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1. Introduction 
In this paper we consider some results on the orbits of groups of collineations, 

or, more generally, on the point and block classes of tactical decompositions, 
on symmetric balanced incomplete block designs (symmetric BIBD = (v, k, 2)- 
system=finite 2-plane), and we consider generalizations to (not necessarily 
symmetric) BIBD and other combinatorial designs. The results are about the 
number of point and block classes (or orbits, i.e. sets of transitivity) and the 
numbers of elements in these classes. 

In Sections 2, 3 and 4 below we exhibit the key role of the rank of the inci- 
dence matrix of a design, while the remainder of the paper uses more specific 
properties of the incidence relations. Included in Section 2 is a simple new 
proof of the theorem of DEMBOWSKI [7] on the equality of the numbers of 
point and block classes for a tactical decomposition of a symmetric BIBD 
(for the orbits of a group of collineations the equality is a consequence of a 
result of BRAUER [4, p. 934], and was proved again by PARKER [12] and HUGHES 
[10]). Our proof generalizes the equality to a pair of inequalities for non- 
symmetric designs. In Section 3 we consider transitive groups of collineations, 
and in Section 4, cyclic groups. 

We use an integral matrix congruence in Section 5 to prove a type of sym- 
metry for tactical decompositions on symmetric designs. In particular for primes 
not dividing n = k - 2  we prove that such a decomposition is p-symmetric, i.e. 
the point and block classes can be paired so that paired classes have numbers of 
elements divisible by the same powers of p; this generalizes other results of 
DEMBOWSKI [7]. In Section 6 these results are used in conjunction with the 
theory of rational congruence of quadratic forms to obtain number-theoretic 
conditions on the numbers of elements in the point and block classes, generaliz- 
ing the result of LENZ [11]. Finally, in Section 7 we generalize the result of 
Section 5 on p-symmetry to some inequalities for n0n-symmetric designs. 

2. One-Sided Tactical Decompositions 
For any (generalized) incidence structure, i.e. set of points and blocks with 

an incidence relation between points and blocks, a tactical decomposition is a 
partition of the points into point classes and of the blocks into block classes 
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such that the number of points in a point class which lie on a block depends 
only on the class in which the block lies, and similarly with point and block 
interchanged. A principle example is obtained by taking as the point and block 
classes the orbits of any collineation group. We extend the definition of a tactical 
decomposition in the following way. 

Let M=(mi j )  be a v xb  matrix with entries in a field F. Suppose that the 
set of row indices is the disjoint union of t nonempty subsets R 1 . . . . .  R,, and 
that the set of column indices is the disjoint union of t '  nonempty subsets 
Ct, ..., Ct,. We shall say that M has a right tactical decomposition, with row 
classes R i and column classes C i, if for every i , j  ( i=1,  ..., t ; j = l ,  ..., t ') the 
submatrix (mh t) (h ~ R i, le  C j) has constant column sums s~j. The t x t '  matrix 
S=(s, j)  =Sc~ will be called the associated matrix of column sums. Similarly a 
left tactical decomposition and its associated matrix Sr~ of row sums are defined 
by requiring the submatrices to have constant row sums. 

We define a tactical decomposition for a matrix to be a partition of the row 
and column indices which is simultaneously a left and right tactical decompo- 
sition. Also, onesided tactical decompositions on incidence structures are 
defined by requiring only one of the two conditions on the point and block 
classes. 

Thus a tactical decomposition on an incidence structure corresponds to a 
tactical decomposition on the incidence matrix, and similarly for right and left 
tactical decompositions. 

Theorem 2.1. Let M be a v x b matrix of rank p, having a right (resp., left) 
tactical decomposition with t row classes and t' column cla~ses. Let Pcs (resp., Pr,) 
be the rank of the associated matrix of column (resp., row) sums. Then 

(2.1) t - ( v - p )  < pcs(resp., t ' - ( b -  p) <=pr s) . 

In particular 

(2.2) t ~ t '  +v-p(resp . ,  t' <=t + b - p ) .  

Proof. By symmetry, it suffices to give the proof for a right tactical decom- 
position. There is a set of p linearly independent rows, and the indices of the 
remaining v - p  rows lie in at most v - p  of the row classes. Hence there are 
t - ( v - p )  row classes such that the rows of M indexed by the union of these 
classes are linearly independent. In the associated matrix of column sums, 
the rows corresponding to these t - ( v - p )  classe must be linearly independent, 
since a dependence relation among them would give a dependence relation 
(with the same coefficients, only repeated) among a set of rows of M. Hence 
t -  ( v -  p) __< pcs, and the final result holds because P~s =< t'. 

There are a number of immediate consequences of this theorem. In the 
statement of these results, t will continue to denote the number of row or 
point classes (or orbits) and t' the number of column or block classes (or orbits). 

Corollary 2.1. I f  a nonsingular matrix has a tactical decomposition then t =t' .  
Moreover the associated matrices of row sums and of column sums are both 
nonsingular. 
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This includes the corresponding results of DEMBOWSKI (Theorem 2 and 
Lemma 7 of [7]) for symmetric BIBD. 

Corollary 2.2. For a right tactical decomposition (or a group of collineations) 
on a BIBD, t<= t'. 

In fact this result holds for a wider class of designs, namely, for any design 
having an incidence matrix with linearly independent rows. In addition to 
BIBD, such designs include the group divisible designs which are regular (that 
is, for which r>21 and rk> v22)(see [3]) and other partially balanced incom- 
plete block designs satisfying certain conditions on the parameters (see [6]). 

