   … 2(n-1)      C1
 

      •••                                                            
   1  k-1   2(k-1)  ... (k-1)(n-1)     . 
    1  k     2k  ... k(n-1) 
 
The matrix Gk+1,n  has the following properties: 
 

- the minimum distance for this code is dmin = n-k; 
- since the minimum distance is equal to the minimum number of 

differences between two code words, the code words agree in at 
most k positions;  

- multiples of the first row give n symbols that are the same.  
 
Given the above matrix, we construct a sub-code with the property that all 
code words of the sub-code have a maximum of k symbols that are the same.  
   
Construction: Generate code words with the code matrix C1. Add the last 
row from Gk+1,n to every code word. After decoding, subtract the last row 
from the decoded code word.  
 
As a consequence of the construction, code words with n symbols that are 
the same do not occur. Since we always add the last row of G, the all-0 code 
word will not occur. We therefore have the following properties: 
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Properties 

- the “same-weight” code generated by C1 has dmin = (n-k+1);  
- all code words have a maximum of  k symbols that are the same; 
- code words contain at least n/k different symbols; 
- the code generated by C1 has efficiency k/n. 

 
Note Since any linear code can be brought in systematic form, the number of 
the same symbols for non-zero can be larger or equal to k. Using the 
constructed sub-code, we obtain k as an upper bound. Hence, RS codes are 
optimum.   
 
We briefly summarize the operations at the receiver side that utilize the code 
properties. For simplicity, we suppose that the MFSK demodulator outputs 
the presence of a particular frequency. A narrowband disturbance may cause 
a particular frequency to be present during a long period of time. We can 
detect and delete this continuous presence. Using the same-symbol property, 
the positions where the code word symbols agree with the disturbance are 
considered as erasure positions. Since there is a maximum of k erasures per 
narrowband disturbance, the number of narrowband disturbances that can be 
corrected for this idealized situation is NB < (n-k+1)/k. The same situation 
occurs when the disturbance blocks the transmission of certain frequencies. 
The maximum number of “deletions” for our code is then equal to k and the 
same analysis can be made. Performance gets worse when in addition to 
narrowband noise we also have background noise.  
 
 

7.5 Concluding  Remarks  
 
This chapter contains several applications of RS codes. We start with the 
principle of symbol avoidance, where the output of an RS encoder does not 
contain a particular set of output symbols. The idea is from Solomon 
Golomb and was published in 1974. Golomb only considered one forbidden 
symbol. The principle is easy to extend to more than one forbidden symbol.  
 
The second topic is coded modulation in the time domain. Ungerböck 
developed code modulation in the 80s for two-dimensional signal spaces, by 
expanding the number of symbols that can be used. In our coded modulation 
scheme for binary modulation, we only extend the length of symbols, while 
keeping the minimum time between two transitions constant.  As a 
consequence, the bandwidth needed to transmit a message is not enlarged. 
We combine the modulation with look-ahead RLL coding as developed by 
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Hollmann, and show that the combination RLL-RS gives a coding gain of 
about 4 dB.  
 
The third topic is concerned with a new property of Block codes, the 
“Optimum Distance Profile”. This problem can solve the difficulty of 
extending/reducing the dimensions of an encoding matrix.  We show that RS 
codes have the best possible profile. 
 
 
 

symbol avoidance 
 
 
 

coded modulation 
 
 
 

optimum distance profile 
 
 
 

same weight construction 
 

 
 Figure 7.8  Content of  Chapter 7   
 
 
The last topic describes a special application of RS encoding such that every 
code word contains a desired maximum number of the same type of symbol. 
This way of encoding can be beneficial when a channel is disturbed by 
narrowband noise.  
 
The idea of constrained coding can be extended to convolutional codes, see 
[73], where we make sequences DC-free by using the linearity property of 
convolutional codes.   
 
The content of the chapter is summarized  in Figure 7.8 
 
 
 



 Chapter 8-Memories with Defects  

147 
 

 
 
Chapter 8 
 
Memories with Defects 
 
8.1 Defect models 
 
Improvements in process technology and clever circuit design make it 
possible to produce large memory systems on a chip with a high packing 
density. A high packing density has its limits and may cause errors in the 
memory cell structure. A popular error model is that of defects. A defect 
always produces the same output when being read, irrespective of the input. 
This might be “defect-0” or “defect-1”. The model for defective memory 
cells is given in Figure  8.1.  
 
   
   0            0 0  0 0  0 
 

 
 
   1  1 1  1 1  1 
 
 
       no defect            defect-0            defect-1 
 
 Figure 8.1 Defect model for defect-0 and defect-1 
 
In principle, we can write in the memory in coded or un-coded format. The 
reader may use a decoder to give an estimate for the encoded and stored 
information. We can distinguish between four situations, whether the 
writer/reader knows the value and position of the defects or not. This 



 Chapter 8-Memories with Defects  

148 
 

information may follow from inspection or by some additional side 
information.  
 
The four situations give different results for the maximum storage efficiency 
or storage capacity.  Assume that the fraction of defect-1 cells is equal to the 
fraction of defect-0 cells is equal to p/2. The situations can be described as: 
 
 

                                   1 - p 
0    0  

                                 p/2         p/2 
 
      0 defect known before 
               WRITE     READ 
      1 defect known before 
                                              
                                      p/2          p/2 
  1               1 
                                                1 - p 
 
 Figure 8.2 Erasure channel model for known defects at receiver 
 
 
1. writer and reader know. In this case, we can avoid the defective cells and 

thus the storage capacity is (1-p) bits per cell;  
2. writer does not know, but the reader knows. The reader, knowing the 

position of a defect can treat this position as an erasure. Hence, the 
channel that he creates is an erasure channel with maximum storage 
capacity (1-p) bits/cell. The writer should use codes for the erasure 
channel to store his information, see the model in Figure 8.2; 

3. the reader and writer do not know the defects. The defect can be 
considered as a random error and thus, on the average p/2 errors occur 
when reading. The channel that results is a Binary Symmetric Channel 
with storage capacity 1 – h(p/2), where h(*) is the binary entropy 
function, see the model in Figure 8.3; 

4. the writer knows and the reader does not know the value and the position 
of the defect. This situation is the most interesting one, since we can 
design a special type of coding. Kuznetsov and Tsybakov showed that in 
this case also the capacity is (1-p) bits/memory cell. In addition to that, 
they designed the “additive” coding method that asymptotically achieves 
this capacity, see Section 8.2.4.   
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We continue with situation 4 and we assume, that the writer is able to 
determine the location and value of a defect before using the memory.    

 
 

                               1 – p/2 
0    0  

                                   p/2           
            WRITE                     READ 
                                   p/2 
  1    1  

       1 – p/2                           
 
 Figure 8.3  BSC model for unknown defects  at writer and reader 
 
 
One of the possibilities is to use an error correcting code to store words in 
the memory. For a single defect per word, one could think of using the 
Hamming code. For instance, the (7,4) Hamming code can correct one error 
in 7 bits and stores 4 bits of information. Kutznetsov and Tsybakov initially 
worked on the (64,58) extended Hamming code that can correct one error or 
detect two errors (minimum distance 4), at the expense of 6 bits redundancy. 
Their task was to reduce the redundancy and their solution will be explained 
in the sequel. The idea [64,66] finds wide spread application, for instance in 
coding for Write Once Memories or Flash memories. 
 
 

8.2 Defect Matching Codes 
 
 
8.2.1 One defect in n positions 
 
Suppose that words of length n have a maximum of one defect per word. By 
inspection, the writer knows the value of the defect and encodes a word xn-1 
as (0,xn-1) or (1,xn-1), respectively, where  xn-1 is the complementary word for 
xn-1.  One of both words can always be stored error free and thus the 
redundancy is only one bit, irrespective of the value n. The reader can 
always find back the original message by inspecting the first bit of a stored 
word. This example shows that knowledge about the defect helps to reduce 
the redundancy needed for defect error correcting. 
 
Example Let n = 7 and a defect-0 at position 3. The information to be stored 
is xn-1 =  ( 0 1 1  0 0 0 ).  Since (1,xn-1) matches the defect-0 in the third 
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position, we store   ( 1 1 0 0 1 1 1). The information can be retrieved by 
inverting the last six bits. 
 
 
8.2.2  n-1 defects in n positions 
 
Another extreme example is the one that occurs when in n bits, n-1 bits are 
defective and only one bit is error free. In this case, since we can observe the 
value of the defects, we can always make the parity of the word even or odd 
with the remaining error free position. Hence, we store one bit of 
information in n positions.   
 
Example Suppose that for the vector (1 0 1 1 0 - 1 1) only position six is 
free to chose. Then, a value 0 at that position makes the work parity equal to 
1, whereas a value 1 makes the parity  equal to 0. 
 
Note Both strategies are optimal. In  the first case, n-1 bits can be stored in n 
positions and  the data storage efficiency R = 1 - 1/n. In the second situation, 
we can store only one bit in n positions and the storage efficiency  R = 1 - 
(n-1)/n = 1/n.   
 
 
8.2.3 Two-defects in n positions 
 
We proceed by designing a method to handle a maximum of two defects in a 
word.  A code word cn is called defect compatible or matching the defects, if 
it can be stored without any changes, i.e. the components of a code word 
agree with the values of the defects. The code word itself depends on the 
defects and the message xk  to be stored.   
 
We first construct a code matrix for which any pair of bits is present in some 
row. If this matrix exists and every row has a unique prefix, then this matrix 
can be used to match defects. The construction is as follows: 
 
1. take all binary  vectors of length (2α - 1) and weight α as columns of the 

code matrix; 
2. add the all zero row to the matrix;  
3. select  log2α  columns such that all rows of the 2α × log2α  sub 

matrix are  different.  
 

Ad 1) if we compare two arbitrary columns, then they contain at least the 
combinations (0,1), (1,0) and (1,1) in one of the rows. This follows from the 
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fact that a column of length (2α - 1) has more than halve ones, and hence 
there must be some overlap between the two specific columns;  

 
Ad 2) if we combine 1) with 2), we see that any pair of bits is present in 
some row and two arbitrary columns;    
 
Ad 3) first take 	2 	   different rows of length  log2α	 . The columns all 
have an equal number of zeros and ones. By deleting complementary pairs of 
rows, except for the all zero and all ones row, the equal weight property 
remains valid. We delete until 2α rows are left, with the property that all 
columns have α ones. As this is part of the matrix construction, we place this 
matrix in front of the original matrix by column permutations. Note, that 
each row is uniquely specified by the first log2α  bits. 
 
These properties play an important role in the explanation of the coding 
method. To be more specific, we consider the case where α = 3. The code 
matrix has 6 rows and 10 columns.  
 
 
  0   0   0   0   0   0   0   0   0   0 
  0   0   1   0   1   1   0   1   1   1 
 C =  0   1   0   1   0   1   1   0   1   1 . 
  1   1   0   0   1   0   1   1   0   1 
  1   0   1   1   0   0   1   1   1   0 
  1   1   1   1   1   1   0   0   0   0 
 
 
Any bit pattern of length 2 can be found in a row of length 10 and the first 3 
digits uniquely specify each row of C.  
 
