
UMD ENEE408G Spring’05
Design Project - Audio

1

ENEE408G Multimedia Signal Processing
Design Project on Digital Audio Processing

The Goals

1. Learn the fundamentals of perceptual coding of audio and intellectual rights

protection from multimedia.
2. Design a digital audio watermarking system in time and frequency domain.
3. Explore the synthetic audio: MIDI and MPEG4 Structured Audio.

Note: The symbol means to put your discussion, flowchart, block diagram, or plots
in your report. The symbol indicates that you should put the obtained multimedia
data in your report. The symbol means to put your source codes (Matlab, Basic, or
C/C++) in your report.

Part I. Perceptual Coding and MP3

In modern audio coding algorithms, four key technologies play important roles:
perceptual coding, frequency-domain coding, window switching, and dynamic bit
allocation. The figure below shows a generic block diagram for modern audio encoders.
In this part of the design project, we investigate the fundamentals of perceptual coding in
the MP3 technology.

Time/Frequency
Analysis

Psychoacoustic
Analysis

Quantization &
Encoding

Bit Allocation

Entropy
(lossless)

Coding

M
u
x

Params.

Masking
Thresholds

Params.

Side
Info

Channel

s(n)

1. Psychoacoustic Models and Perceptual Coding

UMD ENEE408G Spring’05
Design Project - Audio

2

The figure1 above shows the anatomy of human ear. Many researchers in the field of
psychoacoustics exploit the “irrelevant” signal information that is not detectable even
by a well-trained or sensitive listener. These studies lead to five psychoacoustic
principles.

a. Absolute Threshold of Hearing: This threshold represents the minimal amount of
energy if a listener is able to detect a pure tone in a noiseless environment. If a
given tone is too weak, we cannot hear it, so we do not have to encode it.

b. Critical Bands Frequency Analysis: Cochlea can be modeled as a non-uniform
filter bank that consists of 25 highly overlapping bandpass filters. Critical bands
are the passbands of those filters.

c. Simultaneous Masking: In each critical band, one sound (the maskee) is rendered
inaudible due to the presence of another sound (the masker). We can identify a
masker and do not encode the inaudible, masked tones.

d. Spread of Masking: Masking in a critical band can be spread to its neighboring
bands.

e. Non-Simultaneous Masking: Masking can be done in time domain, too.

For perceptual coding, the encoder generates a global masker according to the above
principles and provides parameters for further processing. In this part, we investigate
the absolute threshold of hearing and simultaneous marking principles.

(a) Absolute Threshold of Hearing:

In this section, we use PM_Abs_Thre_Hearing.m to explore the absolute threshold
of hearing. The goal of this experiment is to find out a volume threshold that is just
auditable at a specific frequency. In other words, given a tone with the same
frequency, if it has a slightly lower volume than this threshold, it becomes
inaudible.

10
2

10
3

10
4

-10

-5

0

5

10

15

20

25

30

35

40
Stage 2: Measure Absolute Threshold of Hearing

Frequency(Hz)

R
el

at
ed

 S
ou

nd
 P

re
ss

ur
e

Le
ve

l t
o

4K
 H

z,
 r

S
P

L(
dB

)

Left Click mouse to adjust the volume. Right c lick to Exit

1 From http://www.vestibular.org/gallery.html

UMD ENEE408G Spring’05
Design Project - Audio

3

First, we calibrate the minimal audible volume for 4KHz2. After setting this
volume, you will see the figure above. Each circle represents a frequency
component and we can increase/decrease its volume by simply left clicking mouse
in the upper/lower side of this circle. You can right click mouse to exit this
program.

Find out the thresholds for your ear at the 11 frequencies shown in the figure. Copy
your result figure using Edit Copy Figure from the menu bar of the figure
window and paste it to your report .

(b) Simultaneous Masking:

In this section, we use PM_Simu_Masking.m to explore the simultaneous masking,
which means that a tone could become inaudible if there is a simultaneous tone with
higher volume at a neighboring frequency. For each critical band, we can fix the
volume of the central frequency. By adding a neighboring tone with different
amplitude, we can find out a threshold that this neighboring tone is inaudible if the
amplitude is lower than the threshold, but audible if the amplitude is higher than the
threshold.