A BIBD is called resolvable if the blocks are partitioned into classes such 
that each point is on exactly one block in each class. Thus a resolvable BIBD 
is an example of a BIBD with a tactical decomposition with t = l  and t '=r  
(where v, b, r, k, 2 as usual denote the parameters of a BIBD). By (2.2), 
b - v  > r - 1 .  This inequality is part of a theorem of BOSE [2] which also says 
that equality holds if and only if pairs of blocks in distinct classes always 
have the same number of points in common. A resolvable BIBD satisfying this 
last condition is called affine. For  these designs there is the following recent 
result of DEMBOWSKI [8, p. 164], which he has proved in a different way. 

Corollary 2.3. For a tactical decomposition on an affine resolvable BIBD, 

O < t ' - t < r - 1  

Proof. This follows immediately from (2.2) and the theorem of Bose. 
A (binary) constant-distance matrix is a v • b matrix with entries chosen from 

two symbols such that any two rows differ in the same number d of columns, 
where d>  0. Examples include the Hadamard matrices and the incidence ma- 
trices of BIBD. An incidence structure is called a constant-distance design if its 
incidence matrix is a constant-distance matrix. 

Corollary 2.4. For a right tactical decomposition (or a group of collineations) 
on a v xb  constant-distance matrix M, t< t' + 1. 

Proof. With the two symbols chosen as + 1, the matrix M M '  is a v • 
matrix A with b on the main diagonal and b - 2 d  elsewhere. The determinant 
of A is (2d)V-l[2d+v(b-2d)] .  If the rank p of M is v then t < t '  by (2.2). 
If p < v  then det A =0, so that 2 d + v ( b - 2 d ) = 0 .  Deleting a row keeps b and d 
fixed but destroys this last equation. Hence p = v - 1  and, by (2.2), < ' t= t  +1,  
which completes the proof. 

In particular, a constant-distance matrix has v < b + 1. Corollary 2.3 genera- 
lizes a result in [1], in which it is shown that if t '  = 1 then t<2 .  Examples with 
t =2  and t' = 1 were obtained from Hadamard matrices in [1] 1. 

The following is a simpler proof and generalization of another result 
proved by DEMBOWSKI [7] (pp. 66--69) for symmetric BIBD. 

1 I would like to correct an error in the remarks in the last few lines of [1]: It may be shown 
that H itself is isomorphic to $6; hence if s = 2 ,  G has order 16" 720, and if s > l  then G 
contains a subgroup isomorphic to S 6 which fixes 4 s-2 columns. 

3* 
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Corollary 2.5. Let there be given two tactical decompositions of a nonsingular 
matrix. Then every row class of the second decomposition is contained in a row 
class of the first decomposition if and only if the same is true for the column 
classes. 

Proof. If a column class of the second decomposition contains members of 
distinct classes Cj and Cz of the first decomposition then the hypothesis on 
row classes implies the equality of columnsj  and l of Sc~ of the first decompo- 
sition, contradicting Corollary 2.1. 

We next consider a couple of results on the associated matrices of a tactical 
decomposition. We write Scs=S=(si j )  and S,s=A =(a/j);  as before, Pcs and 
p,, denote the ranks of these matrices. 

Corollary 2.6. Suppose there is given a tactical decomposition on a v x b 
matrix M of rank p over a fieM of characteristic O. Then 

max { t -  (v -p) ,  t ' -  (b -p)}  < pc s= p , , .  

Proof. Let v~ and bj denote the number of elements in R~ and Cj respecti- 
vely. Then v~ a~j =sij b j,  which gives the equality of ranks. 

Theorem 2.2. Let M be a v x b matrix over a f ieM F, with a tactical decom- 
position. Then M M '  is similar to a matrix having (Sc~ S'~, Ot• as its 
first t rows. In particular, the characteristic polynomial and the determinant of 
Sc~ S;~ divide those of M M' .  

Proof. For i=1,  ..., t(resp, t') let ~i(resp. q~) denote the v-tuple (resp., 
b-tuple) having 1 in each place indexed by an element of R~ (resp. C~) and 0 
elsewhere. We have 

t '  t 

j=t  j=l 

Hence ~1 . . . . .  ~t are a basis of a space invariant under M M ' ,  and the matrix 
of M M '  with respect to this basis is SA'. This gives the result. 

3. Collineation Groups 

Let M=(m~j) be a v x b matrix with entries in a field F. A collineation x of 
M is a pair n =~(x), r =a(x)  of permutations, n acting on the row indices and 
r on the column indices, such that mij=m~(o,~(j) for all i,j. With ~(x) and 
r also denoting the corresponding permutation matrices, one has 

(3.1) M o" (x) = zc (x) M.  

A collineation, in the usual sense, of an incidence structure corresponds to a 
collineation of the incidence matrix of the structure. 

If G is a group of collineations of M then 7r and ~ give representations of 
the group algebra FG acting on the spaces of v-tuples and b-tuples, respectively, 
and right multiplication by M is an FG-module homomorphism. The isomor- 
phism of the image and coimage gives the following. 
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Lemma 3.1. For a group of collineations on a matrix of rank p, the matrix 
representation 7c has a constituent of degree p which is equivalent to a constituent 
o fa .  

The collineations of M are unchanged if the distinct entries of M are re- 
placed by distinct elements in any set. The following lemma shows that in 
applications of (2.2) for orbits we may always assume that M is over the reals. 
For  some M we will thus get a sharper inequality, since the rank may go up. 

Lemma 3.2. The distinct entries of a matrix of rank p over any field F may 
be replaced by distinct real numbers in such a way that the new matrix has rank 
at least p over the reals. 

