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ABSTRACT
Scaling software analysis techniques based on source-code,
such as symbolic execution and data flow analyses, remains
a challenging problem for systematically checking software
systems. In this work, we aim to efficiently apply symbolic
execution in increments based on versions of code. Our
technique is based entirely on dynamic analysis and patches
completely automated test suites based on the code changes.
Our key insight is that we can eliminate constraint solving
for unchanged code by checking constraints using the test
suite of a previous version. Checking constraints is orders
of magnitude faster than solving them. This is in contrast
to previous techniques that rely on inexact static analysis or
cache of previously solved constraints. Our technique identi-
fies ranges of paths, each bounded by two concrete tests from
the previous test suite. Exploring these path ranges covers
all paths affected by code changes up to a given depth bound.
Our experiments show that incremental symbolic execution
based on dynamic analysis is an order of magnitude faster
than running complete standard symbolic execution on the
new version of code.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Symbolic execution

Keywords
Symbolic execution; incremental analysis; KLEE

1. INTRODUCTION
Symbolic execution is a powerful program analysis tech-

nique based on a systematic exploration of (bounded) pro-
gram paths, which was developed over three decades ago [7,
13]. A key idea used in symbolic execution is to build path
conditions—given a path, a path condition represents a con-
straint on the input variables, which is a conjunction of the
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branching conditions on the path. Thus, a solution to a
(feasible) path condition is an input that executes the cor-
responding path. A common application of symbolic execu-
tion is indeed to generate test inputs, say to increase code
coverage. Automation of symbolic execution requires con-
straint solvers or decision procedures [3, 9] that can handle
the classes of constraints in the ensuing path conditions.

A lot of progress has been made during the last decade
in constraint solving technology, in particular SAT [20] and
SMT [3, 9] solving. Moreover, raw computation power is
now able to support the complexity of solving formulas that
arise in a number of real applications. These technologi-
cal advances have fueled the research interest in symbolic
execution, which today not only handles constructs of mod-
ern programming languages and enables traditional analy-
ses, such as test input generation [12, 11, 17, 4], but also has
non-conventional applications, for example in checking pro-
gram equivalence [16], in repairing data structures for error
recovery [10], and in estimating power consumption [18].

Despite the advances, a key limiting factor of symbolic ex-
ecution remains its inherently complex path-based analysis.
Due to this complex analysis, symbolic execution takes sig-
nificant time and its use becomes impractical for integrating
in development work flow. A key observation, however, is
that in a development work flow, code changes in increments
and the increments are often very small. Several recent re-
search projects have attempted to build on this idea. Two
approaches have been used. One approach is to use static
analysis to find differences in the code flow graph (CFG)
and either prune symbolic execution by eliminating paths
that will not be changed for sure [15] or use heuristics to
guide a manual test suite towards code changes [14]. The
other approach is based on caching previous results of sym-
bolic analysis so that future runs are faster [22, 21]. The
later technique does not utilize the information about code
changes directly and relies on the fact that similar code will
result in similar path conditions and hence the solving can
greatly benefit from caching prior results.

This paper presents a novel technique for incremental sym-
bolic execution using a pure dynamic analysis approach with-
out caching any prior results. Our key insight is that while
solving path conditions is costly, generating and checking
them is orders of magnitude faster. Instead of performing an
inexact static analysis to eliminate generation of path con-
ditions, we generate path conditions and use the prior test
suite to check satisfiability. The tests are kept in memory
and efficiently divided along different paths of exploration



Program 1 To find middle of three integers

1 int mid(int x, int y, int z) {
2 if (x<y) {
3 if (y<z) return y;
4 else if (x<z) return z;
5 else return x;
6 } else if (x<z) return x;
7 else if (y<z) return z;
8 else return y; }

to check against the generated path condition. Storing con-
crete tests and checking their satisfiability is much more ef-
ficient than caching path conditions, canonicalizing them,
and comparing them.

