A Seven-Day Journal

Railwaymen's Pay

As a token of goodwill between the railway companies and the representatives of the three railway unions, the railways agreed on Friday, August 10th to cancel, as from October 1st, one-half of the $2 \frac{1}{2}$ per cent. deduction made in April, 1931, in the pay of men receiving less than 40 s. per week, and, further,
to cancel as from January 1st next, the other one-half to cancel as from January lst next, the other one-half
of the $2 \frac{1}{2}$ per cent. reduction. Those men who received over 40 s. per week had their pay reduced, in April, 1931, by 5 per cent. One-quarter of that is to be restored as from October 1st and another quarter from January 1st, and thereafter those men will be subject to a deduction of $2 \frac{1}{2}$ per cent. The maximum deduction is then to be 6 s . per week, or $£ 15$ a year. It is estimated that the concession will cost the companies $£ 1,100,000$ a year. What, to our mind makes this agreement very much more satisfactory is that it has been arrived at despite the fact that no conciliation machinery is now in existence. The dis Wions as to the restoration of Central and Wages Boards or the setting up of their equivalent are still proceeding, and the latest information thereon Monday next, August 20th

The Empress of Britain's New Record

The 42,348 gross ton Canadian Pacific passeng liner "Empress of Britain," which was built an ongined by John Brown and Co., Ltd., at Clydebank was commissioned in May, 1931. She has successfully completed three world cruises and is now engaged on her fourth Atlantic season. During the eastbound passage of her forty-sixth voyage just ended she made the crossing between Father Point and Cherbourg in the record time of 4 days 6 hours 58 minutes, which corresponds to an average speed of $25 \cdot 08$ knots. In to observe that the high standard of technical efficiency registered during her official trials is being well maintained, her daily consumption of oil fuel on the voyage in question being 377 tons for all purposes, ditions under which the geared turbine propelling machinery operates are 400 lb . working pressure In addition to having made the Atlantic crossing between Quebec and Cherbourg in the shortest time yet recorded, this vessel retains the distinction o
being the most economical large passenger liner afloat

A French Railway Disaster

The disaster to the express train from Geneva to V intimille when entering the Avignon Station a half-past four on Sunday morning provides anothe example of the difficulties that have recently pre vented inquiries in France from revealing the exact causes of accidents. The train was composed of eight coaches, a postal van, and a luggage van, and when crossing points about 300 m . from the Avignon Station the coaches left the rails and ploughed over the ballast until entering the station, when the locomotive turned over on to the platform, the postal van swung round against a goods train, and the only wooden coach, of an old type ahead of the stee five passengers killed were removed from that coach A guard waiting to relieve the one on the train was killed in the station. About thirty passengers were injured, some of them seriously. The question arises whether the driver had kept within the speed limit of 12 miles an hour when crossing the points. He affirms that he did, and there can be no proof to the contrary because the recording slip of the Flamant instrument was destroyed by a fire that started when
the locomotive turned over. Nevertheless, some the locomotive turned over. Nevertheless, some
passengers declare that the train was travelling quickly, and the fact remains that it ran an app ciable distance after the coaches had left the rails.

Progress in Tin Research

The first general report of the International Tin Research and Development Council, of Manfield House, 378, Strand, London, W.C.2, which was published at the end of last week, should be of interest to a wide circle of engineers. The Council, we may nd disseminating scientific and technical knowledg relating to tin, its alloys and chemical compounds, and their processes of manufacture and their industria applications. It is composed of delegates appointed y the Governments of the principal tin-producing countries of the world and is responsible for an
extensive programme of research, which has been set up and is now being carried out in Government university, and industrial laboratories in this country, on the Continent, and in America. The various
sections of the report deal with the tin-plate industry sections of the report deal with the tin-plate industry and with the preparation and uses of tin and tin
alloys, and the work which has been done by the Council in these particular fields of development Among the new uses of tin mention is made of the

Féry-Carbonne dry tin accumulator, which is lighter than a lead accumulator of equal capacity and ha tin and lead peroxide electrodes immersed in dilute sulphuric acid, which is absorbed in an acid-resisting
porous ceramic filling, thereby making in effect a dry porous ceramic filling, thereby making in effect a dry
cell. The report describes the wide service of the Council in supplying technical information to manu facturers and scientific investigators in many countries, and the Bureau of Technical Information, he publication of the shed for this purpose and ment. The Council has also set up at the Hague an office for the collation of statistics which it publishes as a monthly bulletin. An office in New York has been established and an advisory committee formed for the purpose of maintaining contact with the conumers of tin and its products in America.

The American Steel Industry.

Some highly interesting figures concerning the stee Idustry in the United States were received this week They were published by the American Iron and Stee Institute and serve to illuminate the operation in practice of the National Recovery Act. So far as the
object of that Act was to increase employment the figures imply Act it has been outstandingly success ful. In June of this year the number of people a work in the steel industry amounted to 455,966 This total is 35 per cent. more than the numbe similarly employed in June 1933 and is the highes monthly figure recorded during the past four years One of the prescribed means of bringing about the正 the industry per week worked by those engaged the average weekly hours worked per person having been reduced from $39 \cdot 4$ in June 1933 to $35 \cdot 7$ in June 1934 or by $9 \cdot 4$ per cent. Turning to the financial side we find that the total wages paid within the industry rose from $24,441,054$ dollars in June las year to 40,630,314 dollars in June this year or by
66 per cent. The average earnings per hour increased from 47.3 The 63.9 ents Government has therefore secured the increase of employment which it desired. The workers have been benefited by a decrease in hours and an increase of wages. On the employers' side, we find that the capacity Thus for an increase of 66 per cent. in the wages bil the employers have secured an increased output of 16 per cent. The Institute's figures do not include comparison of the prices realised for the industry' products. On investigation, however, we find tha quotations in the United States for plates, shapes, and bars, black sheets, billets and sheet bars advanced during the period by from 12 to 20 per cent.

Lloyd's Register Rules.

We have received from Lloyd's Register of Ship ping, of 71, Fenchurch-street, London, E.C. 3 particulars of the recent additions and amendments
made to the Society's Rules for the construction and made to the Society's Rules for the construction and classification of steel ships. They include new addi
tions to the sections relating to oil fuel, hull strengthen tions to the sections relating to oil fuel, hull strengthen ing, geared turbines and boilers, steam reciprocating engines combined with exhaust steam turbines, and heavy-oil engines. The main part of the new rules however, relates to electric propelling machinery and ions with regard to turbine and oil engine-drive generators, electric propulsion motors, and the neces sary control gear and switchboards both for direct current and alternating current working. Other sections of the rules deal with circuit protection devices and the arrangements for bridge or deck control. Questions of the design, manufacture and esting of conductors and cables, secondary batteries and the spares to be carried are all covered by the ules. In an appendix, tables are given showing th wires, rubber and lead-sheathed cables, and multicored cable with either paper or cambric insulation for 600 and 3300 volts.

The Late Sir James Carmichael

Engineers, both in Great Britain and the Colonies will learn with deep regret of the death of Lieut.
Colonel Sir James Carmichael, R.E. (Retired), which occurred in London on Sunday, August 12th Sir James, who was only sixty-six years of age at the ime of his death, was one of the Crown Agents for he Colonies, and for many years was the head of the Engineering Department of that branch of Government service. He received his early education at Clifton College, and passed to the Royal Military Academy, obtaining in 1887 a Commission in the Royal Engineers. His services in India and at the War Office, in which he obtained rapid promotion ave him a wide experience, both with enginecring works and administration problems, which qualified him for the post of Head of the Engineering and Works Department of the Crown Agents, to which he was appointed in 1904. During the war Sir James was assistant to Major-General Sir Percy Girouard on the Armaments Output Committee at the War Munitions as personal assistant to the Director of

Materials in the department responsible for the provision of steel and other metals for all purpose After serving for a time as Assistant Director in the Department of Munitions Supply, he was trans ferred to the Iron and Steel Department, the presided over by Mr. (afterwards Sir) John Hunter and was responsible for the formation of the High Speed Steel Committee. At the end of the wa Sir James Carmichael returned to the Crown Agents, with whom he continued to serve as Head of the Engineering Department, and later as Chief Engineer, until in 1921 he was appointed to be one of the Crown Agents. He finally retired in 1932. He was a membe of the Institution of Civil Engineers, a member of the Smeatonian Society, and a Chevalier of the Legion of Honour

A Fast Cross-Channel Motor Ship

The Belgian State Marine Department's new ross-Channel motor ship "Prince Baudouin" com pleted on Monday last her maiden voyage on th Ostend-Dover service, when the contract speed of 23.5 knots was considerably exceeded. She wa ordered in 1931 from the Société Anonyme Joh Cockerill, and was built at the firm's shipyard a Hoboken, her engines being constructed at th Seraing works. She is designed for first and second class passengers, and has a length of 370 ft ., with measurement of about 3300 gross tons. She is an open-shelter-deck vessel, and new features of desig include a streamlined form of superstructure and shortened funnel, with low masts in order to reduc wind resistance. The propelling machinery comprise twin-screw arrangement of Cockerili-Sulzer oil engines, with a total maximum designed output of 17,000 S.H.P., and a service output of 15,000 S.H.P They are twelve-cylinder units, with cylinders havin bore of 580 mm ., or nearly 227 in ., and a stroke of 840 mm ., or 33 k in. The auxiliary engines, whic were supplied by Sulzer Brothers, of Winterthur, re eight-cylinder units operating on the four-strok principle. A feature of the engine-room design i he special seating for the engines, which is welde on to the double bottom of the ship. On her arrival t Dover on Monday last, the Prince Baudouin was greeted by a large party, representing the Authorities, and other railway and shipping interests.

Development of Civil Aviation

The London Chamber of Commerce has, on the recmmendation of its Aviation Committee, sub mitted through the Air Ministry its views on the dopment of civil aviation, and in a memorandum Government the considerationations are put forward, together with a strong plea for the formula tion of a properly co-ordinated plan on a nationa scale. It is proposed that the ground equipment and traffic control of British air routes should be vested in a statutory body on which the Air Ministry, the General Post Office, aircraft operators, insurance and ommercial interests, among others, should be repre ented. This body, it is stated further, should b independent of all other organisations, and should tand in the same relation aviation a Trinity House does to shipping. The suggestion i put forward that the finances necessary for equipping and maintaining the air routes with wireless, lighting, meteorological, and traffic control services should be provided by the Government and administered by this body, which should also arrange for the collectio of dues as in the case of merchant shipping. It is also proposed that this body should be appointed without delay to plan, in consultation with the appropriate authorities, the principal air routes and aerodromes in this country, having regard to presen nd future needs. It is further submitted that the duties of such a body should include consideration of matters affecting Imperial air route

Launch of H.M.S. Galatea

On Thursday, August 9th, the light cruiser H.M.S Galatea "was launched at the Greenock Yard of Scott's Shipbuilding and Engineering Company Ltd., the naming ceremony being performed by Lad Alice Shaw-Stewart. The new ship has a designed displacement of 5200 tons, a length of 480 ft ., a beam of $51 \mathrm{ft} .$, and a mean draught of 13 ft . 10 in . She carries a full complement of 8 in . and 4 in . guns, 21 in . torpedo tubes, and a seaplane catapult. In the hul structure electric welding has been largely employed instead of the usual riveting. There are four sets of single reduction geared turbines of the Parson reaction type with an output of 64,000 S.H.P. and a propeller speed of $350 \mathrm{r} . \mathrm{p} . \mathrm{m}$. The turbines drive independent propellers, and cruising turbines are pro vided. The gears are of Parsons latest "Al Addendum" type. There are four Yarrow typ water-tube boilers designed for burning oil fue
under the closed stokehold system with forced draught under the closed stokehold system with forced draught,
which supply steam at 350 lb . per square inch to the main engines and the auxiliary auxiliary equipment includes two turbo-electric enerator sets and two oil engine-driven generating sets, which supply the necessary power for all motor driven auxiliaries and the ship's services designed to take electric power
should be specially designed for the very rapid handling of passenger traffic in order that the detention of a liner in port should be reduced to the minimum possible time, and that passengers should be trans. possible time, and thatway trains with a minimum of delay. The gare maritime, as constructed, makes provision for the separation of heavy baggage, mails, goods, and motor cars from all classes of passengers and their light luggage. The former are confined to the ground floor of the building-that is, to quay level-whereas the whole of the passenger traffic is carried on at the level of the first floor of the building.
The deep-water quay provides berths which will accommodate at the same time two Transatlantic

THE area between the east face of the first deep1 water quay and the west face of the second deepwater quay, now being constructed, was dredged down to rock level, varying between levels -14.0 m . at the outer end of the berths and -10.0 m . at the inner or shoreward end. This work was proceeded with after the caissons in the first deep-water quay had been sunk to their full depth. A typical section of the strata on the line of the quay wall is shown in Fig. 14. The clear space between the two quays is

Fig. 14-Strata on line of quay wall
230 m . The approach to the deep-water berths in the inner harbour, including the passage between the Homet and Flamands jetties, has also been dredged to $-11 \cdot 0$, the dredging in the Petite Rade being of a width sufficient to provide a turning area of 800 m . diameter. All the dredging in connection with the construction of the two moles and in the access channel, as well as the reclamation work, is being
adjoining the quay, with a campanile about 70 m in height and a landing gallery over 500 m . long.
(b) A railway station, 240 m . long and 40 m
wide, with a single span roof covering the railway tracks and passenger platforms.
(c) A hall about 240 m . long and 15 m . wide,

between the main building and the railway stat covering an approach road for motor traffic.
The three buildings adjoin, as shown in Figs. 15 and 16. The main building has two floors extending over its entire area, with additional floors constructed in
liners of the largest size. The embarkation of passengers in or their landing from two such vessels can be carried on simultaneously, thanks to the covered-in landing gallery on the east face of the gare maritime, which has a usable length of over 500 m .

FIG. 17-ERECTION OF SUPERSTRUCTURE OF QUAY WALL
bays on either side. The first floor is connected with \mid Passengers embark or disembark at the level of the the motor traffic hall and the railway station by wide first floor of the gare maritime, the connection between gangways with access staircases to all the platforms. the vessel and the gallery being provided by means Monsieur René Levavasseur, the architect of the \mid of nine traversing passenger bridges travelling on

Fig. 15-General plan of deep Water quay No. 1 and the gare maritime
carried out by L'Enterprise des Travaux Publics de L'Ouest of Nantes.

Gare Maritime

The new gare maritime has been erected on the mole which we have already described. It includes
(a) A main building, 280 m . long by 42 m . wide,
gare maritime, when he was called upon to design the building, was faced by conditions which are peculiar to the port of Cherbourg, which is essentially a port of call for Transatlantic liners and not a home port. In this respect its trade differs from that of either Southampton or Liverpool. It was necessary that all the accommodation to be provided half of the gangway is for passengers and the second
for the ship's hold, and for baggage porters and staff. of within a few minutes of the vessel being made fast The baggage is transported over the bridge by an to the quay. Each class of passengers can be diselectric belt conveyor with a telescopic extension embarked in close proximity to the appropriate projecting to a maximum of 9 m . beyond the face Customs examination hall. The travelling portal
about 70 m . above quay level. At each end of the Salle des pas Perdus are passenger halls containing two distinct sets of Customs examination offices, passport, post and telegraph offices, medical services,

Figs. 18 and 19 -Travelling SCaffolding and Shuttering for the Gare maritime
of the quay. The conveyor is seen in the cross section \mid cranes, which run on lines of rails placed between |lavatories, general offices, buffets, restaurants, offices of the travelling bridge (Fig. 24). The outer part of those supporting the passenger bridges and the edge of the steamship companies, waiting rooms, and the bridge corridor is hinged and can be raised out of the quay, deal with heavy baggage and mails in numerous shops and similar accessory conveniences of the way of the quayside travelling portal cranes, containers. Special provision is also made for load- for travellers. On this floor are also provided suites

Fig. 20 -Salle des pas Perdus
if it should be necessary to traverse one of the latter \mid ing and unloading motor cars with a minimum of past a movable bridge, as shown in a view on p. 162 . delay.
The outer section of the bridge can also be raised and The main building provides, at the level of the first lowered as required to accommodate it to the level floor, a Grand Hall, 56 m . long, extending the entire

FIG. 22 SOUTH END OF GARE MARITIME BUILDING
of the ship's gangway within the limits shown on the drawing (Fig. 24).
This very liberal provision of passenger bridges allows of any gangway door of a liner being made use

FIG. 21-PASSENGER HALL
of rooms for the reception of distinguished travellers, and on the floors above it rest rooms for passengers. The ground floor at quay level is, as we have said reserved for heavy baggage and mails and for other goods in transit to or from the railway station at the back of the gare maritime. At this level there are

Fig. 23-Portal Crane
numerous offices and stores, and accommodation for the mail service, medical and quarantine departments, harbourmaster's department, police offices, baggage depositories and fire appliances, as well as storage space rented by the shipping companies which will make use of the deep-water quay. The plant for
central heating and electric services is also housed in the main building at quay level. All the transit of passengers' baggage, both on the first floor and at quay level, is carried on by means of electric runabout trolleys, except where conveyor belts are used.
Between the main building and the railway station proper is a double roadway for motor traffic completely covered in and 15 m . wide. Motor cars can discharge or take up their passengers close to numerous stairways, which ascend to the first floor of the main building. Behind the motor roads is the railway station, the tracks being parallel to the main building. There are three platforms serving four lines of railway track. The railway station is equipped with electric hoists for the conveyance of passengers' baggage to the first floor level.
The buildings of the gare maritime are constructed mainly of reinforced concrete, on the sand-filled area between the rubble mounds already described. It was therefore necessary to provide a piled foundation, the piles being driven down to rock level by water jets. All the piles, 923 in number, are of reinforced concrete, 0.32 m . by 0.37 m . in section and about 20 m . in length. Some of the piles are driven on a batter.
The reinforced concrete frames which form the main supports of the roof and walls of the buildings

Ship Stabilisation by Activated Tanks.
 AN EXPERIMENTAL INVESTIGATION

by Nicholas minorsky, Ph.D.

Introduction

THE problem of stabilising ships against rolling 1 has recently attracted a greater degree of interest than before, and has resulted in certain practical applications of which the gyroscopic stabilising equipment installed on board the "Conte di Savoia undoubtedly occupies the first place. Somewhat less spectacular, but by no means less interesting, is the work conducted, mainly in Germany, on the so-called activated tank system in which the displacement of the ballast is controlled by a local source of powere.g., compressed air from a turbo-blower-instead of
being brought about solely by the ship's angular being brought about solely, by the ship's angular
motion as in the "passive" tank system identified motion as in the Drahm.
A considerable amount of information is avail able concerning the theory and performance of Frahm tanks. There is, however, practically none

W is the displacement of the ship.
h is the metacentric height of the ship.
T is the period of the waves.
k_{1}, k_{2} are the coefficients of natural resistance to rolling arising from the action of the bilge keels, skin friction, \&c
I is the moment of inertia of the ship about its longitudinal axis through its centre of gravity
ε is an empirical coefficient commonly assumed to be unity.

Description of the Model

The model, Fig. 1, embodies a pendulum about 1900 lb . in weight, having a period of 4 sec . and an equivalent length, i.e., distance between the centre of gravity and the axis, of $1 \frac{1}{4} \mathrm{i}$. These particular figures

were constructed from travelling scaffolds (Figs. 18 and 19). The upper portion of the scaffold was of steel, and its shape corresponded exactly to that of the underside of the frames. The scaffold was of sufficient width to cover one pair of frames simul. taneously. The panels of shuttering, as well as the reinforcement, were lifted on to the scaffold by cranes, which were afterwards used for placing the concrete. The complete construction of two frames, wind bracing girders, and purlins occupied about three weeks. Rapid-hardening Portland cement was used in the construction of the frames and the shuttering was stripped after five or six days. The railway station hall is spanned by reinforced concrete trussed frames rising to a height of 20 m . above rail level. These spans are calculated as arches with double articulation. The architectural facing of the buildings is carried out in granite and pink coloured artificial stone
Our description of the buildings should not lose without a mention of the interior decoration Generally, the decorative treatment of the large halls is simple, and sets off the fine proportions of the reinforced concrete arch ribs in the Salle des pas Perdus. It is intended to fill the panels in the gable ends of this hall with mural decoration, probably in fresco. The reception rooms, offices, shops, and the American bar are decorated in the modern manner Views of the gare maritime, showing its exterio appearance, are reproduced on page 162 .
On the quay fronting the main hall there are three railway tracks, as well as the tracks carrying the travelling landing bridges and the portal cranes. All the railway tracks are connected with the main line o Paris, and it is expected that the time of transit between Paris and the Cherbourg gare maritime will in future be reduced to under $4 \frac{1}{2}$ hours. On July 30th, when the President of the Republic performed the opening ceremony at the gare maritime, the new "Bugatti" train actually made the journey from Paris to Cherbourg in under $3 \frac{1}{2}$ hours. This train is hauled by an interhal combustion locomotive
(Io be contin: el.)

The authorities at Heston air port have decided to install dire
at Croydon.
dealing with the active tank method, in view of the fact that this problem is a comparatively new one A model investigation of the active tank method of stabilisation has recently been carried out by the author at the Moore School of Electrical Engineering of the University of Pennsylvania, U.S.A., and in what follows a brief account is given of this work. The experiments were conducted on a pendulum model arranged to operate in accordance with Froude's theory of resisted rolling among waves. It is well known that the differential equation of Froude's theory introduces certain assumptions as to the regularity of the seaway acting on the ship. This particular limitation of the theory was eliminated in the model tests by means of a special arrangement permitting entirely irregular disturbing moments to be impressed on the model imitating in this manner he action of an erratic seaway
The problem of control formed the principal subject of the investigation. The main drawback in the passive tank system lies in its erratic behaviour when a confused sea is encountered. If, therefore, the active system is to improve upon the performance of the passive system, the improvement must concern the ability of the controlling equipment to perform satis. factorily when the moments impressed on the ship vary in an erratic manner.
The model experiments were carried out in accordance with the law of similitude, thereby permitting the direct application of the results to a full-scale ship. Certain limitations of Froude's theory are nevitably embodied in the model data, which for this reason must be corrected if their extension to the
ship's behaviour is desired with a great accuracy. It must be noted, however, that Froude's theory of resisted rolling among waves in its original form is found to be in fairly good agreement with observations of rolling made on normal ships, in spite of all the assumptions and limitations associated with the theory

According to Froude, the differential equation of
resisted rolling among waves is

$$
\mathrm{I}_{\frac{d^{2} \theta}{d t^{2}}+k_{1} \frac{d \theta}{d t}+k_{2}\left(\frac{d \theta}{d t}\right)^{2}+\mathrm{W} h 0}
$$

$=\sigma h \Theta \operatorname{Sin} \frac{2 \pi}{T}$
(1)
where 0 is the angle of rolling.
Θ is the maximum angle of the effective wave slope.
are not altogether arbitrary, but are related to each other so as to make the application of the law of dynamical similitude to the model particularly simple, as will be apparent later.
The terms with k_{1} and k_{2} in equation (1) characterise the natural damping caused by the bilge keels skin friction, \&c. To obtain similar conditions in the model tests a tank A, filled with oil, was placed under the pendulum, to the lower end of which was attached a paddle of variable cross section. During the oscil lation of the pendulum, the motion of the paddle through the oil in the tank introduced frictional terms leading to the extinction of the oscillation. The position of the paddle on the pendulum, as well as its cross section, were adjusted so as to obtain substantially the same decrements- $\Delta \theta$-as those observed on normal ships fitted with bilge keels. It is known that the decrement is related to Froude's coefficients of extinction a and b by the equation

$$
-\Delta \theta=a \theta+b \theta^{2}
$$

where θ is the amplitude of rolling. A relationship also exists between a and k_{1} on the one hand, and b and k_{2} on the other hand. ${ }^{1}$
In the author's case the coefficient a was about 0.06 and b was less than 0.01 A typical curve of extinction of oscillations is shown in Fig. 4.
An action equivalent to that of the moment of buoyancy $W h \theta$ as well as to that of the effective wave slope $\mathrm{W} h \Theta \sin \frac{2 \pi}{\mathrm{~T}} t$ was introduced by springs B B attached to the ends of a lever C, capable of being rocked on both sides of its horizontal position through an angle proportional to the maximum angle Θ of the effective wave slope of Froude's theory. The rocking motion impressed on the lever C was transmitted from a rod D-Fig. 2 - connected to a Stephenson link E. By displacing the sliding block of the link it was possible to change both the magnitude and direction of Θ. The rod and link were actuated by an electric motor F. By changing the speed and direction of rotation of the motor and also the value of Θ by means of the link very irregular erratic disturbances could be impressed on the pendulum to imitate the action of a confused sea when the apparent period, the slope, the shape, and the phase of the waves
1 E. L. Attwood, " Theoretical Naval Architecture," $1916, ~$
page 358 .
encountered by the ship change erratically from wave to wave.

