
Migrating Uber from MySQL to
PostgreSQL

Evan Klitzke

Uber, Inc.

March 13, 2013

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 1 / 59

Outline

1 Background

2 Code Changes

3 The Actual Migration

Background

Background

Uber is a mobile application that lets you request a
towncar or taxi on demand from your phone.

All of the things that you would expect (client
information, driver information, vehicle information, trip
data, etc.) are stored in a relational database; when I
started (September, 2012) that database was MySQL.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 3 / 59

Background

Background (cont.)

All of the parts of Uber that touch the database are
written in Python.

Most of the database interaction is through
SQLAlchemy, with a handful of hand-written queries (i.e.
cursor.execute()).

Also, some business intelligence/MBA types issuing
ad hoc queries directly to read slaves using an OS X
MySQL GUI tool (Sequel Pro).

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 4 / 59

Background

The Objective

The objective was to move our ∼50GB MySQL database
to PostgreSQL.

Why? A bunch of reasons, but one of the most
important was the availability of PostGIS.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 5 / 59

Background

Obstacles

Minimizing downtime was essential; the real cost of
downtime is easily calculable and significant.

Migration (work began in October 2012) had to be
coordinated around the schedule of our two biggest days:
weekend before Halloween, and New Year’s Eve.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 6 / 59

Background

Obstacles cont.

Additionally, at the time the project was conceived,
growth was sustained at > 10x per year for the previous
two years.

Getting the project done expediently was a big concern,
since the database was growing at about that rate.
Migrating a 500GB database would have been hugely
problematic.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 7 / 59

Background

Work Distribution

The work was to be mostly done by a single person
(me), with help for whatever I couldn’t do myself.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 8 / 59

Background

Plan of Attack

To do a migration, there’s basically two things you need
to do:

1 Figure out how to move the data out of MySQL and
into PostgreSQL

2 Find all of the MySQLisms in the code, and make
that code work with PostgreSQL

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 9 / 59

Background

“Replication” Plan

The initial plan for a migration was something like:

“Let’s hack up SQLAlchemy to issue
INSERT/UPDATE/DELETE statements to both MySQL
and PostgreSQL, get the code working with PostgreSQL,
and then switch over (with approximately zero
downtime).”

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 10 / 59

Background

“Replication” Plan, Problems

There are some problems with this plan of attack:

Primary problem: statements are well defined within a
transaction, but the implicit ordering (i.e. serialization)
of concurrent transactions is not clear (i.e. there are
timing problems).

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 11 / 59

Background

Serialization Problem

T1: UPDATE foo SET val = val + 1 WHERE ...;

T2: INSERT INTO foo ...;

If transactions T1 and T2 are issued from requests that
are being processed concurrently, it’s not possible to tell
which transaction committed first, i.e. whether T1

updated the value inserted by T2.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 12 / 59

Background

Serialization Problem

The problem of serializing transactions is normally
resolved by the database when it writes transactional
data to the binlog (MySQL) or the WAL (Postgres).

In theory, it would have been possible to still to the
strategy of “replicating” MySQL statements to Postgres
using mysqlbinlog to read MySQL binglogs and
replaying the statements, but this is complicated.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 13 / 59

Background

Downtime Plan

The alternate, much simpler plan is:

Take some partial downtime (i.e. now database writes
allowed), dump the data from MySQL to Postgres, if
everything looks OK turn on writes to Postgres.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 14 / 59

Background

Conversion

OK, how much downtime will we need? And how can we
convert the data?

MySQL has a utility called mysqldump, similar to
Postgres’ pg dump, that can dump MySQL tables in a
variety of formats.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 15 / 59

Background

Conversion

Initial attempt:

Wow, mysqldump has a --compatible=postgresql

option! How convenient!

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 16 / 59

Background

Conversion

It turns out that --compatible=postgresql just turns
off a few MySQL pragmas at the start of the output.
Data still uses backticks for escaping, MySQL quoting
syntax, integers for booleans, etc.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 17 / 59

Background

MySQLisms (escaping)

Table/column name escaping conventions:

MySQL: INSERT INTO ‘foo‘ ...