In this experiment, we also need to calibrate the minimal audible volume for 4KHz.
After calibration, you will see another figure that is illustrated below. There are
seven frequencies indicated by circles. The middle one represents the central
frequency of a specific critical band. When we click the other neighboring
frequency, this program will generate an audio signal consisting of the central
frequency and the selected frequency. We can increase/ decrease its volume by
simply left clicking mouse in the upper/lower side of this circle. After finding out
the thresholds of those six frequencies (except the central frequency), right click
mouse to exit this program.

2900 3000 3100 3200 3300 3400 3500 3600 3700 3800 3900
-10

0

10

20

30

40

50

60
Stage 2: Measure simultaneous masking

Frequency(Hz)

R
el

at
ed

 S
ou

nd
 P

re
ss

ur
e

Le
ve

l t
o

4K
 H

z,
 r

S
P

L(
dB

)

Left Click mouse to adjust the volume. Right c lick to Exit

2 Since 4KHz is the most sensitive frequency for human ear, to obtain the whole dynamic range of volume,
we first calibrate the minimal audible volume at 4KHz.

UMD ENEE408G Spring’05
Design Project - Audio

4

Select two different critical bands3 and find out the simultaneous masking of your
ear. Copy these two figures using Edit Copy Figure from the menu bar of this
figure window and paste them in your report . For each critical band, compare the
mask of higher neighboring frequency with the lower one .

2. Audio Extraction and MP3

MP3 (MPEG1 Audio Layer 3) is an audio coding/compression standard that uses
perceptual coding technologies. In this part, we use GoldWave to extract a piece of
music and compress it in MP3 format. We will observe how psychoacoustic model
works by comparing the frequency spectrum of the raw signal and MP3 file:

(a) CD Audio Extraction: Click Tools CD audio extraction from GoldWave’s menu

bar. An audio extraction window will pop up. Use this tool to extract about ten
seconds’ music4 from your favorite music CD and save it as a 16-bit stereo signed
WAV file. Name it as original.wav.

(b) Downsampling: To compare with MP3, we need downsample this WAV file. Click
Effect Resample and choose 16000Hz. Save this file as downsample.wav.

(c) Generate MP3 file by File Save As. Choose Save as type as Wave Audio. Adjust

the parameters in the File Attributes as MPEG Layer 3, 32kbps, 16000Hz, stereo.
Name this new file as wav2mp3.wav.

(d) Convert MP3 to WAVE: Reload wav2mp3 file and save it as 16-bit stereo signed

WAV file. Name it as reconstructed_wav.wav.

(e) Compare Spectrum: Use Compare_Spectrum.m5 to plot spectrum for

downsample.wav and reconstructed_wav.wav . Compare the difference between

3 [LinX,volumnY]=PM_Simu_Masking(ith_CB) ; you can select critical band by specifying ith_CB
4 You can use your own favorite Compact Disk.
5 Compare_Spectrum(Original_Filename,Reconstructed_Filename,NFFTorder,Len_order,shift)
 % Original_Filename : file name of the original signal.
 % Reconstructed_Filename : file name of the reconstructed signal
 % NFFTorder: Number of FFT points, NFFT=power(2,NFFTorder), e.g. NFFT order = 9 for
 % 512-point FFT;

UMD ENEE408G Spring’05
Design Project - Audio

5

the two audio chips and discuss on which frequency range the psychoacoustic
model has a significant impact .

(f) Repeat (b)~(e) but change the MP3 to MPEG Layer 3, 56kbps, 24000Hz, stereo .

Compare the result with previous one .

Part II. Digital Audio Watermarking

1. Watermark Embedding, Detection, and Attack

Digital Watermarks: Due to the advancement in network communications and
multimedia signal processing network, exchanging and distributing multimedia become
easier and popular. The accompanying problem with this advancement is how to protect
the copyright of intellectual property of digital content. Ownership/copyright protection
and integrity verification are two key issues. Digital watermarking is a class of
techniques that embed copyright and other protection information in multimedia. In
this part, we use AudioMark Demo6 to embed and detect watermark in audio and
explore the weakness of this demo software.

(a) Embedding of Digital Audio Watermark: By Watermark Cast to load the

sample.wav and specify a KEY (the range of demo version is between
100000000~100000100) and the filename of watermarked file.

(a) Detection of Digital Audio Watermark: By Watermark Detect and specify the
key/seed, the detection module will determine the existence of the watermark.

