
How To Generate
Cryptographically Strong Sequences Of Pseudo Random Bits·

Manuel Blum and Silvio Micali

Department of Elecrical Engineering and Computer Sciences
University of California - Berkeley

1. Introduction

1.1 Randomness and Complexity Theory
We introduce a new method of generating

sequences of Pseudo Random Bits. Any such method
implies; directly or indirectly. a definition of Random
ness.

Much effort has been devoted in the second half of this
century to make precise the notion of Randomness. Let
us informally recall one of these definitions due to Kol
mogorov [].

A sequence of bits A =all a2••.•• at is random if the
length of the minimal program outputting A is at
least k

We remark that the above definition is highly non con
structive and rules out the possibility of pseudo random
number generators. Also. the length of a program, from
a Complexity Theory point of view, is a rather unnatural
measure. A more operative definition of Randomness
should be pursued in the light of modern Complexity
Theory.

Let us consider the following example.

EDmple: A and B want to play head and tail in 4
different ways. In all of them A "fairly" flips a "fair"
coin. In the first way. A asks B to bet and then flips the
coin. In such a case we expect B to win with a 50% fre
quency. In the second way. A flips the coin and. while it
'is spinning in the air. she asks B to bet. We are still
expecting B to win with a 50% frequency", However, in
the second case the outcome of the toss is determined
when B bets: in principle, he could solve ~he equation of
the motion and win !

The third way is similar to the second one: B is
allowed to bet when the coin is spinning in the air. but
he is also given a pocket calculator. Nobody will doubt
that in this case B is going to win with 50% frequency. as
while he is still initializing any computation the coin will
have come up head or tail.

The fourth way is similar to the third. except that
now B is given a very powerful computer. able to take
pictures of the spinning coin, and quickly compute its
speed. momentum etc. In such a case we will not say
that B will always win, but we may suspect he may win
51% of the time !

~upported in part by NSF gr8J.it MCS 82-04506.

0272-5428/82/0000/0112$00.75 © 1982 IEEE
112

The purpose of the above example is to suggest that

1b.e Randomness or an event is relatiYe to a
specific lIodel of Computation with a specified
amount of computing resources.

The links between randomness and the computation
model were first pointed out by Michael Sipser in [].
where he shows that certain sequences appear random
to a finite automato!? In his very nice paper []. Shamir
considers also the factor of the computing resources.
presents significant progress in this direction and points
out some open problems as well.

In this paper we investigate the Randomness of k
bit long sequences wi~h respect to the computation
model of Boolean. circuits with only Poly (k) gates.

1.2 Our Generator

We show under which conditions it is possible to
construct Generators of Cryptographically Strong
Sequences of Pseudo Random Bits. Such a Generator is
a program G that. upon receiving as input a random
number s (hereafter referred to as " the seed "). out
puts a sequence of Pseudo Random Bits b l.b 2.b s•...

Our Generators have three main properties:

1) The bits b,·s are polynomially many in the length
of the seed.

2) The bits bi ' s are easy to generate. Each b, is output
in time polynomial in the length of the seed.

3) The bits bi's are unpredictable. Given the Genera
tor G and b 11 .•.• ble • the first k output bits. but
not the seed s. it is computationally infeasible to
predict the k+ 1st bit in the sequence with better
than 50-50 chance.

1.3 Related results and applications

Our Generator is an improvement of Shamir's
pseudo random number generator. In []. Sharnir
presents programs that from a short secret random
seed. output a sequence of fI unpredictable II numbers
~ ·s. The main difierences between ours and Shamir's
generators are:

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

2. The Generator Model

1n this section we present a set of conditions that
allow one to generate Cryptographically Str~ng

Sequences of Pseudo Random Bit.s: In the ne~ sectIon
we show that under the intractabIlIty assumptlon of the

The classical sequence xi+l =az, + b mod n, pro
vides a fast way of generating pseudo random numbers.
Such sequence is known to pass many statistical tests
(see Knuth []). however it is not Cryptographically
Strong. Plumstead []. shows that the sequence can be
inferred even when a, band n are all unknown.