Postgres: INSERT INTO "foo" ...

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 18 / 59

Background

MySQLisms (quoting)

Quoting conventions:

MySQL: SELECT ’hello \’world\’’;

Postgres: SELECT ’hello ’’world’’’;

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 19 / 59

Background

MySQLisms (booleans)

In MySQL, BOOL and BOOLEAN are synonyms for, and
indistinguishable from, TINYINT(1).

In other words, there is not a boolean type that is
distinct from the integer type.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 20 / 59

Background

Attempt 1

My first attempt was to take the SQL emitted by
mysqldump, and to try to massage it into
Postgres-compatible SQL with regexes.

There are various things on GitHub/Stack Overflow that
can already do this, with varying levels of correctness.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 21 / 59

Background

Attempt 1

Lesson learned: using regular expressions to parse and
munge strings is really, really slow.

Initial experiments showed that to even get a basic level
of correctness, it would take tens of hours to munge all
of the output of mysqldump.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 22 / 59

Background

XML Attempt

Next I discovered mysqldump --xml which emits XML,
and Postgres’ COPY format.

Postgres COPY format is a text (or binary) format
optimized for doing bulk data loading, which is exactly
what we were trying to do.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 23 / 59

Background

XML Attempt

Web developers like to poke fun of XML, but:
1 XML actually can be parsed very quickly
2 Unlike string munging, we don’t need to memcpy

lots of data
3 XML format is well defined; in particular, it’s easy

to distinguish 0, NULL, ’NULL’, etc. in the
mysqldump --xml output

4 SAX style parsers can easily parse huge documents
with minimal overhead

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 24 / 59

Background

XML Attempt

New plan of attack:

Write a C or C++ program using libxml2 in event
oriented mode (i.e. SAX mode) to parse the mysqldump

output, and generate Postgres COPY format.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 25 / 59

Background

XML Attempt

Another nice thing about mysqldump --xml is that it
can include table schemas in an easily parseable and
well-defined format.

This includes column types, primary key definitions, all
indexes defined on each table, etc.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 26 / 59

Background

XML Attempt

Initial testing showed that I could dump MySQL, parse
the XML, and emit the COPY data in less than an hour
for any table.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 27 / 59

Background

XML Attempt

Except a few tables. The XML standard defines a
character as:

Char ::= #x9 | #xA | #xD | [#x20-#xD7FF]

|[#xE000-#xFFFD] | [#x10000-#x10FFFF]

...which allows \t, \r, and \n but not other low value
control characters (even though those characters are
valid Unicode codepoints, and valid in UTF-8).

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 28 / 59

Background

XML Attempt

It turns out libxml2 enforces the constraint on these
character values, and mysqldump does not respect it.

It also turns out that our sms log table, which contains
logs of all SMS messages we’ve ever sent or received,
had random low order bytes (i.e. garbage) prefixed or
postfixed to a very small percentage of messages.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 29 / 59

Background

XML Attempt

Solution: I added a flag to my program xml2pgcopy to
strip binary data from the input stream, which adds a
small amount of additional CPU overhead.

This is fine, we don’t care about the garbage bytes that
random, old SMS messages had on them.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 30 / 59

Background

xml2pgcopy

The final implementation ended up being written in
C++, using libxml2, and is very fast.

With the 50GB database, I was able to fully convert
from MySQL to Postgres, including adding indexes, in
about 45 minutes by loading multiple tables in parallel.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 31 / 59

Outline

1 Background

2 Code Changes

3 The Actual Migration

Code Changes

Code Changes

The other part of a project like this, is making the code
work.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 33 / 59

Code Changes

Major Errors

Most problems fell into these categories:

Confusing boolean/integer types

Truncation problems

Timezone problems

Missing required values

Enums

Case sensitivitry

Implicit Ordering

GROUP BY behavior

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 34 / 59

Code Changes

Boolean Errors

As noted before, MySQL does not truly have a boolean
type; BOOL and BOOLEAN are synonyms for TINYINT(1).

