UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

Reproduced by DOCUMENT SERVICE CENTER knoti building, dayton, 2, ohio

This docurnent is the property of the United States
Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

[^0]

NOT: CE: Except as hereinafter listed or marked, Bell Aircraft Corporation has no positive knowledge of the existence of other copyright. proprietary, or patent information contained in this report.

NOTICE

BELL A IRCRAFT COTPORiTION reserves
all rights of whatsoever nature in and to the developments herein described which are claimed in issued and, pending patents in BELI.'S ns'e, except as any of same are or may be licensed to the United States Gcyeramont for its use.

SPCAT

Foremord

During the period i April 1954 to 2 May 1955 the Bell Alroraft Corporation conducted a study progran for the New Developmont Office, Bombsidenent Aroraft Branch, WADC, in eocordance with
 of this etuxty was to investigate the posoible deaig and dovelopsent problems associated with flizht in the apeod and altitude regines of the watoon syatem dutilnod in Bail diroraft Report D143-9450010. The results of this stidy will proride the firm technioal foundations necessary for planing fature programs, funds, and faoilities.

The work accomplished during this program is reported in the following reports:

0143-945-012	Lerodinetios
1143-945-013	Strueturas
D143-845-014	Praliminars Global System Study
1213-945-015	Redar
D14. 2945016	Nevigation and Control
D143-945-027	Propulaion
D143-945-018	Final. Sumany Report

In the present reporit the passe aro numbered by sections. In the interest of reading conveniene日, the Embols, references, taisis. and 1 gigures generally are axamged at the nids of the major subteotions to which they are partinant.

SECRET

Index

The data presented in this report are the results of a study of the aerodynamie problems involved in the design of the MX-2276 weapon system. This weapon systern, which is substantially as described in orlginal proposal presented in Bell Aircraft Report D143-945-010, encoun'ers regimes of flight wherein little previous attention has been given to the design of a workable flight vehicle.

It is essential to the development of such a system, that reliable methods of estimating the necessary aerodynamic parameters be determined. In the original study referenced above, the basic intent was to demonstrate loasibility and to generally outline some of the more critical problem areas. To accomplish this, approximate means of estimacing the asrodynamic parameters were utilized and some preliminary investigations into the accuracy of these parameters were conducted. In addition, preliminary conclusions were reached as to the desired flight path and range capability of the we3pon, and a tentative configuration was establisned. The feasibility of the weapon gystem was demonstrated in a preliminary manner.

The purpose of present study was to finvestigate the major problem areas in greater detail: In particular, the investigatime were directed into the areas of 1) hypersonic lift and drag, 2) heat transfer, 3) performance calculation, 4) stability and control, and 5) launch and stage separation, with major attention given to the first three items. It was not intended that this study should include any optimization of the vehicle, but rather that the results would define the future development programs required to arrive at a workable weapon system.

In order to initiate the present study it was necessary to derine a method of approach. The configuration originally proposed is aufficiently representative of the ulilmate weapon to justify its use as a basits of study of the aerodynamie problems and no attempt was made to alter the design in the light of new findings. The flight path recomended as most aficient, in the original study, that is, initial ascent of the vehicle to its maximum velocity followed by a continum ous unpowered glide to the ond of flight, was chosen, since this flight path penatretes most deeply into the realms of flight at hypersonic velocitios and extreme altitudes.

It was planned that the initial phase of the study would be involved in an ovoralj investigaicion of present outside activities and a review of the arailable technological Information. With the compiling of this date, the study would then be divided into two general fields involving l) General. Aerodinamics wherein the presently available methods of analysis wolld be applied to the study of the problem

areas, and 2) Appiled feseerch where fundamental theorios and analytfoal methods would be investigated to determine regions of applicability and to deitine the regions and problems wherein basio information is prosently leoking.

A general summary of resilus is presented and the oonciustion and recormendations derived fren the study are ilstad. The technion information supporting the se results follows and is divided into the two major fields of Geror: Aerodynamios and Applied Research.

Sootion 2
 Suneary

2.1-conf1guration

The conflguration presented in the original mork has been retained for this stuty ance optiaciention of the shape was not required. It is consfared that the original conflguration is sufficiently representative for use in the present study.

2.2 Atwosphere

Recent data obtained from sounding rocket firings has shom the NLCA stsndard atrospheric characteristios to be in coneldarchle error at altitudes over $\mathbf{1 0 0 , 0 0 0} \mathrm{ft}$. An atmospheric variation based on the data obtained from these firings has been proposed. Since the variations are large enough to produce significant changes in the present analyais, the work performed in the latter part of thive study and that generally presented herein has been based on the proposed atmophere.

Since the KX-2276 glide range is on the order of half the odrcurference of the earth and the filght duretion is short, subsequent analyais should consider the atmospheric variations what may be encounterad. These may be large according to the available data.

2.3 Genarad heroctynamica

The aerodynamics of the KX-2276 system is treated in section 4 (General Aerodynamics) in terms of the application of available methods and extensione of evailable nethods, and the new methods which have been derived in the piesent study. The analyses are generally concemed with the atudy of the glide phase of the third sjage since it is felt that it is in this phase that most of the important aerodynamic problems occur.

2.3.1 Performance

The MX-2276 Stage III maxdmum L/D glide chayecteristice have been completely revaluated above $M=4$, generally using extension Of inviscid flow theories and flat plate boundary lifyer theories. Boundary layer transition was assumed to oocur at 2.8 milition local Reynolds number.

The maxcmum $L / D^{\prime} s$ vary approximately from 4 to 5 during the gilde period and are very alose to those originally predicted. The equilibrium altitudes, however, are considerably lower at the higher㫙edsy the ordginal prediction was $259,000 \mathrm{ft}$. for the 22,000 rpe initiel epeed, the present is $214,000 \mathrm{ft}$. This is partially due to

to adopting the new pressure-altitude variation. The non-rotating earth glide range for the airoraft with bomb load was found to be 10,670 nautical miles from the initial speed of 22,000 feot per second to zaro final speed, while the corresponding glide range

A prellminary investigation into the atfects of shook wave boundary lager interaction on Hing I / D 's has been made. It wes found that at the present equidibrium gilde altitude there are approolable affects on suriace pressures and skin firiotions but that the sumation of thess effects in I/D's produces oniy small ohanges from the no interaction I / D_{12} values. The differenoes in pressure result in an increase in lift, howevar, which will in tum inorease the equilibrium altitude somerhat. Sinse $L / D_{\text {max }}$ varies with altitude, differences in I/Drax nay result. This effect has not been studied at prosent.

No new studics on the ascent path have tam attempters since theso would lie more in the fleid of design optimization, Studies of this type should recelve future consideretion however, to determine the effests of the path on ascent porformance and on stage separation problema.

2.3.2 Equations of Yotion

The equations of linone and akgilar motion of a hypersenio vehtele have bean derived for filght about a rotating oarth. For the present study, only earth att:action, curvatura and rotation need be oonsidered, the effects of tho oartho orbital path and the attrastions of other heaveniy boiles being smail. These equations form the basis on which glide paths, manauvering ohnractaristios and stability and oontrol may ace:rately analyzed.

2.3.3 Fl1ght Paths

The new linear equations of motion which imalude the effects of earth rotation have been applied to the detemination of glide range to demonstrate the effects on the flight peths. Numerical integrathon of these equations has been accomplished with IBf computing machinery. The results indicate that for an anitial velocity of $22,00 \mathrm{ft} . / \mathrm{sec} .$, earth rotation causes a 25% increase in gilde range for filght about the equator to the cast, as ocmpared to the gitde range about a non-rotating earth, and a 15% roduotion in glide range for flight about the equator to the west. These offects are appreoiable and rust be considered in the design of a. vehiole to accompjish a given task.

A study of the feasibility of flying at altitudes nigher than the equilibrium altitude for maximum L / D of the present third stage has been made in order to investigate poseible heat transfer
reductions. The ctudy included the effects of l) lowered wing loading, 2) increased lift coefficient and 3) partial lift paths. The present wing loading is already close to a practical minimum, and the partial lift trajectories reault in flight path osciallations which will tend to increase peak heating loads. Flight at a lift coefficient greater than that for maxdmum itft-drag ratio results in only a small saving within the critical areas of heating and a large loss in glide range. These results, which are based on inviscid flow methods, indicate therefore, that the prospect of an appreciablo heat reduction is not favorable. The effects of shock boundary layer interaction on these results have not been considered in detail at present.

A possible method of navigation would be to follow great circle pathe about the earth, however flight on a great circle with zero ${ }^{\circ}$ aerodynamic side force, will require that the aircraft be rolled in order to utilize aorodynamic lift to countor the Coriolis forces caused by earth rotation. An investigation has show that a maximum roll of 22° will be roquired for the present third stage and that the normal load factor will vary a maximun on 238% fren tra lead faotor presently required at, the rixisum flight velceity atout a nonrotating earth. Marcuverirg frem oric great circle path to ancther will require additional rolil and normsil lead factor and only moderate rates of turn can be achieved with r eletively large increments of nombl load and roll. Furtrer stadics of the details of flight prom graming, heating and load limitations are required.

2.3.4 Aerodynanic Ifeating

Assuming a thin outcer skin insuleted frosi the irner structure, a number of equilibijun wall teriperatures have boen estimated for the Stage III configuration for the glide conditions determined in performance estimation. The compressiblo boundary layer heat transfer coefficients were determincd by the reference temperature method, local surfece flow conditions wero estimated from inviscid theory.

The reference temperature method has been shown to give good resulte in the supersonic region of flight. This nethed has been extended to hypersonic flight by extrapolation from the presently known varistion of the properties of air with temperature. Obviously then, the accuracy of this method in predicting surface temperacures in hypersonic flight is uncertain.

The most severe iemperatures are found on the bottom of the body and winge. The temperatures one foot from the nose are approximately 2000° at the initial gilde speeds and indicate the probabie noed for cooling clese to the nose. The temperatures drop rapidly with diotance aft until traneition (assumed at 2.8 million looal Reynolds number) is reached where they rise appraciably and romain essentially constant for the remaining distance aft. The temperature
for the turbulent flow regiona which cover laree areas on the bottom are or the order of 1700° F for much of the gidie, and are approymately $600^{\circ} \mathrm{F}$ greater than if the boundary layer were laminar. The importaree of transition and its determination is evident from this. In riew of the present lack of knowledge as to where treneition will ocour it iz obvicus that thic is a major unoertainty of the system.

The variations of equilitriun terporeture of the bottom surface With angle of attack and with ohanges in surface erisesivity at the $M=20$ point on the glide path :ere estirated. The need for a high ccefficiont of emiseivity is demonstrated; a decrease in emiasivity coeffiuient from. 9 to .6 increases the sur face tempereture by $200^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$. Ancle of attack is shown to be extrenaly important, the tempersture rising approximately $100^{\circ} \mathrm{F}$ per degree. It is apparent that maneuvers such as pull-ups and tums will be strongly temperature Lirited.

The above analyses did not inciude the effects of shock bedudary Layer intarsotion or sitp ilow, A chack of the affecte of shock boundary layer interaction on tho inde surface temeratures mes rade. The offect de grcatest at the lesdirg edge end cecreasen domstream. Inclusion of interaction gave very sidghtly higher temperatures on the 1oner surfece; a $40^{\circ} \mathrm{F}$ znerence at tho 6 inch station, the severost condition considered. Interaction caused constdarecle chenge in the
 $700^{\circ} \mathrm{F}$ incresse, at $\mathrm{K}=16$ a $300^{\circ} \mathrm{y}$ inerorse, at $\mathrm{K}=10$ a $80^{\circ} \mathrm{F}$ ancrense. It is obvious that stook - boundary layer interaction is an important considoration but it is also of intcrest that its negliot on the lower surfaco was not critical for the yresent flight plan.

Other than a detemthation of the regions in when alif flow may occur, it was not poscicile to investigate this sffect in the present study.

Temporstures and heat fluxes in the stagnation areas of leading adges and noses have been estirated for the $N=21.5$ and $X=16$ conditions on the flight peth. Theso are based on the assumption that the incompreseible theories for predicting hat fluxes in such areas can be applied to the subsonic flov belind the normal shock weves produced by the leading edges and nose. The temperatures and heat fluxes are very severe. It is evident from them that the leading edge hes ung will present one of the most difficult design problems. It appears that considerable cooling of these areas will be necessary.

It ehould be noted however, thet the methods employed are only approxtrate are that further study of the effects en leading edge heatine of hypersonic viscous fon are required and intadition should consider the effects of variation of the profile shape.
 airinjection necessary to ccol the first foct and the flrst 10 ft . of the lower surface to $1600^{\circ} \mathrm{R}$ (though not the leading edge radius itself) have been estimated for the Stage III glide. Approximately 1200 lbs . of air are required to cool the first foot of the wing. This is felt to be a practical quantity and to indicate the feasibility of this method of conling, particularly since there is promise of considerable reduction in the coolant rate from the a bove through use of better coolante than air, which was used because the theory in its present state of devclopment applied only to injection of air into air.

The present study has left the temporatures in the base areas of the body and wing completely undefined. These areas of the vehicle lie in a highly complex mixture nf bourdery layer flow which available analytical methods are unable to describe. Determination of the temperatures anci heat fluxes in various base areas will probably rest on future experimental investigations.

2.3.5 Stability and Control

A hyeersonic vehicle of the type of the $1 \mathbb{1}-2276$ will be required to be controllable ever a wide range of flight velocities. Stability and control characteristics of aircraft up to low supersonic speeds are presentliy underetcod to, a reasconable degree. In the hypersonic flight regime, new corditions are encountered and new equations govering the motion of the vehicle at hypervelocities have been derived. The equations sho: that stability and control analysis at these speeds will be a tesir of appreciable magnitude. Considerable effort mist be applied to the detemaination of etatic and dynamic aercdynamic parameters, for: which little work has been done to date, using the available metrods of approzeh.

Sonc preliminary estinntes show that static longitudinal stability and control can be achicved at $M=20$. These approximate estimates vere based or inviscid flow theories. Tentative estimates, show that the effects of fluid viscosity, i.e. boundary layer interaction, can be appreciable at high altitudes and high Mach numbers and should be giyen further consileration.

2.3.6 Separation

As originally described, the MXX-2276 System requires three stages of boost. Three separable configuratione, the first and second stage boosters and the glide vehicle, are assembled adjacent to one another in a paraijel arrangement. As the final stage is accolerated to the initial glide conclitions, the first and second stage boosters separate and drop away as their fuel loads are expended. The acrodynamics of these separstions is considered in a qualitative manner hereinafter. No definite conclueions as to the

	ELbfrimengt anomaina	\qquad

practicablity of the original booster-velicle conflgurations for separation are made. It is recomended that when preliminary design of the system is begin, booster-vehdcle cambinations bo put into aerodymanic test as soon as possible as it is believed this is the oniy way of evaluating them in a suffioiently quantitative manner.

2.3.7 㘶ssile Trajectorles

Some approximate esti lates of the zero lift trajectories of the MX-2276 missile have been ;ade, assuming constant drag coeffioienta, to detemine the line of s'ght angle from the oariler to the missile during the fall and the time and range inorements between the time at whioh the carfir pasee: over the target and tmpect to the miesile. These estimates werc made to illustrate the mechaniog of the missile drop and serve as preliminary design information for the miseile tracking and guidance system.

2.4 Applied Research

The Applied Research (iection, Section 5, is concemed with the extetance and accuracy of methone for amalyzing the forco and heat loade to mhioh the MX-2276 aircraft will be subjected and with the major flow problems which need be solved in orier to provide an adequate set of methois. One of the primary aime wes to point out the "new" or "unconventionel" phenomena of the hypersonic flight whech are not apparent or co not oecur at ordirary supersonic speods aid to provide means for assecsing their importanca.

2.4.1 Flow Regions

One approsoh centerred about a critical investigation of the foundations of basic concepts of rjpersonic flow theory to indicate the nature and types of fiow pattemu which oculd be expected to obtaing it was desired to determiric both the physieal problems ard the basic flow equations which could adequately and consistentiy desoribe these flow problems. To this end, an analpeis of the flow abouc a flat plate Hying in the renge of speods and sititudes correaponding to the flight plan of MX -2276 was mede, delineating the nature and the extent of the various flow regions. In atterpting to bufld up an averall picture of the various flow regions, however, details of the flow about a plate for verious Mach number - Reynolds number combinations were required, but sinoe there are very few experiments in the hich M, low Re range of interest, these details for the present study were derived from theory. In partioular, it was found that the boundary layer silp and bow shock-boundary layor interaction phentrana could be appreolable in parts of the Maoh number feynolds number range of interest here.

of the offects of assumed equilibrium dissociation of air on the boundary layer oharactaristios 13 reported. The results of the lattor atudy show that skin iryction and heat transfer are essentially unaffected by dissociation so long as both the stream and body temperatures are balow dissociation values. It appears that a aimilar ro-

A rucently completed program (at Bell Airoraft Corporation) to compute basic taioles of flow parameters for both shook flow and $16=$ antropic flow, incorporsting real gas effects up to disscoiation temperatures, is discussed. Since the gan flow tables ara baaio to any numertcal analysis of the flow, it was important to determine how the actual behevion of air at high temperatures differs from that described by the standard ideal gas tables, and thus the real gas flow tables were needed as a standart comparison. A auremcal comparison at typical flow conditic.s of intereat was made. It is of particular interest to the performance ard viscous heating analyses that real gas effects on the flow adjacent to sunfaces at reasonably low anglos of attack (e.g, the Stage III lowor surfacos) are small.

2.4.4 Transpiration Cooling

A eurvey ard evaluation of the existing theoretical and experimental literatiare on the aerodyanic nspects of transpiration cooling was made seekdng a basie for the crlculation of coolant requarements. Practically all of the theoreticalistudies examined were restricted to suparaonic flow at 10% Uach runow, generally less than $M=3$. Hence it wes deaned necessary to jevolop new eolurions to the equations of tha comprossible laminar boundery layer including the effeots of transpiration cooling for hach numbens up to 20 . As the and result, an appoxtrate theoreticni mothod us developed for computing the rate of mass illow injection of coolant regised ts keep a.sura face at a given (arbitrary) temperature unior given initial free atream conditions.

The theory applies to a Imanar boundary Layer, wheh is most pertinent to the present oase, as transpiration cooling will most probably be comfinad to the severely heated areas nsar the laading edges where the flow is expocted to bo laminar. It is probable that the injection of the relrtireily small amounts of coolant into the boundary Iayer will not destabilize the laminar fiow. In the atriot sense air must be used as the coolant beoguse the theory is based on homogenous boundaity layer considerations for wioh the coolsnt and boundary layer flows must be of the same gas; but it is belleved that a disaimilar coolant can be handied with suffioient acouraay through a simpie extension of the present theory, a set of exemplary design oharts ane oslculatad using air as the coelnat.

2.4 .5 Iypersonio Invisoid Flow Theory

The detailed inveatigation of shook-interaction theory led to a thorough study of hyporsanio intisoid flow thoory, since results of the lettar have an important influence on the resuits of interiotion theory besed on the tuo laver model. Furthermore, the so-called "Hartonian Flowh approximation of infiscid hypersonic fliow is an 1 ma portant practioal method for detertining pressure distributions on a body where fisacus effects do not predominate, and bence the applicability and litats of this approximation were given consideration. Sose oontributions to an understanding of an improveiont in acouraoy of the approximate hypersonio inviscid theory have been made.

2.4 .6 soundary Layer Transition

In any practical computation of friction drag or aerodmando heating, the state of the boundary layer must first be assumad, 1.0., a knowledge of the transition point is required. Unfortunstely, the presene state of rellable knowiadge on this sin jeot leaves much io be cosired. The effeot and the iraportance of the many variablea whoh could effeot transition and the mechanism of transition tuself is not yet understood; henoe the assumptions of theory are incomplote and experments are not fully controlled. The best thet can be done at the present time is to assumo a transition Reynolds number based on the trends exhdited by avallatle wind tunnel and flight test data. In the orginal work and the present study a transition Reymolds number Re = 2.8 million at all Mach numbers was assured. This appears to have been conservativaly low fuciging from the trends exhibited by the test data aveilable, and from discuesions with several experimanters during visits to other research agencies.

2.5 Faotlities

The test facilities which would be pertinent to an $\mathrm{NX}-2276$ development program have been considared and the range of covarage has been reviewed, for those facilities athich are presently available, or are prasently under development and will be available in the near future. Simultaneous simulation of all the filight parameters encountered in the flight of $\mathbb{M X}-2276$ is difficult in earth-bound teat facillties. However, the various types of wind buncis and bailistio ranges which are in or aperoaching operation will anable investigations of the priblem areas over mich of the flight regime to be encounterod. Thds data can be augmented and extended by flught test vehioies. Several test vehicies (the HIV and NACA PARD) are prosently baing developed which will approach the ultimate MX-2276 figight conditions.

SECRET

Soction 3
Qanciusions and Recommendations

3.1 Coselusicas

The oonclumion derivod from the problem study of the aerodpanica of the rix 2276 oy trem a 50 anumerated in briet bere. These ganerally eoceant the stage III hypersonic, hig altitude gilide whioh is considered the eost eritical operational phase with respect to aerodyaneice.

3.1.1 Genaral neradynamios

3.1.1.1 Performance

a. Madmun L/D's of 4 to 5 between $M=4$ and 20 whioh will give the deadred 10,000 mile range for an initial glide veloot of $22,000 \mathrm{fps}$, appear attainable for gilde configuration of the tyfe orgginally presented for the system This d. babed on theoretical analyses which are direct extensicos of those which have been experimentally confirmed at lower supersonic Kach numbers but which do not acoount for the additional hypersonic and low density Ilight phenomens that may occur.
b. Incluaion of shock-boundary layer interaction effects for the glide conditions, considered to be the most important of the hypersonic phenomena, caused of gnificant increases in the wing lift and drag but when these were summed produced only sriall changes in wang L/D. Similar analysis is required for the body.
o. Upper surfaces (expansion sides) are of aecondary importance in their effects on performance. It may be possible to modily the upper ving profile, o.g. inoreasing the thickness of the airfoil aft for better atructure and stowage, with inttle loss in aerodynarto performance.

3.1.1.2 Flisht Yechanios

a. Equations of motion including the effects of the earth rotation which are necessaxy to the atudy of very high speed ilight have bean derived and utilised.
b. Effeots of earth rotation on range are considerable and must be included in the consideration of specific glide path8.
0. Fight constreined to great oircle courses on the earth will produce appreciable additional loads which must be incluted in considering the overall L / D and the aerodyname heating.

SECRET

$B y$ \qquad Dato \qquad Chacked \qquad Dato \qquad		

d. Prograning the Stage III fight altitude highor than that for maxdmin i/D elide by ueing hifgior life coufficiente than thoe for maxdmun L/D by atteapting partial lifting pathe, in order to reduce riscoul heating, does not appear proct tahle.

3.1.1.3 Aeroctranase Hosting

a. For the glide path calculated for Stage III, the surface tempermetures appear tolerable after approximately the firet two feet where they are less than $1800^{\circ} \mathrm{F}$.
b. If transition ocours at 2.8 million Reynolds mumer (the murber assumed during this study for laok of better inforpation) turbulent boundary layer flow would exist over much of the lowor surfiot of Stage III and tempere. tures there would be on the order of $1700^{\circ} \mathrm{F}$ for the tifger speed portion of $11 i g h t$.
c. If the above areas were landinar instead of tarbuleat, they would te appreximsteiy 600° cocler which inct cates the importance of obtatinigg better knowledge conceming transition.
d. Surface emissivity also plays an important role in deterning temperatare. A value of 0.9 was generally used in this work and variations from this caused significant changes.
e. Increases in angle of attack at the higher glide speeds, as needed for malieuvers, will produce large surface temperature changes, on the order of 100° per dagree angle of attack increase. This is an important consideration as maneuvars will undoubtedly be lint ted by such beating.

1. The leading edge temperatures estimated are beyond tolerable materials lifits; cooling in considerable quantity appeert definitaly neosssary. The leading edige neating probien is geen to be an extremely important one which may greatiy offeot design considerations, e.g. sweepback and ladeng edge radius as well as proviston for cooling,
g. Transpiration cooling mertis attentita; it is indicated to be an offiolent means thongh it has not boen posaible to evaluate it to the oxtent desired turting the present study,
h. Inciusion of shoek bourdery layer interaction effects in the prediction of wall temperatures did not produce apprectably greater tumpratures on the bottom surface.

For the upper surfaces; however, interaction increased the temperatures aignificantly over large areas and it is evident that interaction effects must be considered there if any accuracy of prediction is to be achieved.

3.1.1.4 Stability and Control

a. It is evident ti it the additional forces induced by the rotating earth i ill complicate stability and control analyses.
b. An analysis bascd on inviscid flow theory indicates aerodynamic stalility can be attained at $M=20$ with a reasonable configuration.
c. A check of boundary layer interaction effects shows these to be important to stability at the higher glide Mach numbers and definately to be included in future stability analyses.
d. Control sppears ieasible using conventional types of aerodynamic surfaess according to inviscid flow analyses. Boundany layer interaction should al so be included in control analyses as it may modify control effectiveness.

3.1.1.5 Seperation

a. No definite conclusions as to the practicability of the original parallel stage configurations were reached. A quantitative analysis of separation was not made during the present study.
b. It is belleved that tes: results are necessary to achiove quantitative evaluationis of the separation configurations.

3.1.2 Applied Research

3.1.2.1 Flow Regions

a. Boundaries delineating certain regions of fluid flowor flight - in which "newn or nunconventional" flow phenomena become significant have been derived.
b. In some areas appreciable interaction of the boundary layer with the bow shock will occur.

0. It 1a shown that $31 i p$ in the boundary layer may be a efgairicant oonsidaration.
d. Tmperstayen produced by atrong ahook waven or by riscous heating to the bjundary layer will be large enough to

3.1.2.2 Shoek-Boundary Layer Interaction

a. Existing theory for shock-boundary lager interaction has bea improved for the case of sero angle of attick, flat plate flow. A new theory has been developed for interactiba on a plates at positive and negative angle of attack.
b. The increases in pressure and skin P tiction coofficient deo to shock interaction, both weak and etrong, can be oorreiated in a genaral but simple and comrenient form

3.1.2.3 High Temperature Phenomena

2. Radiation of heat from the hot boundary lajer alr appears to be an important quantity which should be considered in the boubdary lajer and heat balance equations.
b. A theory has been developed to compute the endsainty of $2 i r$.
o. While not dane in the present study, emissivities of alr should be calcuiated and included in the haating analyser.
d. Equilibrium dissociation of the air in the boundary lajer has no appreciable offeot on stin friction and heat trensfer if (as in the practioal case) the wall and local setream tomperature are beion that wioh produces diseociation.
e. Tables of basio flow relations for shook and isentropio expenot on flou osnaldering alr as a real gas have been calculated at Bell Aircraft and have been used in the present atudy.
3. There is little informition available on the thermodyande properties of aif (ineluating the transport properties) at terpe ratures elevatsd through the range where dissooiation and ionisation cocur. ithe basio information deserves moh restarch effort.

3.1.2.4 Transpiration Cooling

a. A theoretical method has been developed for predicting transpiration coolant requirements under hypersonic flight conditions. It applies to laminar boundary layer flow when air is used as a coolant.
b. This method of cooling appears favorabie and should be studied further; particularily, the method should be extended to other coolants which have better cooling qualities than air.

3.1.3.5 Transition

a. There is essentfally ro theoretical or hypersonic test informati on which wili allow reliable quantitative prediction of transition Reynold's number.
"
b. The best that can be done at present is to assume a transition Reynolid's murbur based on available test trends.
c. The transition Reynold's number of 2.8 million used in the present study is believed conservative in the light of recent hypersonic rird tunnel tests.
d. The problem must receive much attention because of its demonstrated importance to the skin temperature and skin friction.
e. It is believed that theoretical investigations are not sufficient for this problem and that test information, preferably from free flight or ballistic tests, are necesвагу.

3.1.3 Facilities

a. There are a number of wind tunnel and ballistic facilities available now for investigating the mypersonic aerodynamic problems of the MX 2276; many more facilities, larger in size and/or covering greater flow ranges, are planned or in development.
b. Flight test vehicles approaching the ultimate MX 2276 Night conditions are being developed and are in initial flight test now.
c. These facilities, having many diverse abilities, will allow experimental investigation of about all aerodynamic problems: Configuration evaluations, boundary iager investigation, high temperature flow aero-thermodynamic effects.

3.2 Recomendations

As a result of the problem study of $N X-2276$ aerodynsmics the investigaiions 2isted in Tables $3.2 \mathrm{~m}, 3.2-2$, and $3.2-3$ are reoomanded. Primarily these are resomended wh respect to furthar avalunting the worodynamic problens of the syetem, but would proolde basic design information 180. Many of the malytiod and theoretioni investigationa would be direct extensions of work done in the present gituty,

 \section*{TABLE 3-2-1 (Cont'd) :
 \section*{TABLE 3-2-1 (Cont'd) :

 RECOMENDED AEYODYNAIC ANALYTICA, INVESTIGATTONS

 RECOMENDED AEYODYNAIC ANALYTICA, INVESTIGATTONS 10 ETS PERAOKMO BY BEIL AIRCRAFT} 10 ETS PERAOKMO BY BEIL AIRCRAFT}
Doacription
Consider effects of shock boundary layer
 detail than possible in present stusty.
Determine methods of progx mming the L/D maximum glide. Include the effects of atmospheric variation and of dropping the bomb. Investigation of glide paths following other than great circle courses on the earth in order to minimize losses due to earth rotation.
Study maneuverability limitations and correlate with navigational requirements.
Determine ascent performance for new glide paths. Consider various ascent programs and effects on performance and stage separation.
Continue to evaluate methods of predicting heat transfer at hypersonic hach numbers. Study effects of boundary layer air radiation, boundary layer tramsition, wall temperature, three dimensional configurations.
Item

d. | Shock bouradary |
| :--- |
| layer interaction |

A. $10 / 0$ maximum glide
b. New glide path
courses
c. Turns and Meneuvers
d. Ascent
a. Viscous heat
Axea of
Investigation
2. Performaxice
3. Flight Mechanics
Aerodynamic
4.

By \qquad Date \qquad Cheeked \qquad Date \qquad	BEL Dotionegt shmanat	Model: \qquad Pagd 3 hㅕㄱ Hiss! Arplane \qquad Remen 31123015092

Trise 3.2-1 (Conrd)		
	Itam	DESCRA PrIG
b.	Leading edge Heatins	Expand upon presait leading edge hpating inventigationsf correlate amilatio mods and atrady effects of sweep and leating adge profila.
c.	Trenapi ration cool*ig	Estimite coolant requiremonts for larger ranges of angle of atteck and tompernture of the cooled surfaces include study of ccolants other than air.
		Study transpiration cooling of the leading edre. This will require extension of tha present transpiration cooling method wich is for nat plate flow.
d.	Local hasting	Exanine affects of large tempereture gradients which may occur in local areal, e.g. due to profile discontinuities, hoet alnire, or transtion.
	-	Condider heating in such areas an the base of the body and the wing truiling edgan.
-.	Erfects of H1ight path prograding on heatina	Investigate offects of adiliticon loads cmased by anrth rotatilon and maruevere oix the beat tremsfar and equilibrion temperataries.

$$
\begin{aligned}
& \begin{array}{l}
\text { Arean of } \\
\text { Invertigetion }
\end{array} \\
& \text { 4. Aorodynandc } \\
& \text { Heating }
\end{aligned}
$$

TO BE PRRPGRYED BY BELI ATHCTITI

Area of
Investigation
$\begin{aligned} & \text { Stability and } \\ & \text { coatrol }\end{aligned}$
ルi

B.A.C. and pertinent outside organisations
B. $\Lambda_{\text {. }}^{6}$ o and pertinenit outefoae urgandzations
i
i

$$
\begin{aligned}
& \text { Investigate methods of analysis } \\
& \text { of inviscid flow about arbitrary } \\
& \text { shapes at hypersonic speeds } \\
& \text { (H>> i) } \\
& \text { Investigate the effects of slip } \\
& \text { in the boundary logrer flow at } \\
& \text { high M and low Re. } \\
& \text { Stady methods of solurtion of } \\
& \text { the equations of boundary } \\
& \text { Iayor flow mich inciude the } \\
& \text { effeots of air radiation } \\
& \text { within the Inver. }
\end{aligned}
$$

a. Basic equations
a. Arbitrary bodies
and combinations
a. Lsading edges
b. Air radiation

1. Hypersomic flow
Pressure forces
Boundary Iayer

RECORGRNDED AERODNNAIC TEST INVESTIGATIONS
The viscous heating in areas where
high local heat transfer and
tomperature gradients may occar
should be investigated - as at
boundary lager transition, comers
and shoulders, and rhere structural
attachments produce heat sir"is,
Thre are turioulent sirin fricwiun data available from hypersonic wind twnel and free flight tests at $M<10$, but, not all in arreement, particularly with respect to efiect
of wall temperature. (See Appendix of wall temperature. (See Appendix
4A). Item Butqray teaot

$$
\begin{aligned}
& \text { boroulary } \\
& \text { bondary layer } \\
& \text { flow }
\end{aligned}
$$

$\stackrel{\circ}{*}$

TABIE 3.2-3 (Cont'd)

NACA Hypersonic W.Ts.
荡 $\mathrm{M} \rightarrow 15$
As 1d
mach Papd
NACA Frue Flight W.T.

FDCOYETENDED AERODNNMMC TEST IHVBSTICATIOAS

B +1

Description
Systematic investigations of the effects of leading edge shape, radius, etc. on wing drags shoula include sweep as a
As 6a above, tut with respect to leading edge heating. The NACA in the Jangley and Ameskypersonic W.Ts. have mude investigations of this type on cylindri-
cal leading edges at M.

transpiration cooling of leading edges.
These conld he obtained under Itenss is above.
Ballistic and free-Night tests of bodtes and boty-wing combinatioms to
determine stability parmaters,
b. Heating
c. Transpiration
cooling
a. Static forces
b. and moments
testing

Area of Investigation
 6. Leading edge Investigations

Stability and contral

Poasible Pacilities

b. Development

Item

Sumary
 ®

Area of Investigatio
 Investigation

10. Facilities

OETERA ABODYNAICS

4.1 Introduotion:

The material prasented in this section of the report encompases: those flelds of general serodynamios wharein the prosently available methods of analjifis mat be applied to the study of problem areas.

The bagdo intent of the early analysis was to demonstrate the feacibility of a hypersonic weapon system and to outline the major problem nreas. 4pproximate means of estimating the necessary aerodnanic paremetere vere therefore utilized, which in some oases were outyight extrepolations of evall able supersonic analyais metiods. Some preliminary investigations were conducted in order to roughly ovaluate the ecouraoy of these approximate mathods. Since the intent of the present otudy was to investigate these problem areas in greater detesl and in addition to determine the extent of other problema, the orlginal methods of study heve been revieved and where possible, have been finproved and extended to give more accurate resulte.

In this regard, the folloring subjects have been considered; 1) atasosherto characteristice, ?') glide performance peramotere, 3) Might mochmics, 4) the gerieral field of aerodymemic heating including viscous heating, the specialized problem of lading edge heating, and transpiration cooling, 5) stability and control; 6) stage soparation, and 7) missile trajectories. The realits whith have been obtained in the investigations of these subjects are presented in the following parts of this section.

In order to plan a progreni for the investigation of the basio problems and to hold the present investigation to applicable cases, it was necessery to first define the flight conditions under which it is expected that the MX-2276 eystem will oporate. The flight path recomended as most efficient in the original study, that is, initial ascent of the vehicle to its maximum velocity followed by a continuwe unpowered glide, was chosen since this path penetrates most deeply into the realms of flight at hopersonic velocities and extreme altitudes. For the intended purpose, it was felt that this fath would be surficient even though it might be modified by aptimiation in the future.

To illustrate the nature of this path, several flight limits of interest have been plotted on Figure 4.1-1, with the flight path as detemined in the fresent study. It is reasoned that the very low static wing loading of $(\mathrm{W} / \mathrm{S})_{0}=10 \mathrm{psf}$. at a hypersonic lift coeffiofent of $C_{\mathcal{L}}=0.20$ defines an upper altitude limit for level fight
(and for maximam I / D clide), the offects of centrifugal forces ins voived in Mating a oircolar path stout the earthe center and the deoreace in crevity with altitude an inciuded in this lindt ourver The satalifte lindt is that where the affeotive geavity is sero and
 mates the temperatior problem inth respect to Ni 1 ght path. If $1800^{\circ} \%$ vere the upper ildt illowed for the conflguration noted, Inight would have to be cbove the eurve (as it is for the present Night path) or cooling would be necessary. for the glide phase this also implied restrictions on wing losding and lift coeffictent.

The dynamio pressures of the glide flight for the weights of the Stage III glide vehiale with and without pagload are show in Figure 4.1-2. It is evident that these remain appreciable throughout and indicate the faasibility of aerodynamic stability and control. Eren at the highest altitudes reached the dymaric pressures are of the 8 and order as for present low-opeed aircraft.

Fgure 4.1-3 111 ustrates some of the flow phenomens which mast be considered in the aerodynamic analyses concerned whth the filght path. The filght path is shown superimposed on a plot of boundary lager interaction and silp flow boundaries of fludd flow as they apply to a point orm foot from the leading edge of a flat plate. In addition hypersonic flight, by shock waves or viscous forces, produces ar flos temperatures eufficiently high to oause apprediable derlations from normal adr properties, i.e. real gas eifects, and in certain arean also diseoolation of the air. A curre showing where spproxinately 5% equilibrivis et reociation could occur in the boundary laser is also thom on FHgure 4.1-2. These boundaries indicate where oxtension of the classicai methods for supersonic analysis, e.g. inviecid flow theory, begin to becomo inapplicable and muet be modified or replaced to acoount for the various phenomena, The above are treated in dotall in the section 5 and are discuseed belefly where pertinent in the present rection. The effects of shock boundmy lafor interaction, which have been found to be partioularly ofgnificant, have bean brought forvard and appilied to examples in the present sootion.

\qquad

Figure $4.1-2$
FREE STREAM DYNAMIC PRESSURE

MACH NUMBER

4.2 Confyaraifon:

In cortain of the aerodgnarale investigationa for the preaents etudy it wan necessary to bave a Lairly opeoiflo configuration to sualugta. Since the study did not require developnent of botter or optindsed shapeg, the conflguration presented in the original wónit (Reference $4.2-1$) was rotained. The majority of the atrodymando atudies have been concerped with the hypersonfe R1ight of the third atage, the gilde vebiclej thorefore, a falrly complete aerodynanic conflgaration desoription is presented here.

In the origenal layout of the the re atage configuration the major oonsideration was given to obtainting good glide performanoe at the gystem perfomanoe potentialities were of greatest intereat at that time; less attention was given to stability and control. The configuration cortalniy does not represent an aerodynamio optimum, but it was considered to be suffioiently realistio and typical of the class of vehicles in question for use in the present study. An additional adpantage was that performance re-estimations oould be directiy compared with the original.

Figure L.2-1 is a dimensional three viow of Stage III as used herein. Table 4.2-1 presents the physical oharaoteristios breakdown neoessary for the aerodynamio estimations. Figure $4.2-2$ shows the numerical identifloation of the various surface areas used throughout.

Some additional desoription ray aid the reacer. The body bottom is flat. The upper nose is a 5° cone whose 8×18 is inclined 5° to the flat bottom; the nose sides are flat wedge surfaces, triangular in plan orm from apux to body shoulder. The upper aft body
' Is a oylindrical aurface; the sides are flat surfaces vartical to the bottom and tangent to the upper oyisinder. The wings are broken into two panela hating different taper and sweap geometry but the same aireoil seotion. This scotion is 4% thick and of the modifled wedge type. The bottom line is flat and in the same plane with the body bottom; the top is a medge line from the leading edge to the mid-ohord fram whence it is a alab inne parallel to the bottom. The trailing odge is a square base inne (full blunt). The rooket mntor fairings are eseentially extansions of the wing upper wedge surface. The elevator-aileron oontrols are looated in the outer wing pansi only. The verical tail section is a aymetrical, modifled yedge of 5% thiokneas, made up of a forward wedge line, an aft slab line and a square bese trailing edge. Nose and leading odge radil have not been deflned and their effeots have not been inoluded (otber than the assumption that they are smail) in the majority of the apsiyaes. The bomb is housed aft in the body between the rocket motors.

Seotan 4.2 Roforepoent:

> 4.2-1 Stratego Weapon Syetenl Boll A1roraft Corporation Preitimary Denign Repport Ho. Dllu3-945-010, dated 15 July 1953.

By__ Doft

TABTE 4.2-1

PHYSICAL CHARACTERISTIOS OF STAGE III

ITEM	UNTIS	WINQ	ROCKET FIRINCS	VERTIGAL TAIL
s	Bq. ft	905	289	104.5
$S_{e x}=S_{r e f}$.	sq. ft.	615	289	104. 5
S_{B}	sq. ft.	15.8	26.2	5.24
Sin. panel	sq. ft.	388	-	-
Sout. panel	sq. ft .	227	-	-
b	1n.	472	85	123
b_{60}	in.	412	85	123
bin. panel	in.	170	-	-
bouto panel	in.	242	-	-
${ }^{9} \mathrm{R}$	in.	488	573	204
${ }^{0}$ Break	in.	170	-	-
${ }^{\text {a }}$	in.	100	414	40.8
λ in. pariel	*	0.348	-	-
λ out. panel	-	0.588	-	-
λ	-	0.205	0.724	0.20
Ein. panel	1n.	337	-	-
cout. panel	in.	136	-	-
$\overline{-}$	in.	328	-	129.5
A	-	1.89	-	0.93
$(t / c)_{R}$	-	0.04	-	0.05
$(t / c)_{T}$	-	0.04	-	0.05
h / t	-	1.0	-	1.0
SECRET				

$て$

IDENTITY OF SURFACE AREAS

4.3 Atmorpherio Deta:

Until resentily the rariation of atmospheric oharacteristios with altitude presented by the MACA in Reference 4.3-1 has generaliy been used as a standard by the atiation industry. It was amended silightly up to 67,000 ft. altulude by Reference $4.3-2$. In the past few years
 able errar, particularly at altitudes over 100,000 ft. and has led the Rocket Panel to recommend the atmospheric varlation given in Reference 4.3-3, beeed on the sounding rooket findings. The originel MX-2276 aerodynamic analyses were made using the Reference 4.3-1 atmosphere and this convention was carried through to the first portions of the present study. Hovever, it was found that the Rocket Panel valiations are large enough to produce significant shanges in the present analysesj and since those are considered more realistic, it was considered recessary to adopt them as a new standard. The subsequent work in the present study was, thereiore, based on the Rooket Panel alitude. Cenerally the data presented in this report is based on this altitude. Then earifer work baged on the Reference 4.3-1 altitude is precented the difference is stated. Within a partioular study phase which utilized the older standard the cormarative results are certainly etill valid.

In the interest of convenience in usage, especially for the computetion and use of the Bell fircraft Corporation real gas tatles, the Rocket Fanel temperature variations have basen approximated by linearizations. These are shown in Figure 4.3-1 which corpares the several tamperature altitude mociels. Figure 4.3-2 compares the various pressura models. The Air Force Geodetio Researoh Ditision has been ocxpiling new atnospheric variations to be generaliy adopted in the U.S. in the near future. Recently preliminery information on this atmosphere was advanced to BAC. The temperature and pressure variations of this atzesphere are also shown on Figures 4.3-1 and 4.3-2. It will be noted that these vary somewhat with those of the Rocket Panel and of $B A C$, but not enough to cause appreciable differences in aerodynamic analyses.

The present analyses are based on the single temperature and preseure medels discussed above. It should be remembered thist the MK-2276 glide range is on the order of half the ofrcumferense of the earth and that this is traversed in little over an hour. In subsequent analyses, particularly with respect to filght programeng, much more detail concerning the upper atmosphere must be known and considerad: the prevaling winds, night-to-dsy variations, altitude and inter-continental variations, ete. The available information indicates such variations may be large.

Section 4.3 Referenoes:

4.3-1 Warfield, C. 4 .: Tentative Tables for the Properties of the Opper Atmosphere; MACl Techreeal Note 1200, dated 1947.
4.3-2 Ancn.; Maxuil of the ICAO Staxdard Atmosphere Coloulations by the MACA; MCA Tochenol Yote 3182, dated May 1954.
4.3-3 The Rooket Panel: Pressures, Densities, and Temperatures in the Upper Atmosphere; Physical Review, Vol. 88, Ho. 5, PP 1027-1032, dated 12-1-52.
4.3-4 Manner, RoA.1 Proposed Unitec States Staxdard Atmopheres CRD-USAF Curve, dated 4-26-54.

4.4 Glide Performance of IXX-2276 Stage III (Non-rotating earth)

A cumplete revaluation of the lift and drag coeflicients and the nuximum L / D characteristics of the uircraft has been made. These characteristics have been evaluated at $4 \leq M \leq 20$ since the major portion of the range (approximately 97\%) is attained between these Mach numbers.

The aircraft has been brcixe, down into a number of surfaces (similor to the breakdown in Referenct $4,1,-12$) for convenience in determining these characteristics. Snock-expansion theories were employed herein to predict the local suri ce pressures and flow conditions, except in the cass of the nose where the concept of Newtonian flow was used also. The lift and pressure drag for Stage III are to be found in Figures 4.4-19 and $1.1,1.20$. The skin friction drag coefficients were determined tron incompessible skin friction formulas modified for compressibility by reierence temperature parameters. Boundary layer transition was asswned to occur at 2.8×10^{6} local stream Reynolds number throughout. The Stage III skin friction drag coefficient inay be viewed in Fleure $4.4-26$ where the effects of altitude and argle of attacle are found to be of great importance in the higher Macin number region.

The tinie history of the Stage IJI glice is to be found in Figures 4.4-30 and 4.4-31 for the aircraft with and without a bomb load, respectively. Included in these iligures are the equilibrikm altitude, glide velocity, range, the aerodynamic characteristics (α, C_{L} and maximum L / D) and the wing equilibrium wall temperature at the one foot station.

The values of $L / D_{\text {max }}$ and altitude for the present estination and those originally estimated (Reference 4.1-16) are compared in Figure 4.4-33. The $L / D_{\text {max }}$ curve: are very similar. As a result the non-rotating earth glide range for the present calculation does not differ appreciably from the original. The equilibrium altitude is lower for the new calculation. The latter is partially due to the use of a new atmosphere as described earlier.

A preliminary invostigation into the effects of shock wave boundary layer interaction on wing L / D 's has been made. It was found that at the present equilibrium glide altitude thers are appreciable effects on surface pressures and skin frictions but that the summation of these effects in $L / D ' s$ produces only small changes from the no interaction $L / D_{\max }$ values. The differences in pressure result in an increase in lift however, which will in turn incrense the equilibrium altitude somewhat. Since $I / D_{\text {pax }}$ is a function of altitude, differences in I/ $p_{\text {max }}$ may result. phils effect has not been studied at present. The results of this investigation are found in Figure 4.1s-32.

SECRET

By ___ Date	3 EL Le firmoft tinnuna	Model \sim Pagn
Checked - D		Misaile ${ }_{\text {Alolane }}$

Fallowing are the methods of analysis used in detemining the maximue $I_{\gamma} D^{\prime}$: for the airoraft and the glide range

4.L.1 Lift and Pressure Drgs

Luit.i.i Lirt and Pressure Drag Confficiente of Wing

Present innearized wing theorles are not valid for detemining Wing aerodynale characteristics over the Mach number range encountered in this enrlyais, so other means have to be considered. It has been show in Reference $4.4-1,4.4 \mathrm{~m} 2$ and $4.4-3$ that the exact two dimensional shock-expansion theorios predicts lift and drag coofficients for three dimensional wings at Mach numbers 4 and up and for high Reynolds nubers, uithin a few percent of experimental values as shown in FIgeres $4.4-1,4.4-2$ and li.4-3. These to sts niso indicate that at nan hypersonic speeds the aerodymmic characteristics are littio effected by plenform and are derendent mostiy upon section profile and thickness. This has alreacy been pointed out in Reference 4.4-4 as has the fact that the two dimensicnal thecry of Linnell (Reference 4.4-5) agrees very well with the exact shock-expansion theories and is easier to use in predicting the liftt and drap coefficients. However, innell's thecry does not yield the locol stream to free stream temperature, density, and velocity ratios which are needed in the skin friotion and akin temperature aralyses. For this reason the more complete shock-oxpansion theories hiave been used. The local strear: to free stream pressure, tenprature, density, and velocity ratios, have been evaluated over adequate ranpes of Mach nimbers and ancle of attack for the various wing surfaces from the shock flow tables in the case of compression and the isentropic expansion flow tables in the case of expinsion as presented for atr ($\sigma=1.4$) in Reference 4.4 6. Typical values of these gisantities are p sented in Figures L.L-L thru $4.4-10$ for the flat bottom surfece.

The effect of rounding the leading edze on the subject wing has not been inoluded in the enalysis nt this tire. The meager amount of avallable supersonic tests showing the effect of leading edge radius on the aerodenamic characteristies of wings indicate that rounding the wing leading edge incressed the drag coefficient a noticeable anount. This offect, however, is shown to diminish with increasing Mach manber in the supersonic speed regime. It seems likely and reasonable that sweeping the leading edge would also decrease the magnitude of the drag increase.