Encoding The message x7 is represented by the vector 
 
 x10 = (0, 0, 0, x1, x2,··· , x7). 
 
Hence, the vector x10  selects one out of 128 messages and the efficiency is 
7/10.  
 
Suppose that x10 is not defect compatible in two of its components. The 
defects are specified in location and value by d10 =(d1, d2, ··· , d10), where we 
use a ? in case there is no defect at a particular location, otherwise we have 
the symbol 0 or 1. Then, from the code matrix we take  a row vector c10 (x10, 
d10) that depends on		x10 and  d10 such that 
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c10 = x10  c10 (x10,d10)   

 
is defect compatible. The constructed vector c10  is stored instead of x10.  
 
Decoding  
The decoding is done as follows. The vector x 10 has 3 all zero initial 
components. Hence, the decoder (reader) knows which row of C is used in 
order to make x10 defect compatible. This row is added modulo-2 to c10 and 
the last 7 components of the result specify x7 again, for  
 

	c10  	 c10 (x10,d10)  =  x10 =>  x7 
  
Example Suppose that we want to store  the message (1, 1, 0, 1, 0, 0, 0)  as  

 
 x10 = (0, 0, 0, 1, 1, 0, 1, 0, 0, 0). 

 
The memory has a defect-1 in the 3rd position and a defect-0 in the 4th 
position, i.e. 
 

d10 =  (?, ?, 1, 0, ?, ?, ?, ?, ?, ?). 
 

The encoder adds modulo-2 the vector  
 
c10 (x10,d10)  = (1, 0, 1, 1, 0, 0, 1, 1, 1, 0)  
 

to      
 

x10 = (0, 0, 0, 1, 1, 0, 1, 0, 0, 0) 
 

and stores  
 
c10 =  (1, 0, 1, 0, 1, 0, 0, 1, 1, 0).  

 
The decoder sees as three initial components (1, 0, 1) and adds the vector   

 
(1, 0, 1, 1, 0, 0, 1, 1, 1, 0)  

 
to c10  which results in a decoded vector 

 
x10 = (0, 0, 0, 1, 1, 0, 1, 0, 0, 0)  
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and message   
 
x7  = (1, 1, 0, 1, 0, 0, 0).    

 
The overall, close to optimal, efficiency is 7/10 at a defect rate of 2/10.  One 
problem is to show that this method is the best that we can have for 2 defects 
in a word of length n.  
 
 
8.2.4   A  general method for t = pn  defects in n positions 
 
The previously described coding methods are special cases of the general 
description by Kuznetsov and Tsybakov [64]. They show that there exists an 
encoding matrix C that facilitates utilization of the fraction (1-p) of non-
defective memory cells, which is the best we can expect.  
 
In the sequel, we assume that there are t defects in a length n binary vector 
and the defect fraction is t/n = p. The encoding matrix C is given in Figure  
8.4, where the first (n-k) columns are used to uniquely identify a particular 
row (we have 2n-k rows). A particular row is used to make the vector xn 
defect compatible. 
 
                            n-k                 k                                 
 
 
 
 
                                                     
                                                     v 
     2n-k 

 
                                                                                   2n-k-u 
 
 
                 
 
                                                                
        xn  =  ( 0,  0, ···,  0   ---------   xk  ---------   ) 
 
  Figure 8.4 Non-linear encoding (Kuznetsov-Tsybakov) 
 
 

u defects in the first n-k 
columns 
 
v = t-u defects in the last 
k columns 



 Chapter 8-Memories with Defects  

154 
 

Suppose that for a particular defect vector dn  we have u defects in the first 
(n-k) positions and v = t - u in the last k positions, respectively. Then, the 
maximum number of rows that can be used to match the defect vector is      
2n-k-u, because u positions are equal to the defects and thus fixed. If the 
matrix is such  that we have a pattern in the selected 2n-k-u rows that can be 
used to match the defects in the last k positions, the matrix is called useful. 
We calculate the fraction of matrices that is not useful and when this fraction 
is smaller than 1, a useful matrix exists.  
 
The v defects in the last k positions and the u defects in the first n-k 
positions specify a matrix of dimension v × 2n-k-u. The number of matrices 
where the given defect pattern does not occur is given by  
 

.)12(f
ukn2v

1


       
 
The remaining part of the  2n-k × k matrix can be chosen freely. The number 
of choices f2  is  
 

 
uknkn 2   vk  2

2 2      f
  . 

 
For the particular defect vector, the fraction of useless matrices is thus given 
by  
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Since we can have t defects with all possible combinations of defect-0 and 
defect-1, the total fraction of matrices that cannot be used is upper bounded 
by 
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If the efficiency is defined as R = k/n, then F is less than 1 for 
 

 ).2
t

n
(lnlog

n

1

n

t
1R t

2 







  

 
Hence, for large values of n, the storage efficiency approaches 
 
 R => 1 - t/n = 1 - p. 
 
This is a surprising result with many applications, such as writing in Write 
Once Memory or Flash memory [68]. Since the defect matching as designed 
by Kuznetsov-Tsybakov is a non-linear method,  it might be useful to look at 
the potential application of linear error correcting  block codes and analyze 
the performance.   
 
 

8.3 Defects and Linear Codes 
 
 
8.3.1 Defect matching 
 
We start with the systematic encoding matrix Gk,n for code with minimum 
distance dmin that has the form 
 

Gk,n = [ Ik,k  Hk,n-k
 ],  

 
where Ik,k  is the k × k identity matrix, and Hk,n-k

 the check part. The parity 
check matrix for this encoder is given by  
 
          Hk,n-k 

(Hn-k,n)
T =           . 

          In-k,n-k 
 
Since the code has minimum distance dmin, any dmin - 1  rows of  HT

n,n-k      
are linearly independent and thus in this case dmin - 1  columns of  
 

Gn-k,n  =  Hn-k,n 

 

                        =  [ In-k,n-k    (Hk,n-k)
T ] .  
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We can use the systematic code Gn-k,n  to construct any combination of dmin - 
1  digits by some linear combination of rows.  The matrix Gn-k,n  is taken as 
part of the bigger n × n matrix that has the structure as given in Figure  8.5, 
where  0k,n-k  is the all zero matrix with dimensions k and n-k.  As before, the 
vector xk and the defect vector dn = (d1, d2,···, dn) determine the vector cn-k 
such that  
 

cn = (cn-k,xk) Gn,n  
 
is defect compatible with dn.    
 
 

 In-k,n-k     (Hk,n-k)
T 

 Gn,n  =       
   0k,n-k       Ik,k      
 
 
 Figure 8.5   The matrix Gn,n for the defect matching procedure. 
 
 
Example For the encoder in Figure  8.6a, the first 4 rows are derived from a 
systematic encoder with a minimum distance of 4 and code word length 7. 
We can thus match 3 defects.  
 
 
   1   0   0   0   1   1   1          
   0   1   0   0   1   1   0 
   0   0   1   0   1   0   1 
   0   0   0   1   0   1   1 
   0   0   0   0   1   0   0 
   0   0   0   0   0   1   0 
   0   0   0   0   0   0   1 
 

Figure  8.6a  A 3 defect matching code generator , n = 7, k = 3  
 
 
8.3.2 Defect matching and random error correction 
 
Extension to defect matching and random error correction is done as follows. 
We extend Gn,n with some additional columns such that the resulting matrix 
is an encoding matrix for an error correcting code.  At the same time the top 
rows are used for defect matching. Hence, at reading we first correct the 
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random errors and then find back the information. The problem is to find the 
optimum combination of defect matching and error correction. This problem 
was tackled by Heegard [67]. We will illustrate the method by examples.  
 
Example The encoding matrices in Figure  8.6b and Figure  8.6c follow 
from  the (7,4) Hamming code with minimum distance 3. In both cases we 
have the same distance properties and thus the same error correcting 
capabilities (1-error correcting). 
 
In Figure 8.6b we use the first row to make the vector x7 defect compatible, 
and in Figure  8.6c we use the first 3 rows, respectively. 
 

 
1   1   1   1   1   1   1     

   0   1   0   0   1   1   0   
   0   0   1   0   1   0   1   
   0   0   0   1   0   1   1   
 

Figure  8.6b 1-defect and 1-error correcting, n = 7, k = 3   
 
 

1   0   0   0   1   1   1    
   0   1   0   1   1   0   1 

0   0   1   1   1   1   0 
0   0   0   1   0   1   1  

 
Figure  8.6c  2-defects and 1-error correcting, n = 7, k = 1. 

 
 
Note, that the storage efficiency is the same for the situation 8.6a and 8.6b.  
 
 

8.4  Defects as Symbols 
 
Instead of using a binary code generator matrix, we can use a generator 
matrix of an RS code over GF(2m), where symbols represent m binary digits. 
We consider symbols as defects instead of binary digits. 
 
In Figure  8.7 we give a particular partitioning  for an (n–δ) × n RS encoding 
matrix  Gn-δ,n  with elements from GF(2m).   
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Properties: 
- for the RS code generated by the encoding matrix Gn-δ,n, the 

minimum distance is (δ + 1); 
- any  (n-k) × (n-k) sub-matrix of Gn-k,n has rank n-k.  

 
Encoding 
For an information vector xk-

 
δ, we can construct cn-k such that  

  
cn  = (cn-k,xk-δ) Gn-δ,n   

  
is symbol defect matching.  
 
We receive   
 

rn =   cn  en. 
 
Decoding 
Using Gn-δ,n  we can correct the random errors that might occur after storing 
the code vector cn. After decoding the random errors, the vector (cn-k,xk-δ) can 
be reconstructed and thus we can find back the original encoded information 
xk-δ.  
 
 
                                                n     
 

     n - k                        Gn-k,n                
 
                                                                       < =  Gn-δ,n   

     k - δ                   Gk-δ,n                                                                    
 
                 
                                  
Figure  8.7  Dimensions for the RS encoding matrix Gn- δ,n 

  
 
Note that the error correcting properties appear when δ > 0. The defect 
matching properties and the efficiency depend on the values of (n – k) and (k 
– δ). For δ = 0, we store k symbols in n positions. The efficiency is  
 

  fraction). defect(1
n

kn
1

n

k
R 


  

 



 Chapter 8-Memories with Defects  

159 
 

We  observe, that the RS code is optimum! 
 
Remark. Although not very practical, the same defect matching procedure 
can be designed for convolutional codes, see [65].  
 
Application to the Write Once Memory (WOM) 
Rivest and Shamir considered updating punch cards, punch tapes, and other 
storage media which degrade from one updating to another one [69]. In this 
section we show how to get the capacity of the punch card and other similar 
degrading memories by additive coding. In order to be able to use a punch 
card at least twice we must restrict the number of holes punched at the first 
use of a new punch card by some number p, 0 < pn < n. Under this 
restriction there are 














pn

0i
i

n
M  

 
different ways to punch a new card. Therefore, M messages can be 
represented in this way, and during the first use of the punch card we store 
log2M bits.  
 
The configuration of holes on the punch card can be represented by the 
binary vector dn, where di = 1 if the ith position of the card is punched (a 
hole), and di = ? otherwise.  
 