These are the easiest errors to fix, usually it involves
changing Python code to use True and False instead of
1 and 0.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 35 / 59

Code Changes

Truncation

In MySQL, overflow of VARCHAR columns is not an error
(it does, however, generate a “warning” which no one
looks at).

Tons and tons of test cases and fixtures were generating
fake data that overflowed, and I had to manually fix all
of these tests. Only in one or two places were we
actually truncating in production.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 36 / 59

Code Changes

Timezone Issues

Production servers were already all UTC, and we were
already using UTC for values in datetime columns.

MySQL provides a convenient function
UTC TIMESTAMP() which is not present in PostreSQL;
useful for developers doing local dev on machines not
using UTC. Fix for this was to create a Postgres stored
procedure called UTC TIMESTAMP.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 37 / 59

Code Changes

Missing Required Values

In MySQL, you can omit values any column in an
INSERT statement, even if the column is NOT NULL, and
even if it does not have a default value.

A lot of Uber code relied on this, especially test cases;
fixing this is tedious but straightforward, just make sure
you supply all values!

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 38 / 59

Code Changes

ENUMs

In MySQL, ENUMs are effectively the same type as
strings, and you can insert invalid ENUM values without
error! Also, they are not case sensitive.

We had to fix a lot of code for this, including places
where we were unknowingly losing data due to misspelled
ENUMs. I also saw some cute SQLAlchemy declarations
like this:

Column(’somecolumn’, Enum(’foo, bar’), ...)

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 39 / 59

Code Changes

Implicit Ordering

In MySQL (specifically InnoDB), a “secondary” index on
(foo) is implemented as a B-tree whose leaves contain
values of (foo, row id), an index on (foo, bar) has
leaves containing values of (foo, bar, row id), etc.

This means that all rows fetched using an index,
including table scans, are implicitly clustered on/sorted
by the primary key when an auto-increment key is used.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 40 / 59

Code Changes

Implicit Ordering (cont.)

SELECT * FROM users LIMIT 10;

In MySQL, this scans the rows in PK order, and is
implicitly equivalent to the same query with
ORDER BY id ASC.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 41 / 59

Code Changes

Implicit Ordering (cont.)

SELECT * FROM trips WHERE status =

’completed’;

Without an index on status, the query scans the rows in
PK order, so the same implicit ordering on id will occur.

With an index on status, the query scans the row in
order of (status, id), and thus there is still an
implicit ordering on id! (This would not be true for a
“range” query, however.)

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 42 / 59

Code Changes

Implicit Ordering (cont.)

Disclaimer: I am not a Postgres developer, this is based
on what I’ve read online.

Postgres does not implicitly cluster indexes on the
primary key.

Postgres indexes point to the on-disk location/offset of
the row tuple, not the row id.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 43 / 59

Code Changes

Implicit Ordering (cont.)

Index details aside, the problem related to Python code
was pages that implicitly relied on clustering on the PK
in MySQL.

Usually the code is trying to get thing in order from
oldest to newest (e.g. code paginating some results),
and the auto-increment PK is an indirect proxy for that
behavior.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 44 / 59

Code Changes

Implicit Ordering (cont.)

There’s no easy fix for this, and errors can be hard to
reproduce.

Solution is to add ORDER BY id to queries as you find
code that implicitly relies on ordering.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 45 / 59

Code Changes

GROUP BY

In MySQL you can do this:

SELECT foo, bar FROM table GROUP BY foo;

According to the Postgres/SQL specification, this query
is invalid since bar is not an aggregated column.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 46 / 59

Code Changes

GROUP BY (cont.)

MySQL chooses the value of bar by using the first value
encountered, which can be predictable in certain cases
depending on the index the query uses.

There are some advanced use cases for this, but
thankfully all of the queries I found were doing this
unintentionally, without actually relying on this behavior.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 47 / 59

Code Changes

Case Sensitivity

By default, MySQL is case insensitive (although you can
change the collation to make it case sensitive). By
default, Postgres is case sensitive.