The effect of leading edge radius on drap should statied wore critically in the furure becalise relntively large radit may be dictated by aeroctmanic heating considerations. In particriar hypersonic tests to evalurte leading edre deaign are recommended.

The res:ltine wine lift and preseare drac coefficionts shown in Fipures Lud-11 and lat-la mere ohtaines from the arove ty the followng relatior:

C_{B}

- base pressure coefficient from Figure $4.4-13$ which 1 s obtained by fairing dais from Reference Lu -4-7 into the vacuum pressure coefficient at approximately $M=6.0$
G - normal farce coefficient
- axial force coefficient
G_{p} - pressure coefficient
- - surface chord

8 mean chord of wing
M = free stream Mach number
$\frac{p_{0}}{p_{c}}$ - surface local stream pressure to free stream pressure
P
\underline{t}

- surface maximum thickness ratio
- surface trailing edge height to chord ratio
\propto - angle of attack
$r=1.4$
Subscripts
1 - bottom surface of wing
2 - wedge surface of wing
3 - slab surface of wing

4.4.1.2 Pressure Draf Coefficients of Verticai Tail

The pressure drag coefficients were obtained for this surface in the same manner as outlined in the wing section and are presented in Figure 4.4-14.

4.4.1.3 Lift and Pressure Drag Coefficients of Body

There are a few experiments avail able (References L.L-1, L.L-8 and 4.4-9) for bodies of the present type tested at supersonic Mach numbers up to approximately $M=7$. The comparison of test and prediction is good when using the concopt of Newtonian flow. The Newtonian (or impact) theory unfortunately does not predict the local stream to free stream temperature, density, and velocity ratios as do the shockexpansion theories. For this reacon the shock-expansion theories were used where reasonable for the body also. Further, it is fel.t that the shock-expansion theories are actually more applicable to the prediction of the bottom parameters, most imporitant of the body surfaces, since for the present confirguration this surface is continuous with the wing bottom surfaces.

Newtonian triecrer was ysed in predicting the normal and axinl force coefficients of the drooped nose cone. Several additional approxinations were then necescery to obtain the cone surface local to free stream temperatire, densily, and velocity ratios needed for the skin friction calculations. When the hody is at zero angle of attack, the cone axis angle of attack is 5° (in the sense of positive pressures on the surface) and the cop cone element is at 10°. For this case the needed paraneters wern assumed conservatively as those of a 10° cone at zero ancle of yaw - and wore obthined for all Mach numbers from Reference 4.4-6. With the body at 5° ancle of ritack the nose cone axis is at zero angle of attacis and the purameters for an uryawed 5° cone are pertinent and were used. At body angles of attack of 10° and greater, the top cone element is at zero angle of attack or less; for this case the cone surface local to free stream temperature, density, and velocity ratios were conservatively assumed to be one.

The local stream to free striam parameters on the top of the afterbody were approximated in the following manner. The parameters for the top cyilinder element were found using the two dimensional shockexpansion theories - expanding from the conditions obtained for the nose cone. In determining the normal force coefficient on the complete cylinder the pressure coefficient was assumed to vary as follows from the cylinder top olement to the vertical straight sides:

$$
c_{p_{3}}=C_{D_{3}} \sin \theta
$$

where

- radial angle of cylinder
and the normal force coefficient then becomes

$$
\begin{aligned}
C_{N_{3}} & =2 \int_{0}^{\frac{\pi}{2}} c_{p_{3}} \sin \theta r d \theta \\
& =2 C^{\prime} p_{3} r \int_{0}^{\frac{\pi}{2}} \sin ^{2} \theta d \theta \\
& =\frac{\pi r}{2} \mathrm{C}^{\prime} p_{3}
\end{aligned}
$$

The local stream to free strean parameters of the nose wedge were obtained from the two dimensional shock flow tables for a 5° wedge. Free stream flight conditions were consigned to be present on the straight vertical sides of the afterbody.

The body base dray coefficient was obtained from the data in References L. 1 - 10 and L. $4-11$ which were fired into the vacuum pressure coefficient at mproximetely, $M=7.0$. Comparisons of the above method with experimental data are shown in Figures h.inmis and 4.1-16.

It is noted then the experimental body lift coefficients are lower than indic: ted by the present, method; this is probably due to the three dimensional efients of the test data. However, the for of shock-expansion theories is believed to be jr order since trot, tot tom surface of the body is continuous with the wing bottom slice forming one surface which will experience essentially tho dime i sional flow.

The resulting body lift and pressure drag coefficients shown in Figures 4.4-17 and 4.4-18 were obtained from the above by the following relations:

$$
\begin{aligned}
& c_{L}=c_{X} \cos \alpha-c_{Y} \sin \alpha \\
& c_{D}=c_{X} \cos \alpha+c_{X} \sin \alpha .
\end{aligned}
$$

where

$$
\begin{aligned}
c_{\mathrm{N}} & =c_{\mathrm{N}_{1}}+c_{N_{2}}+c_{N_{3}} \\
& =c_{p_{1}} \frac{s_{1}}{s_{\mathrm{ref}}}+c_{N_{2}} \frac{s_{2}}{s_{r e f}}+c_{N_{3}} \frac{s_{3}}{s_{r e f}} \\
& =\frac{2}{r_{M^{2}}{ }^{2}}\left(\frac{p_{1}}{p_{\infty}}-1\right) \frac{s_{1}}{s_{r e f}}+c_{N_{2}} \frac{s_{2}}{s_{r e f}}+c_{N_{3}} \frac{s_{3}}{s_{r e f}}
\end{aligned}
$$

It ahould ise noted, however, that the expermental data ane for nuch highor Reyaolds numbers ($\mathrm{Re} \times 10^{-6}=2$ to L) then oncountered on this alroraft in its gilde path. The boundary jayer thickosases are probably amall enough in these toats that they do not produoe ady potionable interference offects.

In addition, the body and wing lower suriaces of the provent oonfiguration form a continuous arrface wich should tend to minimise intaraction offeots in that area. Since this bottom surface contributes almost the whole of the aerodmanio lift at high speeds, its offectopredondrate and a small overall interaction effect is indicated.

4.4.2.5 Stage III Total Iift and Pressure Drag Cooffioients

The total lift ocefficient of Strige III was found by the sumation of the ilft coofficients of the wing and body for several angles of atteok and kioh numbers. The total lift coofficient of this aircraft is found in Figure $4.4-19$ in carpet form.

The total pressure drag coefficient of Stage III was found by combining the prossure drag coefficients of the wing, tail, and body at soveral angies of attack and Mach numbers. The total pressure drag coefficient of the vehicle is shom in oarpet form in Figure L.L-20.
4.L. 2 Skin Friction Drag Coafficients

4.4.2.1 Compressible Skin Friction Coefficiente

The akin iriotion ecefficients have been estimated through use of the well known incompressible skin friction ralations extended to superaomic and kypersonic conditions by evaluating the air properties in these relations at a reference temperature - a weighted mean texperature wioh occurs within tha boundary layer. This refarance or effective temperature gothod has been widely adopted for enginearing purposes. While originally derived as an approximation to the exact laminar compressible theory, it has proven equally useful for turbulent flow analyais as it has boen found to correlate well with turbulent test data. The mathod is shown in more detail in appendix 40 of this report where the atd friction coeffioients are disouseed in conjunction with the dovelopant of the compressible slow heat transfor coefficients.

The mathod of approach in the present estimations has been to express the locel skin firiction coofilicient as the product of incompressible iriotion coefficiont calculated from local strean conditions and a compressible correction factor mioh is dependent on the reference temperatare.

$$
\left.c_{f_{c}}=c_{f_{i}} \quad \frac{c_{f_{c}}}{\left(c_{f_{i}}\right.}\right)
$$

SCCHET

Te compresedble correotion ratios for Indnar ad turbulent flons (m Lppentix 4 L) were onloulated as a function of temparatime to the extant posedble uding the metual Fiseosity valdation with temperature from the WChnizs tables. Rovever, a considersble extension of tha correation ourves is neossary to cover the range of reference temperatures encountered. 1 power law variation with temperature was selected 2 es the best method of extending the data, that is

$$
\left(\frac{C_{f_{c}}}{C_{f_{i}}}\right)=\left(\frac{T^{\prime}}{T_{s}}\right)^{n}
$$

The values of $n=-0.17$ for 2 aminar Fow ard -0.658 for turbulent flow were chosen as giving the best approxinations and extensions to the antual property curves in the most cinttcel range of temperatures, which was near the limits of the actan data (sae Figure $4 \cdot \frac{1}{-2 l}$). The approximation also is seen to be reasonaule at the lower temperature ratios; therefore, the porer lair vardation wis adopted ihro:nghont as it eliminates the necessity of ceicinnun iosciute terperatures in deterninng the compressibilize coriection, 1.e. only the ratios $\frac{T:}{T_{5}}$ Is necessary and not T and T_{δ}.
The compressible laninar skin Eriction coefiicientg were ostinated from the wldely accepted Blasius-relation, which for average skin friction cosfficient is

$$
c_{\mathrm{S}}=1.328 / \sqrt{\mathrm{Re}}(\text { Reference } 4.4-14 \text {, Section } 14, \text { p. 89) }
$$

For incongressible turbulent flow the Prandtl-Sohlichting relation was used

$$
c_{f}=0.455 /\left(\log _{10} R e\right)^{2.58}
$$

It may be noted there is some inconsistenoy here in that the simpler Blasius equation for turbulent skin friction was used in deriving the turbulent compressible correotion (Appendix 4a). Rowever, while the Prandil-Soifohting relation is considered to have a wider range of applicability, the difference between the two in the Reynolds aumber range of present interest is not large, and it wes felt that the less conventent form of compressibility correction derived from the more complicated Prandti-Schlichting reiation was not fustified in Fiow of the mproximate nature of the overall method.

The above relations give the skin friction coefficients for aerodmamically amooth surfaces. It is general practice in subsonic work to increase these to account for surface roughness, the amount of increase depending on the degree of roughness and class of construction. In the present case the relatively thicker hypersonic boundary layers are expected to be insensitive to the Stage III surface irregularities and the smooth surface relations are assumed applicable. This obviously rust be checked by test when the outer surface construction has been developed and typical models can be made. There is little data available on the subje: t now. The trend of reduced roughness effects with increasing Macl. number has been noted in recent boundary layer investigations in the CIT-JPL wind tunnels at $M=2$ to $M=4$ (discussed during a visit there). Recent data from free flight models fired to approximately M : to investigate roughness effects at supersonic speeds (Reference 4.4-15) indicate open butt joints transverse to the local stream can be tolerated with very little or no friction drag increase over that of a cormletely srooth surface; exposed rivet heads and lap joint construction caused more slgnificant increases hut considerably less than would be predicted for the sane construction under subsonic conditions.

The reference temperature is given by the following relations, which are graphically evaluated in figure 4, 1-22.

$$
T^{\prime}=0.5\left(T_{W}-T_{\delta}\right)+0.22\left(T_{r}-T_{\delta}\right)
$$

or

$$
\frac{T^{\prime}}{T_{\delta}}=(0.5-0.22 r)+0.5 \frac{T_{N^{\prime}}}{T_{\delta}}+0.22 r \frac{T_{t}}{T_{\delta}}
$$

where

$$
\begin{aligned}
& T_{W}=\text { equilibrium wall temperature, " } R \\
& T_{\delta}=\text { local free strean tempersture, }{ }^{\circ} \mathrm{R} \\
& T_{r}=r\left(T_{t}-T_{\delta}\right)+T_{\delta}, * R \\
& T_{t}=\text { stagnation temperature, }{ }^{*} R \\
& r=\text { recovery factor, } 0 \text { oे. } 90 \text { for turbulent flow and } 0.85 \text { for } \\
& \text { laminar flow }
\end{aligned}
$$

The local strean temperatiures are determined from the shock flow or isentropic flok tables of Reference Li:L-6, depending upon the Mach number and attitude of the particular surface. The equilibrium wall temperatures are determined from the heat transfer malysis which in turn depends upon the Flight path. Thus, it is an iterative process to obtain these temperatures. In this analysis the wall temperatures calculated for the original Stage III glide trajectory conditions at the 10 foot station on each surface were used as representative wall

SECRET

temperatures on the particular surface under analyais. This flrst approsdantion yan mieficiont as the Tw/ts ratio wat found to be rel atirely winportine compared to $\mathrm{I}_{\mathrm{t}} / \mathrm{T}_{\mathrm{g}}$ in determining $\mathrm{I} / \mathrm{I}_{\mathrm{g}}$ at the higher Mach aumbers.

The present thangian on dataredning the point of transition from Iadnar to turborient Now are incomplete and inndequate while the available experimental data show much scatter and inconsistenoiea, (see the decouseion of transition in Section 5.7 for further datest). Thus, the assamption used in the proposal report, Reference $404-16$, for this aireraft, that transition starts at a local etream Reynolde number of 2.8×106, is used again at this time. This appears to be somewhat conservative when compared with recent hypersonio axperiment, (Raference 40L-17); however, until more adequate theories mador syotematired axperiments are advariced it is folt that the present assumption is adequate. Even this low transition Reynol ds number gives laninar fow on almost all of the airoraft throughout much of its right path. The laminar distance is determined by

$$
x_{L}=\frac{2.8 \times 10^{6}}{R_{g} \delta / x}
$$

where Ref $/ x$ is the local strean Remolds number per foot. The landinar distance is shown in Flgure $4.4-23$ versus $\mathrm{Re} \delta / x$ and the representative lengths used for the various aircraft colponents are also show, indicating the Reynolds number per foot raedsei to obtein complete laminar floin.

A mathod has been presented in Raicience !. 4.218 that allows one to determine the overall incompesstiph skin friction drap coofficient of a unit surface wadth when the boundary layer flow 15 mixed, that is when there is leminar how on the formind part of tile surface to the point of transition and then the remninder is in turtulent fow as typified of the model illustrated in the accompanying aketoh.

	OELLefiororaft conponarion	$4-26$
Chacked		Misail Airplone ___ Report D14 3-945-012

Essentially it is as follows. The skin friction drag of a surface results in an accurilating momentum loss in the boundary layer flow. The momentum loss at the trmeition point results from the preceding length of laminar flow. an effective turbulent length can be estimated which would produce the same momentun loss under the same local strean conditions. Fhis offoctive length added to the turbulent flow length after the trandition point gives a length of turbulent flow which would produce the same momentur loss at the trailing edge, and therefore, the same total friction drag, as does the total length of mixed now. The overall average skin friction coefficient is the average turbulent coefficient for the effective plus real turbulent length times the ratio of this length to the actual surface length. The method has been compared in Reference $4 \cdot 4-18$ with experiment and found to be in good agreement.

The basic incompressible skin friction drag coefficient equations given previously are used to find the skin friction drag per unit.. width divided by the dynamic pressure as follows:

For laminar flow

$$
\frac{D_{\text {unit }}}{q}=\times C_{f_{i}}=1.327 \sqrt{x} / \sqrt{\operatorname{Re} \delta / x}
$$

For turbulent flow

$$
\frac{D_{\text {unit }}}{q}=x C_{f_{i}}=0.455 x /\left[\log _{10}(\text { Res } / x)+\log _{10} x\right]^{2.58}
$$

where
x - length of surface, feet
Res $/ x=$ local strean Reynolds number per foot
These equations have been plotted in FMgures 4.4-24 and 4.4-25. They are most convenient for the akin friction coefficient calculation. As the above mothod states that across the transition point

$$
\left(x C_{f_{1}}\right)_{L}=\left(x c_{f_{i}}\right)_{T}
$$

and the effective turbulent length can be determined from ($x c_{f_{i}}$) and Re \& $/ \mathrm{x}$.

The mathod has been modified to account for compresisible skin friction in the following manner:

$$
\left(x c_{f_{i}}^{\prime}\right)\left(\frac{c_{f_{c}}}{c_{f_{i}}}\right)_{L}=\left(x c_{f_{1}}\right)_{T}\left(\frac{c_{f_{c}}}{c_{f_{i}}}\right)_{T}
$$

By \qquad Date \qquad Chocked \qquad Date \qquad	-ELLefirovadt anmatha	\qquad

It is now poasible to arrive at the compreseible ekin friction drag coeffichont for and surface in a given flight condition once the

following steps:

1. Select various Mach numbers, alititude, and angles of attect.
2. The flitht Reynolds number per foot may be obtained as will as the local stream to free stream Reynolds number ratio. Muitiploling the two ratios together, $\frac{\text { Res }}{x} \times \frac{\text { Ref, }}{\text { Ré }}$, Flelde the surface local stream Reynolds number per foot.
3. How the 1 enainar flow length $\left(x_{L}\right)$ may be determined for a eurface by dividing the local stream Reynolds number for transitien (2.8×106) by the local stream Reynolds aumber per foot for the particular surface.
4. The TI/Ts is next deterianed and the compressibility oorrection factors read for both types of flow from Figure 4.4-22.
5. FInd $\left(x C_{f_{1}}\right)_{L}$ from $7_{\text {gure }} 404-24$, using $\frac{R_{e}}{x}$ and x_{L}.
6. The turbulent incompressibia $x C_{f}$ may be detemined by equating the momentum loss in larinar flow at the point of transtition to the tiribulent monentum loss as stated before and solving for ($:<C_{f_{4}}$) ${ }^{\text {? }}$.
7. The length necessary in turbulent flow to give the above colculated value of $\left(x C_{f_{i}}\right){ }_{T}$ is found in the turbulent incompressible $x C_{f}$ graph, Figure 4.4-25.
8. Now the above determined langth is added to the remaining length of the particular surface and a now $\left(x C_{f_{1}}\right)_{I}$ is obtained from the same ingure.
9. The compressible skin friction drag coefficient is now obtained by multiplying the $\left(x C_{f_{1}}\right)_{T}$ by $\frac{\left(C_{f_{C}}\right)}{\left(C_{f_{i}}\right)_{T}}$ and diriding by the totel length of the particular ourface.
10. This coefficient is based upon the surface area and surface looal stream dynamic pressure. To base the coeffioient on the proper reference area and free stream densmic pressure it is multiplied by the ratio of suriace area to reference area and the ratio of surface local to free stream dynamic pressure.

If the Ianinar distance determined in Step 3 is longer than the surface langth, Steps 6, 7, and 8 are not necessary and the laminar compressibility correction factor is used in Step 9 along with the laminar $\times \mathrm{C}_{\mathrm{f}_{1}}$ corresponding to the length and Re g $/ \mathrm{x}$ for the particular simface.

The mothod of calcuisting akin friotion whan there is transition precent on the surfeo has also been adapted to the caloulation of skin trietion oa a surface broken by a corner，a．g，the uppor wing aurface in going sfom areas（2）to（3）．The type of flow prevailing before the corner is considured to be prasent after the oorner，then the momentum
 aion around the corner and the laminar or turbulent incompressible $x C_{i}$ imediately aftur the corner oan be determined．The equation for conditions across the transition point given above is modified for the cornar calculation to：

$$
\left(x c_{f_{1}}\right)_{2} \frac{\left(c_{f_{0}}\right)}{\left(c_{f_{1}}\right)_{2}} q_{\delta_{2}}=\left(x c_{f_{1}}\right)_{3} \frac{\left(c_{f_{0}}\right)}{\left(c_{f_{i}}\right)_{3}} q_{3}
$$

Where subseript 2 ＝condition ahead of corner
3 ＝condition behind corner
The length required to yield the $\times \mathrm{C}_{\mathrm{f}}$ after the corner may be found from Figure $4.4-24$ or $4.4-25$ depending upon the type of flow involved． A nes length for the surface is obtained by adding to the length just determined to the leneth of the surface after the corner and Steps 1 thris 10 in the provious discussion are repeated to obtain the skin friction drag coefficient of the entire surface．

It has been found in Reference $4.4-19$ that the cone laminar bound－ ary layer thickness at zaro anule of attack ifith an attached shock wave is related to tho flat plate poun ary layer by：

$$
\delta_{C}=\frac{1}{\sqrt{3}} \delta_{F, P \cdot}=\frac{5.2 x_{C}}{\sqrt{3} \sqrt{R e}}
$$

and that $\tau_{C}=\sqrt{3} \tau_{F, F \cdot}=\frac{0.65 i \sqrt{3}}{\sqrt{\mathrm{Re}}} 9$
80 that the 20cai skin friction coofficient is

$$
c_{f_{C}}=\sqrt{3} \quad c_{f_{\text {F.P. }}}=\frac{0.56 \sqrt{3}}{\sqrt{R e}}
$$

and the avarage skin friction on a cone is

$$
c_{A_{C}}=\frac{2}{\sqrt{3}} c_{f_{F, P}}
$$

where $\delta=$ boundary layer thiekness
T－shaar atross
$x=$ length

$\mathrm{By}_{\text {Y }}$	BELLofirorafi conponation	Model__ Poge 4-29
Chockod _ D		Missile Airplane _____ Report D143-945-012

Re = local free stream Reynolds number from cone vertex or flat plate leading edge
$c_{f}=$ local skin friction coefficient
$C_{f}=$ average skin friction coefficient
q - local dynamic pressure
and the subecript $C=$ cone
F.P. = flat plate

The above correction has been used in determining the cone lamianar akin friction drag coefficients, and also it has been applied: in the same manner to the turbulent case.
a plot of the total aircraft skin friction drag coofficient is presented in Figure 4.4-26 and shows how the skin friction drag coefficient varies with an angle of attack and altitude.

The skin friction drag coefficients have been calculated for all surfaces independently and were broken down into the following surfaces and illustrated in Figure 4.2-2 of the Configuration Section:

Wing - 1. Bottom surface (inner and outer panels)
2. Upper surface wedge (inner and cuter panels)
3. Upper surface slab (inner and outer panels)

Tail - Wedge and slab
Body - 1. Bottom suriace
2. Nose cone
3. Afteroody circular cylinder top
4. Nose hedge sides
5. Afterbody straight vertical sides

4.4.3 Maxdmum Lift to Drag Ratios

The maximum L/D's for the glide portion of this aircraft were obtained from the summation of the lifts of the various components divided by the summation of the various drags of each component for each Mach number, angle of attack, and eltitude. It can be seen from the plots of these data in Figure 4.4-27 that altitude (200,000 feet and under) has little effect upon the maximum I / D 's at all Mach numbers, and the level of the maximum I / D 's does not noticeably change until after a Mach number of 10. The decrease in $L / D^{\prime} s$ above 200,000 feet are caused by increase in skin friction drag coefficients. Maximum $I / D^{\prime} s$, angle of attack at maximum L / D, and lift coefficient at maximum I / D are plotted in Figure 4.4-28 versus altitude for constant Mach numbers.

4.4.4 Gilde Performance.

In equilibrive glide filght the maxumum renge is obteined at the attitude for maximum I / D. In other words in power off filght, the sum of the airoraft lift at maximun L / D and the contrifugal force due to the aircrixty by the adroraft's weight, and the maximum range for this condition (as shown in another section c ? this report) ocours whon the aircraft is Rlown at the attitude to c stain the maximum L / D at each combination of altitude and velocity.

The maxdmum range is obtained by integrating the maximum L / D with respect to the total energy available from the altitude and velooity, taking into account the effects of the centrifugal force and gravity variation with altitude on the weight. The range equation is repeated at this time and is for a non-rotating earth in the atmosphere described in Section 4.3.

$$
R=\frac{1}{2 g_{0}} \int_{U_{2}}^{U_{1}} \frac{(L / D)_{\max } d U}{E / g_{0}-\frac{V^{2}}{G_{0}\left(r_{0}+h\right)}}
$$

where

$$
g / g_{0}=\left(\frac{r_{0}}{h+r_{0}}\right)^{2}
$$

$v=v^{2}+2 g h$, fe日t ${ }^{2} / s t \cdot \operatorname{con} d^{2}$
g_{0} acceleration of gravity at sea level, 32.2 feet/second ${ }^{2}$
$r_{0}=$ radius of the earth, $20.92 \mathrm{u}_{\mathrm{h}} \times 10^{-6}$ feet
h =altitude of filght path above the earth, feet
$\nabla=$ velooity along the flight path, feat/second
Integration of the above range equation rields maxdmum ranges of 10,670 nauticsl miles for a weight of 18,800 pounds (weight with bomb) and 10,000 nautical miles for a weight of 14,600 pounds (woight without bomb). The ranges for these two neights are shown in Figure 4. $4-29$ versus velocity. Thus, for any initial velocity and innal velocity the maximum range can be obtained.

Time histories from boost for these two weights are presented in Figure 4.4-30 and Figure 4:4-31.

4.4.5 Comparison of Original and Present Flight Pathe

The maximum I / D ratios used in the original flight patin for the 14,600 pounds condition (Reference 4.4-16) are compared in Figure 4. $4-32$ versus velocity with the maximum L / D 's used in the present analysis. The I / D 's from the present flight path are somewhat smaller than the previous values due to modifications in the methods used to predict the lift and drag coefficients.

The equilibrium altitudes for the two analyses are compared in the same figure and it is found that they are very similar except at the beginning of glide (velocities of 20,000 to 22,000 feet per second) where the present analysis indicates a lower altitude. This loss in altiture is due in part to the new atmosphere used in this study as explained in an earlier section.

As a result of the above losses the range is 9700 nautical miles for the present analysis compared to 10,160 nautical miles for the original analysis between the initial velocity of 22,000 feet per second and the final velocity of 4000 feet per second.
4.4.6 Additional Considerations
4.4.6.1 Shock Wave - Boundary Layer Interaction Effects on L/D

The effects of shoc: weve interaction with the boundary layer on the pressure coeificient, and skin friction drag coefficient have been investigated for the present wing at Mach numbers of 20,16 and 10 at the attitudes for maximum I/De without interaction. The method employed to determine these effects is described in Section 5.3 of this report.

The results of the investigation indicate that higher pressure coefficients are ohtained when taking the interaction into account, giving approximately 24% increase in the normal force at the Mach numbers investigated and that the skin friction drag coefficient is increased approximately 42% for these speeds. The net results of these increasee is that the lift-drag ratio is unaffected at Mach numbers 10 and 16 but is lowered somewhat at a Mach number of 20. The above results are shown in Figure 4.4-33.

This investigation has not been extensive enough to show how the attitude for maximum I / D or the equilibrium altitude change with the inclusion of these interactions as the interaction method was not available early onough in the present study for its incorporation in the complete L/D calculations.

SECAET

Seotion 4.4 Symbole

-	Surface chord, inches
E	Men chere; inehen
C_{D}	Dreg coofflcient
O_{P}	Average skin friction coefficient
${ }^{0} 9$	Local okin friction coefficient
c_{L}	Wft $000 f f i c i e n t$
C_{N}	Normal force coefficient
${ }^{\text {c }}$	Pressure coefficient
${ }^{C} \boldsymbol{X}$	Axial force coefficient
D	Drag, pounds
R	Acceleration of gravity, feet per square second
n	Altitude, feet
h	Heicht of wing trailing edge, inches
I	Lfft, pounds
L.E.	Tasding adge
I/D	Ifft-crag ratio
M	Mach number
p	Prescure, pounds per square foot
q	Dynamic pressure, pounds per square foot
?	Rance, nautical miles
Re	Reymolds number
${ }^{\circ}$	Dogrees Rankine
\boldsymbol{r}	Radius of body, inches
r	Racius of earth, feet

r	Becovery faotor
s	drea, square feat
\pm	Teaperature, degrees
T.E.	Trailing Edgs
$t / 0$	Inlokness ratio
0	Energy parameter, square feet per square eecond
∇	Velocity, feet per secand
W	Weight, pounds
x	Surface length used in skin friotion caloulations, foot
α	angle of attack, degrees
r	Ratio of specific heats
δ	Boundary thickness, feet
θ	Body radial angle, degrees
μ	Coerficient of viscosity, slugs per foot second
p	Density, pouncs per cubic foot
τ	Shear stress, pounds par square foot
Subsoripts	
1	Botton surface
2	Wing upper surface wedge or nose cone
3	Wing upyer surface slab or afterbody circular oylinder top
4	Nose wedge sides
5	Afterkody atraight vertical sides
∞	Free stream conditions
B	Bace
B	3ody
SECRET	

0	Com
0	Comprastible oooditions
PıP.	Nat plate
1	Incouprassible conditions
L	Inminar flow
tax.	Maxdmum conditions
0	Sea level conditions
p	Pressure drag
5	Recovery oondition
50f.	Reference
T	Turbulent flow conditions
t	Stagnation condition
V.t.	Fertical tail
W	Wall conclition
W	Wing
$\times{ }_{2}$	Skin friction parameter
δ	Local stream concition

Supersoripts

()' Indicates reference or effective temperature condition
uniess otherwise noted
Power law exponent

Seotion buh Frierences.

4.4-1	Moiollan, O. Ho: Exploratory Wind Tunnel Inveatigation of Hings and Bodies at $M=6.9$; Jour. of the Aero. Soiences, Vol. 18, No. 10, pp 641-648, datad October, 1951

4.4-2 KoLellan, C. H., Bertram, M. H. and Moore, J. A.s An Investisat: in of Four Wings of Square Planform at a Kach Numbe: of 6.86 in the Langley 11 Inah Hypersonic Tunnel; NAC: Research Momorandun L51D17, dated June 29, 1951
4.4-3 UMmann, E. F. and Lord, D. R.: an Investization of Plow Characteristice at Nach Number 4.04 over 6 and 9% Thiok Symetrical Circular Are Airfoil Having 30, Trailing RAge Fape; NMC: Research Kemorandum LS.D30, dated. 1951
4.4-4 Anon: Intorim Tocinnical Report of $N X$-2a76; Bell Adroraft Corcoratior Report io. D143-945-011, dated cetober 25, 2554.
4.4-5 Linnell, 5. D.: Tro Itmensicnal atrfotls in Hypersonic Flows; Jour. of the dero. Scie:ices, 701. 16, No. 1, dataci Januaty, 1949.
4.L-6 McKoren, P. 3.1 Tebles ans orkphs for Compressible Flow; Rell Aircraft Corcoiation ferodimemic Rosearch Noto No. 52, dated June 5, 1953.
4.4-7 Chapman, D. Re, Mirbrcu, W. R. and Koster, R. Ho; Experimental Investi'stion of zase Frossure on Blunt Trailing Edge wing at Supersonic valocities NACh Technical Noto No. 2611, dated 1952.
4.4-8 Dennis, D. H. and Cumingham, B. E. 1 Forces and :omente on Inclined Bodies at Mach Numbers from 3 to 6.3; NACA Research Memorandum A54:03, dated June 25, 1954.
4.4-9 Ridyard, H. W.: The Aerodymamio Characteristics of Two Suries of Lifting Bodies at Mach Number 6.86; NACA Basearch Memorandum L54C15, dated May 195.
4.4-10 Charters, A. C. and Turelsky, R. A.: Detemination of Base Fressure from Free Flight Data; Ballistic Research Lab. Report No. 653, dated Mareh 30, 1948.
4.L-11 Ritter, J. $0 ., J$. and Ramaker, F. M.: an Experimental Investigation of the Ease Pressure Charactoristics of Non infiting godies of Revolution at Maeh Numbers from 2.73 to L.98; NACA Research Memorandum A52e20, dated September 17, 1952.

4.4-12	Whillan, E. Pu, et Allis: Long Kange Surface to Surface Rocket and Ramjot Missiles - Aerodynamiosj Rand Corporation R-181, deted May 1, 1950.
$4 \cdot 4-13$	MoCaulley, W. D. and Felier, W. V. 1 An Investigation of fins) in the Lengley 11 Inch Hypersonio Tunel at a Mach Number of 6.9; HACA Research Memorandum L54IO3, dated November 26, 1954.
4.4-24	Prandti, Li The Mechanice of Viscous Fluids; Aerodynamio Theorys W. F. Durand, Vol. III, Division G, Durand Reprint Comrittee, 1943.
4.4-15	HopkO, R. Ni: The Effect of Sone Surface Roughness Blements on the Dreg of a Body of Revolution at Supersonic Speedss NaCA Research Memorandum L54I21, dated November 24, 1954.
4.4-16	Anon: Dilu Bomi Strategic leapon System; Bell Aircraft Corporation Raport No. D143-945-010, dated July 15, 1953.
4.4-17	Nagamatsu, H. T.: Sumary of Recent afleIt Hypersonio Exporimentil Investigations; Jour. of the hero. Soiences, Vol. 22, No. 3, pp. 165-172, dated March, 1955.
4.4-18	Hall, C. F. and Fitzgerald, F. F.I An Approximate Method for Calculating the Effect of Surface Roughress on the drag of an Airplanes NACA Research Memorandum A7B2L, dated July 23, 1947.
4.4-19	Hantesche, W. and Wendt, H.: The Laminar Boundary Layer on a Cone in a Supersonic Air Stream at Zero Angle of Attack; Project Rand, Douglas Atreraft Corporation, Inc., Translation RAT -6, dated November, 1947.

\qquad nemort MLL $-915-012$
figure 4.4-1
CCAPARISCN CF THEORECTICAL AND EXPERIMENTAL
LIFT AND DRAG COEFFICIENTS AT $M=6,9$: FOR A WINC WITH 5 PEACENT SYMMETRICAL DOUELE VEDCE
SECTICNS

$$
A=1.0, \lambda=1.0, \hat{\Lambda}_{C / 2}=0^{\circ}
$$

SUOCK-EXPNNSION THEDRY
EXPERIMENT REFERENCE
\square
EXPERIMENT REFERENCE 44-1

$$
A=2.31, \lambda=0, \Lambda_{C / 2}=40.9^{\circ}
$$

EXPERINENT REFERENCE 44-2

$$
A=1.0, \lambda=1,0, \Lambda_{C / 2}=0
$$

$$
R e=10^{6}
$$

secret

COMPARISON OF THE COMPRESSIBLE SKIN FRICTION
TO INCOMPRESSIBLE SKIN FRICTION RATIO DETERMINED FROM ACTUAL AIR PROPERTIES AND POWER LAWS

LAMINAR LENGTH VERSUS LOCAL FREE STREAM REYNOLDS NUMBER PER FOOT

 LIFT COEFFICIENIS ANO ANGUE OF AT IAOK AT UOU, OA

SECRET

4.5 Flight Mechanics

The equations of motion of the rehicle have been analyzed in order to determine the effects of three-dimensional motion about a moving earth. While for preliminary evaluations of vehicle performance it is sufficient to consider only two-dimensional motion and to neglect earth motion, a more detailed study of the problems involved in hypersonic flight requires, as its foundation, equations which more accurately describe the motion of the vehicle. This is essential in both performance and stability analysis. It was the aim of this study not only to show the problems involved in obtaining satiafactory performance and etability, but also to indicate the difficulties which are encountered in attempting to analyze thesc factors. The detailed derivation of the equations of linear and angular motion is presented in Appendix LB. As shown, these equations are highly complex and cumberscm to apply. The following sections prosent the results of scme preliminary applications of these equations, in order to illustrate the significance of the new terms which appear. It is demonstrated that future studies should include considerable investigation of the equations in order to fully detemine their significance in the design of a hypersonic vehicle.

4.5.1 Effects of Earth Rotation or: Gido Rance

In order to becone more familiar il th the nov terms in the linear equations of motion ard to demonstrata the differences in glide trajectories typical of the $: 2 \pi-2276$ ianen great circle courses in various directions about tha rotating earth are takon, sevaral glide trajectories have been calculutad with the aid oi 13M computing arhinery. A step-by-step intogetion ol the equations usirg variable aerodynamic paracturs resulis in a time-onnerio proess even with the aid of couputing equsfont. since tho same pupose of illustratins alth rotation afectei is accomplishes werer canstant acrodymmic paraneters over the velocity range, typical cowtant valuos of wing loading, lift-crat ratio and lift coetiotent for mamen lift-arag matio were assuned for nost of the calcutatione, forne values were taker as $\psi_{1} / S=22.0, I / D=4$ and $C_{I}=0.09$.

For flight about tae eguator the calculation of the glide traiectory reduces to a wo-dinimizuali problem since for thise ease the Coriolis and centrifugal iorees act in tho vertical directions. For filight to the east the coriolis force adde to ceatrifugal force, reducing the lift required for any given roloody and hence roduces ths drag, thereby increasing the gidds rane. For filght to the west the opposite eficet oceuss and the glide rango is reluced accordiniy. Tho resuits of these cadeulations are prosented in figure 4.5.1-1 together with the elide range :hich is ootained from the assumed parameters when the rotation of the earth is nogiectod ($\Omega=0$). It is apparent from these results that the earth rotation has a strong

effect on the range of a hypersonic glide vehicle in east-west flight. For the given assumptions and for an initial velocity of 22,000 feet per second relative to the surface of the earth, a 25% increase in range results for flight about the equator to the east, ard a ? fat duction in range results for flight to the west as compared to the range calculated for a nonrotating earth.

Flight about the poles of a rotating earth results in a three dimensional problem since in this case components of the centrifugal and Coriolis forces act along both the normal and lateral axis of the vehicle. For this condition then, glide range may be calculated in several ways. First, the flight of the vehicle may be conducted so that the anglo of roll is maintained at zero value. For this case it is then necessary to yaw the vehicle in order to provide the lateral forces with which flight is maintained on a great circle polar path. The disadvantage of this approach is that the vehicle will most likely be less efficient in generation, aerodynamic forces in yaw than in geneating lift forces (ie. $I / D<L / D$), hence sone penalty will be paid in order to maintain a zero roil angie great circle path. The other altornative for such a path is to utilize increased lift force to overcome the lateral components of centrifugal and Coriolis forces. This will require rolling the aircraft to some bank angle so that the vertical component of aft fore will maintain the desired gilds path While the horizontal component of int force is employed to maintain the desired great circie path. Calculation of either of these paths requires a highly detailed computational program. an instant to the effects of earth rotation on great circle polar fight can be obtained however, with the assumption that total drag is given by the expression

$$
D=\frac{(L+Y)}{\left(\frac{L}{D}\right)_{\text {Max. }}}
$$

where

$$
D=\operatorname{total} \text { drag }
$$

$\left(\frac{1}{D}\right)_{1}=$ maximum iift-drag ratio
D Max.
$L=$ lift for maximum L / D
Y = side force required to maintain the great circle polar path at zero roll angle

While this assumption is conservative to some extent, it serves to illustrate the effects on glide range. The results of IBM glide range computation using the above expression, and the previously assumed aerodynamic parameters are presented in figure 4.5.1-2 together with the glide range about a non-rotating earth. These resuits

together with the previous resulto for easi-west inight, demonstrate the large effect of earth rotation on the glide rante of a nypersonic rehiole and indioate, partioularly for ifight at or near an east-west direction, that these affeots must be considered in deeigning a hypersonio gilde vehicie to meet specified performance requirements.

4.5.2 Hyeh Altitude Trajectories

In general the heat transfer from the bounciary layer to the adjacont aircraft burface decreases as the looal airflow density is deoreased. From this it is indicated that the heat transfer will deorease with increases in finght altitude, which suggests that the MX-2276 temperature problems might be alleviated to some extent if higher filght paths than originally proposed are taken. There are several ways of achieving flight patios at altitudes higher than the original mx-2276 patif (filght where the altatude is determined by the lift coefficient for maximum I/D); inoreasing the altitudes by (1) decreasing the wing loading, (2) inoreasing the lift coefficients, or (3) by fiying a partial iffing path above the original equilibrium path.

An indication of the effecto of wing loading on heat transfer can be obtained in the piscous heating section of this report therein temperatures of the third stage of $\mathrm{NX}-2276$ are eresented ath and without the bomb (see section 4.6). However, because the wing loading of the preant configuration is already quite low (less than 25 psf), the second and third methods have been given the most consideration.

Figure L.5.2-1 presents an exemple of the effect of inoreasing the angle of attack, and thus the lift coefficient, thereby increasing the glide altitude at a given velocity. The oorvective heatirg and equitibrivm tenperatures shown were estimeted from the method outlined in Appendix LiA, and are for the one foot station of the wing. This point was ohosen as more significant in the study of the overall heating problem, since the temperatures of the leading edge atagnation points will be considerably affected by changes in altitude (see Seotion 4.6), the leading edges present a localized problem, while the heat transfer of suoh aurfaces as the wings and the body presents the generalized problem. The effects of shock-boundary layer interaction were not included and it was assurned that flow on the upper wing surace contimues to expand with increasing altitude, although separation of the flow is acturily quite probable. It will be noted that the more aevers lower surface temperature is not aignificantly relieved by inoreasing tha altitude through increasing the angie of attack. This is beoause the local lower gurface pressure and velocity remain nearly the eswe through the angle of attack and aititude variations, aince the lift force required to support the vehicie is essentially constant with altitude at a given reiocity. While the upper surface temperature and heating are oonsiderably reduced, these are

rexutivaly leff eritioal than for the lowar surface. Inoreacing the
 in (exd that ruprowontin the condition we wish to improve) to 15° piald a roiatimly mall decrose in the total heating. The peanity in making such a change is chom by the range ourves ocieulatod far comatint 8° und 5° minte of attaok, the 8° eurro approximating the naximur : 10 gilde range. These ourves are prosented in Figure 4.5.2-2. The 108 of 3000 miles range for an initial glide speed of 22,000 fpe apreare to be a large penaity for the heating reduction obtained, paitioularly since the more oritioni lower surface temperatures and heating are not appreoinbly reduced. Some improvenent in the range wicht be attained is programing the angle of attack fram 15° to 8° as the heating falls off with decreasing velocity, but an inspection of the variation of temperature with altitude indicates that the oritioal heating range may exten' $d 0 \mathrm{~m}$ to 10,000 to 12,000 fps and progreming back to the angle of sttack for raximm I/D below thes velocities would bring only a small gain in range. Apparentiy, then increasing angle of attack is generally disadvantageous, However, the reaults of the above work are preliminary since the offecte of ohock-boundary layer interaction heve rot been includod. From the resulte of the studides of shook-boundery layer interaotion disaussed in Section 5.3, it is apparent that heat transfer, $14 f t$, dras and lift drag ratio will be affected, in particuler the lift coeffioient for maximum L / D. The methods have been derived from which en evaluation of this affect may be made - however, it was not possible to do so with in the time period of the present stuiy.

The third method of achiering higher altitude flight, the partial lifting path, requires that the initial flight path angle be greater than the initial angle for a maximun L / D glide, since by the very nature of the partial lift path, the flieht path angle will be decreasing repidily at the outset. Inoreases in the initial flight path angle can be easily attained by progremming the ascent pain to the desired final angle. Suoh a progran will in itself result in a higher initial altitude. Thus at first glance the partial lift path appears advantageous. This advantage disappears however, when the resulte of the trajeotory oaloulations presented in Figure 4.5.2-3 are studied. These results were obtained from an IBM Integration of the equations of innear motion for a non-rotating earth. For these calculations, the lift coerficient and lyft-drag ratio for an angle of attack of $8 \circ$ were chosen. Shown in this figure are the first 700 secords of an equilit rlum s1ide and siso the trajeotory for a final ascent path angle (Indtial partial lift path angle) of 0.75°. Au would be expected, the inttially inclined partial ifit filght path degenerates very quiekly into an oscillation about the equilibrium glide path end epprosches the well known skip trajectory. In this respect, the partial lift path possesses the dileadvantages of the skip path wheroin high loads, temperatures and heat huxes are encountered at the bottom of the oscillation. For example, at $t=250 \mathrm{secs}$. on the partial Ifft path,

By \qquad Doto Checked \qquad - Date \qquad	UELLeffiranaft conasanion	

based on the NACA standard atmospiere, assuming laminar fiow and an emissivity of 0.9 , the equilibrium wall temperature at the one foot point of the bottom surface would be of the order of $2100^{\circ} \mathrm{F}$ while at the same time, and for the eame conditions, the equilibrium wall temperature on the gilde path would be about $1870^{\circ} \mathrm{F}$.

The only method whioh might poseibly reduce the temparatures and loads in the partial If paths would be to make the first descent very long so that the firs: puil out would be accomplished near the end of flight. This, however, would recuire unreasonably high initial ellitudes and final ascent path inclinations approaching the values of a ballistic path. While the effects of shock-boundary lafer interaction have not been included in this study of partial lift paths - it is doubtiol that any significant changes would result since the inherent nature of the path would be uncharged.

4.5.3 Plight Path Heading Control

In order to accomplish a given mission, that is, to deliver the hypersonic vehicle between two designated points on the surface of the earth, it is ascessary to amrive at a means by which the vehicle may be gulded between the specified positions. The problem is complicated by the rotation of the earth, which in effect means that a vehicie whioh is guided to a specifio point on the surface of the earth is being directed at a target which is moving in spece. It may be most convenient to accomplish tiids navigation by conventional means, that Lb, for flight between two dasignatad points to follon the conneoting path of a great circle on the surface of the earth.

In the trajectory atudy section it was indicated that filght about a great circle which is incilined with respect to the earthr: equator results in components of the centrifugal and Coriolis forses that ile along the lateral axis or' the vehicle. It was pointed out in that section that a poseible method of countering these lateral forces $l_{\text {les }}$ in rolling the vehicle to a bank angle where in the horizontal component of Ifft force balances the Coilolits foroe components. The feasibility of auch a progran depends upon the degree of roll angle and the amount of Ifft required, since ti must be remembered that increasing lift results in inoreasim, tenperatures on the lifting surfsees, while exoessive roll angles ray haye an adverse effeot upon the guiderice equipment. An expression for the roll angle, whe the lataral aarodynemic force is zero, can be obtatned from the lineso equations oi motion. From equation Lis-iTo fior $Y / N=0, \gamma=0$
$\tan \phi=$

$$
\begin{equation*}
\nabla \dot{\xi}-2 \nabla \Omega \cos \lambda-r \Omega^{2} \sin \lambda \cos \lambda-\frac{v^{2}}{r} \cos \xi \cot \lambda \tag{1}
\end{equation*}
$$

$$
g-\frac{\nabla^{2}}{r}-20 \Omega \sin \lambda \cos \xi-r \Omega^{2} \frac{r}{\sin ^{2} \lambda}
$$

- By

 BELLethinomift campania Modes iloChecked

now fou the groat circle patin it sian he shown that

$$
\begin{equation*}
\cos \xi_{0.3} \quad \frac{\cos \xi_{0}}{\sin \lambda} \tag{2}
\end{equation*}
$$

where the notation io vina shown in figure 4.5.3-2. Differentiating this expression results in

$$
\xi_{0.0 .}=\frac{\cos j \sin \xi\left(\frac{\cos \lambda}{\sin \lambda}\right)}{\sin \lambda}
$$

however

$$
\vec{A}=\frac{v}{x} \sin \xi
$$

80 that

$$
\begin{equation*}
\stackrel{q}{\text { ORC. }}_{\stackrel{\mathrm{v}}{\mathrm{r}} \cos \xi_{\mathrm{G} .0 .} \operatorname{Cot} \lambda} \tag{3}
\end{equation*}
$$

Substituting thess expressions into equation (1) gives the roll angle required to follow a great circle path with zero lateral aeron dynamic force.
$\tan \not D \quad \frac{-2 V \Omega \cos \lambda-5 \Omega^{2} \cos \lambda \cos \xi_{0}}{g-\frac{V^{2}}{5}-2 v \Omega \cos \xi_{0}-r I^{2} \sin ^{2} \lambda}$
The maxim mil artie will occur at the highest velocity. Figure $\mathrm{t}_{\mathrm{i}}^{5} 3-3$ presents the roil angle required to Any a great circle path at a ∇ elosity of $22,000 \mathrm{ft}$. $/ \mathrm{sec}$. It is observed that at this Feloosty the maximum angle of roll which is required at arg point on the surface of the earth is approximately 22 degrees. The detamination of whetrer a coll angle of this magnitude is excessive or not will depend upon the characteristics of the guidance system.

The lift required to maintain the glide path when the vehicle is rolled to fclicu a great elrcle path may be determined as follows. If normal load factor is defined 63

$$
y_{N}-\frac{L+\frac{\pi \sin V}{g}}{y}
$$

then for a gilde path, where tho thrust $(T$) is zero

$$
n_{N}=\frac{L}{\delta M}
$$

so that nomal load factor is a direot expression of lift. Substituting this expression into equation ($48-170$) and together with equation $(4 B-17 b)$ results (for $\gamma=0$) in
$g\left(n_{N}\right) \cos \phi=g-\frac{\nabla^{2}}{5}-2 N \Omega \sin \lambda \cos \xi-m \Omega^{2} \sin ^{2} \lambda$
where the angle ϕ is dafined by equation (2). For great oircle flight then,
$g\left(\eta_{N}\right)_{Q_{0} C_{0}} \cos \phi_{G . C}=g-\frac{\nabla^{2}}{r}-2 \pi \Omega \cos \xi_{0}-r \Omega^{2} \sin ^{2} \lambda$
Were the angle $\varnothing_{G, C}$. is dafined by equation (4). The value of $N_{N_{G}, C}$.
Whioh is detemmined from equation (6) is presented in Figure $4.5 .3-4$ for a velooity of 22,000 feet per second. As can be seen from these results, the value of $\mathrm{n}_{\mathrm{N}_{\mathrm{O}} \mathrm{C}}$. which is required for great cirele flight is greatly influenced by the inclination of the great odrcie. It is interesting to compare this with the load factor whioh is obtained when rotation of the earth is reglected, in*ich case any great circle path may be followed at zero roll angle and with a land factor given by

$$
n_{N}=1-\frac{\frac{7}{2}^{2}}{g^{2}}
$$

Which is identical with the load factor obtained for a roteting eerth at the values $\lambda=0^{\circ}, \xi_{0}= \pm 90^{\circ}$. The extrame values of load factor in. banked illght about a great circle on a rotating earth can be seen to differ by $\pm 38 \%$ from the non-rotating earth load factor at $V=22,000$ fps.