At the second use of the punch card the existing configuration of holes, 
represented by the vector dn, can be used by a defect matching code. If we 
have a defect matching code for a fraction p of defects, we can store a 
maximum of (n-pn) bits in the second writing. Hence, the total normalized 
asymptotic number of bits stored in two writings  is 
 

  

cell.y bits/memor   p)(1h(p)   

pn)(n
i

n
log

n

1
limT

pn

0i
2

n























 

  

 
If the WOM is used three or more times, we can restrict the writing in every 
step and optimize the fraction of holes to be punched  [66].   
   
 
 



 Chapter 8-Memories with Defects  

160 
 

8.5 Concluding Remarks  
 
This chapter describes the development of coding for memories with defects. 
The research was inspired by the researcher Alexander Kutznetsov, from the 
Russian Academy of Sciences, IPPI, in Moscow. The defect model is used 
today as a basic model in for instance coding for Write Once Memories and 
also Flash Memories, see also [78].  We describe the defect model and 
discuss the storage capacity for different modes of use. Defect matching, as 
developed by Kutznetsov and Tsybakov, uses non-linear codes for making 
information suitable to be stored in a memory where errors are permanent 
(defects). Their general method achieves the theoretical capacity.  As a 
result, we can use a fraction (1-p) of a memory when a fraction p of the 
memory is defective. A surprising result! The matching is generalized to 
linear codes. When defects occur as symbols, RS codes obtain optimum 
performance.   
 
The concept of the content of the chapter is given in Figure 8.8 
 
 
 

defect models 
 
 

defect matching codes 
 
 

defects and linear codes 
 
 

defects as symbols 
 
 

Figure 8.8 Concept of the content of Chapter 8 
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The conditional entropy H(S | T) is the minimum average description length 
of S given the side information T. It is defined as 
 

t)|P(st)logP(s,T) | H(S
TS,

2 .                    (A.1.1c) 

 
It follows automatically that H(S | T) ≤ H(S). The joint entropy,  
 

H(S,T)  = H(T) + H(S | T) 
 

= H(S) + H(T | S). 
 
The difference  
 

I(S;T)   = H(S) – H(S | T)  
= H(T) – H(T | S),  

 
is called the mutual information, and can be seen as the reduction in the 
average description length of S given the observation T (or the other way 
around).  Conditional entropy, like H(S | T), is also called equivocation. 
 
In data transmission we have a channel input ensemble X and a channel  
output ensemble Y connected via the mutual information I(X;Y). The 
maximum of I(X;Y) over the input probability distribution P(X)  is called the 
channel capacity 
 

        

Y)].|H(X[H(X)max

 Y)I(X; maxC

P(X) 

P(X) 





                                          (A.1.2)  

         
Channel codes exist that can transmit at a rate as close to capacity as wanted, 
and at the same time achieve a decoding word error probability as close to 
zero as required. To achieve this, the word length has to go to  infinity. 
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Remark Recommended text books: 
 

- T. Cover and  J. Thomas, Elements of Information Theory 2nd 
Edition, Wiley Series in Telecommunications and Signal Processing 
 

- A classical book by R. Gallager is also highly recommended:          
R Gallager, Information Theory and Reliable Communication  



 Appendix  

164 
 

A.2  A Short Introduction to Galois fields 
 
The purpose of this appendix is to give a brief introduction to Galois Fields 
and it applications. We start with the system of calculations using the 
numbers modulo p, where p is a prime number. Then we continue to do the 
equivalent for symbols that can be considered as consisting out of m binary 
digits.  
 
 
A.2.1 Calculations modulo a prime number, GF(p) 
 
Suppose that we do calculation modulo a prime number p.  
 
Definition: The Galois Field GF(p) is the collection of p elements 
 
 {0, 1, 2, ···, p-1}. 
 
Then, we use the following properties.  
 
Property There exists a primitive element, called α such that all p-1 powers 
of  α are different modulo p and  α p-1 = 1 modulo p.  
 
Proof  Suppose that αi = 1 modulo p,  i < p – 1. Then  α j-i α i = α j = α j-i  and 
thus not all elements are different, which contradicts the assumption.  
 
Example let p = 7 and calculations modulo p. The 6 powers of the number 3 
are: 31= 3, 32 = 2,  33 = 6, 34 = 4, 35 = 5, 36 = 1. They are all different.  
 
Property Every element has an inverse.  
 
Proof Since αp-1-i αi = 1 modulo p, αp-1-i  is called the inverse of αi. 
Furthermore,   α j α i = αj+i modulo p. 
 
Example  Let p = 7 and calculations modulo p.  The inverses are given by:   
3-1= 5, 3-2 = 4,  3-3 = 6, 3-4 = 2, 3-5 = 3, and 3-6 = 1.  
 
We thus have defined multiplication, inverse and the unit element 1.  The 
symbol 0 and all the nonzero elements together form the Galois Field GF(p). 
We have an equivalent definition for a Galois Field using polynomials. 
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A.2.2 Calculations modulo a binary minimal polynomial 
 
We consider polynomials of delay  0, i.e. 
 
 P(X) = p0  + p1 X + ••• +  pm-1 X

m-1 ,  pi є {0,1}. 
 
Polynomials can be added or multiplied, where the coefficients of equal 
exponents are assumed to be added modulo 2.  
 
Calculations modulo a polynomial g(X) can be interpreted as follows. 
 
P(X) modulo g(X)  = r(X) means that P(X) = a(X)g(X) + r(X), where the 
degree{r(X)} < degree {g(X)}. 
 
Example (1+X4) modulo(1+X+X2) →(1+X4) = ( X+X2) (1+X+ X2) + (1+X). 
 
Definition A binary polynomial without divisors is called irreducible.  
 
Definition An irreducible polynomial I(X) of degree m is called minimal if 
and only if (iff)  
 
 I(X) divides (Xn + 1), where the smallest  n  is  n =  (2m -1). 
 
Example  (1 + X + X2) divides X3 + 1 and is minimal. 
 
Example  (1 + X + X3) divides X7 + 1 and is minimal. 
 
Remark At this position we want to remark that there are 2m different 
polynomials of degree less than m. With every polynomial we can uniquely 
connect a binary m-tuple or symbol of length m.  
 
Example The binary 4 tuple (0,1,0,1) can be represented as X + X3. 
 
We use the following important equivalence notation using the minimal 
polynomial I(X), i.e. 
 
 Xi  modulo I(X)  ≡  αi. 
 
Definition The Galois Field GF(2m) is the collection of 2m  elements 
 
 {0, 1, α, α2,···, αp-2}. 
 



 Appendix  

166 
 

As a consequence, every element corresponds to a binary polynomial of 
degree less than m and is equivalent to an m-tuple.  
 
Property All the elements αi  are different. 
 
Proof  Suppose that two elements are the same, then for i < j,  
 
 (Xi + Xj) modulo I(X) = Xi (Xj-i + 1) = 0 modulo I(X). 
 
Since j - i < 2m -1 and I(X) minimal, this is impossible. 
 
Property The element αp-1= 1. 
 
Property αi αj = αi + j. 
 
Property Since αp-1= 1, we can reduce the exponents modulo p-1 as before. 
 
Property Every nonzero element has an inverse. 
 
This follows easily from αi α-i  = αi αp-1-i  = αi αj. 
 
Example  Take I(X) = 1 + X + X3, which divides X7-1. The following table 
lists the elements of the Galois Field 
 
    TABLE A.2.1  
 
                                    modulo              binary           inverse 

                       1 + X + X3           3-tuple       
____________________________________________ 
 
α X X  (010)  α6 
α2  X2  X2  (001)   α5 
α3  X3 1 + X  (110)   α4 

α4  X4 X + X2  (011)  α3 

α5  X5 1 + X+ X2 (111)   α2 

α6  X6 1 + X2  (101)  α1 

α0 = 1 X7 1  (100)  1 

 

 

Adding the element 0 gives the additional 3-tuple (000) and thus we have 8 
elements. We can add, multiply and calculate an inverse with m-tuples 
represented as elements in a Galois Field GF(2m). 



 Appendix  

167 
 

 
 

A.3  Vandermonde’s Determinant  

In the theory of RS codes, we need the property that any k × k  submatrix 
from the generator matrix Gk,n  formed by k rows and any k columns has full 
rank. We proof this by showing that the corresponding determinant is 
unequal to zero. 

Without loss of generality, we can consider the Vandermonde matrix 
    

    1 1  1 
    1

 2
  k 

 Vk  =     1
2  2

2  k
2  . 

               
    1

k-1  2
k-1  k

k-1 
 
   
Let P(k)  be the proposition that Dk =   ∏ 1 ≤ i < j ≤ k (i − j ) . 
 
Proof by induction:  P(1)  is true, as this just says D1 = 1. P(2)  holds, as it is 
the case: D2 =  (1 − 2 ) . This is our basis for the induction.  
 
Now we need to show that, if P(t)  is true, where t ≥ 2 , then it logically 
follows that P(t+1) is true. So this is our induction hypothesis:   
 

Dt  = ∏ 1 ≤ i < j ≤ t (i −j ). 
 

Then we need to show:  Dt+1  = ∏ 1 ≤ i < j ≤ t+1  (i −j ). 
 
This is our induction step: Consider  the determinant:  
 
   1 1 1  1 

   x 2 3  t+1 

 Dt+1 =   x2 2
2 3

2  t+1
2     . 

          
             xt 2

t 3
t  t+1

t 
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If you use the Expansion Theorem for Determinants  to expand it in terms of 
the first column, you can see it is a polynomial in x  whose degree is no 
greater than t. Call that polynomial f(x).  
 
If you substitute any i for x in the determinant, two of its columns will be 
the same. So the value of such a determinant will be 0. Such a substitution in 
the determinant is equivalent to substituting i for x in f(x).  Thus it follows 
that f(2) = f(3) = … = f(t+1) = 0  as well. So f(x) is divisible by each of 
the factors 2, 3, …, t+1. All these factors are distinct otherwise the 
original determinant is zero.  So:  
 

f(x)=C(x− 2)(x−3)⋯(x−t )(x−t+1) . 
 
As the degree of f(x)  is no greater than t , it follows that C is independent of 
x. From the Expansion Theorem for Determinants , we can see that the 
coefficient of xt is:  
  
    1 1  1 

   2 3  t+1 

 Dt+1 =   2
2 3

2  t+1
2 

           . 
             2

t-1 3
t-1  t+1

t-1 

 
which by the induction hypothesis, this is equal to ∏ 2 ≤ i < j ≤ t+1   (i −j ).  
So this has to be our value of C.  Thus,  we have:  
 

f(x) = C(x − 2)(x − 3)⋯(x − t )(x − t+1) ∏ 2 ≤ i < j ≤ t+1(i −j ).  
 
Substituting 1 for x , we retrieve the proposition P(t+1) . So P(t) ⟹	
P(t+1) and the result follows by the Principle of Mathematical Induction. 
Therefore:   
 

Dk =   ∏ 1 ≤ i < j ≤ k  (i −j ), 
  
  
which is unequal to zero since all elements i, i = 1,k are different. . 
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A.4 RS Encoding and Syndrome Former 
 
We first describe the general encoding matrix as it is convenient for our 
further considerations. We derive some of the RS code properties, like 
distance and encoding matrix rank. These are based on the Vandermonde 
matrix [A.3].   
 