Paths in changed code do not match any prior tests and
have to be fully explored. The first and last such path de-
lineate a range that can be explored. This builds on our
previous work on ranged symbolic execution [19] that intro-
duced the concept of ranges of paths to be explored and used
it to enable parallel symbolic execution. Ranged symbolic
execution builds on the insight that the state of a symbolic
execution run can, rather surprisingly, be encoded succinctly
by a test input—specifically, by the input that executes the
last terminating (feasible) path explored by symbolic execu-
tion. By defining a fixed branch exploration ordering—e.g.,
taking the true branch before taking the false branch at each
non-deterministic branch point during the exploration—an
operation already fixed by common implementations of sym-
bolic execution [12, 4, 2], we have that each test input parti-
tions the space of (bounded) paths under symbolic execution
into two sets: explored paths and unexplored paths. More-
over, the branch exploration ordering defines a linear order
among test inputs; specifically, for any two inputs (that do
not execute the same path or lead to an infinite loop), the
branching structure of the corresponding paths defines which
of the two paths will be explored first by symbolic execution.
Thus, an ordered pair of tests, say 〈τ, τ′〉, defines a range of
(bounded) paths [ρ1, . . . , ρk] where path ρ1 is executed by τ
and path ρk is executed by τ′, and for 1 ≤ i < k, path ρi+1

is explored immediately after path ρi.
The encoding allows us to separate out the ranges af-

fected by code changes for incremental symbolic execution.
We generate and solve path conditions for all test cases in
this range and generate new tests in the test suite. For all
paths that have a matching test case from prior version, we
copy the old test. Any tests that no longer have a matching
path get discarded automatically. This enables a totally au-
tomated maintenance of symbolic execution generated test
suite.

2. ILLUSTRATIVE OVERVIEW
Forward symbolic execution is a technique for executing

a program on symbolic values [8, 13]. There are two funda-
mental aspects of symbolic execution: (1) defining semantics
of operations that are originally defined for concrete values
and (2) maintaining a path condition for the current program
path being executed – a path condition specifies necessary
constraints on input variables that must be satisfied to exe-
cute the corresponding path.

Program 1 contains a function that finds the middle of
three integer values. Figure 1 shows the execution tree of
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Figure 1: Execution tree of program 1

Program 2 Modified version of mid shown in Program 1

1 int mid(int x, int y, int z) {
2 if (x<y) {
3 if (y<z) return y;
4 else if (x <=z) return z;
5 else return x;
6 } else if (x<z) return x;
7 else if (y<z) return z;
8 else return x; }
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Figure 2: Execution tree of program 2

this program and shows the 6 path conditions explored. The
path conditions for each of these paths can be solved using
off-the-shelf SAT solvers for concrete tests that exercise the
particular path. For example, path 2 can be solved to X=1,
Y=3, and Z=2. Following are all the six paths explored:

path 1: [X < Y < Z] L2 -> L3
path 2: [X < Z < Y] L2 -> L3 -> L4
path 3: [Z < X < Y] L2 -> L3 -> L4 -> L5
path 4: [Y < X < Z] L2 -> L6
path 5: [Y < Z < X] L2 -> L6 -> L7
path 6: [Z < Y < X] L2 -> L6 -> L7 -> L8

Program 2 shows a newer version of the program. Line
numbers 4 and 8 are changed in this version of the program.
This results in the new execution tree shown in Figure 2.
Here we can see the changed path conditions. We need to
identify the change in the execution tree in order to perform
incremental symbolic execution. We will use our previously
generated test suite to find the difference in the execution
tree.

We start by analyzing the modified tree while maintain-
ing a list of all tests satisfying the current paths. We start
execution that will first take path 1 in the execution tree.
We build the path condition and check against satisfying



tests. Since this path is unchanged, one test from previous
suite will be attached to this path without solving it again.
Any branches that are unsatisfied by any test from previous
suite are discarded. The second test input will not remain
attached to the second path. The program will take some
path but it won’t be the one we discovered last time. The
path condition would be different this time and no test from
previous suite will validate with it. We now know a point
where path are starting to diverge. This is the starting point
of our range that we need to re-examine for the changes.

We reach the point where an old test takes the same ex-
act path generating the old path condition in the program.
In this example that would be the path condition 6 where
program will be the same on both versions (path 6). At this
point, we mark the previous test case as our last point in
the range that is affected by code modification. Now after
this analysis we have a range that states that the program
is changed from this path condition to next path condition.
We will complete symbolic execution only on the area iden-
tified in the program that will results in 3 new tests. These
tests are those, which were invalidated, in the newer ver-
sion of the program and results in new path conditions. We
then use the SAT solver to evaluate them and add these new
values to our test suite. We can safely remove our old test
inputs that are invalided in the next run and reuse those
that are still valid.