The above discussion has been concerned only with the load factors which are required for banked ilight about a given great circle. Since it will be highly probable that deviations from a desired ilight path along a great circle will occur due to cross winds, guidance errors, ato., or that a given flight plan will call for changes in the great oircie path, an investigation of the apility of the vehicle to change hoading is in order. In equation (1), 5 may be expresest as

$$
\begin{equation*}
\dot{\xi}=\dot{\xi}_{\text {O.G. }_{0}}+\Delta \dot{\xi} \tag{8}
\end{equation*}
$$

where $\dot{\xi}_{\text {G. }}$. a rate of change of ξ to follow a great circle path $\Delta \dot{\xi}^{\circ}$ e rate of turn from an instantaneous great circle
Substituting this expression into equation (1), rearranging and utile= inning equation (h) results in

$$
\begin{equation*}
\tan \phi=\frac{\nabla \Delta \xi}{g-\frac{v^{2}}{r}-2 v \Omega \cos \xi 0-r \Omega^{2} \sin ^{2} \lambda}+\tan \phi_{G . C .} \tag{9}
\end{equation*}
$$

The nomad load factor required to hold $\gamma=0$ in the turn may be deduced from figure 4.5.3-1.

$$
\text { Figure } 4.5 .3 .1
$$

from this figure, it is seen that

$$
\left(g n_{N}\right)^{2}=\left(g n_{N_{G . C .}}\right)^{2}+(v \Delta \dot{\xi})^{2}-2\left(g n_{N_{G . C .}}\right)(v \Delta \dot{\xi}) \cos \left(90+\emptyset_{G_{. C .}}\right)
$$

or

$$
\begin{equation*}
\left(g n_{\mathbb{K}}\right)^{2}=\left(g n_{\mathrm{N}_{0} \mathrm{C}_{e}}\right)+(\nabla \Delta \dot{\xi})^{2}+2\left(g n_{\mathrm{N}_{\mathrm{G}, \mathrm{C}}}\right)(\mathrm{V} \Delta \dot{j}) \sin \phi_{G . C} \tag{10}
\end{equation*}
$$

NI 2276 STAGE III
MEuse $4.5 \cdot 2020$
EFFECT OF ALTTUDE ON EQUILIBRIUM TEMPERATURE - WITH CONSTANT LI NOTE

LAMINAR ROW ONE FOOT STATION NACA STANDARD ATM, EMISSIVITY $=0,0$ VELOCITY $=22,000$ FPS.
Seq - ${ }^{\circ} \mathrm{F}$
 AIRSPEED
$\begin{array}{rr} \\ - & 2000\end{array}$

4.6 Aerodynamic Heating

4.6.1 Problem Area

serodynamic heating of the structure at the hypersonic conditions necessary to achieve the desired performance poses a severe problem to the $\mathrm{MX}-2276$ system. The heating rates will be high; wall temperatures near the upper working limits for even the best materials must be endured and in certain areas cooling will be needed. Thus accurate prediction of the aerodynamic heating is required. However, the speeds and flow conditions contemplated are generally beyond present experience. In order to estimate the aerodynamic heating parameters it is necessary to extend the present method of analyses beyond the speeds and conditions at which there is any data to substantiate their accuracy. In view of this, during the study considerable effort was expended on prediction of heat transfer paramecers and on the effects of the various phenomena that may be encountered as a result of the hypersonic flight.

Herein are presented estimations of wall and leading edge temperatures and transpiration cooling requirements pertinent to the flight of Stage III. The methods adopted or derived for predicting these quantities are described or referenced and some of the qualifications as to their use and validity are discussed.

The major aerodynamic heatinc problem exists during the glide portion of the MX-2276 path. Because of the high speeds and relatively slow decelerations in the glide, i.e. long duration of flight, the Stage III vehicle was the most extensive object of the analysis during this study. Pransient effects are importiant in Stage I because of the high rates of acceleration and deceleration giving a short flight time; however, the maximivn speed conditions of this stage are relatively low, Nach number 5 at 70,000 feet, and a more conventional structure, less limited by temperature in choice of materials, could be used for this configuration. Stage II temperature problems did not appear serious enough to merit an investigation in this study because its time of flight is also very shorit and it is expendable at end of boost.

The walls of the Stage III vehicle are considered to be of a sandwich type construction, i.e. a cool primary structure separated from a thin outer skin. Transient effects for such an outside skin are not significant so thet the results given in this section pertain to equilibrium temperatures associated with various sections of the vehicle over its glide path.

4.6 .2 7iscous Heating

4.6.2.1 The Heat Balance Equation

Wall temperatures and heat transfer to airoraft surfaces are detemined from a sumation of the heat flux both into and away from the aurface. For the case of the wall isolated from the rest of the structure, where heat is ne ther conducted into or away from the surface, the heat fluxes wh ch must be considered are those which result from convection or r, diation. It is generally considered that the hest fluxes which are fivolved are those which result from convaction from the boundary layer into the wall, radiation from the surrounding environment int the wall and radiation from the wall to surpounding environment. This may be expressed in a generel equation of heat balance per unit area of surface as*

$$
n_{e}\left(T_{r}-T_{W}\right)+\alpha 3-\in \sigma T_{W}{ }^{4}=3600 \text { wcy } \frac{d T_{W}}{d \theta}
$$

whioh equates the total heal, flux to the rate of change of wall temperature. The condition wherein heat flux into the surface is balanced by heat flux out (hence the wall temperature remains constant) is referred to as the concition of equilbridi: will terperature. For this case the hat balence equation recuces to

$$
h_{c}\left(T_{r}-T_{W}\right)+\alpha_{0}-\in \sigma_{W}^{M}=0
$$

Where the tem $h_{c}\left(T_{r}-T_{W}\right)$ expresses the heat convected into the wall from the boundary liyer, α a rerresonts the deat radiateri, both solar and nocturnal, into the wall from the surourdine enviroment and the tem $\in \boldsymbol{\sigma} \mathrm{T}_{\mathrm{W}} \mathrm{expresses}$ the heat railatad out frum the rill.

4.6 .2 .2 Radiation

It should be noted that the equation as presented (and wioh was emplojed in the analysis reported in this section) does not allow for radiation of heat from the hot boundary layer to the wall. An investigation of this source of heat flux has been initiated during the present study and is discussed in detail in Section 5.4. A preliminary evaluation of this quantlity has indicated that it may have inportant effects and should receive further consideration in fluture studies.

For the present study, the weighted mean averace of solar and noctumal radiation is small and wes generally neglected. It may be

* The symbols employed here ars defined in Aprendix la

observed that the reasining radiation term, © r^{4}, is highly influenced by the emissivity, \in, of the surface and should receive caroful consideration. A value of $\in=0.9$ was generally used throughout this study. This is a high value but it appears to be attainable ror certain surfaces as indicated in References 4.6 an and $406-\hat{2} ;$ however, more resanch on the problem is definately necessary as it may materially affect the vehicle design. The offects of varying emissivity are illustrated later in this section.

4.6 .2 .3 Convection from Viscous Heating

The convective heat fux into the surface is govemed by the compressible heat transfer coefficient, h_{0}. A roview of the literature and discussion with research agencies has disclosed several methods for evaluating this coefficient. For larinar boundary layer flow, exact solutions for the compressible heat transfer coefficient have been obtained winich are generally considered as relidoble throughout the range of temperature conditions wherein the properties of air are adequately knom at present. However, due to the current lack of understandinn of the mechntsen of turbilent flow, similar solutions for the wipressible turbulent boundary lejer do not exist.

Approximate nethods are avainole which combine theoretical and empiricel results to obtain solutions winh hove been show to give good results for both leatnar and trobiens fion. The rethod chosen for this study moses use of the reli krown constant property relations for Incompessible laminar and juronant laci and extends these to the supersonic and hypersonic rerions by evalinting tisc air properties at a waifinted inan reforerce temerature, F^{\prime}, what occurs within the boundary layer. A brisf exposition of this retrod, hereafter referred to $2 s$ the T^{\prime} method, is siven in Appendix ha. In the strictest sense, this metiod is orly applicable to tro dimensional flow over a hat plate with zero streamise pressure and temperature gradients. The metrod applies directly to two-dimensional flow over a wedge with no temperature gradient however, if the locel strean conditions are used. It has been found also, that similarity exdsts between cone flow and flat plate flos, and that when conditions on the surface of the cone are lised a correction of $\sqrt{3}$ tires the resulting plate coefficients for larinar flow and 1.15 times the plate coefficients for turbulent flow gives good results for flow over the cone. The flow alone, the surface of a gilinder can be approximated closely by direct application of the flat plate method at the local conditions, as long as the radius of the cylinder remains large with respect to the thickness of the boundary layer.

As was noted abovey the method assumes zero stremmise pressure and temperature gradients. The surface shapes contemplated for the Mx-2276 are generelly very thin or slender and for sich sharss, the avallable compressible flow results have show the effects or pressure

gradient on skin friction and heat transfer to be small (see References $4.6-3$ and $4,6-4$) except in the immediate vioinity of the leading edges of the wing and the nose of the body where large changes in profile shape occur. Heat trensfer to these surfaces are treated later in this section. For the remainder of the surfaces where changes in profile shape are small, it appears that the eifects of pressure gradient may be neglusted.

The effects of streamilse tomperathre gradient on heat transfer coefficiont have also been examined. A lipical example of the streamsise variation of the equilibrium wall temperature in the Ficinity of a leading edee in laminar for is given by

$$
T_{W}=T_{r}\left(.333-.646 *+.792 x 4^{2}-.3125 x+4^{3}\right)
$$

where

Using this valiation of wall temperatiare in the method of Reference $4.6-5$, which is essantially reproduced in Reference $4.6-4$, showed no significant change from the reat transfar coofficient obtained for a constant wall temperatire. This result arpears sorewhat contrary to the results obtained by Chapman and nutiesin in Reference $4.6-5$. However, the exannle presonted theroin is unrealistic for a vohicle of the type of ax-2276, since in order to point up the importance of temperature pradient alon: the wall, a wall temperatuce higher than the recovery tenperature was assumed, On tho basis of this investigation, it was concluded that ternerature gridient does not significantiy alter the overall heat flux within the larinar flow regiong however, further investigations are requt red in the repion of boundery layer transition, at body and wing shoulders, and retions of attachnent of the outer skin to the primary structure where lange locol gradients may exd and may have an efiect on the heat flux in these locel areas.

At the rypersonic speeds under consideration the hent generated within the boundary layer will te sufficient to produco dissociation of the afr components. The resultant dissociated gas nixture will have different physical properties from nomal alr and would alter the boundary layer heat transfer rechanisa to the skin. A preliminary study has been carrica out to investigata the effcots of equilibrium diesoctation of air on the characterintios of the comressible laminar boundary layer over. A flat flats when the will temperature is assumed uniform and belo\% dissociation temperatures (Section 5.it). Tine results show that the skin frtction and the reat trensfem are essentially unaffected by disscoiation al though the thickness of the

boundary layer is reduced and the maximum temperature in the layer is considerably decreased. Thus, extension of the present method into ranges where dissociation may occur appears to be a reasonable expedient, sincefor structural reasons the wall temperatures will necessarily be below air dissociation temperatures.

The previous discussion has outlined the method employed in this section to evaluate the compressible heat transfer coefficient and has considered the effects of pressure and temperature gradients and of dissociation of the air in the boundary layer. This method is based on a model of the flow which assumes that the flow can be described by the combination of an outer stream where the flow is essentially inviscid and an inner boundary layer where the viscous effects predominate. It is assumed that the pressures in the boundary layer are established by the outer stream and that no further interaction occurs. The flight of the third stage of the $M X-2276$, however, takes it into flow regimes where the boundary layers become very thick and where the interaction between the inviscid stream and the viscous boundary layer can no longer be neglected. In this regime the interaction between the bounchary layer and the shock waves results in induced local pressure and shearing stress. This shock boundary layer interaction has been investigated in Section 5.3. In order to illustrate the effects of this interaction an exenple is presented later in this section. Since the nresentiy available shock-boundary layer theory is not able to treat all the profile shapes involved in the MY-2276 vehicle, it has been necessary to neglect this effect in the general analysis.

In order to calculate the compressible heat transfer coefficient, it is necessary to establish the point at which the transition from laminar to turbulent boundary layer ilow occurs. As discussed in Section 5.7, it is difficult to fix this transition point accurately. For this analysis transition of the boundary layer was assumed to occur at a local strean Reynoles number of 2.8 million as was done in the performance studies. This is perhaps a rather conservative estimate of the location of transjition. If the transition Reynolds number were increased to say 10 million, which seeris to be indicated by some test results, it would reduce the heating by an appreciable amount. This is demonstrated in the presentation of results. The local Reynolds number and the local stream conditions were devermined from the inviscid shock and expansion theories relating local and free stream conditions, and the atniospheric conditions outlined in Section 4.3.

4.6.2.4 Results of Analysis Using T' Method

The equilibrium temperatures for the one foot station both top and bottom of the wing for the Stage III plide are given in Figure 4.6.2-1. These gre based on the flight pian for the 18,800 vehicle

givan in Pigure 4.4-30. Since the local stream Reynolds number is colou 2.8 million for these stations over the entire glide path, the resulte for laminar flow are shown. The temperature of the bottom surface is highest at burnout and decreases with time. On the other hand, the temperature of the upper wing reaches a peak during the glide about 30 minutes after power shut off. The reasons for this are two-fold: (1) the angle of attack decreases which means there is a smaller angle of expansion and (2) the effect of expansion on local conditions is relatively lower per degree at lower Mach numbers.

A calculation was made to compare the temperature on the bottom of the wing at $M=16$ on the $18,800 \mathrm{lbs}$. vehicle to the same point on the $14,600 \mathrm{lbs}$. vehicle (after bomb release). The temperature was reduced from 1825° to $1755^{\circ} \mathrm{F}$ which is a relatively small reduction compared to the 22,6 change in wing loading that was effected. This is due in large part to the fourth power radiation term in the heat balance equation. It also indicates that a large change in wing loading will be necessary to str: ily influence the surface temperatures. Since the present wine loading is already near a practical minimum ($\% / \mathrm{S}=30.6$ or 23.8 with or without payload respectively), furtiner appreciable reduction in surface temperature by decreasing wing loading does not seem possible. Conversely, if subsequent design shows a larger wing loading is necessaiy, the accompanying temperature rise would be small. This reaconing, of course, applies particularly to the case of radiation cocling.

In order to give a representative picture of the equilibrium temperatures on the vehicle as a whole over the flight path, profiles of equilibrium temperatures at three specific: Mach numbers for the 18,800 lbs. configuration have been computed. The particular flight conditione that were chosen are the following:

TIME (sec)	MACH NUMBRR	VELOCITY (ft./sec.)	AT,TITUDE (ft.)	ANGLE OF ATTACK (degrees)
10	20	20,640	198,000	
27	16	17,20	172,000	7.7
52	10	10,680	110,000	6.8

Figure 4.6.2-2 gives equilibrium temperature profiles on the bottom of the body and wing for the three flight conditions discussed. The point of transition is shown in this and subsequent figures as being at a local stream Reynolds number of 2.8 million. For the bottom the transition point is located at 40,18 , and 9 feet for Mach numbers 20, 16, and 10 respectively. If the transition were del dyed to $\mathrm{Re}=10$ miliion, it would materially reduce the heating problem as shown by the exterision of the leminar curves beyond transition. In particular it would move the transition point back so that the bottom of the body would be completely laminar at $M=20$, laminar bact to 64 feet at $M=$ 16, and 32 feet at $M=10$. The method for determining the effective

length for turbulent flow is outlined in the skin friction discussion. The effect of the steep temperature gradient on the heat flux in the region of laminar flow has been examined and a discussion appears above. In general it was found that the effects of this gradient are small.

The abrupt temperature rise shown at transition will not actually occur. Transition reguires a finite length so that the increase should occur over an extended region, Honever, there is insufficient informam tion svailable to define this region and its actuan profile.

It should be noted that the masmar tempenture empenenced over the bottom of the body wind oing is bielow 1800 m except for the first two feet. Also over the regtor of turulence Et. should be noted thiat

The wing upper surface temperature protile is shown in fiphere
 chords showt in this in;u:e. In turning the cormer at the entersection

 lones indicate the shoulder betinnet the wete and the shat Gor both inner (lune stiurc) and outer pancl, Thees is a narbeafordient in

 the outer parse? It wili of noted that there is a liwe in amperature after the shoulder to wout 2000 , at the nigh tach number and inc reasing to about $10^{\circ} \mathrm{F}$ at the Mach 10 condition.

The temperatures or top of the cone-bexly combination are shown in
 for the ertice length of the body, The discontituity at 28.7 fort is due to the conc-cylinder shonicer. Transtion ocours on the cone at 20 feet and 12 feet for the Mach number 1.6 and 10 conditions respect.ively.

The discontinuity in the temereture profiles at the wing upper surface break and body shovider, wold not occur ir practice. It should be the subject of boundary layer and temperature gradient studies as detailed design will certairiyr be affected by the profile in these regions. Because the temperatures in these regions did not appear critical in overall magnitude this discontinuity was not considered further in the present study.

Finally Figure $4.6 .2-5$ gives the temperature profiles for the side of the body. These are very similar to the profiles for the top of the body, particularly regarding location of transition. The temperatures in front of the shoulder are very similar to those on the top of the cone. Behind the shoulder the side temperatures are considerably higher because the wall is essentially at zero tangency angle with the free stream, whereas the top is assumed to be in a region of 6° to 8° expansion.

In order to illustrate the combined effects of varying body length, misaivity, and angle of $a^{+4,}, 8 \mathrm{ck}$ on the temperature on the bottom surface, Figures 4.6.2-6 and 4.6.2-7 are presented for laminar and turbulent how respectively. One particular ilight condition at Mach mumer 20 was chesen for this representation. The effect of body length has been noted previousiy. The importance of the coeficicient of enissivity of the airoraft surfaces is demonstrated. The selection of surface finish for the glid vehiole merits careful appraisal with respect to soivity.

Angle of attack is a pirticularly significant pararieter showing a variation of approximately $1.00^{\circ} \mathrm{F}$ per degree angle of attack for laminar Now. Por turbuient flow ti.is variation is about $150^{\circ} \mathrm{F}$. In the light of this it is orident that manouvers requiring additional angles of attack and control deflection may produce critical heating loads on the surfaces. It is apparent that pull-up and turns would be temperature lindted rather than " g " limited; e.g. at the beginning of glide filight the aerodynamic ifft provides about one third of the lifting forces therefore in order to provile a one "g" maneuver it would be necessary to increase the angle of atiack greatly. Such an increase in angle of attack would be intolerable from a temperature standpoint.

4.6.2.5 Effect of ShockmBoundary Lyyer Interaction on Equilitrym Tamperature

At hypersonic speeds it is known that the shock wave interacts with the boundary laycr. This interaction is greetest at the nose or leading edgo and decreasee downstresm. The ragnitude of this intercotion and its affeot on equilibriun temparatures has been estimated from two dimensional anelybes for the top and bottom of the wing aft of the ofx Inch station st the angl: of attack and equilibrium altitude for (L / D) madnum with no interacti M. On the bottom surface the equilibrim temperature is increased by not more than 1.58 (40°) . on the upper surface the effect is considerable, there being an inerease in temperature from $1100^{\circ} \mathrm{F}$ to $1800^{\circ} \mathrm{F}$ at the six inch station and Mach amber 20. At lower Mach nimbers and greater distanoes aft the shockboundary laser interaction infect is not as great (Flgure 4.6.2.8). Thus, within the imitations of the present ilight path it may be conoluded that the T method appears to be in considerable error on the upper wing but gives goud results on the compression surfaces, which are more oritical tomperature-inse.

In making the sbove oalculations the method used for predicting interaction effeots was that show in Section 5.3. This gave the effect of interaction on the skin friction coefficient which wes put in the form of a percentage increase over the basic croceo eneffiaient. For the present Might path this affeot can be appiled to the heat tranefer coefficient directiy. The heat balance equation was modified to

$$
\frac{c \rho_{\text {inter }}}{c f_{c}} \cdot n_{c}\left(T_{r}-T_{w}\right)+\alpha 0-\epsilon \sigma T_{w}{ }^{4}=0
$$

Use of the above approximate relation between skin friction and heat transfer is felt to be somewhat conservative in prediciting interaction effects on the bottom and ton surfices.

It should be noted that the interaction effects shown for the wing top apply to the forward, wedge surface only; Interaction effects on the upper surface after the shoulder were not investigated in the present study. Obviously this region will be affected, if only from alteration of the boundary layer at the shoulder by interaction on the forward wedge. Three dimensional interaction on the body cone and cylinder also were not treated during the present study, but effects of the same order of magnitude as for the wing surfaces would be expected for the same local compression or expansion conditions.

It was pointed out above that the comparison was made at the equilibrium altitude and angle of attack for (L / D) maximum with no interaction. Since st:ock-boundary layer interaction affects pressure distribution and hence lift at a given anfle of attack, the angle of attack and equilibrium altitude for (L / D) maximum will change when interaction is considered (see Section 4.4). This effect has not been considered in detail in the present study and requires further consideration.

4.6.3 Leading Edge Heating

Temperatures and heat flues in the staenation areas of leading edges and noses have been estinated for ti:o conditions on the flight path presented in the perfommen section. These are shom in Tables 4.6.3-1. The estimations are bescd on an extension of the theory of Squire (Reference 4.6-16) for a cylindrical leadine edge nomml to the flow and the theory of Silbulkin (noference 4.6-17) ior a hemispherical nose and are discussed in more detaj. in Appendix 5B. The theories are for incompressible flow, it is assumed that they apply to the subsonic flows behind the normal shock waves at the leading edge and nose stagnation areas. Dissociation effects have not been included though the air tamperatures behind the shock are certainly sufficient to produce some dissocintion. it the present the dissociation properties of air are not well enough known to predict quantitatively hom this process will be affected. However, it is not believed dissociation will tend to increase the tenperatures show.

The equilibrium tomperatures are severe and indsote the nocossity for either a super-materis. or consiciernble cooling. It is of intorest. that the smaller radii shapes produce the higher temperaturcs. It should be remembered that the temperatures and hent 17 inses shoum are only for arcas near the stagnation points.

An extension of Sibulkin's theory has been propesad by ko likin in Reference L.6-18 to predict the heat transfer distribution from the stagnation point to the shoulder or 90° point on epheres arui windors.

This theory indicates a reduction in heat tranaier coefficient from the atagmation point to the shoulder, as whu! be expected. Howeter, this theory has not been evaluated in the pregeni itudy, References $4.6-19$ and 406-20 present the reaults of tests $3:$ inaispheres at Mach numbers of 1,90 and 1,87 . These results also exis'it appreciable reduction in hoat trensfer coefficionts from the sthinatiun point to the shoulder of the models. A maber of low subsonic rualts show the average flux on oylinders fram 0^{0} to 90° to be 80% to 90% of the stagnation area flux.

The teaperatures and heat iluxes in Table I are given for an unswapt leading edge. In tests at $4 \sim 7$ (unpublishod) the NACA has found that the heat transfer to the front half of a cylinder is reduced by maepback at a rate on the order of the cosine of the oweep angle, 1.e. unit $Q \wedge \cos \boldsymbol{\Lambda}$. Since the relation between leading edge QA=0 length and sweep is wing-span/cos Ω, the total heat input is not reduced by sweep as is the local heating. Thus, it appears that, if the leading edges is to be cooled entirely by an intermal coolant, ameepback in tams of necessary coolant is not a prite consideration. However, if gignificant radiation cooling is present, for a given surface tempersturs the total radiation will increase directig as the leading edge araa increases with sineep (i.e. A $\Omega / A \Omega=0^{\circ} \frac{1}{\cos \Lambda}$
for a constant leading edge redius) and a definite oversil gain is realized from gweep.

A parallel to the above $c a n$ be seen an the effect of leading edge radus; the undt stagnation point hest tansfer deoreaser with increasa ing radide so that the total radiation for a constan sirface temperam ture would grow faster than the total heatirg. horeverg in tins case the local heating does not increuse inveisoly as the area ircereases as it does with sweep case - but at a lisser rete, and one rist be shecifio about the relative magnitude of the radiation bofore a defintte overall advantage can be gtated. If the leading edge ware almost completely cooled by radiation there would ba a gain. Obviously the effect of leading edge radius on drag wolld become an important consideration here also.

It is evident from the temperatures and heat Muxes show that leading edge heating will present one of the most severs gero-structural desig problems. Emphasis should be placed ppon it in future stuties. It appears that cooling will be necessary. The transpiration cooling work done for the wedge surface areas should be axtended to the leading edge case in Fiew of the effectivenese of this method of cooling. The actual gatns arsilable from sueep and incroased leading edge radius should be carefulif exsmined and the atroraft shape assessed in that 1isint.

TABRE L $6=1$

STAEHATION POINT CONDITIONS

ASSHMPHICNS

> 1. Ho DIssooiation
> 2. Eusseivty 0.8
A. EQUILIBRTUM HALH TBMPERATURES

Model	Flught pte	
	$h=224,000$ fto $M=21.9$	$h=172,00$ fto. $M=16$
2/2-inch Sphere	$6126^{\circ} \mathrm{R}$	58280R
2-inch Sphere	52370 R	50080R
1/2-irioh Oylinder	59290 R	56430\%
2-inoh cylinder	$5064{ }^{\circ} \mathrm{R}$	$4845^{\circ} \mathrm{R}$

B. HEAT FHTX THROUGH SURPACE: (BTU/sq. ft.-seco)

	$h=214,0001 t_{2} \mathrm{M}=21.9$		$h=172,000 f_{5} \mathrm{H}=16$	
Model	IW - 15000	$T_{\text {W }}-3000 \%$ R	$T_{H}=1500{ }^{\circ} \mathrm{R}$	$\mathrm{TW}_{\mathrm{W}}=30000 \mathrm{R}$
1/2-inah Sphere	720.6	628.6	657.2	550.7
2-inch Sphere	359.3	298.8	327.6	259.8
1/2-inoh Cylinder	621.4	538.0	566.7	470.8
2-inch Cylinder	309.7	253.4	282.3	219.8

4.6.4 Trangpiration Cooling

For the higher glide velooity conditions the temperatures for the first eeveral foet of suriace appear oritical enough to requiry cooling. Transpiratien 0001 ing has been studied as a means of acomplighing this. In this method of cocing a coolant gas is passed through a porous outer skin into the boundary layer where it modifies the boundary layer flow profiles such that the heat transfer to the surface is reduced. The effectiveness of this method of cooling has been proven in low speed tests though there is virtually no quantitative experimentai infomation at hypersonic apseds upon which estimates may be based.

A transpiration cooling theory has been developed in the present study and is discussed in sone detail in the Applied Research Section, along with more background on transpiration cooling. The theory applies to a landinar boundary layer. This is most pertinent to the present case as transpiration cooing will most probably be confined to the severly heated areas near the leading edges where the flow is expected to be laminar. It is probable that the indection of relatively small amunts of coolant into the boundary layer will not destabilize the laminer flow. In the striot sense air must be used as the coolent because the theory is based on homozeneous buandary layer consideration for which the coolant and bcundary layer Rows must be of the ame ges; but it is believed that a dissimilar cojiant can be rardied with sufficient acouracy through a simple extension of the present theory.

To evaluate the merit of trangivation cocilna the quantities of air injection necessary to cool the first foot and the first 10 feet of the lover surface (though not the leading ecige radius itself) to 1600° R have been estimated for the Stage III (18,800 los. O.N.) glide conditions. The average coolant flow per equare foot for these conditions isshom in Figure L.6.L-1. The total guantities of coolant air necessary are found to be 6.68 and $30 . \mathrm{F}_{2}$ lbs. per scuare foot of surface cooled for the ten and one foot surface length respectively. Thus, for exampla, to cool the first foot of the approximately 40 foot span of the third stage 1230 abs. of coolant air would be required. This is felt to be a practical quantitg; in view of the relatively low arbitrary temperature of $1600^{\circ} \mathrm{R}$ wich was chosen, and indicates the feasibility and effectiveness of this method of cooling.

There is considerable promise of further reduction in the coolant rate from the above through use of better coolents than air. Water may be much batter because it adds a high heat of vaporization to the process. It is belleved its use would at least halve the above coolant requirement. It is concluded that transpiration cooling definitely merits future developnent. The effects of ghock-boundary layer interaction and slip flow, which may both be strong near the laading edge, are not accounted for $\pm n$ the present theory and should be included in future studies.

Seotion L. 6 -References

406-1 Moldeme, WoHos Heat Transmission MeGraw hill Book Company, Ino., Third Edition, 1954.

 Thermal Characteristics of High Speed Heat Transfers University of Callfornia, Department of Mechanical Engineering Research Projeots USAAF TR NO. 5632, 1947.
L.6-3 Chapman, DoRo and Roh. Resteri Turbulont Eoundary Layer and Skdn Friotion Neasurement in Axtal Flow Along a Cylinder at Mach Numbers Betiveen 0.5 and 3.6; MACA TN 3097, March 195L.
4.6-4 Eokert, E.R.O.s Survey of Heat Transfor at High Speeds; WADC
Technical Report NO. $54-70$, April 1954.
4.6-5 Chapman, Re and MoH. Rubesins Temperature and Velocity Profiles in the Compressible Laininar Boundary Layer with Arbitrary Distribution of Surface Temperaturc, Jnumisl of the Aeronauti-

L.6-6 Willian, E.F., L.W. Dhunss, J.ll, Mavatickar, Rov. Lew, HoA, Lieski, LoL. ! !onre, ani Jotiio Kemat Long Range Surface-to-Suriace Rocket and Reiget Vic tio; i. arodynanics; The Rand

4.6-7 Kum, E.Lo: Enginerrin, Donstierations $\pm n$ Supersondc Heat
Transfer; (Talk), hedstone Arsonal, Ae:nphysics Development
Corporation, 7 April 195L.
4.6-3 Ruhesin, M. \% and H.A. iuhnson: A C-itical Revien of skin Friction and Heat Tranger Solutions of the Laninar Boundary Layer of a Flat Plate; Trinrocuions of the Lrertian Society of Mechanical Engincers, vol. Tho iio. h , fi 305-388, 1949.
4.6-9 Sommer, Simon C. and BuJ. Short: Free Flicht Measurements of Skin Friction of Turbulent Boundary Iayers aith High Rates of Heat Transfer at High Supersonic Enocdss Institute of heronautical Sciences, Preprint No. 518, Jundery 1955.
L.6-10 Van Driest, E.Rt Investigation of Laminn Boundary Layer in Compressible Flutds Usine the Croceo :Lethods Nind TN 2597, denuary 1052.
4.6-1I -- N NB - NCA Tables of Themig Propertios of Cases; U.S. Department of Comerce, National Surear of Stamiaris.

4.6-12 Van Drlest, E.R.: Turbulent Boundary Layer in Compressible Fluids; Journal of the Aeronautical Sciences, Vol. 18, No. 3, pp 145-160, 216, March 1951.
4.6-13 Sieff, A., S.C. Sommer, and B.J. Short: Some Free Flight Measurements of Turbulent Skin Friction and Heat Transfer at High Supersonic Specds; NACA Conference on Aerodynamics of High Speed Aircr ft, July 1953.
L.6-1l4 Lobb, R.K., E.M. Vinkler, and J. Persh: Experimental Investigatior of Turbilim: Eoundary Layers in Hypersoric Flow; Institute of the seronatical Society, Preprint No. 1.52, January 195\%.
L.6-15 Egecrs, A.J., Ir: One itimensional Flow of an Imperfect Diatomic Gas; NACA TN 1861, 194.
4.6-16 Goldstein, L.: Modern Developments in Fluic Dynamics, first edition, Vol. 2, p 631, Oxforl Unversity Pross, London (1938).
4.6-1" Sibultin: Heat n'ransfer Near the Fomard Stagnation Point of a Body of Revolition, iournai of the ieronautical Sciences, VCI. 18, No. E, August 105́a, pp. 570-57.
4.6-18 norobkin, I.: Discussions of Laninar Heat Transfer Coefficients for Spheres and Cylinders in Thoumpessible Flow, Paper uresent at A.s.M.E. Ball Menting in Milwauke, Nisc., 9 September 2954.
4.6-19 Gmenefiald, K.H. and Lob, R.Y.: Ner Laminar and Turbulent Heat Transfer Data appli :able to Practical Body Shapes for High Mach Number Flight, Preprint of the Third Naval Symposium on Aerobalistics, Technical Session IV, 20 October 1954.
4.6-20 Stine, HoA. Glud Waulass, K.: Theoretical and Experimental Investigation of Aerodynamic Heating and Isothermal Heat Transfer Parameter on a Hemispherical Nose with Laminar Boundary Layer at Supersonic Mach Numbers, NACA TN 3344, December 1954.

Best Available Copy

SEERE
 Fighr h.6.2-1

BEL SECRET

F1FIno 1. 6.2.6

$$
\begin{aligned}
& \text { EQUILIERUM TEMPERATURE } \\
& \text { MACH NUMBER -20 } \\
& \text { ALTITUDE - } 19800 \text { FT. } \\
& \text { TURBULENT FLOW } \\
& \text { BOTTOM SURFACE }
\end{aligned}
$$

Oo ANGLE of ATACK

3000

8
8 8 8
1000
SECRET do. $\exists \forall \cap \perp \forall d \exists d N B \perp$

A hypersente vehicle of the type of the $\mathrm{NX}-2276 \mathrm{w} 111$ be required to be controllable and have accoptable handing characteristics throughout the regim it encounters-from the ascent, with separation of various stages, to the paak of the hypersonic glide, during the glide at hypersonic, mpersonic, transonic and subsonic flight velocities and for the low-apeed landing conditions. The stability and control characteriatics of aircraft up to low supersonic speads are presently understood to be a reasomable degree. The design in this regime for a vehicle such as the nx-2276 should encounter no fundamental lack in methods of analysis. In the hypersonic filght regime, however, new conditions are encountered which require a review of present methods. is shown on Appendix $4 B$ of this report, the equetions which govarn the motion of the vehicle include sen tems which are significant due to the high velocitiss which are expected -- this requires a complate reanalysis of the methods which are presently employed to investigate the dynamic stability of aircraft in order to detemine the affect of the rev terms on the present concepts and criterion for dymaric stability and control. The magnitude of such an analysis preclused more then an Investigetion of the basic equations of motion for this stury -- with these ecuutions, hovever, meane are available by which stoh a study may be undobalerid In adiltion, conalderable effort must be apiled to tre determation of the static and dymmic aerodyamic force and rerent reraneters in the hypersonic fiow regime. At present, there are no known weacle metrods of prodicting such parameters as dappeg in pitch, roll, etc.; however, means are avallable by winch the problums wa le attacked both on an experimental and theoretical basis -- Sreo flight test vehicles are presentiy approaching the filght refines o: $\mathrm{XX} \mathrm{x}-227 \mathrm{c}$ and will to aul.s to fumish ompirical data, and appioximate theoretical fion mudels (iawtonian flow, etc.) may employad to obtain theoretical estiretes.

4.7.1 Static Stability

Sane preiminary estimates of the aerodmanic static longitudinal atability of the third stage have been made. The lift and drag of the various components of the present $M X-2276$ configuration as given in Section 404 were utilized to determine the moment charecteristics of the vehiole over a Mach number range from ! : 4 to $K=20$ and for angles of atteck from $\alpha=0^{\circ}$ to $\alpha=15^{\circ}$. Since the methods used to detemine the forces acting on the various components (Newtonian fion, shook or expansion theory, etc.) result in uniform distribution of forces on each surface area component, the moment contribution was datemined by asouming that these forces acted at the center of area (or center of profocted area) of the ourface considered. The moment coefficient, as determined by this method is presented in figure 1.7.1-1. It is of interest to note that the principal variations in moment coefficient occur in the region $M=4$ to $M=8$ and that above $M=8 \mathrm{only}$ alight variations in moment coeificient occur with Nach number at a given angle of attack.

In order to obtain an estimate of the stability margins which may oxist in hypersonic flight, the center of pressure location for various angles of attack has been detemined for the present configuration at $M=20$. These results are presented in figure 4.7.1-2 and show no unuaual variations. Also shown on this figure is the variation in canter pressure for the conflguration with a wedgemtgpe cantrol surface. It will be observed that adding the wedge increases the stability of the oonfiguration.

On the basis of these preliminary investigations, it appears that no undue difficulty will be encountered in obtaining static longitudinal stability in hypersonic flight with proper location of the center of gravity of the airframe. The problem of matching the requirements for stability at hypersonic velocities with those at lower flight speeds has not been considered as yet and will require further studies. In addition, the method used to obtain the moment characteristics of the airframe have neglected the effects of shock-boundary layer interaction on the distribution of forces and moments. A preliminary evaluation of interaction (see Section 4.7.3) indicates that an appreciable effect may rosult and should receive further consideration.

4.7.2 Control Surfaces

The moment characteristios of several oontrol surfaces have been studise briefly to determine the fessibility of using aerodynamic control in hypersonic flight. Sevoral types ol' controls have been considered, of equal surface area, to determine the relative merits of esch; (1) a trailing edge slab-sided (constant chordwise thickness) control shown on the present configuration, (2) a moveable tip control whioh is a portion of the outboard section of the present wing and, (3) a trailing edge wedge control formed by makirg a wedge of the outer wing from the 50 d chord back, with upper and lo er wedge angles equal to the wedge angle of the present wing.

The effectiveness of these control surfaces has been determined irom inviscid two-dimensional shock or expansion theory. For the tip control surface, no data is preseritly available as to effects, at the Mach number considered here, of the gap between the deflected control surface and the wing, and this effect has been negleoted in the presentstudy. The effectiveness of the trailing edge controls has been determined from the stream conditione which exist immediately ahead on the wing and assuming that no shook-boundary layer interaction or separation of H ow occurs. This is considered justified since for a teilless configuration the trim position of the control surface is in a treiling edge up direction for positive angles of attack. In this condition, at hypersonic velocities, the upper surface of the control is located in a region of flow which is highly expanded ovar the upper surface of the wing. Compression of this expanded flow does little to add to control effectiveness so that any flow effects euch as shock-boundary layer interaction

JECRET

will have isttle overall result. On the bottom surface of the control, the א10w is expanded from the highly compressed region which existe imediatoly ahead on the wing and separation in this region will have oniy a elight offect on the change in prassure as the flon axpands from the wing to the control surface.

The rariation of pitahing moment coofficient with Mach number and control surfece deflection is shown for the slab and tip control in figurea 4.7.2-1 to 4.7.2-8 for several angles of attack. of particular interest is the non-linearity of control effectiveness in the hypersenic rango.

A comparison of this non-linearity with angle of attack and control defleotion at $M=20$ is shoun in figure 4.7.2-9 for the slab, tip and medge controls. It is notable that the slab control surface exhibits the ereatest amount of non-linearity with angle of attack; however, a final selection of a control surface will depend on other factors (hinge moment, trim lift, trim lift-drag ratio, etc.) as well, and which can be evaluated only in a detail design.

The effects of control surfece defiection on lift coefficient and lift-drag ratio era illustrated in figares 4.7.2-10 to 4.7.2-15. These results, which are obtained by suming tha lifts and drage due to angle of attaek and control deflection, sho: that increasing control deflec-
 ratio and an hacrease in the angla of attack and lift coefficiont for maximum lift-drag ratio. This sill result in a reduction from the rango caloulatad for zero control deilection ard, since the angle of attack for a given ilft coofficiant is schewht helier with contiol deflections than with no control deilestion, an increase in the hat transfer.

It is apparent thoseiore, that selection or a control surface will result from a number oi compromises which would be ovaluated in a desien study. The present results indieate that sufficient control effectiveness is available at hypersonic velocities to make aerodmamic control appear feasible without large aerodynamic losses.

4.7.3 Shock-Ecundary Layer Intaraction

The preliminary evaluation of static stablity and control at hyporsonic flight velocities has been made using aerodymanic parameters which ware determined from inviscid fluid flow theory. As was noted in that section and also in the diecussion of fluid flow regimes (see Section 5.2), the hypersonic flight path of the NX -2a75 enters regions whersin the effects of fluid viscosity hecame of fincreasing im:ortance in detemining the aerodymanic pressurs forces winch act on a roving body. Fluid flow theories which negloct thess eifects may be expected to give only afproximate estimates of these forces. it present, general

Abstract

theories that will treat all of the aerodynamic shapes which it is desirable to investigate are not available. However, a preliminary theory which considers the case of the two dimensional flat plate at an angle of attack in riscous flow has been developed and is presented in Section 5.3 of this report. With this theory, it is possible to consider simple two dimensional wedge airfoil sections in order to obtain al insight to the possible effects of viscosity on forces and moments. A sample calculation has been made for a simple semi-wedge airfoil section with a chord length equal to the mean aerodynamic chord of the MX-2276 outer wing, at $M=20$, at an angle of attack of 8° and at an altitude of 200,000 feet. Figure 4.7.3-1 presents the ratios of loca? pressure to free stream ambient pressure for the upper and lower surfaces of the section as determined from inviscid shock and expansion theory and from the viscous theory. For the lower surface of the section, the local pressure is cons derably increased over that predj ted by the inviscid theory, particularly in the region of the leading edge. For the upper surface of the wing, where inviscid expansion theory would predict pressures lower than anbient free stream, the results of the viscid theory show pressures considerably above ambient near the leading edge, decreasing as the trailing edyc is approached but in this case always greater than ambient free streen. Fron thece data, it is obvious that the forces and monents derived by integrating the pressure distribution will be appreciably influenced by the effects of fluid viscosity at the flicht condition rivon. an an nompe, the section moment coefficient token with respect to tho lading edpe oi the simple wedge is found to be -.2268 from the inviscid pressure distribution and -. 0302 from the viscid mressures wiln the section nomal force coefficients are found to be .0536 and .0623 respeotivity

The above disc:1ssion has hen ornewnod oniy with the two dimensional effects; of shock-boundary layer sthatation. The offects on threedimensional shapes such as borite sud whes no as yet uncefined. The presently available tost iata for hypersonje winse have shoun only negligible threa-dimensionaj focole. Howser, these test data have been conducted in hach number and Rejnolis numer rejions therein the present study has indicated it would not be expected that viscous affects would be large. The experimental facilities are canable of performing the necessary tests and an evaluation for the lilight repimes of $\mathrm{KX}-2276 \mathrm{zu}$ quires only that the tests be conducted at the proper conditions.

Until more data is available, approximate estimates of stability and control characteristics of hypersonic vehicles can be made using inviscid flow theory; however, the limitations of using these methods must be remembered in evaluating the results.

$$
M-20
$$

\qquad
\qquad
\qquad OEL Ecar
\qquad
\qquad
\qquad

SECREI

4.8 samation

An oxipinally deacribed the $\mathrm{KX}-2276$ aystom requires three ateget of boont. nuree separable confligurations, the first and aneond stwe boostare and the elicie vehicie, are asamblad adjacent to ons another in a parellel arringmeat. As the final stage is acealerabed to the Lifition gilde somption; the Arst and sacond stage boostare mopath and drop amay as their fue 1 loads are expended. The earedynemica of these meparitions is conss lered in a quantitative manner horeinafter.

Ho definite conclusicne as to the practicability of the original booster-behicle configurations for separation are made. It it ricanmendad wiat whan preliminery design of the system is begur, bouatarvihiole combinations be put into aerodynamic test as soot an pousibla as it is believed this is the only way of ovaiuating them in a suffelentiy quantitative manner.

4.8.1 The Parallel Booster Configurations

The parallel booster configurations constlared hersin are primarily the type shown for the original $\mathrm{xX}-2276$ system. These are described in Refarence 4.8-i; a thres-bien is ruprocluced hure in Figure 4.8.1-1 for more convanient referance. This thats to tie the consicevations to particular cases; honeven, the apprach is not that spatilic.

The conditions for samantion of lin stajus alyo are taken fron Refarance $4.3-1$ as beine typionj onr thi synich. The pertinent asrodynandc parameters for these coditions ste 3 s fojiove:

Saparation of first fror wocad and thiri shages:

Velocity	$V=5030$ 505
Altitude	h a $60,000 \mathrm{ft}$.
Antient yressure	$\mathrm{p}_{\infty}=1 \mathrm{UL}^{\text {psi }}$
Macin nutu Lex	$M=5.2$
Dymanic pressure	q. 1970 pss
Pressure aiter nomal shock	$p_{2}=3220 \mathrm{psi}$

Separation of second and third stage:

∇	23,800 178
b	- 192,000 ft
$p{ }_{0}$	= . 902 psf
M	- 13.3
9	- 112 psi
P_{2}	- 286 psi

It is saan from these conditions that the dynamic pressure at the separation of the first otage from the second and third is much the

groater. The ahock wave cones, that contain the regions in which intert ferenoe effeote between aurfaces are propagated, also would be larger at this lowar Mech meor eeparation. Thus, eeparation fium the standpoint of posaible difficulties, appears more oritical for the first atage case. This is also heightened by the fact that the present concept calls for the Mrat stage to be saved, 1.e. glidad to the ground after soparation The second atage booster, on the other hand, can be separated from the glide vehiole in a manner which destroys the booster as it la not to be salvaged. In a s ense the fact that first stage separation may be more critical is fortunate because this is a much more easily realisable test condition.

4.8.1.1 Separation Times

The oritical period of separation is of interest. It is defined here as the time for the base of the boosted atage to pass the noss of the booster, or the reverse; and is the time for strong aerodynanic interaction and possible collision after initiating separation. After this period down-wash effects from the stage rgoing ahead may still be appreciable on the stage behind - say for an order of time, 10 times the above-defined critical period.

The oritical periods of separation have been estimated for a number of possible rocket thrust combinations of the stages and are shown in m Tables 4.E.1-1. The combinations involving stereing thrust are included because it may be necectary to have these thrusts to stabilize the steges during and inmediately after the eoparetion period. The periods here estimatod for the stage veights and thrusts given on Figure L.8.1-1 and from aetimatos of the stag: drats. Exiction between the stages during separation was not consiclered. The period depends on the separation length over thig relative acceleration of the bodies to the one half porer so that the accuricy of these quantitatives is not critical. The expression used for the period is simply

$$
\begin{aligned}
& t=\sqrt{\frac{2 l}{32} n} \\
& \text { where } \begin{array}{l}
l=\text { the separation length } \\
n=\text { relative acceleration in } g^{\prime} s \text { between } \\
\text { the stages }
\end{array}
\end{aligned}
$$

It is seen that the separation periods aire on the order of one to thres seconds for most of the combinations and that the least time is atteined by thrusting the boosters forward from the boosted stages.

4.8.1.2 Separation Events

The besic choices for separating the paraliel stages appear to bet (1) by thrusting the boosted stage forward from the booster (no

thrust separation would be a special case of this), or (2) by thrusting the booster forward from the boostied stage. The second case has several disadvantages, though, as indicated above, it can give the least separation period. This case puts the less valuable booster ahead of the boosted stage where its downwash affects the boosted stage and where, after its burnout, the other stage could collide with it. Also the booster motors must be burned during and for a period after separation which reduces the overall propulsive efficiency of the system. The first case appears to be the more reasonable and is considered further here.

It is felt that instantaneous aerorymanic forces during the separation of the various stages cannot be predicted with any accuracy until test data for the possible interaction configurations and conditions is available. For this reason separition is examined from the standpoint of general possibility of events.

Immediately before separation the combined configuration is assumed to be in trimmed straight line flight. If the boosted stage is thrust forward from the booster, the following appears yoscible. The nose of the boosted stage projects formard and a strong shock pattern with high pressures behind it will form between the botton of this nose and the top of the booster nose. As the boostece stage continues forward (relatively) the high pressure repion grows, extends back between the bodies ard begins to force the uodises apart. The rocket exhaust may impinge on tre boster top incracing rresure art of the boosted stage. The relative tencencies as the boonted stage passes over the booster appar to be: (1) to force the tooetureiom and pitch its nose down, (2) to force the boosted stmge up, pitch its nose up at first and then down. Overall, there is a terinile vertical separgtion tendericy, If the aerodynamic forces and the ascilations proluesd by the separation can be tolerated and dampe, separation in this maner aprears leasible.

The large flat tor and bottor suraces of the presont MX-2276 stages will tend to promote hjegh interaction pressiures and will give thes extensive areas over whe ch to act. In sone areas nomal stocke and the resultant high pressures undouhtedhy will be produced. These may be critical to the flat surfaces which are not well sutued to bear high pressure loads. the resultant totel ioreos and moments may be more than needed or desired for the separation. The atrodyamic heatine on the high pressure areas and the heating from rocket eahaust impingenent also may be problems, though they are very higinly transient in nature.