The encoder 
The encoder performs the inner product of an information vector A of length 
k with a k x n encoding matrix Gk,n. Both A and Gk,n have components from 
GF(2m).  The k x n encoding matrix consist of k consecutive rows of the 
following matrix 
 
 
  1 1 1   1   
  1   2       n-1  

Gn,n =  1 2  4  2(n-1)      ,                 (A.4.1) 
              
  1 n-1  2(n-1)  (n-1)(n-1) 
 
 
where  is a primitive element of GF(2m ) and  n = 2m -1.  
 
Example  The first k rows give as an encoding matrix 
 
 
  1 1 1   1   
  1   2       n-1  
 Gk,n  = 1 2  4  2(n-1)        .                 (A.4.2) 
              
  1 k-1  2(k-1)  (k-1)(n-1) 
 
 
The following two properties are basic for the applications of RS codes. 
Without loss of generality, we choose Gk,n, to be the first k rows from Gn,n as 
in (A.4.2). 
 
Property 1 Any k columns of Gk,n  have rank k.  
 
This follows easily from a particular selection of k columns  
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    1 1  1 
    p q  r 
 V(p,  q, , r ) =   2p  2q  2r . k 
               
    p(k-1)  q(k-1)  r(k-1) 
 
                              k 
 
which has the form of a Vandermonde matrix (note that all second row 
elements are different).  
 
Property 2 The minimum distance dmin of the code is n-k+1. 
 
For linear codes, the minimum distance is equal to the minimum Hamming 
weight of a nonzero code word. This property follows from the fact that any 
k columns are linearly independent and thus no linear combination of rows 
can give a code word with k zeros.  Hence, the minimum nonzero Hamming 
weight of any code word  is n-k+1. 
 
The same proof follows from the following observation (Jack van Lint). Let 
A(X) be a polynomial over GF(2m) of degree k-1. We can evaluate this 
polynomial for all n = 2m-1 possible different powers of  the primitive 
element  of the field GF(2m). This is equivalent to the inner product 
encoding operation as described before.  Since A(X) can have only k-1 
different roots, at least n-k+1 evaluations must be nonzero and thus any 
nonzero code word has Hamming weight larger or equal to n – k + 1. Since 
the minimum distance for linear codes is less than or equal to n – k + 1,  dmin 
= n-k+1. 
 
 
Example  The (7,3) non-systematic R-S encoding matrix is given by 
 
  1 1 1 1 1 1 1   
 G = 1   2     3 4  5 6  
  1 2  4     6   3 5 
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In systematic form, we have  
 
  1 0 0     3 1  3 2   
 G = 0 1 0     5 1      . 
  0 0 1 4     1 6 4 
 
The matrix Gn,n has an inverse, given by  
 
 
  1 1   1 1 
  1  n-1   2  
 Hn,n

  = 1 2(n-1)   4 2 .      (A.4.3) 
    
  1  (n-1) ( n-1)  2(n-1)  n-1  
 
 
The syndrome former HT that corresponds to the encoder (A.4.2), has 
dimension n  ( n-k) and  is  given by the last n-k columns from Hn,n, i.e. 
 
  1   1 1 
   n-k   2  
 HT = 2(n-k)   4 2 .                   (A.4.4) 
      
   (n-1) ( n-k)  2(n-1)  n-1  
 
Property 3 The product GHT = 0. 
 
We recall that n = 2m -1. For GF(2m), we have  n  = 1 and thus for  =  q, q 
 n-1,   
 
  n – 1 =  (   – 1) ( n-1  +    n-2  +      +  1 ) = 0. 
 
Any inner product P of a row of  Gk,n  with a column of HT  looks like  
 
 P  =  1 +   i+j     +   2(i+j)    +      +     (n-1)(i+j)  
 
      = 1 +    +   2    +       +    n-1 
   
      = 0, 
 
for  0 < i + j  n-1, and thus     1. 
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The syndrome former HT can be used to decode a received code word at the 
receiver. We distinguish the following steps. 
 
- Suppose that after transmission of  cn = xkGk,n, the receiver obtains a 

noisy version, rn = cn + en, where addition is in GF(q = 2m).  
 

- The decoder calculates the product rnHT = sn-k, which is called the 
syndrome. The syndrome only depends on the noise word en.  

 
- For a code with minimum distance (n-k+1) all error words of weight  

less than  (n-k)/2 give a different syndrome. For, otherwise a vector of 
weight less than n-k+1 can be constructed that gives a syndrome 0n-k. 
According to the definition of the minimum distance, this is not possible.  

 
- The number of different syndromes and thus correctable error words is 

qn-k.  The number of error words of weight (n-k)/2 or less  is given by 
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  , 

 
where we assume that n = q-1. From this we can see, that for small k, 
almost all syndromes correspond to an error word of weight  (n-k)/2. 
For larger k, the bound will not be tight. 

 
Example We give two examples: the single parity check (n,n-1) RS code 
with efficiency k/n = (n-1)/n, minimum distance 2 and the repetition code 
with efficiency 1/n and minimum distance n.  
 
For the (n,n-1) RS code, we start with the generator matrix 
 
   
  1   2       n-1  
  1           2          4  2(n-1)       . 

Gn-1,n =    
 
  1 n-1  2(n-1)  (n-1)(n-1) 
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The  parity check matrix H is given by 
 
 H =  [ 1, 1, , 1].          
 
We give the equivalent (n-1)  n encoding matrix G in systematic form as  
 
  1 0 0       1 
  0 1 0       1 
 Gn-1,n = 0 0 1 0     1        .         (A.4.5)  
    
  0 0   0 1 1  
 
It is easy to see, that (A.4.5) generates all code words cn such the inner 
product cn HT = xn-1Gn-1,n H

T = 0n-k. This matrix Gn-1,n is the simplest possible 
and simplifies the encoding procedure drastically.  

 
Decoding for this code is in principle the same as for the SPC. After taking 
hard decision, the syndrome gives the error value. The position can be 
determined by finding the position that minimizes the Euclidean distance.  
 
Example  For the R = 1/n  repetition code, the encoding matrix is  
 
 G1,n = [ 1, 1, ,    , 1].                          (A.4.6)
   
The corresponding parity check matrix HT is given by 
 
  1   1 1 
   n-1   2  
 HT = 2(n-1)   4 2 .        (A.4.7) 
   
   (n-1) ( n-1)  2(n-1)  n-1  
 
After hard decision, the decoding procedure is a simple majority vote. In this 
case, more than n/2 errors lead to decoding decision errors. 
 
Property 4 Any (n-k) rows of HT  as given in (A.4.4) have rank n-k.  
 
This follows directly from the minimum distance of the code generated by 
G, which is n-k+1. Thus, all n-k or less rows of HT are linearly independent. 
Furthermore, H is an RS encoding matrix with minimum distance  k + 1.  
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Remark Suppose that we represent a code word cn of length n as a degree  
(n-1) polynomial C(X). Then, cnHT = xkGHT = 0n-k is equivalent to the n-k 
evaluations of C(X) for  , 2 ,,  n-k. We can say that   
 

C(X) = A(X)g(X) = A(X) (X-)(X-2) (X- n-k),  
 
where g(X) is called the generator of the RS code and A(X) the information 
polynomial of degree (k-1).  
 
The calculation X n-k A(X) modulo g(x)  gives a rest of degree less than n-k, 
also called check part. Hence, we can have a systematic code word 
containing the original information by writing C(X) = (X n-k A(X) + X n-k 
A(X) modulo g(x)).  Note that C(X) is still a multiple of g(X), since C(X) 
modulo g(X) = 0.  
 
Remark We developed the theory of syndrome decoding for convolutional 
codes in [92,93,94]. This approach leads to lower complexity decoding when 
statistical properties of the noise are considered. Furthermore, structure in 
the encoding procedure can give rise to state-space reductions. 
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A.5 The Decoding Algorithm 
 
Recall that the syndrome former  has the following form 
 
  1   1 1 
   n-k   2  
 HT = 2(n-k)   4 2          . 
   
   (n-1) ( n-k)  2(n-1) (n-1)  
 
If we write the code words in the form of a polynomial, then the code word 
C  is written as C(X). In the same way, we write the received word as 
 
 R(X) = C(X) + E(X),  
 
where E(X) represents the error symbols. Using the properties of the code 
word C(X), we calculate the syndromes 
 
          Sj  =  R(X = αj+1) = C(X = αj+1 ) + E(X = αj+1 ),   0  j  2t-1 
 

    = E(X = αj+1) 
     

                 = 1ji
1n

0i
i )(E 




  

 

                 = ,)(E 1ji
t

1k
ki
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where we have assumed t errors at position i1, i2, , it, 0  i  n-1. The 
syndrome values Sj ,  0  j  2t-1  define the syndrome polynomial 
 

 S(X)  = 


0j

j
jXS  

 

= 








t
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1jki
ki
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The error locator polynomial for t errors at position ik, k=1,2, ···, t is defined 
as 
 

L(X) = ).X1(
t

1k

ki


  

 
The product L(X)S(X) can be written as 
 

 )X(W)X1()(E)X(S)X(L
t

1k

i
t

k

ki
ki   

 





. 

 
We remark that the degree of W(X) less than t. Actually, the polynomial 
S(X) is known only through the coefficient of X2t-1 so that in terms of the 
known syndrome components we can write the key equation 
 
 L(X)S(X) = W(X) modulo X2t. 
 
The polynomials L(X) and W(X) are found according to Euclid’s algorithm. 
This algorithm gives a unique valid solution in a finite number of steps (an 
alternative is the Berlekamp Massey algorithm). We therefore reformulate 
the key equation as 
 

L(X)S(X) + F(X) X2t = W(X). 
 
We have to find the solution L(X ) under the condition that the greatest 
common divisor of S(X) and X2t is given by  
 

 gcd( S(X), X2t) = W(X). 
 
For t errors, the polynomials L(X) and W(X) have degree t and degree < t, 
respectively and are the only solution to the key equation and hence to the 
problem. 
 
We use the polynomial L(X) for finding the error locations. For an error at 
position im, according to the definition, 
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t
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The search for the positoins where L(*) = 0, is called the Chien search. 
Knowing the incorrect positions, also gives at least k correct positions and 
thus, this allows us to reconstruct the encoded information.  An interesting 
topic that remains, is the complexity of this procedure.   

Example 

We use the GF(23) from Table A.2.1 and  a (7,5) RS code defined as  

C(X) = A(X)g(X) = A(X) (X-)(X-2). 

For an information polynomial 

 A(X) =  + 3X4, 

The code word polynomial becomes 

 C(X) = 4 + 5X +  X2 + 6X4 + X5 + 3X6. 

We receive 
 

R(X) = C(X) + E(X) = 4 + 5X+ X2 + 6X4 + 6X5 + 3X6. 
 
The syndrome  
 
 S0 = R() = 4 + 6  + 3 + 3 + 4 + 2 = 1 = Eii , 
 
 S1 = R(2) = 4 + 7 + 5 + 1 + 2 +  = 5. 
 