Of course, we were using the default case insensitive
collation for MySQL and depended on that behavior in
numerous places that were mostly well tested, but didn’t
test case sensitivity issues.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 48 / 59

Code Changes

Case Sensitivity

Case sensitivity issues were ultimately where most of the
bugs from the migration came from.

For instance, for a few days we were accepting signups
from emails that differed only in case, which required
auditing/merging numerous user accounts after fixing
the bug. (Also promotion codes, etc.)

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 49 / 59

Code Changes

Case Sensitivity

My advice: if you’re using MySQL, turn on case sensitive
collation right now.

There’s no good reason to use a case insensitive collation
on any modern application, and there are workarounds
for both MySQL and Postgres that allow you to do case
insensitive checking on email columns and so forth.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 50 / 59

Code Changes

SQLAlchemy autoflush

An aside on SQLAlchemy:

SQLAlchemy autoflushing can decouple where Python
statements that interact with the database models
happen from where SQL statements are actually issued
to the database (e.g. statements aren’t issued until a
Session.commit() happens).

This can make debugging very difficult! Use autoflush
carefully.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 51 / 59

Outline

1 Background

2 Code Changes

3 The Actual Migration

The Actual Migration

Production Setup

Our production setup is like:

Python→ PgBouncer→ HAProxy→ Postgres

We have PgBouncer and HAProxy running locally on
every machine running Python code (to prevent SPOFs),
only the connection from HAProxy to Postgres goes
“over the network”.

SQLAlchemy was set to use a NullPool, i.e. each
request reconnects to PgBouncer, which maintains
semi-persistent connections to the backend.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 53 / 59

The Actual Migration

Downtime Plan

The actual real-time part of tracking cars and users is a
Node.js thing that keeps state in memory and persists to
Redis.

We hacked up the Node.js thing to allow queueing trip
data, to allow users/drivers to make trips while the
Python API/database is unavailable. During
“downtime”, most things work except signing up and
actually charging credit cards.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 54 / 59

The Actual Migration

First Attempt

First conversion attempt was early February. Conversion
takes about two hours. We turn on read-only queries
against Postgres, and get a constant stream of errors like:

OperationalError: server closed the connection unexpectedly

This probably means the server terminated abnormally

before or while processing the request.

The errors were happening only on the master, not on
slaves. After several hours of debugging, we ultimately
and tragically had to roll back to MySQL before enabling
writes. Much cursing was done.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 55 / 59

The Actual Migration

The Problem

Due to a last minute change, we had mistakenly disabled
SQLAlchemy connection pooling only on the slaves, and
not on the master.

Since the migration occurred in the middle of the night,
traffic was really low, and PgBouncer was timing out
persistent connections being pooled by SQLAlchemy.

The next issued query after a timeout would generate
the error described, when SQLAlchemy tried to actually
use the connection.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 56 / 59

The Actual Migration

Interim

In retrospect, a failed first attempt was actually kind of
good.

We were able to find and fix various small bugs, figure
out what additional monitoring metrics we wanted, get
more testing in, etc.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 57 / 59

The Actual Migration

The Second Attempt

We made the second conversion attempt about two
weeks after the initial attempt... to great success!

In the end, the conversion took something like 90
minutes plus additional time for read-only mode testing,
about twice as long as when I started the project three
months earlier (due to the growth of some large tables).

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 58 / 59

The Actual Migration

xml2pgcopy, redux

We plan to release code for xml2pgcopy, the C++
program I wrote to convert mysqldump --format=xml

output to Postgres COPY format today.

This tool worked for Uber’s dataset, but likely needs
modification if you’re using extensively different data
types, or MySQL features that we didn’t use. It should
be a good jumping off point, though.

Evan Klitzke (Uber, Inc.) Migrating Uber from MySQL to PostgreSQL March 13, 2013 59 / 59

	Background
	Code Changes
	The Actual Migration