(b) Attack on Robust Audio Watermark: An adversary may modify a piece of

watermarked multimedia to try to remove the watermark without degrading the
perceptual quality of multimedia too much. To increase the robustness of
watermarking, designers should understand typical attacks and prevent them in
advance. In this part, you are asked to attack the watermarked wave file using the
tools provided by GoldWave and test the existence of watermark in the attacked file
using AudioMark Demo. Try to keep the quality of music acceptable. Here are a
few possible ways in which you can attack.

 % Len_order: Number of samples for calculating spectrum, Len=power(2,Len_order);
 % shift: start position to compare two signals
6 AudioMark Demo: http://www.alphatecltd.com/watermarking/audiomark/audiomark.html .

UMD ENEE408G Spring’05
Design Project - Audio

6

(1) MP3 compression: Choose mp3 by File Save As.

(2) Echoing: Add echo by Effect Echo.

(3) Enhancement and filtering techniques, such as low pass filtering, quantization,

and equalization: By Effect Filter Low/HighPass, Equalizer, or Effect
Resample.

(4) Noise addition: By Tools Expression Evaluator.

Develop an attack scheme that can preserve reasonable good sound quality yet remove
watermark embedded by AudioMark Demo. Describe under what conditions the
watermark will be destroyed.

2. Design Your Own Audio Watermarking Systems

There are three basic issues in designing an audio watermarking system:

a. Transparency: The digital watermark should not degrade the perceptual quality of
the signal.

b. Robustness: For watermark conveying owner’s rights, adversaries would have
incentives to remove the watermark by modifying and attacking the watermarked
audio. The watermarks in these applications should be robust enough to survive a
wide range of attacks. On the other hand, watermark that is fragile to processing
can be useful for detecting tampering, where the change in watermark will signal
and locate the altered regions of a multimedia signal. As multimedia is often stored
in compressed format for efficient storage and compression, even in the case of
fragile watermark, it is often desirable to design the watermark to sustain moderate
compression.

c. Capacity / Payload: It is desirable in many applications to allow the embedded
watermarks to carry enough payload bits for representing various types of
information.

In this section, you will design two digital audio watermarking systems, and evaluate
them in terms of transparency, robustness, and payload.

(a) System #1

One of the simplest approaches to “hide” a message in audio is to convert the
message into bits and putting them into the least-significant-bits (LSBs) of audio
samples. To help detector make a more reliable decision, you may repeatedly embed
each message bit in a number of audio samples at the embedder’s side, and do a
majority voting at the detector’s side.

UMD ENEE408G Spring’05
Design Project - Audio

7

(1) Implement this LSB-based watermarking in Matlab to embed and detect the
following message in an audio file sample.wav :

“(c)Spring 2003. DO NOT SELL. DO NOT TAMPER. Go Terps! ”

Your implementation may include a message encoding function, watermark
embedding and detection functions, and a message decoding function.

Note 1: The sample.wav can be downloaded from course webpage. It is a stereo
audio file. For simplicity, you can just embed watermarks in one channel here.

Note 2: Matlab supports the I/O of WAVE file format. wavread.m and
wavwrite.m are for reading and writing wave files, respectively. The format of
sample.wav file is signed 16-bit, i.e. the range of its signed integer representation
is between [-32768, 32767]. However, the value obtained by wavread.m is in
stored as a “double” between [-1, 1). To embed watermarks in the LSBs in the
Matlab environment, you may find it convenient to convert the [-1, 1) values to
16-bit unsigned integer values [0 65535] using the formula (x+1)*215.

Note 3: The following Matlab built-in/toolbox functions may be helpful to your
implementation: dec2bin(), bin2dec(), char(), double().

Note 4: Try to implement your watermarking system in a flexible way to
accommodate the embedding in the nth LSB bits, n = 1, 2, 3 …. See the
instructions below regarding the transparency and robustness.

(2) Transparency: Listen to the watermarked audio whose 1st LSBs carries your

message. Does the watermark affect the quality of the audio? Change your
embedding function (and correspondingly the detection) to put your message in
the 2nd LSBs and answer the above question again. How about 3rd LSBs and 4th
LSBs?

(3) Robustness, Security, and Applications: How robust is the watermarking system

that embeds message in the 1st LSBs? How about the 2nd, 3rd, and 4th LSBs? How
does the repeating time affect the robustness? Can an unauthorized person change
the embedded message? Design tests and use the results to justify your answers

 .

