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Standard presentations of optics concentrate on ideal systems

made for imaging which bring all rays from a point source to

one focus. But, in Nature, or in realistic optical systems with

defects, rays do not behave precisely in this way. Rather than

the focus simply being blurred, the rays, after reflection or

refraction, form beautiful and rather universal patterns of

bright lines known as caustics. Mathematically speaking, a

family of rays is best viewed as a surface in a higher-dimen-

sional space where we keep track of both the position and

direction of rays. The intensity enhancement on approaching

the caustic line is a singularity, arising from projection of a

smooth surface from higher dimensions to lower dimensions.

The universal features of such singularities, which arise in

many contexts beyond optics, formed a major theme of

Vladimir Arnold’s work after 1965, when he was exposed to

René Thom’s vision of ‘catastrophe theory’. Arnold and his

school made seminal contributions to singularity theory.

One of the standard topics we study in school is the action of a

spherical mirror. Figure 1 shows a set of parallel rays all coming

to a focus. We can also think of the family of rays as perpendicu-

lar to a surface, the so-called ‘wavefront’. We can then say that

the mirror converts a plane wavefront to a spherical wavefront,

both shown in Figure 1.

Let us remember that this kind of focusing is an approximation,

even for a spherical mirror. One is taught that parallel rays would

focus at a point F distant half the radius from the centre, but this

is not the whole truth. This statement is true only for rays for

which the angle of incidence is small, as in Figure 1. The full

picture is shown in Figure 2 (right), drawn to show large angles

of incidence. We see from simple geometry that when the angle
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of incidence is 60 degrees, the reflected ray meets the axis at the

pole, P of the mirror, well away from the usual focal point F. This

family of rays is seen to be tangent to a curve which forms a sharp

cusp at F. This can be checked without elaborate calculations, by

simple observation. In fact, many of you may have noticed this

cusp shape when you look at the bottom of your empty teacup,

either in sunlight or indoors with a bulb or compact fluorescent

lamp. The rays reflected from the inside of the cup form a charac-

teristic pattern (Figure 2, left). This does not require a perfect

circular cross section of the tea cup, because cusps are seen much

more widely. Everyone who wears glasses on which raindrops

have fallen, and has looked at a distant street light or vehicle

headlight through the drop, has seen cusped patterns. Clearly,

some general mathematical principle is at work, making such a

cusp shape universal.

Now let us think of another situation – sunlight shining down on a

swimming pool, which has waves on it. We can think of parts of

the surface as imperfect convex lenses, but other parts would look

Figure 1. A family of parallel rays falls on a spherical mirror,

and converges to a focus. The incident rays actually reach the

mirror, but are shortened in the diagram to make the focussing

action clearer. The coloured lines show the plane incident

wavefront and the reflected, converging spherical wavefront.

This focussing by a spherical mirror works only for rays whose

angle of incidence is small.

Figure 2. The drawing to

the right shows the rays re-

flected off a semicircular

mirror, including those at

large angles of incidence. It

is seen that theydo not pass

through the usual focal point

at half the radius. (Strictly

speaking,only theonealong

the axis does!) All the rays

are tangent to a curve which

has a cusped shape near

the focus. The picture on

the left, from Wikipedia, is a

demonstration of the cusp

by reflection off a teacup.

The additional bright lines

are due to multiple reflec-

tions.

In fact, many of

youmay have

noticed this cusp

shape when you

look at the bottom

of your empty

teacup, either in

sunlight or

indoors with a

bulb or compact

fluorescent lamp.
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like concave lenses. To understand how the rays behave after they

undergo refraction at such a surface, we show a small piece of a

wavefront which is not spherical (Figure 3). A first guess would be

that the rays would not focus properly, and hence one would get

some kind of blur. What actually happens is more interesting. The

rays do not indeed pass through a single point, but are seen to be

crowded along lines near which the intensity is high. These lines

can be understood as follows. A pair of neighbouring rays cross at

a point, but this point itself changes as we consider different rays,

unlike the case of perfect focusing. The set of these ‘foci’ is a curve

which is tangent to these rays, and is called a ‘caustic’. The same

word is used for chemicals, or verbal remarks, which burn. I would

guess that early attempts to burn objects with lenses gave rise to

this terminology for caustics in optics. Our figure is two dimen-

sional so the caustics are lines. In three dimensions the caustics are

surfaces. The surfaces intersect the bottom of the pool along bright

lines which is what we see in Figure 4.

The appropriate tool for analysing the behaviour of families of

light rays is the notion of ‘phase space’, invented by the Irish

genius William Rowan Hamilton about two hundred years ago. In

fact, one of his papers is called ‘Theory of systems of rays’.