Proof. There is a p • p submatrix of M with nonzero determinant. If this 
submatrix contains m distinct entries, we may regard its determinant as the 
value of a polynomial function of m variables with integer coefficients not all 0. 
Replacing the distinct entries of M by distinct real numbers in such a way 
that the m entries of the submatrix are replaced by real numbers algebraically 
independent over the rationals, we see that the new matrix has a p x p submatrix 
with nonzero determinant, and the proof is complete. 

Theorem 3.1. Let G be a group of collineations of a v • b matrix M of rank v. 
Suppose that a(G) (and hence also z~(G)) is transitive, and let u~ and u~ denote 
the number of orbits of the subgroups of 7t(G) and a(G), respectively, f ixing 
one index. Then u~ < u~, and there are at most u, distinct entries in M. 

Proof. By Lemma 3.2 we may assume that M is over the complex numbers. 
If 

Ca ~a 
a 

expresses the character Z~ of ~ (G) as a sum of absolutely irreducible characters, 
and similarly for 

as an expression of Z~, then c a ~ d a 

gonality relations 

u,, I G I = E X~ (x) = 
x~G 

---I GI.~, c~ < 
a 

da f f  
a 

for all a, by Lemma 3.1. But by the ortho- 

E ~'~" CaZa(X) ] E~ CaZa(x)] 
x a a 

IGlY~ ~ ~ do=~Z~(x)=u~lGI 
a x 

so that u~<u,.  If j is a given column index and H = { x ~ G l a ( x ) j = j )  then 
7t (H)  has at least as many orbits as the number mj of distinct entries in column 
j of M. But by (2.2), z ( H )  has at most u, orbits, and so m j < u , .  Since a(G) 
is transitive, all columns of M have the same set of entries, and so there are 
exactly mj distinct entries in M. Thus the theorem is proved. 

Corollary 3.1. Let G be a group of collineations of a v x b matrix M of rank 
v where v> 1. I f  G is doubly transitive on the column indices then v =b, M is an 
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incidence matrix of a symmetric BIBD, and G & doubly transitive on the row 
indices. 

Proof. Since u~ > 1, we have u~ = u ,  =2, and G is doubly transitive on the 
row indices. Also by Theorem 3.1, there are at most two distinct entries in 3//, 
say ~ and ft. By the transitivity of n and the double transitivity of o-, all rows 
of M have the same number of c~'s, and every pair of distinct columns has the 
same number of ~'s in common. This says that M '  is the incidence matrix 
of a BIBD, with ~ and fl in place of 1 and 0. Since v = r a n k  M < b ,  this BIBD 
is symmetric, and the proof is complete. 

We can also obtain some information in the case in which the rows of M 
are not linearly independent, 

Theorem 3.2. Let G be a group of collineations of a v x b matrix M of rank 
p > l .  Suppose that a(G) is doubly transitive on the column indices. Then a(G) 
is equivalent (as a matrix representation) to a constituent of 7z(G) (and in 
particular v > b), and p = b or b -  1. 

Proof. Again by Lemma 3.2 we may assume that M is over the complex 
numbers. Let as be a constituent of a which is equivalent to a constituent of 
degree p of re. Since o-(G) is doubly transitive, it is equivalent to the sum of two 
absolutely irreducible constituents, one of them the identity. Therefore, since 
p > 1, as must have degree b or b -  1. Since n contains the identity representation 
as a constituent and is completely reducible, the conclusions of the theorem 
hold. 

That  it can happen that p = b - 1  is shown by the following example: take 
the BIBD with 2m points whose blocks consist of all sets of m of the points, 
and let M be the transpose of the incidence matrix, with 1 and - 1 in place of 
1 and 0. Here G acts as the symmetric group on the 2m column indices, and 
the row sums are zero, so that the rank is b - 1. However we do have the follow- 
ing result. 

Corollary 3.2. Under the hypotheses of Theorem 3.2, if the entries of M are 
nonnegative real numbers then p =b. 

Proof. Suppose not. Then p = b - 1 ,  and the coefficients in a dependence 
relation among the columns are unique up to scalar multiple. I t  then follows 
from the double transitivity that all the coefficients are the same, that is, all 
row sums are zero. Then all entries are zero, contradicting p > 1, and the proof 
is complete. 

In fact, if the entries are 1 and 0, and if all row sums are equal (which will 
be the case if ;z is transitive), then it is immediate that M is the transpose of the 
incidence matrix of a BIBD. 

4. The Lengths of the Orbits 

For left or right tactical decompositions we shall write vl for the number of 
elements in a row class Ri, and bi for the number of elements in a column 
class Ci. For  any positive integer j we shall write a i for the number of row 
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classes R~ with vi =j, and cj for the number of column classes Ci with bi =j.  
We have the following immediate consequence of Theorem 2.1. 

Theorem 4.1. Let M be a v x b matrix of rank p, with a left tactical decom- 
position. Suppose that aj> cj for every integer j >  1 except possibly one, say 
j = m .  Then am<=Cm +(V-p ) / (m  - 1). 

Proof. By the second half of (2.2), v - t < b - t' + v -  p. Hence 

aj(j- 2)=Z cj(j-a)+v-p, 
J J 

whence the result. 

Corollary 4.1. Suppose there is a collineation of prime order p on a BIBD 
or on a constant-distance design (or matrix). Then the number of p-cycles on 
the blocks (columns) is at least the number of p-cycles on the points (rows). 