4.8.2 Tandem Staging

While fon the original concept the stoges are arranged in paraliel, the fearibility of tariem stacine should not be excluded from future dosien conoiderations. Somn of tho relative advantafgs of the two arrancements are as follows:

Section 4.8 References

4.8-1 Anon. HStrategio Waapon Syatem" Bell Aircraft Comporation Preliminary Design Report Dli43-945-010, 15 July 1953

(Separation of 2st Stage from 2nd and 3rd Stage)

	Rocket mot	rs Burning	Period	Booster Sep.
	1st Stage	2nd Staze	(Seconds)	Direction
a.	A11	A11	1.5	Forward
b.	All	Steering	1.3	Forward
c.	hil	liunis	1.2	forward
d.	Steering	All	2.3	Ast
ө.	Steering	Stearing	8.6	Aft
f.	Nore	A1l	1.8	Aft
g .	None	Steering	2.7	Ant
h.	None	Nu:	3.1	Aft
	Separatio	of 2nd 5 t	rom 3ro Sta	
	Ronkot Motor 2nc siage	S Buniti 3 ristage	$\begin{aligned} & \text { Period } \\ & \text { (Seconds) } \end{aligned}$	Booster Sep Direction
a.	All	None	0.7	Forward
b.	Steering	None	1.7	Forward
c.	Stearing	All	2.9	Foriard
d.	None	All	2.0	Aft
日.	None	None	21.6	Aft

SECRET

5al Introduction

Sone of the stated objects of the present stuccy wase to take atoak of the exdetenoe and sooureogy of mothode for milyalne the foree and hat loade to which an aireraft in suratadrod silent will be aubjected; to point out the major generni and apecific flow problema which need be walved in oxder to provide an adequate ent of methods for peadieting the sarodyaude performenco, stability, and heating parametors in the kach number - altitude range encompassed by MX-2276 flight, and to contribute, where possibie; to the understanding of hypersonic ilow problems and to the development and improverient of mothods of analysis, One of the primary adme in the consideration of hypersonic $f l o w$ problems was to point out the "nowh or "unconventional" phenomena which are not apparent or to not oocur at oxdinary supersonic speeds and to attempt an assessment of the inportance of such effects for $\mathrm{yX}-2276$ flight.

Prelifinary preparation for the study was the compilation of a complete as possible bibliography of all information pertaining to hypersonic and high altitude filght. A syotematic search of the publications of government, military, and university research and development facilities, of military contractors, and of pertinent scientific periodicals was made to obtain references to all literature applicable to our work. The fields of interest in this searah necessarily encompassed many areas of fundamental physics and chemistry, such as those concerned with dissociation and ionization of air at high temperatures, emissivities of gases, etc., as well as the more obvtous subjects of supersonic and hypersonic flow, boundary layer theory and experiment, otc. Experience gaived during our previous study of hypersonic aircrait leading to the proposal of Reference 5. L- 35 and from our continuad interest in the field since then served as a guide in this search. Concurrent with the setting of a literature reference file, a listing of all research facilities and of leading workers in various aspects of the field was started so that we would also have cognizance of sources of information bearing on hypersonic, high altitude filght.

Daring this literature ourrey it was recognized that a good possibility existed of there being pertinent research programs underWey whose results were not yet reported in the literature or were reported by sources of which we were not yet aware. Furthermore, perusal of the available literature indicated a wide disparity of results (both theoretical and experimental) on some subjects, and in other areas of interest there apparentiy was no reliable information at all. Hence a serisa of visits to various rosearch and industrial facilities in the country was indicated to insure overall cognizance of the field, to locate sources of informetion, and tn dibeuss, on a background of knowledge of the avalisble literature, some of the many bothersome points in the present "state of the art".

The detaliad inveatigetion of ahook-interection theory led in turn to a thorexich study of hyparsonio inylsoid flow theory, adnoe sesults of the lattar have an dmportant iniluacee on the resuite of intereotion theory baced on the two layer model. Purthermore, the somelled Miewtonita $810{ }^{\prime \prime}$ approximation of inviecid bypersonio flow
 tione on a body where viecous offectes do not pxedominate, and heree the applicability and linits of this approximation morited consideraticn. Sowe contributions to an underutanding of and an improvement in socureoy of the appreximate typersonic invisoid theory were made and are deacribed in section 5.6.

It is of interest to remark that the nature of the present type of study in illustrated by the partioular problems disoussed in the above paragraphe. This nature is such that in order to build up an overell perspective of hypersonic flow theory a knowledge of mand detaila of the siow pattem is roquired; thus where basic $110 \mathrm{prob-}$ lems heve not bean solved - or where exfefing solutions may be thought inedequate - these must be 200 ked into in order to make progress in the orerall piotury, it thie same time, an overall perapective of the ficid is required as a guide to a oholce of the more algnificant detailed probleas to investigate. Thus the nature of the study requeres detalied investigations as well as overall surpeys and oveluaसons.

In any opaluation progran, furthermore, some detuliod work an apecific probleas is neoessary in order to emphasise the muerova aselumpions involved, and to get a "feel" for the quelitative and quantitative effect of these assumptions on the theoretically prediotad resuital this is partiouiariy true when theories are devoloped and partialis checked experimentaily in one range of M and ge and then ase extrapolatad to another M - Re range where there are fow, if any, experdimentil ohooks.

The amalrain which was made to delineate the mature and the aignifioant features of hypersonic fiow in precented in seotion 5.2. It cerves to point out the meed for Eupdamental investigatioa of allp flow and aiso to indicate the ordar of magnitude of the extent of allp slow for pointe on the ril-2276 Ilight path. Furtheswore, the paraneters which munt be cornidered for sindiarity in experimental mork in the high M - 20 W हe range are brought out by the amivais of section 5.2.

Another line of apprach followed in this atuct was to make probing investigations into the nature and magitude of "pow" offocte afising from the high temperatures which would be realised in the boundary layer and bohind stroag shooks in hypariondic Thight. To this and etudies were made of the emisaintity of ais = which governa radiative meat tranafor - and of the effect of disscoiation of the air on

conduotive heat trmafor; in these cases deteradnatice of even the onder of mantind of an effeot involvod dotalled investigations. Them and other coanderations of ultra hifh temperetare effeota are gethered in seotion 5.4.

4 thinci line of appronch wes to oxtma convationii mpereanio Slow theory to high moh mabor and low denaities, partioulariy whore
 of the overall performence of MXI-2276. The study of trenspiration cooline roported in seotio. 5.5 falle in thit oxtegory as does some wort on the conditions at ibe nose of a blunt bodys the latter is not roported eoparataly bret rearite are ued in sectica 4.6. 1 stady of the status of theory and eaperiment related to anterndmation of the tranoition butmen laminar and turbulent boundary layer Now was aloo Hide, cine pradictions of total skin friction for a civen aireraft configaration are dopendent on the aseuption of a "transition poiatn; this is reported in section 5.7.

As a by-produot of theat atudies, beaic physical data on the tranoport properties of aly and on the properties of the etmosphere publiteded in various nourous mire compared and complied, and a chotce Wis made of the teatitive "strandard" to be adopted for the prosent or Atum stadias, theee compliations are given in Reference $5.4-36$ and 5.4-55. 11so, a progrin (underway at Bell Airoraft Corporstica before the atert of this stedy) to. compite basic tables of 110 w parmoters for both mook 1 OW and isentropic Mow, incorporating the real net effeote (minity thermel imperfeotions) up to di ssooistion treppermeres Wea comploted. The problem is theoussed brially in seotion 5.4.4, and the complete tabies are givan in Reference 5.4-50.

Thals report is concerned minly with describing the regulte of the more or lese dotailed and orighan investigatione which were ande In carrying out the objectives of the present atudy. It was not desirable or fardble to report on the detailed informition cleaned from the iltermture and from discuenion with may workert in the fleld of hyper. sonio serodynaion. It is romarted, howover, that the bookground and overall peropective of the rioject thus pained is rellected in the cholee and madiling of the mothode mployed in the generel serodyande anclyees and in the recomendations for future work.

5.2 Fundamental Equations: Flow Regions

In 1946, Tsien (Reference 5.2-1) auggested a set of oriteria which roughly dirided fludd mechanios into several now familiar "realma" determined by the Kaoh number and Reynolds number of the flew. Eseentiaily he defined the gasdynamic region, the slip flow region, and the moleoular flow region; the nature of the flow phenomena and the form of the appropriate equations and boundary condition governing the flow is the same in each region but, of course, is conderably different amangst the regions. The aln of the present study was to delineste somewhat more preoisely the various flow patterns and flow regions which would be encountered in hypersonic flight and to indicate in each ragion the fundamental equations and boundary oonditions which must be considered in order to consistentiy and adequately represent the physioal altuation.

We start with the usual concept of a auporsonic flow pattern as depioted in Figure 5.2-18.

FiG. $5, \pi-1 a$

F16. 5:2-16

SECRET

A shook wave - in which the flow parameters p, P, T, eto., change very rapidis, alnost disoontinuousiy, in essentially the stream direotion is fomed in front of the body, and in the narrow boundary layer adfacent to the bods the flow parameters vary rapidiy (essentially) zoras to the direotion of flows there are alse other shook waves formed at the rear of the body and over any proturbances. The convontional approsob to a theoretingi gnalysin of this flow is in two steps. First, the equations governing the flow of a dense, invisoid, nonmeat oonduoting gas are solved - to some degree of approximation - for the region axterior to the body (inoluding the shook waves which are treated mathematically as discontinuities); these solutions yield velooity and pressure distributions over the bady. Second, the boundary layer is treated as a separate 110w region, where the equations governing thils flor are those for a Fisoous, heat-conducting dense gas, and the boundary conditions on this flow are sero velooity on the body itself and at the outer "edge" of the boundary layer the ocmputed velooits from the invisoid flow solution. The ocmplete "risoous" equations - whioh are not in general amenable to solution - are simplified for applioation to boundary layer flows by an order of magritude analyisis wherebs termo containing derivatives of the flow parameters along the body are negleoted with respect to derivatives of the ee parameters normal to the body, the latter being of a highar order of magnitude in a sufficiently thin layay. The boundary layex -quations are then solvad - numarically or analytically - to yleld friotion and heat transfor coeffioients on the surface, as wall as an expression for the thickness of the layer.

At hyporscone speeds and low dansities the boundary layer thiokens appreciabiy, eausing a ohange in the elfective body shape which the extormel or invisold flow sees and thus producing, in partioular, a ohange in the blow shock pattem whioh in turn inereases the prossure aoting on the boundary layer and tends to thin it. Whan thit ocours, the inrisoid flow and the boundary layer a an no ionger be solved independeritis but munt be considered together. T'Is hypersonio ahook-boundary layer interaction is treated in some detail in section 5.3.
dotually, the idealised two region ooncept of a flow pattem is not raild at the very nose of the body, at any apeed; here the roloolty and temperature gradients in any direction are of the aane order of aagnitude and honce the flow in the whole nose region is doninated by Fincoun effects. It the speeds and velooities associated with ordinary supersonic flight, the nose region where a boundary lajer is not dafinable is very smali. of the order of a fraction of on 1 moh and is 1 gnored for all practioal purposes. For an alroraft such as KI 2276, however, where hypersanic apeeds are reached at high altitudes and thus low air densities, the extent of such a region oan be of the order of magnitude of a foot.

Furthomore avan whan a boundary layer is dafinable in low density ilow， the fundamental equations governing the fiuid flow and heat transfer are probably no longer the usual approximate iorm of the Navier－Stokes equa－ tions（which are based on the assumption of oontinuas flow）．This as－ sumption of a continuua cannot be justifisd whon the mean free path in the mioroscopis pioture of the gas is of comparabla sige to the smallest characterisitio dimnetion of the flowi the dimanion is the boundary layer thiokness 8 in the alase of interest．Tha reat on in whioh contimum flow would be a very poor assumption could enoompass sovaral feat of the nose．

One way of lookding at the flow pattern in high speod rareficid gas flov and breaking it up for analgais is shown in Figure 5．2－1b，where the surface is assumed to be a ilat plate for simplicity．At sothe point suffioientiy far domstream from the nose，a definite boundary layer ragion will obtain（with $8 / x$ very small）inside of which the usual baind－ ary layer equations will govern the flow and outsida of which the flom may be considered inviselds the two regtons，however，must be solyed sinultanensiv．Moring upotream，thare are two possibilitios；（a）the thiokness 8 of the baindary layar decreases so that tha situation will obtain whare the local mean fres path $\lambda e 8$ \＆ $1, \theta_{0}$ ，the conifuum as sumption is no longer valid，and we have a＂glip fiow＂region；（b）even though 8 decreases $/ / 8$ is atill small，but 4 increases to whare $8 / x=0(1)$ ； in this oase the continurm flow assumptions are valid，but the boundary layor simplifications whare gradients normal to the flow are assumed moh largar then gradients with the flow（due to the＂thinness＂of the layer）are no longer valid．It is not evident apriont which effeot oocurs closest to the nose，but the result of the analyois outlined be－ lew indioates the situation shown in Figare 5．2－1b．

The region immediately sumpounding the nose is not describable in terms of a reasonably simple model；indeed，very little is knomn of the details of the flow in this region，Certainiy any consideration of this flow must be based on the molecular pieturs of a fluid，and factors such as the ratio of plate thiokness to mean free path and absolute ralue of mean fres path（which determinas shook thi okness to some extent）will play a rola in determining the fiow here．Donsiderably more experimenta－ tion is neoded to obtain an understanding of the flow in this nose region．＊
＊Some rarefied flow exparimants have bean carriad and in the last few yoars by S．A．Shaf and co－worikers at the Univeraity of Califomia cf．e．g．，Reference 5．2－3．

for studfing whan "inside alip" - in the sense defined above - will ocouri Solutions for the hypersonic flow over a flat plate were obtained, on the basis of the conventional invisoid-aiscous regions pictore, using the boundary leyer approxdmation of the Navier-Stokes equations in the latter region and taking the interaction between regions into account; this is dotadied in Seation 5.3. From these solutions the ratio C_{f} at any distance from the edge of the plate can be calculated cp
for any flight condition - Mach number, altitude, and angle of attack and, in particulars the distance from the nose at which $\frac{I}{C}$ (and bence the ratio $\frac{B_{0} T_{0}}{N_{0} S_{0} T_{0}}$, has the value $\frac{2}{10}$ of $\frac{2}{10}$ can be deterained. The results of such a procedure are shown in Figures $5.2-4 a, 4 b$ and 40 , wher the practical case of a cooled plate was considered.

The "inner slip" boundary thus oaloulated oan be prosented in another way, nemely in the M - Re plane. For any given fight condition, the free etream condition and the distance (from nose) where $\frac{C_{f}}{C_{p}}$ given ratio fixed a locel Reynolds number. Since the results of Seotion 5,3 show that C_{f} and C_{p} are each essentially functions of $X=\frac{\mu 5 / 2}{R_{e} I / 2}$ and $M \alpha$ only (at high M); the ratio $\frac{C_{I}}{C_{p}}$ at any point on a plate at a given angla of attack is a function of M and Re onlys henee a unique* ourve of $\frac{C_{f}}{}$ "constant in the M - Re plane exists and can be readily saloulated from the rosults displayed in Figure 5.2-4.

The "Inner ailp boundaries" in the M - Re plane for the case of fit plate ** are shown in Figures 5.2-2 and 5.2-3 where the oriteria $C_{1} C_{0}=0.1$ and - . 2 were used, and the oases of the insulated and the Booled plates ware considered. In Figure 5.3-2 the oriteria of Thien (Reference 5.2-1) and of Shultz, eto. (Reference 5.3-7) and Mrels (Reference 5.3-8) for the alip boundary are aleo shown for comparison. Of interest is the difference between the boundary for a given ratio of $\frac{B_{0} T_{0}}{N_{1} T_{0}}$ according as the plate is insulated or cooled.

* In the engineering sense that a single ourve can be faired through oaloulated pointe.
* Here, since solutions are anaiytio, the boundaries can be detemined analyticelly.

Looking bol, what was done here was to use solutions of the usual boundary layer equations (including shock -boundary layer interaction effects) to check the internal consistency of these equations by indican. ting where corrections to these equations are apparently necessary, and to show the results as "boundaries" in the $M=$ Re plane. These considerations only serve to point out the possible extent of rarefied gas effects on a surface in hypersonic fight. The question of the qualitative and quantitative nature of these effects remain to be determined by experimental and theoretical investigations.

The terms of "slip" 1" usually applied to the case where a rarefied gas does not stick to a surface but slips over it with a finite velocity. From kinetic theory, the sip velocity along the wall is given by

where \&~1. For constant wall temperature

Since

$$
\frac{\lambda}{a}=\sqrt{\frac{\pi}{2}} \cdot \frac{\mu}{\pi}
$$

from simple kinetic theory. in the case of an insulated plate, $\frac{a_{\infty}}{a_{\infty}} \approx \sqrt{\frac{1-1}{2}} M_{\infty}$, thus $\frac{\Delta y}{U_{\infty}} \approx K C_{i}^{C}$
where $R<I_{0}$ Thus it is seen that the parameters signifying slip on the boundary and "inside" slip are essentially the acme at high M differing only by a numerical factor. However, the actual correction*

Notes \# correction to the solution of the problem with assumed noslip boundary condition.

which say 10% slip, ie. $\frac{A}{u_{\infty}}=0.1$ will cause to some measurable characteristic of the flow like the akin friction and the correction Which would coma from using a more complete set of fundamental equations to describe the finch when $\frac{B_{0} T_{0}}{\mathrm{~N}_{0} \mathrm{~F}_{0}}=0.1$ are not known so that the resistive importance of these effects cannot be quantitatively discussed. It is of interest to note, however, that for a cooled wall $a_{W} \sim a_{\infty} s 0$ that $\frac{\Delta u}{U_{\infty}} \sim \frac{1}{M}\left(\frac{C_{C}}{C_{p}}\right)_{W} ;$ thus for hath H
it appears that the effect of slip at the wall legs behind the effect of rarefaction or "inside slip H on the basic equations.

Slip boundaries for $\frac{4}{4}=0.1$ 0.2 and for $T_{w}=3 T_{\infty}$ and the insulated wall are shown in Figures 5.2-2 end 5.2-3. Also, to round out FIgure 5.2-3, some curves indicating where shock boundary layer interaction effects are strong (4 , ≥ 4) and weak (A a 0.1) are shown, again for the two cases of $T_{w} \propto S T_{\infty} T^{*}$, and the insulated wall.

* Correction to the solution of the problem with assumed no-slip boundary condition.
** Providing the proper equations were known and solutions to them could be obtained.

Section 5.2 References

5.2-1 Toien, H. S.1 Superaerodynamios, Mechanice of Raveried
Gases, Jour, dero. So10, $13,653-664(1944)$
 Corporation Report No. DIH3-945-011, Oot. 25, 1954.
5.2-3 Shaaf, S. A0, and Maslach, O, J. 2 Recent Davelopments In Rarofied las Dynamics Research. Presented at 0 . S. Nary Symposium on Aeroballistics, Laurel, Md. Ootober 1954.
5.2-4 Bumett, D.: Froc. Lond. Math. Soc. 40, 382 (1935)
5.2-5 Chapman, S_{1}, and Cowing, $T_{0} G_{0} t$ The Kathematical Theory of Non-Uniform Gases, Cambrige University Press, (1953)
5.2-6 Slegel, M. K.1 Boundaries of Flutd Mechanics, Jour. sero. Sci. 17, 191, (1950)
5.2-7 Mrels, H.: Estimate of Slip Effect on Compressible Laminar Boundary Layer Skin Friction MCA TN 2609, January 1952.
5.2-8 Isenberg, $J_{1} S_{0}$, Cheng, H. K, Pallone, $A_{1} J_{1}$ and Roehrs, F.: Bell Airoraft Cosporation, horodynamios Section Theoretical Researoh Note No. 3, April 1955.

100 . cnecrio

Con Pat-5-17
———repoat Di L3 3-945-012.

- DATK_.....................

Br	BELLo fimongt sonnumon	M	5-19
Cheeked _ـ_ D		Missilo Aipplane	1143-9/45-012

5.3 Bow Shook - Boundary Iayer Interaction

5.3.1 Introductory Remarks

The flow over a body in supersonic filght is usually determined In two distinot steps: first the assumed invisoid flow about the body inoiuding shook wares is computed to determine, for one thing, the pressure distribution on the body; then on the assumption that fiscous effects are confined to a thin boundary layer adjacent to the body, an approximate solution is found for the flow in this region - bounded by extemal infiscid flow and solid boundary - where the extemal pressure distribution is now know, thus obtaining the shear stress on and the hoat loads into the body. The boundary layer solution also gives an expression for the displacement thicinass of this layer which represents at any point the distance which the streamines of the inviscid flow are deflocted away from the body because of the retardation of the flow in the boundary layer (since mass ilow between a streamiline and the solld boundery is constant).

The deflection of the streamines in the essentially invisoid or oxternal flow is aotually due to the physical body plua the displacement thickness. This change in the effeotive shape of the body ohanges the preseure about the body which, in tum, affeots the flow in the Fiscous layer. At low supersonic speads and the assooistod fight altitudes (relatively high density) this "interaotion" effeot is omall, and can be negleoted, In hypersonic flight, however, the high M and low fa (high alititude) both produce a rapid thickening of the boundary layer and hence a very significant interaction between invisid - Fiscous flow regiona; alse, at high Mach numbers the bou shook wave lies olose to the murface of the body (actually the odge of the boundary layer) and the regtion in which invisold flow may exist behind the shook wave is rery linited.

In this seotion the problem of the simultaneous solution of the boundary layer and the extemal flow equations is considered in order to obtain a theory for preducting the inoreasest in pressure and akin friotion on the nose of a body in hypereonic Filght. Some improvemants are mede on the axdeting theory (flat plate, eero angle) and new theory and aumericil results are obtained for the oasea of interaction on a flat plate at positive and nogative angles of attack, and for the practioni case of a cooled wail. It is shown how the numerical results for interaction induced pressure for all cases (sero, positive and nogative angles of atticik) can be correlated with respeot to the parameters $X=m^{5 / 2} / R e^{1 / 2}$ and $K a$ in a goneral but simple and convenient form;

[^1]
 in Flare 5.3-3. The general rearits of is jure 5.3-2 are applied to datermine the pressure at the nose of a 5° wedge flying at $M-20$ at
 of the intaraction affects the resulte are ahow in Figure 5.3-L. The speoifio applioation of these resilte to the MX 2276 configuration is given in seotions 4.4, 4.6 and 4.7.

The prosent malysis is restricted to two - dimensional flow and is based on the following assumptions:

The surface is an infinite fiat plate with a mathematioalif sharp leading edge.*

The flow field between shock ware and surface is idealised as being difided into two regions or layers (of. Figare 5.3-1), namoly a riscous lajer adjacent to the aurface across which the prossure rem mains eubstantisily constant, and an indsoid region betweon the shook and the riscous layer. In the latter ragion tha flow is rotational due to ontropy vaziation generated by the eurved bow shook; the Ilow expands In this layer and the rariation of contrifugal force through this expanding layer sets up a aigmifioant pressure gradiont nomal to the surface.

The fluld is a continum and the flow in the boundary layer is gevarind by the urual Prandtl boundary Iagar equations approximating the full Narier-Stokes equations.** Furthermore, the Fuid is asamed to be a perfact gas with constant (arbitrary) Prandtl number, constent (arbitrary) C_{p}, and following the Sutheriand Fiscosity - teaperature rolation.

The plate is assumed to be cooled to a constant wall temporature.

The interaction problem differs from ordinary boundary layer problems in that the external flow fleid enters as an unknown, instead of being given. In order to obtsin an abalytioal solution to the problem with a reasonable amount of labour, it is necessary to have an expiloit oxpression between the induced prossure on the odge of the boundary layer and the rate of growth of this layer. It 18 found thet whan $M \frac{d}{d x}$) 1

* Experimental evidence (of. Reforences 5.3-12 to 5.3-15) indicates that the result obtained for an infinite plate with a sharp leadins edge cannot indiseriminately applied to the region(a) near the leading and trailing edge(s); more theoretioal and experifental work is necessary before a complete solution for the entire plate is possible.
** A discussion of the self-consistenoy and nance regions of validity of this assumption is given in Section 5.2.

then a modified form of the tangent - wedge formula can be used - as discussed in Section 5.K . , and when $M \frac{d \delta}{d x}<1$, the Prandti-Meyer
 $M \frac{d \delta}{d x} \approx 1$ there io no really simple pressure - deflection relation.*

Before outlining the sailed analysis of the shook-interaction problem, it is of interest to consider this phenomena by an order of magnitude argument.

5.3.2 Order of Magnitude Considerations

The average value (s) of the temperature and velocity in the boundary lager in hypersonic flow are characterised by $\bar{T} \sim O\left(M_{\infty}\right)^{2}$ and $\bar{u} \sim O\left(U_{\infty}\right)$ - Comparing the relative magnitude of the pressure gradient and the inertia torrs in the $x=$ momentomequations (of. 5A-1), for instance, we obtain

$$
\begin{equation*}
\frac{\partial \oplus p}{\partial x}: \bar{\rho} \bar{u} \frac{\partial \bar{u}}{\partial x}=\frac{\Delta p}{p}: 1 \tag{4}
\end{equation*}
$$

since

$$
\frac{\partial 中}{\partial x}=O\left(\frac{\Delta \psi}{L}\right)
$$

and

$$
\text { pu } \frac{d}{\partial x} \approx \frac{p}{R T} \bar{u} \frac{\bar{u}}{L} \approx \frac{p \bar{M}^{2}}{L} \approx \frac{e}{L}
$$

since $R T \sim a^{2}, \overline{\mathrm{M}} \sim 1$, and $p=$ constant in the boundary layer, Accordingle, the pressure gradient effect is generally emil when the pertur-

[^2]
bation pressure is small, and becomes at most of the same order of magnitude as the inertia effect when the perturbation pressure is much larger than free stream pressure,

In the case of a flat plate at zero incidence, for example, the selfuinduced pressure increases with the hypersonic parameter of the external flows L.e.s $M_{\infty} \frac{8}{x}$; hence for a sufficiently mall $M_{\infty} \frac{8}{x}$,

$$
\begin{equation*}
\frac{\partial p}{\partial x}: \overline{\bar{u}} \frac{\partial \bar{u}}{\partial x} \approx 0\left[M_{\infty} \frac{s}{x}: 1\right], \tag{2}
\end{equation*}
$$

whereas for large values of $K \cdots \frac{8}{x}$, say of order unity or larger, it can be seen from Equation (1) that the ratio reduces to $O(1: 1) *$.

From the above relation, it is seen that one may omit the self. induced pressure gradient effect in an order of magnitude analysis of the Navier-Stokes equations in the boundary layer, since it is at most of the same order as the inertia terms. Thus equating the rate of change of momentum to the shear stress we have

$$
\begin{equation*}
e u \frac{\partial u}{\partial x} / \frac{\partial}{\partial y}\left[\mu\left(\frac{\partial u}{\partial y}\right)\right]=0 \text { (1) } \tag{3}
\end{equation*}
$$

Assuming a thin boundary layer δ and a regular velocity profile in this layer, it follows that

where the bar denotes average values. Since $\overline{\mu \frac{\partial u}{\partial y}} \neq\left.\frac{1}{2} \mu \frac{\partial u}{\partial y}\right|_{\text {max }}$
similarly $\left.<\left.u^{2} \approx \frac{1}{2} e u^{2}\right|_{\max } \approx \frac{1}{2} e u^{2} \right\rvert\,$ edge of layer.
Now sines

$$
\frac{\overline{\partial u}}{\partial y} \approx \frac{u}{\delta}, \frac{\mu \frac{\partial u}{\partial y}}{e u^{2}} \approx \frac{\mu}{\rho \bar{u} \delta} \approx \frac{\delta}{x}
$$

80 that

$$
\begin{equation*}
\frac{8}{x} \approx\left[\frac{\pi}{\bar{T} \times}\right]^{1 / 2} \approx \frac{1}{p_{\infty} 1 / 2}\left[\frac{\bar{\mu}}{\mu_{\infty}} \frac{\bar{T}}{T_{\infty}} \frac{p_{\infty}}{p}\right]^{1 / 2} \tag{5}
\end{equation*}
$$

which is essentialiy the well known Prandtl resuit where now the Reynolds number based on the avarage properties characteristic of conditions in the boundary layer instead of on the free stream valuas
 we have, since $\sim M_{\infty}^{2}$

$$
\begin{equation*}
\frac{6}{L} \approx\left(\frac{p_{\infty}}{p}\right)^{1 / 2} \frac{M_{\infty}}{R e_{\infty}} \cdot \frac{1}{M_{\infty}}\left(\frac{D_{\infty}}{p}\right)^{1 / 2} X \tag{6}
\end{equation*}
$$

where

$$
X=\frac{M_{\infty} s+2}{R_{\infty}^{y_{\infty}}}
$$

Hence, it can be seen that, in gcaeral, compression tends to reduce the thidaness of the boundary layer and expansion tends to increase its the offect of the self-induoed pressure gradient resulting from thickening of the boundary layer tends in tum to thin the boundary layer.

From Equations (4) and (6), it oan be show that

$$
\begin{equation*}
x_{\infty}^{3} c_{p} \sim\left(\frac{p}{p_{\infty}}\right)^{1 / 2} X \tag{7}
\end{equation*}
$$

Slnilarly, a consideration of energy balance in the boundary layer leado to

$$
\begin{equation*}
M_{\infty}^{3} \quad o_{h} \sim\left(\frac{p}{p_{\infty}}\right)^{1 / 2} x \tag{B}
\end{equation*}
$$

where C_{n} is the heat transfor coefficiant defined as

$$
c_{h} \cdot p \frac{\partial T}{\partial y} / p_{\infty} \bar{u}_{\infty} c_{p} T_{0}
$$

Thus, the effect of compression is to inorease the skin friotion and the heat transfor rate, while oxpansion tends to raduce these paramaters; the self-induced pressure gradient thus tends to inerease both C_{f} and C_{h} 。

For lage valua of the nhyparsonio parametert, i.e., $M_{\infty} T$ 'an $O(1)$, where \boldsymbol{T}^{\prime} is an effective thicknass,

$$
\begin{equation*}
\frac{g_{\infty}}{P_{\infty}} \sim F\left(M_{\infty} T^{\prime}\right), \text { e.g. } \frac{e_{\infty}}{P_{\infty}}-H_{\infty}^{2}\left(\alpha+\frac{d S}{d x}\right)^{2} \text {, } \tag{9}
\end{equation*}
$$

Where α is the local inclination of the gurface. For small values of M M, 1.0. M Tec 1,

$$
\begin{equation*}
\frac{p-\beta_{\infty}}{P_{\infty}}=M_{\infty}\left(\alpha+\frac{d \delta}{d x}\right)^{d} \tag{10}
\end{equation*}
$$

In Fiew of Equations (1), (7) and (8), it may be anticipated then that the expressions for $p_{j} C_{f}$ and C on the ourface of a wedge in hypersonic fow wll have tice followng functional forms for a considerable range of x :

$$
\begin{align*}
& \mathrm{p} / \mathrm{p}_{\infty}=F(x, \mathrm{~K} \propto) \\
& \mathrm{M}_{\infty}^{3} C_{f}=\mathrm{O}(\boldsymbol{x}, \mathrm{~N} \propto) \tag{11}\\
& M_{\infty}^{3} C_{h}=H(x, M \infty)
\end{align*}
$$

From the fom of Equations (11) it is recogntied that the important paramater in hyparsonic viscous flow is \mathcal{X}.

It is emphasized that the above considerations on the relative order of magnitude of the flow parameters asaumed that the veloorty and temperature profiles are regular and that other effect such as the temperatare distribution along the wall, ete., are not the ossential features which to determine the interaction phenomena.

5.3.3 Outline of Analysis.

The detailed investigation was carried out along the ines of the ron haman integral method. The momentum and energy equations of the laminar boundary layer including the pressure gradient term* were formulated as two integral differential equations. Profiles for the local velocity and local stagnation enthalpy in terms of the distance from the wall were assured, these profiles satisfying certain boundary conditions at the wall and at the outer edge of the boundary layer. With the assumption of these profiles and with the use of the Dorodnitein transformation, discussed in Reference 5.3-11, the two integral differential equations are converted to ordinary differential equations which give essentially the variation of the boundary layer thickness and of the heat transfer parameter.

The solution of the problem for the flow over a flat surface at angle of attack α was obtained in two parts. In the first, a solution for the flow over the bottom of the plate was developed, using the assumption of third degree polynomials for the velocity and stagnaion enthalpy profiles. The prandtl number was left arbitrary, although it is required to be of order unity. Analytical results were obtained for the insulated and given constant hall temperature cases by expanding the solution in according and descending porters of the paraintar \mathcal{X} for strong and weak interaction", respectively. For both the frons and the weak interaction cases the analytical solutions sher that $p / F_{e}=I\left(X, M\right.$) and $M, C_{f}=g(X, M$ or $)$ for a given wall to free stream temperature ratio; results for the intermediate region can be extrapolated from the strong and weak interaction regions. All the details of the aralgais are presented in Appendix 5B.

In the second part a solution for the flow over the top of the plate was developed, using a fourth degree velcoity profile and a firth degree stagnation enthalpy profile. Since in tho present analysis a single boundary layer thickrass is used by assumption that pr $=1$ instead of separate dynamical and a thermal boundary layer thicknesses, the stagnation enthalpy profiles were used here of ore degree higlisr than the velocity profiles in order that the sana number of boundary
*The pressure gradient is induced by the deflection of the inviscid flow streamlines and is a function of
 It is shown that $B^{*} \approx 8$.

* The positive value of α corresponds to the bottom or corkression side ard the negative α corresponds to the top or expansion side.
*** The strong interaction range was arbitrarily defined to begin at the value of x. where the perturbation pressure is 800, of the asyartotio value $(x \rightarrow 0)$; the ra ak interaction region was al so defined to begin

conditions be satisfled by the onergy equation as were satisfied by the mosentur equation. The practical case where the vall is assumed cooled to a oniform tomperature was conod dered. The reallting two oxdipary differential equatione vere solved numerioally and the varia. thon of the pressure, skdn Iriotion, and heat transfor parametors were caloulated for several combinstions of M, α, and altitude. It was found manercally that for $M \gg 1$ the relation $p / p_{0}=f(X, M \alpha)$
 the reaults obtained for $\mathcal{M}^{3} C_{1}$ and p/pe vere comrelated in X and $M \propto$ and plotted in Figures 5.3-3 and 5.3-2. The detalls of the amiysis are given in Appendix 5A.

5.3.4 Disoussion of Rosuits

Numerical axamples were calculated for the top and bottom of a Flat surface in steady fight. For the top side the pressure apd skin friotion distribution were found for $M=10,15,20$, $=~=-5^{\circ},-10^{\circ}$, altitudes of $150,000,200,000$ and 250,000 feet and $\frac{T_{N}}{T_{\infty}}=3$.

The results were correlated in terms of X and $M \alpha$. The correlation was found to be very good for $M=15$ and 20 , but for M - 10 poorer resulte were obtained. The heat tranefer cooffictent $\left(O_{n}\right)$ was found to very between $1 / 2 C_{f}$ and $1 / 2.4 C_{f}$ for very weak and very strong interaotion respeotivaly; no curve has been plotted salnee in the flight regine in which we are interested $G_{h} \approx 1 / 2 C_{f}$.

For the bottom side of the plate numerical results for C_{f} and P vere obtained, uaing the $n 9$ thod devaloped in Appandix 5 fior the stfong interaction region. The mathod of Lees and Probstein, Reference 5,3-1 was used for the weak interaction region ance our analysd s of this case was not completed at the time of computarion, but it was later found that the increment in C_{f} and in p_{p} given by Lees and Probstein are of the same order as the one given by our wathed. Results in the region of intermediate interaction were extrapolated from the weak and strong region.

The skin fretion parameter $\mathrm{M}^{3} \mathrm{C}_{\mathrm{f}}$ and the pressure ratio p_{F} are plotted as iunctions of X for constant $M \times$ in $F i g u r e s$ (5.3-3) and (5.3-2), respectively. It is intereating to notice that as $\mid \ll$ increases the viscous -inviscid interaction becomes weaker, and it becomes stronger as Minereases. This observetion is true for both top and bottom of the plate but the rates of increase or decrease are not the sare.
***at X where the perturbstion pressure is 30% of the asymptotic palue. Between the strong and weak interaction we have an intermediate region where no ansiytioal solution is available.

SECRET

By _ Date	F1	
Cheeked _- D	cenpetarioi	$\underset{\text { Misala }}{\text { Alrolere }}$

5.3.5 Remarks on Prefious Work

Several attempts have been made to anslyae and solve this problem of hypersonio shookmboundary lajer. For the oase of atrong interaotion there have been tro distinct approaches used, insofar as the phyideal fiow model is concerned. The first (o.f.e.go References 5.3-3, 5.3-8) assumes that the region behind the shook wave oanalats of a fiscous boundary layer and an invisaid region betwean the shook and the boundary layer, as illustrated in F1gure 5.3-1. The boundary lager equations are applied to the boundary layer region and same approximation to the invisoid flow is applied to the inarisoid bat rotational region. The other approach (Referencen 5.3-2, 5.3-L) assumes that the region between the shock wave and the body oan be treated as a whole by the syatem of boundary layer equations, i.e., the edge of the boundary layor and the shook wave are made to oosnoide. Strictiy speaking, an important assumption 1mplied in the ordinery boundary layer equations syetem - namely, constant pressure across the layer - 18 not velld here, sinoe near the outer edge of this layer where the fiscous effect is relatively small a very strong normal pressure gredient exdsts due to the centrifugal foice. Although the first approach - the two-layer theory - may nut be appropriate at the immediate picinity of the leading edge where the shook is close to the surface, this icealization, nevertheless, accounts for the pressure variation. In the present approach, the tro-layer model has been adopted. For the weak interaction range, the distinotion between a fiscou and an invisoid region is more olearly the appropriate ample model.

From the mathematios plewpoint, there are also two distinot approaches. One (c.f.e.g. References 5.3-1, 5.3-3, 5.3-6, 5.3-10) assumes a linesr viscosity - temperature relation which leads to relatively simple solutions of the differential equations. However, the iinear viscosity-temperature relation is knom to over or under estimate the fluid Fiscostir μ in the layer when the variation in temperature acrose the layer is large, such as the oase of a cooled wall at high Mach number. The other approach (References 5.3-2, 5.3-4, 5.3-7, 5.3-8) erploye tiae ucmentum-integral methon: while the approxdmation to the flow details provided by this method is not precise, it neverthelese allows the use of a more accurate Fiscosity-temperatrire law. In the treatment presented in this rew port, the latter approach has been used. Ansiytic as well as numerfcel solutions are obtained for the case of a wedge at angle of attack, with a given wall to free stream temperature ratio - the case of practicel interest. The Sutherland viscosity-temperature law has been adopted throughout, and polyoomials of third and fuurth degree are assumed to determine the velocity and stagration temperature distributions. Preflous woriks based on this approach oither consider the case of an insulated wall or assume linear velocity or total temperature prorlles.

5.3-11	Libby, Paul A. and Korduchow, Morris: MA Method for the Ceioulation of the Compreseible Leminar Boundary Layer with Axdal Preseure aradient and Reat Tranefers NACA TN 3157.
5.3-12	Ferri, A. and Libby, P.: Note on an Interaction Between the Boundary Lager and the Invisold Flown, Readers For m, Joumal of the Aero. Sciences, Vo1. 21, Fe ruary 1954, p. 130.
$5.3-13$	Sohaaf, S. $\therefore .1$ FRecent Developments in Ravelied Gas Dynamics Reisarohn, Third Nary Symposium on Aerobalilatios, Technical S saion Γ, Ootober 20, 1954 .
$5.3-14$	Bogdonoff, Seymour, M. and Hamitt, Andrew, 0.1 MFluid Dynamic Effects at Speeds From M 11 tio 15, Repmint Institute of the Aeronautical Soiences, January 1955.
5.3-15	Bertram, Mitchel, H. 1 Tiscous and Leading - Edge Thickness E:'feots on the Preseures on the Eurface of a Plat Piste in Hypersonic Flow", journal of the Aeronautica:: Seiences, Vol. 21, June 1954, p. 430.
5.3-16	Eogdonciff, S. and Kepier, E. 1 "The Separation of a Supersonic Iurbulent Boundary Layor, Reprint Institute of the Aeronautical Sciences, No. U41, January 1954.
$5.3-17$	Lee, \mathcal{J}. D.: "The Influence of H gh Adverse Prescurn Oradient on Boundary Layers in Supersonic Flown, Inetitute of Aerophysics University of Toronto, Report No. 21, Octo'jer 1952.
5.3-18	Interaction Betiven Diseipative Flowe and Newly Insentropic Stream". joumal Aero. Soi., Vol. 19 No. 10, October 1952.
5.3.-19	Ferri, A.: "Elements of Aerodynamice of Supersonic Fiorsi, Macmilian Co., 1949.
5.3.-20	Kaman, T. and Biot, M.: MMathematical Methods in Engineerlng', NGrav hill Book Company, 1940.
5.3.-21	Van Driest, E. R.: NInvestigation of the Laminar Eoundary Leyer in Compressibla Fluide Ueing the Croceo Mathodn, North American Aviation, Inc., Roport AL-1183, January 9, 1951.

$\mathrm{U}_{\infty}>\mathrm{a}_{\infty}$

By	BELLaftimonft enmunor	
	5.4 Oltra-High Tmperature Phenomena	
	The energy which a moving body imparto is disaipatad by visoous action into heat (in sotivity) mestiy in bhook waves and in the of energy required for flight inoreases rough at hypersonic speade this enargy is sufficie ohanges in the structure of the air in the na the body and in the neighborhood of the nose obtains. This change in structure will be	to the acrin whion it movas nternal energy or molecular boundary layer. The amount hiy as $p \mathrm{H}, 2<n<3$, and nt to cause appreciable narrow layer right next to where a strong normal ahook reflectad in changes in the
	asme time the more complicated mioroscopio a gas oan no longer be completely and adequate conventional themostatio parameteras one mu to oxplain and predict the behaviour of gas ature being, of course, a measure of the mol Furthermore, air is a complex mixture of ges properties are detemined by the proparties	tructure and behaviour of the ly described in terme of the st rasort te kinetic theory $8 t$ hidentomperaturac (tampareoular energy or activity). es, c.f. Table 5.1-1, and its of each of its constituents.

TABLE 5.4-1
COMPOSITION OF AIR

N_{2}	78.03	Neon	0.0012
O_{2}	20.99	He	0.0006
$\mathrm{~A}_{6}$	0.94	Krypton	0.00005
CO_{2}	0.03	Xenu	0.000006
H_{2}	0.01		

The principle constituents of air, N_{2} and O_{2} ars both diatomic molecules. On the idealized kingtic theory model of a gas, the diatomic molecule has six possible degress of freedom: 3 translational, 2 rotational, and one vibrational. For N_{2} and O_{2} molecules, the translarional and vibrational modes are active at room temperature and higher, but the Hibrational mode is frozen out. At temparatures of $600^{\circ} R$ and above,

[^3]
the vibrational mode (in the axygen molecule sirst) beoomes active, and this shows up macrescopioally in inoreasing values for C_{7} and C_{p} with inoreasing temparature. At temperatures of the order of 5400° 泉, the O_{2} moleoules atart to dissooiate, i.e., there is aurfioient energy available to some moleoules to overome the potential forces binding its atoms together, and at tomperatures of about $10,000^{\circ} \mathrm{R}$ fonization becomes significant.

The distribution of energy anong the various possible degrees of ireedam does not coour instantanaously, but requires a number of collisions before each mode is in equilibribm. While the translational mode requires so fow collisions that it reaches equilibrium almost instantaneously, the rotational mode requires about 10 to 100 oollisions, while the pibration mode requires about 100,000 o011isions to resch equilibrium, Hence thore are ifnite "relaration times before an clemant of gas subject to a ohange reacts complately to this ohange and reaches an equilibrium atate. The actual times requires are functions of density and temperature ohange, and at present are not too well known, although experimental investigations of relaxation times are under way. Iikewise, dissociation and ionization do not coour instantaneousiy but rather at a fintte rate which is a funotion of the temparature of the gas. After an element of gas has been heated to a sufficiently high temporature for a large enough time interval, then an equilibrivm state will be reached there the molscules are oontinuously dissociating and reassogiating at a constant rate but there is a oertain constant percentage (characteristic of temporature and density) which are dissociated, however, a certain characteristic time is required after every change of state until equilibrium conditions at the new state are raached, Similarly for ionization.

The detemination of the characteristic times is diffioult and laborious theoretically, and at present the experimental approanh is not clear. Furthermore, the properties of air under equilibrium dissociation and ionization conditions have yot to be oaloulated oorrectiv and tabulated. Hence the probing studies of dissociation effeots which have been made herein pertain to equilibrium dissociation oonditions only.

An indication of the temperatures associated with hepersonic flow can be obtained from the simple ideal gas relation

$$
\frac{T}{\mathrm{~T}_{\mathrm{a}}}=1+\frac{\gamma-1}{2} \cdot \mathrm{~m}^{2}
$$

Thus filght in air with anbient temperature $T_{a} \approx 500^{\circ} \mathrm{R}$, the $\mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{V}}$. variation becomes aignificant at around $M=2$, dissooiation becomes important at about $M=7$ and ionization at about $M=3$.

The ohanges in gas properties assooiated with a ohange in microsoopic struoture of the air must be taken into acoount in predicting the forge and heat loeds on a hyporsonic alreraft by extensions of the conventional approach, 1.0., in obtaining approximate solutions to the uaual boundary layer equations and shook relations at high Mach numbers. Furthermore, the possibility of relatively "new" offeots in aerodynamios. like radiation from hot air in the boundary layer to the atructure need also be investigated.

Another way of looking at the thermodynamio problems assooiated with hypersonic 5ight is to consider the energy involved in body-gas interaction in the Mach number range from zero to 25, as demonstrated by a diagram of the energy spectrum of the gas on the moleoular soale. The average translationsl kinetic energy of each molecule of air relative to the aircraft can be expressed in the form

and this relationship between Mach number and kinetic energy is represented by the paraboilo ourve shown in Figure 5.4-1. The characteristic energy values for exoitation of the vibrational energy levels, and the dissociation energies of the air molecules are indicated as well as the sublination energies of typiral solids.

From this energy diagram it can be seen that the relatipe kinetio energy of the typical gas moleoule at high Mach nubers is aufficient to produce diescoiation, and also that this relative kinetic energy is greater than the energy required to remove a single atom from a oommon metal, i.e., the aublimation enorgy. These facts suggest that thermodynamic and chemioal phenomena not apparent at ordinary supersonic speeds - because there is not enough onorey available to produce them will be observed at topersonic Mach numbers.

A number of probing studies vere initiated to investigate some of the high temperature effects associated with hypersonio flou, and the cesults of these diverse enalyses are collected in this seotion. Also, considerations of "new" phenomena which could possibly be of importance are gathered belou in this introduction.

The question of whether or not the intensely hot air in the boundary layer radiates an appreciable amount of heat to the adjacent otructure is coneidered in Sention 5sli-l.; essentially, the firet step is to estimate the emisaivity of air at temperatures of the order of $10,000^{\circ} \mathrm{R}$ and 10% densities. The estimates obtained from an analysia

* "new" in thi sense of either not existirg or not apparent at the relativedy lower temporatiros assciated inth supersonic flifht.
based on the quantum meohanical aspeots of kinetio theory show that the order of magnitude of the emisaivity of air at the temperatures under consideration is sufficientiy hagh so that radiative heat transfer
 however, to solve the flou equations in the boundery layer inoluding a radiative heat transfer term, in order to determine the exact way in which radiation will qualitatively and quantitatively affect the overall heat transfer piotire. A prerequisite to such a detailed study is a preoise knowledge of the emissivity ϵ_{λ} as a function of wave length λ, presaure p and temperature T. A theory has been developed to compute this quantity and is given in Appendix 5C; it was not, however, within the scope of this study to ossry out the detailed numemical caloulations at this stage.

Sone brief thoughts and remirko on the calculation of the transport properties of dissooiated gases are given in Seation 5.4.2, while in Section 5.4.3, an investigation of the effecte of assumed equilibrium diescoiation of air on the bourdary lajer charncteristios is reported. The results of the lattor study show that skin friction and heat transfer are essontially unaffected by diasociation so long as both the stream and bedy temparatures are below disnociation values. It vas leamed durine this imitirg that airilar results (unpublished) beve recentiy been obtainad at the Rand Corporation. (ilso of. Referenoe 5.L-37), it appoare that a similar resilit holds in the stecnation region of a blunt-nosed bocty.

In Section 5.4 .4 a recently complated progrem (at Bell Airoraft Corporation) to compute basic tables of flow parameters for both shoek flow and iventropic flow, incorphratire real gas offects up to dissooiation terroichures, is discusicd. Sinen the gas flow tables are badic to sny nurorical anely:so of the flow, it was important to deterefine how the actuel behavjou of air at high temperatures differs from thet desoribed by the stamerd ideal gas tables, and thes the real gas flow tables wura needed as a stardirid of comprison. These tables aso applicitile to noral nheokr up to a rach numbar of 10 and to oblique shocles of 30° or leos wave andie up to $M a 20$, since in these cases the temporatures behind tho sheck are belcy dissociation temperature. It should bo noted also that these tables relate equilibrium states on both sides of the shock.

In tho folloring, various thermodynanio phenomena which could possibly be of importance in hyprrsonic filght are pointed out, although so litile is known about theso phenomena at present, but that thoy must firgt be investigated expericentaily to detemine whether or not they will be importent, and if so, to deterains quantitetive offcots andor a model for theoretical studies, To be sure, the methods for perfoming such experiments are not at all obvious, but some progress is now being made.

Ooe such possibility is that of damage to the skin of a high velocity alroraft tue to interaction of the air-akin molecules; Fhare $5.4-1$ chow that at $M-20$ say, the energy of an alr moleaule is about twice the binding energy of aluminum. A few experiments by F. J. Willig, where a fast jot of about $100,000 \mathrm{fps}$ impinged on an aluednum target have been conducted, where it was demonst rated that damage to the metal surface appeared as a lightly otched area. These results are very preliminary, however, and at much higher velooities than of interest to 1×2276. The problem requires further experimental study in order to understand and control any offect of this trpe.