Thus, S(X) = 1 + 5X.  for t = 1, we have to find the gcd (1 + 5X, X2). 
From this, we find 
 
 (1 +  5X)(1 + 5X) + 3X2 = 1. 
 
The error location is at position 5. The error value is S0 -5 =  2.  
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A.6  Middleton Class-A Impulse Noise Model 
 
The Class-A noise model is a model for noise that is impulsive in 
combination with Gaussian noise. A Gaussian noise component is added to 
model the (almost) always present thermal receiver and background noise.  
 
 
                N(0, 2

G )                     n      N(0, σ  )  
                                  

             background                       impulse    
                

             in                 out 
 
 
 
 Figure A2 Representation of the Middleton model 
 
 
The model, Figure A2, is characterized by: 
 
- σ ,  the variance of the Gaussian distributed background noise; 
- σ  is the average variance of the Gaussian distributed impulse noise;   
- The parameter A is called impulse index and is given by the product of 

the average number of impulses per unit time and the mean duration of 
the emitted impulses entering the receiver. For small A the noise has a 
structured/impulsive character; 

- The parameter T gives the impulse strength or ratio between the mean 
power of the Gaussian and the mean power of the impulsive noise 

component, i.e. T:= 2
I

2
G/σσ ; 

- The state m of the model is selected according to the Class-A noise 
probability density function [25],  
 

.0m;
!m

A
eP

m
A

m    

 
The impulse noise probability distribution is given by  
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)m|n(p . 

 

The average noise variance 2
G

2
I

2 σσσ  . Note that for m = 0, we only have 

background noise. 
 
Example A simple two-state model can be defined as follows: 
  
 P(m = 0) = 1- P(m = 1) = 1 – A; 
 

2
G

2
I

2 σσσ   ; T:= 2
I

2
G /σσ  . 

 
The impulse noise channel can be seen as an infinite number of parallel 
channels each with specific probability density p(n | m), where before 
transmission, one of them is selected with probability Pm. The Class-A 
Middleton channel model is depicted in Figure A3. Note that the two models 
from Figure A2 and Figure A3 are fully equivalent. 
 
 
 
                                             AWGN channel 0 
 
        input X       AWGN channel 1  output Y 
 
                                   ···                                   ··· 
        AWGN channel k 
                    

  
!m

A
eP

m
A

m
 ; 2

G
2
I

2
m A

m
  

 
 Figure A3 Alternative Class-A Middleton channel model 
 
 
Example As an example, for an impulse duration of 10-4 seconds and on the 
average 100 impulses per second, we have A = 10-2. For a symbol 
transmission rate of 104 symbols/second, the probability that a symbol is hit 
by impulse noise is 10-2.  It can be seen that the impulse duration plays an 
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important role in the transmission scheme and it is therefore very important 
to have reliable measurements. For instance, for a transmission rate of 105 
symbols/sec and an impulse width of  about 10-4 seconds, about 10 symbols 
are hit by the impulse noise.   
 
 
Example In Table 4 we give an example of the noise power spectral density 

for A=0.01 and impulse noise variance .σ 100σ 2
G

2
I   From a communication 

point of view, we may say that the impulse noise is 20 dB above the 
background noise. Note that the probability of selecting a particular channel 
depends on A. Channel m = 0 is the most likely one. For larger A, channels 
with a higher number become more likely. The Class-A Middleton channel 
model is in principle a memory-less channel model. 
 
 

Table 4 
 

Example of the noise power spectral density for 

A = 0.01 and T = 0.01/σσ 2
I

2
G   

 

             Channel state        
!m

A
eP

m
A

m
          2

G
2
I

2
m A

m
  

 

   m = 0              0.99        2
G  

   m = 1              0.01        2
G

410   + 2
G  

   m = 2                       5 10-5          2
G

4102  + 2
G  
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A.7  Impulse Noise Channel Capacity 
 
 
Suppose that we have the two-state impulse noise channel model as given in 
Figure A4. The channel has two states with additive Gaussian noise: 
 

Gaussian: probability 1-A,  variance 2
Gσ ;  

Impulsive: probability A, variance A/2
I

2
G  . 

 

The average variance is 2
G

2
I

2 σσσ  . The average input power spectral 
density  is P/2B. 
 
                                                 

   1-A                2
G  

 
      input X                    output Y 
                  
   

    A /Aσσ 2
I

2
G   

 
 
 Figure A4 Simple impulse noise model 
 
 
We can distinguish four different situations for the communication, 
depending on whether the transmitter and the receiver are informed about the 
state of the channel: 
 
1. State known at transmitter and receiver 
In this case, the transmitter can use a water-filling argument to optimize his 
transmission. As a result, the input power spectral density is 

 

 PA = P/2B + A/2
I

2
I  , 
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 P1-A= P/2B + 2
I , 

 

for  P/2B   2
IσA

A1
. 

 
The channel capacity is given by 

 

C+,+ = H( 2
G

2
I σσ

2B

P
 ) – (1-A)H( 2

Gσ ) – AH( /Aσσ 2
I

2
G  )bits 
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For P/2B < 2
IA

A1



, only the Gaussian channel is considered and thus, 
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Remark We see that in the high power region, water-filling is the same as 
fully randomizing the channel for the output entropy H(Y).  For low power, 
we have an improvement. 
 
2. State not known at transmitter 
In this case, the transmitter always uses the same average input power since 
it has no information on the channel state. The receiver has the information, 
and thus 
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3. State not known at transmitter and receiver 
For this situation, we use a randomization or orthonormal transform (FFT) at 
the transmitter and the receiver, see Figure A5. The output Y is assumed to  
 
 
 
                                                                 noise 
 

Input X       output Y  
                   T-1                                                     T        
 
 
 Figure A5 Randomized transmission scheme with transform T 
 
 

be Gaussian with variance P/2B + 2
G

2
I σσ  . The capacity can then be 

estimated as 
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4. State known at transmitter, but not at receiver 
We use the water-filling argument for the power when the channel state is 
known. Since H(Y | X)  H(Y | X, state), we can estimate the channel 
capacity as 
 
 C+,- ≤  C+,+ 

  
A better approximation of the C+,+ has to be found. 
 
Conclusion 
 
It can be seen from (A7.2) and (A7.3), that C-,+ ≈ C+,+. Hence, this shows that 
an informed receiver can be as effective as an informed transmitter. In 
principle, no feedback is needed.  
 
The difference Δ between informed and un-informed transmitter and 
receiver is defined as  
 

 Δ = 10log10














 2
I

2
G

2
G

σσ

σ
dB. 

 

For 2
G

2
I σ 100 σ  , the gain in capacity by the channel state information is 

about 20 dB. 
 
For more information on impulsive noise mitigation and capacity bounds we 
refer to the work by Jürgen Häring1 in  [75,76,77,86,87]. 
 
1Jürgen Häring, PhD 2001, University Duisburg-Essen, Germany, “Error Tolerant 
Communication over the Compound Channel” 
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A.8 Channel Capacity and Water-filling 
 
 
A.8.1 Gaussian Channel Capacity 
 
Before we consider the impulse noise channel, we repeat the channel 
capacity for the Additive White Gaussian Noise Channel with input X and 
output Y, under the following conditions: 
  
- channel bandwidth: 2B (double sided); 

- input power spectral density: B2/Pσ 2
X  ; 

- noise power spectral density: 2
Gσ ; 

- entropy of the Gaussian noise: H(noise) = ½ log2(2πe 2
Gσ )bits. 

 
 

   N(oise) N(0, 2
Gσ ) 

 
 
 X             Y = X + N 
 
                   
           Figure A6  Additive White Gaussian Noise Channel model 
 
 
The capacity for the AWGN channel is 
 
 CAWGN = H(Y) – H(Y | X)  
 

= H(Y) – H(noise) 
 

= 











 















2
G

2
G

2
X

22
G

2
Y

2
σ

σσ
log

2

1

σ

σ
log

2

1
bits/transmission. 

 
Assuming that the channel has bandwidth B, we can represent both the input 
and the output by samples taken 1/2B seconds apart. If the channel noise is 

Gaussian with power spectral density 2
Gσ , each of the 2B noise samples per 

second has variance 2
Gσ .  The power spectral density per sample is P/2B and 

thus, the channel capacity in bits/ per second is ,  
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C = 
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A.8.2 Capacity of the Degraded Broadcast Channel 
 

The broadcast channel (γ2 > σ2  and ) is depicted in Figure A7. 
   
 
 X          
 
                N(0, σ2)           N(0, γ2) 
 
                        n1                    n2 

               
                               Y                      Z 
 
 Figure A7  The degraded broadcast channel 
 
We can represent the transmission from X to Z and X to Y in Figure A8, 
where X = U + V, U and V Gaussian input variables with average power αP 
and (1-α)P, respectively. The message U is for receiver Y and the message V 
is for user Z. Since γ2 > σ2,  the first user is more powerful and can thus also 
decode U and subtract its influence from X.  A simple AWGN channel 
U→Y remains. The second user experiences the signal U and n2 as additive 
white Gaussian noise and thus the achievable rate from transmitter to both 
the receivers is 
 

 C1 =  ,
P

1log
2

1
22 











  

                            (A8.1) 

 C2 = .
P

P
1log

2

1
22 













  

 
What remains is to proof that this is indeed the capacity region for the 
degraded broadcast channel. For this, we refer to [20]. 
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                 N1(oise): N(0, σ2) 
 
 
 V        Y = V + N1 

 
            V: N(0, αP) 
 
  V:  N(0, αP)     N2(oise): N(0, γ2) 
 
 
 U        Z = V + U + N2 

 
           U:  N(0, (1- α)P) 
 

Figure A8 The degraded broadcast channel where X = U + V 
 
 
A.8.3  Water-filling for two parallel channels  
 
Suppose that we have an AWGN channel with bandwidth B, divided into  
two channels in portions αB and (1-α)B, respectively.  The maximum 
average power P = P1 + P2, where P1 and  P2 are the average power for 
channel 1 and channel 2, respectively.   In addition, one channel  has noise 
N1 with variance  γ2 and the other channel  has noise N2 with variance σ2,  γ2 

> σ2 . The capacities in bits/second are 
 

,
 γB 2α

P
1 log B αC

2
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2
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                                   (A8.2b)                         

 
We  maximize C1 + C2  as a function of P1, and find that for the maximum, 
 

P1 = α ( P -  B(γ2  -  σ2) α),                      (A8.3a) 
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P2 = α ( P +  B(γ2  -  σ2) α)                                       (A8.3b) 
 
for P  (γ2 - σ2) α  , otherwise P1 = 0. Figure A9 gives a graphical 
interpretation. 
 
 
 
 
 
                                                      P1/2αB           P2/2α B 
 
                                 γ2 
 
 Power 

Spectral  
Density        σ2 

 
 
  
 
         αB  α B               frequency 

  
 Figure A9  Graphical presentation of the water-filling argument 
 
 
Note that  P1 /2α B + γ2  = P2 2/α B +  σ2. If the frequency band is divided 
into more parts, a more complicated optimization algorithm is necessary, see 
[22]. 
 