Proof. In this case aj=cj=O for j >  1 except for j = p .  Moreover v - p = O  
except for the constant-distance designs, where v -  p < 1. The result then follows 
from the theorem except when p = 2 and v -  p = 1 for a constant-distance de- 
sign. In this case, in the notation of the proof of Corollary 2.4, 2 d +  v ( b -  2d) =0, 
and the sum of the rows is orthogonal to each of the rows and so each column 
sum is 0. This implies that Prs< t, and using (2.1) instead of (2.2) in the proof 
of Theorem 4.1 we get a strict inequality in that theorem, which gives the result. 

Such a result holds for any collineation group in which every element of the 
group fixes the same set of points (rows) and blocks (columns), i.e. when each 
vf and b~ is either 1 or the group order. 

Corollary 4.1 is also a consequence of the next theorem, which generalizes 
the result of BRAUER [4] and PARKER [12] that says that a collineation on a 
symmetric BIBD (or a nonsingular matrix) has the same cycle lengths on the 
points as on the blocks. 

Theorem 4.2. Let x be a collineation of a v x b matrix M of rank p. For each 
positive integer j let aj and cj denote the number of ficycles of x on the row indices 
and on the column indices, respectively. I f  m is a positive integer such that 
a, > c, for every proper multiple n of m then am < Cm + (V-- p)/q~ (m) (q) the Euler 
function). 

Proof. By Lemma 3.2 we may suppose that M is over the complex numbers. 
By Lemma 3.1 applied to the group generated by x, all except at most v - p  of 
the characteristic roots (counting multiplicity) of ~(x) are characteristic roots 
of a(x). Since an n-cycle contributes the n-th roots of unity to the characteristic 
roots of a permutation matrix, among the characteristic roots of ~(x) there 
are q~ (m) am which are primitive m-th roots of unity, in addition to those which 
Come from cycles of length a proper multiple of m. Of these ~o(m)am roots~ 
at least (p (m) am - (V - p) give characteristic roots of a(x) which come from 
m-cycles, that is, ~o (m) a m - ( v - p ) <  q~ (m) era, and the proof is complete. 

For  BIBD and also for constant-distance designs the conclusion of the theo- 
rem says that a,, < c,,, and a, = e, for every proper multiple n of m (in the case 
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of a constant-distance design when m = 2  and v - p  =1,  the characteristic root 
that is deleted by the above use of Lemma 3.1 has the value 1, since in this 
case the row vector (1, .. . ,  1) spans the null space of M). 

5. A Matrix Congruence and an Application to Symmetric Designs 

We now begin proving results which depend on more specific features of an 
incidence matrix than its rank. For any positive integer m, let I,, and arm denote 
respectively the m x m unit matrix and the m • m matrix with all entries 1. 
For a right or left tactical decomposition of a matrix (or of an incidence struc- 
ture) we continue to write v~(i= 1, ..., t) and bj ( j =  1 . . . .  , t ' )  for the cardinali- 
ties of the i-th row class and j- th column class, respectively, and we write V for 
the t x t diagonal matrix diag(v~, ..., vt) and B for the t '  x t '  diagonal matrix 
diag(bl, .. . ,  be). Also S denotes the associated matrix of column or row sums. 

Lemma 5.1. Suppose there is a right tactical decomposition of a v • b matrix 
M=(m~j)  over af ield F, and suppose there are elements ct:~O and fl in F such 
that M M'  =~Io + f lJ 0. Then 

(5.1) S B S '=a V I,+fl  V Jr V. 

The determinant of the right side W of (5.1) is 

vi ~'-l(~+flv).  
i 

Moreover S has rank at least t - 1 ,  and rank exactly t provided a +fly + O. 
I f  the entries of M are integers and if t =t '  then 

t 

(5.2) c~ t-1 (~ + fl v) I-~ (v~/b,) = det S z 
i = l  

and so is the square of an integer. 

b 

E ( Z mk~)( Z mkt) 
/ = 1  k ~ R i  k ~ R j  

in two ways, one gets 
t '  

bqslqsjq=vivifl+6~jvi~, 
q = l  

so that (5.1) holds. The determinant of W can be computed by subtracting 
vflv 1 times the first column from the j- th column, j = 2 ,  ... ,  t, and then adding 
to the first row the rows after the first, thus making a triangular matrix with 
diagonal entries ~v 1 +flvv 1, c~v z . . . . .  ~vt. Since det M M ' = ~ v - l ( ~ + f l v ) ,  if 
a+vfi4:0 then the rank p of M is v, while if a + v f l = 0  then (as in the proof of 
Corollary 2.4) p = v - 1 .  The statements about the rank of S then follow from 
Theorem 2.1. The final statement of the lemma follows immediately f rom the 
first two conclusions. 

Proof. Counting 
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Suppose that the hypotheses of Lemma 5.1 hold and that a+vfl4:0. Then 
S has rank t, and t<t ' .  Take any t linearly independent columns of S; by 
reordering they may be assumed to be the first t columns. Let $1 and $2 denote 
the submatrices of S consisting respectively of these first t columns and of the 
remaining t ' - t  columns of S. Define t '  x t '  matrices So and W0 by 

1":,], Wo= 

where B 4 is the ( t ' - t ) x  ( t ' - t )  diagonal matrix diag(bt+ ~ . . . . .  b,,). 

Theorem 5.1. Under the hypotheses of Lemma 5.1, if e +vfl+O and S O and 
Wo are constructed as above, then 

(5.3) S O B S~) = Wo 

and So is nonsingular. 

Proof. The nonsingularity of So follows from its construction, and (5.3) 
follows from (5.1) by inspection. 

For  a BIBD with the discrete tactical decomposition, i.e. with all v~ and 
bj equal to 1, (5.3) becomes the congruence studied by Connor [5]. 