3. TECHNIQUE
In this section we will discuss our approach to dynam-

ically figure out the areas in the execution tree that are
modified in the newer version of code. Our presentation as-
sumes a standard bounded depth-first symbolic execution
where path exploration is systematic and for each condi-
tion, the “true” branch is explored before the “false” branch.
Such exploration is standard in commonly used symbolic ex-
ecution techniques, such as generalized symbolic execution
using JPF [12], CUTE [17], and KLEE [4].

In our technique, we first symbolically execute the base
version of the program, which results in generation of a com-
prehensive test suite by solving the path conditions. While
executing the new version symbolically we use previous test
suite. While in the process of exploring states, we compare
and validate each new path condition with the solution we
already have in the test suite of base version. If we have a
successful comparison, we just add that test case to the new
test suite. In incremental testing most of the code remains
same so is the execution tree. Comparing new path condi-
tions with the old tests is less costly than solving the path
condition for the concrete inputs.

Algorithm 1 is used to find and evaluate affected ranges
in the program execution tree. It splits test suite on each
branch condition in two sets. One set contains all those tests
that are satisfiable if that branch evaluated true and other
set contains all those test cases that result in false evaluation
of branch condition. At this point, if any of the true or false
side gets no test cases and all tests go on the other side
then that area was infeasible before and need no further
exploration. That is first benefit of using our approach in
terms of time saving. If any test case is not satisfiable at
this point, we start exploring the program for new paths
until some other path in the way matches with our previous
test inputs.

Algorithm 1: IncrementalExplore to explore new
ranges and not solving the present path conditions in
the new program

Input: A finite set TestSuite = {t1, t2, . . . , tn} of test
cases

1 for each b in BranchCondition do
2 Ttrue ← split(TestSuite, b);

Tfalse ← split(TestSuite,¬b)
3 Tinvalid ← TestSuite− (Ttrue ∪ Tfalse)
4 if Tinvalid 6= ∅ then
5 if Ttrue = ∅ then
6 exploreAndSolve(Ttrue)
7 IncrementalExplore(Tfalse)

8 if Tfalse = ∅ then
9 exploreAndSolve(Tfalse)

10 IncrementalExplore(Ttrue)

11 else
12 IncrementalExplore(Ttrue)
13 IncrementalExplore(Tfalse)

{t1,t2,t3,...,tn}

Figure 3: Execution tree of new program without
execution

We will discuss it with the help of an example. Figure 3
shows the execution tree of new version of the program which
is unknown to the executor before starting execution. We
give test cases to the executor before it start exploring the
code. On each branching node it will split the test suite into
two possible subsets where one set belongs to the left side of
the tree and other belongs to the right side. On each branch
we also validate the test inputs to see whether they are still
satisfiable or not.

In order to understand the concept of finding ranges in
the program, lets say one of the test cases reaches the leaf
node in the execution tree (as shown in figure 4). We com-
pare and validate this test case, and lets say, it turns out
to be successfully validated. We then move to the next test
case from the test suite, while executing the next test case
we discover that next test case is not validating. These val-
idations fail due to change in the path conditions and the
execution tree. We mark this test case as the start of our
range; range which needs to be explored for new test inputs.

We keep on testing the program until all other test cases
either fail or we do not find any path in the exploration that
matches with the one we already have. Lets say, in figure 5,
we come across a test case which successfully validates with
the current path condition. This is the point where we end
our range. So our range starts from the left most test case
to the last valid test case as shown in figure 5. That range
would have all the new states that need to be explored. And
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Figure 4: Execution tree of new program with one
valid test reaching the leaf
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Figure 5: Range for modified execution tree with
two bounded test cases

any tests present in this area should be solved with the solver
for concrete inputs. These tests are added to the new test
suite because either they were not present or they were in-
validated.

We can get such multiple ranges in the execution tree
of modified program. As we have already stated that the
symbolic execution for incremental testing is in order while
exploring the program state space so these ranges would be
non-overlapping and we can safely run them in parallel on
multiple machines to achieve more speed up for incremental
testing.