  
A.8.4  Water-filling for n parallel channels  
 
For n parallel channels, each with the same bandwidth B, the sum capacity in 
bits/second  is given by 
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where for every sub-channel the capacity is optimized by having a Gaussian 
input distribution with power constraint Pi  0 subject to the sum power 
constraint P. To maximize (A8.4.1) one uses the technique of Lagrange 
multipliers. The Lagrange multiplier is given by 
 

 J(P1, P2, ···, Pn) = )PP(
B2

P
1logB2

n

1i
i2

i

i
n

1i
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 .      (A8.4.2) 

 
Differentiating with respect to Pi gives 
 

  .
B2

P

2ln2

1 2
i
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The value of λ can be solved by using the sum power constraint P, where for 
physical reasons Pi  0. See Figure A10 for a graphical interpretation. For 
the left situation, enough power for all channels to have a positive capacity.  
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Figure A10 Graphical interpretation of the water-filling argument 
for n parallel channels. Left: all channels are used 

 
  



 Appendix  

190 
 

 
  



 Appendix  

191 
 

 
 
10 References  
 
 
[1] N. Abramson, “The throughput of packet broadcasting channels,” IEEE 
Transactions on  Communications, vol. COM-25, pp. 117–128, Jan. 1977 
[2] Christof Haslach and A.J. Han Vinck, “A Decoding Algorithm with Restrictions 
for Array Codes,” IEEE Transactions on Information Theory, pp. 2339-2345, Nov. 
1999  
[3] Christof Haslach and A.J. Han Vinck, “Correction to a Decoding Algorithm with 
Restrictions for Array Codes," IEEE Transactions on Information Theory,  pp. 479, 
Jan. 2001  
[4] A. Kuznetsov, F. Swarts, A.J. Han Vinck and H.C. Ferreira, "On the Undetected 
Error Probability of Linear Block Codes on Channels with Memory," IEEE 
Transactions on Information Theory, Vol. 42, No. 1, pp.  303-309, Jan. 1996 
[5] A.J. Han Vinck  and A.J. van Wijngaarden, “On Synchronization for Burst 
Transmission,”  IEICE,  pp. 2130-2135, Nov. 1997  
[6] Hiroyoshi Morita, Adriaan J. van Wijngaarden and A.J. Han Vinck, ”On the 
Construction of Maximal Prefix-Synchronized Codes,” IEEE Transactions on 
Information Theory,  pp. 2158-2166, Nov. 1996  
[7] J.J. Metzner and E.J. Kapturowski, “A general decoding technique applicable to 
replicated file disagreement location and concatenated code  decoding,” IEEE 
Transactions on Information Theory, vol. 36, pp. 911–917,  July 1990 
[8] Shin-Chun Chang and J.K. Wolf, "On the T-User M-Frequency Noiseless 
Multiple-Access Channel with and without Intensity Information," IEEE 
Transactions on Information Theory, vol. IT-27, pp. 41-48, Jan. 1981 
[9] A.J. Han Vinck and Jeroen Keuning, “On the Capacity of the Asynchronous T-
user M-frequency Noiseless Multiple Access Channel without Intensity 
Information,“ IEEE Transactions on Information Theory, Nov. 1996 
[10] A. Cohen, J. Heller and A. Viterbi, "A New Coding Technique for 
Asynchronous Multiple Access Communication," IEEE Transactions on 
Communications, vol. COM-19, pp. 849-855, Oct. 1971 
[11] W.H. Kautz and R.C. Singleton, “Nonrandom Binary Superimposed Codes,“ 
IEEE Transactions on Information Theory, IT-10, pp. 363-377, Oct. 1964,  
[12] A. J. Han Vinck, Samvel Martirossian and Peter Gober, “On q-ary 
Superimposed Codes,” 1999 IEEE ITW, Kruger National Park, South Africa, June 
20 - 25 
[13] E.L. Titlebaum, “Time Frequency Hop Signals,” IEEE Transactions on 
Aerospace and Electronic Systems, Vol. AES-17,  pp. 490-494, July 1981 



 Appendix  

192 
 

[14] H. Ferreira, L. Lampe, J. Newbury and T. Swart, editors, Power line 
communications, John Wiley & Sons, 2000  
[15] O. Hooijen, ”On the relation between network-topology and power line signal 
attenuation,” In: International Symposium on Power Line Communication and  its 
Applications, pp. 45–55, March 1998  
[16] O. Hooijen, ”A channel model for the residential power circuit used as a digital 
communications medium,” IEEE Transactions on Electromagnic  Compatibility, 
40(4):331–6, 1998 
[17] V. Balakirsky and A.J. Han Vinck, ”Potential performance of PLC systems 
composed of several communication links,” In: International Symposium on Power 
Line Communication and its Applications, p. 12–6, March 2005 
[18] Y. Luo, A.J. Han Vinck and Yanling Chen, ”On the optimum distance profile 
about linear block code,” IEEE Transactions on  Information Theory 2010;56:1007–
14 
[19] Lutz Lampe and A.J. Han Vinck, ”On Cooperative Coding for Narrowband 
PLC Networks,” AEÜ(2011), doi: 10.1016/j.aeue., 2011 
[20] P. P. Bergmans, “A simple converse for broadcast channels with additive white 
Gaussian noise,” IEEE Transactions on Information Theory, Vol. IT-20, pp. 279-
280, 1974 
[21] R.J. McEliece and L. Swanson, “A note on the wide-band Gaussian broadcast 
channel,” IEEE Transactions on Communications,  Vol. Com 35, pp. 452-453, 1987 
[22] T.M. Cover and Joy Thomas, Elements of Information Theory, Wiley Series in 
Telecommunications and Signal Processing 
[23] N. Jindal, S. Vishwanath and A. Goldsmith, “On the Duality of Gaussian 
Multiple-Access and Broadcast Channels,”  IEEE Transactions on Information 
Theory, Vol. 50, No. 5, pp. 768-783, May 2004 
[24] T. Schaub, “Spread Frequency Shift Keying,” IEEE Transactions on 
Communications, Vol. 24, pp. 1056-1064, 1994 
[25] Morgan H.L.Chan and Robert W. Donaldson, “Amplitude, Width, and 
Interarrival Distributions for Noise Impulses on Intra Building Power Line 
Communication Networks,” IEEE Transactions on Electromagnetic Compatibility, 
Vol. 31, Aug. 1989, pp. 320-323  
[26] John Proakis,  Digital Communications, McGraw-Hill, 1989 
[27] J.A.C. Bingham, “Multicarrier Modulation for Data Transmission: An Idea 
whose Time has Come,”  IEEE Communications Magazine, pp. 5-14, May 1990 
[28] Ian F. Blake, “Permutation Codes for Discrete Channels,” IEEE Transactions 
on Information Theory, pp. 138-140, Jan. 1974 
[29] M. Deza and S. A. Vanstone, “Bounds for permutation arrays,” J. Statist. 
Planning Inference, vol. 2, no. 2, pp. 197–209, 1978. 
[30] A.M. Michelson and A.H. Levesque, Error Control Techniques for Digital 
Communications (John Wiley, 1985). 
[31] R. Schweikert and A.J. Han Vinck, “A Convolutional Decoding Structure for 
High Data Rate Applications,” IEEE Transactions on Communications,  Vol. 39,No. 
1, pp. 4-7, Jan. 1991 



 Appendix  

193 
 

[32] K.A. Schouhamer Immink, Codes for Mass Data Storage Systems, Second fully 
revised edition, Shannon Foundation Publishers, Eindhoven, The Netherlands, ISBN 
90-74249-27-2, Nov. 2004 
[33] G.D. Forney, Jr, Concatenated Codes, MIT Press, Cambridge, MA, (1966) 
[34] P. Elias, “Error-free coding,” IEEE Transactions on Information Theory, pp. 
29-37, Sept. 1954 
[35] A. D. Wyner, “The wiretap channel,” Bell Sys. Tech. J.; 54, pp. 1355-1387, 
1975 
[36] L.H. Ozarow and A.D. Wyner, “Wiretap channel II,” Proc. Eurocrypt 84, A 
workshop on Advances in Cryptology: Theory and Application of Cryptographic 
Techniques; pp. 33-51, 1984 
[37] G. David Forney, Jr., “Dimension/length profiles and trellis complexity of 
linear block codes,” IEEE Transactions on Information Theory, 40(6): pp. 439-441, 
Nov. 1994 
[38] Y. Luo, C. Mitrpant, A.J. Han Vinck and K. Chen, “Some New Characters on 
the WireTap Channel of Type II,” IEEE Transactions on Information Theory, pp. 
1222-1228,  ISSN 0018-9448, March 2005,  
[39] C. Mitrpant, A.J. Han Vinck and Yuan Luo, “An Achievable Region for the 
Gaussian Wiretap Channel with Side Information,” IEEE Transactions on 
Information Theory, pp. 1222-1228,  May 2006  
[40] S. K. Leung-Yan-Cheong, “On a special class of wiretap channels,”  IEEE 
Transactions on Information Theory, vol. IT-23(5), pp. 625-627, Sept. 1977 
[41]  A. Juels and M. Wattenberg, “A Fuzzy Commitment Scheme,” ACM 
Conference on Computer and Communications Security, pp. 28–36, 1999,  
Lausanne, Switzerland  
[42] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and. 
Applications, 2nd ed., Prentice Hall, 2004  
[43] Y. Dodis, L. Reyzin and A. Smith, “Fuzzy Extractors,” Advances in 
Cryptology, Springer Verlag, pp 523-540, Eurocrypt 2004 
[44]  Ulrike Korte et al., “A cryptographic biometric authentication system based on 
genetic fingerprints,” Lecture Notes in Informatics,”  pp. 263-276, Bonner Köllen 
Verlag (2008) 
[45] Y. Chen and A.J. Han Vinck, ”Look into the Biometric Authentication 
Scheme,”  accepted for publication in Secrypt 2011, Sevilla, Spain   
[46] T. Ignatenko and  F.M.J. Willems, ”Information Leakage in Fuzzy 
Commitment Schemes,” IEEE Transactions on Information Forensics and Security, 
pp. 337-348, June 2010  
[47] A. Juels and M. Sudan, “A Fuzzy Vault Scheme,” Designs, Codes and 
Cryptography, pp. 237-257,  Febr. 2006 
[48] K. Nandakumar,  A.K. Jain and S. Pankanti, “Fingerprint-Based Fuzzy Vault: 
Implementation and Performance,” IEEE Transactions on Information  Forensics 
and Security, pp. 744-757,  Dec. 2007  
 [49] V. B. Balakirsky and A. J. Han Vinck, “A Simple Scheme for Constructing 
Fault-Tolerant Passwords from Biometric Data,” Eurasip Journal on Information 
Security, Volume 2010 (2010), Article ID 819376, 11 pages  
 