For simplicity, we describe the idea in two-dimensional space,

instead of three (Figure 5). The initial wavefront is described

by the thick curve on the left of the figure. This surface is

compared to a reference plane wavefront, also shown. The z-

axis is chosen perpendicular to this reference plane. The shape

Figure 3. ABCDE is a small

piece of the kind of

wavefront which might be

produced by an imperfect

lens, such as a wave on a

swimming pool. While rays

near C focus, rays further

away are seen to be

crowded on a caustic line

(shown in blue). Onlyhalf of

the caustic, formed by rays

between C and E, is shown

for clarity. Mathematicians

call such a line, to which the

family of rays are tangent,

the ‘envelope‘ of the family.

Notice that we have three

rayspassing throughagiven

point inside the caustic, but

only one outside.

Figure 4. Intensity pattern

at the bottom of a sunlit

swimming pool, from the

‘sketchucation.com’ web-

site. Note the bright lines

which areanetwork of caus-

tics, caused by refraction at

thewavysurfaceof the pool.
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of the wavefront is described by the function S(x). The coordinate

x specifies a point on the wavefront, and S is the path delay at x

(with reference to the plane wavefront). The rays are drawn

normal to the wavefront. Because the wavefront is not parallel to

the reference plane, the rays are tilted with respect to the z axis. The

tilt angle at the point x is denoted by p(x). This tilt is related to the

slope of the wavefront, as illustrated in Figure 5.

Now we would like to know how the family of rays behaves as we

allow it to move forward. We use the symbol z for the distance

travelled perpendicular to our reference plane, from the initial

point. From the geometry of the figure, it is clear that a ray with

positive p will move upwards, i.e., to larger x, while one with

negative p will move downwards, i.e., x will decrease. This

behaviour is contained in the simple equation, x(z) = x(0) + pz. In

writing this, we have made the approximation that the angle p is

small, so that the tangent of the angle is replaced by the angle itself,

in radians of course. Also, z is being measured from the wavefront.

Note that the value of p associated with a given ray does not

change, because light travels in straight lines once inside the

swimming pool.

This is a very simple equation, but it has very interesting conse-

quences for the family of rays. To see this, we represent the

wavefront in Figure 2 by the curve ABCDE in phase space, i.e., a

plot of p(x) versus x, the blue curve inFigure 6. Note that the value

of p is positive for negative x and negative for positive x, to start

with at z = 0. As z increases, our equation tells us that we have to

move points with positive p to the right (increasing x) and points

with negative p to the left (decreasing x). (The point at x = 0,

Figure 5. The concept of

phase space illustrated with

a curved wavefront. The

shape of the wavefront is

given by the function S(x)

which measures the path

delay with respect to a ref-

erence plane. The slope of

this wavefront also gives the

angle made by the ray to the

z-axis perpendicular to this

reference surface. The

angle is denoted by p. As a

single ray moves along z,

the transverse co-ordinate

x changes, proportional to

the angle p.
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p = 0 remains at x = 0, the origin of the x–p plane). The green

curve shows a situation when the tangent of the curve at the origin

has become vertical. For larger values of z, the red curve A B

C D E bends over. It is still perfectly smooth, but there are now

three values of p for values of x falling between x
1
and x

2
.

What does this mean? Going back to Figure 3, we see that for

sufficiently large z (i.e., to the right side of the diagram), there are

points where three rays intersect, so one indeed has three values

of p for values of x in some range. At the boundary of this region,

(the points G and H on the red curve in Figure 6) the p(x) curve

has a vertical tangent, i.e., locally many values of p fall into a

small region of x. Put more simply, the rays crowd together near

one value of x. This is the caustic. Near the points G and H, the

curve can be approximated by a parabola, and hence the proper-

ties such as the behaviour of intensity can be worked out and will

be the same in all such situations. Because it arose from the curve

‘folding over’, G and H are called ‘fold caustics’. In space, the

caustics are located at x
1
(projection of G onto the x-axis) and x

2

(the projection of H onto the x-axis). One can see from the

parabolic shape that the angle p between the two rays meeting at

a point like x just inside the fold caustic will grow as the square

root of the distance from the caustic, i.e., proportional to (x – x
2
)1/2

(Figure 6). Also, let us try and understand the intensity distribu-

tion near the caustic. Assume that the energy contained in a range

Figure 6. A phase space

representation of the family

of rays shown in Figure 3.

The blue curve represents

the situation at the initial

wavefront, the green curve

when the caustic just be-

gins to form (the tip of the

cusp), and the red curve the

behaviour at a value of z to

the right of the cusp. The

three points C C' and C''

coincide with the origin of

the x–p plane and corre-

spond to a ray parallel to the

z-axis.

Put more simply, the

rays crowd together

near one value of x.

This is the caustic.