On the other hand, Yao [] proves a very interesting
result about Cryptographically Strong Sequences of
Pseudo Random Bits: they pass all Polynornial Time sta
tistical tests~ As a consequence. under the intractabil
ity assumption of the Discrete Logarithm Pr~b.l.eI?' ~an

dom Polynornial Time is contained in. Determlnlsllc Tlme
(27U:) for all e > O.

We finally point out the relevance of Cryptographi
cally Strong Pseudo Random Bit Sequences to Cryptog
raphy. In Private Key Cryptography, one time pads con
stitute the sirnplest and safest type of Cryptosystem.
Two partners who have exchanged one of our Generat~rs
and have secretly exchanged a random seed, are actu
ally sharing a long bit sequence that can be used as a
one time pad.

Our Generators also find applications in Public Key
Cryptography. In [], Goldwass.e~ and Mical~ sho~ that,
under the assumption that decldlng quadratlc resldu~s

ity modulo composite numbers is hard, there eXlst
Encryption Schemes possessing the following property:

An adversary, who knows the encryption algorithm
and is given the cyphertext. cannot obtain any
information about the cleartext.

Such Encryption Shemes are Probabilistic: the encodi~g

of a message m depends on m and a sequence of COln
tosses known only to the transmitter. In this context,
Cryptographically Strong Pseudo Random Bits Genera
tors are needed as an adversary might be able to
decode not because he is able to efficiently decide qua
dratic residuosity, but because he is able to predict the
random numbers used to encrypt! Such a worry is not
an abstract one as shown by Plumstead.

An analysis of a particular simple pseudo random
sequence generator appears in Blum, Blum, ~d S~ub

[]. They point out that well-mixed sequences In WhICh
hard problems are embedded can nevertheless be poor
pseudo-random sequences. Something more is needed
to construct good generators of pseudo random
sequences; what that is is pointed out below.

Discrete Logarithm Problem, it is possible to find a con
crete implementation for the Generator Model.

Theorem 1: Let B be an input hard and accessible
set of predicates. Let F; > 0, let Q and P be given polyno
mials. let n E Nand i E: 8 n , and suppose

1) the function f: i -> Ji is Poly(n) Time computable

2) f i : Di -> fli is a. permutation computable in Poly{n)
Time

3) the function h : x E Di -> Bi (Ii (x» is Poly(n) Time
computable.

Then it is possible in Poly(n) Time to compute, from
initial random seeds (i,x) E: In' sequences 8 i ,z. each
Q{n) + 1 bits long sueh that:

for each integer k E= [1. Q(n)], for any circuit C of size
less than P{n) with k Boolean inputs and one Boolean
output y: if C is fed the first k bits of an 8 i ,:I: sequence S.

then Prob ~y is equal to the k+ 1st bit of Sj < ~ + e for

all sufficiently large n. 1. e. for all sufficiently large n
"1

I~ (i.x) E In / y =the k+lst bit of 8i !zJI < (2 -f: ~) 1171 1.

Detlnitions. N = ~0.1,2, ... j. B is said to be a set oJpredi
cates if B = ~Bi : Di -> ~O. Ij / i E S7", n E Nj, where Sn
is a subset of the n-bit integers and Di is a subset of the
integers with at most n bits.

B is an accessible set oJ predicates if for all n E N
it is possible in Probabilistic Poly{n) Time to select any
element in In = ~ (i,x) / i E Sn' X E: Di Jwith probability

1

TJ:r
Let B be a set of predicates. For any e > 0, let ~,f:

denote the size (number of gates) of a minimum size
circuit C = C[i,x] that computes Bi (x) correctly for at

least a fraction. ~ + t of the inputs (i.x) E In. B is input

hD.rd if for any e > 0 and any given polynomial Q, c;,l: >
Q{n) for all sufficiently large n.