Stabilising System.
Power Plant.-The anti-rolling stabilisation of the model was produced by means of a pair of tanks G G connected by a tubular channel \mathbf{H}. The activation of the ballast was derived from an impeller pump
three fundamental features, namely, (a) continuity of action, (b) rapidity, (c) correct phase. The first two requirements are almost obvious. The action of the waves on the ship varies continuously with time Hence the reaction of the stabiliser must also be con tinuous to enable it to follow the continuous dis, turbance. The second requirement (b) implies that the cause (action of the waves) and the effect (reaction

FIG. 1-EXPERIMENTAL ACTIVATED TANK APPARATUS
placed coaxially with the channel in its middle (see also Fig. 3 in this connection). An electric motor J drove the impeller shaft. The armature of this motor was directly connected to that of a generator K. The reversion of the direction of rotation of the impeller shaft was obtained by reversing the field of the generator. The impeller pump consisted of a small four-bladed screw about $3 \frac{1}{4} \mathrm{in}$. in diameter. Plane

between the instruments described below and th
of the stabiliser) should relate to the same instant which, in combination with condition (a), is equivalent to the condition that the stabiliser should deal with the instantaneous values of the disturbing impulse as they arise. These two fundamental conditions (a) and (b) were satisfied in the model by adopting a thermionic valve system as the connecting link
damping decrements in addition to those which exist by virtue of the terms with the coefficients k_{1} and k_{2} answers the purpose; the problem thus appears to be somewhat indefinite. The simplest solution, however, is obtained if the damping is associated with the term $\frac{d \theta}{d t}$. The stabilising moment must in this case be of the form Ks $\frac{d \theta}{d t}$ and its insertion in Froude's equation gives a term $\left(k_{1}+\mathrm{K}_{s}\right) \frac{d \theta}{d t}$, where k_{1} is the natural damping due to the bilge keels, \&c. and K_{s} the damping due to the stabiliser.
This condition therefore requires that the stabilising moment and hence the instantaneous excess of water w in one of the tanks should be varied so as to be instantaneously proportional to $\frac{d \theta}{d t}$, namely,

$$
\begin{equation*}
w=-a \frac{d \theta}{d t} \tag{2}
\end{equation*}
$$

Differentiating equation (2) we have

$$
\begin{equation*}
\frac{d w}{d t}=-a \frac{d^{2} \theta}{d t^{2}} \tag{3}
\end{equation*}
$$

From the standpoint of the final result, that is, pro duction of a stabilising moment in phase with $\frac{d \theta}{d t}$, both equations are equivalent, since by integrating (3) we obtain (2). From the practical standpoint, however, there is a certain difference between the wo methods of control arising from the fact that generally speaking, disturbances acting on the ship are never regular. It is easy to see that in the case of irregular disturbing actions the curve of angular acceleration as a function of time precedes that of angular velocity, since the latter builds up as a time integral of the former. From this point of view, control in accordance with equation (3) is preforable to that given by equation (2), although for regular disturbances - of a pure trochoidal type, for example -there is no difference between the two methods.
Assuming control in accordance with equation (3), we see at once how such a control should be produced. The right-hand side contains $\frac{d^{2} \theta}{d t^{2}}$ and therefore on its primary side the control must be derived from an instrument responsive to angular acceleration, i.e., an accelerometer. On the secondary side, counected with the motion of the ballast, the control must be related to $\frac{d w}{d t}$ or to the velocity of flow of the ballast between the tanks.
Stabilising Control: Description of System.-The accelerometer used in these experiments was made to respond to linear, and not to angular, accelerations. ${ }^{2}$ The instrument is seen on the right of Fig. 1, and is constituted by a block of iron L, 25 lb . in weight, suspended on a long spring and guided by anti-friction rollers. The free period of the block was made considerably shorter than the period of angular motion of the model. An oil dashpot M was found to be of great help in obtaining dead beat indications. The limit of sensitivity of the accelerometer thus constituted was about 0.0125 radians $/ \mathrm{sec}^{2}{ }^{2}$. This figure corresponds to an angular acceleration of a harmonic motion having an amplitude of about 0.6 deg. and 4 sec. period. If the angular acceleration is below this limit the control system associated with the accelerometer remains idle. It is apparent that an instrument of this kind designed for a ship could be made considerably more sensitive by using

Fig. 2 ROcking Motion Gear

FIG. 3 - STABILISING CONTROL EQUIPMENT
vanes arranged on both sides of the screw in the channel were found to increase materially the hydraulic efficiency of the pump by eliminating rota tional motion of the ballast in the channel.
Stabilising Control : Theorelical Considerations.The primary purpose of any stabilising equipment is to set up a moment substantially equal and opposite to the external moment of the waves. The correct control of the stabilising plant must therefore exhibit
field of the generator controlling the actuation of the ballast through the Ward-Leonard unit J K. The action of a thermionic valve is a continuous one, and on account of the high ohmic resistance when such valves are inserted in an induetive cireuit the time constant of the circuit is greatly reduced, so that it transmits controlling actions with great rapidity
The last condition (c) is less obvious. Actually any term added to equation (1) and capable of producing
a heavier weight and also by virtue of the much longer ${ }^{2}$ In the experimental equipment this arrangement was a ship it is necessary either to use an angular-acceleration responsive instrument (e.g., a heavy fly-wheel supported at its centre of gravity) or to employ two-port and starboard-linear-acceleration responsive instruments of the type used in this investigation. The effect of pitching and heaving in such electrical circuits, so as to render the system responsive solely to rolling.
lever arm of angular motion which would be available.
To obtain a secondary control responsive to the velocity of flow in the connecting channel, a $\frac{3}{4} \mathrm{in}$. dise, N, Fig. 3, was placed in the channel at right angles to the lines of flow near the point where the channel enters the right-hand tank. This dise is mechanically connected by a rod to the control member described below. Centralising springs and a dashpot are provided for this rod on top of the right tank G-see Fig. 1.

The electrical circuits associated with the accelerometer and the disc are shown in Fig. 3, in which L is the accelerometer and N the disc of the secondary control. Connected to L and N through amplifying levers are two arc-shaped members pivotally mounted about centres O_{1} and O_{2}, and each having a pair of flat coils $\mathrm{P}_{1} \mathrm{P}_{1}{ }^{1}$ and $\mathrm{P}_{2} \mathrm{P}_{2}{ }^{1}$. Each coil has about 300 turns of fine wire. The coils are arranged to move in the air gaps of two alternating-current electromagnets Q_{1} and Q_{2}, shown diagrammatically by projection of their pole faces and excited by 500 -cycle current. It is apparent that for a deviation of the coils connected to L in the direction of the arrow, coils connected to L in the direction of the arrow, P_{1} is increased, and that in $\mathrm{P}_{1}{ }^{1}$ decreased. P_{1} is increased, and that in $\mathrm{P}_{1}{ }^{1}$ decreased. The coil circuit is connected to the grid control of a thermionic $\mathrm{P}_{2} \mathrm{P}_{2}{ }^{1}$ of the secondary control connected to the dise N are inserted in series with the same grid circuit ; their action, however, is in opposition to that of the

The decrements of subsequent oscillations in this case correspond to the coefficients a and b of Froude's theory. Curve 2 shows the extinction of amplitudes when the tanks are opened. The damping effect is increased by the passive performance of the tanks. Curve 3 was taken with the tanks open and the stabilising control started substantially at the same time. In view of the initial transient state corresponding to the speeding up of the motor, the stabilising action appears only at the second swing, and the ing action to the equilibrium position is dead beat approach to the equilibrium posithing on a regular Fig. 5 illustrates steady quenching on a regular seaway. Curve 1 represents synchronous rolling with the tanks out of action. Curve 2 illustrates the action with the tanks open-i.e., passive performance. Curve 3 shows the action with the stabiliser in operation.
In
In Fig. 6 the curves 1, 2, and 4 are the same as curves 1, 2, 3, in Fig. 5. Curve 3 shows the performance when the amount of transferred ballast was lowered by inserting a resistance in series with the armature of the motor. The amount of water ballast in this case was not sufficient to cope with the effective wave slope. Such a performance can be conveniently designated as the performance outside the roll quenching limit, phe performance torm quenching limit, whereas the performance corre roll-quenching limit. In the latter case the amplitude roll-quenching limit. In the latter case the amplitude
of the residual rolling is determined by the degree of of the residual rolling is determined by the degree of
accuracy of the controlling instruments and circuits.

FIG. 4

FIG. 5
instant and the disturbing acceleration develop anew under the joint action of the wave slope and of the ballast. Immediately after the stabiliser again enters vigorously into action and again a flat spot develops. We have thus a series of sustained transients reproducing themselves periodically. In this way the stabiliser momentarily drops out of step with the disturbance and a fraction of the period later it masters the rolling again. The over-regulation of the stabilising control therefore leads to rather com plicated dynamical phenomena impairing the efficiency of the stabiliser. These phenomena are closely connected with the free period of the tank system, as is evidenced by the fact that the position of the flat spots relatively to the period is not constant, but varies with each roll, indicating the existence of second frequency - that of the tank system. As a conclusion we may say that the increase of the intensity of the control is not sufficient by itself to reduce the amplitudes of residual rolling. Such reduction can be accomplished only if simultaneously the sensitivity of the accelerometer is increased.
Fig. 8 shows the performance of the stabiliser when quenching erratic disturbances. In the region α the phase of the wave slope was several times reversed by 180 deg , imitating the complicated action of a con fused sea when two patterns of waves from different directions may as is well known, give nise to directions may, as is well known, give rise to such abrupt phase changes. In the region 6 the periodicity
of the waves was changed erratically between 50 per

FIG. 6

FIG. 7

FIG. 8

FIGS. 4-9-TYPICAL RECORDS OBTAINED FROM THE EXPERIMENTAL APPARATUS
coils P_{1} and $P_{1}{ }^{1}$. The amplifier system was formed by two stages of voltage amplification V_{1} and V_{2}, and a third stage V_{3} of power valves arranged to function as rectifiers. For the sake of clarity the intermediate connections of the amplifier circuits are omitted. The currents from the plates of the power valves V_{3} pass through the differential field of the generator K . Movement of the accelerometer unbalances the electrical equilibrium of the push-pull circuit, and starts the motor. The flow of the ballast past the disc N moves the coils $\mathrm{P}_{2} \mathrm{P}_{2}{ }^{1}$, and gradually decreases the primary action of the accelerometer control until the velocity of the flow adjusts itself to the instantaneous value of the angular acceleration. The continuity and rapidity of the action of the valves are such that the secondary system is able to follow the primary very closely, so that the fundamental quation (3) is continuously fulfilled. The accelero meter control lever can be seen at R in Fig. 1, and the corresponding electromagnet at Q_{1}. The corresponding elements of the secondary follow-up contro are situated above the right tank at S . Observations on the variation of level in the tanks were made against a scale by means of a rod T connected to a float in the left-hand tank.

Experimental Data.

A series of records was taken for different conditions of performance. The recording chart and it onnection to the pendulum can be seen in Fig. 2.
Fig. 4 gives the curves of extinction of free oscilla tions, corresponding to the still-water performance of the ship. Curve 1 was taken with the tanks closed
${ }^{3}$ For large powers instead of the three-electrode valves used in these tests grid controlled rectifi
be very advantageously employed.

In the former case the amplitude is determined by the amount of transferred ballast.
Fig. 7 illustrates roll quenching under conditions characterised by various relationships between the intensities of the primary and the secondary controls it corresponds, therefore, to variable values of the coefficient a in equation (3). In the regions a to d the coefficient a was increased (in the order $a \longrightarrow b \xrightarrow{\longrightarrow} c$ $\longrightarrow d$), while from e to h it was decreased. This ransferred ballast, and hence the magnitude of the stabilising moment for a given angular velocity of rolling. Offhand, one may expect that the greater a the closer the stabilisation should be. This is really what happens when one passes from the region a to the region b in Fig. 7. For still more intense degrees of control (regions c and d) the amplitudes, however, are increased and not decreased and the residual are increased and not decreased and the residual
rolling becomes irregular, although the disturbing noment was regular and constant throughout the est. A closer analysis of the records provides an explanation of this phenomenon. When the intensity of the control becomes too great, for a short timee.g., one-quarter of the period of rolling, which in this case is one second-the disturbance is wiped out almost completely. This fact is evidenced by the appearance of flat spots in the rolling curve. These flat spots can be noticed in the region c of the record in d and e the curve F shows their locus. Each time such a spot develops the value of the angular accelera tion falls below the limit of sensitivity of the accelero meter (which was $0.0125 \mathrm{rads} / \mathrm{sec}^{2}{ }^{2}$ in the author's ease) and the control system becomes temporarily dle. About one-quarter of the rolling period late the amount of accumulated ballast finds itself instantaneously on the wrong side of the ship relatively to the phase of the disturbing moment at that
cent. about the average period of 4 seconds. In the region c variations in the period were combined with variations in the magnitude of the effective wav slope. The residual amplitude of rolling, it will b seen, is pretty much the same in all three cases indicating that the roll quenching efficiency of th stabiliser is fairly constant under practically all conditions. This result is undoubtedly to be ascribed to the fact that the stabilising action was arranged to follow the disturbance continuously and without any appreciable time lag.
A controlling system arranged according to equa tion (2) gave in the earlier stages of experimentation a considerably lower roll-quenching efficiency than that shown in Fig. 8 with the control based on equation (3), although for steady quenching both systems gave practically the same results.

In Fig. 9 records analogous to those of Figs. 5 and 8 . but with oil as ballast, are given. It will be noted that the passive performance (region $a b$) is very poor, a fact attributable to the viscosity of the liquid. The active performance is practically the same as
with water. The load on the impeller shaft was, howwith water. The load on the impeller shaft was, how ever, from $2 \cdot 5$ to $1 \cdot 75$ times greater than with water

Application of the Law of Similitude to Model Data.
A series of measurements obtained from the model is given in the following table. As previously mentioned, these model data have been adjusted so as to permit the roll quenching characteristics of a ship equivalent to the model-or simply "equivalent ship "-to be obtained by a straight application of the law of dynamical similitude. The data for such an equivalent ship are given in the last column of the
table. The intermediate column gives the coefficient of similitude for the different quantities ; the model lata must be multiplied by these coefficients in orde to obtain the data for the corresponding ship.
Most of the data for the model were measured with a degree of accuracy of 2-3 per cent. or less (weights, lengths, time). Measurements of the stabilising moments were made with smaller accuracy on account
the supplementary ports open to atmosphere, and augmented the normal quantity of air supplied by crank case compression.
In recent years the energy in the exhaust gases has been utilised to compress the air charge for supercharging Rateal combustion engines, and experiments with the here is ample energy exait-turbo blowers have shown that however, mechanical devices, and are used solely for the

1. Available beam 2. Cross-sectional area of tank 3. Cross-sectional area of channel. 5. Metacentrict Tanks closed .. Tanks open 6. Maximum disturbing moment 7. Maximum effective wave slope 8. Maximum stabilising moment: Passive performance Active performance 9. Period of one double oscillation 10. Amount of transferred ballast : Passive performance

of the difficulty of marking the level in the tanks during the performance ; probable errors in this case are presumably less than $7-8$ per cent. of the quantity measured. The model data given in the table are the averages of a dozen measurements. The metacentric height was determined by the inclination method; the probable error in this case is of the order of 5 per cent. The ratio of linear similitude is assumed to be $s=25: 1$.
An inspection of the characteristics of the " equivalent ship" shows that for $\mathrm{W}=13,250$ tons the available beam ${ }^{4}$ of $61 \cdot 5 \mathrm{ft}$. is somewhat too great. Furthermore, $\Theta=1 \cdot 6^{\circ}$ is too small for actual sea conditions. We will assume in the following $\Theta=4 \cdot{ }^{\circ} 0$, which covers a reasonably wide range of fairly rough weather conditions, excluding, however, heavy Atlantic gales. Assuming $B=55 \mathrm{ft}$., $T=16 \mathrm{sec}$., $\Theta=4^{\circ}$, and keeping the same h, the amount of transferred ballast in active performance w_{a} would be increased in the ratio $61 \cdot 5 \times \frac{4 \cdot 0}{1-6}$
is, about $\frac{1}{2}$ is therefore necessary to displace about 65 tons of ballast between the tanks in accordance with equation (3) on a ship having $W=13,250$ tons and $h=27 \mathrm{in}$. in order to stabilise it against the action of a synchronous wave slope $\Theta=4^{\circ}$ to the degree of roll quenching indicated on the above records. ${ }^{5}$ It is possible, on the other hand, to calculate w_{a} directly from the equation $\mathrm{W} h \Theta=w_{a} \frac{\mathrm{~B}}{2}$
$\frac{B}{2}$, wh
hence $w_{a}=75$ tons.
It is seen that the ratio of the calculated and observed values for w_{a} is practically the same as the ratio of
S_{a} to M given in the table. This ratio approaches unity for a gradually increasing intensity of control. It is to be noted, however, that with the intensity of stabilising action adopted in these experiments the amplitudes of synchronous rolling were reduced from nearly 30 deg. down to less than 3 deg. From the practical standpoint such a degre

Induced Air Scavenge for TwoStroke Engines.

by P. W. petter

In view of the great interest which is now being taken, both in this country and on the Continent, in the development of induced air scavenge systems for two-stroke oil engines, we have pleasure in publishing from the pen of Mr. P. W. Petter a short account of experimental work recently carried
special subject.

The possibility of utilising the inductive effect of the exhaust gases as they pass from the cylinder in internal combustion engines, particularly those operating on the two-stroke cycle, has received the consideration of research engineers for many years past, and many patents
have been granted for devices intended to assure this end. The principal advantage to be obtained by a solution of this problem would be the elimination of the means at present necessary for the refilling of the cylinder with a supply of fresh air, either by what is known as crank case scavenging or some form of independent blower.
About the year 1918 an engine was built in the United States by the Weiss Engine Company, which had, in addition to the normal scavenging ports connected to the crank case, a series of air ports connected directly to atmosphere, and the constructors claimed that the momentum of the escaping gases produced a partial
vacuum in the cylinder which drew scavenging air through
"The expression " available beam" designates the distance between the centres of gravity of the tanks.
${ }^{5}$ One might think that by passing from $\theta=1 \cdot 6^{\circ}$ to $\theta=4.0^{\circ}$ the non-quenched amplitudes would increase proportionately, in proportion because of the coefficient b in Froude's equation or synchronism $\frac{\pi}{2} \Theta=a \theta+b \theta^{2}$ causing departures from linearity for the increasing amplitudes θ of rolling.
purpose of converting the pressure energy in the exhaust gases into pressure energy in the air charge
with induced with induced air were made in 1922 . One of the firm
standard two-stroke cycle surface-ignition engines was standard two-stroke cycle surface-ignition engines was
fitted with a short length of pipe on the exhaust side for an experiment quite distinct from those now under consideration, when the surprising result was found that the engine would run, feebly it was true, with the crank case cover removed, although, strange to say, the exhaust was discharged through the air ports and the fresh air came through the exhaust pipe. After considering this un

Side Ports Open
to Atmosphere

EXPERIMENTAL ENGINE WITH INDUCED AIR SCAVENGE

expected phenomenon, the following conclusion as to what was happening was reached.

The engine was running with a very feeble explosion. When the exhaust port which had a lead over the air ports was uncovered, the exhaus "gases passed "rom the cylinder into the exhaust pipe "cushioning" the air
therein and setting up a certain amount of return pressure. As the piston in its descent uncovered the air inlet ports, the slightly compressed air in the exhaust pipe returned in the reverse direction to the cylinder, so expelling the exhaust gases and partially charging the cylinder with fresh air.
A continuation of the experiment with the various modifications that suggested themselves, did not, however lead to results that would justify development from a commercial point of view, and eventually research work on this particular engine was discontinued. Last year however, a new series of experiments was begun, from which some remarkable practical results have been obtained.

In the first instance experiments were made with a two stroke cycle engine having a bore of $4 \frac{1}{2} i \mathrm{in}$. and a strok of $6 \frac{1}{4} \mathrm{in}$., the engine having a closed cylinder with the exhaust and air ports placed circumferentially around the cylinder at the lower end of the piston travel, as shown in the accompanying vertical section. From the plan it will be noted that there are two air ports on each side directing the air to the back wall of the cylinder away from the exhaust port, and a central port opposite to the exhaust port. The central port was found to be of no

experimental engine

advantage, and is now utilised only for admitting air from the crank case, as described later on, to facilitate from the
starting.