Note: You can use the bit error rate (BER), the percentage of bits that are
incorrectly decoded, to measure the robustness.

(b) System #2

The watermark can be embedded either in time domain or frequency domain. In this
section, we employ spread-spectrum embedding to put a watermark in the 1-D DCT
domain.

UMD ENEE408G Spring’05
Design Project - Audio

8

Embedder:

Noise-like seq.

Watermark
Key/Seed

Segmentation
(frame size L)Audio File iDCT Watermarked

audio fileDCT
added in mid-

frequency
region

V’(j) = V(j) + a(j) W(j)

V(j) V’(j)

W(j) e.g., a(j) = 0.05 |V(j)|

Noise-like seq.
Watermark

Key/Seed

Segmentation
(frame size L)Audio File iDCT Watermarked

audio fileDCT
added in mid-

frequency
region

V’(j) = V(j) + a(j) W(j)

V(j) V’(j)

W(j) e.g., a(j) = 0.05 |V(j)|

The basic procedures of spread-spectrum embedding is as the follows:

• First, segment an audio file into non-overlapped frames with size L=1024 and
apply a 1-D DCT for each frame.

• Second, construct a noise-like vector w of length L as your watermark (such
as through “randn()”). Normalize the strength of your watermark, for
example, use a random number generator to generate each element wi with a
variance of 1.

• For each frame of the audio, add watermark according to v’i = vi + αi wi ,
i = 1, …, L, where vi denotes an original coefficient and v’i denotes the
watermarked version. The scaling factor αi controls the strength of your
overall watermark. Here we apply the following simple rules: set αi to zero
except for mid-frequency DCT coefficients (i.e. αi = 0 for i < T1 and i > T2,
where the frequency thresholds T1 < T2 are determined by your experiments).
For each mid-frequency coefficient vi, set αi to be 3-10% of |vi| . You can
determine the exact setting empirically.

As can be seen from this simple rule, a watermark is only embedded in the
mid-frequency DCT coefficients of an audio frame. This is because
information in the mid-frequency is more important than the other part for
human auditory system. An adversary does not want to sacrifice too much
quality of audio by hacking this informative part. Accordingly, the watermark
is more likely to survive. A more sophisticated choice of αi for mid-frequency
part should be guided by human auditory model.

• After embedding, perform an inverse DCT to convert the signal back to time
domain. Clip the amplitude of the watermarked signal to the range of the
original audio sample [-1, +1]. Repeat the process for every frame.

Detector:

We use the original unmarked audio file to help determine the existence of a
specific watermark. Thus the detector would know the original audio file, a
watermark sequence, and of course, the watermarking method and all the related
parameters.

UMD ENEE408G Spring’05
Design Project - Audio

9

DCTAudio File
in question

DCTOriginal
audio file

Extract
mid-frequency
coefficients

+
_

watermark
detector

Detection
result

A specific
watermark

Similarity measures:
<V’’ - V, W>, or
< (V’’-V) ./ a, W >, or
correlation coeff.

V’’

V W

DCTAudio File
in question

DCTOriginal
audio file

Extract
mid-frequency
coefficients

+
_

watermark
detector

Detection
result

A specific
watermark

Similarity measures:
<V’’ - V, W>, or
< (V’’-V) ./ a, W >, or
correlation coeff.

V’’

V W

The basic procedures of spread-spectrum embedding is as the follows:

• We perform DCT on both the original and the audio file in question, and
compute the difference between the corresponding elements of these two sets
of DCT coefficients. We shall denote this difference vector as z.

• Retain only the elements of w and z that correspond to the mid-frequency part
in which the embedder chooses to embed watermark. We denote the retained
vectors as w(m) and z(m).

• Measuring the similarity between w(m) and z(m) by computing the correlation
coefficient. A high positive correlation coefficient indicates that with high
probability the audio frame in question comes from adding w(m) to the original
audio frame. You may also try to take into account the scaling factor a when
measuring the similarity.

• Repeat the process for other frames. Plot the correlation coefficients you
obtained from all frames.

Here is your To-Do list:

(1) Use Matlab scripts/functions to implement an embedder and a detector according

to the procedures described above .