For example. suppose Sn = set of all n-bit compo
site integers that are products of two equal-length
primes; Di = zt< + 1). the set of all integers x relatively
prime to i such that the Jacobi symbol (X/i) = +1; and
Bi : x -> 1 if x is a quadratic residue mod i, 0 otherwise.
Then it is easy to show that B is accessible. Further
more, under the reasonable assumption that deciding
quadratic residuosity modulo composite numbers .is
hard. B is input-hard..

Proof: Let n be a natural number. As B is an acces
sible set of predicates, select (i,x) at random in In. (i,x)
will be the seed of th.e Pseudo Random Bit Sequence. Set
c = Q{n) + 1, the desired length of the sequence.

Generate the sequence Ti,.:I: = x, Ii, (x), fi,2(x), ... ,
ff(x).

From right to left (!)" extract one bit from each
el.ement in Ti .z in the.following way: for j = c to 1.
output the bit Bi (fi(x». (We note below that
Bi,(I!(x») is easy to compute because x is known.
by (3».

The above procedure constitutes the Generator that
takes the random seed (i.x) and stretches !t into the
sequence Si,:#: = (s/ 11 ~ j ~ c, Sj = Bi(/f-,+l{X»).

Shamir's notion of unpredictability is more res
tricted He proves that not all the generated %t's
can be computed from knowledge of th,e program
and the preceding outputs, permitting that some of
the xt'S could be so computed.

Shamir's generator outputs numbers and not bits.
Such numbers could be unpredictable and yet of
very special form. In particular every bit of (infor
mation about) the next number in the sequence
could be heavily biased or predictable with high
probability.

a)

b)

113

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

We first prove that the Generator o"perates in
Poly(n) Time. The sequence Ti,z can be constructed in
Poly(n) time as the two functions f: i -> f i and f i : Di

-> D
i

are both Poly(n) Time computable (hypothesis (1)
and (2)).

Once the sequence Ti,z is computed and stored, it
is easy. by virtue of hypothesis (3), to compute each bit
Sj of the Si,z sequence for 1 ~ j ~ c.

We now prove that, when n is large enough. for any
k between 1 and c, a circuit C with less than pen) gates,

cannot "predict" S~+l with probability greater than ~ +

E. The proof is by contradiction. Assume that there is a
"small" circuit C predicting sk+l with probability at least

~ + E. Then we will show that the set of predicates B is

not input hard. We will do this by showing that there is
another "small" circuit that computes Hi (x) for a frac-

tion bigger than ~ + e of the (i,x) E In. Such a small

circuit is derived by the folloV\Ting Poly(n) Time algo
rithm that makes calls to the circuit C.

For each (i.x) E In. generate the sequence of bits
(b l, ... ,b"'-l' b",) = (Bi (ff(x)) ,Bi (fi2(X)), Bi(fi(X»).
Input these k bits to the circui.t C to compute a bit
y.

We reach a contradiction if we show that y equals Bi (x)

for a fraction at least ~ + e of the (i,x) E l~. Notice

that the bits b 1 , ...• bk are the first k bits of the Pseudo
Random Bit Sequence S;',Ir--C(z)" Thus y = Bi, (x) if and

only if C correctly predicts the k+1st bit of Si,/f-C(z)"

But this will happen for a fraction at least ~ + t of the

(i.x) E In as the function ff-c is bijective (as Ii is a
permutation) and v{e are now assuming that C correctly
predicts the k+ 1st bit of the Si,. sequences for at least

a fraction ~ + e of the (i,x) E: In'

Qed

3. The Discrete Logarithm Problem
Let p be a prime. The set of integers [1, p-l] forms

a cyclic group under multiplication mod p. Such group
is denoted by Z;. Let 9 be a generator for Z;. The func
tion !p,g : x E Z; -> gZ mod p. defines a permutation inZ; computable in Poly(lpl) Time. The Discrete Loga
rithm Problem (DLP) with parameters p,g and y con
sists in finding the x E Z; such that gZ mod p = y. A cir
cuit C[.,.,.] solves the DLP mod a prime p if for any g
generator for Z; and any y E Z;. C[p,g,y] = x such that
x E: Z; and gZ mod p =y. x will be simply denoted by
indexg (y) whenever no ambiguity may arise about p.

