
Dynamic programming

Dynamic programming is a technique for efficiently computing recurrences by

storing partial results and re-using them when needed.

We trade space for time, avoiding to repeat the computation of a subproblem.

Dynamic programming is best underestood by looking at a bunch of different

examples.



Fibonacci numbers

Fibonacci recurrence: Fn = Fn−1 + Fn−2 with F0 = 0, F1 = 1

function Fibonacci(n)

if n = 0

then

return (0)

elseif

n = 1

then return (1)

else return (Fibonacci(n − 1) + Fibonacci(n − 2))

end if

end

As Fn+1/Fn ∼ (1 +
√

5)/2 ∼ 1.61803 then Fn > 1.6n, and to compute Fn we need

1.6n recursive calls.



Fibonacci con tabla

function PD-Fibonacci(n)

var

F : array [0 .. n] of integer

i : integer

end var

F [0] := 0; F [1] := 1

for i := 2 to n do

F [i] := F [i − 1] + F [i − 2]

end for

end

To compute F6:

0 1 1 2 3 5 7 9 16

To get Fn need O(n) iterations.



Guideline to implement Dynamic Programming

1. Characterize the recursive structure of an optimal solution,

2. define recursively the value of an optimal solution,

3. compute, bottom-up, the cost of a solution,

4. construct an optimal solution.



Multiplying a Sequence of Matrices

We wish to multiply a long sequence of matrices

A1 × A2 × · · · × An

with the minimum number of operations.

Give matrices A1, A2 with dim(A1) = p0 × p1 and dim(A2) = p1 × p2, the basic

algorithm to A1 × A2 takes time p0 × p1 × p2 :









2 3

3 4

4 5









×





2 3 4

3 4 5



 =









13 18 23

18 25 32

23 32 41











Recall that matrix multiplication is NOT commutative, so we can not permute the

order of the matrices without changing the result,

but it is associative, so we can parenthesise as we wish.

Consider A1 × A2 × A3, where dim(A1) = 10 × 100 dim(A2) = 100 × 5 and

dim(A3) = 5 × 50.

(A1A2)A3 needs (10 × 100 × 5) + (10 × 5 × 50) = 7500 operations,

A1(A2A3) needs (100 × 5 × 50) + (10 × 100 × 50) = 75000 operations.

The order makes a big difference in real computation’s time



The problem of given A1, . . . An with dim(Ai) = pi−1 × pi,

decide how to multiply them to minimize the number of operations

is equivalent to

the problem of deciding how to put a correct set of parenthesis the sequence

A11, . . . An.



How many ways to put parenthesis A1, . . . An?

A1 × A2 × A3 × A4:

(A1(A2(A3A4))), ((A1A2)(A3A4)), (((A1(A2A3))A4), (A1((A2A3)A4))), (((A1A2)A3)A4))

Let P (m) be the number of ways to put parenthesis correctly in A1, . . . An. Then,

P (n) =







1 if n = 1
∑n−1

k=1 P (k)P (n − k) si n ≥ 2

with solution

P (n) =
1

n − 1

(

2n

n

)

= Ω(4n/n3/2)

The Catalan numbers!

Therefore, brute force will take too long!

But we got a recursive definition. Let’s try a recursive solution.



Characterize the structure of an optimal solution

Notation: Ai−j = (Ai × Ai+1 × · · · × Aj)

Optimal substructure: The optimal way to put parenthesis on the subchain

(A1 · · ·Ak) with the optimal way to put parenthesis on Ak+1 · · ·An must be an

optimal way to put paranthesis on A1 · · ·An for some k.

Notice, that

∀k, 1 ≤ k ≤ n, cost (A1−k) + cost (Ak+1−n) + p0pkpn.

gives the cost associated to this decomposition.

We only have to take the minimum over all k to get a recursive solution.



Recursive solution

Let m(i, j) be the minimum nomber of operations needed to compute

Ai−j = Ai × . . . × Aj .

m(i, j) is given by choosing the value k, i ≤ k ≤ j that minimizes

m(i, k) + m(k + 1, j) + cost (A1−k × Ak+1−n).