Note: The following Matlab built-in/toolbox functions may be helpful to your
implementation: dct(), idct(), randn(), corrcoef().

(2) Generate two different spread-spectrum watermarks w1 and w2 . Produce a

watermarked audio files from sample.wav with w1 embedded, and name the
watermarked file as marked1.wav; produce a 2nd watermarked audio files from
sample.wav with w2 embedded, and name the watermarked file as marked2.wav.

Use your detector to determine whether w1 can be found in marked1.wav and
marked2.wav, respectively. In a single plot of correlation coefficients vs. audio
frames, include and compare your detection results of the two cases.

(3) Transparency and Robustness - Adjust various parameters in your watermarking

system (L, αi , T1 and T2) and examine their impact on transparency and
robustness:

UMD ENEE408G Spring’05
Design Project - Audio

10

i. Listen to the watermarked audio. Does the watermark affect the quality of the

audio?

ii. Add noise7 with different amplitude to the watermarked audio. Does the

detector detect the existence of the watermark that was generated from the
original user key?

iii. Use GoldWave to add echo in the watermarked audio. Try echoes with short

delay a small volume and with long delay a large volume, respectively. Observe
the detection result.

iv. Use GoldWave to apply MP3 compression to the watermarked audio. Can your

watermark resist the compression attack?

v. Discuss the tradeoff between the transparency and robustness . Include in
your report a watermarked audio signal using the parameter settings that you
believe giving the best tradeoff .

(4) Compare the transparency and robustness of the watermarks for the two systems

investigated above. List their advantages, disadvantages, and potential
applications. Discuss how to improve these two systems.

(5) Bonus part: Extend your System#2 to hide a meaningful message such as the

message we have used in System#1 .

Hint: you can use hide one bit in one frame by adding the watermark if to embed
a bit “1” (v’i = vi + αi wi) and subtracting the watermark if to embed a bit “0” (v’i
= vi - αi wi). You can reuse your message encoding and decoding functions from
System#1. If needed, you can repeatedly embed the same bit in a few frames and
do a majority voting at the detector’s side.

Appendix of Part-II for further exploration: Pseudo-Noise Sequence

Spread-spectrum watermarking uses a noise-like sequence w as watermark. Such
noise-like signals are less likely to introduce perceivable distortions than structured
signal (such as a periodic squared wave). In addition, they have good statistical
properties to achieve high noise resistance and help detector make reliable decisions.

In System#2, you have experienced real-valued watermark generated through a
Gaussian random number generator. Another simpler choice of w is a binary periodic

7 You can use rand.m to generate “uniformly distributed” random sequences or randn.m “Normally
distributed” random sequences. For example, noise=A*randn(1,100) represents 100 normally distributed
random numbers with amplitude scalar A.

UMD ENEE408G Spring’05
Design Project - Audio

11

pseudo-noise sequence8, or PN sequence in short. PN sequence can be generated by a
series of shift registers with a feedback logic that is shown in the figure below.

1 2 3 p

Logic

Flip-Flop

...... output
sequence

clock

The feedback logic can be expressed by a polynomial,

f(X)=g1X+g2X2+…+gpXp

where Xi indicated the ith Flip-Flop and }1,0{∈ig controls the logic. When the clock
triggers, the system will shift all of its values by one unit, output a bit as the PN
sequence, and then send the f(X) back to the first Flip-Flop. One implementation is
to employ Galois Field prime polynomials9 in the logic feedback part to obtain
maximal-length sequence (or m-sequence in short).

Setting p=10 gives us 60 possible polynomials to use10. Each polynomial can
generate 210-1 = 1023 different output sequences. You can generate a pseudo random
sequence of this kind using a provided MATLAB function PNsequence.m11 with a
given polynomial and a seed (which is to initialize the shift register). We can observe
the auto-correlation and cross-correlation function of the m-sequence by the
following MATLAB programs:

 Auto-correlation property:

 Seq1_index= ? % Specify your selected key (seed) here
 seq1_poly= GFprimMrx(seq1_index,2:end)
 seq1 = PNsequence(seq1_poly,bitget(1,1:p));

 for seq2_index=1:2^p-1
 seq2 = PNsequence(seq1_poly,bitget(seq2_index,1:p));
 [corrf]=PNcorrelation(seq1, seq2);
 plot(corrf); axis([0, length(corrf)+1, ,0 max(corrf)+1]);
 pause;
 end

8 For details, please refer to chapter 7 in: Simon Haykin: Communication Systems, 4th edition, Wiley, 2000.
9 For fixed order p, the prime polynomials can be obtained using the Matlab built-in function.
 GFprimMrx = gfprimfd(p,’all’)

Each row represents a “key” for each user: GFprimMrx (key,2:end) = [g1 g2 … gp]
You can store those polynomials as a .mat file (by save command) since searching for the polynomials is
time-consuming.