3.1 Actual knowledge about the DLP
gZ mod p seems to be a one-way function. The

fastest algorithm known for the DLP is due to Adleman
and runs in time O(2c ""iOgp log logp). It is easy to see that
the difficulty of the DLP does not depend on the genera
tor g or y. By this we rnean that if for a non negligible
fraction (l/Poly(lp/)) of pairs (g,y). g a generator and
y E: Z;, the DLP with parameters p.g and y could be
efficiently solved, then it could be solved in Random
POly(lpl) Time for any g and any y. Thu.s our intractabil
ity assumption for the DLP will depend only on the
prime p.

114

Pohlig and Hellman [] show that the DLP mod a
prime p such that p-l contains only sm.all prime factors
can be efficiently solved. However such primes consti
tute a negligible portion of all primes. We expect that
for (nearly all) rand.omly selected primes p. p-l has a
large prime factor .No "small" circuits are known that
solve the DLP mod a single prime p, for the primes p
such that p-l has a large prime factor (thus the DLP
seems to have a higher circuit complexity than factor
ing: for any composite integer k there is a small circuit
storing its factorization). In this paper we show how to
generate Pseudo Random Bit Sequenees under either
one of the following assurnptions.

Definition: A prime p is hard if p = P x + 1, where
P is prime and 1 ~ x s Poly(IPI)·

It is known (De la Vallee Poussin []) that asymptoti

cally I~ I of the integers of the sequence P x + 1,

x=1,2.3, ... , are primes.

Using efficient primality tests, there is an efficient
procedure to decide if an integer, p, is a hard prime;
and if so, to factor p-1.

First intractability assumption for the DIP. Let e
> 0 be a fixed constant and Q be a fixed polynomial.
Then for all sufficiently large n, the size of any circuit
that solves the DLP mod p for at Ie ast a fraction e of the
n-bits-long hard primes p, is greater than Q(n).

Second intractability assumption for the DIP. Let
E > 0 be a .fixed constant a.nd Qa fixed polynomial. Then
for all sufficiently large n. the size of any circuit that
solves the DLP for at least a fraction e of the n-bit
primes p. is greater than Q(n).

3.2 The DLP and the Principal Square Root Problem
W-e recall some known. results about Z;.
An element T of Z; is called· a quadratic residue if

and only if T =x 2 mod p for some x E Z;; such an x is
called a square root mod p of T.

ract 1: Given. any ~enerator 9 for Z;. an element T
of Zp IS a quadrahc reSIdue mod p if and only if T = 9 2s

d
r "C)-1-

mo p for some s E L1,~. V{e recall that such a
2

representation of T is unique. Moreover T has two
square roots mod p: gS rnod p and gS+«(p--l)/2) mod p.
(see [])

Fact 2: There exists a polynomial time algorithm
for testing 'whether an element T of Z· is a quadratic
residue mod p (See []). p

Fact 3 (Miller [], Adleman and Manders [], Ber
lekamp []): Given any T. a quadratic residue mod p,
there exists a random polynomial time alg orithm to
compute both square roots of T mod p.

We introduce the following basic definition.

.De~tion: Let 9 be a generator for Z;, T a qua
drabc resldue mod p and 2s the unique index of T such
that 2s E [1.p -1]. Then g S mod p will be called the
principal square root of T. and gS+((P-l)/2) Inod p the non
principal square root of T.

Let g be a generator for Z;. Notice that given T, a
quadratic residue mod p, but not the index of T in base
g, one can still test efficiently that T is indeed a qua
dratic residue and can efficiently extract its two square

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

roots mod p. say X and Y. However the next theorem
shows that deciding which square root of T is the princi
palone is a much harder problem. In fact, even allowing
a weak oracle for the Principal Square Root Problem,
the DLP becomes easy.

