

Tree Traversals

- It's unclear how we should print a tree.
- Top to bottom? Left to right?
- A tree traversal is a specific order in which to trace the nodes of a tree.
- There are 3 common tree traversals.

1. in-order: left, root, right
2. pre-order: root, left, right
3. post-order: left, right, root

- This order is applied recursively.
- So for in-order, we must print each subtree's left branch before we print its root.
- Note "pre" and "post" refer to when we visit the root.

Tree Traversal Example

Let's do an example first...
in-order: (left, root, right)
$3,5,6,7,10,12,13$,
$15,16,18,20,23$
pre-order: (root, left, right) $15,5,3,12,10,6,7$,
$13,16,20,18,23$
post-order: (left, right, root)
$3,7,6,10,13,12,5$, $18,23,20,16,15$

In-Order Traversal

- The in-order traversal is probably the easiest to see, because it sorts the values from smallest to largest.
template <typename T>
void Tree<T> :: printInOrder (std:: :ostream\& out, TreeNode<T>* rootNode) \{ if (rootNode != NULL) \{ printInOrder (out, rootNode->left); out << (rootNode->data) << "nn"; printInOrder (out, rootNode->right);
ostream is a name in std namespace.
The std:: means that we dont have to use the std
namespace to use this class.
\}
return;
\}

Example call in main: myTree.printInOrder (cout, myTree.getRoot());

Pre-Order Traversal

```
| Pre-order traversal prints in order: root, left, right.
template <typename T>
void Tree<T>::printPreOrder(std::ostream& out, TreeNode<T>* rootNode) {
    if (rootNode != NULL) {
            out << (rootNode->data) << "\n";
            printPreOrder (out, rootNode->left);
            printPreOrder (out, rootNode->right);
    }
    return;
}
```


Post-Order Traversal

```
- Post-order traversal prints in order: left, right, root.
| It is also called a depth-first search.
template <typename T>
void Tree<T>::printPostOrder(std::ostream& out, TreeNode<T>* rootNode) {
    if (rootNode != NULL) {
            printPostOrder (out, rootNode->left);
            printPostOrder (out, rootNode->right);
            out << (rootNode->data) << "\n";
        }
    return;
}
```


Sorting Values Using In-Order

The in-order traversal always prints the values in sorted order from smallest to largest.
One application of the in-order traversal is sorting a list.
How long would it take to sort a list?
Each insert operation takes $\mathrm{O}(\mathrm{h})$ time.
So doing N inserts would take $\mathrm{O}(\mathrm{Nh})$ time.
The in-order traversal is $\mathrm{O}(\mathrm{N})$, so building a tree and printing its values in sorted order takes: $\mathrm{O}(\mathrm{Nh})+\mathrm{O}(\mathrm{N})=\mathrm{O}(\mathrm{Nh})$ time.

Storing Trees Using Pre-Order

Suppose we want to transmit our tree across the country to another programmer.

- Sending the in-order list would tell them the values, but would not communicate how the tree is built.
- Trees are usually stored with the pre-order traversal.

Ex All of the tree below have the in-order walk: 123. But only one of the trees below has the pre-order walk 123.

Storing Trees Using Pre-Order

Ex Can you recover the binary tree from its pre-order traversal?
$15,5,3,12,10,6,7,13,16,20,18,23$

Tree Traversal Example

Given a tree, you are expected to know how to do the in-, pre-, and post-order traversals.
Ex Write the 3 traversals of the given tree.

[^0] Pre-order: Luke, Han, Chewbacca, Leia, Lando, Vader, Obi, Yoda Post-order: Chewbacca, Lando, Leia, Han, Obi, Yoda, Vader, Luke

Summary of Trees

Compared to vectors and linked lists, trees have a running time somewhere in between the best and worst.

	Vector	Linked List	Binary Tree
Insert / Erase (at known position)	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{h})$
Indexing (look up element)	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{h})$
Finding an Element	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\mathrm{h})$

But what is h in terms of N ?

Best \& Worst Height

- In the worst case, the tree is completely unbalanced.

- The height $\mathrm{h}=\mathrm{N}-1=\mathrm{O}(\mathrm{N})$.
- In the best case, the tree is perfectly balanced.

- Fact: A completely full tree with height h has $N=2^{h+1}-1$ nodes.
- Solving for h gives $h=\log (N+1)-1=O(\log N)$.
- What's the average height?

Average Height

Let's look at a randomly built tree: a tree built from random numbers inserted in random order.

- Theorem The average height h of an randomly built tree with N nodes satisfies

$$
h \leq 2(\beta+1)\left(\sum_{i=1}^{N} \frac{1}{i}\right)\left(1-\frac{2}{N}\right)+2
$$

where $\beta \approx 4.3191366$ solves the equation
$(\ln \beta-1) \beta=2$

- So on average, $\mathrm{h}=\mathrm{O}(\operatorname{logN})$.

So tree operations are on average $\mathrm{O}(\operatorname{logN})$.

[^0]: In-order: Chewbacca, Han, Lando, Leia, Luke, Obi, Vader, Yoda