 Appendix  

194 
 

[50] A.J: Han Vinck, R. Schweikert and H.P. Förster, “Message dependent 
synchronization,”  Global Telecommunications Conference, GLOBECOM’88,  1183 
– 1187, 1988 
[51] C.E. Shannon, "Communication Theory of Secrecy Systems," Bell System 
Technical Journal, vol. 28(4), page 656–715, 1949 
[52] A. J. Han Vinck and Y. Luo, “Optimum distance profiles of linear block 
codes,” in Proc. IEEE Int. Symp. Inf. Theory, pp. 1958- 1962, July 2008 
[53] Yanling Chen and A.J. Han Vinck, “A Lower Bound on the Optimum Distance 
Profiles of the Second-Order Reed–Muller Codes,” IEEE Transactions on 
Information Theory, pp. 4309 – 4320, Sept. 2010 
[54] Rolf Johannesson, “Some long rate one-half binary convolutional codes with an 
optimum distance profile,” IEEE Transactions on Information Theory, pp. 629-631, 
1976  
[55] H. Holma and A. Toskala, WCDMA for UMTS-HSPA Evolution and LTE, 4th 
ed. London, U.K.: Wiley, 2007 
[56] R. Tanner and J. Woodard, WCDMA-Requirements and Practical, Design, 
London, U.K.: Wiley, 2004 
[57] G. Solomon, “A Note on Alphabet Codes and Fields of Computation,” 
Information and Control,” pp. 395-398, 1974   
[58] Gottfried Ungerböck, “Channel Coding with Multilevel/Phase Signals,” IEEE 
Transactions on Information Theory, Vol. IT 28, No. 1, pp 55-67, Jan 1982 
[59] H. Hollmann, “Bounded-delay-encodable, block-decodable codes for 
constrained systems,” IEEE Transactions on Information Theory, Vol. 6, pp. 1957-
1970, Nov. 1996  
[60] Anil Mengi, Ph. D. Thesis, “On Combined Coding and Modulation,”  
University Duisburg-Essen, Essen, Germany, 2010, 
[61] Anil Mengi and A.J. Han Vinck, “Coded modulation with a constraint on the 
minimum channel symbol duration,”  Proceedings International Symposium on 
Information Theory, ISIT 2009, Seoul, South  Korea, pp. 1544-1548, June  2009  
[62] A.J. Viterbi, “A rubust ratio-threshold technique to mitigate tone and partial 
band jamming in coded MFSK systems,” in Proc. 1982 IEEE MILCOM, Boston, 
MA, USA, Oct. 17-20, pp. 22.4.1- 22.4.5, 1982 
[63] D.J.J. Versfeld, A.J. Han  Vinck, J.N.   Ridley and H.C. Ferreira, “Constructing 
Coset Codes With Optimal Same-Symbol Weight for Detecting Narrowband 
Interference in M-FSK Systems,” IEEE Transactions on Information Theory,  pp. 
6347-6353, Dec. 2010 
[64] A. V. Kuznetsov, B. S. Tsybakov, “Coding in a Memory with Defective Cells,” 
Probl. Peredachi Inf., 10:2, pp. 52–60,  1974 
[65] Martin Borden and A.J. Han Vinck, ”On Coding for Stuck-at Defects,”  IEEE 
Transactions on Information Theory, pp. 729-735, Sept. 1987 
[66] A.V. Kuznetsov and A.J. Han Vinck, "On the General Defect Channel with 
Informed Encoder and Capacities of Some Constrained Channels,” IEEE 
Transactions on Information Theory, Vol. 40, pp. 1866-1871, Nov.  1994,  
[67] Chris Heegard, “Partitioned Linear Block Codes for Computer Memory with 
Stuck – at Defects," IEEE Transactions on Information Theory, Vol. IT29, No.6, pp. 
831-842,  Nov. 1983 



 Appendix  

195 
 

[68] Fangwei Fu and A.J. Han Vinck, “On the Capacity of Generalized Write-Once 
Memory with State Transitions Described by an Arbitrary Directed Acyclic Graph,” 
IEEE Transactions on Information Theory, Vol. 45, no.1, pp. 308-312,  Jan. 1999  
[69]  R. L. Rivest and A. Shamir, “How to reuse the write once memory,” Inform. 
Control, vol. 55, pp. 1-19,  Oct.-Dec. 1982 
[70] http://mathworld.wolfram.com/VandermondeDeterminant.html 
[71] Yuan Luo, A.J. Han Vinck and Yanling Chen, “On the Optimum Distance 
Profile about Linear Block Codes,” IEEE Transactions on Information Theory, Vol 
56, pp. 1007-1014, March 2010 
[72] R. Gallager, Information Theory and Reliable Communication, 1968 
[73] Tadashi Wadayama and A.J. Han Vinck, “DC-Free Convolutional Codes,” 
IEEE Transactions on Information theory,  Vol. 48, pp. 162-173, ISSN 0018-9448, 
Jan. 2002 
[74] Tadashi Wadayama and A.J. Han Vinck, “A Multilevel Construction of 
Permutation Codes,”  IEICE Transactions on  Fundamentals, pp. 2518-2522, Oct. 
2001 
[75] Jurgen Haering and  A. J. Han Vinck,  “Coding and Signal Space Diversity for 
a Class of Fading and Impulsive  Noise Channels,” IEEE Transactions on 
Information Theory,  pp. 887-895,  May 2004  
[76] Jurgen Haering and  A. J. Han Vinck, ”IEEE Transactions on Information 
Theory, pp. 1251-1260,  May 2003 
[77] Jurgen Haering and  A. J. Han Vinck, “Performance Bounds for Optimum and 
Suboptimum Reception under Class-A Impulsive Noise,” IEEE Transactions on 
Communications, pp. 1130-1136,  July 2002 
[78] Frans Willems and A.J. Han Vinck, “Repeated Recording for an Optical Disk,” 
7th  Symposium on Information Theory in the Benelux, Noordwijkerhout, The 
Netherlands,  pp. 49 – 53, May 22-23, 1986 
[79] Martin Vinck, Francesco P. Battaglia, Vladimir B. Balakirsky, A. J. Han Vinck, 
and Cyriel M. A. Pennartz, ”Estimation of the entropy based on its polynomial 
representation,”  Phys. Rev. E 85, 051139 (2012) [9 pages] 
[80] T. Ericson and V. Levenshtein, “Superimposed Codes in the Hamming Space,”  
IEEE Transactions on Information Theory,  pp. 1882-1893, Nov. 1994 
[81] G. Poltyrev and J. Snyders, “Linear Codes for the Sum-2 Multiple-Access 
Channel with Restricted Access,” IEEE Transactions on Information Theory, pp. 
794-799, May 1995 
[82] A.J. Han Vinck, “Capacity Achieving Coding for the “OR” Multiple Access 
Channel,” ITW 1998, Killarney, Ireland , p. 127, June 22-26 
[83] Peter Gober, Aspekte des unkoordinierten Mehrfachzugriffs, Verlag 
dissertation.de, 2000 
[84] V.I. Levenshtein and A.J. Han Vinck, “Perfect (d,k)-Codes Capable of 
Correcting Single Peak-Shifts," IEEE Transactions on Information Theory, Vol. 39, 
No. 2, pp. 656-662, March 1993  
[85] Young Gil Kim and A.J. Han Vinck, “A New Collision Arbitration Algorithm 
for FM0 Code in RFID Applications, ”International Conference on Multimedia and 
Ubiquitous Engineering, MUE '07, pp. 992–994, 26-28 April 2007 



 Appendix  

196 
 

[86] Victor N. Papilaya, Thokozani Shongwe, A. J. Han Vinck and Hendrik C. 
Ferreira, "Selected Subcarriers QPSK-OFDM Transmission Schemes to Combat 
Frequency Disturbances,"  2012 IEEE ISPLC, Bejing, 2012, 200 – 205, 2012 
[87] Der-Feng Tseng, Han, Y.S., Wai Ho Mow, Li-Chung Chang and Vinck, A.J.H, 
“Robust Clipping for OFDM Transmissions over Memoryless Impulsive Noise 
Channels,”  Communications Letters, IEEE Volume: 16 , Issue: 7,  pp. 1110 – 1113, 
2012 
[88] N. Pavlidou, A.J. Han Vinck, J. Yazdani and B. Honary, “Power Lines 
Communications: State of the Art and Future Trends,” IEEE Communications 
Magazine, pp. 34-40, April 2003 
[89] Bin Dai, A.J. Han Vinck, Yuan Luo and Zhuojun Zhuang,  “Capacity region of 
non-degraded wiretap channel with noiseless feedback,“ Proceedings (ISIT), 2012 
IEEE International Symposium on  Information Theory, pp. 244-248,  2012 
[90] A.J. Han Vinck, “Coding Techniques and the Two-Access Channel,” In 
Multiple Access Channels: Theory and Practice  Eds. E. Biglieri, L. Györfi, pp. 273-
286, IOS Press, ISBN 978-1-58603-728-4, 2007 
[91] A.J. Han Vinck, W. Hoeks and Karel Post, “On the capacity of the Two-User 
M-ary Multiple Access Channel with Feedback,” IEEE Transactions  on Information 
Theory,  pp. 540-543 , July 1985 
[92] J.P.M. Schalkwijk, A.J. Han Vinck and Karel Post, “Syndrome Decoding of 
binary rate k/n convolutional codes,” IEEE Transactions on Information Theory, pp. 
553 – 562, Sept. 1977 
[93] A.J. Han Vinck, ”A low complexity stack decoder for a class of binary 
rate (n-1)/n convolutional codes,” IEEE Transactions on Communications, 
pp. 476-479, April 1984 
[94] A.J. Han Vinck, A.J. de Paepe and J.P.M.  Schalkwijk, ”A class of 
binary rate one-half convolutional codes that allows an improved stack 
decoder,” IEEE Transactions on Information Theory, pp. 389-392, July 1980  
[95] H.C. Ferreira, A.J. Han Vinck, T.G. Swart and I. de Beer, “Permutation Trellis 
Codes,”  IEEE Transactions on Communications, pp. 1782-1789, Nov. 2005 
[96] Hsiao-Hwa Chen, A. J. Han Vinck, Qi Bi, F. Adachi and L. B. Milstein, “Next 
Generation CDMA Technologies,” IEEE Journal on Selected Areas in 
Communications, pp. 1-3, ISSN 0733-8716, Jan 2006 
[97] T. Kløve, “Classification of permutation codes of length 6 and minimum 
distance 5,” Proceedings, ISITA, Honolulu, Hawaii, USA, pp. 465-468Nov. 5-8, 
2000 
[98] Janiszczak I., Staszewski R., “An improved bound for permutation arrays of 
length 10. http://www.iem.uni-due.de/preprints/IJRS.pdf (downloaded 1st March 
2011) 
[99] P. P. Bergmans and T. M. Cover, “Cooperative broadcasting,” IEEE Trans-
actions on  Information. Theory, vol. IT-20, pp. 317–324, May 1974 
 
 

  



 Appendix  

197 
 

 