Definition: Let g be a generator for Z; and x E: Z;.
The predicat.e Bp,g (x) is defined to be equal to 1 if x is
the principal square root of x 2 mod p and 0 otherwise.

Remark 1: Notice that, given x, it is easy to evalu-
ld:..ate Bp ,g (gZ mod p): just check whether x < 2 or x >

E..=!..2 ,and output a 1 or a 0 respectively.

Theorem 2: Let e > O. p prime and g generator for
Z;. Then, given an oracle ME (Magic Box) such that

MB[x] = Bp,g(x) for a fraction ~ ~ + e of the x E: Z; ,

one can construct an algorithm with oracle MB that
solves the DLP mod p in Probabilistic Poly(lpl) Time.

We first establish some intermediate results.

Lemma 1: Let e > 0, P prime and g generator for
Z;. Then. given an oracle ME such that MB[x] = Bp.g (x)
for all the x E: Z;. there exist a POly(lpl) Time Algorithm
(with oracle MB) for the DLP mod p.

Proof: We will exhibit a Poly(lpl) Algorithm. making
calls to ME, that finds indices mod p in base g. Such an
algorithm will solve the DLJ? mod p as, for each genera
tor h for Z; and each y E: Z;, index", (y) indexg (h) mod
p-l = indexg{y). The algorithm, given y E: Zp, finds x =
i:ndexg (y) bit by bit from right to left. In the middle of
the execution, the variable index will contain the right
half of the bits of x and the variable element is such
that indexg(element) e quaIs the left half of x. Think of
i:ndexg (element) and index as lists of 0'sand 1's. The
algorithm, abstractly, transfers the last bit of
indexg (element) in front of index until indexg(element)
vanishes (i. e. element = 'g 0 = 1) and thus all of x has
been reconstructed in index. " "denotes the concate
nation operator.

Step 0 (Initializatipn)

element := y; index:= empty word..

Step 1 (Check for termination condition)

If element =1 HALT. ind.ex equals x.

Step 2 (find one more bit of x)

Test whether element is a quadratic residue mod p.
If yes index := 0 i:ndex and go to step 4 else index
:= 1 index and go to step 3.

Step3(element is a quadratic' non residue, i.e.
indexg(element) is odd. Change the last bit of
mdexg (element) from 1 to 0)
element := g-1 element mod p

Step 4 (Erase 0 from the tail of indexg(element))

element is a quadratic residue. Compute both
square roots of element mod p. Have MB select the
principal one. element := principal square root of
element and go to Step1.

Qed

115

The algorithm in lemma 1 needs. for Ipl times, to select
the Principal Square Root of a quadratic residue mod p.
It does so by making Ipl calls to the oracle ME that com
putes Hp,g correctly 100% of the time.

We should ask what happens to the algorithm if it is
allowed to make calls only to an oracle MBI; that evalu
ates Bp.gonly slightly better than guessing at random,

Le. correctly for a fraction ~ + e of the x E Z;.
The following lemma, making use of the algebraic

structure of Z;, shows how to "concentrate a stochastic
advantage", Le. how to turn an oracle that answers most
of the instances of a decision problem correctly into an
oracle answering a particular instance correctly with
arbitrarily high probability. Let us first recall the Weak
Law of Large Numbers.

If Y It ...• Ylc are k independent 0-1 variables such
that Yi = 1 with probability a, and Sk =y 1+... +Yk.
then for real numbers 1/1 and cp > 0,

k > 4rp~ implies that Pr{ I-; - ex! > 1/1) < rp.

Let us define trials(1}',tjO) =~ Notice that trials(1}',cp)
4f1/l

is a polyn'lmial in 1/1-1 and cp- .