The exhaust port is divided horizontally into two sections. The upper section receives the exhaust gase from the cylinder first. These gases are led through an exhaust pipe of relatively small diameter and discharge the gases at high velocity through an ejector nozzle in the centre of a larger pipe, which communicates with the lower section of the exhaust ports. The injection action
set up by the rush of the exhaust gases from the cylinder at high pressure of the exhaust gases from the cylaus port is pressure when the upper section of the extere creat a partial vacuum in the cylinder which is then filled with a partial vacuum in the cylinder which is then filled with
fresh air through the air ports which are directly open to fresh air thr

The extent of the vacuum so created is largely dependent upon the force of the explosion, and this is particularly interese of air admittedect it leads to an increase in the demand upon the engine increases. Satisfactory running of this engine has been obtained up to a working load equivalent to 60 lb . B.M.E.P. The engine was, however, difficult to start because the volume of air admitted to the cylinder after a weak explosion is small. To overcome this difficulty, a hand-controlled valve was provided for starting, which, when opened, admits air from the crank case in the normal manner of a crank case compression engine. This simple device has entirely removed the starting difficulty. As soon as the engine has run up to speed, the valve is closed and thereafter air is admitted by induction only. A general view of the engine is reproduce herewith, together with a typical indicator diagram
The experiment is now being continued with an engine

TYPICAL IndICATOR DIAGRAM

having a straight-through scavenge. In this form the engine is constructed with the air inlet ports circum ferentially at the base of the cylinder and with a mecha nically operated exhaust valve in the cylinder head The results being obtained with this engine are generally better than those obtained with the engine having the closed type of cylinder. Alternatively, straight-through scavenge can be secured in an engine with opposed pistons working with three cranks and connecting-rods per cylinder, as in the well-known Doxford type, or in an togethe with the air inlet in ane cylinder and the whan in the other, with a common combustion head as in Trojan engine
The exhan
mportant sost system in an engine of this type is an exhaust pipes is necessary in order to secure the bes result. It is possible that further experiment will enable a simplification of the exhaust system which would improve the engine from the point of view of general application, but the results already obtained are sufficient to justify the belief that they point the way to the possibility of improvements of great value in the development of the two-stroke cycle internal combustion engine. Applica tion has been made for patents in connection with th various devices described in this note. The experimental engine can be seen running at Yeovil by anyone suft ciently interested to make a visit for the purpose.

Geared Drive on the Motor Ships "Manoeran" and "Madoera."

$\bigcirc^{\text {NE }}$ of the most important conversion programme Itering the hulls of three steamers belonging to the Netherland Steamship Company, of Amsterdam, which were changed from steamers to motor vessels. The ship are the "Manoeran," the "Madoera," and "Mapia,

Fig. 1 M.S. "MANOERAN " at SEA
which were built in 1921 and 1922 at Alloa and Sunder land, and were equipped with steam propelling machinery by Sir W. G. Armstrong, Whitworth and Co., (Engineers), Ltd. The owners decided last year to re-engine the ship

Fig. 1 is a view of the "Manoeran taken on the high seas, and the drawing reproduced in Fig. 2 shows the general lay-out of the machinery installation. Each of the two engines has a designed output of 3350 S.H.P. at 225 r.p.m., and seven cylinders with a bore of 560 mm . or $22 \frac{1}{6} \mathrm{in}$., and a stroke of 840 mm ., or $33 \frac{1}{16} \mathrm{in}$. The two units are coupled to the propeller shaft through doublehelical gearing designed to reduce the engine speed of 225 r.p.m. to $86 \mathrm{r} . \mathrm{p} . \mathrm{m}$. at the propeller shaft. The engines drive the gear pinions through Bibby couplings, but solid couplings are used on the propeller shaft. In Fig. 3 w reproduce a viow of the rachinery while in Migoera fler gear is shown on the test bed luring the " "unning of the gears i
in "process.

Design of Gearing

In designing the gearing, the Demag A.G. was called upon to meet the following three fundamental conditions All-round adaptation to the existing accommodation Safety under all circumstances, both as to risk or lamage and possibility of breakdown.
Steady and quiet working free from vibration under all load conditions.
In what follows we propose to describe the manner in which these conditions were complied with and to deal with some of the more interesting points in the construction of the gears and their housings.
The oil engines and their auxiliary machinery took the place of three of the five steam boilers and the reciprocat ing steam engimes, and the distance between the two pr loft shafts of the gear casing was fixed at 3160 mm .,

Fig. 2 General Arrangement of Engine room
with t win-screw oil engine machinery. The first two of the hree ships above named have now been in commission for of Amsterdam, and the Demag A.G., of Duisburg, for the
there was, however, plenty of room available, whil vertically the centre height of the gearing and the gear ase bed was designed to follow closely the existing found a fions in the double bottom of the hull.
specially shaped flared grooves, in which they rest, ar fundamental to the principle of the coupling, and afford a means of positively altering the elastic length of the are describing the grid springs take the form of four we imposed layers, each layer being divided into six segmeer Under normal working conditions, two spring layt are ample to warrant absolutely satisfactory transmisen more than twenty times the normal torque being actuall required to break the springs. The coupling therefor possesses a large factor of safety.
The elasticity of the coupling can be varied within wide limits by inserting either two, three, or four layer of springs, and Fig. 5 shows the torque displacement diagram of the coupling with these different spring layers. The Bibby coupling has the further advantage of pro viding much latitude in the matter of misalignment of the shafts connected by it. On the operating side the design of the coupling is such that it can run over long periods with a single filling of grease, while the spring are easily accessible after the coupling shell has been removed, so that either of the two engines can be quickly disconnected from the gear system by taking out the coupling springs.
tions, the free onal oscilla

FIG. 5 TORQUE DISPLACEMENT DIAGRAM
quipped with Sandner hydrostatic oscillation dampers which were supplied by Lohman und Stolterfoht A.G. of Witten in the Ruhr.
Apart from the special couplings and dampers we have reterred to above, particular care was taken in the calcu materials, and the liberal dimensioning of all important parts where called for

Gear Wheels and Gear Casing.

The rotating parts of the gearing comprise the tw cearing is omployed, the pimons having two faces, each 400 mm ., or 15 in . wide, with a gap of 140 mm ., or 5 l in . between them. The pinions and the wheel shaft were made from annealed open-hearth steel, with a tensile strength at delivery of from 51 to 57 kilos. per square millimetre or $32 \cdot 4$ to $36 \cdot 2$ tons per square inch, and with an elonga tion of 28 to 34 per cent. For the shrouds, which were shrunk on to the pinion shafts, and on to the cast iron body of the main wheel, a special sificon-manganese steel wa employed. Although it is quite usual to use solid pinions, pinion shafts to or tires were tempered to aive pield point of from 54 to 59 kilos, per square millimetre or 34.2 to 37.4 tons per square inch, and tensile strengths of 76 to 84 kilos per square millimetre, or $48 \cdot 2$ to $53 \cdot 3$ tons per squar inch, while the elongation varied between 20 and 28 per

Fig. 3-ENGines and Gear Drive under test

Fig. 4 Running in Gear drive on test bed
following description of their propelling machinery and geared drive.

Propelling Machinery.
The "Manoeran " and "Madoera" are both ships of 14,000 tons deadweight carrying capacity. By installing if engines, raising the total engine output from 4200 to of the hulls, it has been possible to improve the speed of the ships from 12 to 15 knots.

As shown in Fige Bibby Couplings As shown in Fig. 6, the special Bibby couplings are of the coupling to be altered in a ratio of $2: 1$. They are attached between the ends of the engine crank shafts and the gear pinions. It may be recalled that the actual power-transmitting element of the coupling is a grid-like spring, which is divided into segments, and which is made damping, elastic, flexible springs, in conjunction with the damping, elastic, flexible springs, in conjunction with the
cent. The impact value was tested by the small Mesnager method, and this notch test showed surprising toughness Values of 6 m . kilos. per square centimetre were obtained, with figures even beyond 8 m . kilos. per square centimetre for the shrouds of the large wheels. When well annealed and yhrouds for the large wheels showed a tensile strengt pinion shrouds but little below those for the tempere used was particularly favourable, it being guaranteed at 40 kilos. per square millimetre, or $25 \cdot 4$ tons per square
inch, for the pinion shrouds and 34 kilos. per square millimetre, or $21 \cdot 6$ tons per square inch, for the wheel shrouds.
As our drawing indicates, both the pinion shafts and wheel shaft are forged solid with their coupling flanges.
of the material. When exposed to normal running torque the torsional stress cannot be more than 82 kilos. per square centimetre in the case of the pinion shafts or 304 kilos. per square centimetre for the wheel shaft, figures which again provide a large margin of safety,
the delivery side of the oil circuit. Each cooler has sufficient surface to cool all the oil in circulation. Sea water is used for cooling purposes and copper-tin alloy has an oil filter of the plate type mounted directly has an on flter of ehe plate type mounted directly above it, with provision for cleaning while in operation standard arrangement of thermometers and pressure ganges is provided, and there are drain pipes leading from the gear case to the two separate oil tanks from which the pumps draw their supplies.

accuracy of Gear Cutting:

To ensure quietness of running under all conditions of load, care was taken to give sufficient stiffness to the form was specially selected for the work. In their earlie practice the Demag Company used pressure angles of 14.5 deg , and 15 deg , but for many years past a standard 20 deg. pressure angle has been adopted by the firm.
The slip diagrams reproduced in Fig. 7 were got out in order to ascertain the respective merits of the two types of gearing with different pressure angles Nos. 1 and 2, and they are compared with a turbine gear No. 3. From thes diagrams it will be seen that with a pressure angle of 20 deg. much less slip is obtained-nearly half that of the 15 deg. gear-while again the larger pressure angle produces a thicker tooth root. Apart from the improved meshing conditions thereby obtained-at least seven teeth of either half wheel always are in mesh-the com paratively large angle of tooth obliquity, nearly 36 deg., was decided upon mainly on account of the fact that oblique teeth are always a guarantee of requisite pressure being obtained in the The gears were cut on special goar-cus Company for large work. The pith error diagrams reproduced in Fige s give some interesting information as to the accuracy Fig. 8 give some interesting information as to the accuracy diagrams to the right and left respectively refer to the left-hand and right-hand helix of the wheel. One diagram with the smaller amplitude records the pitch errors one by one from tooth to tooth, while the other larger ampli tude diagram is the so-called "total error diagram, which is obtained by plotting continuously the deviation of the errors found by measuring, from a given mean previously computed, by adding up the individual pitches ascertained by measurement and then dividing that sum by the number of teeth. The results obtained may be regarded as excellent in themselves and they are, we are informed, far better than the guarantee of accuracy given when accepting the order, namely, that the pitch error the large wheel and the tol error not more than 1/10,000 the diameter of the large wheel

Shop Trials and Performance at Sea,
The machining of all the parts was carried through to the programme previously arranged, and the trial assembly and test run were duly carried out, both gears being run in boral weeks. This running in process yielded, we are informed, very good wearing impressions on the tooth flanks, which bore testimony to the accuracy employed in the cutting of the gears. Referring to Fig. 4, which shows the gear arranged for running-in, attention may be drawn to the small gear wheel enclosed in a casing at the forward end of the large wheel shaft. This gear wheel is employed to drive a set of auxiliary pumps. It is a single helical drive, and a Bibby coupling was interposed between the gear and the pump shaft which runs at 700 r.p.m. Al parts of the gear drive we have described were constructed and completed to the requirements of and under the inspection of Lloyd's Register of Shipping. During the
fanks, which in their extended form take in all factors of the problom, the physical properties of the material, the obliqueness, the radii of curvature of the pinion and wheel flanks, and the angle and period of contact. By keeping the crushing stress as low as possible and as far away as possible from the yield point and the tensile strength of the material, it was sought to provide ample protection agains possible was rendered remote by the choice of materials, the use of a relatively coarse pitch of 12 metric module, with an obliquity of about 36 deg. In the design of the gears, the bearings and the construction of the gear case the Demag Company was able to draw upon its very wide experience in the construction of gears for heavy rolling mills, special gears for oil engine and turbine drives, and other power plant work. Attention may be drawn to the large size of the bearings-see Fig. 6 -which are equal in length to the bearing diameters. The pinion bearings were cast in special steel, but cast iron shells are employed for

FIG. 8 PITCH ERROR DIAGRAMS

The bearings of the large wheel. In all cases a white metal alloy without lead, composed of 80 per cent. tin, 10 per cent, antimony, and 10 per cent, copper, was used to line the bearing shells. Special care was taken to provide for a good oil film by suitable oil ways. All the bearings, it may be noted, are parallel without collars or axial abut ment faces. The gear case itself is stiffened by webs and its base and cover are both of cast iron with loose bearing caps. The lubrication follows accepted gear case primciples. There are four oil sprayer heads, each of which in operation. Two independent oil pumps, one electrically driven by $4,5 \mathrm{~kW}$ metor and the other directly driven from the large wheel shaft, are provided. The direct. driven pump is designed to arerate in either direction of rotation. As long as the main gear is working the two oil pumps are in constant service. Each of them has a designed output of about 200 litres or about 40 gallons per minute. In the extremely remote event of one pump failing, the other will deliver sufficient oil to keep the gearing fully lubricated. The oil coolers are arranged on
tests the no-load power demand of the gearing was deter mined as 34 H.P., and by computing the full-load loss an efficiency of $99 \cdot 2$ per cent. was arrived at, which, even allowing for the 6 H.P. taken by the electrically driven lubricating oil pump, gives a total efficiency of over $99 \cdot 1$ per cent,, an excellent figure. The first set of gearing to be completed was that for the m.s. Madoera, and, as Whown in Fig. 3, it was put on trial on the tess bed at the
 so satisfactory to all concerned that it was decided to install the out further trials. No further work was required to be done on either set of gers when they were installed in the ships, and they ran quietly and efficiently from the moment of starting up. The two ships were commissioned shortly before the end of last year, the "Manoeran " entering service on October 31st, 1933, and the "Madoera" on December 10th, 1933, since which time they have con tinued to operate satisfactorily on the company's regula services from Amsterdam to the Dutch East Indies.

Durability of Twist Drills Machining Cast Iron.

By G. VARLEY

Whereas there exists a very considerable literature on the effect of speed, feed, and depth of cut on the durability of various grades of cutting materials used as lathe tools, more especially in relation to the cutting of steels, the relevant literature on cutting cast iron of varying degrees of hardness is The author puts forward the following brief note
or even an appreciable portion of the cutting edge, but only the most stressed point, namely, the wing corner. The period in cutting life at which regrind ing is necessary is also somewhat vague at usual apparent by the "squeak" of the drill in cutting and this occurrence appears to be related to an area of and this occurrence appears to be related to an area

These values have been calculated in Table II, columns 6 and 7, and are plotted in Fig. 1, and show a fairly close approximation to a straight line, for which the values of X and \log. K are :-

$\mathrm{X}=6$

$\log . \mathrm{K}=6.854$, and equation (2) becomes :-

$$
\begin{equation*}
\mathrm{V}^{5} \mathrm{~N} d \underline{\mathrm{C}} \tag{3}
\end{equation*}
$$

The value of log. K has been calculated for all he observations of Table I, column 8, and these values are plotted against log. Brinell hardness number in Fig. 2. From this diagram a series of "smoothed " values of K for equation (3) have been obtained at varying Brinell hardness numbers, as given in Table III.

on this subject, partly because he has not been able to find any published data on this matter, and partly in the hope that he may obtain support or otherwise for his findings. Even to the most casual observer it is apparent that very large variations in peripheral speed and feed are utilised, not only as between one works and another, but even at the one machine, with a general tendency to run at such conditions as will necessitate drill grinding at infrequent intervals. It is evident, a priori, that the hardness of the casting will have marked effect on the life of a drill, and of all materials machined in engineering shops to-day, cast iron shows by far the widest variation under one nominal specification.
The author has collected works data for twist drills of "standard " 18 per cent. tungsten H.S.S., operat ing on cast iron of various (tested) Brinell hardness, all as itemised in Table I, and in attempting an analysis of these figures has adopted as a basic assumption a similar relationship for durabilty when cutting cast iron with a twist drill to that obtained by Taylor and later investigators for lathe tools cutting steels, \&c., namely :-
$V^{x} T=$ Constant for a given tool section at a given feed and depth of cut
(Feed per cut) ${ }^{\frac{1}{2}} V=$ Constant for a given tool section at a given tool life.
Combining these relationships :-

$$
V^{x} \cdot \text { Feed }^{\frac{X}{2}} T=\text { constant }
$$

(1)

For a twist drill running at V feet per minute peripheral speed and C cuts per inch feed, drilling N holes through lin. thickness of metal between grinds,

$$
\text { R.p.m. }=\frac{12 \mathrm{~V}}{\pi d}
$$

Penetration inches per $\min .=\frac{12 \mathrm{~V}}{\pi d \mathrm{C}}$

$$
\text { Life } \mathrm{T} \text { in minutes }=\frac{\mathrm{N} \pi d \mathrm{C}}{12 \mathrm{~V}}
$$

The effect of tool section on tool life at the same cutting conditions will be peculiar to a twist drill in that it is a tool of proportions varying exactly as the diameter, whereas the seat of failure is not the whole
remer as to necessitate a reduction of dril length by regrinding that is proportional to drill diameter.
The extent of wear of the cutting edge and the proportions of the cutting edge thus are related inde pendently of drill size, and it is concluded that tool

section in this case does not enter as a variable into the life equation.

Substituting in (1)

$$
\frac{V^{x}}{C^{\frac{x}{2}}} \frac{N \pi d C}{12 V}=\text { constant }
$$

$V^{x-1} \mathrm{~N} d=\mathrm{K}^{\frac{\mathrm{C}}{\mathrm{C}}}{ }^{-1}$
where $\mathrm{V}, \mathrm{N}, d$, and C are, as already stated, and K wil probably be controlled by the hardness of the material drilled.

To check the results of Table I, the entries applying to cast iron of a Brinell hardness of 190 have been extracted as in Table II, and logarithmic plotting applied.

$$
\log \left(\frac{\mathrm{V}}{\mathrm{CN} d}\right)=x \log \cdot\left(\frac{\mathrm{~V}}{\sqrt{\mathrm{C}}}\right)-\log . \mathrm{K}
$$

The line of Fig. 2 and the values in Table III may be represented by the empirical relationship

$$
\begin{equation*}
\frac{\mathrm{V}^{5} \mathrm{~N} d}{\mathrm{C}^{2}}=\mathrm{K}=\left(\frac{456 \cdot 6}{\text { Brinell No. }}\right)^{18} \tag{4}
\end{equation*}
$$

If the modern super-high-speed drills containing cobalt are used, a considerable increase in life per grind is obtained compared with the preceding results. In Table IV the author has collected some results for these drills, and if the values of log. K in column 8 for these drills, and if the values of log. K in column 8
of this table are compared with those of Table I, an average of approximately $3 \cdot 4$ times the life is

Fig. 2
obtained at the same speed and feed in the same material compared with "standard" high-speed drills.

It will be observed that in the preceding notes there is no specific mention that the observations related to dry drilling, the implication being that normal workshop practice was followed. Examination of twist drills after use on the harder irons now customary at present-day speeds and feeds shows that overheating of the cutting edge, and particularly the corner of the drill, is the most prolific cause of drill failure, and at once suggests the use of a coolant for drilling cast iron. Table V gives some observations on dril fe using soluble oil in water cutting compound from which it will be found that drill life at the san by conditions is increased approx
the use of this cooling medium.

Railway and Road Matters.

Sixteen of the 6000 -volt A.C. electric motor vehicles, Wrighton sysere in the electrical services on the forme ans, with a verandah at each end, and a brake compart ment in the centre. They are carried on two four-wheeled bogies, and have a tare weight of 28 tons.
The annual official document known as the Railway Returns for the It contains particulars of the capital, traffic receipts,
working expenses, operating results, and statistical table of the equipment and maintenance of the companies property and of the business done by all the railways in Great Britain.
The gear, with the unpleasant but apt name of "The dead man's handle," provided in electrically operated should the motorman's hold of the control handle b released, did its duty recently. A train from Rickmans worth to Baker-street came to an unexpected stop nea partment he found that the motorman had collapsed.
An interesting point came to light in some proceeding ecently before the London Passenger Transport Arbitra had refused, on grounds of little public interest, to take over the garage of a certain omnibus company. The latter ook the case to the Tribunal, where it was rejected again against the omnibus company. On the question he Tribunal the costs of the appear it was found that quently each party would have to pay its own costs

Just before Parliament was adjourned the Postmaste General was asked whether on giving the air mail conimilar services which could be rendered by private ai line companies, and whether he asked them to tender
Sir Kingsley Wood said, in reply, that the inland air Sir Kingsley Wood said, in reply, that the inland air services which had been placed at his disposal by Railway
Air Services were purely experimental. Members might est assured that before final arrangements were made due regard would be taken of any available air se
Having regard to the fact that the Manchester Ship Canal Company is officially recognised as a railway com-
pany-being in possession of 423 route miles of railway pany-being in possession of $42{ }_{4}$ route miles of railway,
74 locomotives, and 2177 wagons-it may be recorded in this column that Mr. F. A. Eyre retires from the position of general manager on October 1st, and will be succeeded year future, it is officially announced, Mr. Leslie Robert is intended to be the general manager; meanwhile he is intended to be the general manager; meanwhile he Board on October 1st to go to the Ship Canal as deputy general manager.
A passenger was recently fined at Bow-street police stopped. The case was more serious than these word
star convey, as the open door struck a woman standing on the platform and so injured her that she had to be taken to hat in 1933 four passengers were killed and 145 injured through falling between the train and platform when
alighting from trains and seven were killed and 1113 alighting from trains and seven were killed and 1113
injured from falling on to platforms, ballast, \&c., when injured from falling on to platforms, ballast, \&c., when
alighting from trains. Whilst in some of these cases the passenger may have fallen
Since the note herein on July 27th concerning th extension of the electrification of the Southern Railway to Sevenoaks, that company has issued some figures as to the
results that have followed the opening of the electrical results that have followed the opening of the electrical
services as far as St. Mary Cray on May 1st. During that month 27,879 passenger journeys were made over thi over 73 per cent. From 1924 to 1934, prior to the electrification of this extension, passenger traffic for the same period extension is the first portion of the electrification scheme to Sevenoaks, the whole of which, it is anticipated, will be in operation on January 1st, 1935.
Some correspondence in The Times that originated from an inquiry as to why the term " amber" was used indication in street signals, leads us to observe that there has been no such refinement on the railway, as there the "warning" or "caution" "aspect in signals always has been referred to as "yellow,. The Mimstry of Transspoke of red, yellow, and green aspects. The Ministry of Transport requirements for new railways in the 1925 and
the current-1928-editions, speak of yellow-coloured the current-1928-editions, speak of yellow-coloured
arms for distant signals, yellow for the front light of listant signals, and red or yellow for shunting signals The same terms are also used in the railway companies andard rule boo
During the last dozen or fifteen years we have had occasion to refer to the future of the viaduct over the river
Solway, which has been closed because of the need of repairs since September 1st, 1921. Its future is now however, decided, as the London, Midland and Scottish the firm of W. H. Arnott Young and Company, of which is 1940 yards in length and the longest railway bridge in this country, except the Forth Bridge, is part of the Solway Junction Railway, which was sanc bridge on the Caledonian Railway to Kirkbride on the Maryport and Carlisle, with a junction with the Glasgow and South-Western at Annan. In the great frost of January, 1881, the viaduct was damaged by some of the May Ist, 1884, that traffic over it was resumed. Under the Railways Act, 1921, the Solway Junction Railway was
incorporated in the L.M.S.

Notes and Memoranda

Miscellanea

Tee Blackwall Tunnel is being closed on August 18th The Cunard-White Star liner "Albertic " has been Id to Japanese ship brak been laid up since November, 1930.