For  any prime p and any positive integer a, define ~%(a) by writing 

a =p~V (a) a*, 

where a* is an integer prime to p. 

Lemma 5.2. Suppose that the hypotheses of Lemma 5.1 hold for an integral 
matrix M, and that t=t' .  I f  p is a prime not dividing a(a+flv) then p ~ d e t  S, 
and if an entry sli of S is not divisible by p then q~p(bj) > q~p(vO. 

Proof. Let Mp and Sp be the matrices obtained from M and S by taking 
residues of the entries modulo p. Since a(a+flv)~-O modp,  by Lemma 5.1 Sp 
has rank t and hence p g d e t  S. Therefore (S ' ) -  ~ exists and is a rational matrix 
with denominators prime to p. By (5.1), 

S B=(a V I +fl VJ  V) (S') -1. 

If p"[ v i then each entry of the i-th row of the right side, and so of SB, is divisible 
by p". In particular p"[s~j b j, so that p"[bj. This gives the conclusion of the 
lemma. 

For  any set P of primes, two sequences v l, ..., vt and bx,  . . . ,  bz of positive 
integers will be called P-symmetric (p-symmetric if P = {p}) if the sequences can 
be reordered so that gov(vi)=g0p(b~) for i =  1, ..., t and for every p in P. A right 
or left tactical decomposition with t = t '  will be called P-symmetric if P-sym- 
metry holds for the corresponding sequences v 1 . . . .  , v t and b~, . . . ,  b~. The 
decomposition is called symmetric if it is P-symmetric for all P, that is, if 
t = t' and the b~'s and v~'s can be reordered so that b~ = v~, i = 1 . . . . .  t. 
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Theorem 5.2. A tactical decomposition of a symmetric BIBD is (p) u Q-sym- 
metric for any prime p not dividing n = k - 2  and any set Q of primes each greater 
than k. 

Proof. The incidence matrix satisfies the hypotheses of Lemma 5.1, with 
~ =n  and f l=2,  so that ~+f lv=k  z. First suppose pXdet  S. Hence there is a 
transversal of S of entries not divisible by p, and by reordering the classes we 
may suppose that this is the diagonal, that is, p~Vs~i, i= I . . . . .  t. Then q~/s~i 
for any q in Q since l<s i i<k .  Write P={p}wQ.  For each a in P and for 
i=1,  ..., t, (Pa(b~)~(Pa(Vi) by Lemma 5.2, and hence ~0a(bi)=~0a(v~) by (5.2). 
This gives P-symmetry in this case. 

Next suppose that p lk but that p,(n. The complementary design has para- 
meters v, k' = v - k ,  4' = v - 2 k + 2 ,  and n' = k ' - 2 '  = k - 2 = n ,  and its incidence 
matrix has a tactical decomposition with the same row and column classes and 
with sIj=v~-si]. Also p~/n'k'  since otherwise p l v - k ,  plv, pl2 since 
p l k ( k - 1 ) = 2 ( v - 1 ) ,  and p l k - 2 = n ,  a contradiction (this already proves 
p-symmetry). Therefore we may as before assume that pXs~, i=1,  ..., t. 
I f j i s  such thatp ] vj thenp 4Vs] j =vj-s~j  and s~j #0 ,  so that no q in Q divides sjj. 
Thus by Lemma 5.2 if a is any power of an element of P then 

{i:alv~ and plvi}c_{i:albi and p[b~}. 

Consideration of the left as well as the right version of the tactical decomposi- 
tion then shows that these two sets have the same number of elements and so 
are equal. Thus P-symmetry and hence also Q-symmetry hold for the subsequen- 
ces of those v~ and those b~ which are divisible byp.  By the first case of the proof 
the decomposition is Q-symmetric, and so Q-symmetry holds for the comple- 
ments of the above subsequences. This gives P-symmetry for the decomposi- 
tion, and the proof is complete. 

This theorem generalizes results of DEMBOWSKI [7] who proved that if p 
is a prime not dividing nk then the sets {i:p[vi} and {i:p[b~} have the same 
cardinality, and that for a p-group of collineations if p,~n and 2 = 1 then the 
group fixes the same number of points and lines. The theorem is also related 
to a work of ROTH [13] which shows that on certain planes of order n solvable 
collineation groups of order prime to n fix the same number of points and lines. 

The result of Theorem 5.2 does not hold without the restriction on p 
dividing n - in fact the four-group acts in a non-symmetric manner on the 
projective plane of order 2. 

Corollary 5.1. Let G be a group of collineations on a symmetric BIBD, p a 
prime not dividing n, Q a set of primes each greater than k, and H a normal sub- 
group of G all of whose orbits have the same number m of elements. Then m 
divides each v~ and b i and the sequences vl/m, ..., vt/m and bl/m . . . . .  bt/m are 
{p} u Q-symmetric. In particular, the orbits of G give a tactica ! decomposition 
which is symmetric if every prime dividing the order of G/H is in {p} u Q. 

Proof. Let Su be the associated matrix of column sums for the tactical 
decomposition into orbits for H. Then Sn has degree v/m, and by (5.1), 
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Sn S[I=O~I+ flJ where e = n  and f l=m2. Note that e + /3(v/m)=n+ 2 v = k  2. 
Since H is a normal subgroup, the elements of G permute the orbits of H a n d  
thus there is induced a tactical decomposition on Sn corresponding to a group 
of collineations which is a homomorphic image of G/H. An associated matrix 
of column or row sums for this decomposition is also an associated matrix 
for the decomposition induced by G on the original incidence matrix, and the 
orbits of this latter decomposition have length m times that of the orbits of G 
on Sn. The proof of Theorem 5.2 now goes through when applied to the de- 
composition on S n provided one changes b i to bi/m and v i to vi/m except in the 
equations s~j =v~-s i j .  This gives the result on {p} u Q-symmetry. Finally since 
each vi/m and bi/m divides [G/HI, the last conclusion holds. 