10 W.W. Peterson and E.J. Weldon, Error-Correcting Codes, Cambridge: MIT Press, 1972.
11 out_sequence = PNsequence(GFprimMrx (key,2:end), seed)

UMD ENEE408G Spring’05
Design Project - Audio

12

 Cross-correlation property:

 Seq1_index= ? % Specify your selected key (seed) here
 NumGF=size(GFprimMrx,1);
 maxTable=zeros(1,NumGF);
 seq1_poly= GFprimMrx(seq1_index,2:end)
 seq1 = PNsequence(seq1_poly, rand(1,length(seq1_poly))>=0.5);

 for seq2_index=1:NumGF
 seq2_poly = GFprimMrx(seq2_index,2:end);
 seq2 = PNsequence(seq2_poly,rand(1,length(seq2_poly))>=0.5);
 [corrf]=PNcorrelation(seq1, seq2);
 plot(corrf); axis([0, length(corrf)+1, 0 max(corrf)+1]);
 maxTable(seq2_index)=max(corrf);
 end

 plot(maxTable);
 find(maxTable==max(maxTable))

UMD ENEE408G Spring’05
Design Project - Audio

13

Part III. Synthetic Audio (1): Musical Instrument Digital Interface
(MIDI)

Musical Instrument Digital Interface (MIDI)12 is different from the digital sampled audio,
such as PCM. It can be thought of as instructions telling music synthesizer when to play
and what notes to play instead of sending waveform to the speakers. There are several
advantages using this synthesis approach. For instances, it requires much less storage
space and PC bandwidth in I/O bus. In this part, we use Anvil Studio13 to study the MIDI
Protocol. As shown in the figure below, there are several panels (from top to bottom) in
this software: play panel, track editor panel, stave panel, note editor panel, and keyboard
panel.

(a) Load the Sonata-c.mid by File Open Song. Double click the play button in the
play panel. Then modify the track editor panel, such as, the channel and
instrument14. The channel setting is for assigning an audio channel for each track
and the instrument setting is to choose what instrument to play.

12 A useful Tutorial of MIDI: http://www.harmony-central.com/MIDI/Doc/tutorial.html
13 Anvil Studio: http://www.anvilstudio.com/upgraden.htm
14 There are 16 logical channels and 128 instruments in the General MIDI (GM) systems. Those number of
instruments are standardized, thus different music synthesizer will not play the different instrument while
reading the same instrument number form MIDI file. However, this does not mean those music

UMD ENEE408G Spring’05
Design Project - Audio

14

(b) Notes in MIDI file are defined as the following table (each note takes 4 bits).

Octave Music Notes
 C C# D D# E F F# G G# A A# B
0 0 1 2 3 4 5 6 7 8 9 10 11
1 12 13 14 15 16 17 18 19 20 21 22 23
2 24 25 26 27 28 29 30 31 32 33 34 35
3 36 37 38 39 40 41 42 43 44 45 46 47
4 48 49 50 51 52 53 54 55 56 57 58 59
5 60 61 62 63 64 65 66 67 68 69 70 71
6 72 73 74 75 76 77 78 79 80 81 82 83
7 84 85 86 87 88 89 90 91 92 93 94 95
8 96 97 98 99 100 101 102 103 104 105 106 107
9 108 109 110 111 112 113 114 115 116 117 118 119
10 120 121 122 123 124 125 126 127

The Anvil Studio has provided a keyboard interface at the bottom of the program’s
window, which can automatically translate notes keyed in into the above note
numbers. Create a new MIDI file by File New Song and use the keyboard
panel to key in the following score. Save this MIDI file.

(c) To check whether the MIDI file is generated successfully, you can use the

Windows Media Player to listen to this MIDI file.