This month the Swedish train ferry service between relleborg and Sassnitz-Sweden's principal link with he European Contine

During the first seven months of this year 3265 ships passed through the Suez Canal, compared with 3047 in 1933. R
$16,610,000 \mathrm{f}$.
It was announced at a meeting of the British Medica Association that the National Physical Laboratory ha decided to institute an investigation into mechanical an electrical aids to hearing
The sixteenth annual Model Engineer exhibition of engineering and marine models, tools, and light machinery from September 6th to 15 th
The city authorities of Istambul, Turkey, are prepar ing plans for the construction of a tunnel under the constructed between Arnoutkenny and Vanikenny
IT was originally intended that the Honore Mercie bridge over the St. Lawrence should not be opened unt rapid that it is already in service. It was built by the Dominion Bridge Company, and is 2918 ft . long in twelve spans.
A NEW motor lifeboat of the light Liverpool type, 35 ft .6 in . long by 10ft. broad, specially designed
stations where the lifeboat has to be launched off a carriage or the open beach, has been stationed at Cromer. It has a speed of just over 7 knots and can travel 115 miles without refueling.
A great increase was shown in the output of Canadian central electric stations for June when the production $45,697,000$ kilo $1,708,291,000$ kilowatt-hours, as agaion year. Exports to United States amounted to $113,648,000$ kilowatt-hours.
The United States Bureau of the Census announces that according to a preliminary tabulation of data collected in the Banufactures taken in 1934, the amounted to $22,857,875$ dollars, a decrese of 58.5 pe cent. as compared with $55,109,887$ reported for 1931 .
The total number of unemployed workers in June 1934, in the U.S.A., was 7,934,000, according to an estiis an inease of 89,000 or 1-1 per cent, from May, 1934 is an increase of 89,000 , or $1 \cdot 1$ per cent., from May, 1934, total in March, 1933, when unemployment was at its highest point
According to Colonel C. H. Bressey, the chief technical oreo in Great Bry is 134,118 miles unclassific large proportion of almost unimproved roads. Expend ture other than loan charges on the maintenance, repai and minor improvements of highways and bridges in Great Britain for the year 1931 to 1932 amounted to £34,764,000.
Orders have just been placed by the Pennsylvania at a cost of more than 6, electric passenger locomotives prise part of the fleet of 101 new electric locomotives the railway will use in inaugurating through electric service between New York and Washington next year. The new engines have a cab, in which the engineman's control position is placed in the centre instead of at the ends.
The firing of the fog gun at two-minute intervals in ogg signal giving a blast of two seconds' duration diaphon seconds from the lighthouse. A bell giving one strok every seven and a-half seconds will be sounded from the western end of the southern mole or breakwater, and the small diaphone on the breakwater, which gives a thre seconds' blast every ten seconds, will continue in operation
For the current year the programme of the Bureau of Public Roads, National Economic Council of China, pro vides for the construction of about 3100 miles of main road by various provinces which receive funds from the Burea or this purpose. In addition, it will undertake the dire Construction of about 2500 miles of main highways in the Wester Provinces. The Bureau was in 1932, and during the past two years about 2500 miles
have been built with its financial aid and under its super vision.
At a meeting of the Institute of Marine Engineers, which was held on Thursday, August 2nd, a Guild of Benevolence was established, which will take the form of a national movement to help marine engineers and their dependents in times of distress. The Guild is the outcome of the nd relief scheme for marine engineers' dependents and based on the organisation now conducted by the will now Marme Engineers Guild. The various inal fund, which will beormated med one substantial Institute of Marine Engineers. The President of the Instifute, Mr. John H. Silley, announced that Lord Weir had promised $£ 6000$ and the P. and O. group $£ 2500$, while Erimilar sum from Lond Essendon on behalf of the and a Withy group Mr Silley said that, while he frankly Winy g that the seheme was being launched at possibly the most difficult time in the history of British shipping it was particularly gratifying to him to know that ship it was particularly gratifying practical sympathy with the efforts of the Institute to assist brother engineers whe happened to be in distress.

ave:-traversing passenger gangway
bove:-Passenger gangwar in raised position

©ly Cugine

AUGUST 17, 1934.
No. 4101

Contents.

The E

A sbven-day Journal ...
Cherbourg Harbour Work
herbourg Harbour Works. No. II. (Illus,)
hif Stabilisation by activated Tanks. (Illus), Induced Air Scavenge for Two-stroke Enainks. (Hllas.)
Geared Drive on the Motor Ships "Manobrin " Madoerd." (Illus.)
durability of Twist dimle mohining Cast tron. (Illus.)
Rallway and Road Matters.
Notss and Memoranda
Miscellanea
abadise Articles-
A Shortage of Skilled Labour
ship stabi

ltherature t'morid's

voise. No. I. (Illus.)
I Fatigue testing Machine for Wire. (Illos.)
L.M.s. +6-0 Mixed Traypic Eneines. (Hlis.)
sixty Yrabs ago
The Recent Grid fallure
the iron and Steel institute
Non-sidp bandages for Beli puleys. (Hlus.)
outdoor Metal-clad Switchgear and Centrovisoby Contro Equips
Loguts .
Catalogutes.
Perbonal a
Contracts
Contracts
lainches and trial Tripy
Markets, Notes and New:
Current Prices yor Meta
French Engineering Notes
British Patent Specificatio Forthcomina Engagements

NOTICES TO READERS.

- For Subscription rates, see page 2 of Advertisements.

All letters intended for insertion in TBE ENGINEER or containing questions should be accompanied by the name and address of the writer,
not necessarily for publication, but as a proof of good faith. No notice Dhatever can be taken of anonymous communications. - No undertaking can be given to return drawings
correspondents are therefore requested to keep copies.

A SHORTAGE OF SKILLED LABOUR

During the past week much prominence has been given in the daily Press to some remark regarding a shortage of skilled labour in the shipbuilding industry which Mr. R. L. Scott made at the launch of H.M.S. "Galatea " at Greenock on August 9th. Mr. Scott described the shortage of skilled workmen as being very serious and stated that if a sudden demand for an increased output of merchant or naval ships arose the craftsmen required to build them would not be available. This situation, paradoxical as it may seem in connection with an industry which heads the list as regards unemployment, has, it seems, arisen from two causes. The older skilled workers, disheartened by prolonged periods of idleness, have, in many instances, sought employment in other forms of activity or have emigrated. Simultaneously the lean years through which the shipbuilding industry has been struggling have witnessed a diminution in the number of apprentices entering the skilled trades. Very naturally youths who in normal times would have found their way into the shipyards have shown a preference for callings requiring a less prolonged period of training and promising a greater steadiness of employment than the shipbuilding trades. For ten years, a period covering two generations of apprentices, these two processes have been going on side by side, the one resulting in an accelerated rate of removal of skilled men and the other in a diminution in the rate of their replacement. Others besides Mr. Scott have called attention to the position. Mr. Henry Robb speaking at Leith, also on August 9th, dwelt not only on the shortage of skilled craftsmen but with the shortage which has simultaneously manifested itself in the ranks of students of naval architecture from whom the future technical executive staffs will be drawn. In 1922, he said, there were 372 students on the roll of the Institution of Naval Architects. Last year there were only 80 . In the Scottish universities and colleges there were 200 students of naval architecture in 1922 while last year there were only 65. Mr. Walter Runciman recently stressed the same point and used it effectively as an argument when urging British shipowners to scrap older tonnage and to replace it by new vessels. Our shipping industry, he argued,
cannot prosper without a prosperous shipbuilding industry behind it and prosperity in the yards is dependent upon an adequate supply of skilled craftsmen.
To what extent, we must naturally ask, is this serious situation in the first place peculiar to this country and secondly peculiar to the shipbuilding industry? That Great Britain is not alone in experiencing a shortage of skilled labour is certain. It would appear to exist with equal severity in the United States. According to a recent statement by Mr. R. E. W. Harrison, Chief of the Machinery and Agricultural Implements Division of the Department of Commerce the shortage of skilled labour in the United States is in certain branches of industry already serious. He says that when business recently improved to an extent making it possible to run some plants up to 50 per cent. of their capacity one of the biggest problems which had to be faced by the managements was to find sufficient skilled labour to man the machines and operate the processes. The supply normally provided by immigration had been interrupted by national policy while that originating in apprenticeship had been restricted by a general failure on the part of manufacturers to institute sound apprenticeship schemes during the preceding period of prosperity. Mr. Harrison's remarks apply not to one but to several leading industries in his country. Similar evidence of a present or prospective shortage of skilled labour has come recently from the Continent and particularly from France. For the time being the supply of craftsmen is sufficient to meet the needs of French industry working, as it is at present, on a low level but wellfounded fears are felt that a deficiency would at once become manifest if only a small increase of activity were demanded. In this country it is perhaps only natural that the shortage of skilled labour should have become publicly prominent in connection with the shipbuilding industry. Shipbuilding is not only one of our staple industries : it is a calling which does not lend itself readily to mass production methods and which employs a high ratio of skilled to unskilled labour. Further it has suffered from lack of work in recent years more acutely perhaps than any other branch of the engineering and allied industries. These facts have united to make prominent the growing dearth of craftsmen available for shipyard work The problem is, however, certainly not peculiar to the shipbuilding industry although circumstances have given it chief prominence in connection with it. The same factors which have led to a shortage of skilled labour in the shipyards have been at work in most other branches of engineering. The intensity of their incidence may have varied from branch to branch. Here and there local circumstances or the courageous adherence to appren ticeship schemes established in times of pros perity may have eased the situation to the point of complete relief from all fears for the future Elsewhere the conditions which have brought about the present situation in the shipyards have been reinforced by the natural effect produced by the extensive resort to methods of mass production. Mass production lowers the necessity for the employment of skilled labour but in the long run and taken over the nation it must reduce the volume of skilled labour available to industry as a whole.
It is extremely difficult to suggest any practicable solution of the problem but it is certain that if decisive steps are not soon taken to solve it it effects will become unpleasantly grave. Skilled workers cannot be trained in a day or a month If a sudden and sufficient influx of apprentices to our shipyards and engineering establishments took place to-day the deficiency in the supply of skilled labour would not be made good until at least five years had elapsed. Who knows to what extent the next five years will witness a demand for the skill which will be lacking ? It is evident that there ought to be a phase difference between the number of apprentices in training and the state of prosperity prevailing at the same time. At present the regulations of the trades unions limit the number of apprentices in proportion to the number of tradesmen employed. The employers, for the most part, augment the effect of this restric tion by an understandable disinclination to engage new apprentices during times of bad trade. Hence it comes about that under present conditions the number of apprentices in training at any one time is, broadly speaking, directly proportional to the prevailing state of prosperity. The two factors ought not to be in step but out of phase by a time interval equal to the period required to convert a youth into a skilled workman. The training
of apprentices ought not to be regarded by the employers either as something in the nature of an expensive moral obligation or as a source of cheap labour but as a long-term investment. The full realisation of that fact is essential to the solution of the problem now presented to us by the growing dearth of skilled labour. What ever solution may be found for it we feel assured that it will not be arrived at by local or sectional efforts but that it will be reached by the united action of associated industries throughout the country possibly with substantial assistance from the Government. In one respect we cannot help regretting that the shortage of skilled labour has been united with an alleged shortage of students in training for executive positions. There may be a dearth of students of naval architecture but there are no signs of any shortage of students preparing for the civil, mechanical, and electrical engineering professions. It would be most undesirable if the mistaken impression received wide publicity that the current or prospective demand for young professionally trained engineers is or will be in excess of the supply. The executive ranks are to-day overcrowded and so far as we can see are likely to remain so for some years to come

The most courageous experiment so far made in the field of automatic ship stabilisation undoubtedly is, and for some time will undoubtedly remain, the triple gyroscopic equipment installed in the Italian liner "Conte di Savoia." Rumour has not been idle concerning that equipment but most of it, we are assured, is unfounded. The performance of the stabilisers, it appears, has been and continues to be satisfactory. More we cannot say, for the owners and the Italian Government have pursued a policy of secrecy on the subject, justifiably, no doubt, from their point of view but regrettably from the purely technical and scientific standpoint Many engineers, naval architects and shipowners would like to receive authoritative answers to numerous questions concerning the cost, upkeep. running expenses, efficiency and other features of the equipment. Full particulars of its design and construction were published in our issues of January 15th and 22 nd 1932 but complete official silence has been preserved regarding its behaviour and value in practical operation. Turning to alternative methods of ship stabilisation we find that the activated anti-rolling tank system is to-day commanding considerable attention. In one form or another the activated tank system has now been fitted and tried under practical conditions in at least three ships, the German gunnery training vessel "Bremse," the Hamburg Amerika liner "Cordillera," and the "Königen Luise " belonging to the same company. In our issue of June 29th Dr. Rellstab described the Siemens-Halske type of activated tank equipment. In this week's issue will be found an account of the important experiments on the subject conducted in America by Dr. Minorsky To these names we may add that of Dr. Frahm who, in conjunction with Messrs. Blohm and Voss, is also working in the same field.
The activated tank system is a development of the passive system, introduced into practice by Dr. Frahm in 1910 on the Hamburg-Amerika liners " Ypiranga " and " Corcovado " and subse quently applied to well over a million tons of ship ping, including the "Bremen " and "Europa. In view of its extensive adoption it might be thought that the passive system had established a reputation for completely satisfactory operation under all conditions and that its employment represented a definite addition to the comfort and economy of a ship. In actual fact however these points have never been publicly proved beyond a shadow of doubt. Under certain conditions passive tanks can, and certainly do, exercise a beneficial effect on the rolling characteristics of a ship. It is beyond dispute, for instance, that a ship fitted with them will, when heeled in still water and released, come to rest again much more quickly than she would do without them. Again, taking the somewhat more arduous conditions of a ship at sea exposed to the action of a uniform and regular train of waves, we need feel no doubt about the ability of passive tanks to modify the rolling motion. Only rarely however, do the waves encountered at sea constitute a uniform and regular train. Their common condition is that of a "confused sea " consisting of two or more trains superimposed on one another, the constituent trains being similar neither in height, length, period nor direction. In such a sea a ship is not exposed to
a rhythmic series of heeling moments following some specific pattern which can be analysed. In extreme cases a heeling moment to port may be followed by another in the same direction without the intervention of a heeling moment to starboard. The water in the tanks, set into oscillation by the rolling of the ship, tends to continue in oscillation in its own period. That period is determined primarily by the design of the tanks. It is controllable subsequently, to a certain extent, by those in charge of the ship but in no way is the period of oscillation, and still less the phase, controlled automatically by the motion of the vessel. It is not, therefore, difficult to postulate possible, even probable, sea conditions under which the tank water, oscillating more or less rhythmically, would fail to preserve the correct period and phase required to counteract the irregular heeling moments applied by the waves. It is even possible to visualise practical conditions under which the tank water would exert on the ship, temporarily, not a stabilising, but a de-stabilising moment. The root of the problem thus presented clearly lies in the passive nature of the oscillation acquired by the tank water, that is to say in the lack of automatic adaptability of the period and phase of the tank water in accordance with the erratic requirements of an irregular seaway. The object of the activated tank system is to overcome this lack of adaptability by changing the free oscillation of the water column into a forced oscillation of a period and phase which are varied automatically to suit the instantaneous external sea conditions. In the method favoured in Germany the forcing agency is air pressure which is applied to or withdrawn from the surface of the water in the tanks. In Dr. Minorsky's method a reversible pump is inserted in the water connection between the two tanks. Obviously very much, if not everything, depends upon the speed of response and the certainty of action of the apparatus employed to control automatically the admission of air pressure to the tanks or the speed and direction of rotation of the water pump. In the Siemens-Halske system the air-controlling valves are operated, through relays, by a gyroscopic instrument which detects incipient rolling of the ship. The Minorsky method dispenses with a gyroscopic piloting device and makes use of a double control based on the angular or linear transverse acceleration of the hull and on the instantaneous velocity of flow of the water in the trunk connecting the tanks.
The activated tank system may be criticised on the ground that it does not possess the simple, non-mechanical character of the passive system and that it is dependent almost, if not quite, as much as the gyroscopic system upon the ship's power supply and the correct functioning of special machinery and instruments. Whatever may be the precise method of applying the system, there is required an arrangement of blowers, water
pumps or other machinery for imparting forced motion to the water and instrumental and relay equipment for detecting the effect of the waves and operating the controlling gear in accordance with the indications received. An actual inspection of the equipment on the liner "Cordillera, left us with the general impression that, while in some of its instrumental details the arrangement exhibits a certain amount of complexity and delicacy, in its main elements it is of a robust and straightforward nature and is capable of being made and installed at a reasonable cost and without occupying a great amount of valuable space. In addition to the prime fact that the new method is designed to overcome a very serious defect in the action of the old, it has two important features which must be taken into consideration in any endeavour to assess its absolute and comparative merits. There are occasions, in some cases numerous and prolonged, when the passive tank system can be relied upon to exercise its antirolling function in a satisfactory manner. On such occasions by shutting down the blowers or the pumps the active system can be made passive and the stabilisation of the ship thereby effected without the expenditure of power or dependence upon the functioning of mechanical equipment. When required the system can be activated almost at a moment's notice. In this connection the active tank system, it may be noted, contrasts very favourably with the gyroscopic system the stabilising effect of which disappears if the power supply is interrupted. Secondly the active system possesses a characteristic completely absent in
the passive system. The blowers or pumps can be run to maintain an excess of water in one or other of the tanks, either a constant excess or what may be called a running excess. If for instance the ship develops a list to one side, as for example by the flooding of a compartment or the crowding of the passengers to port or starboard, the tank water may be distributed unequally to counteract the list. If again the ship encounters a heavy sea combined with a wind blowing on one quarter the tanks may be run with an inequality of amplitude in the motion of the water with the object of counteracting the heeling effect of the wind and of stabilising the ship in the vertical position. In this respect the active system reproduces a valuable characteristic of the gyroscopic system. Summing up we may therefore say that the active system, regarded purely from the technical point of view, possesses features of considerable scientific -not merely under selected sea conditions but over a prolonged period of sea voyaging-has, however, still to be given. Only when the results of such a test have been made freely available will shipowners be in a position to consider the crucial question of the economic value likely to accompany its commercial adoption.

Literature.

Portland Cement. By A. C. Davis, M.I. Mech. E., \&e. London: Concrete Publications, Ltd. 1934. 30s. net.
Any work on cement from the pen of Mr. Davis, who is the works managing director of the Associated Portland Cement Company, is likely to contain much of interest and value. An earlier work by the same -is well known as a history of the development of the cement industry. In the present volume of over 400 pages Mr. Davis deals more particularly with all phases of cement manufacture. In a preliminary chapter he sketches the history of Portland cement, but in much less detail than in his earlier work. This interesting historical sketch is, however, quite ade-
quate to the purpose. The most valuable part of the quate to the purpose. The most valuable part of the
present volume will be found in the chapters devoted to raw materials and manufacturing processes. These
are full of interesting and useful information and are full of interesting and useful information and
represent about two-thirds of the contents of the volume. The remaining chapters, devoted to the chemistry of cement, methods of testing, and notes on the use of Portland cement, are sufficiently comprehensive for the ordinary engineering reader. to Mr. Davis' volume for information on the subjects of their special studies.

Portland cement is by far the most important cement for constructional purposes, and the author emphasises, we think rightly, the pre-eminent part taken by, British industry in its development.
"Aspdin," he says, " originated a British industry
which has never flagged, and England has ever since taken the lead in the important developments in
cement manufacture. These improvements have been copied throughout the world, but England can still claim to produce Portland cement of a quality unsurpassed by any other country.

At the present time much valuable knowledge exists and, of the in a few minor points, such as the adjastmen mately controlled), the manufacture is performed with precision and the product is of uniform and excellent quality, in spite of the fact that the chemistry, both of the formation of Portland cement from its raw materials and of the changes which it undergoes on setting, is still incomplete." Mr. Davis further points out that " during the last decade important develop-
ments have taken place in the character of ments have taken place in the character of Portland
cements produced in England, and these cements produced in England, and these have been
copied abroad." This statement is, perhaps less copied abroad." This statement is, perhaps less
than fair to those research workers in America and on the Continent of Europe, who have done so much in recent years to improve cement manufacture and to
their efforts towards the production of cements suit. their efforts towards the production of cements suit able for specialised classes of work
On the subject of cements for special purposes Mr. Davis has little to say. We should have liked to know more of his views on this important subject. Something is being done in this country, even if only on a limited scale, to meet the special needs of cement users in the construction of marine works and in mass Davis does make a brief reference to low-heat cement
in the following words: "While the strength and rate of hardening have been increased by the manu facturer, the volume changes occurring in set Portland cement concrete remain to some extent in the control of the user. More rapid hardening may be accom panied by an increase in the evolution of heat, which is advantageous in cold weather, but may lead in big masses of concrete to internal temperatures liable to cause shrinkage movements on ultimate cooling unless maturing conditions are controlled with knowledge and care. In the latter case cements with a low evolution of heat are finding favour." Of course, the author may quite reasonably make reply to the fore. going criticism by pointing out that his work is primarily a description of manufacturing processes, a primarily which has, we believe, not hitherto been subject with so adequately as in the present work. The author deals fully with this part of the subject from author deals fully with this part of the subject from
the selection and winning of the raw materials to methods of packing and dispatching cement, and this section is full of excellent illustrations, including line diagrams, of processes and machinery
The chapter headed "Cement Sampling and Test. mg " is brief and there may be readers who will regrec that Mr. Davis has not written something about the recent work of the Building Research Station at methods of testing. But this chapter does contain very valuable section on causes of concrete failures. Why this useful and practical summary of expert knowledge should be embedded in a chapter on testing is not clear.

The chemistry, mineralogy, and composition of Portland cement are dealt with in six chapters in quite sufficient detail for those who are not specialist in the chemistry of cement, and these are followed by two useful sections on tensile, compression, and trans
verse tests of cement and concrete. These, together verse tests of cement and concrete. These, together
with parts of other chapters, form separate conwith parts of other chapters, form separate continuations of the author's general remarks on testing
We gather that Mr. Davis is doubtful of the value of transverse tests. "Investigations have been made from time to time to determine whether this test is useful as a laboratory check upon the quality of cements, but it has yet to be shown conclusively that the tes offers advantages over the tensile strength test. Brief reference is made to the "Code of Practice for reinforced concrete issued by the Department of Scientific and Industrial Research early in the present year, and, in the concluding chapter, Mr. Davi summarises the fruits of his long experience in a series
of notes and rules for the use of cement for concret. of notes and rules for the use of cement for conc
work so as to obtain the best results in practice.

Gas Engineers' Handbook. Compiled by the Pacific Gas Assoclation (Gas Engineers' Handbook Com mittee). Revised by the American Gas Assocla Company, Inc. 1017 pp . Price 42s. net
To appraise a handbook is to start with a disad vantage. A handbook only becomes useful when it i used continuously and when its contents are so well known that they become like old friends, "to help
thee in thy need." A good handbook is perhaps the most difficult of all books to compile, for every thing contained in it must be accurate, there must be no verbose discussions, but plain statements of acknowledged fact only, and, above all, it must be complete. A text-book may omit certain phases of the subject, it may be stronger on some than on others, and so long as a technical book yields a reasonable amount of information the purchaser generaly
siders his money to be not ill-spent. Not so the hand book, and the difficulty is the greater because the type of information that one man may require will not bo that which will suit the needs of another. It is, therefore, an outstanding merit of this book that it has been compiled by a committee of American gas engineers belonging to many different companies
with differing needs, and that it has been enlarged with differing needs, and that it has been enlarged and revised by a technical committee appointed by
the American Gas Association. It may not unthe American Gas Association. It may not un-
reasonably be considered as representing the practice reasonably be considered as representing the practic and needs of the whole gas industry of America. country feel rapidly disappearing, so that we in thin American practice with our own
The inherently scientific character of the work is one of the first things to be noted. The pages devoted to heat transfer, for example, contain many formula for conduction and convection under diverse circum stances, including elaborate methods of solving film conductance and radiation problems, and a discussion upon rates of absorption and heat transfer between gases and liquids in such apparatus a
towers, scrubbers, cooling ponds and sprays towers, scrubbers, cooling ponds and sprays.
There is also an unusual treatment of problems in which heat transmission is variable with time. When compared with English handbooks the impression left that the American gas engineer is far better equipped for getting down to first principles in solving his problems than is his British counterpart. Th extensive use of the equations of physical chemistry with certain sections of the book, such as those deali with equilibrium constants and reaction velocities provides further evidence of
the American gas engineer.