Corollary 5.2. Let S be the associated matrix of column sums of a tactical 
decomposition on the incidence matrix M of a symmetric BIBD. Then (det S)/k 
is an integer of which every prime factor divides n, and 

t 

n'- 1 y[ (vi/bi) = (det S)2/k 2 
i = l  

and so is the square of an integer. I f  t < (v + 1)/2 then det S J det M. 

Proof. Since the column sums of S are k, k is a characteristic root of S 
and k[ det S. The first two conclusions then follow from (5.2) and the p-sym- 
metry of the decomposition for every prime p not dividing n. Write 

t 

= 1~ (vi/b,). 
i = 1  

Then n t- 1 ? is an integer, and consideration of the matrix of row sums instead 
of column sums shows that nt-1/? is an integer also. Hence n t-~ ?In z~t-~) 
and if t<(v+ 1)/2 then 

(det 5 )  2 = n t -  1 7 k 2  1 n v - 1 ]s = (det M) 2, 

which completes the proof. 

The first part of the proof of Theorem 5.2 actually establishes the following. 

Corollary 5.3. Let there be given a right tactical decomposition with t =t '  
on an integral v•  matrix M such that M M ' = ~ I + f l J .  I f  p is a prime not 
dividing ~ (~ + fl v) then the decomposition is p-symmetric. I f  P is a set of primes 
none of which divide a(~+flv) and if there is a transversal slj1, ..:, stA of the 
associated matrix S such that each sij~ is prime to every element of P, then the 
decomposition is P-symmetric. 

This applies in particular to BIBD. For a BIBD with parameters v, b, r, k, 2, 
the incidence matrix M satisfies M M '  =~I+ f l J  with ~ = n = r - 2 , / 3  =2 and 
~ + f l v = r - 2 + v 2 = r k .  Replacing 1 and 0 in M by ? and 3 respectively, one 
obtains a matrix A such that 

A A ' = ( r ' - 2 ' ) I + 2 ' J  where r ' = r ? 2 + ( b - r ) 6  2 
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and 
2'=2 72 + 2(r -2)  y 6 + ( b - 2 r  + 2)62. 

A straightforward computation shows that r ' -2 ' - -n(7-c~)  2 and 

r ' - 2 ' +  v 2'= [k ~ +(v -  k) 6] [ rT+(b- r )6 ] .  

Corollary 5.4. Suppose there is given a right tactical decomposition with 
t =t' on a BIBD, and a prime p not dividing r -2 .  Ifp,~(r, b) (k, v) or, in case 
p =2, ifp,~(rk, ( b -  r) ( v -  k)), then the decomposition is p-symmetric. I f  p,~rk 
and if Q is a set of primes such that for every q in Q, q>k and q,~'(r-2)r then 
the decomposition is {p} u Q-symmetric. 

Proof. When (7, 6) has the value (1, 0), (0, 1) or ( - 1 ,  1), then r ' - 2 ' + v 2 '  
has the value r k, ( b -  r) (v -k) ,  or ( b -  2 r) ( v -  2 k), respectively. The conditions 
on the g. c. d.'s guarantee that one of these three integers is not divisible by p 
(the stronger condition when p =2 is needed because p must not divide (r-A) 
(~-6)  2, so that then (7, 6) must not b e ( -  1, 1)). The first conclusion then fol- 
lows from Corollary 5.3. As in the proof of Theorem 5.2, the hypotheses of the 
final statement of the corollary imply those of the last statement of Corollary 
5.3, which then gives the present result. 

6. An Application of the Theory of Quadratic Forms 

Consider a symmetric BIBD with a tactical decomposition. Eq. (5.1) says 
that B and V(2J) V+ n V are rationally congruent. Using this fact, HUGHES [9], 
[10] (see also DEMBOWSKI [7]) applied the Hasse-Minkowski theory of rational 
congruence of quadratic forms to obtain number-theoretic conditions on the 
v~'s (or b~'s) for certain special symmetric decompositions. LEHZ [11] gave a 
simple proof that the above congruence implies the rational congruence of 
the ( t+ l )  x ( t + l )  diagonal matrices (bl, ..., bt, n2) and (nvl, ..., nvt, 2) 
(actually Lenz only stated this for projective planes) and used this in the case 
of symmetric decompositions to obtain a generalization of the results of 
HUGHES and DE~mOWS~:L In the following, an application of the Hasse- 
Minkowski theory to the congruence of LENZ and of the symmetry results of the 
preceding section gives an extension to number-theoretic conditions for non- 
symmetric decompositions. The symbols (a, c)p and (n/p) denote the Hilbert 
norm residue and the Legendre symbols. 

Theorem 6.1. Suppose there is given a tactical decomposition on a symmetric 
BIBD. For every prime p, if t is odd then 

(6.1) (-1)(t-1)/E2I-[b~,n 1-[ (vj,vl)p(bi,bl)p=l; 
i = l  p l ~ j < l ~ _ t  

if t is even then 

(6.2) ((-1)(t/2)+12, n)p 1-[ (vj,vl)p(bs,bl)e=l. 
l ~ j < l < - t  
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I f  p,~ n these both reduce to 

( 6 . 3 )  ( l'l ]a 1-[ (p, vj)v 1-I (p, b~)p = 1, 
\ P / {jlq~p(vS) odd} {jl~p(bj) odd} 

where a is 1 or 0 according as {j[ qJp(Vj) odd} (or {j[ ~op(bj) odd})hasan oddor 
even number of elements. 