The possibility of damage to a surface by a mateorite has also been noted, Here the worfy is that the mateorite could aither penetrate or tear a chunk out of the surface, resulting in high heating rates being induogd at this "hole" bocause of turbulent flow or the setting up a sound uave oscillation in this hole (of e.g., Reference 5.4-52). Hosevar, thu probability of contact with a mataorite larger than 1×10^{-8} grams is at most aboust ono a day (of Refaronce 5.4-53) at the bighest altitude reachod so that this is not a problem for the glide vaicale.
considering nors the interaction of mieromateorite cusi and the sarface, it is estimated that particles of size 3×10^{-3} grars and largar with relativa kinotic enorges of $50 \mathrm{a}, \mathrm{V}$. and greatar idil regigtor abont 5000 hitr por hour, and vill probahly causo mioroecopic pitting. ouch atehine of mital by mitoor duat hac al ready beon observad in hich altituda rocket inirinz3. It is not expacted to be gerious or to gienificantly affoot tha surface sinioh of a glids vahicia, hoisuser, but it would bu prudont to obtain mors expsimental ovidence of this eifiot.
 tures is the poscibility that ions produced by digsoclation in the extrevaly hot luyas indids the Eoundary layor will dmift tovards the surfacs and coibino thatu, releasing encrey and haating the surface.
 thon oegur, and dissoelation at the high temparaturea osours at a fastor rats than disgociation at tha loiur tonporiturs, it is conceivable that sore dissociatad partisles inill bu higet do!matruam over the bedy bafore they fisve thig to bscoidine, thus alloviating the heating problem to song axtant (of as yat unkmoin argaitudo).

The ultra high temparatures goachod in the boundary layer will also paside in ionization of the aif, and hast oobduction by eloctran

 mas teon carciad sut for argon, but a a yat mo yath on aid hina buan
 xantal etway,

5.4 .1 Radiation Transfor of Energy in Hppersonio Flow

Introduction

The conventional solution for the equilibsium temperature distribution in a boundary layer over a Iat plate ovaluated at a Mach number of 15 or 20 , and an ambient temperature of $400^{\circ} \mathrm{R}$, indicates that sonswhere in the boundary laye the air reaches an ideal gas temperature of $j 000$ or $10,000^{\circ} \mathrm{m}$. In ob sining equilibrium solutions it is found (of. Section 4.6) that con Iderable energy is radiated out from the heated plate to drop its t mparature vell belou the theoretical recovery tempereture (almont stagnation) at given free stream oondi. tions. Hoxevar, even thou h the plate may thus be "radiation cooledn, (to well belcu stagnation temperature) sonasthers in the boundary lager the tomperatura approachos the high stagnation value. soe Figars 5.4-1. The question arisas as to whother the plate receives a significant amount of heat by radiation from the hot air in the boundary layer.

Savoral rocent papurs (Reforencu $5.4-27$ and 5.4-33) daseribo exparitiontal studiug of radiation witted by plane chook waves. Those shook rubo expuini..nnts dutunstrato the fact that substantial amounts of chorcy aro biling trin.t rited by radiation. This result is not too surpriain: since it is a will uetiblishad fact that ratiation is the douinato tran pode mecitiniual than the tomperatures are of the order of otellar tumpiatifes. Acain, using the elassical expression for hoat fullatud ais o σ T and, for exanple, taking the case where $T_{V}=2000^{\circ} \mathrm{R}$ and T_{1} in in triani is $10,000^{\circ} \mathrm{R}$ then for the stream to radate locally cs i, uch hat as tha wall does it need only have an emparivity of about ($1 / 5$) $4 \sim .015$. Ho:rover, we could find no quantitative theorvticil or expurilintal inforistion about the emissivity of air at the tempersturus undur consideration, and besides tho process of radiative hast tranfur at theas terporaturas cannot be completaly roprusented by tho ensineering approsch. It is known that cui : exfidments were hade at corneld. Univorvity in sunner of 1954 to try to meagure the viilecivity of air, using a shock tube as a seluce: of hot air and minditg a spectrographte analyois of the strength of radiation emfted as a function of have lencth, tut this very difficult car resmen and not lead to any conclusivo results because of contaminating fulidation : ifn off by the shock tubo itgolf.

In order to get an estimate of even the order of magnitude of the heat radiated by the boundary layer air, it is necessary to analyse the detailed molecular state of the ges-to-compute its amissivity as a function of pressure, temperature, and wave length, and then to utilize this information in setting up an energy balance equation for the flow in the boundary layer. For example in regions where emission and absorption are intense the energy equation will have the additional term

$$
\frac{\partial}{\partial X_{j}}\left(K \frac{\partial T}{\partial X_{j}}\right)
$$

where $K=\frac{-0 \lambda_{R}}{3} \frac{d \xi}{d T}$
ξ is the energy density $=\int_{0}^{\infty} \xi_{v} d v$

$$
\xi_{v}=\frac{8 \pi h \nu^{3}}{c^{3}} \frac{1}{e^{h v / k r-1}}
$$

$K_{\nu}=n \sigma_{\nu}$ where σ_{ν} is the absorption cross section and K_{ν} coefficient of spectroscopy.

The present study started of f as a probing investigation to deterinne tho order of magnitude of the endegivity of air, and when it wag found that radiation would apparently be a significant factor, a more detailed theoretical study vas initiated to compute essentially the emissivity of ait a function of λ, p, T, since this informsion is an necessary prerequisite to any serious study of radiative heat transfer.

A brief daccuscion of radiative energy transfer lading to an estivate of the order of magnitude of this effect is et ran bol cir. The rove dutillud amilyois leading to a method for computing $\epsilon \lambda$ is given in Appoudix 50 which shows that this quantity can bo calculated to a reasonable approsisitien. It was not within tho scope of the precut work, haver, to carry out the extensive calculations to obtain ϵ_{A}, Doth trestrents presuppose a certain fardiarity with the concepts of kinetic and quantum theories.

Anal ysis

Tho model assumed for analysis is that of an ionized (or dicsociated) gas in an equilibrium stato, where the ionization (or dissociation) process is precceding at a constant rate, and it is balanced by the rate of the inverse process of recombination (or reassociation). The inverse processes take place by one of two mechanisms, inelastic collision or radiative transition. The meaning of temperature used herein is that characteristic of the equilibrium thermodynamic state.

The problem of calculating equilibrium concentrations and temperatures has been discusecd by Krieger and White (Reference 5.4-34). The clessical encincering mothods of computing radiative heat transfer are not very conveniento whan the medium is a gas at 5000 or 10,000 degrees Kelvin. From here on in this section temperatures are given in ${ }^{\circ} \mathrm{K}$, tho physicists unit, since the problem is no:1 in the world of physics and it is convenient tu uso tho larguage of phyoles. The avenge emissivity coefficient, $\boldsymbol{\xi}$, has a very discontinuous frequemey or wave length spectrol distritution and as a result its tenparatura variation is non-unifom, A serlics of papers by S.S. Pinnor (References 5.4-29, 5.4-30, $5.4-31$ and 5.1.-32) diceuss sora aspects of this problem, and a briof duccuesion of general problems is given in Reforence 5. $4-2$.

The radiation propertios of air are complicated bectuve the two major components nitregen and oxyeen aro homopolin molecules in the ground stito and thus have no clectric dipole riowint, but tho minor constituents carien dioxide and vater vapor, ete. do not have this symetry. The non-lumious pieperty of oxyeen and nitrogen at moderate temeratures is dependent on the eero valuo of the dipole moment, and this property is destroyed in tho cacs of onygen tiwen the teriperature is raised suficiefentily hilh to put som: of the molecules in the $B^{3} \Sigma^{-}$state. The cidasion and absorption of radiation due to transitions boticen this excitid state and the ground state has been studied extenaivoly by upectroscopist, and valuable information on the subject is given in Referencas $5.4-1,5.4-15,5.4-22,5.4-25$ and 5.4-26.

A genemal mothod of analyzing radiont energy transfar can be developed by extericing the dorain of the claseical theory with the aid of sowe concepte from tho quantum theory of radiation. ono approach to this problom is to express the coefficient ϵ_{λ} (endssivity per wave length intormal) in terms of K_{λ} (absorption coefficient of spectroysopy) and then rolate the macroscopio K_{λ} to the mieroscopic crosn soction for absorption of radiation. Tho details of thess steps are given belew:

The radiant flux emitted per uni area by a hemisphere gas at temperatare T, density, P, and radius L is given by tine expression $\Gamma=\Pi I=$ (T, P_{L}) $\sigma T_{\text {. This radiation is distributed over a spectral range }}$ and is studied by rascal ring it into frequency or gave length elements

$$
\begin{aligned}
& I=\int I_{\lambda} d \lambda \text { and } I_{\lambda}=E_{\lambda}(T) \text { where } E_{\lambda}=\frac{2 h 0^{2}}{\lambda^{5}} \frac{1}{\theta^{h 2} \lambda_{\lambda} T}-1 \\
& \text { Since } \int E_{\lambda} d \lambda \cdot T^{4} / \pi, \quad E=\frac{\int I_{\lambda} d \lambda}{\int E_{\lambda} d \lambda}=\frac{\int I_{\lambda} d \lambda}{\sigma T^{L} / \pi}
\end{aligned}
$$

The function $E \lambda(T)$ is sketched in ligure $5.4 .1-2$ against the wave length to give the standard black bodily distribution curve for a given temperature T.

The intensity of radiation I from the gas is oqual to the integral $\int I_{\lambda} d \lambda$
where $I_{\lambda}=\epsilon_{\lambda} E_{\lambda}(T)$. FrenK1rchhofferolations, we know that $\epsilon_{\lambda}=a_{\lambda}$
where ad is tho fraction: I absorption at the wove length λ, thus

$$
I_{\lambda}=\left(1-a_{\lambda}\right) I \quad \text { or } \frac{I_{\lambda}}{I_{\lambda_{0}}}=1-a_{\lambda}
$$

In absorption spectroscopy the logarith:1 of this intensity ratio is measured in the laboratory

$$
\ln \frac{I_{\lambda}}{I_{\lambda_{e}}}=-K_{\lambda} \quad L=\ln \left(1-a_{\lambda}\right)
$$

K_{A} is called the absorption coefficient and it has the dimensions con ${ }^{-1}$. If we nest obtain experilishta or theoretical values of p_{λ} ie can compute $\epsilon_{\lambda}=a_{\lambda}=1-e^{-K_{\lambda}} L_{\text {and }}$ the orisinary emissivity

$$
\epsilon=\frac{\int\left(1-e^{-K_{\lambda} L}\right) E d i}{\int E_{\lambda} d \lambda}=\frac{\int E_{\lambda} E_{\lambda} d \lambda}{\int E_{\lambda} d \lambda}
$$

The above relations indicates that the enissipity E is the ratio of two areas in Figure 5, L, 1-3 of E_{λ} and $\epsilon_{\lambda} E_{\lambda}$ vergus λ. A_{B} an example, consider the case where $T-8000^{\circ} \mathrm{K}$ and C_{λ} is 0 for λ greater than .25 mioroms and 1 for λ - 1 ese than .25 mimons,

SECRET

The absorption coefficient K_{λ} is related to the mioroscopic absorption σ_{λ} by the relation $K_{\lambda}=N \sigma_{\lambda}$ where N indicates the nurber of molecules per unit voluw σ_{h} is the absorption oross. section which can bo calculated from tha quantum thaory of radiation for rost absorption processes.

In many problems involving rolecular transitions, it is difficult to celculate the oross saction from theory alone, but the general theoreticai relations may be usod in conjunction with isolated axperimental data to provide an adequate description of the absorption. In the case of diatomic molecules ouch as oxygen, the Frank-Condon prinoiple may be used to obtain rapid qualitative ostimates of radiative tranaition probabilities irom tho potential energy curves and enerey level schenes of tho molecule. Thid information can be used to extend low temperature absorption measuremanta to highor temperatures.

A quantitative description of the absorption can be astablighed by dorolaping a theoretical oxpruesion for the crossusoction in terms of the electric dipole ratrix el eniant. The dipole matrix elemant can be expressod as a product of an electronic natrix olement and an overlep integral of the nuclear vave furctions. The electronic matrix elewint will remain essentially conotent over largo efequency intervals and can bo deterained from room tompanture experimonts. The overlap integral will be censitive to temporaturo becauss the occupation of nuclear energy levels will thancu with teriperaturs. The adelear wave funotiuns can bo computed fron the Schrodingor equation with the aid of potential enerey curvas available in tho literatura. The oceupation numbers for tha vibrational anerig lavels ara dotermined by the basic rolations of statistical rachanics.

The Schumann-fungo continuum vill bs responsible for a major part of the radiation onitted by air in tho temperature range 3000 to 10,000 degrive Kulvin. The maxisui absorption coepfiolents are kown from apectroscopy to be of the ordur of $300 \mathrm{~cm} \mathrm{~m}^{-1}$ S.T.P. and the 1 ong yave length adea of the continuul if found at wave lengths near 1600 angetroms. When the toripesature of the gas is raised from a standard room temperature near $300^{\circ} \mathrm{K}$ to 6000 or 8000 degrees Relinn, tha contimum will move into tra visible part of the spectran and this action will contributo isteatiy to the avarage euisaivity of the gas. Prelimiagry esticatias bused on the use of the Frank-Condon rule give erissifity values in execes of 10 per cent for $L=1 \mathrm{am}, \mathrm{P}=1 \mathrm{~atm}$, $T=8000^{\circ} \mathrm{Kelvin}$.

Any realistic evaluation of the radiation problems mast be made on the basis of a quantitative method. The foundation of such a mothod is prosented in Appendix 5C.

By - Dol		Model P_ Page 5-18
Checked	- ELCAmomaft conpanatio	Miasile Aliplane \qquad Repail $0143-945012$ \qquad

5.4.2 Transport Properties of Dissoolated Gases

Tinfor is ourrantly a need for reliable information sbout the transport properties of dissooiated air. All of the theories for combination of boundary layer characteristios involve empirical formilas fo: the rajation of the transport coeffioients as a funotion of temperature. The resulta given by these theoriea are sensitive to the details of the specific property or temperature las assumed,

The kinetio theory of nom-uniform gases (Reference 5.4-2) gives the temparature dependence of the ofscosity and heat oonduction coef. ficient in the form \sqrt{T} where $\Omega(2,2) *(T)$ represente the $\Omega^{(2,2)}(y)$
doviation from a Higd sphere moriel, and it depends on the intaraction between the gas partioles durtag the collision process. The attractivo forea between two nomal nitrogen or oxygen moleoules is a rery weak one charaoteristic of an induced dipole - induced dipole interaction; however, in a collision between two dissociated particles the attrac-虹veforce is a very sirong one oharacteristic of the chemical bond. At disroolation temperatures, the potential energy of the weak interaotion hould be insignificant compared to the kinetie energy, but the interaction energy betureen two dissooiated particies will bo large compared to the kinetio energy and as a result the term $\Omega(2,2)(T)$ will be important. In other words, at disejoistion temperatures the temperature dependence of μ and K could be axpected to deviate appreci. able from the Thariation as given by the migid sphere model. It is noted here that this model is the basis for Hanson (Reference 5.4-39') and Moore's (Reference $5.4-38$; treatments of the effeot of diseociation in the boundary layer.

ه(2) The In
$\Omega(2, Z) *$ is a runction of the Fiscous cross-section $Q^{(2)}=2 \pi \int_{0}^{\pi}\left(1-\cos ^{2} \theta\right) I(\theta) \sin \theta d \theta$ and where $I(\theta)$ is the differential collison orosesseotion of soattering theory. The differential oross-section can be determined by standard quantum mechanical mathods if the potential function $V(r)$ is known, The potential girves for the interaction of oxgean atoms are given in Reference $5.4-1$ and $5.1 \mathrm{~s}-16$ and similar information is available for other molecules in the physies joumala. It appears then this would be possible to compute μ and K with reasonable accursoy at dissocistion temperatures, Moreover, the oaloulations are alosely tied in with the solutione of the radial vave equation in the radiation problem (Appentil 50),

SECRET

5.4.3 Effeot of D1ssooiation in the Laninar Boundary Laver

A proliminary investigation was carried ast in order to estizate the effects of oquilibrium dissooiation of air on the charaoteristios of the compressible laminar boundary layer over a flat plate when the remperature of the wall is assumed uniform and below the dissociation tanpersture for air. The results shou thet sha friction and heat transfor are essentially unaffeoted by dissociation, but that the thickoses of the boundary layer is reduced and that the matimum temperature in the lajer is considerably reduced,

The method applies to 1 ow regions where the Navier-Stokes equations and the frandtil boundary lajer approrimitions are valid,

While the transport propertios ifom dissooiated air calculated by Krieger and white (Reference 5.4-34) are probably incorrect (becauce the value they ascumed for the dissociation energy of aftragen 1s now oonsidered too low), their tabulated values were used because they were the only avallable; horever, some of the conclualous which wers reached in this analyais are not apprectably affected by small changes. Other results, al though subject to orrors, my atill serve as indication of the effect of dissociation.
L. Moore has investigated the sane probien in Reference 5.4-38, utilising a differential analyeer to solve the equations; soma of his results are not ralid, hevever, since he assumed that μ / k is not affocted by dissoofation in calculating prandill number. This assumption was ahom to be wrong by F. Hansen (Reference 5.4-39) and A. rentrowits (Reference $5.4-L 0$); they show that the Prandti mumber for dissooiated air is approximately a constant of order unity by uging elementary kinetio theory besed on the hard sphere model, (See Figure $5.4 .3-1)$.

In the present analyait, the method of Croeco (Reference 5.4-4id) vas used since it gives acourate results for rariable μ, c_{p}, k and Pr near uaity. The values of p, μ and 1 for air in dissoolation equilibrive vere calculated acoorthag to the mothod presented in part B of (Reference 5.4-38).

The laminar boundary lager equation for a corpressible flow over a Slat plate, inciuding temparatuse varlations, are

Momertum

$$
\begin{equation*}
\rho u u_{x}+\rho v u_{y}=\left(\mu u_{y}\right)_{y} \tag{1}
\end{equation*}
$$

Contimulty

$$
\begin{equation*}
(\rho u)_{x}+(\rho \nabla)_{y}=0 \tag{2}
\end{equation*}
$$

Enargy

$$
\begin{equation*}
\rho u i_{x}+\rho \nabla 1_{y}=\mu_{u}^{2} y_{y}+\frac{1}{P Y}\left(\mu i_{y}\right)_{y} \tag{3}
\end{equation*}
$$

SECRET

The enthalpy, i, includes the heat of formation of dissociated products; $C_{p}=d i / d T$. The Prandti number is assumed constant and its value is taken from Handsen's method (Ref. 5. 4 -38). Following Croce's method, letting $1_{2}=0$ we get from equation (1), (2) and (3) after sane transformations.

$$
\begin{align*}
& x x^{n}+2 \text { u } \boldsymbol{x}_{*} \rho_{*}=0 \tag{4}
\end{align*}
$$

With the following boundary conditions:
when $u_{*}=0 \quad \mathbb{K}^{\prime}=0 ; i_{*}=\frac{i_{n}}{i_{0}}$
$u_{*}=1 \quad x=0 j \quad 1_{*}=1$
Where the prime deontes differentiation with respect to u_{*}.
Sere the star aubsoript denotes dimensionless variable, namely

$$
\begin{gathered}
i_{*}=\frac{1}{i_{0}}, u_{*}=\frac{u_{0}}{U_{0}}, \rho_{*}=\frac{\rho}{\rho_{0}}, \mu_{*}=\frac{\mu_{1}}{\mu_{0}}, x\left(u_{*}\right)= \\
\frac{\tau}{1 / 2 \rho_{0} U_{0}}\left(\frac{U_{0} \rho_{0} z}{\mu_{0}}\right)^{2 / 2}
\end{gathered}
$$

Examining equation (4), we observe that the transport properties of the gas appear only in the frandtl amber and in the function $\rho * \mathcal{N}_{*}$ of i.* How since pr dissociated is approximately equal to Pr undissociated (see Mgure 5.4.3-1) and since by using the method of (Raf, 5.4-38 part B) to evaluate ρ_{*} and μ_{*} we find that for $a=0$ and $M_{\infty} \leqslant 25 \rho_{*} \mu_{*}$. dissociated is within 5 percent of the undissooiated value (see Figure 5.4.3-2) and for a $S 10$ and $M_{\infty} \leq 25 \rho_{*} \mu_{*}$ diserociatad is within 8 percent of the undissooiated value we can immediately conclude that for the same initial and boundary ocnditions we have the same solution of equation (4) for i_{*} and K as a function of to whether the a dr is diasooiaced or net. We sse, therefore, that the old n friction ($O_{f}=K_{V} / \sqrt{R_{0}}$) and the heat transfer $q=1 / 2 \frac{1_{0}}{p_{T}} \frac{d I_{*}}{\int u_{*}}, \frac{\rho_{0} V_{0} K_{N}}{\sqrt{R_{0}}}$ are not appreaiably affected by diseoolation. It should be pointed out that these are tentative results and are based on the validity of the elementary kinetic theory model used in the calculation of $P_{*} \mu_{*}$ and of Pr in Reference $5.4-38$ and Reference $5.4-39$ respectively. In order to get more accurate results the more realistic kinetic theory model of Section 5.L. 2 is needed to evaluate $\rho_{*} \mu_{*}$ and $\mathrm{Fr}_{\text {. }}$

Tro mamerical exampies have bean caloulatad follorirg Crocso's wethod in order to estimate the effeots of dissooiation on the velooity and temperature profiles in the bounday layer. The first example is that of a flat plate at zero aggle of attaok in oteady Plight at a Mach number of 25 at $250,000 \mathrm{ft}$. The wall was assumad cooled to undform temperature equal to three times the free strean temperature Figure 4.3-3a shows a comparison of the val oodty proflles assuming undissooisted adr and air in equilibrium dissodiation, Figure 4.3 -ha shows a ocmp rison of the temperature and enthalpy profile assuming disscoiat d and undissooiated air.

The second example was of a flat plate at a 10° angle of attack in ateady stream flight Ma: humber of 25 at $250,000 \mathrm{ft}$. The wall vas ascumed cooled to a uniform tomperature equal to 3 times the free strean temperature. Figure 4.3-30 shows a comparison of velooity profile for dissooiated and undissoolated air and Figure 4.3-4b shows a comparison of enthalpy proflles for dissociated and uadissooiated air. From a comparison of these two examples it appears that the thiokness of the boundery layer is rectuced en dissoolation ocours and the matimam tomperature in the layer in greatiy roduced. It is intoresting to see that the slope of the velocity and temperature profiles of the wall are unchanged by dissuciation. This again showe that the akin friction and heat transfer are unaffeated by dissociation.

Section 5.4. 3 Symbols

x, y Ceometrioal coordinate parallel and perpendioular to Mat plate, respectively
u, ∇ Velooity components of boundery layer flow in z and y dreotion, respectively
ρ Mase density
μ Coafifaient of Hscosity
k Coefpicient of thamal conductivity
T Bosolute temparature
1 Enthalpy, includes the heat of formation of dissoolatad produot
$\theta_{p} \quad \frac{\partial 1}{\partial T}$ specific heat at constant pressure
γ Ratio of specific heat at constant pressure to specilic beat at constant rolume

6 Shear stress
M Mach number
Pr Prandtl number ($0_{p} \mu / k$)
K Shear function
3 Sutherland constant
Eo Reynolds number ($\mathrm{P}_{0} \mathrm{U}_{0}$ I/ μ_{0}
C Looal skinmpiotion coesploient
q Rate of hent transfer
$11_{*} 1 / 1_{0}$
$u_{0} \quad U_{0}$
e* eleo
$\mu_{0} \quad \mu / \mu_{0}$

Symbole (Cont'd)

M * $\mathrm{M} / \mathrm{M}_{0}$
T * T / T_{0}

Subscypte

- Free stream conditions downatrean of the leading edge
v Wall sonditions
$\infty \quad$ Free strem conditions upstream of the leading edge

By ___ Dole	BEL LeAtiomaft corfomini	Madal__ Pago _
heocked		

5.4.4 Comproasabia Flow Tables for a Real Gas

The ahook vaves ocourring in hypersonic flow produce extrenely high tomperatures at whioh the air can no longer be considered as
 be such that the the mally perféet gas ${ }^{+}$model oan bo in error. However, the atezdard gas dynamio tables for air, whioh givo the relations batreen state parametors in iaentropic fiow, are based on the ascumption thit air is an ideal gas with constint speofic heat (of. E. B., Raference 5.4-42). Sinee the gas flow tabies are basic to any mumerical analyais of the Now, it is important to dotermine how the aotual bebarior of air differa from that desoribed by the standard ideal gas tables; such a totermination oan only be made when there are real gas flow tables to serve as a atandariof comparison,

A program to compute tables of flow parameters for shook Nou and soontropio how, incorporatiug the offecta of van dor Waals' forcel and variable specific beat for tho range of temperatures at whiat dissooistion is considared to be negiligible (up to $5400^{\circ} \mathrm{R}$) was undemay at Bell diroraft before the start of the Mr-2276 atudy contzacts these caloulations have been completed and the tabies vere issued as Reforeace 5.4-50.

The prosedure employed for inicorporating these offeats in the AOW equations was atraightforward. However the resulting equations are extremely difficult to use direotly and any gemeral tables of the flow functions would be prohimitively voluminous. The aim in devel oping a mothed for inoluding the real gas effects in for problems was then to find a way of presentiag the results so as to pake them most generaily useful without resorting to volumes and volumes of tables and graphe. Crom (Reference $5.4-43$) uses correotion factors which are fundions of the tempersture and pressure so that bis mathod is essentialis a successive approximation procedure, Taien (Reforecoe 5.4-4h) introduces oorrection terms to the ideal gas rolatioas yhich are products of two fanations, ons funotion depanding only on Kach number, the Other oniy on the initial conditions, This approach 1s more di reot but still not sample. The Mivoin's report (Reference 5. 4-45) inaludes tables of thermodynamio parameters behind normal shooks and throughout regions of constant entropy, both for a limited number of initial condttions. Several other authors (References $5.4-46$ and 5.4-47) merely study representative oase a in order to indicate the magnitude of error arising from neglectiag the real gas effects.

[^4][^5]

Tha approach fiolloved in Reference 5.4 -50 was similar to tine NAVORD report, where the the rmodynamic paramoters are related to a single independant variable and the inditial conditions. Hovever, a significant improvement vas made by ohoosing the initial conditions of those dofinad by a tandard atmosphere, by exterding tbe ahook tables to the oblique case, and by incluting the FIow paramoters as functions of the thermodymando atate and an initial 11 ow conditioiu. Initial oondititons at sea level and 36,089 feet were based on the macs approved atmosphere (Reference 5.4-48). At the high altitudes 2 Iinear temparature profile atmosphere based on the Rooket Panel Study (Reference 5.4-49) was chosen and shook tables were calculated for the three key altitudes. Date for any intermediate altitude can be obtainad by innear interpolation. In order to oorrelato ahock and isentropio flow tables the initial flow condition is given in terma of the total or tank enthalpy rather than velooity.

The above mentioned shook flow tables were used for some sample calculations to ocmpare shook flow in an ideal air with shook flow in a "real" air taldng into account variable spodifio heat and real gas effects. The reaulte are gathered in Table $5.4,4-1$ and ahow that at Kaoh numbers greater than 10 and fl ch deviations of more than 10° the ideal gas approximation introduces noticeable error. The greateat errer is in the temperature and is dus to the assumption of ocastant speositc heat. The error due to neglecting the ran der Vaals forces is amilar but of sufficient magnitude to merit consideretion, espeoially gizce equations and tables indluding the offects of variable spectifc heat are not greatly simplified by neglecting the van dor Waals forces.

When the air 1a haated beyond about $5400^{\circ} \mathrm{R}$ by ahook effoots, the dissogiation of air at these temperatures should be taken into account in computing gas flou tables. An analybis was made of the theory under. iging shook fiow and isentropic flait in the thasociation range of temparature, and a procedure for caloulating flow tables (using IBM equipment) was developed. Aotial programing and carrying out of the extensive caloulations required arraits acourate tables for the composition of air for the disscoiation range of temperature. Fatatiag tables of Hy rachfolder and Curtiss, Reference 5. L 5 - 5 are based on a value of 7.54 'e. 7 . for the dissociation energr of aitrogen, whioh is now generally regarded as incorreat; thut, at the present tima thare exist no acourate tables of the composition of air at temperstures above $5400^{\circ} \mathrm{R}$. Juat recently Comell Aeronautical Laboratory and the Gas Dynamics Branch of AEDC together have started the calculation of this composition, and it was leamed that the Bureau of Standards has also dons work on this problew. This latter sourae, however, was motivated by the needs of atomio energy work and as a result the acouracies and the increments of temperatare considered are not very appropriate to hypersonic $I l$ or problems. Several other leads as to

Seotion 5.4 Roferances:

5.4-1	Q. Hergberg: Moieoular Speotra and Molocular Struoture, D. van Nostrand Compary (1950)
$5.4-2$	J. O. Hersohfelder, C. F, Curtiss, R, Byron BLardi Molecular Theory of Oases and Liquids, John wileg (1954)
5.4-3	S. E, Mayer, M. Gooppert Hayeri Statistical Mochanios, John Wiley (1940) p. 山 4
5.4-4	Q. Heraberg: Atomic Speotra and Atomic Structure Dover (1944)
5.4-5	R. W. Ditohburns Light, Intersoience Publiohera (2953) p. 576
5.4-6	R, W, Qurnes: Introduotion to Statistical Mechanios, MoOraw-H2 (1949)
5.4	E, H. Kennardi The Rinotic Theory of Gases, MoGrav-Hill (1938)
5.	L. If Sohiffi Quantum Mechanios, Moarav-Fill (1949)
5.4-9	L. Pauling, E, B, Wilson Jr.i Introduotion to Quantura Meohanios Mocraw-Hill (2935)
5.4-10	N, F, Mott, H. S, W, Massey: Theory of Atomic Collulsions, Oxford Univeraity Press (1950)
5.4-11	H. Heitler: The Quantura Theory of Radiation, Oxford Univeraity Praes (1945)
5.4-12	W. Gordy, W, V, Smith, R. F. Trambamilo: Hiorowave Speotroscopy, johs Wiloy (2953), p. 207
5.4-13	S. Chapran, T. O. Cowling: The Mathematical Theory of Non-Uniform Gases, Cambridge University Press (2939)
5.4-14	Q. S. Rushbrooke: Introduation to Statiatioal Meoharios, axford Uriversity Press (1919)
5.4-15	A. Q, Gaydont Speatroscopy and Cumbustion Theory, Chapmen-Hall (29L8)
5.1-28	A. O. Caydoni Dissooiation Enargias and Spectra of Diatomic Moleculas, Dovar (1950)

5.4-17 R. M. Coody: The Physies of the Stratosphere, Cambridge Univeraity Press (1954)
5.4-18 C. N. Hinsbelwood: The Kinetics of Chemical Change of Oxford Univorsity Press (19ho)
5.4-19 H. Grad. Comandoations on Pure and Applied Mathematics, 2331 (1949)
5.1-20 C. S. Wang-Chans, G, E. Unlenbeok, Unipergity of MHohigan, CM-681 (1951) Transport Phenomera is Polyatomio Molecules
5.4-21 H. M. Nott-Smith, Physios Rev. 82885 (1951) - Solution of Boltzmann Equation for Shock Wave)
5.4-22 K, Watanabe, K, Zolikoff, E. C. Y. Inn - Geophyaical Researoh Papers No. 21 - Absorption Cooffioients of Soveral Atmospheric Oases
5.4-23 W. S. Benedict, E. K, Plyer, National Burean of Standands Circular 523 (1954) = High-Resolution Spectra of Fidro- oarbon Flamas in the Infrared
5.4-24 R. Gohamberg, Thosis CIT (19L7) - Fundamentel Differen- tial Equations and boundary Conditions for High Speod Slip Fion, and Thair Application to Several Speoific Problams
5.4m25 R. W. Mitohburn, D. W. O. Heddle: Proc. Rog Soc. A 226, p. 509 (1954) Absorption Cross Sections in the Vaculis oltra-Violet
5.4-26 太. C. O. Stueckelbere, Phys, Rev. 42 518 (1932)
5.4-27 H. E, Petschek, P, H. Rese, H, S. Gllak, A. Kane,A. Kantrowits, Jour. App. Phys, 26, P. 83 (2955)Spectroscopio Studies of Heghly Ionined drgon Produoedby Shook Waves
5.L-28 E, L, Resler, S. G. Lin, Ao Kantroulte, Jour. Appd.Phy. 23 (1952), p. 1390 - The production of HighTemperature Gases in Shook Thbes
5.4-29 S. S. Penner, Jour. Appd. Fitys. 21, 685 (2950) I5.lu-so s. s, jenner, D. Weber, jour. Appl. Phys. 22 (1951)p. 1164II

5.L-31 S. S. Penner, M, H. Ostrander, H. S. Teien, Jour, Appl. Phys. 23 (1952), P. 256
5.4-32 S. S. Penner, Jour. App1. Phys. 25660 (1954) -
 Molecules
5.4-33 R. O. Shreffler, R. H. Christian, jour. Appl. Phys. 25 324 (1954) - Boundary Distrubance in High Explosive Shook Tubes
5.4-34 F. J. Krieger, W. B. White - The Rand Corporation, Projeot Rand Report R-149 April 1949 - The Composition and Thermodnamic Properties of Air at Temperatures from 500 to $8000^{\circ} \mathrm{K}$
5.4-35 Strategio Weapon Systam: Bell Alraraft Corporation Preliminary Design Raport No. M1430945-010, deted 15 July 1953
5.4-36 MoKowen, P. B. : Bell Airoraft Corporation Consistent
Propertios of Air, Aerodenamic Method Note 116 , 1955 Properties of Afr, Aerodynamic Method Note "16, 1955
5.4-37 Seckwtih, I. E. 1 The Effect of Dissociation in the
Stegnation Region of a BluntmNosed Boct, Jour. Aero.
Sci. 20, $645-646$ (1953)
5.4-38 Moore, L. L. 1 A Solution of the Laminar Boundary Layer Equations for a Compressiblo Fluid with Variable Properties, Inoiuding Dissociation, Jourmal of the Aoronaatioal Soiunces, Vol. 19, August 1952
5.4-39 Hansan, O. Fradricki Note on the Frandit Number for Dissociated ALr, Joumal of teronautical Scienoes, Vol. 20, Nov. 1953
5.4-40 Kantrowtiz, $A_{1}:$ Preceeding of the Syuposium on Righ Speed Aerodynamios, Polytechnic Inatitute of Brookiyn, Jan. 1955 (to be publishad)
5.4-1工 Croce, Luigi: Lo Strato Limite Laminare Nai Gas, Monografie Soientiflohe DI Aeronautica, Numero 3, Roma, Dicembre 1946
5.L-L2 KcKowen, P. B. 1 Tables and Graphs for Comprossible Flow, Ball Alraraft Corporation, ferodymanies Research Note 52, June 1953

By	OE L Lo firemeft chatamion	Model__ Page 5-61
Checked		Misoite Arplane Report DIL -

[^6]

5.5 Tranqpiration Cooling

The preliminary feasibilty study of the Mx-2276 vehicle (Ref. $5.5-16{ }^{\circ}$) indicated that equilibrium skin temperature (as caloulated by extrapolation of conventional supersonic laminar boundary layer methode) on the order of $2000^{\circ} \mathrm{R}$ could be expected on some local areas at the most critical hypersonic fllght conditions. Since these temperatures are beyond the useful limits of know materials, it was ovident that some method of cooling the structure looally must be considered. In order to compare the effectiveness of conveotion, transpiration, or film cooling* in a practical structural design, it is neoesaary to first obtain the aspodynamic information in transpiration cooling, and to rea duce this information to a conveniont forn for use in atructural design atudias. Previciis theoretical investigations (at lower Mach number to be sure) (Ref. 5.5-10 and 5.5-14) indicate that transpiration cooling would be superior in several ways to film cooling, and hence the latter was not considered in detail.

A eurvey and evaluation of the exiating theoretical and experimene tal Literature on the aerodynamic aspects of transpiration cooling was made (Ref1s. 5.5-1 to 5.5-11) seeking a basis for the oalculation of design infomation. Practically all of the theoretical studios examined were rastifoted to supersonic flow at low Mach number, generally less than 3. Hence, it was deemed necessary to develop now solutions to the equations of the compressible laminar boundary layer inoluding the effects of transpiration cooling for Mach numbers up to 20 , and to carry out the calculations for the Maon number and altitude range of interest.

The theory developed and presented (in brief) below is essentially an extension of Morduchow's tapproach (Ref. 5.5-1) and is based on an integral mathod. The essential improvements mado were to assume a Sutherland relation between viscosity and temperature as used by Chapman and Rubesin (Ref. 5.5-13) Instead of the linear viscosity temperature law, and to include hat radiation from the bursace; the jatter is an important factor at the high wall temperatures associated vith the higher Mach numbers. As the end result, an approximate method was developed for computing the rate of mass flow injection of coolant required to keep a aurface at a given (arbitrary) temperature under given initial free atream conditions.

* In transpiration cooling the coolent is passed through a poroue skin and enters the airstream with a finite velocity normal to the surface; in film cooling, the coolant is injected through the surface by a slot or orifice into the boundary layer at one or more points streamwise along the aurface, and the coolent is spread over an area inumediately domstream of the opening by viscous action of the boundary layer. With convection cooling, coolant is passed under the surface to aot as a heat sink.

A set of exemplary design oharts ware calculated, typical examplea of which are shom in Figa. 5.5-1 and 5.5-2. In F1g. 505-1 the wall temperature is constant at 16000 R and the mean coolant flow required to keep a 10 ft . plate at this temperature is shown as a function of Mach number and altitudes these charts were also made for wall temperatures ranging from $600^{\circ} \mathrm{R}$ to $1800^{\circ} \mathrm{R}$. In Fibo $505-2$, the altitude-is fixeds and mean coolant flow is shown as a function of Mach number and surface temperature. The complete set of charts and datails of the calculation are given in Ref. 5.5-12. the atmosphere used in these curves is that given in NACA TN 1200.

In evaluating the meri ia of transplration cooling at the present time, many factors muat be taken into account. The mechanilsm of transpiration cooling is tc reduce the heat transfer at the surface by altering the velocity and temperature profiles in the boundary layer through mase injection into this layer. It would appear desirable, therefore, to consider a coolant other than adr. This coolent - particularly a liquid liko water - would absorb heat through its heat capacity and latent heat of vaporization before passing into the boundary layer at the temperature of the outside surface. Hovever, 0.11 theories, including that given below, apply strictiy only if the coolant and the flow in the boundary layer are the same gas, air in our case of interest. This stans from a basio simplification in the theory that assumes the resultant filow in the boundary layer to be homogeneous. Although it is not possible to predice the error made in assuming coolant other than air, $1 t$ is expected that the resulis of the analysis for the modirioation of the velocity and teriperatureprofiles by mass injection made for aile in air would reasonably apply to other coolante, particularly when the injection rate is emall (as it usually is). Since this is the most laborious part of the calculations, it is a.simple matter to consider the effects of all coolants once the air-air problem is solved.

The approach adopted here is 10 first consider air as a coolant. If this ahows merit in reducing the aerodynamic heating by modifying the flow characteristics in the boindaxy layer, thenwater or other coolant could be expected to be considerably better, even within the innits of the approximations involved and should be looked into in detadi. Accordingly, a calculation of the total weight of air as a coolant required to keep the first 101 of the wing section of the prom nosed MX-2276 configtration at a constant temperature of 1600° R throughout its flight path was made, and the details are shown in Figure 4.6.Li-1 disoussed In the General Aerodynamics Section. Use of a coolent such as water could be expected to at least halve the coclant flov required in this case. The scope of the present study did not permit detailed couparison with convection coolinge

One of the considerations involved in evaluating the merit of transpiration cooling is whether or not the initial (assumed) laminar boundary layer will remain so with injection. It is knom that tha noimal velocity associated with coolant injection has a destabilizing
effect (of. L. Lees - Ref. 5.5-4) but: on the other hand the theory of hydrodynamic stability (Ref. 5.5-15) indioates that surface cooling tends to atabilize the boundary layer. Which trand will pradominate in a given case of hypersonic flow is atill an open question, and must. ultimately be answered by expariment. The only known test of flow injeo. tion at supersonic speads is that reported just recentiy by Nagasmatsu (Ref. 5.5-in). He injéated adr into the boundary lajer through a spanwise series of orifices located near the leading edge of a flat plate at a Mach number 5.8. He found that transition moved upatream as the mass injocted was increased to 2 percent of the boundary Iayer mass defect on the plate, but then any further increase in injeoted mass fllow had very little addytive effeot and did not reduce transition Reymolds mumber to less than 2×106. In comparison with this 2 percent limit, the injected mass flow percentage of the boundary layer mass FIow decrement was computed for the MX-2276 glide path point with the maximun value of Q / W at the one foot station. This mass flow percentage was found to be only $1 / 2$ of a percent. Thus indications are that the 1aminar boundary layer will remain so with the low practical injection rates.

Other exdeting experiments with tiknspiration cooling were predominately concerned with the oooling of rocket combustion chambers and hot turbine blades, which is a different type of problem. Here, in low speed flow, experiments indieate good qualitative and quantitative agreement with theory (cf. Rof. 5.5-7).

Further on the question of atabllity of the laninar boundary layor with injeation, some attempts, one just pubisished at the time of witine, (cf. Ref. $5.5-2$ and $5.5-6$) have been made to investigate just how the two opposing factors of blowing and cooling combine to affect stability. The results, based on the Inniees atablitity theory indioate that (in general) it is posoible and prautical to cool the surface suffioiently so that the boundary layer is atable. These conclusions must be considered with cautiong gince the LinwLees theory itaself has many assumptions which restriot its applicability to low supersanio Mach number flowe,

The conclusions of this study are that transpiration cooling has considerabie merit as a means of cooling the cyitically hot parts of the $\mathbb{M X}=2276$ structure, and design studies taking into account the employment of various coolants and the practical problems of porous materials, duoting and contril equipment, eto. are very much in ordor. To this end, the method and design charts developed herein and in Ref. 5.5-12 should be of considerable use. It should be noted also that, an extra dividend in the form of reduced skin friction is obtained with the use of transpiration cooling.

What is needed, however, are experiments in transpiration coolinf, at supersonio speeds. It is known that these are underway at sevoral facilities (Univeraity of Michigan, NACA Langley) and aro plannod at

Analysis:

The basic theory is a modification of Morduchow's work which is presented in detail in Ref, 5.5 ml . Essentially, a simple expression is derived for the normal injection velocity distribution required to maintain a given, uniform temperature along a porous surface in the laminar boundary layer region of a compressible flow with a given yolooity distipibution outside of the boundary layer. The analysis is kaed on an application of the Kazan - Pohihausen method to the nomentum and energy boundary layer equations and use of a heat balance equation with a Dorodnitsyn type of transformation of variables only the flow over a flat plate parallel to the free stream is considered here. The Sutherland relation between viscosity and temperatures as used by Chapman and Rubesin (Ref. 5.5m23) is assumed, and an additional term for the inclusion of heat radiation from the surface was. included in the heat balance equation.

Initial Assumptions

(1) $P r=1$
(2) Velocity and enthalpy profiles are expressed by

$$
\begin{aligned}
u / u_{1}-a_{1} \eta & +\left(6-3 a_{1}\right) \eta^{2}+\left(3 a_{1}-8\right) \eta^{3}+\left(3-a_{1}\right) \eta^{4} \\
H / A_{1}=h+b_{1} \eta & +\left(6-6 h-3 b_{1}\right) \eta^{2}+\left(8 h-8+3 b_{1}\right) \eta^{3} \\
& +\left(3-3 h-b_{1}\right) \eta^{4}
\end{aligned}
$$

(3) Viscosity temperature relationship is

$$
\mu / \mu_{1}=o_{H} T / T_{1}
$$

where

$$
G_{H}=\sqrt{\frac{T_{W}}{T_{1}}}\left(\frac{T_{1}+216}{T_{W}+216}\right)
$$

Introducing the Dorodnitayn variable t defined by

$$
y=\int_{0}^{t}{\underset{T}{T}}_{T}^{T} d t
$$

and integrating the momentum equation from $t=0$ to $t=\$$ gives

$$
\begin{equation*}
F_{1} K K=K \phi+F_{3} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{1}=0.1143+.00953 a_{1}-000397 a_{1}^{2} \tag{aa}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{3}-a_{1} \tag{ab}
\end{equation*}
$$

The coefficients a_{1} and b_{1} were found by imposing the boundary conditions at the wall?

$$
u / L_{1}-O_{3} H / \mathrm{H}_{2}=\mathrm{h}
$$

upon the momentum and energy equations, and, for zero pressure gradient are

$$
\begin{align*}
& a_{1}=\frac{2}{1+\frac{1}{6 C H} \phi K} \tag{Ba}\\
& b_{1}=\frac{2(1-h)}{1+\frac{1}{6 G_{I I}} \phi K} \tag{3b}
\end{align*}
$$

The heat balance equation is

$$
\begin{equation*}
\left(k \frac{\partial T}{\partial T}\right)_{W}-\rho_{W} \nabla_{W} o_{p}\left(T_{W}=T_{Z}+\varepsilon \sigma T_{W} 4\right. \tag{4}
\end{equation*}
$$

From the expression for the enthalpy profile

$$
\begin{equation*}
\left(\frac{\partial T}{\partial T_{N}}\right)_{T}=\frac{T_{2}}{T_{W}} \frac{T_{0}}{\delta} b_{1} \tag{5}
\end{equation*}
$$

and substituting Eq. (5) into Eqo(4)togather with the assumption that $\mathrm{Fw}=1.0$, we obtains final is

$$
\begin{equation*}
b_{1}=\frac{2(1-h)}{1+\frac{g K}{E C_{g}}}=\Phi K\left(h-\frac{T_{c}}{T_{e}}\right)+A K \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{e \sigma L h T_{Y} 4}{k_{V} T_{1} R_{e} 1 / 2} \tag{7}
\end{equation*}
$$

Solving the above quadratic for the injection parameter, ϕ, we obtain

$$
\begin{align*}
& \phi=\left\{\frac{A}{2\left(h-\frac{\left.T_{0} a\right)}{T_{\theta}}\right.}\left[\frac{A}{2\left(h-\frac{T_{Q}}{T_{\theta}}\right.}-\frac{6 C_{H}}{K^{2}}\right]+\frac{9 C_{H}}{K^{2}}\left[C_{Q}+\frac{4}{3} \frac{1-h}{h-T_{0} / T_{\theta}}\right]\right\}^{1 / 2} \\
& =\left(\frac{3 C_{H}}{K}+\frac{A}{2\left(h-T_{0} / T_{\theta}\right)}\right) \tag{8}
\end{align*}
$$

Let

$$
B=\frac{A}{2\left(h-T_{0} / T_{e}\right)} \text { and } D-G_{H}+\frac{1}{3}\left(\frac{1-h}{h-T_{\alpha} / T_{e}}\right)
$$

Then

$$
\begin{equation*}
\phi K=\sqrt{B^{2} K-6 B C_{H} K-9 C_{H}^{D}}-\left(3 O_{H}+B K\right) \tag{9}
\end{equation*}
$$

Equation (1) can be written as

$$
\begin{equation*}
\frac{d K}{d \xi}=\frac{1}{F_{1}}\left(\frac{\phi K+F_{3}}{K}\right) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
d \xi=\frac{F_{2} K d K}{\phi K+F_{3}} \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
\xi=\int_{0}^{\xi} d \xi=F_{1} \int_{0}^{K} \frac{K d K}{\phi K+F_{3}} \tag{11b}
\end{equation*}
$$

However

$$
F_{3}=a_{1}=\frac{b_{1}}{1-h}=\frac{1}{1-h}\left[\phi K\left(H-\frac{T_{0}}{T_{e}}+A K\right]\right.
$$

thus

$$
\begin{align*}
\phi K+F_{3} & =\phi K\left(1+\frac{h-T_{0} / T_{0}}{1-h}\right)+\frac{A K}{1-h} \\
& =\frac{1-T_{0} / T_{0}}{1-h}(\phi K-E K) \tag{12}
\end{align*}
$$

Solving the above quadratic for the injection parameter, ϕ; we obtain

$$
\begin{align*}
& \dot{\phi}=\left\{\frac{A}{2\left(h-\frac{T a)}{T_{\theta}}\right.}\left[\frac{A}{2\left(h-\frac{\left.T_{0}\right)}{T_{e}}\right.}-\frac{60_{A}}{K^{2}}\right]+\frac{C_{H}}{K^{2}}\left[0_{H}+\frac{4}{3} \frac{1-h}{h-T_{c} / T_{e}}\right]\right]^{1 / 2} \\
& \propto\left(\frac{3 G_{H}}{K}+\frac{A}{2\left(h-T_{c} / T_{\theta}\right)}\right) \tag{8}
\end{align*}
$$

Let

$$
B=\frac{A}{2\left(h-T_{c} / T_{\theta}\right)} \text { and } D=C_{H}+\frac{l}{3}\left(\frac{1-h}{h-T c / T_{0}}\right)
$$

Then

$$
\begin{equation*}
\phi K=\sqrt{B^{2} K-6 B C_{H} K=9 C_{H} D}-\left(3 O_{H}+B K\right) \tag{9}
\end{equation*}
$$

Equation (1) can be written as

$$
\begin{equation*}
\frac{d K}{d \xi}=\frac{1}{F_{1}}\left(\frac{\phi K+F_{3}}{K}\right) \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
d \xi=\frac{F_{1} K d K}{\phi K+F_{3}} \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
\xi=\int_{0}^{\xi} d \xi=F_{1} \int_{0}^{K} \frac{K d K}{\phi K+F_{3}} \tag{11b}
\end{equation*}
$$

However

$$
F_{3}=a_{1}=\frac{b_{1}}{1-h}=\frac{1}{1-h}\left[\phi X\left(H-\frac{T_{Q}}{T_{0}}+A K\right]\right.
$$

thus

$$
\begin{align*}
\phi K+F_{3} & =\phi K\left(1+\frac{h-T_{0} / T_{\mathrm{e}}}{1-h}\right)+\frac{A K}{1-h} \\
& =\frac{1-T_{0} / h_{0}}{1-h}(\phi R-D K) \tag{12}
\end{align*}
$$

where

$$
E=A / 1 \cdot T_{c}^{T}
$$

so that

$$
\begin{align*}
& \xi-\int_{0}^{K} \frac{1-h}{I-T C_{R} F_{I} R d K} \sqrt{B^{2} K^{2}-6 B O_{H} K+9 C_{H} D}-\left[(B-I) K+30_{H}\right] \\
& \\
& \int_{0}^{K} I(K) d K
\end{align*}
$$

Mathod of Computation

1. For a selected set of free strean conditions, wall temperatures, and Initial coolent temperature, $\mathrm{O}_{\mathrm{H}}, \mathrm{K}_{\mathrm{g}} \mathrm{A}_{9} \mathrm{~B}_{\mathrm{y}} \mathrm{D}_{\mathrm{g}}$ and E are determined.
2. F_{1} is computed from Eq. (2a) where a can be found fran the expression derived from the heat balance equation without radiation consideration. This expression is

$$
\begin{equation*}
a_{1}-\frac{2}{1+\frac{C}{G C}} \tag{14}
\end{equation*}
$$

where
$\operatorname{ca3} \mathrm{CH}\left\{\left[1+\frac{4}{3} \frac{1}{\mathrm{C}_{H}} \frac{1-h}{h-T_{a}}\right]^{1 / 2}-1\right\}$
The discrepancy in e_{1} will have very little effect upon the numerical value for fl.
3. For selected values of K, the corresponding values of I are determined.
4. A plot I va. \mathbb{R} is mado and the variation of \mathbf{S} with K is determ mined by a graphicel or numerical integration procodure. An appioximate value for K at ξ - 1.0 can be found fran

$$
\begin{equation*}
K(\xi+1,0) \cdot \sqrt{\frac{2}{F_{1}}}\left[C+\frac{2}{1+\frac{C}{C C_{H}}}\right] \tag{16}
\end{equation*}
$$

SECRET

Section 5.5 -Symbols
$a_{1} \quad$ Coefficient of n in velocity profile
$b_{1} \quad$ Coefficient of \uparrow in enthalpy profile
$o_{p} \quad$ - Specific heat of gas at constant pressure
H - Stagnation Enthalpy
$h \quad H_{w} / H_{1}$ for $P r=1,0, h=\frac{T_{W}}{T_{\theta}}$
ix - Coefficient of thermal conductivity
I \quad Length of plate
Pr - Prandtl number
$Q \quad-e_{W}{ }^{W}$
$\operatorname{Re} \quad$ Reynolds numbers $=\rho_{1} u_{1} I / \mu_{1}$
T Absolute temperature in O_{R}
T_{0} Initial temperature of the coolant
To Equilibrium wall temperature for zero heat transfer

- $T_{1}\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right)$
$W \quad P_{I}{ }^{n} 1$
$t \quad=$ Variable defined by $y=\int_{0}^{t} \frac{T}{T} d t$
u, v Velocities of flow parallel and perpendicular to the surface
x, y Distance along, and normal to the surface
8 . Boundary layer thickness in (x, t) plane
$\varepsilon=$ Enisaivj.t.y
$\eta=t / s$
σ a StephanmSoltzmann constant $\left(\sigma=4.8 \times 10^{-13}\right)$
$K=(\delta / L) \mathrm{Re}^{\mathrm{l} / 2}$
μ - Absolute viscosity
g $\quad \therefore x / L$
$\phi \quad \frac{\mathrm{P}_{n^{V}}}{\mathrm{e}_{1}{ }_{1}} \mathrm{Re}^{1 / 2}$. infection parameter

Subscripts

$1 \quad$ - values at out ir edge of boundary layer
$w \quad$ values at wall
a prime (1)denotes differentiation with respect to 8 .