The book is commendable for the nice balance which maintained between the bare presentation of fact and formulæ and the more extended explanations and
notes which render the formule useable, even by those not fully acquainted with the particular phas of the subject under discussion. One may in this connection refer to the 50 -page description of the reactions and working of producers and blue water gas sets, to the short (30-page) but highly informative section on coal carbonisation, and to the elaborate treatiseno other word is sufficient-upon gas analysis. Some sections of the book are not applicable to British practice ; we do not, for example, need to know how to reform natural gas, and we are not greatly interested in oil gas ; but these portions are sufficiently small to be neglected without influencing one decision upon the book as a whole as one eminently suited to the needs of all those, whether gas engineers or coke oven operators or designers, who are interested in scientific coal carbonisation.

The book is divided into eight sections :-Mathe matical and conversion tables and graphs; properties of air, gases, steam, and water ; properties combustion; production of gas (producer gas, B.W.G., C.W.G., coal gas, and purification of gas) testing and measurement; transmission and dis tribution; utilisation of gas, including information upon industrial applications. Particular reference may be made to the last section from the point of view of the general engineer who will be interested in
the information given upon the use of gas for metal melting, heat treatment, baking, steam generation, and gas engines, and upon the recovery of waste heat

Civil Engineering Handbook. Edited by L. C URQUHart. New York and Lon
Hill Book Company, Inc. 30s. net.
This "handbook," for which Professor Urquhart, of Cornell, is responsible as general editor, is a new
work of nearly 900 pages and differs materially from the pocket books and handbooks in common use in America and in this country, such as Molesworth, Kempe, and Trautwine. In the present work there are few of those tables of data and dimensions which form such a large-and useful-part of the ordinary pocket book. The book is the work of ten authors, all of them holding engineering professorships in fornia, and each being responsible for the presentation of a separate subject of civil engineering pracEngineering, Mechanics of Materials, Hydraulics, Stresses in Framed Structures (by the general editor), Steel Design, Concrete, Foundations, Sewerage and Sewage Disposal, and Water Supply and Purification. The editor in a short preface says that one aim
of the handbook is to present "the fundamentals of of the handbook is to present "the fundamentals of
the sub-divisions of civil engineering." It is also, he says, intended that many of the sections may be used as text-books in undergraduate courses.
All the individual contributions are, as might be expected, essentially American in treatment. The references to authorities, specialist technical works and examples of construction are mainly American, although European publications in
A cursory examination of the contents gives the impression that some of the sections, if not all, are or more specialise abstracts or abridgements of on tions," by Professor C. C. Williams, of the Iowa State University, for instance, seems to be a résumé in 80 pages of three well-known American works, all of which we have reviewed in these pages when they were published. These are the standard works on foundations by Fowler and by Jacoby and Davis, and
the author's own book on masonry structures and foundations. The information now given by Professor Williams does not appear to have been brought up to date and revised, so as to include references to
recent construction and developments in design. recent construction and developments in design.
We expect that undergraduate students in America, who may be required to study "Foundations " as special subject, would be told to read " Fowler or some parts of it, while the more experienced engi abstract if he had occasion to supplement his own professional knowledge and experience by reference to technical literature. Some of the data given in thi section might have been expressed with more clarity It is not clear whether the weights given in the tabl and on page 675 , an example of the cost of concrete piles is given per lineal foot, but there is no indication of the size of the pile ; a similar criticism applies to he figures in the table on page 674
The section on "Concrete" by Professor S. C
Hollister seems to us to be a comprehensive accoun
of the principles of concrete construction as practised in the United States and to be up to date and suited Water Supply " also is a useful outline of present day American practice. Mr. H. W. King, of the University of Michigan, in 90 pages, attempts ummary of the principles of hydraulics which compared with Unwin's classic résumé of the subject which occupied about the same amount of space in he old eleventh edition of the "Encyclopædia Britannica" (1910). We note that Professor King heads his short bibliography of authorities with
reference to the American edition of Professor A. H

Gibson's "Hydraulics." This is one of the very few references to standard text-books by British authors which appear in the handbook. "Surveying," by Engineering," Davis, and "Railway and Higway Massachusetts Institute, are based exclusively on American practice. Professor Urquhart's contriAmerican practice. Professor Strquhart," contri-
bution on "Stresses in Framed Structures," and that which follows it on "Steel Design," by Professor C. T. Bishop, of Yale, are good summaries, but the latte devotes to the now very important subet of weld structures little more than a page of text.

The handbook, for reasons which we have sufficiently indicated, is likely to be of little use to British students, and its value to engineers in th office and in the field is limited. It can neither tak the place of the existing comprehensive pocket an other reference books, nor does it relieve the practising engineer of the necessity to refer to separate work on his special subject.

The Hardness of Metals and its Measurement. By Hugh O'Neill,

and Hall. 25 s.

Dr. O Neill has made himself master of the subject or hardness testing and no one is more qualified than plexity, he has succeeded in writing an exceedingly good treatise. The development of hardness testing has practically all taken place during the presen century, but during that time an immense amount of
information on the subject has been published. information on the subject has been published
Indeed, Dr. O'Neill has drawn on no less than four hundred and ten sources of reference for the compilation of his book. As a book of reference, there fore, it fills a gap which will be appreciated alike by investigators, students, and works staffs.

The book begins with an introductory essay on The first chapter deals with features of some of the static indentation tests, and is of first importance as regards the interpretation of such tests. Chapter II deals with the static ball test, and is devoted mainly to a critical study of the Brinell hardness and similar indentation tests. The various types of machines available for hardness testing are given in Chapter III. Chapter IV deals with hardness and its relation to deformation and strain hardening, whilst Chapter deals with the crystallinity of metals and its bearing upon hardness. Chapter VI discusses hardness test on metals and alloys as affected by heat treatment whilst Chapter VII continues this subject into the domain of tests on soft metals and hot metals Chapter VIII discusses the preparation of samples and the method of carrying out the tests, and point out where errors may arise and discusses methods of preventing them. Chapter IX deals with forms of hardness other than indentation hardness, namely abrasion, machinability, and cutting hardness. It wil therefore be understood that Dr. O'Neill has deal with his subject from all the necessary angles, and that there is in this book matter to interest not only the practical man and the engineer, but also to the physicist and others who wish to go fully into the significance of the various hardness tests and their relation with other physical and mechanical properties of the materials.
There is little to criticise in the book. The general arrangement is good, although perhaps the matter of Chapter VIII might have been given next to Chapter III, to which it is closely related. There is
occasionally some little looseness in the mathematical expressions ; for example, on page 57 there is th following statement
$\operatorname{Sin} \frac{\varphi}{2}=\frac{d}{\mathrm{D}}=30^{\circ}=0 \cdot 5$, then $d=\frac{\mathrm{D}}{2}$
The practice of putting the root index outside the radical sign (e.g., $3 \sqrt{ }$ instead of $\sqrt[3]{ }$) occasionally formula 6 on page 28) Indentation forms of hard ness, although they are governed by a complexity of factors, are relatively simple when compared with the other types of hardness dealt with in Chapter IX and it is perhaps a pity that that chapter was no made more extensive than it is. It would have been of advantage had file testing machines been dis cussed in an adequate manner. As regards abrasion testing, one factor not dealt with by Dr. O'Neill is the heat generated by friction as affecting the surface properties of the material. The high abrasion resist ance of Nitralloy is probably due as much to this actor as to its extrome hardness, and the wea resistance of manganese steel may also be due to the fact that on heating the soft austenite changes over o the hard martensitic form.
Dr. O'Neill is to be thoroughly congratulated upon subject.

The World's Metal Production and Consumption.

The movements in the production and consumption of non-ferrous metals last year are set forth in the ustomary annual report of the Metall Gesellschafi of Frankfort-on-Main, which states that 1933 brough about the long-desired halt in the downward course
which has proceeded since the record year of 1929

The upward trend in the consumption last year is mentioned as having continued in the first half of the present year, and has led to a not inconsiderable diminution in the stocks of copper, zinc, tin, and lead although, in the case of the last-named metal, the stocks in May, 1934, were higher than in 1933. The increase in the consumption and the reduction in the stocks afforded the possibility of a substantial augmentation of production at the mines, works, and refineries as compared with 1932. The accompanying statistics are extracted from the report

	1933.	1932.	1929.
Lead	1148.8	1148-5	$1742 \cdot$
opper	1049.7	929.0	
	986.5	781.5	
	$100 \cdot 1$	106.0	

It will be seen that an exception to the increas of production took place last year in aluminium and tin, the output of which, despite the growing con sumption, further declined, and it only joined the rising movement in the other metals in the current year. Notwithstanding the improvement last year, both production and consumption on the whole remained very far below the maximum level which was reached in 1929. The diminution in 1933 as compared with 1929 was 49 per cent. in aluminium and tin, 45 per cent. in copper, 34 per cent. in lead, and 32 per cent. in zinc. During the past few years it has been chiefly the United States and South and Central America which have been compelled to reduce the production of metals far beyond the average level. Thus, as contrasted with 1929, the output in these countries, excluding Canada, only amounted to 33 per cent. in copper, 38 per cent. in aluminium. 42 per cent. in lead, and 52 per cent. in zinc.

On the other hand, it has been possible in the same period for the British Empire, the European Continent, and Russia, with the Far East in general, to maintain the production of metals above the degrec of the world average, and in part even considerably to increase the output over 1929, especially of copper in Canada and Rhodesia, where large new deposits of copper ores have been opened up and worked In Europe the copper works in Yugo-Slavia, Sweden and Belgium have also maintained the level attained in 1929. The tin works in Furope have inereased their output over 1929, mostly in Holland where ores from the Dutch Fast Indies are smelted to larger extent than formerly ; and also in Belgium, where tin ores from the Congo are being treatad Besides the Chinese out-turn of tin, the production figures for Russia for aluminium, lead, copper, and zinc in part show quite substantial advance ove 1929.

It is noted that a considerable displacement has taken place in the countries from which European consumers have been supplied with metals in the past five years. While, for instance, in 1929, no less than 84 per cent. of the European imports of copper were obtained from the United States and Chile and only 16 per cent. from British oversea region Belgian Congo, and South Africa-and State and Chile in the deliveries to Europe only amounted to 47 per eent, as Conada. Phodesia, and the Conted increased their participation to 53 per cent ncreased fior parto 1 absom the United Statespend Chile declined frop 518,000 tons in 1929, to 209,000 tons in 1933, whil in the same period the European imports from th British possessions and the Congo rose from 98,000 tons to 235,000 tons. A similar state of affair exists in regard to the European imports of lead The percentage share of the United States and Mexico in the supply of lead to Europe fell from 39 per cent in 1929 to 22 per cent. in 1933, whereas the shar of Canada, Australia, and British India grew in the same period from 57 per cent, to 75 per cent. Thi same development occurred in the European import of zinc, the United States and Mexico having lost ground to the advantage of Canada, Australia, and Rhodesia.

Under existing conditions producers in countrie with a depreciated currency are said to regard present prices as being sufficient and remunerative, and ar not endeavouring to raise them, so as to be able to maintain equilibrium between production and con sumption. On the other hand countries with a stabl currency find present prices quite inadequate. This displacement in the price conditions between the individual groups of producers operates as a specially disturbing factor on the private economic measure for the regulation of the metal markets within the framework of the international syndicates, and it is because the various producers express different views concerning the necessary level of prices that it is difficult to bring about uniform action in the regulation of the output. Under the circumstances the impression is gained that a recovery in the metal markets will only take place when the present currency chaos has been overcome, and stable currency conditions have been re-established.

Noise.

By A. H. Davis, D.Sc.

No. I

I. Characteristics of Noise.

$T 10$ appreciate points arising in the assessment 1 of noise one must recall that sound has its origin in vibration, and that the sound waves sent into the air by a vibrating body consist of alternations of condensation and rarefaction, which travel out wards, just as ripples travel outwards from a periodically disturbed water surface.

The sound enters the ear as successions of minute changes in pressure corresponding to these condensations and rarefactions, and gives rise to the sensation of hearing. The character of the sensation depends upon the frequency, amplitude and wave form of the incident waves. Other things being the same, the frequency, i.e., the number of alternations which reach the ear per second, determines the pitch of the sound. The amplitude of the wave, i.e., the degree of condensation in sound waves corresponding to wave height in ripples, determines loudness, and wave form determines quality. Wave form relates to the manner in which the pressure in a sound wave rises and falls with time. When aerial waves consist of a regular succession of vibrations the sensation is that of a tone, but an irregular non-repeating disturbance results in what is technically known

a. TUNING FORK

6. TUNING FOPK. (struck viocientre).

c. REED orgin PIPE

FIG. 1 Characteristic SOUND Curves

as " noise." The simple pendular motion of the prong of a tuning fork in free vibration gives rise to a wave form represented in Fig. 1a, which is the characteristic "sine wave" associated with pure tones. In Fig. $1 b$, relating to the compound vibrations of a violently struck fork, the more leisurely fundamental vibration is accompanied by subsidiary fluctuations of higher frequency as evidenced by the wavelets present. Fig c is an oscillograph record obtained at the National Physical Laboratory for the note of a conical reed organ pipe, Fig. $1 d$ shows a part of an oscillograph of a street noise. It will be observed that the wave form is irregular and does not repeat accurately. The sound was, in fact, a noise in the physical sense.
Loudness.-Before a pure tone can give rise to the sensation of hearing, the aerial vibrations entering the ear must attain a certain minimum amplitude which depends upon the pitch of the note concerned If the amplitude is further increased, the loudness increases until the sensation of feeling or tickling occurs in the ear, and, soon afterwards, pain. In Fig. 2 the top and bottom curves, due to Fletcher and Wegel, show respectively, over the range of normal hearing, average values for the upper and lower limits of audible sound expressed in terms of the oscillatory pressures set up in the air by the sound.

Between the upper and lower limits the human ear can distinguish some 120 graduations of loudness
at a frequency of 512 cycles per second, if a second or two elapses between successive sounds. For ordinary loudness levels (intensities exceeding 10 times the minimum audible) they are approximately equally spaced upon a logarithmic scale of intensity Consequently, the loudness level in just perceptible steps above threshold is closely related to the logarithm of the intensity of the exciting sound and a logarithmic unit is adopted. Following a lead
a number by stating the intensity, in decibels above threshold, of an equally loud note of chosen standard frequency, say, 1000 cycles per second. The actual pitch chosen as standard does not appear to be vital, but it is clearly a convenience to choose the pitch in the region, above about 500 cycles per second, where a decibel has approximately a constant loudness effect.
The loudness of a pure note on such a scale can

FIG. 2-UPPER AND LOWER LIMITS OF AUDIBILITY

by the Bell Telephone Laboratories, this is usually called a "decibel."

If I and I_{0} are two different values of the sound energy, the difference in energy level L expressed in decibels is given by :
$\mathrm{L}=10 \log _{10}\left(\mathrm{I} / \mathrm{I}_{\mathrm{o}}\right)$.
This gives for notes of medium pitch, 120 logarithmic

FIG. 3 ACOUSTIC PRESSURE METER
ally spaced gradations over the range of hearing from threshold to pain.
So far we have considered loudness relations only for the same pitch. The intermediate curves of Fig. 2, however, connect the intensities of sound of different frequencies which were foumd by Kingsbury to be equally lond to the ear. For sounds above about
clearly be inferred from the curves when its pitch and physical intensity are known. There appears, however, to be no accepted method of deducing the loudness of a complex sound from a knowledge of its constituents, although it is true that complicated relations have been proposed.
Consequently, the only method of expressing the loudness of a complex note or of a noise would appear to be the direct experimental comparison with a note of standard pitch and controllable intensity.

It is to be noted that in expressing loudness of a sound, no mention is made of its own intensity, a sound, no mention is made of its own intensity,
but the intensity of a comparison note of equal loudbut the intensity of a comparison note of equal loud-
ness is given in decibels above threshold. When a ness is given in decibels above threshold. When a
sound has a loudness equal to that of a standard sound has a loudness equal to that of a standard
audiometer note at a level of n decibels above audiometer note at a level of n decibels above
threshold, it will be said to have a loudness of " n " phon. ${ }^{1}$

Masking.-Experimental data giving the masking effect of a sound or noise upon notes of various pitches, that is the extent to which one sound drowns or interferes with the audibility of another, may be used as a measure of the interfering effect of the sound, for it shows the reduction of the capacity of the ear in the presence of the sound.
It has been found that in general a sound is most easily masked by a note of approximately the same pitch, but that where a difference in pitch exists, a moderately pure tone more easily masks a tone of higher pitch than one of lower. Since an appreciable level of sound is necessary before a low note will mask a higher one, it is clear that masking values are not very useful for assessing the loudness of comparatively quiet sounds.
II. Physical Measurement of Sound and Noise.

Measurements by Means of Microphone Equipment. The measurement of sound with physical apparatus is in itself an interesting subject. Various methods have been adopted, from which it is possible to deduce the amplitudes of vibration of the air particles in the sound wave, or the degree of variation of air density or pressure associated with the alterations of compression and rarefaction. It must suffice to say here

FIG. 4 ANALYSIS OF A MOTOR HORN NOTE
700 cycles per second it appears that if two notes are equally loud, they remain equally loud when the amplitudes of both are increased in the same ratio. The closer spacing of the curves at low frequencies indicates that low notes require less increase of amplitude to raise their level of loudness han notes of medium pitch.
From the curves of Fig. 2, it is clear that the loudness of any pure note may be expressed as
that, when calibrated, an electrical microphone is a valuable instrument if it is of high quality. For this purpose resonances - which are common in commercial ${ }^{1}$ A phon is the German equivalent of the decibel. In this article "decibel" is employed in connection with intensity say, decibel- is "phon "for expressing loudness. If one termthe fact that when a low both purposes, confusion arised nonsity by m decibels, its loudness on the scale of a 1000 -cycle audio
telephones-must be avoided within the range of acoustic frequencies.

In measuring sound with a microphone-amplifier system it is possible-
(1) To make an estimate of the average sound pressures measured by a microphone with auxiliary amplifiers.
(2) To ascertain the wave form of the noise by taking an oscillograph record of the variations of acoustical pressure.
(3) To analyse the noise and thus determine either (a) the intensity and frequency of its components - a procedure of special value in identifying the sources of machine noises by correlating con stituents with, say, the frequency of meshing of teeth on gear wheels or (b) the distribution of energy in various frequency bands.
Simulating the Response of the Ear.-In view, however, of the different sensitivities of the ear at various frequencies, the results of physical measurements cannot be interpreted as loudness to the ear, except perhaps in the case of the analyses. For closer esti mates of the aural importance of a noise an equip ment may be incorporated in the amplifier of any of the above types of apparatus, so that it has an earlike frequency response curve. It is impracticable to arrange an equipment to do this for all loudness levels, but it is comparatively simple by suitable choice of the inter-valve coupling units when the approximate loudness level is known. The curves of Fig. 2 show aural equal loudness curves, and it is possible to arrange an amplifier and valve voltmeter to give equal deflections for sounds of different pitch as defined by one of these curves. A convenient curve for moderate sounds is that corresponding to a loudness level of, say, 40 db . above threshold (see Free, Jour. Acous. Soc. Am., July, 1930). For fairly loud sounds the 80 db . curve is useful. It should be noted, however, that the 80 db . curve is practically flat, so that for moderately loud sounds it is fairly satis factory to employ an equipment with a uniform response curve. It is also satisfactory as a rule if very high or very low tones are not involved. It should be realised, however, that an instrument adjusted to have an ear-like characteristic at one or two levels has definite limitations. Particularly, it should be noted that a small change in the intensity of a note of very low frequency is equivalent in loudness to a considerably greater change in the intensity of notes of medium pitch (c.f. Fig. 2), a fact of which an instrument adjusted for only one or two loudness levels takes but little cognisance. The instrument is therefore unlikely to give very reliable estimates of overall loudness where low-pitched notes and mediumpitched notes occur together. It has a distinct usefulness, but its limitations must be recognised.

Physical Noise Meters.-Various meters have been made for the measurement and analysis of noise. In a convenient portable microphone and amplifier unit designed by the writer (Fig. 3), for general acoustical work, which will measure the overall acoustical pressures, dials are provided for altering the sensitivity of the instrument in decibel steps over the range of 110 decibels. By plugging into the amplifier circuit one or two tunable electrical circuits or filter circuits, the instrument will measure the intensity of components, or the energy level in selected frequency bands. Where greater selectivity is desired the apparatus may be used in connection macher's method. An output plug allows a cathode ray oscillograph to be connected to the output of the amplifier when required.

Fig. 4 is an analysis of a motor horn note as obtained at the National Physical Laboratory with the instrument in conjunction with a single tuning unit. It is shown in association with an oscillogram obtained by connecting the output of the amplifier to a cathode ray oscillograph. The oscillogram was drawn from an average of several superimposed curves. This horn had components which did not fit in a harmonic series and was rich in powerful highfrequency notes. The author's observations indicated that both these factors tend to produce strident notes, a point which was subsequently confirmed by independent experiments published in America.
Simple switches throw into circuit (a) a network giving to the apparatus a response curve corresponding to that of the human ear at a level of moderate noise (say 40 db . above threshold), and (b) a network correcting a resonance in the microphone used with the equipment. It is also possible to substitute for the microphone an instrument on the lines of a gramophone pick-up. When the pick-up is held in contact with the parts of a machine or the walls of a building, vibrations may be detected and relative measurements and analyses made-a procedure which assists in elucidating the actual areas responsible for the mission of sound.
(To be continued.)

German exports of electrical machines fell from 27,302 uetric tons in 1932 to $13,133 \mathrm{in} 1933$, the values being sales of other electrical products decreased from 64,245 metric tons to 54,055 . Electrical products exported to Great Britain were 2217 metric tons in 1933, compared with 2939 in 1932.

A Fatigue Testing Machine for Wire.