Proof. For an m by m matrix with i-th principle minors D,, i=l ,  ..., m, 
the Hasse invariant cp has the value 

m--1  

(--1,  -Dm)p l-I (D,, -Di+a)p ,  
i= l  

and this invariant must have the same value for diag(bl, ..., bt, An) and 
diag(nvl, ..., nvt, 2) (where re=t+ 1). In computing %, we drop the subscript 
p from the Hilbert symbols. Write 

i 

T/=  H b / ,  i = l , . . . , t .  
j = l  

Then 

(7i, -7 i+a)=(7 i ,  -7 , ) (7 , ,  bi+O=(T,, bz+O for i=1  . . . . .  t - l ,  

since (7, - 7 ) =  1 for any integer 7. Hence 
t - 1  

H(]~ '  , --~]/+ 1) = H ( b j ,  b , ) ,  
i = 1  l<=j<l<t 

and therefore 

cp(diag(bl . . . . .  b t , 2 n ) ) = ( - 1 ,  yt2n)(Tt,An) [I (bj,bt). 
l < j< l< t  

Next write 

6,=I-Iv  j ,  i = l  . . . . .  t, 
j = l  

and consider diag(nvl . . . . .  nvt, 2). Here (Dr, -Dr+ 1)=( nt 6t, 2), which equals 
(n 6t, 2) if t is odd and (6 t, 2) if t is even. For  i = 1, ..., t -  1, 

(Di, - -  D ,  + 1) : ( hi ,  - -  n '  + 1) (h i ,  6,  + 1) (6i ,  n '  + 1) (6, ,  --  6 i + 1). 

Since (n i, - n  '+x) = 1 or (n, - 1 )  according as i is even or odd, 

t - - 1  

I - [ (n i , -n i+1)=(n , -1 )  ('-1)/2 or ( n , - l y / 2  
i = l  

according as t is odd or even. Also 

t - -1  t - - 1  

H ( ni~' 6i+ 1) ((~i, n'+ 1) = 1--[ (n', 6i) (n i, v,+ 1) (n', 6i) (n, 6,) 
/ = 1  i= l  

t - -  1 ( t -  1 ) /2  

= I-[ (n, 6,) (n', v,+ 1) = 1"-[ (n ,  62, . )2  = 1 
i= l  m = l  
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if t is odd, while if t is even there is a remaining factor (n, 6,). Finally 

1-I -6,+ 1)= [ I  (v j, v3 
j < l  

just as for the bj. Hence 
[ ( - 1 ,  6t2 n)(n 6t, 2)(n, -1 ) ( ' - l ) /2  I-I (vj, vl)(t odd) 

cp(diag(n vl, ... , n v t 2))= ] j<z 
( -  1, 3, 2) (6,, 4) (n, - 1) '/2 (n, 6,) I-I (v j ,  v~) (t even). 

j < l  

By (5.2), if t is odd then Vt 3, is a square, so that (V, ~,)=(7, 6,) for any ~; 
if t is even then nT, at is a square, and (2n, 7, 6t)=(2n, n)=(2, n ) ( n , - 1 ) .  
Comparison of the two values of Cp now gives (6.1) and (6.2). 

Finally suppose p/Vn. Then (2, n ) = l  (if p[2 then (2, n ) = ( , t , n + v 2 ) =  
(4, k 2) = 1) and ( -  1, n) = 1. Since the decomposition is p-symmetric, the vi's 
and bi's can be ordered so that ~op(vj) and (pp(bj) have the same value, say dj, 
j =  1, ..., t. Write vj =pdj V} and similarly for bj. Then 

l-[ (v j ,  v,) (b j ,  b,) = YI (pal j, pal,)2 (paj, v; b;) (v) b), pC,) 
j < l  j < t  

= I ]  (pd,, I ]  v, b,)(pal j, vj b j) .  
j t 

When t is odd 
lqvl bz 

l 

is a square and when t is even 

j l j 

where a is the number of odd dj. Also 

(i-I n)=(p, n) ~ 
i 

Collecting these simplifications gives the final result of the theorem. 

Corollary 6.1. Let  G be a group of  collineations on a symmetric BIBD and p 
a prime such that p , f  n and (n/p) = - 1. I f  p <= k (respectively, p > k) suppose that 
(q/p) = 1 fo r  every prime divisor q:l=p of l~l such that q<=k (respectively, such 
that q ln). Then q~p(vi) is odd for  an even number of  point orbits. 

Proof. By P-symmetry the orbits may be ordered so that q~p(vj)=~%(bj) 
and q~q (vj) = q~e (b j) for all q > k and allj. The quadratic residue condition on the 
q then implies that (p, vj bj)p = 1 for allj. Hence the exponent a of (6.3) must be 
0 and the conclusion holds when p__< k. Similarly by {p, q} symmetry for each 
q not dividing n the conclusion holds when p > k. 

The hypothesis that (q/p)= 1 is only needed for those primes q such that 
the decomposition is not {p, q}-symmetric. 
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7. A Generalization of p-Symmetry to Nonsymmetric Designs 

Suppose there is given a right tactical decomposition of a matrix, with as 
usual row classes with v~ . . . . .  v t elements and column classes with bl, ..., bt. 
elements. In this section, for any primep and nonnegative integer j we write Pi 
for the number of i with ~0p(v,) =j, and p~. for the number of i with ~%(b,) =j. 
Thus p-symmetry says exactly that pj  =p)  for all j. 