Section 5.5-References

5.5-1 Morduchows Moi MOn Heat Tranafer Over a Sweat-Cooled Surface in leminar Compreseible Flow with a Pressure Gradient". Journal of Aeronautical Soiences, Vo1. 19, No, 10, October 1952.
5.5-2 Klunker, E.B. \& Ivay, HoRot MAn Analysis of Supersonic Aeron dynamic lleating with Continuous Fluid Injection". NACA TN 1987, December 1949.
5.5-3 Yuan, SoWos Mheat Transfer in a Laminar Compressible Boundary Layer on a Porous Flat Plate with Vamiubia Fluid Injection". Polytechnic Institute of Erookiyn, TM-PIB-15, September 1950.
5.5-4 Leis, Lil "Stability of Laminar Boundary Layers with Infection of Cool Gas at the Walil. Pxinceton University, TR-11, 5 May 1948.
5.5-5 Dorrence \& Dorel "The Effect of Mass Transfer on Compressible Turbulent Boundary Layor Skin Friotion and Heat Transfer". Journal of Aeronautical Sciences, Vol. 21, No. 6, June 1954.
5.5-6 Low, CoM.1 "The Compressible Laminar Boundary Layer with Fluid Injection". NACA TN 3LNA, March 1955.
5.5-7 Libby, Kaufman \& Harringtont "An Experimental Invastigation of the Isothemal Laminar Boundary Layer on a Porous Flat Platel. Polytechnic Institute of Brookiyn, TM-PIB-16, April 1952.
5.5-8 Eckert, E.RoG. \& Livingood, J.N.B.1 "Mothod for the Calculation of Heat Transfer in the Laminar Region of Air Flow Around Cylinders of Arbitrary Cross-section (Including Large Temperature Differences and Transpiration Cooling)". NACA TN 2744, June 1952.
5.5-9 Ness, N.: "On the Temperature Distribution Along a SamiInfinite Sweat-Cooled Platell. Joumal of Aeronautical Sciences, Vol. 19, No. 11, Novermber 1952.
5.5-10 Eckert, E. ReGo \& Livingood, JoNeBe: "Comparison of the Effectiveness of Convection, Transpiration, and Film Cooling Methods with Air as a Coolant". NACA TN 3010, October 1953.
5.5-11 Naganatsu, H.Tos "Surmary of Recent OALCIT Hypersonic Experimental Investigation". Journal of Aeronautical Sciences, Vol. 22, No. 3, March 1955.
5.5-12 Landphair, L.G. 1 Transpiration Cooling of a Flat Plate in Isaminar Compressible Flowl. Bell Alroraft Corp. Research Note No. 76 (Unputblished).

5.5-13 Chapman, DoH. \& Rubesin, MoWo: MTemperature and Velocity Profilles in the Compressible Laminar Boundary Layer with Arihitary Distribution of Surface Temperature". Journal of Aeronautical Sciences, Vol. 16, No. 9, September 1949.
5.5-14 Knuthy EoLo: "The Meohanios of Film Cooling". California Institute of Technology, Ph, Di Thesi,s, 1954.
$5.5-15^{\prime}$ Lees, L. \& Lin, C.C.1. "Investigation of the Stability of the I aminar Boundary Layer in a Compressible Fluid". NACA TN 1115, September 1946.
5.5-16 "Strategic Weapon System". Bell Aircraft Corporation PreIintnary Design Report No. D143-945-010 dated 15 July 1953.

It is ander ganorally nectpted that the trend of pressure variation aredicted by the Nowtoni an limpact theory, namely

$$
\begin{equation*}
p=\left(1 / 2 \rho_{\infty} U_{\infty}^{?}\right) 2 \sin ^{2} \alpha \tag{1}
\end{equation*}
$$

agrees quite well with most of the high Mach number test results as well as with exact numerical solutions based on the method of characteristics for inviscid continum flow. fis essential assumption underlying the above formula is that the change of momentum of the flow element does not take place until its collision wi.th the body, and this could only be trie in free molecular flow under very special assumptions.

On the other hand, a simplified model which brings out the essential features of the flow of a continuous medium at high Mach number can be constructed as illustrated in Figure 5.6-1. Assuming that the Mach number is so high that the shock wave is very etrong and, in addition, that the Muid is compressed to a diminishing volume by the shock, it is seen that the extent of the region between the shock and the body surface becomes necessarily small. It follows that the shock wave forms a surface envelope around the body and the fluid coasts along the body imnediately behind the shock (sse Figure 5.6-2). The pressure force acting on the body in such a flow model is simply the sum of the impact pressure - which is that given above by Equation (1) - and the centrim fugal force aricing from the infinitely dense fiuid coasting aleng thecurved body surface; the static pressure in the free otream can be imored, if the infinitcily thin layer is assunind iriviscid*, the Busemann formula

$$
\begin{equation*}
\frac{p}{\frac{1}{2} \rho_{m} u_{\infty}^{2}}=2 \sin ^{2} \alpha+2 \cos \alpha \frac{d \alpha}{d x} \int_{0}^{x} \sin a d x \tag{2}
\end{equation*}
$$

where a is the local swiface incidence, is obtained. A similar formula can be ohtained for bodies of revolution.

* The nasumition made in Porerenco 5.6-6 concerning the constancy of velocity ar mort individun particile while consting along the curved brdy serace is actiolly equivalent to the assumption of an lruisejt Mow incosar as it affecte tho determation of the centrituma foren.

The Buscman formula which is deduced from a simplified continum model reduces to the Newton impact pressure formula when applied to a wedge. The claracteristics of the Inviscid continuum flow under the assumption of infinite colupression ratio for the shock is ravealed in the additional tern - the centrifugel effect (the realization of which requires an exchange of momentum amongst the fluid particles). However, compartson of results of Busemann and Newton formulas with exact numerical solutions for thin airfoils or bodies at very high Mach number in alr (with ratio of specific heats r 1.4) seems to show that the effect predicted by the second term of Equation (2) is absent and the Newtonian impact pressure or the tangent-wedge formula gives a better numerical approximation. In particular, the prediation of the point of "zero" pressure on the surface is given to soon (i.e. too close to the nose) by Equation (2).

Now (undissociated) air with a speot fic heat ratio $r=1.4$ say, cannot be infinitely compressed by the strong shock; the limiting compression ratio is only

$$
\begin{equation*}
\frac{\rho s}{\rho_{00}}=\frac{r+1}{r-1} \tag{3}
\end{equation*}
$$

which (for no diasoclation) is of the order of unity. It is seen then that fluid density if finite, and variable in the layer, and the thickness of the layer grows downstrean along the surface because fluid mass is beirg entrained in it. The concept of the flow behind the shock being confined to an infinitesimally thin layer - which forms the basis for lquation (2) - is no longer applicable, the extent of the fncluded weprion (be ureen shock and surface) being small but finite near the imnt and diverging from the body downstream. In the hypothetical case of a gas where $r=1$ (infinite internal degreses of freedom) the Busemam formila is satisfactory, as demonatrated by the exanple in Feference 5.6-6 (see also Figure 5.6-4).

In Appendix 5 , a pefinement of the Busemann flow model is given where the (silight) divergence of the shock wave from an (slightiy) inclined surfacs and the thickeninig of the Hentropy layer" (aince the shock is strong and curved, the flow is rotational) is taken into account, The allalogy between a steady hypersonic flow over a three (or two) dimensional thin body and unsteady cross flow (of one lese dimension) it employed (cf. References $5.6-4$ and $5.6-5$). Thus the equivalent problem is jidentiflable as one involving an Hentropy layern between mindvaricine piston and a strong shock wave. The momentuma integral method te then applied to this entrouy-layer in a similar fashion as in the ordtrary viscous boundary layer probiems.

For the case of infinite Mach number, this piston theory (a similar method can be applied to the case of body of revolution) yields the Busemann formula as the zeroth order approximation when the solution is developed as an asymptotic expansion in descending powers of the limiting compression ratio, 1.e $\left(\frac{\gamma+1}{\gamma-1}\right)$ this zeroth approximation gives*

$$
\begin{align*}
& p^{(0)} \approx \operatorname{er} 丩^{2} \frac{d}{d x}\left[I(x) \quad Y^{\prime}(x)\right] \\
& \approx \operatorname{erf}\left[Y^{2}(x)\right]^{2}+\operatorname{ec} U^{2}-Y(x) Y^{n}(x) \tag{4}
\end{align*}
$$

whereas the correction term accounting for the flaitenses of the compression ratio, though of order of $\left(\frac{y-1}{Y+1}\right)$, is indeed not numerically email; when applied to the wedge at incidence α, it gives the correct plaiting value of the so called tangent-wedge formula

$$
\begin{equation*}
p \approx 1 / 2 e_{\infty} v_{\infty}^{2}(\gamma+1) \alpha^{2} \tag{5}
\end{equation*}
$$

and when applied to the parabolic airfoil it gives a correction so large (for $\gamma=104$) that an opposite effect to that of the centivifugal is observed as shown in Figures 5.6 m 3 and $5.6-4$. Unfortunately, such an expansion is not uniformly valid (with respect to x) and diverges at some point where the formal zeroth order (Busemann) solution yields a negative pressure.

The result in Figure 5.6-3 indicates that for flow over a slightly convex surface, the finiteness of the compression ratio causes the shock front to deviate from the surface, resulting in a stronger shock wave (than the Busemenn result) and consequently a higher pressure jump which tends to balance the pressure decrease due to the centricfugal force. This fact is demonstrated clearly in the particular solution worked out for the surface (FIgure 5.2-5).

* Thin formula sinews that, to the zero order (in $\frac{\gamma-1}{\gamma+1}$), the total lift depends only on the value of $I(x) F(x)$ at the trailing edge, egg. if the local incidence at the trailing edge vanishes, the total lift vanishes (the result is also valid for a blunt lie. provided the slope at the trailing edge is amain).

$$
y \sim x^{3 / 4}
$$

which is the type belonging to the "viscous boundary layer" thickness" near the leading edge portion of a wedge under the influence of the self-induced pressure gradient. The asymptotic solution in the development of ($\frac{\gamma-1}{\gamma+1}$) does not behave peculiarly in this case and it agrees well numerically iitt the similar solution obtained directly from the momentum and enere integral relations. The results show that the pressure is higher then the tangent-wedge value by a factor of 1.14 for $\gamma=7 / 5=1.4$ and 1.32 for $\gamma=5 / 3$. This pressure increase instead of decrease from the tangent-wedge value is explainable by the fact that the location of the shock wave is found 1.36 times higher than the tangent-wedge value for $\gamma=7 / 5$ and 1.4 times higher for $\gamma=5 / 3$; thus in spite of the centrifugal force effect, the resultant pressure at the edge of the hypersonic goundary layer may be higher than tine vailue provided by the tangent-wedge formula.

In the absence of solution based on the full equations, these Talues, namely 1.14 for $6=7 / 5,1.32$ for $\gamma=5 / 3$, are taken as the correction factor for the tangentwedge formula used in the cheory of shock wave - boundary layer interaction. The error in the se solutions, when applied to the case of high but finite Mach number, is of the order of 1 (ise $\propto)^{2}$ in comparison with unity, the first order effect of which can be determined in a similar manner as in the expansion in $\left(\frac{\gamma-1}{\gamma+1}\right)$.

COMPARISON OF VARIOUS FORMULAS AT $M_{\infty}=\infty$

5.? Iransition

Yethods have been given for the detemination of the local gkin friclion and heat transfer pametors for the caseg when the boundary layer is laminar pr turbulent. In any practical computation of friction drag or aerodynanie heatinc, the state of the boundary layer must first be asomed, i ede, a knowledee of the transition point is required. Unfortumately, the present state of reliable knowhede on tisis subject leaves much to be desired. The efrect and the importance of the many variables which could effect trasition and the mechanism on transition itsedf is not yet understood; hence, the assumbtions of theory are incomplete and experments are not rully conirolled. The best that can be done at the present time is to assume a trancition Regolds nunber based on the trends exhibited by available wind thifict and rlight test data. Tn the ordelnal proposat report a hration Reynotds number He o $2.3 \times 10^{\circ}$ at all thet mamers-ras asbuned: Thls appears to have been congervatively low judgig from the trents exhibited by the test
 digcussions whth several experaentors during our vists to other remarch agenctes. !!oneve, $1 t$ is interosing to note that even on the basts of the assumed hemetion momoldember or a. 5×10^{6}, the boundary layer over the wing of m-2270 (chords wayng l'ren 10 to ho rto) is practically all homar for the major portion of a tyical Mithe path whowe $A=10$ and Re/rio is loss than 1×10^{5}.

It comot be sade that were is acmally a theory for the
\qquad
 theoretical investigations of he shathey of the lam man bombary layer in a compessible flad (e.

 yield moee than chatitatyermedtes and timas, as it is based on a

 layer Ebbitayis ony an appoximelon to the detuat mechangm of

 theory it is iolt thet hermolnes os af results of his lype,

 1- -
 - . . - -

tunnel and, particulariy, free filight tests. It is known that pertinent tests of this nature are now underway or planned. It seems apparent, therefore, that any reliable information on transition point must come from carefully instrumented and rnalyzed flight tests, where all possible controlling factors are considertd. These are needed, particularly at Mach numbers greater than three. There seems to be same hope that with research missiles now reaching tewards Mach ten, that illight test transition data in this neighborhood will be available in the next year or so.

A survey of experimental data on determination of the transition point has been made and the resul ts are summarized in Figures 5.7-1 and 5.7-2. As can be seen from Figure 5-7-1 no sharply definitive results can be found because of the varied tunnel characteristics, although, apparentiy, trends can be established. In the wind tunnel, the transition point is located through examination of the plots of recovery factor or skin friction coefficient versus Reynolds number, or through Schlierin photographs or other visual methods such as china clay, etc. For firing range flight tests such as those in Reference $5.7-3$, shadowgraph methods can be used to find the transition point or, if telemetered data is available, graphical analyses as mentioned above are used.

The effects of various paraneters on the location of the transition point has been investigated experimentally. These paramet.ers include: addition and removal of heat, surface roughness, angle of attack, wind tunnel turbulence, free-stroan stagration pressures, and leading edge thickness. Refercnces 5.7-4 to 5.7-11 found that heating of the surface results in earlier transition thile cooling has the reverse effect, as predicted by the smal.l disturbance theory of boundary layer stability (cf. Reference 5.7-1). Howiever, the stabilizing effect of heat removal is greatly rediced if flow disturbances are present such as those caused by roughress, tunnel turbulence, or transition inducing devices (see References 5.7-4 and 5.7-5). Reference 5.7-4 th ows that if the insulated plate friction coefficient is large, the transition Reynold's number is greatly influenced by heat flow; if amall, heat flow effects are greatiy reduced. Increased surface roughness results in earlier transition; as does an increased angle of attack upon the trat sition on the upper surface of the model (as illustrated in References 5.7-3, 5.7-12, 5.7-13). Transition Reynold's number increases whith the free-stream stagnation pressure and also with the leading edge thickness of the model, according to Rererence 5.7-14. Wind tumel turbulence may have great effect upon the location of transition aroa, terding to decrease the transition Reynold's number as the degree of turbulcree increases. Thereforc, find turnel results arc often charactiristic of the tunnel used, since strean-turbulence is a function of thr tumbel design. In Reference 5.7-75, a concical model was tested in wabur Hich supersonjc wind tumele. Tunnel flev characteristics were :o virid, that no conclusive results could be found. Hovever, in ane:t race at leant, trombs an be established throuch wind tumel emedinut tinn wer thouith spectile date may be questionable.

Section 5.7 - References

5.7-1 Lees, Lo: "The Stability of the Laminar Boundary Layer in a Compressible Fluid". NACA TN 1360, July 1947.
> 5.7-2 Lees, L. \& Lin, C.C.: MInvestigation of the Stability of the Laminar Boundary Layer iri a Compressible Fluidif NACA TN 1315 , September 1946.
5.7-3 Jedllcka, V.R.; Wellna; MoE. 3 and Selff; Aol Experimental Determination of Boundam Leyer Transition on a Body of Revolution at M $=3$. $5 H_{1}$. NACA RM A53L18, March 15; $195 L^{\circ}$
S.7m C Czarnecki, K.R. and Sinclair, A,Rof "Preliminary Investigation of the Effects of Heat Transier on Boundary Layer Transition on a Parabolic Body of Revolution (NACA PM-10) at a Mach number of 1.611 . NACA TN 3165, ApH11 1954.
5.7-5 Klino, SoV. and Shapiro, A.H. 2 "Experimental Investigation of the Effecte of Cocling on ryiction and on-Boundary Layer Tremation for Low Speed Gae Flow at the Entiry of a Tubel. NACA TN 30L8, NOVember 1953.
5.7-6 Frick, C.Woy jre and McCullough, O.R.: "Tests of a Heated Lowm Drag Alrofoill. NACA 12-3-12, Decenber 3, 1952.

5.7-7 Scherrer, Ro1 "Comparison of Theoretical and Experimental
Heat Transfer Characterdstics of Bodies of Revolution at
Supergonic Spoeds". NACA Roport 1055: 1951.
5.7-8 Schorrer, Re; Wunbrow, W.Ro; and Cown, FoEios "Heat Transfer and Boundary Layer Tranaition on a Haated Cone at a Mach Number of $1.55^{\prime \prime}$ 。 NACA RM A81.28, January 10, 1949.
5.7-9 Scherror, R.: "Doundary Layer Transition on a Cooled 20° Cone at Mach Numbers of 2.5 and 2.01". NACA TN 2131, July 1950.
5.7-10 Liepmann, HoW. and Fila, Q.H.: "Investigation of Effects of Surface Temperature and Simple Roughness Elemerits on Boundary Layer Transitior". NACA Report 890, 1947.
5.7-17 HLgesne, R, We and Pappas, Coco: "An Experimental Investipation of the Effect of Surface lleating on Boundary Layer Transition on a Flat Plate in Supersonic Fleul. NACA TN 2351, April 1951.
5.7-12 Dryden, 11.L.: "Review of Publiahad Data on the Effect of Roughness on Transition from Laminar to Turbulent Flow". Journal of Aeronautical Sciences, Vol. 20, No. 7, July 1953.

It would be short-sighted to consider the problems of a system or contomplate their solution without some knowledge of the test facilities in which the problems could be investigated. In this section some of the available facilities and those planned or under developnent which are noteworthy with respect to hix-2276 - are briefly discussed and scme basic information on the facilities presented. More complete information than presented here will be necessary for detailed test planing. This should be obtained during the next MX-2276 phase for the facilities of particular interest.

A bar graph showing the coverage of the Mach number range by the various facility types is show in Figure 6.-1. Tables 6.-1 to 6.-3 present information on the different facilities and possible $M X-2276$ uses. As a general conclusion it can be said that there are now a limited number of facilities with which most MX- 2276 hypersonic aerodynamic probleme can be attacked and that in the near future (say within 2 to 3 years) a considerable number of new facilities of larger size and/or incroased test ranges will be available.

6.1 Wind Tunnels

The wind tunnel is usually the preferred acredynamic test tool if the data desired is within its limitations. Wind tunnel testing is the leastiexpensive and time corsuming (o.g. as compared to flight test), test conditions can be cerefully controled, and instrumentation is relatively less complicaten and more accurate. Unforturetely, it Is generally dsfficult to sipulate 217 the important hypersonse flight paramsters simultaneously in the wind tumel. But; this is not to say the wind tuatel will not be invabuste to the wi-2?76; past experierce hae shown it delinitely worthwille lo onmormyse certain parameters in order to fnestigate the effect.s of others; e.ig, in the past few years supersorite wind tunnal tenting has genemaly been at flight Mach number but at less thar flle etit. Reyncids numbers. The several. types of wind tunnels, their abilities and imitation, are discussed hereafter under their respective headings.

G.1. 1 Supersontc Wind Tunnels

There are a number of aupersonde wind tunnele (K_{L} 5) in thia -ountry today in which MX-2276 testinc could be carried out. These are generaliy wall known so that a listine ls not included here. Mary of the tunnels do not providn elther oursioient strsam Reynoids numbers or tomperature for true filght similiations but for sonoral configuration development and ovaluationitit this Maoh number range thase quantitios usually are not considered of first importanoe.

6.1.2 Heat Irrneter Turmels

The 1 nability of the supersonic wind tumel, designed for general test work, to produce flight temperatures bas led to a class of tunnels plamed for use in high temperature flow and heat transfer studies. A number of these are described in Table 6.-1. It will be noted that none of these are ready for testing though they are definitely in work. Further it will be seen that these tumels are limited in Mach number range and that several use the products of H_{2} and O_{2} combustion as test media instead of air.

6.1.3 Low Density Wind Tunnels

The purpose of this type of funnel is to investigate the special fluid flow phenomena which occur in high altitude, low density flight, such as slip flow effects which may be significant to $M X-2276$. The only facility cited here is that at the University of California at Berkeley (Table 6.-1) which has produced much of the empirical slip flow regine information available today.

6.1.4 Hypersonic :ind Tunnels

The hypersonic wind tunnels which may be useful to $M X-2276$ are described in Table 6.-1. For the mpersonic tunnels using air as test media the supply air is gen really heated to temperatures on the order of $1000^{\circ} \mathrm{F}$ to prevent condensation of the air components; however, this does not even approach the stagration temperatures needed for flight temperature simulation. On the other hand, the hypersonic tunnels can produce Reynolds numbers comparable to those of $1 \times 2-276$ fligit. This type of tunnel thus can be used to investieate general hypersonic flow phenomena excepting those which are the products of the extreme flight stagnation and recovery tenperatures - such as real gas and dissociation effects.

6.1.5 Shock Tubes and Impulse Wind Tunnels

The shock tube has become well known as a tool for basic flow investigations. Because of its unique abjilitites and low cost a number have been built and are operated by universities and research organizations. Of partizular jnterest to MX-2276 is that sinociss waves strong enough to cause measurable relaxation intervals, dissociation, and ionization can be produced in the shock tube. $:$ The shock tuive is limited by the very short time in which steady test flow exists at the test section and in maximum Mach number, which is betwoen $M-2$ and 3 for real air.

An outgrowth of added interest to MX-2276 is the shock tube driven impulse wind tunnel in which shock tube technique is used $t s$ produce an initial high energy column of air at low supersonic Mach number that is

SECRET

By	\% ELLeftinenaft contiaiou	Model__ P	63
Choe		Miasile Aliplano \qquad Rapors	0143-945-012
i		- 1	

then arpandad through a nozzie to inpersonio Maoh murbera. The resultant flow temperatures are of the sane order as those of filight. This then gives a tool for the atucy of high temperature bypersonio phanomens. Its severoat idmit is the vary stort steady fow times Less than ofl seconds - which make instrusmentation very diffioult. Other possible ifmitations ase that the period of ateady fiow way be so ahort that the boundary layer is not fully eatablished on the test models axd that high tamperature phenomena such as dissoaiation may pirst ocour (prematurely) in the shook tube ingtead of at the model. In general this technique is atili in the dovalopnent stage and its frill potentialities and/or limitations remaln to be fixed, people working in this field feel they will be able to measure model presaures, heat transiar rateg, and evan drags with uabie acouraoias.

Another type of impulae wind tunnel uses supply air almost instantaneously compressed to vary high pressures and temperatures by a piston driven either by axplosion or by rapidily released, oconpreseed, bottled gas. The test conditions again are high temperature - hyperbonic. The test tire is improved to the order of 1 seconds otherwise, the above limitations senorally apply to this type also. Soveral of both types of impulse wind tunnel are given in Table 6,-1.

6.2 Ballistic Raneas

The capabilitios of several ballistio facilities are shown in Table 6.-2. Advantages of ballistic range testing are in the real filent conditions that aan be produced and the elimination of the air flow non-undformities and turbulanee which inherently exist in wind tunnela. In addition, variable denaity ranges allow vary wide Reynolde number latitude so that they are naturals tools for boundary leyer studies. Spark piotures of excellent quality whinh aliow examination of the boundary lager structure are common. Disadvantages are the smal? models and the complicated instrunentation techniques necessary. However, the methods of obtaining such charactaristic ballistio quantitios as drag and stability have been well developed.

New teciniques are being developed to study eero-thermodynamic phenomena, For example in the NOL Bromine range the dissociation in the wakes of profectiles is detemined by observing absorption of ilght waves. The dissociated bromine does not stop 2 angstrom waves while molecular bromine does. Relaxation phenomena are boing studied by measuring the distance of bow waves from the noses of spherical models. A sharp focusing schlieren technique is used to ailminate the distortion of the light rays tirough the shook.

The NACA-Ames Free Flight Wind Tunnel in which model.s are fired from a gun upstream through the supersonic flow is herein ciassed as rore of a ballistic facility than a wind tunnel, as data from it is basically obtained by ballistic techniques. Advantages of this combinution of wind tunnel and ballistic facilities are increased Mach number, Reynolda number, and temperature ranges.

Best Available Copy

A basic step to be considered in the calculation of viscous heating is the estimation of the heat transfer coefflcient. Implicit in this estimation is the consideration of the closely related skin friction coefficient? The method proposed for the estimation of these coefflicients is the use of the well-known constant property incompresaiole relations extended to supersonic and hypersonic conditions by evaluating the air properties in these relations at a reference temperature, a weighted mean temperature which occurs within the boundary layer. The reference temperature is expressed as a function of the wall, stream, and recovery temperatures (and thus Mach number). This semi-empirical theory was derived for laminar flow but from iis agreement with test results also appears to be applicable to turbulent flow. It is well-adapted to engineering calculations and has been used in other hypersonic studies (References 4.6-6 and 4. 6-7).

Eckert (Reference 4.6-4) in a recent survey of heat trensfer also reconmends this approach and shous that excellent agreement can be obtained with the more exact thoorles in the laminar flow cese and with the available experimental data in the turbulent flow case. Eckert presents and discusees the method in considerable detail. Therefore, it is presented only in brief form here for the sake of completeness and for interpretation regardine this current study.

The following relations are those used herein for incompressible flow. In their use end extension, two dimensional flat plate flow with no pressure cr tomirerature gradient is 1 nplied. The symbols used are given in the table following this section. The wall shearing stress is expressed as:

$$
\begin{equation*}
\tau_{x}=c_{i} \frac{\beta}{2} \nabla^{2} \tag{1}
\end{equation*}
$$

For laminar flow the sikin friction coefficient and Stanton numbers are:

$$
\begin{align*}
& \frac{c_{f}}{2}=\frac{0.332}{\sqrt{\mathrm{Ke}}}=\frac{0.332}{\sqrt{\frac{V}{\mu}}} \tag{2}\\
& S_{t}=\frac{h}{c_{p} \rho V}=\frac{c_{f}}{2}(\mathrm{Pr})^{-2 / 3} \tag{3}
\end{align*}
$$

Por turbulent flow the akdn filotion oeeffioient and Bianton numbers are:

$$
\begin{align*}
& \frac{\theta_{f}}{2}=0.0296 R_{R \theta}^{-0.2}=0.0296\left(\frac{V f x}{\mu}\right)^{-0.2} \tag{L}\\
& 8 t=\frac{b}{\theta_{\rho} V V}=\frac{\theta_{f}}{2} s \tag{5}
\end{align*}
$$

where in the turbulent caés the $p_{6}^{-2 / 3}$ is raplaced by a constant S. A rensonable choion for inis constant appears to be $9=3.2$ (Referm ence 4.6-d). If the pressure acrobs the boundary 2 lay y 18 assumed conotant, the following expregeions for heat transfor cooffsoionts can be obtainad for Iaminar flow from Equations (2) and (3):

$$
\begin{equation*}
\mathrm{L}=928.0\left(\frac{\mathrm{P}_{b} \mathrm{~V}_{\mathrm{g}}}{x}\right)^{0.5}\left(\frac{\mu}{T}\right)^{0.5} \frac{c_{0}}{\mathrm{Pr}^{2 / 3}} \tag{6}
\end{equation*}
$$

For turbulent flow from aruations (4) and (5):

The ghation thell arloge, ht what tempergture should the tamperatura

$$
\begin{equation*}
\frac{T^{\prime}}{T_{\delta}}+2+0.2\left(\frac{T_{w}}{T_{\delta}}-1\right) \cdot 0.032 \mathrm{~m}^{2} \tag{8}
\end{equation*}
$$

 ences L.ti-6 aric Lu.ti-7.

Reforerce 4.609 prosarite wh foiluwing reletionshif for T^{\prime} / T_{8} :

$$
\begin{equation*}
\frac{T^{1}}{T_{8}}=1+0.45\left(\frac{T_{H}}{T_{8}}-2\right)+0.035 \mathrm{~m}_{8}^{2} \tag{9}
\end{equation*}
$$

Use of these referonce tompertures have given good correlation with tho turbulent skin friction data obtalnud from wind tumal teats by
 NACA Ames free flight wind tunnel. The Tl methot has alai boun compared with the friction coofsicients fram tests of dow speed flow in heated pipes with good correlation.

Eckert has modifisd the coofficients in the $T 1$ relation to read:

$$
\frac{T^{\prime}}{T_{8}}=1+0.50\left(\frac{T_{\mathrm{W}}}{T_{8}}-1\right)+0.22 \quad\left(\begin{array}{cc}
T_{8} & -1 \tag{10}\\
T_{8} & -1
\end{array}\right.
$$

or for eomparison with the prevtous relations this oen be uritton as:
Laminar Flow

$$
\begin{equation*}
\frac{T_{1}}{T_{\delta}}=1+0.50\left(\frac{T_{W}}{T_{\delta}}-1\right)+0.0374 \quad M_{6}^{2} \tag{10a}
\end{equation*}
$$

Turbulent Flow

$$
\begin{equation*}
\frac{T^{1}}{T_{\delta}}=1+0.50\left(\frac{T_{N}}{T_{\delta}}-1\right)+0.0390^{\circ} \mathrm{M}_{\delta}^{2} \tag{10b}
\end{equation*}
$$

uaing perfect gas ralatinna and ennennriata recovery factorg. This latter relation appears to have been derived from the more exact laminar theory for a greater range of temporatures than the above equation of Johnson and Rubesin.

The relation for $T 1 /$ Is given in Equation (10) has been used with the sneompacesiblo relations for the laminar how skin friction to obtain a comparative check with the theory of Crocco, Reference 4.6-10. For this example T_{8} a $400^{\circ} \mathrm{R}$, and the air properties as a function of the temperature given in Reference 4.6 -11 were used. This comparicon is atvan for $T_{V} / T \delta$ of 2 and L in rig guco $4 A-1$. The comparigon is only carried to \because a I because the properties of μ are not tabulated beyond $3400^{\circ} \mathrm{R}$, which is the Tl for this condition. The figuro sho:13 that this I' ralation rives excellent agreement with the Crocec theory.

The proceding T^{\prime} relations have been used with the incompressible relations stated to pive tho curves shown in Figure luA-2 which are compared with avallable turbulent data. It was assumed that $r=0.7, \gamma=1.4$ and that

$$
\frac{\mu_{1}}{\mu_{\delta}} \cdot\left(-\frac{T^{11}}{T_{\delta}}\right)^{0.72}
$$

The reproientation advanced by Eckert, Equation (10) appears to five the best overall correlation. In wew of this correlation, tho Fckert T' relation has adopted.

The followine equations givo the relationship of compressiblo shin friction conflicient to incompressihla coefficient for both Larinar and turbulent flou:

Laninar flow

$$
\begin{equation*}
\frac{c_{f_{c}}}{c_{f_{1}}}=\left(\frac{\mu^{\prime}}{\mu_{\delta}}\right)^{0.5}\left(\frac{\rho_{1}^{\prime}}{\rho_{\delta}}\right)^{0.5} \tag{11a}
\end{equation*}
$$

Turbulent incir

$$
\begin{equation*}
\frac{c_{f_{c}}}{c_{f_{1}}}=\left(\frac{\mu s^{\prime}}{\mu_{\delta}}\right)^{0.2}\left(-\frac{\rho_{1}}{\rho_{\delta}}\right)^{0.8} \tag{11b}
\end{equation*}
$$

where tho c_{f} 's are both dofined by tha relation $c_{f}=\frac{\tau_{i f}}{0.5 \mathcal{P}^{2}}$ and and the primed quantities are evaluated at the refarence temperature. Tho above equatione have been evalutiod and are ploted versus $\mathrm{T}^{\prime} /$ Ts in Figure $40-3$ using $400^{\circ} R$ as a 1350 . The solyd itnos reprosent tho functions that are obtained by ueing the $N B-M A C A$ tables (Reference 4.6-11) for tho air proportios.

The offective tomporaturos encountored in the preposed $1 \times X-2276$ flipht plan rill be rreater than $3 l .00^{\circ} \mathrm{K}$. One then wonders how to extend the curves ieasombly. Power law varintions of the air proporties with temperature sugerest thenselves becnuse of their convenionce and becauso timey havo loun comionly used as approximations in thes situntion in akin frictich How. The power laws which were chosen to mitch thas:o curves art:

In that flo:

$$
\begin{equation*}
\frac{{ }^{c} f_{c}}{{ }^{c} f_{i}}=\left(\frac{I}{U_{b}}\right)^{-0.1_{i}} \tag{12A}
\end{equation*}
$$

R'urbulont flo::

$$
\begin{equation*}
\frac{c_{f}}{c_{f_{i}}}=\left(\frac{2}{i \delta}\right)^{-0.6 i j} \tag{12b}
\end{equation*}
$$

Thaso power lan :are chosen in ordar to match the curves fiven by tid ilir properlics partioularly in tho toiperature region of 3000° R. It is coun that the power lan representations are very 200 for turimlant flow but leos aocirate for tho larinar okin friction coeffichat. lower, the total $\mathrm{c}_{\mathrm{f}_{\mathrm{c}}} / \mathrm{c}_{\mathrm{f}_{1}}$ variation is omall and of lese importance.

Similarly, from the heat irausfer coefficient equations, the followin; equationa alve the relation of compressible heat tranefer noffinients to the incoupressible coefficients for toth lamimar ard - urbulent flow:

Turbulent fiow

$$
\begin{equation*}
\frac{h_{0}}{h_{1}}=\left(\frac{\mu^{\prime}}{\mu_{8}}\right)^{0.2}\left(\frac{\rho_{1}}{\rho_{8}}\right)^{0.8}\left(\frac{c_{01}}{c_{p_{\delta}}}\right) \tag{13b}
\end{equation*}
$$

These equations are evaluated and plotted as a function $O I T / T_{\delta}$ in Figure 4A-4. The solid lines represent the functions that are obtained by using the N3S-ivat tables (Reforence L.6-11). However, the Frandtl number 18 given only to $1800^{\circ} \mathrm{R}$ in these tables; efter this polnt it was assumed the frandil number has a constant value of 0.715 , after Chapman and Cowling. Ihc other property values at tho higher temperatures also aro felt to be less certain and it must be atated that gt tho higher values of T^{\prime}, particularly abovs $1800^{\circ} \mathrm{R}$, the validity of the curves becones less cortain.

As was done for the skin fiction coeflicients, power law variations of the air properties with terperature were assumed in order to extend this available information:

Laminar flow

$$
\begin{equation*}
\frac{n_{0}}{r_{1}}=\left(\frac{n_{1}^{\prime}}{T_{b}}\right)^{-0.0 L 0} \tag{6}
\end{equation*}
$$

Turbulent Mow

$$
\begin{equation*}
\frac{n_{c}}{n_{1}}=\left(\frac{\mathrm{Tl}^{1}}{\mathrm{~T}_{8}}\right)^{-0.576} \tag{1,b}
\end{equation*}
$$

These nower laws match the curves riven by the air properties particularly in the temperature ranpo below $1800^{\circ} \mathrm{i}$. It is seen that the powar lan representation is reasonably rood for the iurbulant ase, although it appears to bo lass accurato for the laminar heat transfer. The total h_{c} / h_{1} corcection $1 s$ small and of less iniontance.

It will be noted that the effects of wall-to-strean temperature ratios T_{v} / T_{8} on the skin friction coeificient in turbulent flon are quite Inrge. Other bounday layer theonies advanocd (e.g. Von Driest Referemee L. (-12) also thom this. Data ficin lisca ares free flipht

 $2 h / i s$ for urialuat flo: liis l.as also boen confirmed in discus-

11 Ordnance Laboratory hypersonic wind tunnel reported by Lobb (Re1 ence $4.6-14$) at $M=5,6.8$, and 7.7 , and unpubilished data from twith NOL and Johns Hopkins Univarsity Applied Physios Labo:atory hym personic turnels at M a 9 do not show this trend. They shos no appreciable offect of $T_{W} / T s$ or if anything a elfght decrease in akin friotion coefficient as the wall temperature decreases from the reoovery temperature. There is some question as to the validity of these latter tests because they were made on the tunnol walls where the boundary layer develop lent has not been exaotly typical of flat plate flow; but in the are 1 of measurement the etreamwise pressuro gradients were small and tise boundary layor measuramont tochniques appear to have boen exnellint. More experimental informstion is needed to rosolve there dy fferences. If the effects of T_{W} / T_{δ} are as indicated by NOL and 1 PL , the present mothod is conservative in this respect, as their points agree well with the curve of $\mathrm{c}_{\mathrm{c}} / \mathrm{c}_{\mathrm{f}}$. for the condition $T_{W}=T_{r}$ predicted by the prosent mothod.

Finally uging the power law representation the heat trensfer coefficients for laminar and turbilent flow are fiven by the following:

Laminar flow

$$
\begin{equation*}
h_{c}=\frac{0.00963}{T_{\sigma} 0.04}\left(\frac{V_{B} P_{\delta}}{x}\right)^{0.5}\left(\frac{h_{0}}{h_{1}}\right)_{\alpha} \tag{15a}
\end{equation*}
$$

Turbulent flow

$$
\begin{equation*}
\left.h_{c}=\frac{0.0334}{T_{\delta}} \sigma_{0.576} \frac{\left(V_{s} P_{s}\right.}{x}\right)^{0.8}\left(\frac{h_{C}}{h_{i}}\right)_{T} \tag{15b}
\end{equation*}
$$

where the values of h_{c} / h_{i} corrospend to the proper values $T 1 / T_{\delta}$.
Heat Transfer Equations
The convoctive heat transfer per unit area is:

$$
\begin{equation*}
Q_{V}=h_{C}\left(T_{r}-T_{W}\right) \tag{16}
\end{equation*}
$$

where the recovery temperitinn. Tr , is piven by the ralation:

$$
\begin{align*}
& r=\frac{T_{r}-T_{\delta}}{T_{t}-T_{\delta}} \tag{17}\\
& \text { or } T_{r}=T_{\delta}+r\left(T_{t}-T_{\delta}\right) \\
& \text { Whate } T_{t}-T_{\delta}=T_{\delta} / ? J_{r} C_{\gamma}
\end{align*}
$$

reference temperature, T'. However, since the Prandtl number ia almost invariant with temperature the recovery factor was assumed to be constant, ie. $r_{L}=.85, r_{T}=$.9. The adiabatic temperature rise $T_{t}-T_{\delta}$, at hypersonic speeds is very large; thus \bar{c}_{p} can be expected to vary significantly. The variation of c_{p} with temperature is approximate from Reference $4.6-25$ by:

$$
\begin{equation*}
o_{p}=c_{r_{1}}\left\{1 \cdot \frac{\gamma-1}{\gamma}\left(\frac{5500}{T}\right)^{2} \frac{\exp \left(\frac{5500}{T}\right)}{\left[1-\exp \left(\frac{5500}{T}\right)\right]^{2}}\right\} \tag{18}
\end{equation*}
$$

Equating the change in kinetic energy to the change in the total heat or enthalpy when the air is brought to rest and integrating from T_{s} to T_{t} gives:

$$
\begin{equation*}
V_{\delta}^{2}=12,003\left\{T_{t}-T_{\delta}+\frac{1572}{\exp \left(\frac{5500}{T_{t}}\right)-1}-\frac{1572}{\exp \left(\frac{5500}{T_{\delta}}\right)-1}\right\} \tag{19}
\end{equation*}
$$

The values of $T_{t}-T_{\delta}$ obtaled from this function are plotted in Figure 4A-5. The right side of the plot gives the relationship between $T_{t}-T_{\delta}$ and velocity for a $T_{\delta}=400^{\circ} R_{\text {. }}$. The left aide of the plot gives a correction term dependent upon the actual T_{δ}. Figure LA-6 gives a comparison of the adiabatic temperature rise for a constent specific heat, $0.24 \frac{B^{\text {Btu }}}{\mathrm{Ib}{ }^{\circ}{ }^{\mathrm{F}}, \text {, to the variable specific heat }}$ 01^{\prime}] tIned above using $T_{S}=400^{\circ} \mathrm{K}$. The reduction in stagnation temper" :"s rise for variable specific heat is significant. Also shown on this plot are .85 and .9 (approximately the laminar and turbulent recover factors respectively) times $T_{t}-T_{\delta}$ to indicate the recovery temperature rise.

APPENDIX LA AEROD YNAMIC HEATINO SIMBOLS

01	Skin friction coefficient	dimensionless
${ }^{0} p$	Speoiflc heat, constant pressure	Btu/ $15{ }^{\circ} \mathrm{F}$
$\stackrel{\rightharpoonup}{c}^{\text {p }}$	Mean speciflc heat, constant pressure	$\mathrm{Btu} / 1 \mathrm{~b}{ }^{\circ} \mathrm{F}$
c_{v}	Specific heat, constant volume	$B t u / 2 b{ }^{\circ} \mathrm{F}$
8	Grapitational constant	$\mathrm{ft} / \mathrm{sec}^{2}$
h	Convective heat transfer coefficient	$\mathrm{Btu} / \mathrm{st}^{2}{ }^{\circ} \mathrm{Fhr}$
J	Meohanical equivalent of heat	ft $2 \mathrm{l} / \mathrm{Btu}$
M	Mech numbor	dimonaionless
P	Preseure	$\mathrm{lb} / \mathrm{ft}{ }^{2}$
Pr	Prandtl numbor	dimensionless
Q	Rate of heat flow	Btu/ft ${ }^{2} \mathrm{hr}$
\boldsymbol{r}	Recovery factor	dinensionless
R_{0}	Cas constant	$f t-I b /{ }^{\circ} \mathrm{FIb}$.
Re	Reynolds number	dimensionless
St	Stanton number	dimensionless
T	Temperaturo	${ }^{\circ} \mathrm{l}$
V	Velocity	$\mathrm{ft} / \mathrm{sec}$
W	Spocific woight	$2 \mathrm{~b} / \mathrm{ft}^{3}$
X	Dictance from leading edge	ft
y	Thickness of skin	ft
α	Absorptivity	dimensionless
γ	Ratio $\mathrm{c}_{5} / \mathrm{c}_{V}$	dimensionless
ϵ	Fmissivity	dimensionlrss
θ	Time	sec
μ	Vrecsity	Ib sec/ft?

Suliscripts
c Conpressible flow
j. Incompressitle flon

T, Laminar flow
$\because \quad$ Recovery
$t \quad$ Stapmition
1' Turbulent flow
v Convention
w Wall condition
δ Locel stroam
Superseript
1 Reference temperatiare condition

In order to conduct a detailed study of the problems involved in Iypersonic Ilight, it is essential to both performance and stability anslyses that the equations which are employed acourately describe the motion of the vehicle.

Previously, the equations of innear motion for an airoraft had been aimplified to a great extent uy norlecting terms which were small In magnitude mostily due to relatively small Ilight velocities. The effects of contrifugal and Coriolis accolerations, gravity variations with altitude and parth orientation, and the earth's rotation were negleoted compared with those of iff, drag, thrust, and weight of the adroraft. Therefore, the appierent, 1.e. relative, motions of the aircraft seen by an earth fixed observer could be calculated using the folloring famsliar equations.

$$
\begin{align*}
& T \cos \sqrt{2}=D=W \sin \gamma=m \frac{d^{2} x}{d t^{2}} \tag{1a}\\
& \tau \sin \gamma+L=W \cos \gamma=m\left(\frac{d x}{d t}\right)\left(\frac{d \gamma}{d t}\right) \tag{lb}
\end{align*}
$$

```
where: mis the mass of the airoraft
    W is the weight of the aircraft
    T 1e the thrust
    L is the aerodynamic lift
    D is the aemoctynamic drag
    x is the linear displacement of the aircraft in the flight
        direction
```


$\rtimes^{4} 1 s$ the angle between the Ilight direction and the horizontel.
V is the angle between the thrust Iine and the flight direction.
Herein, the complete equations of inear motion are derived so as to include most all the effects not found in Equation 1 . Since the inclusion of all the forces aoting on a body moving in space obviously results in highly complex expressions, the effects of making certain simplifying assumptions has been investigatedo

As the equations of motion c an be derived so that the motions are rolative to any arbitrary axis oystem, special consideration must bo given to tho choice of an axis syatem which proves most convenient and usoful. Since, in this case, it is of primary intersot to detemine aircraft ranke raiative to the earh, the equations of motion are dorivod to yield displacements relative to an observer fixed on the earth's surface as caused by forces acting along well known aircraft axed.