Part IV. Essays: Digital Rights Protection of Multimedia and related
Ethics issues for Engineers

Intellectual Property (IP), such as copyright, plays an important role in contemporary
society. This is among several important ethics issues that engineers may face in
their career. We will have a lecture on ethics discussion. There are reading and writing
assignments associated with the ethics discussion, and they are to be completed
individually by a separate deadline. The details will be announced shortly.

synthesizers will play the same waveform. In fact, every music synthesizer has its own approach to
generate any specified note of instrument. Usually, there are two approaches, Frequency Modulation and
Wave Table. The quality of the latter approach is much better than the former. Except hardware
synthesizer, there exists software synthesizer generating and mixing waveforms. Microsoft GS Wavetable
SW Synth is the popular one under Windows system, which adopts Roland instrument sounds. You can try
to change the MIDI playback device, no matter hardware of software synthesizer, and listen the differences
among them.

UMD ENEE408G Spring’05
Design Project - Audio

15

Part V: Mobile Computing and Pocket PC Programming

From the above three parts, we have learned the fundamentals of digital audio processing.
Now design a simple Pocket PC application related to digital audio processing using the
Microsoft eMbedded Tools. You can refer to “ENEE408G Multimedia Signal Processing
Mobile Computing and Pocket PC Programming Manual” and extend the examples
there.

Bonus Part I. Synthetic Audio (2): MPEG4- Structured Audio (MP4-
SA)

MPEG4 synthetic audio coding standard consists of two methods, namely, Structured
Audio (SA) and Text-to-Speech (TTS). In the SA part, MPEG4 defines the Structured
Audio Orchestra Language (SAOL) and Structured Audio Score Language (SASL)15.
Instead of using the frequency modulation and wavetable technique as in MIDI, SAOL
encodes a sound signal according to its structure. This technique can achieve extremely
high compression ratio, about 100:1~10,000:1. In this section, we explore these two
languages, SAOL and SASL, using the SPlay and SNet16.

SAOL and SASL:

The role of SAOL is sound modeling, which encodes algorithms on how instruments
generate sounds. On the other hand, SASL is for sound sequencing, i.e. a timing table
giving instructions to each instrument on when and how to play notes. The figure below
illustrates the framework. The SAOL and SASL are in plain text file format. The encoder
encodes those two files into binary form known as the MP4 format. A MP4 file contains
the structure of instruments and the scores of the music instead of digitalized sample
waveforms. The decoder converts the MP4 file into a C file and then compiles it as an
executable audio file.

Encoder
SAOL

SASL
.mp4 MP4 to C

Translator .c C++
compiler

executable
audio file

DecoderEncoder
SPlay:

SPlay is a software program that implements a decoder. Download several MP4 files
from http://student-kmt.hku.nl/~saol/ and listen to the results. Notice that the file size is
quite small. The behavior of this audio player is different from that of a waveform

15 MP4-SA Language Standard: http://www.cs.berkeley.edu/~lazzaro/sa/book/append/fdis/SA-FDIS.pdf.

(a) A useful online book explains how to use this new language: The MPEG-4 Standard Structured
Audio book, http://www.cs.berkeley.edu/~lazzaro/sa/book/ by John Lazzaro and John Wawrzynek.

(b) You can watch a short presentation about MP4-SA by John Wawrzynek at
http://bmrc.berkeley.edu/bibs/instance?prog=1&group=13&inst=35

16 SPlay and SNet are available at: http://student-kmt.hku.nl/~saol/

UMD ENEE408G Spring’05
Design Project - Audio

16

player, such as players for .wav and .mp3 files. Since an MP4 player translates the MP4
file into C file and compiles it, this player will take more time than a waveform player.

(a) In this sub-section, we explore SAOL and SASL using SNet. SNet is a GUI
wrapping the kernel sfront. You can refer to John Lazzaro’s online book, The
MPEG-4 Standard Structured Audio Book, to learn more details about how to use
these languages.

(1) Read the online book Part I – A Tutorial Introduction.

(2) Play those three examples (sine, vsine and vcsine) by SNet. First, copy *.saol

file and then paste on the SAOL tab. Save it. Then, copy the *.sasl file and paste
on the Score tab. Save them by Render Render to .mp4. .

(3) Use SPlay to play the MP4 files. Discuss the advantages and disadvantages of

waveform coding (PCM) and synthetic audio (e.g. MIDI and MP4-SA) .