Lemma 2: Let e E: (0, ~) , 0 E: (0,1), P a prime and g

a generator for Z;. Set n = trials(e,o) and define IS, the
initial segment of Z; as follows: IS = ~gZ mod p

1 ~ x ~ E.=L J. Then, given an oracle MB£ such that
n

MB,;[x] = Bp,g(x) for at least a fraction ~ + £ of the

x E: Z;, there is a Probabilisti.c polY{lpl,e-I , 0-1) Algo
rithm with oracle MB£ that, with Probability 1-0,
correctly selects the Principal Square Root of any
quadratic residue e mod p belonging to IS.

Proof:

Select Tit ...• Tn at random in [1, p ; 1 l. Compute

2Tl' ... 12Tn . Compute
e 1 = eg 2Tt mod p, ... ,en =eg 2T

fI, modp. All the ei's are
quadratic residues mod p as index9(ei) is even for all i's.
In fact indexg(ei,) = (indexg(e) + 2Ti) mod p-1 and both
indexg (e) and p-1 are even. Cornpute the two square
roots Xi an~ li of each ei. (Note that whi.le these can be
computed, it is not (yet) clear which of Xi and ii is prin
cipal.) For each ei select PSQRi , your guess for the
principal square. root of ei' in the following way: if
MB£[Xi] =MB£[Yi]. set PSQRi =one of MB£[Xi], MB£[ii]
selected at random with probability 1/2. Otherwise, if
MB,IXi] = 1, set PSQRi = Xi; else set PSQRi = ii. Notice
that the ei' s have been drawn at random with uniform
probability among the quadratic residues mod p: in fact
every even index between 1 and p-1 can be uniquely
written in the for:m (indexg (e) + 2r) mod p-l, for
1 ~ 2r ~ p -1. Thus, even if an adversary had chosen
the x's for which MB,;[x] = Bg(x), the Weak Law of Large

Numbers guarantees that with Probability 1-0. 1-; -{~

+ e)1 < ~' I.e., with probability 1 - 0, we have selected

the principal square root of the ei 's more correctly than
incorrectly. We exploit this fact in the following way.

Initialize to 0 two counters ex and Cy. Compute a square
root of e, call it X. For each Ti compute Si =Xg

T
;, mod p.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

If S, = PSQR, then increment the counter Cx, else
increment the counter Cy.

Notice the following fact:

Let e = 9 211 mod p (2s E: [lIp -1]) be a quadratic
residue mod p and let X and Y be its square roots
mod p. Let 2s + 2r < p-1. Then Xg r mod p is the
principal square root of eg 2r mod p if and only if X
is the principal square root of e.

Without loss of generality, let ex > Cy and let 2s be the
index of e in base g. If for all the r,'s, 2s + 2r, < p-l;
then with probability 1 - t5" X will be the Principal Square
Root of e.

2s is unknown. but we know that 2s E: [1,~.
n

Thus all r,'s for which 2s + 2r, > p-1 must belong to the

interval [(n-1) E..::!, p-1]. But the 2ri'S are n even
n

integers drawn at random with uniform probability in
[l,p-1]; thus each 2ri has the sam.e probability to belong

to each of the n sub intervals [k E..::!, (k+ 1) ~. Let
n n

t be the number of Ti's belonging to the dangerous

interval [(n-l) E..=..!. p-l]. This t will be so small that
n

also Cx - t will be greater than Cy. Thus still with proba-
bility 1 - t5 • X will be the Principal Square Root of e.

Qed

Lemma 3: Let t E: (0,~ and rp e: (0,1), p prime and

g generator for Z;. Set ~~ trials(t, 2 I~ I) and define IS

= ~ gZ mod p I :r; E: [1,~~. Then, given an oracle MBI:
n

such that MB.[x] = Bp.g(x) for at least a fraction ~ + t

of the x E: Z;. there is a Probabilistic Algorithm that
finds indices of any y E: IS in Expected Poly{lpl) Time.