The motion of the earth in space is to be considered, therefore the first step in the evaluation conaists of determining which of the various motions and the factors winich cause them are important to the analysis. This is accomplished by evaluating the maxdmum possible magnitudo of the various terms.

If we consider a coordinate aysten fixud at the center of the sung, the position vector of a point in epace may be expressed as the sum of the vectors relating the origins of all intermediate coordinate syatens and the position of the point with respect to the final system as follcis. If z is the posilicu vector of a point with respect to the sung f is tho position vectir of the orfgin of an axde syetom locatod at the contor of the carth tiren with ariject to tho sung n is tho position voclor of tho

If we consider the center of the sun to be motionless in space then by Now ton's Law for constant mass

$$
: \frac{\Sigma F}{M}-\frac{d^{2} z}{d t^{2}}
$$

where \sum F represents tho victor cum of all the extomal forces acting on the mass m. Difforentinting the vector z can bo shown to rasult in the vector equation.

$$
\begin{aligned}
& \frac{d^{2} \Omega}{d t^{2}} \cdot \omega \times(\omega \times[l+R+x])+2(\omega \times \Omega \times R)+\Omega \times(\Omega \times[\Omega+x]) \\
&+2([\Omega+\omega] \times v)+a
\end{aligned}
$$

where a) is tho angular velocity of tho earth about the sun, Ω is the angl lar voloodty of the earth about its axis ane v and a arc the respective velocity and acceleration vectors of the point with respect to the axis by stem fixed on the earth's surface. It is ansumed that the distance of tho earth from the sun (l) and tho radius of the earth (R) are constant. The maximum magnitude of the vector toms can be evaluated by assigning the following approximately value to the parameters which result in

$$
\begin{aligned}
& |a r \times(m \times[f+R+k])|=0.029 \operatorname{sit} / 300^{2} \\
& \mid 2(u \times \Omega \times r)=0.0005 \mathrm{ft} / \operatorname{orcc}^{2} \\
& \mid f(x) x[\pi+x]) \mid=0.11\left[t / r c^{2}\right. \\
& |2([i 1+0 .] \times \because)|=3.1 \mathrm{ft} / \sec ^{2}
\end{aligned}
$$

SECNET
which are neglibible when compared to the acceleration of themass M1 due to earthis attraction $\left(32.2 \mathrm{ft} / \mathrm{seo}^{2}\right.$ at the earth's surface).

It is therefore established that for the present study only the rotam tion and gravitational attraction of the earth need be cansidered in exprese eing the equations of motion.

The forces acting on the aircraft cause "absodute"\# accelorations relative to the assumed inertial axda system located at the oenter of the earth. Thus, the aircraft at an instant of time may be located in apace relative to this fixed axds syatem $X_{1} Y_{1} Z_{1}$ as shown in Figuro $48-1$. wheret point A io the alrcraftie center of gravity
r is the radial distance from the oribin (0) to the point A
\mathcal{M} is the angle measured in the X_{I} il plane
$\boldsymbol{\lambda}$ is the angle measured in the AOZ_{1} plane
At any instant of time an obsorver, who is also looated in spece ∞ inoident with point A but stationary with respect to the earths surface, will see the alroraft moving with a relative velocity, V, in some direction. Rence, a second axis system is established with the observer at the origin. This axis system, herein called $X_{2} Y_{2} 2_{2}$ is 11 lustrated by Figures lise and 48.3.
where: The $X_{2} Y_{2}$ plane is parallel to a plane tangent to the earthis surface at point A'。
Z_{2} is in the direction of r, the instenteneous vertical, and perpendicular to the $X_{2} I_{2}$ plane。

* The term "absolute" will be used to indicate the acceleration, velocity, etc. referred to an inertial systema $5 s=0 \pi$
X_{2} is in the direction of instantaneous east. I_{2} is in the direction of instantaneous south. 5 , the amuth angle, is measured from east in the $X_{2} I_{2}$ plane. y, the Aght path angle, 18 meagured in a vertioal plane containing the valooity veotor and perpendioular to the I_{2} I 2 plane. It 18 that angle between the velooity veotor and 1ts projection onto the $X_{2} I_{2}$ plane.

Likewsa, there 18 a third axis oy otem which is looated in the adroraft and rotates whith it. This axds system 18 a right hand syotem ordentated in the well known atandard manner of airoraft axes (1.0. either body or atability axea) in which the X axds is arbitrarily placed along the thrust Iine, chord inne, flight direotion, etc, Herein, this ads system 1s denotad as the $X_{3} X_{3} Z_{3}$ system. It 18 along these axes that the nerodynamio, thrust, and gravity forces are mogt reoognizable. Thus the Inear motions of the atraraft along these axes are derived uaing the quantities apparent to the observer rotating with the earth; nemely: relative velooity, ilight path and aunuth angles.

Now that the ayds gystems to be used in the derivation of the equations of motion have been illustrated, all that remains is the chaice of the phyeical principle upon which the equations of motion are based. The familiar $F=m e$ cannot be used because it refers to a system of constant mass and an alrcrafta especially, a rocket propelled aircraft, with an operating propulsion aystem is obviousiy not such a syatem. Therefore, the following principle is used in the dorivation.

Since the forcos along the Alroraft's axes are ordinarily used in predicting performance it is convonient to derive the "apparent" ${ }^{4}$ accelerations along these axes. These accelorations are then integrated to give valocity and displacement increments relative to the earth

* Such similar notation for matrixes will be used throuphout the remainder of the derivation. The subscript denotes the axds system to which the quantity is referred.
* The tern "apparont" indicntes the accelerations, velooition, eto, ns seen by tho observer on the earth's surface.


```
SEGRET
```

fixed observer. So that the equations are in terms of quantities recognizable to the observer, the transformation from the axis system $X_{1} Y_{1} Z_{1}$ to the $X_{3} Y_{3} X_{3}$ system is necessary; this is accomplished in two steps. The first is a transformation from the $X_{1} Y_{1} Z_{1}$ system to the $X_{2} Y_{2} Z_{2}$ by stem. This is accomplished in the following manner.

$$
\begin{equation*}
\left(\bar{v}_{2}\right)=(\bar{l})\left(\bar{v}_{2}\right) \tag{4}
\end{equation*}
$$

where ($\bar{\ell}$) is a transformation matrix as given by
$(\bar{l}) \cdot\left|\begin{array}{lll}\cos \mu & ,-\sin \mu & , 0 \\ \cos \lambda \sin \mu, \cos \lambda \cos \mu & ; \sin \lambda \\ -\sin \lambda \sin \mu,-\sin \lambda \cos \mu & , \cos \lambda\end{array}\right|$
In which the miles μ and λ are those previously illustrated in Figure 1. Likewise, the absolute velocities along the $X_{3} I_{3} Z_{3}$ axes can be obtained by a second transformation

$$
\begin{equation*}
\left(\bar{v}_{3}\right)=(l)\left(\bar{v}_{2}\right) \tag{6}
\end{equation*}
$$

where (f) is the transformation matrix given by:
$(l)=\left|\begin{array}{lll}\cos \theta \cos \psi & , \cos \theta \sin \psi & ,-\sin \Theta \\ -\cos \phi \sin \psi+\sin \phi \sin \theta \cos \psi & , \cos \phi \cos \psi+\sin \phi \sin \theta \sin \psi, \sin \phi \cos \theta \\ \sin \phi \sin \psi+\cos \phi \sin \theta \cos \psi & ,-\sin \phi \cos \psi^{\prime}+\cos \phi \sin \theta \sin \psi \cos \phi \cos \theta\end{array}\right|$
In which the angles, ψ, θ, and ϕ are angular rotations from the $X_{2} Y_{2} Z_{2}$ axis systein to the $X_{3} Y_{3} Z_{3}$ axis system in the yaw, pitch and roll planes respectively. The order of rotation is in the yaw, pitch and roll directions. It should be notes that the angle θ is perfectly arbitrary and need not be the "pitch angle".

Combining equations (4) and (6)

$$
\begin{equation*}
\left(\bar{v}_{3}\right)=(\rho)(\bar{l})\left(\bar{v}_{2}\right) \tag{8}
\end{equation*}
$$

DIfferentiating equation (8) with respect to time

$$
\begin{equation*}
\frac{d}{d}\left(\bar{v}_{3}\right)=\left[\frac{d}{d t}(f)\right](\bar{f})\left(\bar{v}_{1}\right)+(l)\left[\frac{d}{d t}(\bar{f})\right]\left(\bar{\nabla}_{2}\right)+(\ell)(\bar{f})\left[\frac{d}{d t}\left(\bar{\nabla}_{2}\right)\right] \tag{9}
\end{equation*}
$$

DIfferentiating equation (6); substituting the results in equation (9), and making use of equation (4) to substitute for $\left(\bar{V}_{1}\right)$ and $(\bar{l})\left(\bar{\nabla}_{2}\right)$

$$
\begin{equation*}
(l)(\bar{l})\left[\frac{d}{d t}\left(\bar{V}_{2}\right)\right]-(l)\left[\frac{d}{d t}\left(\bar{V}_{2}\right)\right]-(l)\left[\frac{d}{d t}(\bar{l})\right](\bar{l})^{-1}\left(\bar{V}_{2}\right) \tag{10}
\end{equation*}
$$

By multiplying both aides of equation (3a) by the quantity $(f)(\bar{f})$ and substituting into equation (10) the following matrix equation is derived

$$
\begin{equation*}
\left(\bar{a}_{3}\right)=\frac{1}{M}(d)(I)\left(F_{2}+\dot{m} \nabla_{1}\right)-(f)\left\{\frac{d}{d t}\left(\dot{V}_{2}\right)-\left[\frac{d}{d t}(\bar{l})\right](\bar{f})^{-1}\left(\nabla_{2}\right)\right\} \tag{11}
\end{equation*}
$$

where i (\bar{a}_{3}) are the absolute accelerations along the $X_{3} X_{3}$ and Z_{3} axes respectively.

The right side of equation (11) is expanded to give
$(l)\left(\left.\begin{array}{ll}\frac{d}{d t} \bar{\nabla}_{X_{2}}+\bar{v}_{X_{2}} \cos \lambda \dot{\mu} & -\bar{v}_{Z_{2}} \sin \lambda \dot{\mu} \\ \frac{d}{d t} \bar{v}_{Y_{2}}-\bar{v}_{Z_{2}} \dot{\lambda} & -\bar{\nabla}_{X_{2}} \cos \lambda \mu \dot{i} \\ \frac{d}{d t} \bar{v}_{Z_{2}}+\bar{\nabla}_{X_{2}} \sin \lambda \dot{\mu}+\bar{\nabla}_{X_{2}} \dot{\lambda}\end{array} \right\rvert\,\right.$

As $\vec{V}_{X_{2}}, \vec{V}_{Y_{2}}$ and $\vec{V}_{Z_{2}}$ are the absolute velocities of the aircraft's cog. In the direction X_{2}, X_{2} and Z_{2} it c an easily be seen from figures 1 and 2 that;

$$
\begin{align*}
& \left.\bar{\nabla}_{I_{2}}=V \cos \gamma \cos \right\}+\pi \Omega_{\sin \lambda} \lambda \tag{13a}\\
& \left.\bar{\nabla}_{Y_{2}}=\nabla \cos \gamma \sin \right\} \tag{136}\\
& \bar{\nabla}_{Z_{2}}=-v \sin \gamma \tag{130}
\end{align*}
$$

Whereais the rotational valooity of the earth.
It 18 also apparont that

$$
\begin{align*}
& \dot{\mu}=\Omega+\frac{\nabla \operatorname{con} \gamma \cos \xi}{r \sin \lambda} \tag{Lue}\\
& \dot{\lambda}=\frac{v \cos \gamma \sin \gamma}{r} \tag{14b}\\
& \frac{d r}{d t}=\nabla \sin \gamma
\end{align*}
$$

Uaing equations (13) and (H) to substitute for the val uee of $\frac{d \bar{V}_{2}}{d t}, \bar{\nabla}_{2}$,
 $\bar{a}_{x_{3}}=\dot{v}[\cos \gamma \cos \xi(\cos \theta \cos \gamma)+\cos \gamma \sin \xi(\cos \theta \cos \psi)+\sin \gamma(\sin \theta)]$
$-\nabla \dot{\gamma}[\sin \gamma \cos \xi(\cos \theta \cos \gamma)+\sin \gamma \sin \xi(\cos \theta \sin \psi)-\cos \gamma(\sin \theta)]$
$-v\}[\cos \gamma \operatorname{\theta in} \xi(\cos \theta \cos \psi)-\cos \gamma \cos \xi(\cos \theta \sin \psi)]$
${ }^{*} \Omega \Omega[(\sin \gamma \sin \lambda+\cos \gamma \sin \xi \cos \lambda)(\cos \theta \cos \psi)]$
$-\sin \lambda\left(\Omega+\frac{\gamma \cos \gamma \cos \xi}{F \sin \lambda}\right)[(V \cos \gamma \cos \xi+r(\Omega \sin \lambda)(\sin \theta)-(V \operatorname{vin} \gamma)(\cos \theta \cos \gamma)]$
$-\cos \lambda\left(\sigma_{1}+\frac{V \cos \gamma \cos \xi}{r \sin \lambda}\right)[(V \cos \gamma \cos \xi+r \Omega \sin \lambda)(\cos \theta \sin \psi)-(\gamma \cos \gamma \sin \xi)$ $(\cos \theta \cos \gamma \gamma)]$
$\left.+\frac{v \cos \gamma \sin \xi}{r}[(V \sin \gamma) i \cos \theta \sin \psi)-(V \cos \gamma \sin \xi)(\sin \theta)\right]$

$\vec{a}_{3}=\dot{\nabla}[\cos \psi \cos \xi(-\cos \phi \sin \psi+\sin \phi \sin \theta \cos \psi)+\cos \gamma \sin f(\cos \phi \cos \psi$
$\left.\left.+\sin \phi \sin \theta \sin \psi^{\prime}\right)-\sin \gamma^{n}(\sin \phi \cos \theta)\right]$
$-\nabla \dot{\gamma}[\sin \gamma \cos \}(-\cos \phi \sin \psi+\sin \phi \sin \theta \cos \psi)$

- $\sin \gamma \sin f(\cos \phi 000 \psi+\sin \phi \sin \theta \sin \psi) \cdot \cos r(\sin \phi \cos \theta)]$
$-\nabla \xi[\cos \gamma \sin \xi(-\cos \phi \operatorname{ain} \psi-\sin \phi \sin \theta \cos \psi)-\cos \gamma \cos \}(\cos \phi \cos \psi$
$+\sin \phi \sin \theta \operatorname{ain} \psi]+V \Omega[(\sin \gamma \operatorname{ain} \lambda+\cos \gamma \sin \xi \cos \lambda)(-\cos \phi \operatorname{ain} \psi$
-ain $\phi \operatorname{ain} \theta 00 \theta \psi)]+\sin \lambda\left(\Omega+\frac{V \cos \theta \gamma \cos j}{Y \sin \lambda}\right)[(V \cos \gamma \cos \xi$
$\left.+\sin \sin \lambda)(\sin \phi \cos \theta)+V_{\operatorname{ain}} \gamma(-\cos \phi \sin \psi+\operatorname{oin} \phi \sin \theta \cos \psi)\right]$
$-000 \lambda\left(\Omega+\frac{V \operatorname{cog} \gamma \cos \xi}{r \sin \lambda}\right)\left[\left(V \cot \gamma_{\cos } \xi+r \Omega \sin \lambda\right)(\cos \phi 00 \theta \psi\right.$
- $\operatorname{ain} \phi \sin \theta \operatorname{oin} \psi)-V \cos \gamma \operatorname{oin} \xi(\cos \phi \sin \psi+\sin \phi \sin \theta \cos \psi \psi)]$
$-\frac{V \operatorname{cog} \gamma \operatorname{oin} F}{r}\left[V \sin \gamma^{\prime}(\cos \phi \cos \psi+\sin \phi \operatorname{oin} \theta \operatorname{cin} \psi)\right.$
$+\operatorname{Vcos} \phi \sin \xi(\sin \phi 000 \theta)]$
$\bar{a}_{Z_{3}}=\dot{v}[\cos \gamma \cos \xi(\sin \phi \sin \gamma+\cos \psi \sin \theta \cos y \gamma)+\cos \gamma \sin \}(-\sin \phi \cos \psi$ $+\cos \phi \sin 0 \sin \psi)=\sin \gamma(\cos \phi) \cos n)]-i \dot{\gamma}[\sin \gamma \operatorname{con} \xi(\sin \phi \sin \psi$ $+\cos \phi \sin \theta \cos \psi)+\sin \gamma \sin \xi(-\sin \phi \cos \psi+\cos \phi \sin \theta \sin \gamma r)$ $+\cos \gamma \gamma(\cos \phi \cos \theta)]-v \dot{\xi}[\cos \gamma \sin \xi(\sin \phi \sin \psi+\cos \phi \sin \theta \cos \psi)$ $-\cos \gamma \cos \}(-\sin \phi \cos \gamma+\cos \phi \sin \theta \sin \gamma r)]+V \operatorname{L}[(\sin \gamma \sin \lambda$ $+\cos \gamma \sin \xi \cos \lambda)(\sin \phi \sin \psi+\cos \phi \sin \theta \cos \psi \gamma]$ $+\sin \lambda\left(\Omega+\frac{V \cos \gamma \cos \xi}{r \sin \lambda}\right)\left[V_{\sin } \gamma(\sin \phi \sin \gamma r+\cos \phi \sin \theta \cos \gamma r)\right.$ $+\langle V \cos \gamma \cos \xi+r \Omega \sin \lambda)(\cos \phi \cos \theta)]-\cos \lambda\left(\Omega_{1}+\frac{V \operatorname{con} \gamma \cos t}{r \sin \lambda}\right)\left[\left(V_{n} \leq \gamma \cos \right\}\right.$ $\left.+r_{\Omega} \Omega \sin \lambda\right)(-\sin \phi \cos \psi+\cos \phi \sin \theta \sin \psi)-\psi \cos \gamma \sin \xi(\sin \phi) \sin \gamma / r$ $+\cos (\phi \sin \theta \cos \gamma ;)]+\left(\frac{V \cos \hat{y}^{\prime} \sin { }^{h}}{r}\right)\left[V \sin \gamma^{\prime}(-\sin \phi \cos \gamma\right.$ $\left.\left.+\cos \phi^{\prime} \sin G \sin \psi^{\prime}\right)+V \cos \delta^{\lambda} \sin \xi(\cos \phi \cos \theta)\right]$

BECRET

The matrix quantita $(\hat{d})(\bar{X})\left(P_{1}+\dot{m} \bar{V}_{2}\right)$ is the sum of serodynemio, gravity, and thrugt forcea aoting along the three axes of the alroraft. For rocket propellod afroraft these are se follawsi

wheret A_{0} io the ares of the rocket axdt
P_{0} is the pressure of the exhaust at the exdt
P_{A} is the ambient prossure of the atmosphere at the altitude under oon olderation
$\mathrm{P}_{\mathrm{X}_{3}}{ }^{\prime}, \mathrm{F}_{\mathrm{Y}_{3}}{ }^{\prime}$, and $\mathrm{F}_{\mathrm{Z}_{3}}{ }^{\prime}$ are the aerodynamio forces acting along the X_{3}, Y_{3} and Z_{3} axes
8 If the grapitational receleration conatant at both the altitude under conaideration and orientation with respeot to the earth.
In the nomal rocket airoraft the quantity $\operatorname{in}_{I_{3_{B}}}+\left[\left(P_{\theta}-P_{A}\right) A_{e}\right]_{I_{3}}{ }^{\prime}$ which is a sideward rocket thrust, is gero. Furthermore, if one makes the simpurication of measuring θ to the thrust 21 ne so that the thrust is aoting along the x_{3} axde (for such a choice of θ the $X_{3} I_{3} Z_{3}$ systemis a body axie oystem) it is obvious that, the rocket thrust in the Z_{3} direction given by $\tilde{m} V_{Z_{3}}+\left[\left(P_{e}-P_{A}\right) A_{e}\right] Z_{3}$ is serns When equatione (15) and (16) are combined a very omplex expression for the alrcraft motion results. However, if the eimplifying

SECRET

assumpelone are made that $\psi=\xi$ (case of no sideslip) and that θ - γ (the angular rotation in the piton plume of the $X_{3} X_{3} Z_{3}$ axis oysters 18 through the angle from the horizontal to the flight direction mating the $X_{3} X_{3} Z_{3}$ a etabij.1ty axis of stem the following simplified genera equations recut.
$\nabla=\frac{T}{f} \cos \gamma \frac{D}{\gamma}-\left(8-5 \Omega^{2} 81 n^{\prime}\langle\lambda) \sin \gamma+5 \Omega^{2} \theta 1 n \lambda \cos \lambda \cos \gamma \sin S\right.$
$\nabla \dot{\rho} \cos \phi \cos \gamma-\nabla \dot{\gamma} \sin \phi=\frac{I}{m} \cdot\left(\operatorname{s-s} \Omega^{2} \sin n^{2} \lambda\right) \sin \phi \cos \gamma^{\alpha}$

$$
\begin{align*}
& +8 \Omega^{2} \sin \lambda \cos \lambda(\cos \phi \cos \xi+\sin \phi \sin \gamma \sin \xi) \\
& 420 \Omega[\cos \lambda(\cos \phi \cos \gamma)-\sin \lambda(\sin \phi \cos \xi \\
& -\cos \phi \sin \gamma \sin \xi)]=\frac{\theta^{2}}{\Sigma}\left(\sin \phi \cos \gamma-\cos \phi \cos { }^{2} \gamma \cos \xi \cot \lambda\right) \tag{170}
\end{align*}
$$

$\nabla \dot{\gamma} \cos \phi+V \dot{\xi} \operatorname{ain} \phi: 08 \gamma-\frac{L}{H}+\frac{T}{H} 81 n V=\left(g r \Omega^{2} 81 n^{2} \lambda\right) \cos \phi \cos \gamma$

$$
\begin{align*}
& +\pi \Omega^{2} \sin \lambda \cos \lambda(\sin \phi \cos \xi-\cos \phi \operatorname{ain} \gamma \sin \xi) \\
& +2 \nabla \Omega[\cos \lambda(\sin \phi \cos \gamma)+\sin \lambda(\cos \phi \cos \xi \\
& \tan \phi \sin \gamma \sin \xi)]+\frac{v^{2}}{F}\left(\cos \phi \cos \gamma+\sin \phi \cos ^{2} \gamma \cos \xi \cot \lambda\right) \tag{bice}
\end{align*}
$$

In arriving at equations (17) from equations (25) and (16) it should be remembered that the aerodynamic lift force, L, and drag forces, D, are in the negative Z_{3} and X_{3} directions respectively, and that the aerodynamic aide force (represented by Y) is in the positive I_{3} direction, It 18 asemed that tho thrust lin. is displaced from the Mist path direction by the angle V, ie. tic inclination at the thrust line from the horizontal is Given by the anele $V+\gamma$.

If additional restriotions ara placed upon equation (17), as done in Reference 3 ; namaly 1) the aircraft is fiving in the equatorial plane, 2) the alreraft is flying towards the east, and 3) the angle of bank is madntained sero, then equetion (27) 1 s reduced to the form as given in Roserence 3. These equations are repested below.

$$
\begin{align*}
& \dot{V}=\frac{T}{X} \cos \gamma=\frac{D}{X}=\left(8-y \Omega^{2}\right) \sin \gamma \tag{18a}\\
& \nabla \dot{S} \cos \gamma=\frac{X}{H} \tag{18b}\\
& V \dot{\gamma}=\frac{L}{H}+\frac{T}{M} \sin \gamma-\left(8-8 \Omega^{2}\right) \cos \gamma+2 V \Omega \\
& +\frac{\nabla^{2}}{\pi} \cdot \cos \gamma \tag{100}
\end{align*}
$$

It Is seen by compasison of equation (18) wh the equations resulting from the combination of equations (15) and (16) that the equations given in Reforence 3 are apocial oase of tho general equations of motion. Hence, in ueing equation (16) to caloulnte the porforminico of an alreraft, the 2 diateations plaed upon tho flight conditions sinuld be realized.

As equations of ilnear motion (sae equations (15) and (26)) ire now avallable in their moat complete form, it is possible, by usin: one of eevern methods, to criculate the Ilight path relativo to 1 : : earth of an alreraft ziying in any dirootion at any latitudo. llownir, ns shown tho equations of linenr motion are extremely complex for the conern onco, The posalbility of negleoting terms and mincinc: simplilylu: nosumptiona wili have to be investigated in hopes thnt tho tinount of labor and time to oaloulate faifly accurate flight pathe my be rodneod.

The equations of linear motion have derived for R11ght about a rotating earth. Similar expresgions will now be derived for angular motion about the aircraft axds. For this derivation, the asaumptions of an inertial ads at the oonter of the earth will be continued and only earth ourvature and rotation will be considored, in addition to the angular motions of the vehicle with respect to the earth.

The Law of conservation of angular momentun may be expressed as the vector equation

$$
\begin{equation*}
N_{2}=\frac{d\left(I_{2}\right)}{d t} \tag{19}
\end{equation*}
$$

where N_{2} is the veotor oum of all torques (moments) aoting on the sgetem and L_{2} is the total angliar momentum of the gystem being conaiderad, measured with respeot to the inertial $X_{2} X_{2} Z_{1}$ axde syotem illugtrated in FIgure 4B-1. Ag with the equations of innear motion, it is more convenient to express the equations of anguar motion with respect to the $X_{3} Y_{3} I_{3}$ (aircraft axis) oystem, for which the momenta of inertia and arrodyamio moments are most recognizable.

The total angular momentum mfy be expressed in veotor form as

$$
\begin{equation*}
\left(\frac{d I_{1}}{d t}\right)=\left(\frac{d I_{3}}{d t}\right)+\omega_{3} \times L_{3} \tag{20}
\end{equation*}
$$

Whare L_{3} is the angliar momentum measured with respeot to the $X_{3} Y_{3} Z_{3}$ axde system and ω_{3} is the angular velocity of the $X_{3} X_{3} X_{3}$ axds syatem with respect to the inertial $X_{1} Y_{2} Z_{1}$ axis oystem. Substituting equation (20) into equation (19) and expreseing the vectnr equation in its componente, results in the following:

$$
\begin{align*}
& N_{X_{3}}=\left(\frac{d I_{X_{3}}}{d t}\right)+\omega_{Y_{3}} I_{Z_{3}}-\omega_{Z_{3}} I_{Y_{3}} \tag{21a}\\
& N_{X_{3}}=\left(\frac{d I_{I_{3}}}{d t}\right)+\omega_{Z_{3}} I_{X_{3}}-\omega_{X_{3}} I_{Z_{3}}- \tag{216}\\
& N_{Z_{3}}=\left(\frac{d I_{Z_{3}}}{d t}+\omega_{X_{3}} I_{Y_{3}}-\omega_{Y_{3}} L_{X_{3}}\right. \tag{210}
\end{align*}
$$

Where the components of angular momentum aro glven by equation (22)

$$
\begin{align*}
& I_{x_{3}}=I_{x_{3} X_{3}} \omega_{x_{3}}+I_{x_{3} Y_{3}} \omega_{y_{3}}+I_{X_{3} z_{3}} \omega_{z_{3}} \tag{22a}\\
& I_{Y_{3}}=I_{y_{3} x_{3}} \omega_{x_{3}}+I_{y_{3} Y_{3}} \omega_{I_{3}}+I_{Y_{3} z_{3}} \omega_{z_{3}} \tag{22b}\\
& I_{z_{3}}=I_{z_{3} x_{3}} \omega_{\prime_{3}}+I_{z_{3} Y_{3}} \omega_{y_{3}}+I_{z_{3} z_{3}} \omega_{z_{3}} \tag{220}
\end{align*}
$$

wherain $I_{X_{3}} X_{3}, I_{X_{3}} Y_{3}$, otc. aro the oomponunts of mononto and produote of inertia taken with respaci to tho $X_{3} Y_{3} Z_{3}$ axis oystem and are givion by

$$
\begin{aligned}
& I_{x_{3} x_{3}}=+\sum_{1} m_{1}\left(y_{1_{3}}+z_{1_{3}}\right) \\
& I_{x_{3} y_{3}}=-\sum_{1} m_{1} x_{1_{3}} y_{1_{3}} \\
& I_{x_{3} z_{3}}=-\sum_{1} m_{1} x_{1_{3}} z_{1_{3}} \\
& \text { etc. }
\end{aligned}
$$

Differentiating equations (22) and substitutine, these results in equations (22) gives

$$
\begin{align*}
N_{X_{3}} & =\omega_{X_{3} \frac{d}{d t}}\left(I_{X_{3} X_{3}}\right)+I_{X_{3} X_{3}} \dot{\omega}_{X_{3}}+\omega_{Y_{3}} \frac{d}{d t}\left(I_{X_{3} Y_{3}}\right) \\
& +I_{X_{3} X_{3}} \dot{\omega}_{Y_{3}}+\omega_{Z_{3}} \frac{d}{d t}\left(I_{X_{3} z_{3}}\right)+I_{X_{3} z_{3}} \dot{\omega}_{Z_{3}} \\
& +\omega_{Y_{3}}\left(I_{Z_{3} X_{3}} \omega_{X_{3}}+I_{I_{3} Y_{3}} \omega_{Y_{3}}+I_{Z_{3} Z_{3}} \omega_{Z_{3}}\right) \\
& -\omega_{z_{3}}\left(I_{Y_{3} X_{3}} \omega_{X_{3}}+I_{Y_{3} Y_{3}} \omega_{Y_{3}}+I_{Y_{3} Z_{3}} \omega_{I_{3}}\right) \tag{23n}
\end{align*}
$$

81 \qquad DATE \qquad
 mosel \qquad $2008-4 \mathrm{~B}-12$.um. \qquad wont <compat>ᄋ<compat>ᅳ43-945:012

$$
k=\left|\begin{array}{lcl}
1 & 0 & -\sin \theta \tag{25}\\
0 & \cos \phi & \sin \phi \cos \theta \\
0 & -\sin \phi & \cos \phi \cos \theta
\end{array}\right|
$$

Substituting for l and k and expanding the right hand aide of equation (24) then gives

$$
\begin{align*}
\omega_{x_{3}} & =\dot{\phi}-\dot{\psi} \sin \theta+\frac{\psi}{\gamma} \cos \gamma \cos \theta \sin (\xi-\psi) \tag{26a}\\
& +\Omega(\cos \lambda \sin \theta-\sin \lambda \cos \theta \sin \psi) \\
\omega_{y_{3}} & =\delta \cos \phi+\dot{\psi} \sin \phi \cos \theta-\frac{\gamma}{\gamma} \cos \gamma[\cos \phi \cos (\xi-\psi) \\
& +\sin \phi \sin \theta \sin (\xi-\psi)]-\Omega \sin \lambda(\cos \phi \cos \psi \\
& =\sin \phi \sin \theta \sin \psi-\sin \phi \cos \theta \cot \lambda) \quad(26 b) \tag{26b}\\
\omega_{Z_{3}} & =\dot{\psi} \cos \phi \cos \theta-\delta \sin \phi+\frac{v}{\gamma} \cos \gamma[\sin \phi \cos (\xi-\psi) \\
& +\cos \phi \sin \theta \sin (\xi-\psi)]+\Omega \sin \lambda(\sin \phi \cos \psi \\
& =\cos \phi \sin \theta \sin \psi-\cos \phi \cos \theta \cot \lambda) \quad(260) \tag{260}
\end{align*}
$$

When equations (26) and their derivatives are substituted into equations (23) the complete equations of angular motion in terni of the applied moments H_{3} result. Since these equations are greatly detailed and hence space consuming, they will not be presented here. Some amplifications to these equations are possible however. If we assume that the hypersonic glide vehicle will possess at least a vertical plane of gymetry so that

$$
I_{X_{3} I_{3}}-I_{Y_{3} X_{3}}=I_{Y_{3} I_{3}}=I_{Z_{3} Y_{3}}=0
$$

and if in addition the tine rates of change of moments and products of Inertia may be neglected then

$$
\begin{align*}
& N_{X_{3}}=I_{X_{3} X_{3}} \dot{\omega}_{X_{3}}+I_{X_{3} Z_{3}} \dot{\omega}_{I_{3}}+\omega_{Y_{3}} \omega_{Z_{3}}\left(I_{Z_{3} Z_{3}}-I_{I_{3} I_{3}}\right) . \\
& \left.{ }^{-}\right)_{X_{3}} \omega_{Z_{3}} I_{X_{3}} Z_{3} \tag{29a}\\
& N_{Y_{3}}=I_{Y_{3} X_{3}} \dot{\omega} X_{X_{3}}+\omega_{X_{3}} \omega_{Z_{3}}\left(I_{X_{3} X_{3}}-I_{Z_{3} Z_{3}}\right) \\
& +I_{X_{3} 2_{3}}\left(\omega_{z_{3}}{ }^{2}-\omega_{X_{3}}{ }^{2}\right) \tag{29b}\\
& N_{Z_{3}}=I_{Z_{3} Z_{3}} \dot{\omega}_{z_{3}}+I_{X_{3} Z_{3}} \dot{\omega}_{X_{3}}+\omega_{X_{3}} \omega_{Y_{3}}\left(I_{Y_{3} Y_{3}}=I_{X_{3} X_{3}}\right) \\
& -\omega_{X_{3}} \omega_{Z_{3}} I_{X_{3}} Z_{3} \tag{290}
\end{align*}
$$

さもとイビコ

At this phase of the study，it is not posaible to detemine what further elmplifieations oan be made．The equations of Iinear and angular motion as presented here，form the basis by whith the metion of the vohicle in alx degrees of freedom，inoluding the effecto of earth rotation and ourvaturo，may be analyzed－in partioular the dynande behavior of euch a vehide may be otudied once the neeessary aero－ dynanic and kinematio parameters have been determined．Further analyois wal be required to determine whether or not the dynamio motione oan be dearived in an analytioal fashion．Certainly at least，with the present equatione means are arailable by which the dynamio otability and control characteristios may be atudied by the ube of enalogie computing equipment，propide eufficient equipment is available to handie the compleadty of the equations．

FIGURE 4B-2

FIS: : F AE-3

APPENDIX 5A

8teady, twoadimensional flow in the laninar compreseible boundary layer ovar a flat awface or one whose radius of ourvature 18 large compared with the boundary layer thioknese 18 governed by the following equationsi

Momentum

$$
\begin{gather*}
\rho v u_{x}+\rho \nabla u_{y}=-p_{x}+\left(\mu u_{y}\right)_{y} \tag{1}\\
p_{y}=0 \tag{2}
\end{gather*}
$$

Continuity

$$
\begin{equation*}
(p x)_{x}+(p \nabla)_{y}=0 \tag{3}
\end{equation*}
$$

Engreg

$$
\begin{equation*}
\rho u_{x}+\rho \nabla H_{y}=\left(\mu H_{y}\right)_{y} \tag{4}
\end{equation*}
$$

where $H=$ opt $+1 / 2 u^{2}$
State

$$
\begin{equation*}
\rho=\rho R T \tag{5}
\end{equation*}
$$

Further, it 18 asamed that the Fiscosity is related to the temperature by the Sutherl and late

$$
\begin{equation*}
\mu / \mu_{0}=\left(T / T_{0}\right)^{3 / 2}\left(T_{0}+5\right) /(T+S) \tag{6}
\end{equation*}
$$

where 818 a constant which for air $18216^{\circ} \mathrm{R}$ and where the aubsoript - denotes reference condition.

From the momentum equation, the extemal dressure p can be expresaed in tem of the external velooity diatribution as

$$
\frac{d p}{d x} \cdot \frac{d p}{d x}=p_{1} u_{1} u_{x}
$$

The boundery conditions on the flow are

$$
\begin{align*}
& \text { at } y=0: u=V=0 H=H_{Y} \tag{7}\\
& \text { at } y=\delta, u=U_{1}, y_{y}=0 H=H_{1}=H_{S}, H_{y}=0 \tag{8}
\end{align*}
$$

To start the analysis, Equation (1) is converted into the following integral differential equations

$$
\begin{align*}
& \frac{d}{d x}\left\{\rho_{1} u_{1}^{2} \int_{0}^{i} \frac{\rho}{\rho_{1}} \frac{u}{u_{1}}\left(1-\frac{\dot{u}_{1}}{u_{1}}\right) d y+\rho_{1} u_{1}{u_{1}}_{x} \int_{0}^{1} \frac{\rho}{\rho_{1}}\left(\frac{\rho_{1}}{\rho}-\frac{u_{1}}{u_{1}}\right) d y\right. \\
& =\left(\mu u_{y}\right)_{w} \tag{9}
\end{align*}
$$

With the use of Equation (3), Equation (9) is mere conveniently handled by introducing Dorodnitgin transformation. Accordingly the now variable is defined ouch that for a given value of x.

$$
\begin{equation*}
d t=\frac{P^{P}}{P_{1}} d y \tag{10}
\end{equation*}
$$

This implies the introduction of a new boundary layer thickness in the $x=t$ plane defined must conveniently by the inverse tranaformation.

$$
\begin{equation*}
\delta=\int_{0}^{f_{1}}{\underset{p}{p}}^{p} d t \tag{11}
\end{equation*}
$$

Now using Equations (10) and (11), Equation (9) becomes

$$
\frac{d}{d x}\left\{P_{1} v_{1}^{2} \delta_{t} \int_{0}^{1} \frac{u}{u_{1}}\left(1-\frac{u}{v_{1}}\right) d \tau\right\}+\rho_{1} u_{1} \eta_{I_{x}} \delta_{t} \int_{0}^{1}\left\{\frac{H}{H_{1}}\left(1+\frac{r-1}{2} M_{2}^{2}\right)\right.
$$

$$
\begin{equation*}
\left.=\frac{v-1}{2} \mu_{1}^{2}\left(\frac{u}{U_{1}}\right)^{2}-\frac{u}{U_{1}}\right\} d q-\mu_{w} \frac{T_{1}}{T_{w}} \frac{v_{1}}{\delta_{t}}\left[\left(\frac{u}{U_{1}}\right)_{q}\right] w \tag{12}
\end{equation*}
$$

This open be written as

$$
\begin{equation*}
\frac{F_{1}}{2} \Lambda^{\prime}+F_{1} \Lambda\left(\ln \left(F_{1} 0\right)\right)^{\prime}+F_{2} \Lambda\left(\ln \frac{U_{1}}{U_{0}}\right)^{\prime} \cdot\left[\left(\frac{u}{U_{1}}\right) \tau\right]_{w} \tag{13}
\end{equation*}
$$

where $\Lambda=\frac{P_{0} U_{0} P_{1} U_{1}}{\mu_{0} \mu_{w}} \frac{T_{w}}{T_{1}} \delta_{t}{ }^{2}, \quad=\frac{P_{0} U_{0} x}{\mu_{0}}$
and the prime denotes differentiation with respect to ξ

and introducing the variable Λ and $\$$ the above equation becomesi

$$
\begin{equation*}
\frac{F_{3}}{2} \Lambda^{\prime}+F_{3} \Lambda\left(\ln \left(F_{3} 0\right)\right)^{\prime} \cdot\left[\left(\frac{H}{H_{1}} q\right]_{w}\right. \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{3}=\int_{0}^{1} \frac{u}{U_{1}}\left(1-\frac{H}{\Pi_{1}}\right) d \tau \tag{21}
\end{equation*}
$$

Equation (20) is now also in a form anenable to solution by an integral procedure. To get an integrai oijution, we assume velocity

The boundary conditions are, at $T=0$

$$
P_{1} v_{1} U_{d_{x}}=\left(\mu u_{y}\right)_{y^{\prime}}\left(\mu H_{y}\right)_{y}=0, \frac{\text { 专 }}{H_{1}}=w
$$

and at $T=I_{1}$

Substituting the above boundary conditions in equation (22) and (23), we get

$$
\begin{array}{ll}
b_{0}=W & z_{2}=(2+2 / 3) \\
b_{2}=\left[\left(\frac{H}{H_{1}}\right)_{T}\right]_{H}=b & a_{2}=-2 \\
b_{2}=\frac{1}{2}\left[\left(\frac{H}{H}\right)_{C R}\right]_{W} &
\end{array}
$$

The velocity and enthalpy profiles can be evaluated in terms of $2, b$ and b_{2}. They are

$$
\frac{u}{u_{2}}-\left(2 \tau-2 \tau^{3}+\tau^{4}\right)-2\left(\frac{\tau}{3}+\tau^{2}-\tau^{3}+\frac{\tau^{4}}{3}\right)
$$

and

$$
\begin{aligned}
\frac{H}{H_{1}} & =1-(1-W)\left(1-10 \tau^{3}+15 \tau^{4}-6 \tau^{5}\right)+b\left(\tau-6 q^{3}+8 \tau^{4}-3 \tau^{5}\right) \\
& +b_{2}\left(\tau^{2}-3 \tau^{3}+3 \tau^{4}-\tau^{5}\right)
\end{aligned}
$$

Now equations (14) and (20) are transformed to a form where (1) Is the dependent variable and (M_{1}) io the independent variable.
losing the isentropic equations and $T=1.4$, we haves

$$
0=\left(\frac{M_{1}}{M_{0}}\right)^{1 / 2}\left\{\frac{\left(2+\frac{r_{-}-\lambda}{2} M_{0}^{2}\right)^{3}}{\left(1+\frac{r^{2}-1}{2} M_{2}^{2}\right)^{4}}\right\}^{1 / 2} \quad \frac{\mu_{v}}{\mu_{0}}{ }^{1 / 2}
$$

and for topersonio now, $M>1$, 0 reduces to

$$
0=\frac{2}{(r-1)} \frac{\mu_{0}^{2.5}}{M_{2}^{3.5}}\left(\frac{\mu_{v}}{\mu_{0} W}\right)^{1 / 2}
$$

Since the variable tern in F_{1} and F_{3} are relatively small (af. equation 24); following Reference $(5.3-6)^{3}$ we let $F_{3}{ }^{\prime}=F_{3}{ }^{\prime}=0$. Thu e equation (4) becomes

$$
\begin{align*}
& \frac{F_{1}}{2} \frac{d \Lambda}{d M_{1}}-\frac{3.5 F_{1}}{M_{1}} \Lambda+F_{2} \Lambda\left(\frac{1}{M_{1}}=\frac{r-1}{2} \frac{M_{1}}{\left(1+\frac{r_{-1}-M_{1}}{2}\right)}\right. \\
& \quad=\left(2+\frac{Z}{3}\right)\left(\frac{d M_{1}}{d \xi}\right)^{-1} \tag{25}
\end{align*}
$$

 we want our equation to desoribo the KNow. In wile method, aline very Istle is known about the region close to the load no edge, find aline we would like to have a method which will bo valid, independent of the leading edge effect, wo shall start our solution downatreas of the leading edge being the two-region theory. Thus we use the results available to start tho problem and join our volution downetreara of the leading edge. Therefore, using 1 eentsopio expansion (Reference 5.j-20).

$$
\begin{equation*}
\frac{d M_{1}}{d 1}=\frac{\gamma-1}{2} M_{1}^{2} \frac{\mu_{0}}{P_{0} U_{0}} \frac{d^{2} \delta}{\partial x^{2}} \tag{27}
\end{equation*}
$$

Since for $M \gg\left\{\right.$ it will be show l aten that $\left(\frac{v}{U}\right)_{2} \frac{\partial}{\partial x} \delta^{*} \frac{\partial 8}{\partial x}$
If wo apply the same transformation to equation (20) we get

$$
\begin{equation*}
F_{3} \lambda^{\prime}-\frac{F_{3} \lambda}{M_{1}}=\frac{4 b}{\Lambda_{0}} \frac{d_{1}}{d t} \tag{28}
\end{equation*}
$$

Using the initial condition we can row solve numerically equations (26) and (28) and find the parameters b and λ as a function of Now b can be found at once as s. function of λ if we eliminate λ^{\prime} between equation (26) and (28) by multiplying equation (26) by F_{3}, multiply equation (28) by F_{1} and subtracting the resulting equations. Equation (26) can then be solved numerically using ADAMS method (Reference 5.3-20).

The O_{f} and \underline{E} for the various $M a$, and R_{∞} were correlated
 1/a of for nil thin nation comyutaid.

Thin method ain be improved by wing; p_{r} a constant (not necessarily 1) and by wing the oxnct expremiton for $\left(\frac{V}{U}\right)_{1}$ which is found as follows

$$
\begin{aligned}
& \rho_{1} v_{1}=\frac{\partial}{\partial x} \int_{0}^{\delta} \rho_{u} d y-\int_{0}^{\delta} \rho_{u} \frac{\partial}{\partial x}(d y) \\
& =\frac{\partial}{\partial x} \int_{0}^{\delta} \rho_{u} d y-\left(\rho_{1} u_{1} \frac{\partial \delta}{\partial x}\right) \\
& \left(\rho U_{1}=\frac{\partial}{\partial x} \rho_{1} v_{1} \int_{0}^{11}\left(1-\frac{\rho_{u}}{\rho_{1} u_{1}}\right) d y-\int_{0}^{\delta} \frac{\partial}{\partial x}\left(\rho_{1} u_{1}\right) d y\right. \\
& \left(\frac{\rho v}{\rho_{U}}\right)_{1}=\frac{\partial \delta}{\partial x}-\left(\frac{\delta-\delta}{\rho_{1} v_{1}}\right) \frac{\partial}{\partial x}\left(\rho_{1} u_{1}\right)
\end{aligned}
$$

In the case considered in this paper we assume $\delta * \approx \delta$ and therefore $\frac{(v)}{v}=\frac{\partial \delta}{\partial x}$

$$
\begin{aligned}
& g=\quad \theta_{4}\left(\theta_{8}=\frac{y_{1}}{1}\right) \\
& 8=\quad e_{6}\left(\theta_{2}=\frac{x_{2}}{1}+\frac{7}{10}+\frac{2}{80}\right)
\end{aligned}
$$

 ee日mifition gets better as the well temperature Increases.

APPENDIX SA LIST OF SYMBOLS

F1, 2,3	Integrals defined after equations (15) and (21)
0	Function of M_{0} and M_{2} ($\cup f .1$ equation $24 b$)
H	Stagnation enthalpy $=\frac{u^{2}}{2}+o_{p}^{T}$
M	Mach number
p	Statio preabure
R	Oas oonstarit
R_{∞}	Reynoldo numbor ($P_{\infty} U_{\infty} x / \mu_{\infty}$)
S	Sutherland constant, $216^{\circ} \mathrm{R}$ for air
T	Absolute temperature
t.	Transfommed variable (Of. equation 16)
u	Velocity component in x direction
U	Potential Llow velocity 'ı x (trection
v	Velocity component, in the y direotion
W	Ratio of stagnation enthalpy at the wail in potentifal fow
x	Courdinate along the surface
y	Coordinate normal. to the surface
2	Pressure gradient parameter; (cf. equations ala)
γ	Ratio of epacific heats
δ	Boundity liger thickness
$\delta *$	Boundary layer dioplacenent thickneas
λ	Non-dimensional boundary layer thickness ratio ($\lambda=\Lambda / \Lambda_{0}$)
μ	Coefficient of viscosity

Non-dimenaional space coordinate $\left(\xi \cdot \frac{\rho_{0} U_{0} x}{\mu_{0}}\right)$, or
$\frac{T_{W}}{T_{\infty}} \frac{\mu_{\infty}}{\mu_{W}} \frac{R_{\infty}}{M_{\infty}{ }^{2}}$
p Mass density
Λ Nonedimanoional boundary layer thickness parameter
$\left(\Lambda \cdot P_{1} U_{1} P_{0} U_{0} \delta_{t}^{2} T_{w} / \mu_{w} \mu_{0} i_{1}\right)$
$\tau \quad t / 8_{t}$
Subscripts
() Value at the auriace, y a for any value of x
()$_{2} \quad \nabla$ glue at the outer edge of the boundary lager
() 。

Value at $x=0$
() t_{t}
Value in the $x-t$ or $\mathbf{f} \boldsymbol{\tau}$ plano
Stagnation values
Value at infinity upstream
(20 Vtulue at, initindty downstream

and the firat oondits on, tugethur with the sooond condition above, may be taken arbitrarily an then oritroyd ${ }^{\text {th }}$

$$
\left(\frac{\text { shoardny otrouu }}{\text { prosourc }}\right)_{\text {max. }} \quad\left(\frac{C_{\mathrm{S}}}{\mathrm{~S}_{\mathrm{p}}}\right)_{\text {vall }} \ll 1
$$

With the aid of thu ountimutty ergnition, the momentum und onorgy integral rylation: man be witition in tha ubual form
and

$$
\begin{equation*}
\frac{v}{2} M^{2} \quad \frac{d}{d x} \frac{\rho_{1}}{\rho_{\infty}} \quad-\frac{k_{i \prime}}{p_{c}, U_{\infty}}\left(\frac{\partial T}{\partial y}\right)_{w} \tag{2}
\end{equation*}
$$

- The oriteria (I) and (II) can bo shown to be equivalant in order of magnitude, 1.e.,

$$
\left(\frac{c_{f}}{c_{p}}\right)_{x a 11} \sim \frac{\delta}{x} \ll 1
$$

a thourh not. equal mmarically.