I^{N}
N our issue of May 26th 1933 we briefly deseribed and illustrated a fatigue testing machine for wire exhibited at the Royal Society's Conversazione This machine, the invention of Professor B. P. Haigh and Mr. T. S. Robertson of the Royal Naval College, Greenwich, was, at that date, in an early stage of ts development. It has since been re-designed and improved in its details and in the form illustrated and described below is now being manufactured by Bruntons Ltd., Musselburgh, Scotland. Although the machine is described specifically as being intended for tests on wire it is not, it is claimed, of interest solely to manufacturers and users of wire. It can be employed for conducting tests on any material which is capable of being forged, rolled or cast in
by Messrs. Dowling, Dixon and Hogan. The general scheme of the testing arrangements consisted of supporting the wire specimen as a " free free" bar in a magnetic field and causing it to vibrate by passing through it a pulsating electric current of resonant frequency. In this method of testing the specimen is subjected to bending stresses and does not rotate. The maximum stresses occur at the opposite ends of one diameter of the cross section and are alternately tensile and compressive. In the machine devised by Professor Haigh and Mr. Robertson the wire specimen rotates under load and every point round the periphery of the specimen is in turn subjected to the full range of stress.
The principle of action of the Haigh-Robertson

FIG. 1 PRINCIPLE OF ACTION OF THE HAIGH-ROBERTSON MACHINE
the form of a rod and subsequently of being turned ground, extruded or drawn into a wire. Its simple and comparatively inexpensive nature, combined with its high speed of working, therefore render it available for a general study of fatigue phenomena and the manner in which surface finish, heat treat ment, immersion in different liquids and so forth affect the fatigue strength of metals. Doubtlessly, however, the fact that the specimens are in the form of wires must be taken into account when the results obtained from the machine are compared with those given by other fatigue testing machines employing more robust forms of test specimen or when they are to be employed as a basis for the design of parts of other than wire formation.
At first sight it would appear to be no more difficult to test a wire specimen under fatigue conditions than an ordinary specimen provided the range of stress is from zero to a positive, or tensile, maximum and is never allowed to pass into the compression zone
Even, however, with this somewhat severe restriction
machine is indicated in Fig. 1. One end of the wire is held in a chuck A driven by a small motor B, the chuck and motor being arranged to swivel about a vertical axis at C . The other end of the wire is supported within a ball-thrust bearing D . When this bearing is advanced, parallel with itself, towards the chuck the wire flexes as indicated, the flexing taking place entirely in the horizontal plane and resulting in the chuck and motor swivelling about the axis C through'an angle 0 . The specimen in this way assumes the condition of an end-loaded trut and from Euler's theory it follows that the bending stress at its mid point is directly proportional bending stross hiona move under the action of the end thrust. The actual bending stress at the mid point is given by

$f=\frac{1}{2} \pi \theta \mathrm{E} d / \mathrm{L}$

where E is Young's modulus for the material and d and L are the diameter and length of the wire.
When the motor is started the wire does not whirl

the fatigue testing of wire is not easy to accomplish satisfactorily for almost invariably the wire fractures at or close to the grips. In such cases doubt must always exist as to the extent to which the fatigue strength indicated by the test has been influenced by the local concentration of stress applied to the specimen by the gripping devices. The ordinary method of overcoming this difficulty, namely the employment of a specimen with enlarged ends is not available in the case of wire for while the body of the specimen might be turned or otherwise reduced to the diameter of a wire, the metal would not have the surface finish and other qualities characteristic of a true wire produced by drawing through a die.
In our issue of April 27th this year an account
will be found of some experimental equipment for the fatigue testing of hard drawn steel wire devised
about the straight-line axis C D but rotates about its own curved axis after the manner of a flexible shaft. At ordinary speeds of the motor the wire may make about 20 million turns per 24 hours while for small gauge wires the speed may be raised to 28 million turns per day. With each turn every point on the circumference of the wire passes through a stress cycle ranging from a maximum tension to a maximum compression. The greatest range of stress occurs at the mid point in the length of the specimen, the range diminishing towards zero at ither end. The wire therefore is in a condition which ensures that it will fracture at the mid point or remote from the region of the local stress applied by the gripping arrangement.
In addition to the bending stress the wire is subjected to a compressive stress by the end thrust
but for moderate angles of flexure this compressive stress is very small relatively to the bending stress and may be neglected so far as its effect on the fatigue strength of the material is concerned. To allow for the fact that Euler's formula becomes increasingly erroneous as the angle θ increases, a correcting coefficient can be applied to the formula connecting the stress and the angle of deflection θ. This coefficient varies from unity when θ is zero up to 1.0058 when θ is 30°
A general view of the machine is reproduced in Fig. 2 while in Fig. 3 details of its design are given. The base plate E is arranged after the manner of

Fig. 3 General Arrangement of the testing machine
lathe bed the sliding " tailstock "F carrying the |he weight of the motor \&c, and thereby relieve the ball thrust-bearing which supports the non-driven end of the specimen. The adjustment of the tailstock is sufficient to permit specimens ranging in length from $3 \frac{1}{2} \mathrm{in}$. to 30 in . to be tested. The thrust bearing is illustrated separately in Fig. 5. Over the end of the wire there is fitted a tapered sleeve within the mouth of which there is placed a 5 mm . steel ball. This ball bears against a group of three other balls of the same size, the thrust from which is taken by a hardened steel disc. These three balls run within a hardened steel race within which, when the specimen breaks, they are retained by a cap. The disc against which they bear has a slight amount of longitudinal

FIG. 4 RESULTS OF TESTS ON STEEL WIRE IN AIR AND WATER

freedom and moves forward slightly, when the specimen breaks, under the action of a spring plunger. This small motion is sufficient to open a switch actuated by the plunger which switch breaks the motor circuit and stops the counter provided to indicate the number of stress cycles supported by the specimen up to the point of fracture. The tailstock is clamped to the bed in a position to suit the length of the specimen. The flexing and loading of the wire is effected by turning a knurled head on the tailstock. The " headstock" end of the bed is fitted with a casting G Fig. 3 which carries bearings on which swings the frame H supporting the chuck and its
the weight of the motor \&c. and thereby relieve the radial ball bearings of any side thrust. Current to
the motor is supplied through two spring connections the motor is supplied through two spring connections
lying about the sapphire bearing. These connections are coupled to a "follow-up " arm mounted loosely on the casting G. This arm is adjusted by hand to a position indicated by a pointer and when it is in this position the two spring connections apply no torque to the swivelling frame.
Minor details of the machine include a drip feed lubricator for the thrust bearing incorporated in the motor drive and a guide or guard to restrict the whirling of the specimen after it breaks.

In Fig. 4 the results of six series of tests on steel
motor. The frame H is formed with an arm provided at its end with a vernier J which is used to read the angle θ against a scale K on the casting G . The connections between the swinging frame and the casting are arranged to eliminate friction as far as possible from the swivelling motion. Two radial ball bearings serve to determine the direction of the axis but the weight of the frame is supported by a spring-loaded sapphire bearing above the upper ball bearing. This sapphire bearing is illustrated in Fig. 6. It is adjusted until the vernier J swings just clear of the scale K. A balance weight L Fig. 3 is provided on the arm of the swinging frame and is adjusted to counteract
million stress cycles. The diagram represents all told about 440 million stress cycles or the equivalent of some twenty-two days' continuous running of the machine at its normal speed. The longest test - $100,000,000$ stress cycles-was completed within a week a figure which compares very favourably with the six or seven weeks required for a similar test on other machines running at 1500 revolutions per minute. The curves themselves are of much interest. Two curves are given for the tests on galvanised wire in air because the plotted points exhibit a certain amount of "scattering." Whichever of these curves is taken, however, it will be seen that galvanising lowers the fatigue strength of wire by a small amount when the tests are conducted in air. On the other hand it raises the fatigue strength very definitely when the wires are tested either in tap water or salt water. The diagram also shows tap wat million oyelo test is sufficient to establish that a ten-mil wire in air and that much longer tests are required

FIGS. 5 AND 6 -THRUST BEARING AND SAPPHIRE SUPPORT
in both cases if the wires are immersed in water. It will also be observed that the test results for galvanised wire in water are only slightly affected by a change from fresh to salt water whereas in the case of "as-drawn " wires the effect of the change is very marked, salt water lowering the fatigue strength much more than fresh water. All these results are in accordance with corrosion fatigue tests carried out by other workers using other forms of testing equipment. In particular they reproduce the main equipracnt. In par 1916 in the course of an investiconclusion reachod 1916 in tho course of aninvestigation of fatigue in the wire ropes used, during the War, for towing Paravanes for the protection of shipping against mines. Details of that investigation were given in a paper presented by Professor Haigh in 1929 before the Institution of Chemical Engineers, in which Chemical Action in relation to Fatigue was dealt with generally. It is interesting to note that the 1916 investigation not only revealed the principal features of what is now generally recognised as "corrosion-fatigue " but led to the important conclusion that the difficulties which it caused could be effectively eliminated by galvanising the wire. It is highly interesting to observe that corrosion fatigue phenomena, as well as other important surface effects, can be investigated with the simple equipment effects, can be investigated
described in this article.

Up to the present, one of the principal difficulties experienced in carrying out research in fatigue has been the expense incurred in producing turned and polished pieces suitable for testing. The use of wire overcomes this difficulty as the test pieces can be simply cut off and immediately inserted in the machine. The Haigh-Robertson machine should therefore greatly faciilitate fatigue research in general as well as the practical testing of wire. The machine is suitable for lecture table demonstrations. It runs almost silently on any stout support, and pieces can be broken in the course of a very few minutes to reveal all the characteristics of the brittle fracture of fatigue.

L.M.S. 4-6-0 Mixed Traffic Engines.

Included in the 1934 building programme of the L.M. and S. Railway are seventy two-cylinder $4-6-0$ superheated mixed traffic engines, fifty of which will be built by the Vulcan Foundry and twenty at the railway company's works, Crewe. These engines have been designed to meet the requirements for a general utility engine. Their general appearance and principal dimensions are shown in the accompanying engraving and diagram.
The boiler is of the Belpaire pattern, with a taper barrel, and with a view to reducing the weight 2 per cent. nickel steel plates have been used. The working pressure is 225 lb . per square inch. A superheater is fitted, and the main regulator has been incorporated in the superheater header in the smoke-box.
A steam manifold-with a main shut-off valve-is
provided on the top of the fire-box door plate in the cab, and on this manifold are attached the valves for the ejector and steam brake, the injectors, carriage warming, whistle, pressure gauge, and sight feed lubricator to the regulator. The feed water is supplied through top feed valves mounted on the second boiler barrel ring and pro-
vided with water distributing trays. Two pop type safety vided with water distributing trays. Two pop type safety valves, $2 \frac{1}{2} \mathrm{in}$. diameter, are fitted at the crown of the fire screen to prevent glare from the fire. An exhaust steam injector with 10 mm . cones is fitted on the right-hand or fireman's side, and on the other side a live steam injector with 10 mm . cones is provided

The two cylinders are carried outside the frames and are $18 \frac{1}{2} \mathrm{in}$. diameter by 28 in . stroke. Walschaerts motion is fitted, the valve travel being $6 \frac{1}{2} \mathrm{in}$. The piston valves, cylinders, piston-rod packing, and valve spindle bushes are provided with mechanical lubrication, the oil to each piston valve head being steam atomised. The coupling
steam brake is provided on each of the six tender wheels and is applied simultaneously with the steam brake on the engine. The tender is also fitted with a hand brake and with water pick-up gear.

SIXTY YEARS AGO

IT has frequently been asserted that from the engineering point of view the driving of a tunnel beneath the English Channel would present no unusual difficulties or in other words that political and commercial rather than technical objections have so far militated against its construction.
We have heard this assertion disputed in fully responsible quarters and the opinion advanced that the engincering difficulties might be very serious indeed. Sixty years ago the self-same point provided a subject of hot debate among
engineers and geologists. On the whole the engineers, as
sumably the double-hulled vessel "Castalia" and Bessemer's swinging-cabin steamer, both of which at that date were rapidly approaching completion.

THE RECENT "GRID" FAILURE

The following statement regarding the breakdown of electricity supply on Sunday, July
At a meeting of the Central Electricity Board on August 8th consideration was given to a joint report, of which a copy is appended, made to them by the Engineers of the Board and the London Power Company, and to the circumstances attending the widespread failure of electricity supply in South-East and East England on Sunday July 29 th.
On the morning of that day the grid system was deprived

with the latest practice, of high-tensile manganesemolybdenum steel, the connecting-rods being of a fluted section and the coupling rods of a rectangular section. triangular section and the castings with the wheel rim of triangular section, and the tire fixing is of the "Gibson"
retaining ring type. The balance weights for the coupled retaining ring type. The balance weights for the coupled
wheels are built up of steel plates on both sides of the wheels are built up of steel plates on both sides of the
spokes and riveted, the requisite weight being provided by filling in between the plates with lead. The axle-boxes for the coupled wheels are steel castings with pressed-in brasses having white metal crowns. The coupled axleboxes are arranged so that the oil pads can be examined by sliding out the underkeep while the axle-box is in position. Each axle-box is fitted with a dust shield carried on the inside face of the box. A mechanical lnbricator supplies the coupled axle-boxes, each of which has an standard back pressure valve and flexible oil pipe con-
we learn from a leading article in our issue of August 14th 1874, took a hopeful view of the situation. The geologists, on the other hand, while they did not go so far as to assert doubts as to its practicability. Typical of the engineers, doubts as to its practicability. Typical of the engineers
attitude towards the scheme was that of Sir John Hawkshaw who observed that "at a sufficient depth it was of shaw who observed that at a sufficient depth it was of
no more consequence that the sea might be above the no more consequence that the sea might be above the
tunnel than a mountain." The geologists admitted that a tunnel under the Channel might be constructed with perfect safety through the London clay but they pointed out that the route which would in that event have to be followed would result in the tunnel being a hundred miles in length. Alternatively the Kimmeridge clay might be followed but it would only be available for about half the distance from shore to shore. A third alternative was to drive the tunnel through the palaozoic rocks but in this

$-$

4-6-0 Superheated Mized Traffo Engine

13 st. 10 tin.
tift
the

14, 1 in. dia. outs. by 13 S.W.G. 4, 5 jin . dia, outs. by $7 \mathrm{~S} . \mathrm{W}$. G.
$160,2 \mathrm{in}$, dia. outs. by 11 S.W.G.

Heating surface
Tubes
Fire-box
Total
Superheate
Grate area
centive effort
cent. B.P.
Estimated weigh Engine
Tender
Total wei
Total weight of engine and Light
Loaded
tender : ... sight t. 1 c. 2 q
1460.0 square feet
156.0 square feet
1616.0 square feet
227.5 square feet
27.8 square fect
$25,455 \mathrm{lb}$.
Light. Loaded.
65 t .10 c
72 t.
72 t . 14 e.
$87 \mathrm{t} .1 \mathrm{e} .2{ }^{4} \mathrm{r}$
114 t .14 c.
would prove a bar to the practicability of the scheme There remained only the lower, or grey, chalk measures. The possibility of utilising that formation turned upon the establishment of its continuity from shore to shore and its freedom from open fissures. Private experiments conducted by Sir John Hawkshaw encouraged the belief that the grey chalk formation was continuous across the Channel but the absence of open fissures in it had not been established and could not be established with certainty without running a considerable length of preparatory driftway. On the whole we seemed to side with the geologists. Until a trial of the nature of the geological formation had been made, we considered that it would be premature to discuss the best form of the tunnel, its materials, mechanical equipment and ventilation. In the about to be placed on the cross-Channel route and were possible that in the near future other improved vessels ferries on a large scale and of novel design, might ve buil to ply on it. The reform would be a great one and many travellers, we said, might think it sufficient The tw comfortable steamers to which we referred were pre-
simultaneously of the export from two of the three largest power stations in the area, namely, Deptford West and
Battersea. The system has always, even on Sunday loading, sufficient margin of generating plant in operation to make good immediately the loss of the largest station's output to the system, and it has also sufficient spare plant ready to be put into operation to maintain that margin against the It had not been contemplated that there could be such an unusual occurrence as the loss of the output of two major stations at one and the same time, and the Sunday disposition of the generating plant in operation had not allowed for such a contingency. Had such an abnormal event happened on a weekday, the disposition of generating plant in operation is such that a widespread failure would have been avoided.
The Board are satisfied that there was a combination be no apprehension of any such general failund hero nee

Joint Report of the Engineers.
The investigations have disclosed that the trouble did not originate at the Battersea Power Station of the London Power Company, although it is true that that Fvery avenue towards eluc having been fully explored the complete inability to discover any other primary cause for the trouble has forced the Engineers to the deduction that the general failure originated with the breakdown of one of the turbines at the Deptford West Station of the London Power Company - a deduction which fully explains the subsequent trouble and how Battersea Power Station became involved in it.
(Signed) Johnstone Wright.
Chief Engineer, Central Electricity Board.
(Signed) S. L. Pearce,
The original seer-in-Chier, London Power Company. Board, original statement issued by the Central Electricity Board, on which the leading article appearing in THE Enginern Auguse 3rd was based, intimated that the switch at Battersea, possibly without synchronising.Ed, The E.]

THE IRON AND STEEL INSTITUTE.

The Autumn Meeting of the Iron and Steel Institute will be held in Belgium and Luxemburg from Monday, September 10th, to Thursday. September 13th, 1934. On Monday and Tuesday meetings will be held in the Palais des Académies, Brussels
Arter a welcome to the delegates by Monsieur Léon Greiner, President, and the members of the Belgian Reception Committee, the following papers will be preMonday " Bion:
Monday.-"Belgian Research Committee on the BeH. Dustin : "Contribution to the Study of the Resist ance to Chemical Attack of Various Special Steels, by Messieurs A. Portevin, E. Prétet, and H. Jolivet ; Accelerated Cracking of Mild Steel (Boiler Plate) under Repeated Bending : Part II, Further Tests," by Messrs. C. H. M. Jenkins and W. J. West ; if time permits, "Some Aspects of the Fatigue Properties of Patented Steel Wire," by Messrs. E. T. Gill and R. Goodacre.
Tuesday.- "The Influence of Silicon and Aluminium on the Resistance of Cast Iron to High Temperatures," by Monsieur H. Thyssen: "Flexibility as a Factor in the Economic Exploitation of Rolling Mills and Some Tech"The Physical Properties of bron-Aluminium Russell by Messrs. C. Sykes and J. W. Bampfylde ; if time
permits, "The Properties of Non-Hardenable Alpha-Iron Steels," by Mr. S. H. Rees.
On Thursday the delegates will meet at the Hotel de I'Arbed, Luxemburg, and after Monsieur Aloyse Meyer has extended a welcome, a paper describing the Iron and Steel Industries of Luxemburg will be presented on behalf
of the Luxemburg Reception Committee. Visits and of the Luxemburg Reception Committee. Visits and teel manufacturing and engineering establishments in Belgium and Luxemburg.

Non-Slip Bandages for Belt Pulleys.

We recently examined an improved form of pulley bandage which, it is claimed, does away with slip in power transmission by belt. Although well known on the Coninformed, been put on the market in this country by the Contrasit Company of Great Britain, Ltd., of 109, Kings way, London, W.C.2. The bandage consists of an impreg. nated hessian covering, which, in turn, is mounted over a flannel covering, and by means of the special Contrasit solution is made one with the rim of the pulley. The attachment of such a bandage calls for skilled workmanship and the company's trained men are available for such
work. The following is, however, a general account of the work. The following is, however, a general account of the method adopted.
After all traces of grease have been removed the pulley

is heated by means of a blow lamp from the centre toward the surface. A flannel bandage which is impregnated with at a certain temperature. The bandage is then massaged on to the pulley, extreme care being taken to see that no air bubbles remain between the bandage and the pulley, It is then dried off by means of a blow lamp, the tempera ture of the pulley itself being maintained by application of the blow lamp so that the bandage is thoroughly dried ou om underneath.
When the flannel bandage has been dried off an oute hessian bandage, also impreganted with Contrasit fluid, is taken to see that the completed pulley has no hige. Care and the pulley is then allowed from twelve to twenty four hours to set before being put into service. Contrasit bandages may be applied to all types of pulleys, such as wooden pulleys, step pulleys, split pulleys, \&c. They are not affected by heat, cold, dampness, or general atmos pheric conditions, but they must in all cases, we under stand, be protected from the weather.
The impregnating fluid sets so hard that a hammer and chisel are needed to remove it. The life of such a bandage depends naturally on the type of belt drive on which it is employed, but under normal conditions they may last from four to six years. The company is prepared to advise on to maintain and inspect ender contract belt drives, fitt to maintain and inspect
with Contrasit bandages.

CATALOGUES.

Fismer axd Ludlow, Ltd., Albion Works, Birmingham. barronia Metals, Ltd., Parsons Green, S.W.6.-New pub cation B.M. 24, entitled "Copper Alloys for the Engineerin industries.

Ingersoll-Rand Company, Ltd., 165, Queen Victoria-street, E.C.4.-Catalogue and leaflets on two-stage air-cooled portable

Howprass
Horymann Manuyacturivg Company, Ltd., Chelmsford.portiolio showing the best
Newanan, Hender and Co., Ltd., Woodchester, Glos.-Cata ogue 54 on brass, gun-metal, cast iron and steel valves, cocks, oneral steam and water fittings.
Westinghouse Brake AND Saxby Sigat. Company, Ltd.
82, York-road, N.1. Simal catalogue sections on A.C. track feed sets, housings, traek circuit insulations.
Quest Products, Ltd., Wharton, Cheshire.-Particulars of the composition, manufacture, and use of "Questal," "Ben tonite, colloidal may and bonded procuct.
North-Eastery Mabine Engineering Company, Ltd. Walsend-on-Ane. Abook dealing in some detail with the con

Outdoor Metal-Clad Switchgear and Centrovisory Control Equipment.