Proof : Let y be any element in IS. Apply the algo
rithm in lemma 1 to find the index of y. In Step 4. to
select the principal square root of a quadratic residue in
IS. instead of calling MB, apply the algorithm in lemma 2

with 0 = 2fT In view of lemma 2, Step 4 will be per

formed corrrctly with independent probability equal to

1 - 2 I~ I . Notice that if x belongs to IS, so does xg-I

mod p; and that if x is a quadratic residue .mod p
belonging to IS, also its principal square root will belong
to IS. Therefore. if in Step 4 the algorithm correctly
selects the principal square root. the total computation
will be done in the initial segment IS. As Step 4 is exe
cuted at most Ipl times, the probability that the index of

y will be found correctly is greater than (1- 2 I~ I >Ip I >

~' It is easy to see that the whole computation is poly

nomial in t-1 and Ipl. thus polynomial in Ipl for
sufficiently large p.

Qed

Proof of Theorem 2 : The following Probabilistic
Poly(lpl) Time Algoriihm finds indexg{y) for any y E: Z;.
Set n = trials (t,~ and define IS = ~ gZ mod p I

.E.=!.:% E: [1, 3 ~'n
Step 0 (Initialization)

i:=l

116

Step 1 {guess that y E [iP~l , (i+l)P;l] and map y

into IS)
-iE.::!..

w:=yg Ie modp

Step 2 (find the index of w)
Apply the algorithrn in Lemma 3 to find the index of
w. index(w) := the index of w.

Step 3 (check whether the index of y has been found)

cand:id.ate := index(w) + i P;l: if gCtJntJVlate mod p

= y then HALT: candidate is the index of y in base
g. Else continue.

Step 4 (keep on guessing)

i := i+l. If i > k then i:=l and go to Step 0; else go
to Step 1.

Qed

4. A concrete implementation of the General
Model

We merely sketch the proofs that will appear in the
:final paper.

4.1 First Implementation
This irnplementation is more efficient than the

second one. It assumes the first intractability assump
tion for the DIP and the constructability of the hard
primes (suggested, but not implied. by the De La Vallee
Poussin Theorem. which is an asymptotic result).

Let n E: N. Let S2fp, be the set of 2n-bit long
integers i such that the first n bits of i constitute a
hard prime p. and the next n bits a generator g for Z;.
~or i E: 82ft. i = P g. set .Di = Z; and, for x an n-bit
mteger. set Bi. (x) = Bp •g (x). Then the set of predicates B
= ~Bi liE: S2nj is an accessible, input hard set of predi
cates.

B is accessible : Flip 3n coins. An element
(i.x) E: I 2n has been obtained iJ

1) The first n bits constitute a hard prime p. This will
happen in n 2 expected trials (Prime theorem & De
La Vallee Poussin Theorern). Moreover, success can
be easily detected by means of fast primality tests.

2) T?e next n ~its constitute a generator for Z;. This
Will happen In a low expected number of trials as
the fraction of generators for Z; is asymptotically

greater than 6 log {Og). Also notice that as we

easily have the complet factorization of p-l, it is
easy to check whether g is a generator for Z;.

3) The last n bits constitute an integer x E: [l.p -1].
If the 3n flips have not generated a complete element of
12n , flip 3n coins again.

B is input hard : If there were a circuit C, of size
less than Q{n) for some fixed polynomial Q, that evalu-

ates correctly Bp.g(x) for a fraction of at least ~ + t of

the n-bit inputs p,g, and x, then a counting argument
shows that there would be a fraction of pairs (P.g) for
which the circuit guesses Bp,g{x) correctly for at least

a fraction ~ + t of the :r; E: Z;. By the results in the

previous section, using C as an oracle. there would be a
Probabilistic Poly(n) Time Algorithm, for solving the DLP
for a fixed fraction of the hard primes of n bits. As the

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

size of C is bounded by Q(n) and any Probabilistic Poly
Algorithm is easily seen to admit small circuits. the first
intractability assumption for the DLP has been violated.

B satisfies the hypothesis of Theorem 1 : Define
fi(X) = gZ mod p.