Near the points G and

H, the curve can be

approximated by a

parabola, and hence

the properties such as

the behaviour of

intensity can be

worked out and will be

the same in all such

situations. Because it

arose from the curve

‘folding over’, G and H

are called ‘fold

caustics’.
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dp is a smooth function of p. Then one sees that because of the

vertical tangent at G and H, the energy per unit x will not be a

smooth function of x. Qualitatively, we can see that many values

of p pile up near the same value of x (either x
1
or x

2
) and hence

the intensity is very high near and inside the caustic. This is the

non-mathematical explanation of the crowding of the rays as in

Figure 3. Quantitatively, the intensity, I, is given by the follow-

ing calculation dI/dx = (dI/dp)(dp/dx). The factor dp/dx behaves

like (x
1
– x)–1/2. The other factor depends only on the distribution

of intensity in the initial wavefront, since p does not change as z

increases. This is assumed to be a smooth function.

To understand the cusped shape of the caustic in Figure 3, first

choose a value of z corresponding to the red curve, i.e., go far

enough from the initial wavefront so that the rays cross (as shown

by the folding over of the curve in phase space).

Let us now decrease z so that the two points F and G both

approach C. The limiting case is the green curve, when they

merge, let us say this happens at z = z
c
. We can see that near the

point C, the phase curve has a ‘point of inflection’. The first and

second derivatives vanish here and hence its shape is given by

the equation x proportional to p3, neglecting higher terms. This

allows us to work out what the separation between x
1
and x

2

shrinks to zero as z – z
0
tends to zero fromabove. This calculation

is given in Box 1, and tells us that (x
1
– x

2
) is proportional to (z –

z
c
)32. This explains the cusp shape of the caustic.

Now we can stand back and see that the results did not depend on

some special property of the original wavefront. In fact, it was

important that it was not a special wavefront like a small piece of

a sphere, or a plane. The mathematical idea behind this is some-

times stated in the following words: “Consider a wavefront in

general position”. This implies that any small disturbance to the

shape of the wavefront may move the caustics, and the location of

the cusp, but not change the square root law for the angle between

the rays near a fold, the inverse square root law for the intensity

near a fold caustic, or the 3/2 power law for the separation of the

Qualitatively,we can

see that many

values of p pile up

near the same value

of x (either x
1
or x

2
)

and hence the

intensity is very high

near and inside the

caustic. This is the

non-mathematical

explanation of the

crowding of the rays

as in Figure 3.

Now we can stand

back and see that the

results did not depend

on some special

property of the original

wavefront. In fact, it

was important that it

was not a special

wavefront like a small

piece of a sphere, or a

plane. The

mathematical idea

behind this is

sometimes stated in

the following words:

“Consider a wavefront

in general position”.
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two-fold branches near the cusp. Such properties are called ‘ge-

neric’ and constitute a rather basic idea in singularity theory. The

broad idea of ‘generic’ vs. ‘special’, of course, needs a precise

mathematical definition which is more elaborate, and not given

here.

We can now try and put together the phase space pictures for all

values of z. This will clearly be a three-dimensional object. Think

of the x–z plane as horizontal, like a table, and plot the value of

p(x,z) in the vertical direction. You can imagine this surface by

stacking the different coloured curves of Figure 6 (only three are

shown but one should use the intermediate values of z as well).

The resulting surface is shown in Figure 7, and goes by the name

of ‘cusp catastrophe’.

Figure 7. Combining the

phase space curves of Fig-

ure 6 for different z into a

single surface in three di-

mensions. The looping line

connects the points like G

and H where the slope dp/

dx is infinite and is a smooth

curve in three dimensions.

However, it projects onto the

cuspcaustic in the x–zplane.

The portion of each x–p

curve between these two

points is shown dotted.

(Adapted from the Wikipedia

article on Catastrophe theory.)

Box 1. Calculating the Shape of the Cusp

The crucial step to understanding the cusp is to express x as a function of p instead of the other way around.

Denoting (x
1
– x

2
) by X and (z – z

c
) by Z, the family of phase space curves in the vicinity of the cusp, i.e.,

Z = 0, is described by X = ap3 – bZp with both a and b greater than zero. This form can be made plausible

by sketching the curves. One can see that if Z > 0, then there can be three roots for p for a given x, while

for Z < 0, there is always only one root. However, the actual proof, crucial to singularity theory, that a

general smooth case can be reduced to this form requires the kind of higher mathematics pioneered by

Whitney and Thom. One can now see that the points G and H are the points where the tangent is horizontal

(we earlier said vertical, but remember, we are now plotting x as a function of p!).

Differentiating X with respect to p and equating to zero for a horizontal tangent, we get p = (bZ/3a)1/2.