0A Priany, August 3rd. wo were invited by A. Reyrolle and Co., Ltd., of Hebburn-on-Tyne, to inspect the netal-clad $66-\mathrm{kV}$ switchgear of $1,500,000 \mathrm{kVA}$ rupturing capacity, installed at the Bankside and Stepney grid subtrol station. By reason of the fact that metal-clad gear is very compact it lends itself to use in places where land is expensive, and as it is designed for use outdoors, it does not call for expensive buildings, whilst, on account of its earthed metal enclosure, it can be erected in the vicinity of ordinary dwellings without risk of danger. The first Reyrolle draw-out gear of this kind, designed in 1905 for 6 kV , was followed by metal-clad equipments for higher voltages, and it is well known the a has now been sten for som timertion of oudoo Like the gear at Stepncy and Bankside, which is designed for $66 . \mathrm{kV}$ and which is the first of its kind that at Tong land has the merit of occupying considerably less space

han that needed by the more usual $132-\mathrm{kV}$ equipment associated with the grid. Owing to the limited space available on the two London sites, the use of this type of gear was imperative
The diagram Fig. 1, drawn as a single-phase diagram fo where buildings were shows the connections at Bankside where buildings were cleared away to make room for th
sub-station. There are two sets of bus-bars A and B
, linked together by means of circuit breakers C and D and supplied by feeders E and F, whilst circuit breakers and H may be used for connecting the transformers K and L to either set of bus-bars. The lay-out at Stepney i somewhat different, comprising two transformer equip ments, four feeder equipments, and one bus-bar couple
equipment arranged as shown in Fig. 2. In a city such as quipment arranged as shown in Fig. 2. In a city such a atmospheric conditions are liable to lead to harmfu deposits on the insulators, the metal-clad construction offers a number of advantages over the open type of gear The conductors can be brought nearer together and large learances are unnecessary for the which is censiderably simplified.
A view of the switchgear taken in the works when the assembly was practically complete is given in Fig. 3 which gives some idea of how the scheme of connection has been carried out. The two sets of bus-bars in coppe tubes are arranged on either side of the inspection plat form at the top of the equipment. Connections to the cable sealing boxes at the feeder side of the gear are taken
off at intervals from the bus-bars through the circuit off at intervals from the bus-bars through the circuit
breakers which are contained in tanks slung from the framework in three-phase groups. Each phase of the framework in three-phase groups. Each phase of the
switchgear is enclosed in its own metal casing and is entirely separate from the other phases, thereby providing an effective safeguard against the possibility of a faul on one phase spreading to the other phases. The circuit breakers are suspended so that any three-phase group may be isolated for inspection or, if necessary, taken away without disturbing the other breakers.
A section through one of the switchgear phases is given in Fig. 4, in which the incoming cable is shown connected to the sealing box A on the right. The current passes through the conductors B to the contact C and thence bus-bars E. Safety devices of various kinds ensure satis
b. bus-bars E. Safety devices of various kinds ensure satisfactory isolation. When a breaker has to be inspected it
is first switched off and then lowered bodily, as shown on the left of Fig. 4, thus completely isolating it from the supply and making all its conductors "dead," for it
cannot be lowered until the circuit is open. The breakers cannot be lowered until the circuit is open. The breakers
are lowered by means of an electrically operated truck which forms part of the equipment. When a breaker has to be lowered the truck is run in underneath it and its
platform is raised so as to take the weight of the breaker. when cotter pins which normally support the breaker ar removed. The truck platform is then lowered and the isolating contacts of the breaker are disconnected from the contacts C, which are associated with the other con ductors of the swichgear. As the lowering proceed the insulators and the orifices metal doors H swing round and ches the orifes, metal dons the withdrawn from its working position all live cond bet remain completely enclosed. If necessary, the breater can be lowered further and taken away for inpection, or it may be supported in the isolated position by it cotter pins, which are inserted in slots in the guide posts. The tank of the breaker can also, if necessary removed from the truck and any necessary work can be carried out with perfect safety. When the breaker is raised again to bring it back to its operating position a projection on its carriage engages with a lever and open the doors H on the orifices leading to the isolating contact so that the insulators on the circuit breaker are permitted to pass into the orifices.
All the conductors in the fixed portion of the switch gear are insulated with bakelised paper insulators, and in order to ensure additional security the chambers con aining the conductors are filled with insulating oil Where the conductors are long, or where there is likely t condenser insulators are provided. These insulators con tain a number of specially shaped pieces of metal foil so arranged that the electrical stresses are distributed nearly as possible uniformly throughout the insulation a form of construction which enables the insulators to b made considerably smaller than is possible in the absenc of the metal inserts, whilst also enabling the material to be economically disposed to withstand the stresses to fion on the conductor according to the stress is shown at 1 in Fig. 4, where the saving in insulating material is obvious. The insulating oil in the casings ensures that there are no air spaces, and troubles arising from the ionisation of the air in such spaces are therefore avoided. In addition, the oil serves the useful purposes of carrying away the hea generated in the conductors and of preventing local heating
with its damaging effect on the insulating materials. It with its damaging effect on the in
also materially helps to save copper
Conservator tanks mounted at the top of the switch gear maintain the oil under a small pressure in all the chambers, and also provide for the expansion or con whilst, owing to the constant head of oil, moisture i positively excluded.
Since the conductors and their cases change in length as the temperature alters, it is essential to guard against the setting up of mechanical stresses and flexible bellow have therefore been provided, as indicated at J in Fig. 4 to permit of a certain amount of relative movement of
the casing parts. One end of the bellows is attached to he conductor casing, whilst the other end is joined to he switchgear main framework.
A comprehensive system of interlocking serves to pre vent mistakes. The carriage for isolating and moving the ircuit breakers, for example, cannot be operated unles It consists cof three pain parts platform for moving the breaker vertically, a traversing platform for moving the breaker sideways, and a main

FIG. 3 - SWITCHGEAR AT MAKERS WORKS
platform on which the other platforms are mounted for moving the breaker along the switchgear line. The main phatrm is operated by a controller, interlocked so that operating motors cannot be switched on unless ing platform in the lowest position, thereby ensuring that the circuit breaker to be moved is brought into the central
along the line of switches. Thus, it is impossible for the \mid top insulators on the breakers are clear of the fixed circuit breaker to foul other parts of the switchgear while it is in motion. Moreover, the traversing platform is
interlocked, so that it cannot be moved, unless the main

Another interlock prevents the hoisting platform being

Fig. 4 SECTION THROUGH SWitchgea

platform is correctly located under a switch panel, and \quad raised above the "isolated " position unless it is totally he hoisting platform is in its lowest position, thus ensur- empty or is carrying a three-phase group of circuit breakers, ing that the circuit breakers will be in their correct position $\begin{aligned} & \text { The interlock consists of four plungers, which normally } \\ & \text { for raising after the traversing operation, and that the }\end{aligned}$
projections on a group of circuit breakers. When all the
plungers are raised, as, for example, when there are no plungers are raised, as, for example, when the motor for working the platform is complete. When all the plungers are depressed, as, for example, when a group of plungers are depressed, as, for example, when a group of
circuit breakers is on the platform, the circuit is also complete. If, however, the plungers are either not all depressed or all raised, the circuit is broken, the primary object of this interlock being to prevent an operator trying to remove a tank from a circuit breaker before the latter has been isolated. In the event of an attempt being made to do this, as soon as the platform begins to be lowered, one of the plungers co-operating with the upper part of the circuit breaker would rise and break the lowering motor circuit, and so prevent further lowering of the platform. As the interlock becomes inoperative when the hoisting platform is below the position a circuit breaker would occupy when fully isolated, it is possible to remove single tanks from isolated circuit breakers
Although all the switchgear operations are normally carried out electrically, the mechanism has been designed can be carried out in the event of a failure of the current An important An important advantage of this type of switchgear is that it can be completely built up in the factory under expert supervision and be transported in a small number of which is used for the normal manseuvring of the switch gear. The only work that has to be carried out on the site is that of assembling a few comparatively large parts which have previously been assembled as factory groups, such as a group of three-phase circuit breakers, or a three phase set of bus-bars, and even for this there is no need to employ a separate overhead crane
The switchgear at Bankside is shown in Fig. 5, from which it will be seen that the equipment has been erected in densely populated surroundings, and in close proximity to oil feed tanks, while Fig. 6 shows the Stepney switch gear, which has been erected in a very confined space without sacrificing accessibility or safety
As is well known, the control of the South-East and East England sections of the grid is supervised from a control room in London in close proximity to the Bankside power station. The control 27 th of this year. Views of the room were also given in our issue of January 1,2 th In it equipment is provided for giving the control engineer automatic indication of the conditions existing on the grid network covering the South-East and East England area, together with a hand set system diagram of the entire network and associated undertakers' networks. Tele phone communication circuits are also provided to al key points of the system. Automatic indications are received from fifty stations, consisting of all the C.E.B 132 k and 66 kV switching stations, and from the more important low-voltage connecting links of the grid The automatic indications given in the control room are signalled through from each controlled station over two pilot wires, hired from the Post Ofrice, the indications pro tions of circuit breakers, ie " on " or " off " , (b) position of transformer tap-changing equipments; (c) power transfer through the sub-stations (megawatts and mega vars) and direction of flow ; (d) voltage of circuits at various points; (e) the total output of some generating stations ; and (f) alarm signals in the event of a change of the conditions (a) or (b), with subsequent revised indica tion. Facilities are also provided for sending routine instructional signals to certain generating stations. A all the above indications, which are multiplied where there is a plurality of switches, are received from any one station over one pair of wires, it has been necessary, in order to make this possible, to provide selector equip ment at both the control and controlled stations. It duty is to allocate the pilots in turn to each indicating to send a signal according to its condition over the pilots, the signal being alloged in turn to the appropriat the signal being alrol For this purpose Rel room.
is employed. In the control room there is apparatus panel for each station to be controlled, and on each panel the system diagram of the controlled station circuits is shown, the diagrams of each station being connected from panel to panel to form a complete system diagram of the network. In the system diagram rotary indicators aro inserted in the positions occupied by the circuit breaker to give an indication of their condition at all times. When a circuit breaker is operated at a distant station the corre

ponding indicator in the control room turns and indicate he new position. Indepent audible and visual alarm are given. Meter and tap-changing equipment position continuously indicate the position of the tap-changing apparatus, and gives an alarm when a change occurs, whilst the meter readings are initiated as required by the ontrol engineers, and when taken the reading is locked on the meter to facilitate logging it.
At each controlled station there is a centrovisory-
control remote station equipment, comprising the necessary selector and signalling apparatus for sending the indications to the control station. The system diagram on the panels is unusual in that the diagram for each station arranged on the appropriate panel in circular form, a scheme which results in considerable saving in space and
pointer J makes contact with the pointer K, which is in a position determined by the quantity to be measured. Circuit to the relays G and H , thus arresting the drive of circuit to the pointers. The pointer C then indicates the same value as pointer K , and as the brake coil is de-energised it will show this value until a new reading is initiated. The alternative scheme shown in the lower diagram, Fig. 7, is very similar to that described, but the A.C. line is inductively coupled to the transmitting and receiving units. By means of this system any form of indication or signal can be transmitted, such as readings of electrical meters, indications of water levels, transformer tap positions, and engine-room instructions. In the three latter cases the position of the transmitter may be set
mechanically or by hand. A meter movement is unneces-

consumption is approximately 1017 million gallons. The new source of supply is to be from tributaries of the Delaware River, up in the mountains, with reservoirs on these streams and gravity flow through a long tunnel to a reservoir just north of the city. This, with a minor auxiliary source, is estimated to give an additional 640 million gallons daily. The necessary works will cost about
$£ 54,400,000$, but under the present financial difficulties $£ 54,400,000$, but under the present financial difficulties there is little prospect for construction. A special organisaion is maintained to discover and repair leaks in the distribution system; many leaks are reported in complain from in systematic surveys made by aid more pre quaphone. In the past three years the total leakage gallons daily. Many abandoned service pipes were foun leaking, and apparently had been leaking steadily for leaking, and apparently had been leaking steadily for
several years. The per capita consumption is lower than in other large American cities which are partially metered and it is not probable that any material reduction can bo and it is not probable that any material reduction can be definite means of relief is in the proposed Delaware River supply, with its 90 -mile tunnel at depths up to 1000 ft ., but this work will require from eight to ten years.

Pumping Concrete into Place

For several years experiments have been made with the pumping of mixed concrete, to deliver it in place without the usual handling by wheelbarrows, carts, or drop-bottom buckets. One of the greatest difficulties has been to prevent segregation of the mix during its passage through the pump and discharge piping, but the experiments have resulted in entire success and pump-placed concrete has been used on a number of important works. Approximately 300,000 cubic yards have been placed in this way, at distances up to 1000 ft . and heights up to
100 ft . above the pumps. Either single or duplex pumps are used, of the piston type, with cylinders $7 \frac{1}{2} \mathrm{i}$. bore and 8 in . stroke, making about $50 \mathrm{r} . \mathrm{p} . \mathrm{m}$. This equipment is mounted on a portable bed-plate together with a petrol engine or electric motor of 25 to 50 H.P. The weight complete, mounted on wheels, is about 5 tons for the single or 8 tons for the double pump. Concrete is poured into a hopper and a valve feeds it to the cylinder for each stroke. A tapered discharge pipe connects the 8 in . cylinder with the 6 in . or 7 in . main pipe leading to the work. Bends and elbows are introduced as required, but each $90-\mathrm{deg}$. elbow is equivalent in resistance to 40 ft . of horizontal pipe. The stiffest consistency handled effectively is that giving a drop or slump of 3in., and the maximum size of coarse aggregate is $2 \frac{1}{2} \mathrm{in}$. As the concrete forms a the discharge is a the pipe there is no segregation and the discharge is a steady continuous flow. In stopping work, a wooden plug is inserted in the pipe after the last
charge of concrete and is forced through by pumping water behind it, the last few yards of concrete being diswater behind it, the last few yards of concrete being dis-
charged to waste with the flow of cleaning water. The system is quite different, of course, from that of forcing intermittent batches of concrete through pipes by compressed air.

LAUNCHES AND TRIAL TRIPS.

Merkland, single-screw steamer; built by Barclay, Curle and Co., Ltd., to the order of the Leith, Hull and Hamburg
Steam Packet Company, Ltd.; dimensions, 260 ft . by 40 ft . by 18 ft . $6 \mathrm{in} . ;$ to carry cargo. Engines, triple-expansion, 15 in , $25 \mathrm{in} .,{ }^{4}$ lin. by $33 \mathrm{in}$. stroke ; const
Engine Works ; launch, August 8 th.
Kirkland, steel screw steamer; built by Caledon Shipbuilding and Engineering Company, Ltd., to the order of Messrs. James Currie and Co., Lity
40ft. by 18 ft 6in.; to carry cargo. Engines, triple-expansion.
constructed by Barclay, Curle and Co., Ltd.; launch, August
cons.
9 th.

PERSONAL AND BUSINESS ANNOUNCEMENTS

A. C. WICKHAM, Ltd., Coventry, has been appointed the sole
agent in the British Isles for Abawerk G.m.b.H. Alig und agent in the British Isles for Abawerk G.m.b.H. Alig und
Baumgartel, of Aschaffenberg, Germany, for the sale of that "ompany's combined jig boring and grinding machines, "Wimet" fine grinding
surface grinding machine.

CONTRACTS AND ORDERS.

The Editor is always happy to print short announcements of contracts and orders in this column provided they are sent to him
in time to have news value and that they are likely to interest readers. Harland and Wolff, Ltd., have received an order from Elder Dempster Lines, Ltd., Liverpool, for the construction of a new motor passenger vessel for inter-coastal service in wee
Africa. The vessel, which is to be laid down in Belfast, will be propelled by Harland-B. and W. motor engines, and is to be ready for service early next year.
James Combe and Son, Ltd., 9, Southampton-street, London,
W.C.1, have received a contract to install at the Pioneer Health W.C.1, have received a contract to install at the Pioneer Health Centre, Peckham, an all-electric thermal storage space-warming, air-conditioning, swimming-pool-warming, and hot-water service
plant. Messrs, J. Combe recently completed the all-electric plant. Messrs. J. Combe recently completed the all-e
plant for the Empire Pool and Sports Arena at Wembley.
Kryn and Lahy (1928), Ltd., Letchworth, Herts, have obtained a large contract for a total weight of 120 tons of miscellaneous castings from a well-known rolling mill corpora-
tion. Some of the items will be of mild steel, some of hightion. Some of the items will be of mild steel, some of high-
carbon steel, and the remainder of K.L. "Stronger Steel." This carbon steel, and the remainder of K.L. "Stronger Steel.

An Avlation Museum.-The Science Museum Report for 1933 refers, as we stated in last week's issue, to a possible intention, on the part of the Air Ministry, to establish a museum to illustrate the history of aviation. It has been ascertained that this statement arose through a misapprehension of the
position. The Air Ministry, we are informed, has been considering the best method of preserving such historical and technic records as would be of permanent value in illustrating the history and development of the Air Service, as the youngest of the three defence services. It would be premature at present, however, to make any formal or detailed announcement on the
subject.

Markets, Notes and News.

The prices quoted herein relate to bulk quantities. Unless otherwise specified home trade quotations are delivered f.o.t. Export quotations are

f.o.b. steamer. A comprehensive list of the prices of materials mentioned below will be found on the next page.

The American Situation.

Latest American advices state that the severe drought in the prairie states has overshadowed business prospects in the iron and steel industry. However, the Government's emergency plan to slaughter and can
$7,000,000$ head of cattle will temporarily benefit steel producers, as the containers required will call for about producers, as the containrs
175,000 tons of tin-plates. The average steel ingot pro-
duction has improved slightly and is now estimated at duction has improved slightly and is now estimated at
$27 \frac{1}{2}$ per cent. of capacity. Pig iron production in July is reckoned at $1,225,000$ tons, against $1,930,000$ tons in the previous month and $1,819,000$ tons in July last year. The
furnaces in blast on August 1st numbered 75 , against 89 a furnaces in blast on August 1st numbered 75, against 89 a month ago and 106 a year ago, the daily production rate
being 36,000 tons, against 48,000 tons last month and 60,000 being 36,000 tons, against 48,000 tons last month and 60,0 ept
tons last year. The outlook is not promising and except for the quarterly distribution of orders for material needed for repairs railroad buying is negligible. The rail mills wil purchased with Government financial aid last spring emainder of the year beyond orders for additional cars. Tenders are being taken for 450 subway cars required for New York. The structural shape mills are operating at a higher rate than other heavy finished steel mills, mainly on the demand from municipal works. The 17 per cent larger than in the similar period last year. The stee makers disregarded the President's invitation to cut prices and quoted their code figures. The N.R.A. has ruled that he filing of reduced prices for steel for Government requirements does not make such prices applicable in the
open market. Steel makers, however, take the view that the code is a contract and that any reduction, even to the Government, would be a violation of the agreement in the fact that although steel prices generally are 2 dollar to 4 dollars lower than was expected for third quarter delivery, they are still 1 dollar to 4 dollars above second quarter lev less
concessions

Pig Iron

In spite of the seasonal quietness a fair volume of activity is being maintained in the pig iron industry, position is satisfactory. Stocks of Cleveland foundry and forge iron are comparatively light and ironmasters are
regulating their output so as to avoid any undue accumuregulating their output so as to avoid any undue accumu-
lation, although so far there seems no necessity to reduce production. Confidence in the future prevails, and with a good local demand and the resumption of deliveries to Scotland the output of Cleveland is practically absorbed
Supplies of East Coast hematite are readily taken up and Supplies of East Coast hematite are readily taken up and
the makers appear somewhat reluctant to book far forward at current prices, in view of the possibility of increased production costs. The Cleveland ironmasters have not produced their efforts to secure a larger share of overseas bosiness, and the news that a cargo of 1000 tons had been
buaded for Italy gave much satisfaction. Prices for home delivery remain steady, but it is understood that exce tionally low prices can be obtained for export. The Mid land pig iron trade has been hampered to some extent by
the holidays, which have caused some accumulation of the holidays, which have caused some accumulation of
stocks at makers' yards. A number of consumers have renewed contracts to cover autumn and winter require ments, and the light castings branch continues to take good deliveries. On the No West Coast the order received ensure the disposal of production until near the
end of next month. The local demand is well maintained ond of next month. The local demand is well maintained The price position remains steady. In the West of Scotland an active business continues in all grades of pig iron, the call for steel-making iron being more brisk than 72 s . 6 d . for No. 1 foundry and 70 s . for No No. 3 and 71 s at on for her No. Toundry and 70s. for No. 3 and 7 s . per iron has been increased by 2 s . 6d. per ton in all districts but little business has been transacted at the higher rates, consumers having covered their requirements before the advance.

The Steel Position.

Judging by the inquiries for steel received during the past week, the outlook for the remainder of the year is encouraging and in some quarters exceptionally active conditions are expected. An interesting feature was the improved number of specifications for structural steel and period has not been easy to secure. The demand for old fairly well. The Association rates for joists, angles, channels, and plates have been strictly upheld. Boiler plates have been in quiet demand, but a steady routine business has passed in mild steel chequer plates. Owing to the recent contracts for new vessels, good orders will specifications for ship plates and sectional material have already come to hand in the shipbuilding areas. After a quiet interval inquiries for colliery steel have revived arity in the unchanged. There has been some iel bars some works having full order books, whilst others have difficulty in maintaining activity. In this department Continental competition has been most intensive, as
foreign bars have been sold at 5619 s . 6 d . per ton delivered foreign bars have been sold at the inclusive of duty, against the English controlled price and inclusive of duty, against the Enghish controled price secured m

Scotland and the North.

Business in the West of Scotland proceeds at a fairly steady pace and most of the works are operating at gany concerns are benefitting from the more active and ditions now prevailing at the Clyde shipbuilding yards The engineering branch has recently secured good order r various descriptions of work, including oil tanks and comotives, whilst producers of railway material have aken substantial business in rolling stock and bridge building material. In the tube trade conditions are more ncouraging ; the weldless department is busy, and there is more doing in butt-welded descriptions. Heavy-gauge steel sheets have been in active request, particularly on
export account; but there has again been a scarcity of export account; but there has again been a scarcity of
inquiries for light sheets, makers of which are poorly nquiries for light sheets, makers of which are poorly
employed. Continental competition has been felt in mployed. Continental competition has been felt wrought iron and re-rolled steel, and although, in of material is turned out each week, in only few instances is plant fully engaged. Coast Lines, Ltd. have placed an order with the Ardrossan Dockyard, Ltd, for a motor ship of approximately 1600 tons with a capa city of over 120,000 cubic feet. The vessel will be pro pelled by two British Atlas-Polar marine engines, which will be installed by John G. Kincaid and Co., Ltd., of Greenock. On the North-West Coast there has been a moderate volume of activity and business in pig iron ha been satisfactory. The outlook in the steel trade remain good, most orders are replaced as soon as worked off, and there is every indication that busy conditions will con
tinue. There is a steady demand for steel for rails and ubes. Orders have come to hand from Scotland, bu business with the Continent remains restricted. Good orders have been received from the Midlands, however and there was a slight expansion in business with South We L. Midand and Scottish Railway will call for considerable tonnage of steel and boilermakers have purhased larger quantities of material during the past week The demand for bright-drawn steel bars has been sustained and a more active business has passed in steel forgings.

The North-East Coast and Yorkshire.