That is,

m(i, j) =







0 if i = j

min1≤k≤j{m(i, k) + m(k + 1, j) + pi−1pkpj} otherwise



Computing the optimal costs

Straightforward recursive implementation of the previous recurrence:

As dim(Ai) = pi−1pi, the input is given by P =< p0, p1, . . . , pn >,

function MSMR(P, i, j) : integer

if i = j then return (0) end if ;

m := ∞;

for k := i to j − 1 do

q := MSMR(P, i, k) + MSMR(P, k + 1, j) + p[i − 1]p[k]p[j]

if q < m then m := q end if

end for

return (m)

end



The time complexity of the previous recursive algorithm is given by

T (n) ≥ 2
n−1
∑

i=1

T (i) + n ∼ Ω(2n).

An exponential function.

How many subproblems?

there are only O(n2) Ai−j !

We are repeating the computation of too many identical subproblems

Use dynamic programming to compute the optimal cost by a bottom-up approach.



We wil use an auxiliary table m[1 . . .m, 1 . . .m] for storing m[i, j],

m[i, j] =







0 if i = j

min1≤k≤j{m[i, k] + m[k + 1, j] + pi−1pkpj} otherwise

We can fill the array starting from the diagonal.



function algorithm MCP (P)

var

m : array [1 .. n]of integer

i, j, l : integer

end var

for i := 1 to n do

m[i, i] := 0;

end for

for l := 2 to n do

for i := 1 to n − l + 1 do

j := i + l − 1; m[i, j] := ∞;

for k := i to j − 1 do

q := m[i, k] + m[k + 1, j] + p[i − 1] ∗ p[k] ∗ p[j];

if q < m[i, j] then m[i, j] := q end if

end for

end for

end for

return (m)

end

This algorithm has time complexity T (n) = Θ(n3), and uses space Θ(n2).



Constructing an optimal solution

We have the optimal number of scalar multiplications to multiply te n matrices.

Now we want to construct an optimal solution.

We record which k achieved the optimal cost in computing m[i, j] in an auxiliary

table s[1 . . .m, 1 . . .m].

From the information in s we can recover the optimal way to multiply:

Ai × · · · × Aj = (Ai × · · · × Ak)(Ak+1 × · · · × Aj).

The value s[i, s[i, j]] determines the k to get Ai−s[i,j] and s[s[i, j] + 1, j] determines

the k to get As[i,j]+1−j .

The dynamic programming algorithm can be adapted easily to compute also s



function algorithm MCP (P)

var

m : array [1 .. n]of integer; s : array [1 .. n, 1 .. n]of integer

i, j, l : integer

end var

for i := 1 to n do

m[i, i] := 0;

end for

for l := 2 to n do

for i := 1 to n − l + 1 do

j := i + l − 1;

m[i, j] := ∞;

for k := i to j − 1 do

q := m[i, k] + m[k + 1, j] + p[i − 1] ∗ p[k] ∗ p[j];

if q < m[i, j] then m[i, j] := q; s[i, j] := k end if

end for

end for

end for

return (m)

end



Therefore after computing table s we can multiply the matrices in an optimal way:

A1−n = A1−s[1,n]As[1,n]+1−n.

function algorithm Multiplication(A, s, i, j)

if j > 1

then

X := algorithm Multiplication(A, s, i, s[i, j]);

Y := algorithm Multiplication(A, s, s[i, j] + 1, j);

return (X × Y )

else

return (Ai)

end if

end



0-1 Knapsack

We have a set I of n items, item i has weight wi and worth vi. We can carry at

most weight W in our knapsack. Considering that we can NOT take fractions of

items, what items should we carry to maximize the profit?

Let v[i, j] be the maximum value we can get from objects {1, 2, . . . , i} and taking a

maximum weight of 0 ≤ j ≤ W .

We wish to compute v[n, W ].

To compute v[i, j] we have two possibilities: The i-th element is or is not part of

the solution.

This gives the recurrence,

v[i, j] =







v[i − 1, j − wi] + vi if the i-th element is part of the solution

v[i − 1, j] otherwise



Define a table v[1 . . . n, 0 . . .W ],

Initial condition: ∀j, v[0, j] = 0

To compute v[i, j] must look to v[i − 1, j] and to v[i − 1, j − wi].

v[n, W ] will indicate the profit.



Example.

Let I = {1, 2, 3, 4, 5} with v(1) = 1; v(2) = 6; v(3) = 18; v(4) = 22; v(5) = 28,

w(1) = 1; w(2) = 2; w(3) = 5; w(4) = 6; w(5) = 7 and W = 11.