INDEX 
achievable rate 20 
additive coding 148 
additive white Gaussian noise 64 
Aloha 7 
array 9 
ARQ 3  
attenuation 45 
attenuation factor 46 
authentication 115, 120 
Automatic Repeat reQuest  3 
 
background noise  81 
bandwidth 27, 77, 185 
 efficiency 78, 84 
Berlekamp Massey 176 
biometric 115, 120 
broadcast channel 57, 186 
bus 46 
 
capacity  

uncoordinated 20 
secrecy 97 
channel 162 
impulse noise 181 
Gaussian 185 

carrier frequency 138 
channel  

binary OR 20 
binary XOR 20 

 common 19 
Gaussian 185 

 M-ary OR 23 
 M-ary Erasure 25 
 main 97 
 parallel 187, 188 

 Z channel 23 
check part 130, 174 
Chien search 177 
ciphertext 113 
code  

extended 31 
KS 34 
minimum distance 2 
repetition 173 
superimposed 34 

coding gain 70 
collision 7 
concatenated code  88 
constrained coding 129 
control word 130 
cooperative coding 47 
coordinated access 21 
correlator 78 
cover 34 
cryptosystem 113 
 
d-constraint 132, 134 
decode-and-forward 47 
defect  

matching 150 
 model 147 
-0 147 
-1 147 
compatible 150 

detect-and-forward  47 
dimension division 21 
distance  
 minimum 2 
 spectrum 68 
 
efficiency 3 
encoding matrix 2  
energy 64, 65 
energy detector 32 
enrollment 115, 117 
entropy 161 
 conditional 162 



 Appendix  

198 
 

 joint 162 
envelope detector  78, 80 
equivocation 97,  107, 162 
erasure 2, 66 
error  

correcting 2, 65 
detection 2 
and erasure  66 
locator 176 

Euclid 176 
 
False Acceptance Rate (FAR) 118 
False Rejection Rate  (FRR)  118 
FDMA 21 
frequency-sharing 55 
frequency selective fading 81 
 
Galois Field 164 
Gaussian broadcast channel 57 
greatest common divisor 176 
guessing probability 119 
 
Hamming code 101 
hard decision 65 
hard quantized 70 
hash 122 
 
idle 21 
IDLP 110 
impulse  

index A 178  
noise 80, 178 
strength 178 
integrate-and-dump 138 

intermediate receiver 47 
information 

 rate 77 
side 162 
mutual 162 

informed  
receiver 181 
transmitter 181 

insertion 86 
iterative decoding 92 
 
Kautz-Singleton 34 
key 113 

equation 176 
noisy 115 

 
leakage 113, 120 
links in tandem 46 
 
majority vote 173 
M-ary OR 23 
Maximum Likelihood 67 
MFSK 27, 77 
Middleton Class-A 178  
minimal  polynomial  165 
minimum distance 2 
modulated symbol 77 
mother code 141 
multi user tandem 53 
multi user 19, 53 
multiple access 20 
multiple access channel 19, 58 
mutual information 162 
 
narrowband noise 80, 145 
noise 

mitigation 184 
 entropy 116, 185 
noisy cipher 115 
non-coherent detection 78, 138 
 
ODP 140 
optical pulse modulation 21 
optimum distance profile  140 
 
packet, 3 
 checksum 3 
 error rate 3 
 synchronization 3 
partly observed message 107 



 Appendix  

199 
 

perfect secrecy 113 
permutation code 82 
point-to-point 54 
polynomial  
 minimal 165 
 irreducible 165 
power allocation 53, 55 
power line communication 45, 93 
PPM 26 
primitive element 164 
product code 90 
Pulse Position Modulation   26 
puncturing 140 
 
Q-function  46, 65 
 
random signatures 27 
rate 20 
relay 49, 56 
repeater 47 
repetition code 172 
RLL 132 
row 
 extension 142 
 deletion 140 
RS-constrained code 90 
Run Length Limited 132 
 
same-weight 144 
sampling instance 79 
secrecy capacity 97, 99 
semi-systematic 104 
separation 133 
side information 162 
signatures 
 random 27 
 constructed 31 
 modulated 31 
 
single parity check code 71 
sinusoidal waves 77 
slot 26 

soft decision 63 
soft decoding  67 
special element 35 
squared Euclidean distance 67 
storage capacity 148 
stuff bits 133 
sub-slot 26 
super channel 88 
syndrome 101, 172 

former 171 
symbol  

avoidance 129 
 look-ahead 133 
 duration 77, 133 
systematic encoding 102 
 
tandem  46, 97 
TDMA 21 
throughput 1, 20 
time-sharing 55 
Titlebaum 31 
transition 133 
transmission efficiency 20 
two access 58 
 
 
un-coded  64 
uncoordinated  access 20 
undetected error probability 3 
union of a set 34 
union bound 70 
user 
 legal 118 
 illegal 119 
 
Vandermonde  

determinant167 
matrix 167 

verification 115 
Viterbi 76 
 
water-filling 55, 187, 188 



 Appendix  

200 
 

wiretap channel  95 
wiretapper 95 

write once memory 159 

 
 
 

   
 
 
 
 
 

 
 

  
  
 
 
 
 
 
 
 
  



 

My co
 

member o
Guest IEM

PhD Univ
 Africa, v

Tjiao-Ton
Guest res
  

 
 PhD, IEM

Universit
Master St
 

o-author

A.V. Ku
of IPPI, Mosc
M 

S. Thok
v. of Johannes
visiting scienti

 Yuan Luo,
ng University 
searcher IEM, 

 Chri
M 

 Wim H
ty of Eindhove
tudent, 1983 

rs for the

uznetzov,  
cow, Russia 

ozani, 
sburg, South 
ist IEM 

,  
Shanghai 
  

istof Haslach,

Hoeks 
en 

Appendix

201 
 

e referen

Nanke

PhD, 

PhD, 

 
Guest
South

PhD, 

nced pap

 F
ei University,

 An
IEM 

 Yanlin
IEM 

 Jac
t IEM, Univ. W
h Africa 

 A. van
IEM 

pers 

angwei Fu 
China, Guest

nil Mengi,  

ng Chen 

co Versveld 
Witwatersrand

n Wijngaarden

 

t IEM 

d,  



 

Guest IEM
Armenia 

Guest IEM

Universit

PhD, IEM

Guest IEM
Seoul Un

Chofu Un
Guest IEM

 Samwel 
M, Univ. Duis
Academy of S

 Vladim
M, Russia 

 Chai 
ty Duisburg-E

 Peter Gobe
M, Univ. Duisb

Young G
M,  

niversity, Sout

 Hiroyoshi M
niv. of Electro
M, Univ.  Dui

Martirossian
sburg-Essen 
Sciences 

mir Balakirsky

Mitrpant, 
Essen, 2004 

er 
burg Essen 

Gil Kim  

th Korea 

Morita 
o-Comm, Japa
isburg-Essen.

Appendix

202 
 

Guest
Unive

y,  
PhD U

PhD  Auden
Germ

Univ.
Guest

Prof. 
Guest

an, Univ. 
 Gues

 Jeroen 
t IEM 
ersity Eindhov

 Yanlin
University Du

 Robe
ns, former DL

many 

 Hen
 of Johannesb
t IEM, Univ. D

 Lutz
UBC, Canad

t IEM 

Francis
 of Johannesb

st IEM, Univ. 

Keunig,  

ven, The Neth

ng Chen,  
uisburg-Essen 

rt Schweikert
LR Oberpfaffe

ndrik Ferreira 
burg, South Af
Duisburg-Esse

z Lampe,  
da, Humboldt 

Swart 
burg, South Af
Duisburg--Es

 

herlands 

,  
enhofen, 

frica 
en 

Fellow, 

frica 
sen 



 

Guest IEM

Univ. of E

Keldish I
 

Chinese U

National 
and Tech

of Thessa

 Tadashi W
M, Nagoya Un

Frans W
Eindhoven, th

Vladimir Le
Inst., Moscow

Wai Ho Mo
University of 

Yunghsian
Taiwan Univ

hnology, Taipe

 Niovi Pa
aloniki, Greec

Wadayama 
niversity, Japa

Willems,  
he Netherlands

evenshtein 
w, RU, visitor I

ow, 
HongKong 

ng Sam Han 
versity of Sci
ei 

avlidou, Unive
ce 

Appendix

203 
 

an 
2001, 

s 
of Am

IEM Stude

Nation
and T

ience 
of Cen

ersity 

Unive

 Jürgen
 PhD, Univ. D

 Martin
msterdam, the 

Victor
ent IEM, Univ

Der Fen
nal Taiwan U

Technology, T

 Javad 
ntral Lancash

ersity of Lanc

n Häring 
Duisburg Esse

n Vinck, PhD
Netherlands 

r Papilaya, PhD
v. Duisburg-Es

ng Tseng 
University of 
aipei 

Yazdani, Un
hire, England 

Bahram 
aster, England

 

en 

D Univ. 

D 
ssen 

Science 

niversity 

Honary, 
d 



 

 Universi

DLR Obe

Universit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Piet Sch
ity of Eindhov

 Hans P
erpfaffenhofen

 Andre d
ty of  Eindhov

alkwijk 
ven 

eter Foerster
n, Germany 

de Paepe 
ven 

Appendix

204 
 

Unive

Unive
South

Nation
Taina

 Dr. Karel 
ersity of Eindh

 Theo
ersity of Johan
h Africa 

Hsiao-H
nal Cheng Ku

an City , 7010

Post,  
hoven 

o Swarts 
nnesburg 

Hwa Chen 
ung University
1, Taiwan  

 

y  



 

 
 

 
To enabl
engage in
Institute f
Volkswag
Essen in 
Foundatio
“Comput
communi
represent
 
The prim
mathema
activities 
 

-

-

-

 
The Work
informati
 

 

e mathematic
n uncomplica
for Experimen
gen Foundatio
1989. With 

on Chair on 
ter Networkin
ications, comp
ted at the IEM

mary objective
atics, compute

carried out by

- basic res
technical 

- improvem
research b

- developm
theoretica

king Group on
ion theory, com

cians, comput
ated and trans
ntal Mathema
on, as a centr
the addition o
1 January 19

ng Technolog
puter network

M. 

 of the Institu
er science a
y scientists at

search in alg
coding theory

ment of poss
by  developm

ment of metho
al and practica

n Digital Com
mmunication 

Appendix

205 
 

er experts and
s-disciplinary 
atics (IEM) wa
ral scientific f
of the Alfried
999, the Insti
gy”. The are
king technolo

ute is to foster
and the engin

IEM in pursu

gebra, theory
y; 
sibilities for 
ent algorithm
ods for digita
al applications

mmunications
theory and da

d telecommun
collaboration

as founded, w
facility of the
d Krupp von 
itute was exp
eas of finite 
ogy and theor

r interactions 
neering scien

uit of this obje

y of numbers

using comp
ms and more ef

al communica
s. 

focuses on pr
ata security.  

nications engi
n under one r
with the suppo
e former Univ

Bohlen und 
panded in the

mathematics
ry of number

between the 
nces. Several
ective are liste

s, and algebr

puters in ma
fficient softwa
ation data bac

roblems in the

 

 

ineers to 
roof, the 
ort of the 
versity of 

Halbach 
 area of 
, digital 
s are all 

fields of 
l of the 
d below: 

raic and 

thematic 
are;  
ckup for 

e areas of 

 



 Appendix  

206 
 

 


	title_VInck
	Vinck_book_2014
	0 chapter formalities  book
	0 chapter 0 book
	1 book-chapter 1 packet transmission
	2 - book-chapter 2  random access
	3- book-chapter Cooperative
	4-book-chapter modulation detection
	5 -book-chapter -wiretap-
	6  book-chapter-biometrics
	7 - book chapter consttraint codes
	8- book-chapter 8 defects
	10 book-chapter appendix