We modified state-of-the-art tool KLEE [4] that operates
on the LLVM [1] bit code for our implementation of our
technique. KLEE takes LLVM bit code, performs symbolic
analysis, and produces test cases along with their path con-
dition files. Test cases generated by the KLEE contains the
actual values to use for symbolic data in order to reproduce
the path that KLEE followed. These can be used for obtain-
ing code coverage as well as for reproducing the bugs. We
used these test inputs, called seeds, generated by KLEE, as
an input test suite to the new program.

If we execute KLEE by providing seeds, it stores them in
hash maps. While executing a program symbolically it takes
all these seeds side by side. On every branching condition
in the program, it divides the seeds for both branches. Any
number of seeds that belong to the true side of the branch are
associated with it and vice versa. On each step it removes
those seeds that are no longer validating with current state
of the program. A branch is considered infeasible if all seeds
go on the other side.

We took advantage of this seeding system in KLEE to im-
plement our incremental technique. For every branch seeds
are compared and divided. If all seeds are validated, it
means there is no change in the program. But if any seed
fails to validate, it marks our starting point of the range.
We start exploring for new states from that point until we
find some other seed in the way that was present before and
still validating. We modified KLEE so that instead of just

checking and moving forward when seeds are supplied, when
some seeds fail to validate it starts exploring the program
further. We then make new path conditions and solve them
in the end for concrete values. These new path conditions
and concrete values are added to the new test suite of the
program so that they can serve as seeds for the next incre-
mental run.

Comparing and validating the seeds are very easy pro-
cesses because KLEE uses hashes for seeds as well as the
program states, so comparisons would not take much of the
computing powers. To validate a seed it just make sure that
previous input values for the test case still satisfy the current
path condition. This is also not a very CPU intensive job as
compared to finding new values by giving path conditions
to the solver.

4. EVALUATION
To evaluate incremental symbolic execution we used the

GNU core utilities1 – the basic file, shell and text manipula-
tion core utilities for GNU operating system. Coreutils are
medium sized programs between 2000–6000 lines of code.
Some of these program performs basic tasks with lot of er-
ror checks and thus forms a deep search tree while other
performs multiple functions and form a broad search tree.
Moreover, because these are included in the every GNU op-
erating systems and they evolve much during the passage of
time. We have much iteration available that are the results
of bug fixes and feature improvements.

Coreutils were also used in the evaluation of the KLEE [4]
symbolic execution tool. As we build incremental symbolic
execution using KLEE, Coreutils provide a good benchmark
for comparison with KLEE.

We ran KLEE on all Coreutils for one hour and chose
the 85 utilities for which KLEE covered maximum paths
in this time. We chose version 7.1 as the base version of
the Coreutils and then incrementally test one minor update
release that is version 7.2.

Figure 6 shows a plot of the execution time of all 85 util-
ities with and without using our incremental approach on
version 7.2 (in incremental seeds of version 7.1 were used).
Time taken for each utility with incremental approach is
shown as squares in the plot while time taken without using
incremental approach is shown as circles. Our incremental
approach is about 73% faster and we are saving about 80%
solver time by giving 67% less queries.

In regular symbolic execution, major portion of time is
consumed at the solver side where it finds the solution of
the path condition. In our approach we are reducing the
number of queries sent to the solver. Large number of test
cases are reused in the process of building new test suite.
Only few test cases were solved for concrete inputs using
solver. These calls are very less in the incremental testing.
This reduced number of calls to the solver is the cause of
time saving in the incremental testing.

5. RELATED WORK
Clarke [8] and King [13] pioneered traditional symbolic ex-

ecution for imperative programs with primitive types. Sym-
bolic execution guided by concrete inputs has been a topic of
extensive investigation during the last seven years. DART [11]
combines concrete and symbolic execution to collect the

1http://www.gnu.org/s/Coreutils
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branch conditions along the execution path. DART negates
the last branch condition to construct a new path condi-
tion that can drive the function to execute on another path.
DART focuses only on path conditions involving integers.
CUTE [17] extends DART to handle constraints on refer-
ences. EGT [5] and EXE [6] also use the negation of branch
predicates and symbolic execution to generate test cases.
They increase the precision of symbolic pointer analysis to
handle pointer arithmetic and bit-level memory locations.
KLEE [4] is the most recent tool from the EGT/EXE fam-
ily. KLEE is open-sourced and has been used by a variety
of users in academia and industry. KLEE works on LLVM
byte code [1]. It works on unmodified programs written in
C/C++ and has been shown to work for many off the shelf
programs. Ranged symbolic execution uses KLEE as an en-
abling technology.