4.2 Second Implementation
Assume that we can pick a prime p with uniform

probabi.lity, among those of a given size, so that the fac
torization of p-1 is known. Then, set S 2n equal to the set
of 2n bi.t integers i such that the first n bits of i consti
tute a prime p and- the second n bits a generator g for
Z;. Set Di =Z·. fi(X) =gZ mod p. Then a.s in the pre
vious section, rBi : x -> Bp,g (x) liE: S2n ~ is an accessible
set of predicates satisfying hypothesis (1). (2) and (3) of
Theorern 1. However we do not know how to pick at ran
dom a prime p so that the factorization of p-l is known.
So. after having picked a prime p ·we would have trouble
picking a generator for Z;. as no way is known of prov
ing that x E Z; is a generator without having the factori
zation of p-l. HO'wever there is an "abundance" of gen
erators in Z';: one out of 6 log log (p) elements is a gen
erator. Thus having picked at random k =log (p) ele
ments x l' ... , Xk in Z;. with probabi.lity greater than any
fixed ~ one of the xi's will be a generator. Consider each
xi to be a generator for Z;; and implement k Pseudo
Random Bit Generators GI ~ as above. We now
make use of the "exclusive or" function in a way similar
to Yao []. Construct the following new Pseudo Random
Bit Generator G: generate the ith bit by outputting the
ith bit for GI , G2 .o .. , ~ and take their "exclusive or", It
is easy to see that, if at least one of the Gt' s is Crypto
graphically Strong so is G.

Acknowledgements
We are proud to thank many friends.

We are grateful to Shafi Goldwasser for numerous
valuable discussions. to Richard Karp for his precious
gift of setting the context and making vague ideas pre
cise. and to Andy Yao for having brought to light hidden
potentials.

This work has benefitted highly from the insightful
comments of Erich Bach. Lenore Blum, Faith Fich,
Donald Johnson, Donald Knuth. Leonid Levin. David
Lichtenstein. Mike Luby. Gary Miller, Joan Plumstead,
Ron Rivest, J eft Shallit, Mike Sipser, Po Tong. Umesh
Vazirani, Vijay VaziranL and Frances Yao.

References:

[1] L. Adleman, "A Subexponential Algorithm for the
Discrete Logarithm Problem with Applications to
Cryptography, II 20th FOCS (1979), 55-60.

[2] L. Blum., M. Blum. and M. Shub, "A Simple Secure
Pseudo-Random Number Generator." in Proc.
CRYPTO-82. ed. Allen Gersho.

[3] S. Goldwasser and S. Micali, "Probabilistic Encryp
tion and How to Play Mental Poker Keeping Secret
all Partial Information. " 14th STOC (1982). 365-377.

[4] D. Knuth, "The Art of Computer Programming: Sem
inumerical Algorithms," Vol. 2, Add.ison-Wesley Pub.
Co.. 1981.

[5] J. Plurnstead. "Inferring a Sequence Generated by a
Linear Congruence." submitted to FOCS 1982.

[6] S. Pohlig and M. Hellman, "AIl Improved Algorithm
for Computing Logarithms over GF(p) and Its Cryp
tographic Significance," IEEE Trans. on Info. Theory.
Vol. It-24:. No.1. (1978), 106-110.

117

[7] R. Rivest. A. Shamir, and L. Adleman, "On Digital Sig
natures and Public Key Cryptosystems," Commun.
ACM, vol. 21 (Feb. 1978), 120-126.

[8] A. Shamir, "On the Generation of Cryptographically
Strong Pseudo-random Sequences." ICALP 1981.

[9] M. Sipser. "Three Approaches to a Definition of Fin
ite State Randomness," unpublished manuscript.

[10] A. Yao. "A Relation Between Randorn Pol.ynomial
Time and Deterministic Polynomial Time." submit
ted to FOCS 1982.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 20, 2009 at 10:18 from IEEE Xplore. Restrictions apply.