0 1 2 3 4 5 6 7 8 9 10 11

1 0 1 1 1 1 1 1 1 1 1 1 1

2 0 1 6 7 7 7 7 7 7 7 7 7

3 0 1 6 7 7 18 19 24 25 25 25 25

4 0 1 6 7 7 18 22 24 28 29 29 40

5 0 1 6 7 7 18 22 28 29 34 35 40

v[3, 5] = max{v[2, 5], v[2, 0] + v(3)} = max{7, 0 + 18} = 18



The time complexity is O(nW ).

Notice, that at each computation of v[i, j] we just need to store two rows of the

table, therefore the space complexity is 2W



Question

As you already know 0-1 Knapsack is NP-hard.

But the previous algorithm has time complexity O(nW ). Therefore ¶=NP!

Is something wrong?



Exercise

Modify the 0-1 Knapsack algorithm so that in addition to computing the optimal

cost it computes an optimal solution.



Travelling Sales Person

Given n cities and the distances dij between any two of them, we wish to find the

shortest tour going through all cities and back to the starting sity. Usually the

TSP is given as a G = (V, D) where V = {1, 2, . . . , n} is the set of cities, and D is

the adjacency distance matrix, with ∀i, j ∈ V, i 6= j, di,j > 0, the probem is to find

the tour with minimal distance weight, that starting in 1 goes through all n cities

and returns to 1.

The TSP is a well known and difficult problem, that can be solved in

O(n!) ∼ O(nne−n) steps.



Characterization of the optimal solution

Given S ⊆ V with 1 ∈ S and given j 6= 1, j ∈ S, let C(S, j) be the shortest path

that starting at 1, visits all nodes in S and ends at j.

Notice:

• If |S| = 2, then C(S, k) = d1,k for k = 2, 3, . . . , n

• If |S| > 2, then C(S, k) = the optimal tour from 1 to m, +dm,k,

∃m ∈ S − {k}
Recursive definition of the optimal solution

C(S, k) =







d1,m if S = {1, k}
minm6=k,m∈S [C(S − {k}, m) + d(m, k)] otherwise



The optimal solution

function algorithm TSP (G, n)

for k := 2 to n do

C({i, k}, k) := d1,k

end for

for s = 3 to n do

for all S ⊆ {1, 2, . . . , n}||S|| = s do

for all k ∈ S do

{C(S, k) = minm6=k,m∈S [C(S − {k}, m) + dm,k]}

opt := mink 6=1[C({1, 2, 3, . . . , n}, k) + d1,k

end for

end for

end for;

return (opt)

end

Complexity:

Time: (n − 1)
∑n−3

k=1

(

n−2
k

)

+ 2(n − 1) ∼ O(n22n) << O(n!)

Space:
∑n−1

k=1 k
(

n−1
k

)

= (n − 1)2n−2 ∼ O(n2n)



Dynamic Programming in Trees

Trees are nice structures to bound the number of subproblems.

Given T = (N, A) with |N | = n, recall that there are n subtrees in T .

Therefore, when considering problems defined on trees, it is easy to bound the

number of subproblems

Example: The Maximum Independent Set (MIS)

Given G = (V, E) the Maximum Independent Set is a set I ⊆ V such that no two

vertices in I are connected in G, and I is as large as possible.

Difficult problem for general graphs



Characterization of the optimal solution

Given a tree T = (N, A) as instance for the MIS, assume T is rooted. Then each

node defines a subtree.

For j ∈ N , the MIS (j):

1. it is j plus the union of the MIS of its grandsons,

2. It does not include j, and it is the union of the MIS of its sons.



Recursive definition of the optimal solution

For any j ∈ N , let I(j) be the size of the MIS in the subset rooted at j, then

I(j) = max{
∑

k child j

I(k), 1 + max{
∑

k grandchild j

I(k)}

The optimal solution will be given by the following bottom-up procedure:

1. Root the tree,

2. for every leaf j ∈ T , I(j) := 1,

3. In a bottom-up fashion, for every node j, compute I(j) according to the

previous equation.



Complexity:

Obvious time and space complexity: O(n2).

But, at each vertex, the algorithm only looks at its children and granchildren,

therefore each j ∈ N is looked only 3 times:

1.- when the algorithm computes I(j),

2.- when the algorithm computes the MIS for the father of j,

3.- when the algorithm computes the MIS for the grandfather of j.

Since each j is used a constant number of times, the total number of steps is O(n)