5.1 Incremental Symbolic Execution based on
Static Analysis

Directed incremental symbolic execution [15] leverages dif-
ferences among program versions to optimize symbolic ex-
ecution of affected paths that may exhibit modified behav-
ior. The basic motivation is to avoid symbolically executing
paths that have already been explored in a previous program
version that was symbolically executed. A reachability anal-
ysis is used to identify affected locations, which guide the
symbolic exploration.

Directed Incremental Symbolic Execution (DiSE) [15] uses
static analysis to find the code blocks that are effected by a
change and then uses this information in dynamic analysis
to prune the execution tree for symbolic execution. DiSE
only generate affected path conditions because it preforms
symbolic execution after statically analyzing the both pro-
grams CFGs. If a user wants a complete test suite using
DiSE, he/she needs to check what path conditions get obso-
lete, which is not clear how to do. Our proposed technique
uses dynamic analysis alone. The range for symbolic exe-
cution is formed by validating path conditions generated by
a previous execution. The benefit of a pure dynamic tech-
nique is that we can estimate more accurately whereas DiSE
to over-estimate the effect of a change.

Katch [14] combines static and dynamic analysis for in-
creased coverage of software patches. Katch uses heuristics
basic on static analysis to select tests from a manual test
suite that are most likely to hit modified code and then it
uses heuristics based on dynamic analysis to change the test
inputs to increase chances of hitting modified code. The
dynamic analysis is built upon symbolic execution. Since
the problem of code reachability is undecidable in general,
Katch hopes that the heuristics will lead to modified code in
most cases. Our idea of incremental symbolic execution does
not depend a manual test suite and instead does bounded
exhaustive symbolic execution. Our claim is that if the fault
can be found using standard symbolic execution, we will be
able to find it in less time. Or, in other words, our incre-
mental symbolic execution can explore the program up to a
deeper depth bound in the same time due to the time saved
by incremental execution.

5.2 Incremental Symbolic Execution based on
caching solutions to path constraints

Green [21] is a cache for storing path conditions and their
solutions. In Green caching technique they slice the path
condition for the purpose of reducing it to be checked for
satisfiability, then they perform heuristic based canoniza-
tion to maximize the chance of finding matches with other
path conditions and lastly they store this form in the store.
On finding matches they server the results from their store
instead of calling the solver. While Green is not an incre-
mental symbolic execution tool in itself, it enables more effi-
cient checking in incremental situations. The reason of that
benefit is that in an incremental setting, many path condi-
tions will match from the last execution and thus the solving
can be avoided. Path conditions are complex structures and
even though Green canonicalizes them, it requires some work
to compare them and map the variables. As the cache size
increases, comparing becomes more difficult. Validating a
path condition, on the other hand, is a quick operation and
requires no lookup. Green is, therefore, also orthogonal to
our work and can be combined such that our technique find
affected ranges using validation and then a given range is
executed using Green such that any path conditions that
have occurred before need not be solved.



Memoized symbolic execution [22] re-uses results of a pre-
vious run of symbolic execution by storing them in a trie-
based data structure and re-using them by maintaining and
updating the trie in the next run of symbolic execution on
the modified program. The savings achieved by Memoise
for regression analysis relies on the position of the change,
and may vary quite a lot between various kinds of changes.
We believe our technique is more effective due to low cost of
storing concrete tests versus storing and comparing symbolic
execution results in tries.

6. CONCLUSION
In this work, we showed how to scale symbolic execution

for efficiently analyzing program increments. The key nov-
elty of our work is to apply symbolic execution in increments
with only dynamic analysis. Our approach does not use any
form of static analysis or caching of previous results for com-
pletely automated incremental testing.

The key idea of our technique is that we can use previ-
ously generated test cases for identification of code changes
in the new version. Checking constraints is easy compared
to solving them. As an enabling technology we leveraged
the open-source tool KLEE – a state-of-art tool for sym-
bolic execution. Experimental results using GNU Coreutils
show that our approach provides a significant speedup for
incremental testing. Incremental execution finished in 73%
less time by giving 67% less queries to the solver for 85 pro-
grams.
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