Substituting back into the equation for X in terms of p, we get X proportional to Z3/2 which is the shape of

the cusp near the singular point, X = 0, Z = 0.
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The reason for this name becomes clearer if we go into the history

of this subject. There are many instances known when a system

undergoes an apparently sudden change even though the external

influences on it change gradually. One famous example goes

back to Euler – if we have a straight rod-like a ruler, and compress

it along its length from both sides, it buckles to one side at a

critical value of load. Buckling of a structural element could

indeed be a catastrophe in the ordinary sense of the word!

In our optical example, as we move from outside the caustic to

inside, crossing a fold, two extra rays make their appearance.

(Imagine x moving from less than x
2
to greater than x

2
in Figure 6).

Similarly, in the buckling example, when we exceed the critical

load, two new equilibrium configurations, with the ruler buckled

on either side, appear over and above the one with the ruler

straight. Hence the other name – ‘bifurcation theory’, which had

been used earlier. In many such cases, the different states of the

system were given by the minima of a function (e.g., the potential

energy). Even in our optical example (Figure 3), the point R on

the initial wavefront which sends a ray to a given point S is the one

which is closest to S, i.e., minimises the path length between S

and the wavefront. This minimum principle is even older than

Hamilton’s work and is named after Fermat (early 17th century),

though a less general form of it was stated by Heron of Alexandria

(1st century). The French mathematician René Thom, proposed

a general theory of such phenomena. Considering the maxima

and minima of a potential function, with up to three parameters

being varied, he could classify the different kinds of surfaces on

which the number of equilibrium states (stable and unstable)

changes. He coined the term‘Catastrophe theory’, which was an

instant hit. (We need to vary only one parameter to reach a fold,

and two to reach a cusp). Thom also proposed many speculative

applications of such a theory to natural phenomena, and others,

notably the English mathematician E C Zeeman, went even

further.

One famous example

goes back to Euler –

if we have a straight

rod-like ruler, and

compress it along its

length from both

sides, it buckles to

one side at a critical

value of load.

Buckling of a

structural element

could indeed be a

catastrophe in the

ordinary sense of the

word!
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Arnold spent a year in Paris in 1965 and was excited and deeply

influenced by Thom’s ideas. However, he was also severely

critical both of the lack of rigour in many of the applications, and

of the fact that earlier work was not properly cited. This included

much work by Russian mathematicians, but also by the American

mathematician Whitney, who had established the generic nature

of the cusp earlier. Fascinated by the universal nature of these

singularities of smooth maps, and the beauty of the mathematics

needed to understand them, Arnold devoted a major portion of his

efforts after 1965 to this area. In the characteristic Russian style,

he conducted a weekly seminar which lasted more than two

hours, where problems in this area were discussed. With col-

leagues and students, the classification went up to 14 dimensions!

His ‘popular’ book entitled Catastrophe Theory gives a feel for

his vision of the subject. I put ‘popular’ in quotes because it has

passages which would tax even well-trained mathematicians and

physicists. But the book also offers beautiful insights, and here is

an example which occurs very early. Readers would have heard of

Schrödinger’s cat (a thought experiment in quantum mechanics

proposed by one of its founders), and in fact Arnold also has a cat

named after him from a different area, viz., dynamics. I would like

to introduce another animal, Arnold’s camel, which he used to

illustrate the projection of smooth surfaces resulting in cusps

(Whitney’s theorem). The left side of Figure 8 shows the two-

humped camel in a side view, and the outline of the humps is a

smooth curve. Now the camel decides to turn left, so that one

hump obscures the other. If we had X-ray eyes, and could see

Figure 8. As explained in the text, the outline of a camel – assumed to be a smooth surface in three

dimensions! – can develop cusps as the viewing angle is changed. The example is taken from Arnold’s book

Catastrophe Theory.
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partially through the camel, the outline after the left turn would

look like the right side of Figure 8. The dotted lines represent the

part of the outline which is not visible without X-rays. The outline

is now defined as the curve at which the number of intersections

of our line of sight with the skin of the camel changes. On the left,

we have only zero or two intersections, but in the right-hand

figure, you can readily imagine that there are lines which will

intersect the skin of the camel four times, as shown in Figure 8.

We can now put the camel to some more use. Let us concentrate

on the space between the humps, and combine the views which

we got from different directions as the camel turns. We see the

outline evolving from a smooth curve of folds, to one with two

cusps. This clearly has to be viewed in three dimensions, since it

is obtained by combining a sequence of two-dimensional pic-

tures. The birth of the two cusps is shown in Figure 8, and the

entire figure goes by the name of the ‘Swallowtail catastrophe’

(Figure 9). It was one of Thom’s original list, and our purpose in

exhibiting it is to give a glimpse of the exciting world explored

by Arnold and his school, going far beyond folds and cusps.
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Figure 9. A diagram from the

Wikipedia article on catastro-

phe theory, showing how two

cusps can emerge from a

smooth part of the outline of a

three-dimensional object as

it evolves. This is the ‘Swal-

lowtail catastrophe’.
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