Theorem 7.1. Let  there be given a right tactical decomposition of  a v x b 
integral matrix M,  where M M '  =c~I+flJ, and a prime p not dividing c~. For 
any i, i f  p X a + f l v  then 

(7.1) 0 =< (i + 1) (P'o - Po) + i(p'l - p , )  +. . .  + (p~-  p,) 

while i f  p i e + f l y  then 

(7.2) - ( i + l ) < ( i + l ) ( p ' o - P o ) + i ( p ' ~ - p ~ ) + . . . + ( p ~ - p i ) .  

Proof. For any matrix A and any row indices il, ..., im and column indices 
Jl,  ...,Jm let A( i  1 . . . .  , i , ,;j l  . . . .  ,Jm) denote the m xm submatrix of A formed 
from the given rows and columns. By the elementary expresion for the deter- 
minant of the product of an m x l and an l x m matrix as a sum of products 
of m x m minors, (5.1) implies that 

bj, ... bj~(det S( i ,  . . . . .  ira; Jl . . . . .  Jm)) 2 
1 < j l < J 2 < ' " < j m < t  ' 

=det  W ( q  . . . .  , ira; i~ . . . . .  ira) 

for any i~, . . . ,  im with i __< il < i2 < ... < im =< t. A calculation just like that of det W 
shows that the right side equals 

(7.3) V i l " .  Vi m CZ rn-1 [~  "~- ~ (V i l  ~- ; ' "  -3i- Vim)],  

Hence if s denotes the value of Cpp of this expression then (pp(bjl ... bjm ) ~ s  for 
some choice of j~, ... , j , , .  Applying this fact to the m =Po + "'" +P~ of the row 
indices l with % ( v l ) < i ,  one sees that if 7 is defined by 

then 

(7.4) 

i i 

~+ EP) = EPJ 
j = O  j = O  

i i i 

( i+1)  7+ ~ j P ~ <  XjPj+~P, (oO ( - l + j ~ o p j ) + ~ , ( c ~ + f i  ~ vj). 
j = 0 j = 0 q~p(VJ) < i 

By hypothesis ~pp(~)=0. Moreover the last term vanishes if p X ~ + f i v  because 
P lfl ~ v j  where the sum is over those j such that % ( @  > i. Hence multiplying 
the equation defining ? by i+  1 and then subtracting (7.4), one gets (7.1). 
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Next suppose that p [ ~ + fl v. Then p,~ v fl since p Y ~. Suppose the last term 
of (7.4) does not vanish. Pick an index l such that ~o~(vt) --0 (such exists since 
p y v )  and apply the above argument this time to the P0 + "'" +P~-1  indices j 
such that ~op (v j) <= i, j4= l. Then Po is replaced by Po - 1, and the term correspond- 
ing to the last term of (7.4) now vanishes, since p,~fiv t . Hence (7.2) holds, and 
the proof is complete. 

This theorem gives a second proof of the p-symmetry of a tactical decom- 
position of a symmetric BIBD when plan. 

For a right tactical decomposition and any integer a, let g, denote the num- 
ber of i for which a[bi, and l, the number of i for which a[ vs. Thus 

j--1 

gpJ = Z p;, t.j = Z p,, gp - = c -  t -  E (p ; -  p,). 
i>=j i>=j i=O 

Theorem 7.2. Let M be a v x b matrix over the integers such that M M '  = 
I+  fl J. Suppose that M has a right tactical decomposition and that p is a prime 

not dividing ~. Suppose that j>=O is such that gpj=t' .  Then (a) if p /~ t+f l v  then 

(7.5) [gpj+l-lpj+~[<t'- t ,  and lpj=t; 

(b) / fpl (~+/3v)  then ]gp j+ l - lp j+ l [< t ' - t+ l ,  lpj=t (when j = 0 )  or t - 1  
(when j >  0), and pJ [ ~ + flv. 

(In the most significant case j = 0  and the conditions gl = t '  and ll = t  are 
automatically satisfied). 

Proof. Suppose first that p Y ~ + flv and tha t j  = 0. Reduction of (5.1) modulo 
p gives Sp Bp S'p = Wp for the matrices of residue classes. The rank of Sp is t 
(by Lemma 5.2), the rank of Bp is t ' - g v ,  and the rank of Wp is t - l p  as may 
be seen using (7.3). Since rank Bp>=rank Wp =rank S v B v S'p, one has t '-gp=> 
t - l p > = t - g p - ( t ' - t ) ,  and (a) follows in this case (j--0). Next suppose that 

j > 0  and that pJ divides all v~ (as well as all bi). Then p-J" B and p-J  W are 
integral. The analogue of the above argument for the case j = 0 ,  applied to the 
equation Sp(p - j  B)p S~ = ( p - J  W)p, yields the inequality of (a). This inequality 
and induction then show that pJ divides all v~ whenever it divides all b~, which 
completes the proof of (a). 

The proof of (b) is obtained by modifying the proof of (a), in particular 
noting that (p- j W)p has rank t -  lpj + 1 - 1 ; we omit the details. 

Half of the inequality of (a), as well as of (b) when j = 0 ,  also follows from 
Theorem 7.1. 

The following holds by the reasoning of Corollary 5.4. 

Corollary 7.1. Suppose there is given a right tactical decomposition on a 
BIBD, and a prime p such that p ~ / ( r - 2 )  (r, b) (k, v), or, in case p=2 ,  p , ( ( r - 2 )  
(rk, ( b - r ) ( v - k ) ) .  Then (7.1) holds, and if g ~ = t '  then (7.5) holds. 
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