* The nomonclaturs usod hore is that defined in Appentix كa.

where

$$
\begin{align*}
& 20 \equiv \int_{0}^{\delta} \frac{\rho}{\rho_{1}} \frac{u}{u_{1}}\left(1-\frac{u}{u_{1}}\right) d y \tag{3}\\
& \theta \equiv \int_{0}^{\delta} \frac{p}{\rho_{1}} \frac{u}{u_{1}}(1-R) d y \\
& \delta^{*}=\int_{0}^{\delta}\left(1-\frac{\rho_{1} u_{-}}{\rho_{2} u_{2}}\right) d y \tag{4}\\
& \left.R=\frac{C_{p} T+\lambda\left(L^{2}+v^{2}\right)}{C_{p} T^{\prime}+\frac{1}{b} U_{\infty}^{2}} \cdot \frac{\left(C_{p} T_{B}\right)}{\left(C_{p} T_{B}\right)_{\infty}} \cdot \frac{\left(C_{p} T_{\theta}\right)}{\left(C_{p} T_{\theta}\right)_{1}}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{v}{u_{2}}=\frac{d \delta}{d x}-\left[\delta \delta_{1}-\delta\right] \quad \frac{d}{d x} \ln \left(\rho u_{1}\right) \tag{5}
\end{equation*}
$$

ABounding the body to be very thin, (and $\frac{d}{x} \ll 1$), it is consistent to assume also that, $u_{1} \approx U_{\infty}$. Since $M_{\infty} \gg 1$, then $M_{1} \gg 1$, while $M_{\infty}>M_{11}$ then ${ }^{+}$

$$
\frac{p}{\rho_{1}}=O\left\{\frac{1}{\frac{y-1}{2} H_{d}^{2}}\right\} \ll 1
$$

thus

$$
\begin{align*}
& \delta \# \approx \delta \tag{6}\\
& \left(\frac{v}{u_{1}}\right) \approx \frac{d \delta}{d x}
\end{align*}
$$

+ llere the conventional notation is used, namely x - $O(y)$ means

$$
\lim _{y \rightarrow 0} \quad \underset{y}{y}=\text { constant, } \neq 0 \text {, and } x=0(y) \text { means } \underset{y \rightarrow 0}{ } \lim _{y}^{x}=0
$$

On the wall the x-momentum equation reduces to

$$
\begin{equation*}
\left.\left.\frac{\partial p}{\partial \Sigma}\right|_{w} \approx \frac{\partial}{\partial \bar{y}}\left(\mu \frac{\partial u}{\partial y}\right)\right|_{w} \tag{7}
\end{equation*}
$$

While the energy equation becomes

$$
\begin{equation*}
\frac{\partial}{\partial y} \times \frac{\partial}{\partial y}\left[R-\frac{\partial}{y}(\lambda-P r)\left(\frac{y}{u_{1}}\right)^{2}\right]=0 \tag{8}
\end{equation*}
$$

Introducing the Dorednitein-Stowarteon transformation

$$
\begin{equation*}
e=\int_{0}^{y} \frac{P}{P_{1}} d y^{\prime}=\int_{0}^{y} \frac{T_{2}}{T_{1}} d y^{\prime} \tag{9}
\end{equation*}
$$

$$
\tau=\left(t / \delta_{t}\right)
$$

where

$$
\begin{equation*}
\delta_{t}=\int_{0}^{\delta} \frac{p}{\rho^{\prime}} d y^{\prime} \tag{20}
\end{equation*}
$$

ono has

$$
\begin{align*}
2 \eta \frac{d}{d \xi} & {\left[\eta \int_{0}^{1} \bar{u}(1-\bar{u}) d \tau\right]=2\left(\frac{\partial \bar{u}}{\partial \tau}\right)_{\tau} \cdot p_{0} } \\
& +\frac{\gamma-1}{\gamma} \int_{0}^{1}\left(A-\bar{u}^{2}\right) d \tau \cdot \eta^{2} \cdot \frac{d}{d \xi} \ln p^{*} \tag{11}
\end{align*}
$$

Checked \quad By
where

$$
\bar{u}=u / u_{1} ; p^{\prime} \cdot p / M_{\infty}^{2} P_{\infty},(P r)=\frac{\mu_{0} c_{v}}{k}
$$

and C_{P} io assumed to bo a constant, $r_{B} \frac{r_{-}-1}{2} K_{\infty}^{2}, S$ is the Sutherland oonstant, and

$$
\begin{align*}
& \text { 1日 } \frac{T_{N}}{T} \frac{\mu_{\infty}}{\mu_{W}} \frac{\mathrm{Rem}_{\infty}}{M_{\infty}^{2}} \tag{1}
\end{align*}
$$

The auhacriptia ∞, \forall, and a refer to tho frito stream, wall and atagnathun quantities, respectively. In deriving Equation (13) the Suthnijand viacosity-tempersture relation has been used,

In dictemining the above eyetiom of equations, the energy equation on the wall hag not hern used. It can be show that the error intruluecd by ignoring this condition is of the order of ($1-\mathrm{Pr}$). Thu above the: is differential equations of the first order, together with an appropriate formula relating pressure to the nomad velocity at the ode of the layer, or

$$
{\underset{P}{\infty}}^{P_{\infty}} F\left(M_{\infty} \frac{d \delta}{d x}\right),
$$

are sufficient to determine (with proper initial conditions), η, D^{1+} and two other unknown functions which oharunterize the distribution of velocity and of the total enthalpy across the layer. Since the external "entropy.leyer" 1 a at leet as thick as δ, and tho change in velocity

is of the order of the larger of $U_{\infty}\left(\frac{\delta}{x}\right)^{2}$ and $U_{\infty} \propto^{2}$, the vorticity there is at moat of the order of $\frac{U_{c e}}{x}\left(\frac{6}{x}\right)$, which is unaller by one order of magnitude than the vorticity in the boundary layers ono ray, therefore, assume $u=u_{1}$, and $\left(\frac{\partial u}{\partial y}\right)=0$ at the edge (but $\frac{\partial^{2} u}{\partial y^{2}} \neq 0$), and write

$$
\begin{equation*}
\bar{u}=1-(1-7)^{2}(1-a t) \tag{15}
\end{equation*}
$$

One can also with for R

$$
\begin{equation*}
R=1-(1-\tau)^{2}\left[1-\frac{T_{H}}{T_{S}}-b E\right] \tag{16}
\end{equation*}
$$

where a and b are unlonown functions of ξ or X. Note that the tomporiatore on the wall has ado boor accounted for in Equation (16). Substia tubing Equations (25) and (26), into Equations (21), (12) and (13), wo have

$$
\begin{align*}
& 2 p^{*} \eta \frac{d}{d \xi}\left[\eta\left(\frac{2}{25}-\frac{1}{10} a-\frac{1}{105} "^{2}\right)\right]=2(2+a) p^{* 2} \tag{27}\\
& +\frac{r-1}{2} \eta^{2} \frac{d p^{\prime \prime}}{d \xi}\left(\frac{2}{15}+1 / 3 \frac{T_{H}}{T_{s}}+\frac{1}{17} b-\frac{a}{10}-\frac{a^{2}}{105}\right) \\
& \text { (Pr) } \eta \frac{d}{d \xi}\left\{\eta\left[\frac{2}{15}\left(1-\frac{T_{w}}{T_{s}}\right)-1 / 20 b+1 / 30\left(1-\frac{T_{W}}{T_{s}}\right) a-\frac{1}{105} a b\right]\right\} \tag{18}
\end{align*}
$$

$$
=\left(2-2 \frac{T_{\mathbf{W}}}{T_{\theta}}+b\right) p^{*}
$$

and
$-\frac{\gamma-1}{\gamma} \eta^{2} \frac{d}{d \xi} p^{\#}=p^{* 2} \frac{T_{B}}{T_{W}}\left[4(1+28)+\frac{T_{W}-S}{T_{W}+S}(2+a) \frac{T_{9}}{T_{W}}\left(2-2 \frac{T_{W}}{T_{B}}+b\right)\right]$

The skin friction coefficient can then be expressed as

and the heat trpasfor coefficient ae

$$
\begin{equation*}
c_{h} \equiv-\frac{k_{H}\left(\frac{\partial T}{\partial y}\right)_{W}}{\rho_{B 0} U_{c o}\left(C_{B}-T_{W}\right)} \cdot \frac{T_{B}}{P\left(T_{B}-T_{W}\right)} \cdot \frac{\left[2\left(1-\frac{T_{Y}}{T_{B}}\right)+b\right] p^{H}}{\eta} \tag{21}
\end{equation*}
$$

and thu

$$
\begin{equation*}
O_{f} / C_{h}=2 \operatorname{Pr}\left(1-\frac{T_{W}}{T_{0}} \frac{2+a}{2\left(1-\frac{2}{T_{W}}\right)+V}\right. \tag{22}
\end{equation*}
$$

With an additional relation - tho prosouro formals - one cen procoed to obtain n solution either numerically - using step-wise integraion er itozation - or analytically by expanding the solution in powers of the variable $\$$. For points near the lading edge, where the interaction is strong; ono expands the solution in ascending powers of 5 , for points far downstream, whore the interaction 18 weak, one expands the solutions in dogoancine powers of $\$$.

The formula deduced from Prandil-Muyer flow may be used when tho shook, if it exists, is very weak. This is

$$
\begin{equation*}
\frac{p}{P_{1}} \cdot\left[1+\frac{\gamma-1}{2} M_{1}\left(\frac{d \delta}{d x}+\alpha c\right)\right] \frac{2 \delta^{\prime}}{\delta-1} \tag{23}
\end{equation*}
$$

where P_{1} and M_{1} are the arbitrary reference pressure and Mach number belonging to tho same state.

In the absence of a better formula, the so-called ntangent-wedge formula" may be used whenever the shock involved is strong enough. This can be expressed as (continued next page)
**Note that this definition differs from that employed by Crocco (referemen 5.3.21).

and gtriotiy opeakinfi, ohnild ba considored ng min ompirical formula in nppliontion.

It has boon ootimatcd by tho cul.culationv in Appondix 5 D that for
Mgo $>\lambda$ and mas tho londinfe odfo tho odror involvad in uoing cquation

 friotion. For tho otrong intonsotion eolution obtained hero, thio faotor has been takon into account.

Sinoo tho wolutions wo atngular nonr tho loadink eige, a suitablo tranafomation of cho varinbla in vach of the expanoiens is introduocd.

Strong Sluok - Buwninyy Inyciv Intoraotion
The governine of cquations conoiot of Equations (17), (18), (19) and

$$
\begin{align*}
p^{13}=k \frac{\gamma}{2}(\gamma+1) & {\left[\left(\frac{p-1}{2}\right)^{2} \frac{d}{d \xi} \frac{n}{p^{2}} \int_{0}^{1}\left(R-\bar{u}^{2}\right) d t+a^{2}\right] } \tag{25}\\
& +\left(\frac{3 \gamma+1}{\gamma+1}\right) \frac{1}{H_{\infty}^{2}}
\end{align*}
$$

onls the hifphest order termin nre wetained in Equation (25), and the factork is intunder! an a cernecticr to tho tangent-wedge formuln. We thus have four noुuations for tho four unknovais are $\eta, p H$, a and b.

In viow of the singilar behavior of the solution to this systrm as $\int \rightarrow 0$, the variable

$$
\begin{equation*}
S=51 / 4 \tag{26}
\end{equation*}
$$

is intioduced, and it, is nssumed that (for $5 \ll 1$)

The axpressions of Equation (27) are oubatitutcd into Equations (17), (18), (19), and (25), and the leading torme of each of the roouliant equations are, reapeotively,

$$
\begin{align*}
& {\left[(1)+\frac{\gamma-1}{2}(2)\right] H_{0}^{2}=4\left(2+a_{0}\right) P_{0}} \\
& \frac{P_{r}}{4}(3) H_{0}^{2}=\left[2\left(1-\frac{T}{T_{3}}\right)+b_{0}\right] P_{0} \tag{28}\\
& \frac{\gamma-1}{2 \gamma} H_{0}^{2}=\text { (1) } P_{0} \\
& \left.K-\frac{\gamma}{2}(\gamma+1)\left(\frac{\gamma}{-2}\right)^{2}\right) \frac{g}{16}(2)^{2} H_{0}^{2}=P_{0}^{3}
\end{align*}
$$

(1) $-\int_{0}^{1} \bar{u}(1-\bar{u}) \Delta \tau=\frac{2}{I 5}-\frac{a_{0}}{\omega}-\frac{a_{0}^{2}}{105}$
(2) $\int_{0}^{1}\left(R-\bar{u}^{2}\right) d E=\frac{7}{15}-\frac{1}{3}\left(1-\frac{1}{2}\right)+\frac{b_{0}}{12}-\frac{a_{0}}{10}=\frac{a_{0}^{2}}{105}$
(3): $\int_{0}^{1} \bar{u}(1-R) d t a_{2 j}^{2}\left(1-\frac{T_{L}}{T_{B}}\right)=\frac{b_{0}}{20}+\frac{a_{0}}{30}\left(1-\frac{\left.T_{\omega}\right)}{T_{B}}-\frac{a_{0} b_{0}}{105}\right.$
(1) $=\quad \frac{T_{B}}{T_{w}}\left\{1\left(1+2 a_{0}\right)+\frac{T_{w}-S}{T_{w}+S} \frac{T_{S}}{T_{w}}\left(2+a_{0}\right)\left[2\left(1-\frac{\left.T_{W}\right)}{T_{S}}+D_{0}\right]\right\}\right.$

Simultaneous 80° elution on the Equations (28) then yields the parameters H_{0}, P_{0}, a_{0} and b_{0} The coefficients of the second order terms involve $H_{1} ; F_{1} ; a_{1}$ and b_{1} and ares

$$
\begin{align*}
& H_{0}\left[3 / 2(2)+\frac{\gamma-2}{2} \text { (2) } H_{1}+\left\{-4\left(2+a_{0}\right)+\frac{1}{2} \frac{H_{0}^{2}}{P_{0}^{2}} \text { (1) }+\frac{\gamma-1}{\delta} \frac{H_{0}^{2}}{\rho_{0}}(2)\right\} P_{2}\right. \\
& -H_{0}^{2}\left[2 \frac{P_{0}}{H_{0}^{2}}+\left(\frac{1}{66}+\frac{2 a_{0}}{50}\right)+\frac{H_{-1}}{4}\left(\frac{1}{10}+2 n_{0}\right)\right] a_{1} \\
& +\frac{4-1}{48} \quad H_{0}^{8} \quad b_{1} \quad 0 \text {, } \tag{30.8}
\end{align*}
$$

$$
\begin{align*}
& +\left\{-\frac{4}{P_{r}}\left[2\left(1-\frac{T w}{T_{\theta}}\right)+b_{0}\right]\right\} P_{1}=0 \text {, } \tag{30,6}\\
& \left\{\begin{array}{cc}
\frac{r-1}{\gamma} & \frac{H_{0}}{P_{0}}
\end{array}\right\} H_{1}+\left\{\frac{\gamma-1}{\gamma} \quad \frac{1}{L} \frac{H_{0}^{2}}{\gamma_{0}^{2}}-2(4) \frac{1}{\rho_{0}}\right\} r_{1} \\
& -\left[\frac{T_{w}-a}{T_{w}+S}\left(\frac{a_{u}}{T_{w}}\right)^{2}\left(2+a_{0}\right)\right] b_{1} \\
& -\left[8 \frac{T}{T_{w}}+\frac{T_{w}-S}{T_{w}+S}\left(\frac{T_{\theta}}{T_{w}}\right)^{2}\left(2-2 \frac{T_{W}}{T_{\theta}}+b_{0}\right)\right] B_{1}=0, \quad(30.0) \tag{30.0}\\
& -\left\{\frac{\gamma-1}{2} \frac{(2)}{P_{0}}\right\} H_{1}+\left\{\begin{array}{lllll}
\frac{1}{r}(\gamma+1) & \frac{4}{3(r-1)} & \frac{P_{0}}{H_{0}} & \frac{1}{(2)} & +(2)(r-1) \\
2 & \frac{H_{0}}{P_{0}^{2}}
\end{array}\right\} P_{1} \\
& -\left\{\begin{array}{cc}
\frac{\gamma-1}{2 L} & \frac{H_{0}}{P_{0}}
\end{array}\right\} b_{1}+\frac{\gamma-1}{2} \quad \frac{H_{0}}{P_{0}}\left\{\begin{array}{ll}
1 \\
10 & +2 a_{0} \\
105
\end{array}\right\} a_{1}=\alpha \quad \text { (30.d) }
\end{align*}
$$

This is a linear aleebratio system wide h can ba solved for H_{1}, P_{1}, a and b_{1}.

It 18 clear that the second order terms give the angle of attack affect, once all tho unknowns appearing in them are anear in α. The loading terms which do not contain a, give the solution at zero anglo of attack (when if $\frac{d h}{d x} \gg 2$).

In tho first order gyetem, en in de for the insulated cade, $a_{0}=2.333, b_{0}=0,(\operatorname{tor} \gamma=7 / 5=1.4) ; a_{0}=0.399, b_{0}=0$, (for - 5/3) 1

$$
\begin{equation*}
\frac{p^{(0)}}{p_{\infty}}=3 \gamma \sqrt{k} \sqrt{k}\left(y^{2}-1\right)\left(1+2 a_{0}\right)\left[\frac{7}{15}-\frac{n_{0}}{10}=\frac{a_{0}^{2}}{105}\right] \bar{X} \tag{3}
\end{equation*}
$$

and $M_{\infty}^{3} C_{1}(0)=\frac{\sqrt{3}}{2}\left[k \frac{2(c+1)}{1+2_{a_{0}}}\right]^{1 / 4}\left(2+n_{0}\right)\left[\begin{array}{lll}\frac{7}{15} & -\infty & -n_{0}^{2} \\ 105\end{array}\right]=1 / 2$
whore the value of k is to to taken foin Append ix 50 as 1 .o.14 for 8 a $7 / 5$ and 1.36 for $y=\xi / 3$.
and whore
tho aupargoript (0) referring to the asymptotic values mar the leading oder.

If the power law $\mu \sim T$ io wood innteaci of the Sutherland 1 Hz ", then

$$
\begin{equation*}
\bar{X} \approx\left(\frac{x^{\mu}-1}{2}\right)^{\omega-1} \frac{n^{2+\omega}}{R_{0}^{1 / 2}} \tag{34}
\end{equation*}
$$

For the "coolod" wall of constant temperature with Tm T 3 , $M_{\infty}=20$, end $\gamma=1.4$, we obtain $a_{0}=-1.2805, b_{0}=-1.462$,

$$
j_{0}=k^{1 / 2}(\gamma)^{1 / 2}(\gamma+1)^{1 / 2}\left(\frac{U^{4}-1}{2}\right) \frac{3}{4} \text { (2) } \sqrt{\frac{2(2+n)}{\frac{1}{2}(1)+\frac{1}{2}-1}} \text { (2) }
$$

H It is of interest to note that the results of different authors vary
 provides tho lights value for the solf-induef pressure.

whero(1) and (2)refer to tho oxprubsions even by (2?).
An analytic exprosition for the aovnptotio value of $\mathrm{p} / \mathrm{P}_{\infty}$ and a_{P} can be obtained far oufificientiy cinali value of $T_{1} / T_{9}, 1_{1} \theta_{0}$, for

$$
\begin{equation*}
\frac{2}{\left(r^{-1}\right)} \frac{T_{w}}{M_{\infty}^{2}} \ll 1 \tag{36}
\end{equation*}
$$

ne

$$
\left.\left.\begin{array}{rl}
\frac{p^{(0)}}{p}=\frac{9}{4}\left[\frac{2}{35} k \gamma(\gamma+i)\right. \\
i \tag{37}
\end{array}\right]\left[\frac{3(\gamma-2)^{3}}{\left(2+\frac{\gamma-1}{2}\right)}\right]^{1 / 4}\right]^{1 / 4} .
$$

and

$$
\begin{aligned}
& \times \gamma^{1 / L}(\gamma+1)^{1 / 4}\left(\frac{T_{\omega}}{T_{=0}} \frac{T_{\infty}: r}{T_{W}+S}\right)^{3 / 4}\left(\frac{T+S}{T-S}\right)^{3 / 8} X
\end{aligned}
$$

where *

$$
\begin{equation*}
X=\frac{M_{\infty}^{2+1 / 2}}{R^{I / 2}} \tag{3i}
\end{equation*}
$$

* It should be noted that for a given (low) wall temperature, as Mach number M increases, the slope in the velocity and temperature profiles increases.

SECRET

It on be also be show that

$$
\sigma_{i}^{(0) / \sigma_{n}^{(0)}}=\underline{\underline{1}}+x
$$

Inspection of Equation e (38) and (33) show that with the sebumption of the suthori and viocosity-temparature relation, the essential parameter in tho probion of hypersonic viscous flow io
$M_{\infty}^{5 / 2} / R_{\theta \infty}^{1 / 2}$ for both dingulatod ($T_{\omega} \approx T_{\theta}$) 00.500 and the o001ed wall $\left({ }_{-} / T_{a} \ll 1\right)$, (Inotoad of $M_{\infty}^{3} / R_{c \infty}^{2 / 2}$) obtained in Reforuncuo 5.3 .1 and 5. 3.3 which was based on tho linear viso001ty law.

Fipurog 5.3-2 and 5.3-3 apponring in the text wore computed, at tho time the anglo or attache effect whidah to the solution of the indoor alpobrato gyutem Equation (30) had not been oarrided out explicitly, From rooulto obtained from a flow model odmilar to that used by Ster and Pal, Refomnooe 5.3-2 and 5.3-8, wo obtained

$$
\begin{aligned}
& \frac{p}{p_{\infty}} \approx\left(\frac{n}{p_{\infty}}\right)\left[\begin{array}{ll}
1+\frac{8}{7} & \frac{\alpha}{\left(\frac{\delta}{x}\right)_{\infty \alpha_{0}}}
\end{array}\right] \\
& c_{f} \approx \underset{\alpha_{0}=0}{\left(c_{f}\right)}\left[1+\frac{4}{7} \underset{\left(\frac{\delta}{x}\right)_{0}}{\alpha}\right.
\end{aligned}
$$

under the assumption of an anoulated wall, a linear velocity profile, and $\gamma=7 / 5=$ l. . . This exprosaion served as a breves for the estimation of the angie of attack effect on C_{f} and ($\mathrm{p} / \mathrm{p}_{\infty}$) shown in Figures 5.3-2 and 5.3-3. 1 chock at $H_{0 s}=20, T_{1:} / T_{\infty}=3$, with the calculation obtained later reveals that the error involved in the coefficients $\frac{8}{7}$ and $\frac{4}{7}$ appeared above about 20% or less which is of the
same order of magnitude as terms neglected in tho computation of the angle of attack effect.

Effoct of a Smill Induoed Progsure Oradient on Inminar Eichntiotion and Henc drallive

For tho aroa of woak intaraotion, whioh is nooesaardly at some dintañū demintrosen of the lending odpe, ono oan dovolop the solution into daricanding powors of $\}$, and tho apprcpalate transformation da

$$
5^{1 / 2}
$$

Tho firit ordor oquititon n itim obviougly reduoce to tho ondinary ongo wt a flat plato (at zoro dnationco nind aoro prosauro gradiont). Tho firat ondor doxrootion aveounting; for tha ahnngi in prowaum (Δp) may thon bo obtained. In fnot, if on? \because the ilrat ordar offoot in of primnary intorant, tho paroentafo chnngau in okin iriotion and in tho rato of hoat tranitor dopondo only on the ratio ($\alpha \mathrm{p} / \mathrm{H}_{-\mathrm{c}}$).

Tho firyt ordor solution (noro presouro gradient) gatiofico the following al.gobraio uquationa

$$
\begin{aligned}
& H_{0}^{2}\left(\frac{2}{15}-\frac{a_{0}}{40}-\frac{a_{0}^{2}}{105}\right)-2\left(2+a_{0}\right) 1_{0}^{4}-0 \\
& \frac{\left(\mu_{r}\right)}{2} H_{0}^{2}\left[\frac{2}{25}\left(1-\frac{T_{11}}{T_{0}}\right)-\frac{b_{0}}{20}+\frac{\mu_{0}}{30}\left(1-\frac{T_{W}}{T_{g}}\right)-\frac{a_{0} b_{0}}{205}\right] \\
& -\left[2\left(1-\frac{T_{u}^{\prime}}{T_{y}^{\prime}}\right)+b_{0}\right] \mu_{0}^{*}=0 \\
& 4\left(1+2 n_{0}\right)+\frac{T_{W}-S}{T_{V}+S} \frac{T_{S}}{T_{V}}\left(2+a_{0} \cdot\left[2\left(1-\frac{T_{W}}{T_{B}}\right)+t_{0}\right]-0\right. \\
& P_{0}^{i!}=p_{-\infty}^{4}=\frac{1}{\lambda_{i}^{2}-\infty}\left(\frac{p_{-\infty}}{p_{\infty}}\right)
\end{aligned}
$$

where $H_{0}=7 / \sqrt{5}$, which yields tho zero angle asymptotic solutions for hith Mach number. It 10 of interest to note that, even with sero pressura gradient, the skin iriction coefficients for insulatad and cooled wall ($\frac{T_{W}}{T_{6}} \ll$)) can both be exprossed in the asymptotio form

$$
\begin{equation*}
H_{0 s}^{3} C_{f}=\text { const. } X \tag{LI}
\end{equation*}
$$

provided the Sutherland viscosity-temperaturo law is used.
The first oder correction for the pressure gradient effect can then be obtained from the following in near algebraic system for
a and b in terms of the solution of Equation (LO) and pi

$$
\begin{aligned}
& 2\left(2+a_{0}\right) \frac{\Delta n}{n_{0}}-2 \Delta a
\end{aligned}
$$

$$
\begin{aligned}
& -\left\{B \frac{T_{B}}{T_{W}}+\left(\frac{T_{H}}{T_{W}}\right)^{2} \frac{T_{H}-S}{T_{W}+S}\left[2\left(1-\frac{T_{H}}{T_{B}}\right)+D_{0}\right]\right\} \Delta a=0
\end{aligned}
$$

It follow i from Eiguations (20) and (21) that,

$$
\left.\begin{array}{l}
\frac{\Delta c_{g}}{c_{f_{0}}} \cdot\left(\frac{\Delta a_{0}}{2+a_{0}}\right)+\left(\frac{\Delta}{2_{-\infty}}\right)-\left(\frac{\Delta n}{\eta_{0}}\right) \tag{1,3}\\
\frac{\Delta c_{h}}{c_{h_{0}}} \cdot\left(\frac{\Delta}{2\left(1-\frac{b}{T_{H}}-\right.}+\frac{\Delta}{T_{0}}\right)+\left(\frac{\Delta p}{p_{-\infty}}\right)-\left(\frac{\Delta \eta}{\eta_{0}}\right)
\end{array}\right\}
$$

where the subscript. (0) refers to the cane of zero pressure gradient.

and
$\frac{\Delta b}{2\left(1-\frac{T_{w}}{T_{0}}\right)+b_{0}} \cdot \frac{1}{2+a_{0}}\left\{-\frac{r-1}{8}=\left(\frac{?}{15}+\frac{1}{5} \frac{T_{w}}{T_{a}}+\frac{b_{0}}{12}-\frac{a_{0}}{10} \frac{a_{0}{ }^{2}}{105}\right) \frac{H_{0}^{2}}{T_{\infty}} \quad \frac{\Delta p}{p_{-\infty}}+\Delta a_{1}\right\}$
and in View of the coccid of Equation (42), one arrives at

$$
\begin{equation*}
\left(\frac{\Delta c_{n}}{c_{h_{0}}}\right) \cdot 0\left(\frac{\Delta p}{p_{-\infty}}\right) \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left(\frac{\Delta c_{f}}{C_{f_{0}}}\right)=\left\{\frac{\gamma-1}{8}\left(\frac{?}{1!}+\frac{1}{3} \frac{i_{N}}{T_{s}}+\frac{\dot{u}_{0}}{12}-\frac{a_{0}}{10}-\frac{i_{0}^{2}}{105}\right) \frac{u_{0}^{2}}{p_{\infty}}\right\}\right\}\left(\frac{A}{p_{-\infty}}\right) \tag{400}
\end{equation*}
$$

Thus to the first order of approximation, the rate of heat transfer at the wall is practically unaffected by the change in pressure, and the local akin friction increases proportionally to the local inortiase in prosouro.

The coefficient of ($\frac{\Delta p}{P_{-\infty}}$) in Equation (L6) reduces simply to $3.69\left(\frac{\gamma-1}{4}\right)$ for an insulated wall and too $\frac{\gamma-1}{4}-1$ for a cooled wall. $\left(\frac{T_{w}}{T_{s}} \ll 1\right)$.

For $\left(M_{\infty} \propto\right)^{2} \gg 2$, and on the "oompreasion side", one can deduce from the tanfent-wedge formula that
(for insulated wall)
and

$$
\left.\frac{\Delta_{D}}{P_{-\infty}}=?\left(\frac{\gamma-1}{2}\right)^{3 / 4}\left\{\frac{\left(\frac{q}{70}\right)}{\gamma(\gamma+I)} \frac{T_{\infty}+S}{T_{H}+S}\right\}^{1 / 2} \frac{12}{\left(T_{5}\right)} \frac{T_{N}}{T_{\infty}} \frac{T_{W}+S}{T_{W}-S}\right\}^{1 / 4} X \frac{1}{\left(M_{\infty} \alpha\right)^{2}} T_{H}
$$

where

$$
X \equiv \mu_{\infty}^{5 / 2} / \mathrm{Ro}_{\infty}^{1 / 2}
$$

Thus it an be sen that tho interaction afoot dearoasen with inoreasinit anele of attack.

While $M_{\infty} \propto \lll 1$ on the compression side, and also on the "expansion" side, it can be seen from the Prandil-Mnyez solution that $\left(\frac{\Delta p}{p_{-\infty}}\right)-\frac{\gamma}{2}\left(\frac{\underset{2}{-1}}{2}\right)^{3 / 4}\left[\frac{7}{15}+\frac{1}{20}-\frac{1}{12(1)}\right]\left\{3 \frac{\left(1+\frac{S}{T_{00}}\right)}{\frac{2}{15}+\frac{1}{120}-\frac{1}{420}}\right\}^{1 / 2} \frac{M_{-\infty}}{14 / 2}{ }_{-\infty}^{1 / 2}$ (for insulated mall) and

$$
\begin{align*}
& \left(\frac{\Delta-p}{P_{-\infty}}\right)=\frac{\gamma}{2}\left(\frac{\gamma-1}{2}\right)^{3 / 4}\left\{2 \frac{1-a^{+}}{T_{w}+\frac{5}{5}}\left(\frac{2}{15}+\frac{1}{30}-\frac{4}{105}\right)\right\}^{1 / 2} \tag{1,0}
\end{align*}
$$

APPENDIX 50

Thn aboorption crobsesectiona $\sigma(\checkmark)$ are fundamontal qlisntities In a quantitative theosy of radiation. The thoorutical expregoions for the absorption croce enctions aro deriven on the basis of a quanturn mechanical theory of radiation. The dotaila of the derivation aro determinged ly the apocific naturo of the apoctra. Sinco we aro primarily ooncornod with the abigerption continuw of oxyifen, the major part of thin appendix in dovoted to a dorivation of the oroga gectiono duecribinf thin types of aboorption. Tho aronceasetione for Jinn apentra are indudan for oomplatonoag, but no derdvation lis piven. Tha radintion probluine involve
 5.1-21, 5.1-29 (illi 5.1. 30.

Tho exprantion fur tho orour saition for ubaorption duo to tromadtione botwoon bound otates may bo wistions

$$
\begin{aligned}
& \sigma(v)=\frac{8 \pi^{3} v_{0}}{3 h \epsilon}(1| |!\mid f)^{2} S\left(v, v_{0}\right) \\
& \text { or } \sigma(\lambda)=\frac{8 \| I^{3}}{3 h \lambda_{0}}(1|\mu| f)^{2} S\left(\lambda, \lambda_{0}\right)
\end{aligned}
$$

Whure ($1|\mu| f$) 10 the matrix 0lanint icer an oloctric ulpolo tranatition
 for the oliape function demonds on thes athtis of the equs tho mulural lime
 probability; tho cloppine broncionine pivos a ehape function

$$
S=\sqrt{\frac{m}{2} \pi \frac{c^{2}}{k T v_{0}^{2}}} e^{\frac{-m c^{2}\left(v-v_{0}\right)^{2}}{2 k v^{2} v_{0}^{2}}} \quad \text { and collioton broadini; usuallv }
$$ has an expreseston aimilar to the matural line ohnpe with $\Gamma a \frac{1}{\tau_{0}}$ whero

\mathcal{T}_{0} is the inean time botison collisons.

Tranaitiona which ge from bound states to continum statos aro rosponstblo for continuous type absorption spoctra, and the correspondin!, cross suction is:

$$
\sigma(v)-\frac{32 \pi r^{4} v m^{2} v}{3 h^{3} c}(\pm|\mu| s)^{2}
$$

where m is tho riduces mass of tha two body sysem, v is the velocity of the ruluend particle in the timal state.

The above equation an to derived in a straight forward manner from the principles of the quantum theory of radiation (Reference 5.L-11). The derivation is oketeined below.

$$
d \sigma=\frac{2 \pi}{h c} \quad\left|H^{\prime}\right|^{2} P_{E} d \Omega
$$

where $\left|H^{\prime}\right|^{2}=\frac{\theta^{2}}{m^{2} g^{2}} \quad\left(\frac{2 \pi \hat{h o}^{2}}{\omega}\right) \quad\left|\int \psi_{1}^{\#} p_{0} e^{-1 K \cdot E} \psi_{f} d T\right|^{2}$
and
m Reduced mess
K Fropapation voter
P_{e} Density of final staten
P_{e} Component of momentum in the dirention of the polarisation vapor E

In the visible and near ultra violet region of the appotrum

$$
|\underline{k}|=\frac{? \pi}{\lambda} \frac{n \pi}{10^{-5}}
$$

s. is the order of moluoular dimensions $\sim 10^{-7}-10^{08}$
$\therefore \underline{K} \cdot \underline{r} \sim 2 \pi\left(10^{-2)}\right.$ us lose and $e^{1 K \cdot x} \sim 1$

If we define $\quad \theta=<$ (ḱk) ϕ - < between $\underline{K} \underline{k}$, plane and $\underline{E} \underline{K}$ plano then $\quad \beta_{0}=\mu \operatorname{Ain} \theta \cos \phi$ siren $\quad P=m$ v and $\quad \underline{v}=i \omega \underline{r} \quad$ them $\omega=\frac{E_{f}-E_{i}}{\bar{h}}$ because we are using els en functions of the time indopondint, Schrodinger equation

Uoing tho above ralntiona wo NFIt to

$$
\left|H^{\prime}\right|^{2}=\frac{1}{m 0^{2}}\left(\frac{2 \pi h^{2}}{\omega}\right\rangle \quad 01 n^{2} \theta \cos ^{2} \phi \omega^{2} m^{2}(1|\mu| f)^{2}
$$

whore ($1|\mu| \xi$) 10 the dipolo matrix element $\int \psi_{i}$ o $E \psi_{f} d \boldsymbol{T}$
The final atatos in the tr ingition will be olosoly approximated ty the olgon funotione for Pruo f retiolen over most of physical apacos thoryfore, Ho oan gut tha onaity of Iinai statas PE equal to

If we gubatituta tho above rolstions into the opignal expression fors tho diffurantiol uruss nootion, wa find

$$
d \sigma=\quad \begin{aligned}
& m^{2}=\omega \omega_{2} \\
& 2 \pi 0 n
\end{aligned}\left(1|\mu|\{)^{2} \quad \sin \theta \cos 2 \phi d \Omega\right.
$$

The totul orogn unotilon in fomal by intuersuting the above expregeion over thu oulid angla $d \Omega$.

$$
\sigma=\int d \sigma=\frac{a}{3} \quad \frac{112}{2} V \omega
$$

01

The matirix alinont ($1|\beta| f$) chn bu splet. into tho parte in the
 laforunon ?.L-1, দ.d-3 and S.! - ? (6).

$$
(1|\mu| f)=\left(s^{0}\left|A^{n}\right| f^{0}\right)\left(1^{n} \mid f^{n}\right)
$$

$$
\left(1^{n} \mid f\right)=\int \psi_{1}^{\prime \prime} \quad \psi_{f}^{n} d T
$$

fatho ovarlap intomal of tho foitial and final numbar wave furctiont.
 to vomputa, but it oan bo detorminod by apontrosoopac messuremonta at room toniforature. The matrix elemont is doterminod from the "f" numbor of apuctrigeoury by tho equatiun

$$
f=\frac{8 \pi^{2} v m}{3 h \theta^{2}}(1|\mu| f)^{2}
$$

where m ard e are the mase and oharge of the eleotron respectivaly, The f number for the

$$
o_{2} x^{3} \Sigma_{\mathrm{B}}^{-} \rightarrow 0_{2} B^{3} \Sigma_{u}^{-}
$$

tranaltion has the valun . 259 (ano Refargmo 5.1-25), and this civus tho matrix olement the valut $2.0 h_{1} \times 20^{-18}$ ous or 2.84 deboye undt:.

The final atop in the crous guction oalsulation 1.3 the detoriunatsion of the overlap intogral for tha nuolear wavo funotions. Theun wave funotions aru dolutions of tho timn indopondent sohradinger equation for the roducod eyutwin of tha nuolod.

 (1 保. ©

$$
\times\left\{\frac{\alpha}{n} y^{2}\right\}^{-\frac{\alpha}{q} s^{2}} u_{v}(\sqrt{a} s)
$$

 $S=r-r a-a$

$$
\begin{aligned}
& v, \quad \frac{b}{a} \sqrt{i i} \\
& v \therefore \quad(v+j) u v_{n}+l(l+1)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad l & \ell(\ell+1) \sigma v_{y} \\
& \therefore(L+1) 0^{-}+\therefore
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{r^{2}}-\frac{\partial}{\partial r} \quad r^{2}-\frac{\partial u}{\partial r}+\frac{1}{r^{2} \operatorname{bin} u}-\partial \theta\left(\tan 0-\frac{\partial}{\partial \theta}\right)+
\end{aligned}
$$

APPENDIX 5D

The Platon Analosy and the Lindting solutions in Hyperponio Plow

Ino analogy betweon tho protiom of a staady two or three dimena aional hyperaonio 1nviact d flow ovar a thin body and the unsteady aroagnilam problam has boen peinted aut by Hayeo and Van Dykes
 only the tuo dimensional aseo, where the ogutvalent orogspil ov problem 18 that of a platon odvanoinf at a apeed comparable to the apead of the ohook Heme atagting instantaneounly from ragt at th ma t- O. Let the distanoe of the pistun ourface and the shogk from
 Roferfing to pigure 5म-l, the confarmition laws of rase, memenema anl energy give the integral rviations

$$
\begin{align*}
& R_{B} A \cdot \int_{y}^{A} \rho_{d y} \tag{1}\\
& \int_{0}^{t}\left(p_{v}-P_{\infty}\right) d t=\int_{y}^{\theta} \rho_{v} d y \tag{3}\\
& \int_{0}^{t} P \dot{\gamma}(b) d t \cdot \int_{0}^{0}\left[\frac{0}{A} p^{1}+\frac{1}{\theta} p v^{d}\right] d y \tag{3}
\end{align*}
$$

 reapaotivaly, ond the oubsordpes and refer to tine values in the frae atroam end at the piaton wall, Fappatively.

$$
\begin{align*}
& P / P_{\theta} \quad \frac{\dot{A}^{d} / B_{\theta}^{q}}{1-\mu^{g}+\mu^{g} \lambda^{g} / A_{0}}=\text { d } \tag{5}\\
& \nabla_{B} / \lambda-\left(1-\mu^{d}\right)\left[1 \sim a_{\theta}^{d} / \lambda^{d}\right] \tag{b}
\end{align*}
$$

The toundais comithon at tha fiation ball ta

$$
\begin{equation*}
\nabla_{W}=\dot{X} \tag{1}
\end{equation*}
$$

All the integraln of the ferm f^{A} dy (sutentaling ancose tha Nentropgolayaft may be apprateated ly tha ung of a linaar Fafistien lay forp, pend v unday tha intagral mikns nsexly

$$
\begin{align*}
& p_{n} P_{w}+\left(P_{0}-R_{H}\right) \frac{1 P-I}{\Delta-I} \\
& P \cdot P_{H}+\left(P=A_{H}\right)=\frac{I}{\Delta=I} \tag{8}\\
& \nabla=I+\left(\nabla_{A}-I\right) \underset{A=I}{Y=I}
\end{align*}
$$

 foliowing

$$
\begin{aligned}
& \text { (9) }
\end{aligned}
$$

 Ea rintatalta \& for mitutiou,

$$
\begin{align*}
& P / P_{a}^{c} 1 / f^{\prime E} \tag{12}\\
& v_{A} / \lambda \rightarrow 1 \rightarrow \mu^{Z}
\end{align*}
$$

Thum

So that the system of Equations (9) and (10) roduoes finally to

$$
\begin{equation*}
\int_{0}^{t} \mu d t=\rho_{\infty} \Delta \dot{Y}+\frac{\rho_{0}}{6}\left[\left(1-\mu^{2}\right) \dot{\Delta}-\dot{I}\right]\left[2 \Delta+\frac{\Delta-I}{\mu^{2}}\right] \tag{13}
\end{equation*}
$$

and $\int_{0}^{t} R_{H} \dot{I} d t \cdot \dot{I} \int_{0}^{t} A_{H} d t=\frac{1-\mu^{2}}{4 \mu^{2}}(A-I) R_{H}=$

$$
P \frac{\left(1-\mu^{2}\right)^{2}}{4 \mu^{2}}(\Delta-I) \dot{\Delta}^{2}-\frac{P}{2} \dot{Y}^{2}+\frac{P}{12}\left[\Delta+\frac{1}{\mu^{2}}(\Delta-Y)\right]\left[\left(1-\mu^{2}\right) \dot{\Delta}-\dot{Y}\right]^{2}
$$

Where Δ and p are the tuo unkowns
Expanding the salution is the agrmptotic a日fies

$$
\begin{align*}
& A_{p}=p^{(0)}+\mu^{2} p^{(2)}+\mu_{p^{4}(2)}^{(2)}+\cdots \tag{25}\\
& \Delta=\Delta^{(0)}+\mu^{2} \Delta^{(1)}+\mu^{4} \Delta^{(2)}+\cdots
\end{align*}
$$

glelds, from Equations (13) and (14), the explioit solutions

$$
\begin{align*}
& \Delta^{(0)}=Y(t) \tag{16}\\
& \int_{0}^{t} n_{i}^{(0)} d t=\rho_{\infty} \dot{Y} \Delta^{(0)}=\rho_{\infty} \dot{Y} y, \tag{17}\\
& \int_{0}^{t} p^{(1)} d t=p_{\infty}\left[\dot{Y} \Delta^{(1)}+\frac{1}{6}\left(\dot{\Delta}^{(1)}-\dot{Y}\right)\left(\Delta^{(1)}+2 Y\right)\right] \tag{28}
\end{align*}
$$

an. 1

$$
\begin{equation*}
\left[\underset{d l}{A} Y \dot{Y}+\dot{Y}^{2}\right] \Delta^{(1)}=2 X \dot{Y}^{2}-4 \int_{0}^{t} Y \dot{Y} d t \tag{19}
\end{equation*}
$$

Equations (16) sad (17) which are identipiable as the Newton jupact formina when the effeet of surface ourvature is ignored gives the Busomana result bfter substituting $x \circ U_{\infty} t$, (Reference 5.6-1 and 5.6-3).

For the family of aurfaces

$$
\begin{equation*}
\boldsymbol{I} \in \mathbb{R}^{\boldsymbol{0}} . \tag{20}
\end{equation*}
$$

whereois an arbitrary parameter, the "elmilar bolution

$$
\begin{align*}
& \Delta=A X^{\sigma} \\
& p=B X^{2 \sigma \Omega} \tag{21}
\end{align*}
$$

can be obtained without rosorting to the asymptotio development of Equation (25). and Equations (13) and (14) a re rechioed co a eyot of algebraio equations for the dotermination of the coefficients A and B whith a fornctions of the opeoific hoai
 well-kom ifmiting values for a vodgo:

$$
\begin{align*}
& \Delta=\frac{\tau+1}{2} \pi x \tag{22}\\
& p=\frac{1}{2} \rho_{\infty} U_{\infty}^{2}(r+1) x^{2}
\end{align*}
$$

Por o = 3/4, 1.t., $y=K x^{3 / 4}$, whioh expresses the growth of a hypereonic of scoue boundary layer near the leading edge, itt giva, sor $7=1.4$,

$$
\begin{align*}
& \Delta=1.63 \mathrm{~K} x^{3 / 4} \tag{23}\\
& p=(1 / 2)_{\rho_{\infty}} \delta_{\infty}^{2}(1.53) \mathrm{K}^{2} x^{-1 / 2}
\end{align*}
$$

for $r=1.67$, we have

$$
\begin{align*}
& \Delta=1.99 \times x^{3 / 4} \tag{2.4}\\
& p=(1 / 2) \rho_{\infty} v_{\infty}^{2}(1.78) \kappa^{2} x^{-1 / 2}
\end{align*}
$$

DEPARTMENT OF THE AIR FORCE HEADQUARTERS 88TH AIR BASE WING (AFMC) WRIGHT-PATTERSON AIR FORCE BASE OHIO

88 CG/SCCMF
3810 Communications Blvd
Wright-Patterson AFB OH 45433-7802

Defense Technical Information Center
Attn: Ms. Kelly Akers (DTIC-R)
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir VA 22060-6218
Dear Ms. Akers,
This concerns Technical Report AD073754, MX-2276 Advanced Strategic Weapon System. Aerodynamics, 23 April 1955. This technical report, previously Unclassified/Limited Distribution, is now releasable to the public. The attached AFMC Form 559 verifies that it was reviewed by release authorities at Air Force Research Lab Air Vehicles Directorate (AFRL/VA) and determined to be fully releasable to the public.

Please call me at (937) 522-3091 if you have any questions.
Sincerely

Lynn Kane
Freedom of Information Act Analyst Management Services Branch Base Information Management Division

Attachment

AFMC Form 559, RUSH - Freedom of Information Act

[^0]: NOTICE: WHEN GOV GRNLENTY OR OTHER DRAWLNGS, SPECIFICATIONS OR OTEER DATA ARE USIAD FOR ANY [PURPOS: OTEER THAN DN CONNECTION WITH A DEFINITELY RELATED GOVERNLIENT PROCUREMENT OPERATION, THE U. S. GOVERNLAENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FYRMULATED, FURNIBEEED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATTONS, OR OTEMR DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWIS' AS IS ANY MANNER LICENSING TEE HOLDER OR ANY OTHER PERSON GR CORPORATION, OR CONVEYING ANY RIGHTS OR.PERMISSION TO MANUFACTURE, USE OR GELL ANY PATENITD DNVENTION TEAT MAY DN ANY WAY BE RELATED THERETO.

[^1]: - i.e., inoreseses over what values would be predioted by invisoid plus Fiscous fink solutions ignoring interaction.

[^2]: * In this case, however, a pressure-defleotion angle relation can be obtained in eyries form by a parturbation from at her the tangent Hedge or the Frandtl-lioyer relations.

[^3]: * Actually that is conaidered is a statistical avarage. Even at a "low" temperature there will be some molecules possessing suffietently high enargy so that all degrees of freadom are active, but these will be so few as to have negligible effect on the average. As the temperature is raised, more and more molecules possess sufficient energy to excite all modes and hence the properties of the gas which results from an average of the properties of the molecules comprising it will bs affected.

[^4]: * A gas with constent rpeofflo heat. Cy and Cp for air are mariy constant below 600 R but inorease rapicly at higher tomperatures.

[^5]: + Cas with equation of state $p=R T$

[^6]: 5.L-43 Crom, J. D.: Fiew of a Eeattio - Eridgeman cas whth Variable Specific Heat, RaVORD Report 2 H, Noventer 1951
 5.4-4
 J. Hath. Phys. Dol. 26 No. 1, pp. 301-324, Jan. 1947
 $5.4-45$ Kandbook of Supersonic derodyriendos, VOL. 5, NAVORD Report 488 (VO1. 5) Aug. 1953
 5.4-46 Nores, R. Ni: Prandtl-Meyer Flow for a Dratomia las of Variable Specific Heat, MMCA TN 2125, June 1950
 $5.4-47$ Iggers, A_{1} J. One Dimar sional Flows of an Imperfect
 5.4448 Manual of the ICAO Standard Atmosphore, NACA TN 3182, May 1954
 5.4-49 The Rooket Panel, Pressures, Densities and Mamperatures in the Upper Atmesphere, Phys, Rev., Vol. 88, No. 5 pp. 2027-1032, Deo. 1952

 5.4-51 H1rschfolder, J. O. and Curtise, O. F.: nThermodmamio Propertioe of Air, IIt, University of kisconsin Report CM-518, 21 Deoember 19L8.
 5.4-52 Aokeratt, J.1 Eidgenoessi bohe Teohnische Hochschule, 2urioh
 5.4-53 Oriminger, G. 1 Probability that a Meteorite will Hit or Ponetrate a Body Situated in the Vioinity of the Earth, Jour, Appi. Physios 19, $947-956$, (1948)