In spite of a lull in the demand for iron and steel, most works are actively engaged and the opinion seem equal the rate maintained in the early part of the year ment from the response from dverseas markets, and ment from to response hotif otrily muchbs, a pass may be looked for within the next few months. Th statistical position of the pig iron industry is good, a stocks are moderate and outputs continue to be fairl well absorbed. Business in steel bars and billets has bee on a good scale, and although importations from the Continent have been continued, local concerns on the North East Coast are understood to be actively employed with little material available for prompt delivery. The situa tion at the finishing mills gives no cause for concern, but fresh orders will be needed for the autumn and winte months. The sheet trade shows no recovery from th recent depression and export orders remain scarce.
the Sheffield area the works are busy. Holidays have the Sheftield area the works are busy. Holicays have and replacement orders are coming along rapidly large proportion of the business is on home account, and, as in other districts, producers are making every ondeavour to recover their export trade. The output of open-hearth steel shows no decline, while that of basic pig remains at a high level. Useful tonnages of foundry pig iron have been delivered in this district and some con ond of have already covered their requirements up to basic and the demand for forge has also been quiet. Goo quantities of both East and West Coast hematite are going into consumption. Business in bar iron is active,
principally in common bars. The tool trade is busy on principally in common bars. The tool trade is busy on engineering works. Numerous inquiries have been received from overseas, but the development of busines has been held up to some extent by exchange problems and the restrictions of foreign Governments on the payment accounts. These problems however, are being gradually more active in the near future

The Midlands and South Wales.
Although operations are not yet fully resumed in this district the outlook gives promise of improvement and by the end of this week production will become general. The immediate future in the pig iron market seems secure, though forge qualities are less in deman be smaller than and apparently deliveries this month wil one of the brightest sections of the market, and most work are fully occupied. In the engineering division con ditions have been rather quieter. The market for finished ron has shown little change and producers here have been helped by the absence of offers of Belgian No. 3 bar The controlled price for No. 3 grade is $£ 710 \mathrm{~s}$. and fo No. 4 grade $£ 8$ delivered. Crown bars are uniformly quoted at $£ 9 \mathrm{l} 2 \mathrm{~s}$. 6d. delivered; marked bars, $£ 12$ a works ; and iron strip, $£ 1010 \mathrm{~s}$. delivered. A number of satisfactory specifications for finished steel accumulated during the holiday stoppage. The demand for the specia quality steels required for motor car building has tempo rarily slackened. The electrical engineering branch, on heceiver hind, is a in and to works are likely to to the grid system. In the raw and semi-crude steel
market the position has not altered on the week and business has been too small to indicate to what extent fureign exporters are likely to exploit the markel in the neal
the import duties remain unaltered. The controlled rates applicable to the district are upheld£8 12s. for small bars, $£ 97 \mathrm{~s}$. for hoops and strip (1 to 4 -ton ots in each case), and $£ 510 \mathrm{~s}$. for soft billets for lots of 500 tons. The demand for sheet bars has been slow. The on and steel industry in South Wales is back to normal, and with manufacturers well booked prices are firmly naintained. The heavy steel works maintain a fair rate of activity and this will continue for some months to come n good forward bookings. Semis were bought somewhat paringly and consumers appear to be confining their purchases to small lots for immediate needs. At the higher reported and the works are operating at about $65 \frac{1}{2}$ per ent. of capacity

Lead and Spelter

Prices in the lead market have been maintained during the week. In this country the demand from consumers has been fair, and it is expected that the requireuantities in the near future. The declaration of a parce of Mexican lead did not adversely affect the market, and the tone remained firm in spite of the continued shortage of Empire metal. The position on the Continent show no improvement. Business with Germany is limited owing to the control exercised over imports, and the demand from other countries abroad has been insignificant. In he United States production continues to increase, and tocks now represent a considerable tonnage, probably ecause the goor a likely, and the position is not clear. In the spelter likely, and the position is not clear. . In the spelter market prices have, and the undertone remains firm. No material change in the position has taken place on the week change in the position has temand in this country has been well maintaine considering the time of the year, and the technical position ems sound. As the price is low there is little induce ment to sell, and no heavy liquidation is considered likely The shortage of Empire spelter has resulted in high premiums on duty-free metal for early delivery

Copper and Tin

Conditions in the standard copper market have been somewhat irregular; price fluctuations have no bee wide ation the United States silver nationalisation order the market became firmer, but in face of a fair mount of selling and liquidation, buyers showed some reserve and prices gradually receded to $£ 29$ for the thre months' position. The demand continues quiet and no sustained recovery seems likely at present. Although less cheap American copper has been offered in Europe here is a steady tendency for production outside America o increase, particularly in Canada and Africa, where, it is understood, producers are fully sold. In the United States, although the code authority has arranged sales quotas for the chief producers and the Custom smelters, production is unrestricted, and some concerns have con-
siderable stocks of metal. Most of the manufacturers have pledged themselves to purchase only Blue Eagle opper, and altogether sixty-three copper consuming companies have signed purchasing agreements.
announcement that the International Tin Committee had agreed to reduce the quota for the period from October 1st o December 31st by 10 per cent. to 40 per cent. of the tandard tonnages was immediately reflected in improved values. Prices advanced to $£ 2315$ s. for three months' tin the afterwards they receded on profit taking, and some of expected to was lost. This reduction in the quota ncrese to ofset the recent fall in consumption. The nfluenced the decks at the close of last month no doub also the fact decision arrived at by the Committee, and exported less than usual. It is understood that the Dutch East Indies only have exported their full quota, the total exports. The immediate outlook is uncertain and much depends upon developments in the United States.

The Continental Steel Cartel.

At the recent meeting of the Continental Steel Cartel it is understood that an agreement in principle was reached regarding the inclusion of the organisations fo thick and medium plates and universal iron. It is reported that the Austrian industry has also expressed a desire to come to an understanding with the Cartel for the export of similar products. Czecho-Slovakia and Austria were originally represented in the Central European Group in the old Steel Cartel, replaced a year ago by the new organisation which was established for a period of five years. In Germany there is still talk of the British industry joining the Continental Steel Cartel, but the general opinion is that there is little hope of this taking place. Should an agreement be entered into with Great Britain the general opinion is that exports to the international markets should be regulated and import quotas granted to the Continental producers for the British market. According to reports from Essen, there is no prospect of the originally contemplated international sales organisation for thin plate being formed winin the Cartel. The the basis period for the calculation of the quotas.

Current Prices for Metals and Fuels.

Makers' official home trade prices, per ton, delivered buyers' stations. Sections, joists and plates are subject to a rebate to home users purchasing only from associated British Steelmakers: joists, 22s. 6d. : plates and sections, 15s. Export orders of 250 tons and over may be subject to special quotations.

FERRO ALLOYS.

Ferro Cobalt

NON-FERROUS METALS.
Official Prices, August 15th

FUELS.
SCOTLAND.

Midlands, and Leeds and District-

French Engineering Notes.

Mechanical Engineering.

Reports upon different industries in the country are being drawn up for the Conseil National Economique with a view to preparing plans for a settled economic policy, and amongst them is a report by Monsieur Corville, ecretary of the Federation de la Mecanique, upon the mechanical engineering industry, excluding motor car conresults of a census of the industry taken in 1931 have no yet been published, so that Monsieur Corville is obliged to take the figures for 1926 , showing that there were then about 5000 mechanical engineering workshops and factorie in France. Only twenty of them employed more than a thousand men each, and less than a thousand work gave employment individually to more than a hundred hands. All the others were small shops. They are widely disseminated, particularly in the Paris district, in the Loire and Rhône Departments around Lyons and Saint Etienne, and in the eastern and northern Departments The total number of men employed in the mechanica engineering industries in 1926 was 333,700 , and a further 300,000 found occupation in other metal-working trades. About 15,000 engineers from the State schools were mumber being probably largely ind factores, their number being probably largely increased by engineer ment that the figures of employment are now reduced by something like 25 per cent. may be taken as a moderate estimate. The statistics relating to turnovers of different branches of the industry in 1926 would be interesting if they did not bring into sombre relief the probable figures at the present time. The turnover of rail a it fell to a fraction of that amount.

Hydro-electric Plants.

Electrical engineering is less effected by the slump than other industries because the national electrification scheme, though retarded by the financial stringency, provides the industry with a certain amount of work,
and with the allocation of 600 million francs out of the public works relief fund for rural electrification and the expenditure by the railway companies upon electrical equipment there is promise of more activity in the future Meanwhile, a report by the Chambre Syndicale des Forces Hydrauliques is fairly encouraging, particularly in view of the progress of electric traction. Plans to be put in hand by the State and the Est railways will provide an
additional consumption of 150 million kWh a year, and on the Orleans Railway the work of electrification is proceeding. The report states that during 1933 seven hydroelectric power stations capable of supplying 165 million kWh a year were put into service, and that during the
present year six others will be completed with a capacity present year six others will be completed with a capacity
of 352 million kWh . The electrical supply is at present so largely in excess of requirements that there has been some hesitation in building new dams and laying down additional power plants, but as employment must be provided, and the demand for electrical energy may electric undertakings figure prominently in the programme of relief works.

A Novel Miners' Strike

About 85 per cent. of the miners in some colliery districts in the Nord and the Pas de Calais are Poles who were drafted into this country during the years following the Armistice with a view to developing the coal mining down and a greater individual output was obtained by the use of machinery, the French miners had to be kept in employment while contingents of Poles were sent back to their country. Those remaining began to feel resent ment against the coalowners at the prospect of being obliged to leave in their turn, and when two of them were expelled from the country on the ground of Communist agitation, nearly 200 of their compatriots declared a strike on reaching the bottom of a pit in the Pas de Calais to
begin their shift, and detained fifteen French miners who refused to join them. They blocked the cage at the bottom. They remained there thirty-eight hours in the hope that the expulsion order would be cancelled, and then, failing to get satisfaction, they capitulated. Many of the men with their families have been expelled.

Shipbuilding Costs.

At the annual meeting of the Chantiers et Ateliers le Saint-Nazaire (Penhoët), reference was made to the of the wide marginch shipbuilders have to face in ond sterling countries. The owner has to buy his ships at international prices, and builders must necessarily regard the market from an international standpoint. This is a fundamental difficulty which no legislation has yet been able to overcome. The shipbuilding industry may benefit from the new law requiring owners who recerve subsidies to build ships in France but there is the possibility that the additional cost of the ship will absorb the amount of subsidy paid to the owner. In making these statements the object of shipbuilders is obviously to show the necessity of legislation which will enable them to compete on favourable terms with foreign shipyards, but no pracgive them complete satisfaction.

The "Atlantique."
The British underwriters have paid to the Compagnie Sud-Atlantique the sum of a million pounds, to which must be added fifteen months interest, for the Channel Atlantique, which was burnt out appea against the verdict of the Tribunal de Commerce de la Seine, on the ground that the "Atlantique was not a total loss and that the ship can be repaired and fitted out in Great Britain at less than the amount claimed.

British Patent Specifications.

When an invention is communicated from abroad the name and
address of the communicator are printed in italics. When an abridgment is not illustrated the Specification is without drawings.
Copies of Specifications may be obtained at the Patent Office,
Sale Branch, 25, Southampton-huildings, Chancery-lane, W.C., at 1 s , each.
The date first given is the date of application; the second date complete Specification.

DYNAMOS AND MOTORS

412,804. September 14th, 1933.-Alternating-current Motor Drives, The British 7 homson-Houston Company, When two or more asynchronous motors are working in parallel through positive couplings and their transmission con-
ditions differ from one another owing to more or less wear, the ditions difier from one another owing to more or less wear, the
motors will be differently loaded. Drives of this kind are found, for example, in the textile and paper industries, where machines are driven by a number of asynchronous motors through belt drives or friction couplings. In vehicle drives also the motors rims, so that with any deviations in the wheel diameter due to rims, so that with any deviations in the wheel diameter due to
uneven wear different loading of the motors must occur. The
№ 412,804

difference in the loading of the separate motors is determined by the amount of the deviation in the transmission conditions. According to the invention, the operation of such positively
coupled motors is improved by subdividing the field windings of the motors and connecting the divided windings with the supply voltage partly in series and partly in parallel. For the sake of simplicity only one phase is indicated for each motor. Each phase of the motors A and B is divided into two parallel branches, namely, C D for the one motor and E F for the other
motor. The winding branches D and F for the corresponding phases of the two motors are connected to one another in series with the supply, whilst the winding branches C and E are in with the supply, whilst
parallel.-July 5th, 1934.
412,948. January 4th, 1934.-Methods of Cooling Elec trical Machines, The British Thomson-Houston Company Ltd., of Crown House, London, W.C. 2 .
The machine to be ventilated in accordance with this
invention is provided with a motor A driving the internal fan B invention is provided with a motor A driving the internal fan B
and the external fan C. The internal fan B causes a circulation of air, as shown by the dotted arrows D, through a pipe E into the interior of the machine, and then withdraws the air from the
interior again, through a pipe F , so that a constant circulation
 of the inner air is set up. The external fan C draws in fresh air,
as shown by the arrows G in full line, and forces this fresh air over the casing cover for the machine, provided with ribs H,
with the assistance of a guiding hood. The cooling device according to the invention, is particularly advantageous for motors with wide speed variation or which are used for interooling during, since it also ensures uninterrupted satisfactory July 4th, 1934 .

TRANSFORMERS AND CONVERTERS

412,846. November 28th, 1933.- Regulating Transformers,
Aktiengesellschaft Brown, Boveri et Cie., of Baden, Aktiengesellschaft Brown, Boveri et Cie., of Baden,
Switzerland. The single-phase core transformer shown consists of two iron ron cores A and B carry the primary windings E and F and the secondary windings G and H . If voltage is applied to the transformer, the flux runs in the direction of the arrows J. Between
the primary windings and the secondary windings a leakage bridge K and L with variable air gap M is inserted and the flux is diverted through the leakage bridge. Consequently the secondary winding is less strongly excited and produces a son the
voltage. The magnitude of the leakage flux is dependent on the reluctance of the leakage bridge or on the size of the air gap, since the iron cross section of the leakage bridge remains invariable. The reluctance of the leakage bridge reaches a minimum when the air gap in the leakage bridge is smallest and
a maximum when it is greatest. It is thus made possible by

varying the air gap of the leakage bridge to obtain a completely continuous curve for the regulation in the desired range between
maximum and minimum. In the case of welding the desired quiet and even burning of the arc is obtained. The leakage bridge for the single-phase transformer is divided into two parts K and L , which, in order to form the air gap, are cut away obliquely at the surfaces facing one another and at the other ends are placed closely against the cores Aislaced by means of a spindfe \mathbf{N} with left and right-handed threads, so that a greater or smaller air space M is obtained.-July 5th, 1934.

412,625. January 2nd, 1933. - Diaphragms and Separator

 Diaphragas for Electric Accumulators, Compagnie Générale d'Electricité, of 54, Rue la Boetie, Paris, France. It is known to form porous bodies such as electrolytic diasuch as glass wool, infusorial earth, silica gel, and so on, with porous rubber, the pores of which are of small dimensions. The subject of the invention is a separator diaphragm for accumulators constructed as a single member which is characterised by a diaphragm portion composed of porousmaterial, glass wool, spun quartz, silica, or the like, agglomerated material, glass wool, spun quartz, silica, or the like, agglomerated
by porous rubber and a separator portion composed of porous rubber which may be provided with or without ribs. A and B denote the electrodes, C the diaphragm portion, and D the separator portion having ribs E. Such a diaphragm is

simply produced. Spun glass wool, for instance, is agglomerated by means of latex and the mixture is then vulcanised so as to
transform the latex into porous rubber. The vulcanisation can be performed in moulds producing directly the required diaphragm or the vulcanised material may be ultimately cut up into plates of the desired dimensions. The diaphragms thus prepared can be utilised directly in accumulators without necessitaring any special eliminatory treatment, the rubber merely acts to assure sufficient mechanical solidity to the glass
wool and the pores in the rubber need not be of small wool and the pores in the rubber need not be of small dimensions. In place of glass wool, blue asbestos, spun quartz, silica in all its forms, \&c., may be utilised. The porous partitions thus prepared, with or without ribs, are capable of utilisation
alone between the accumulator plates, so that they serve at the same time as separators and diaphragms.-July 2nd, 1934.

TELEGRAPHS AND TELEPHONES.

412,796. August 30th, 1933.-Insulated Electric Conductors for Deer Sea Signalling Cables, Norddeutsch-
Seekabelwerke Aktiengesellschaft, of Nordenham (Oldene Seekabelwerke A
burg), Germany
This invention relates to deep sea electric signalling cables, This invention relates to deep sea electric signalling cables, the conductors of which are surrounded with a solid non-
compressible insulating layer of polystyrol. Polystyrol, which, owing to its good electrical properties, is especially suitable for the insulation of telephone conductors, cannot be used as a

closed layer on the conductor, since it is only slightly flexible and too brittle. As, however, it has now become possible to ing to this invention, to wind strands of polystyrol on the con ductor with the adjacent turns abutting against each other their cross section being such that the air gaps between them instance, have aqu method of carrying the invention into effect is shown. The conductor A is surrounded by a strand B of polystyrol of approxi
mately square cross section, which is wound thereon in such a gaps. A tape winding C is provided thereon, which consists of two flat bands of polystyrol. A water-tight gutta-percha covering D follows next, and is surrounded in a known manner by
a layer of jute E , an armouring F of wires of circular cross section a layer of jute E , an armouring F of wires of circular cross section,
and a a layer of jute G . Instead of the tape winding C of poly. styrol, use may be made of metal bands serving as a return conductor. A number of insulated conductors according to the invention may be stranded together and the spaces between the conductors be filled by means of extruded strands of, for
instance, gutta-percha or mixtures of polystyrol with gutta. instance, gutta-percha or mixtures of polystyrol with gutta-
percha and like substances, a water-tight sheathing being placed thereon in the usual way.-July $5 t h, 1934$.

MEASURING AND TESTING INSTRUMENTS.

12,803. November 17th, 1933.-A Liquid-level Indicator J. E. G. Eurich, 2, Stratford-avenue, West Didsbury For the purpose of indicating the level of liquid in an opaque For the purpose of indicating the such as a storage battery, a glass device, shown at

A, is sealed into the lid. The lower end of this device is at approximately the level of the liquid, and is formed with facets B B levels. Light passing down the glass will be reflected by the facets, which are not submerged, but those below the liquid

MINING MACHINERY.

412,650. January 14th, 1933.-Collapsible Pit Props, The Darlington Rolling Mills Company, Ltd., Rise Carr Rolling
Mills, Whessoe-road, Darlington ; and R. L. Nisbet, 116, Links-road, Cullercoats, Northumberland.
This pit prop is made of two pieces of rolled section AB
joined together by the fish-plates C C. The bolts D D con

in slotted bolt holes. Between the two sections of prop there is a wedge E , also of rolled section. When the prop is put in position
the wedge is driven home until its flange F registers with the flanges of the prop and helps to stiffen it. When it is desired to the small flange G catches and heaves it out.-July 5 th, 1934 .

LIGHTING AND HEATING.

413,077. March 24th, 1933.-The Utilisation of Small Coat and Coal Dust and Simlar Fuels, J. S. Hales, of the
Fuel Research Station, Blackwall-lane, East Greenwich London, S.E. 10.
The object of this invention is to provide improved means whereby coal dust or small coal or similar fuel may be better utilised in heating appliances, for instance, open grates. Coal
dust or similar fuel or material is placed in containers or coated or covered with material or materials which resist the action of heat for sufficient time to allow part or the whole contents of the ontainer or covering to cake together and form a coherent or er furnace. The further heated or placed on a fire or in a stove destroys the container or covering or this is done by poking ond he caked contents are then burnt. The containers or quantities of materials to be coated or covered may be of any convenient size or shape. The containers may, for example, be made of thin ther material or materials, A fabric ar coating or covering of may be required to increase the strength of the container covering, and the inventor has found aluminium foil with a suitable paper covering to be suitable.-July $12 t h, 1934$.

MACHINE TOOLS AND SHOP APPLIANCES.

412,817. October 13th, 1933.-Forging Machines, A Schneider, 11a, Arnulfstrasse, Düsseldorf-Oberkassel ; and Sumuco Aktiengesellschaft für Maschinenbau, Leverkusen
Schlebusch I, Germany. This forging machine has m
he work piece successively. Instead of the dies being arranged
horizontally, as usual, they are set on an incline, which may have an angle of up to 20 deg. to the horizontal. In this way the
force of gravity is used to help in moving the piece from one die orce of gravity is used to help in moving the piece from one die

to anothe
$5 t h, 1934$.
The shifting mechanism is not described.-July

MISCELLANEOUS.

412,614. December 31st, 1932.-Mercury Arc Rectifiers, The British Thomson-Houston Company, Ltd., of Crown House, Aldwych, London, W.C.2, and Ewart Maurice
Weaver, of 8 , George-street, Rugby, Warwick. Weaver, of 8, George-street, Rugby, Warwick. Apparatus is described in this specification for supplying
current to the grids of grid-controlled mercury-are rectifiers, \&c., for obtaining a phase shift of the grid voltage, and comprising a peaking transformer having a saturated core on which, in addition to the primary and secondary windings, an additional
winding is carried and excited from a D.C. source. The drawing winding is carried and excited from a D.C. source. The drawing
diagrammatically illustrates the invention as applied to a sixanode rectifier. Six peaking transformers are shown, those supplying opposite phases being similarly connected, except
that the primary windings are reversed. The primaries of the that the primary windings are reversed. The primaries of the six transformers are connected symmetrically, two in parallel
across each phase of a three-phase supply of suitable voltage in synchronism with the supply to the rectifier. There are two additional windings A and B on the saturating limb of each peaking transformer. Winding A is associated with the outpu of the rectifier and winding B is connected across an externa

direct-current supply C, and the current can be varied by means anstant in the magnetic cycle at which the saturating at the unsaturated, and by varying the position of this by means o the direct-current flux a phase shift may be obtained. If the wave form of the applied voltage is sinusoidal, then for any the peak the phase shift is approximately proportional to the direct current applied to the additional windings. The phase shift may be caused to vary with the output load condition of the rectinier in a non-linear manner-ior example, by supplying the peaking transformer with an alternating current voltage ing a third harmonic, or by inserting in series with the direct current winding on the transformer a resistor, the resistance o which changes with current. In producing a flat com pound characteristic between certain predetermined limits of voltage from shifting appreciably with load at loads above the maximum load for which flat compounding is required, and this result may be obtained by various methods.-July $2 n d, 1934$ 412,801. September 12th, 1933.-Ball Mill Linings, F. B Dehn, 103, Kingsway, London, W.C.2.
This invention is concerned with the lining of ball grinding
mills. Inside the shell \mathbf{A} of the mill there is welded a longitudinal channel sections B B. These channels serve a
lot

anchorages for the lining, or wearing, pieces C, C. The lining pieces are held in place by keys D , which are driven into curved lining piece their hanges. The arrangement is such that the channel without the keyway effect being impaired.-July 5th

412,712. March 16th, 1933.-Means for Supporting Electric conductors, Callendar's Cable and Construction Company, td., of Hamilton House, Victoria Embankment, London, Victoria Embankment, Brown, also of Hamilton House, The electric conductor-supporting device ase A and a U-shaped clamping member B, both formed of insu

lating material, which fit together so as to clamp a conductor C between them, the clamping being effected by means of a bolt and B together, and to fix them in position on the surface of a wood pole F . The base A is provided with an aperture in which the U-shaped member B can slide, and which serves also to accommodate the shank of the hook bolt D.-July 5th, 1934.
413,202. December 11th, 1933.-Mercury Vapour Rectifiers,
The British Thomson-Houston Company, Ltd., of Crown
House, Aldwych, London, W.C.2.
In the operation of mercury vapour rectifiers, especially on
railway vehicles, difficulties are often met with because under the influence of jerks and shaking the mercury of the cathode splashes about in the rectifier, and if drops of mercury reach the anodes it may cause back ignition. Furthermore, a conducting part of he cathode may become detached and may lead to the starting of the arc at this part and to its becoming soon disturbed.
For avoiding the disadvantages mentioned, according to the invention, in a mercury vapour rectifier, the cathode vessel and the mercury contained therein are set and maintained during

operation in relative rotation. The liquid is thus prevented from splashing owing to shocks into contact with the anodes. Coneniently the rotary movement is effected by a magnetic rotary field, and the cathode container has a turned in upper edge to
assist in preventing a splashing out of the liquid. A is a laminated iron body of a rotary field winding B , which surrounds the part C of the rectifier vessel containing the mercury, i.e., cathode container. In the case of rectifiers with metal casings, the cathode container C consists of non-magnetic material, preferably insulating material. The cathode container is provided
with a turned-over edge D. The mercury is shown in the position it assumes as a result of the rotary movement. The two current leads for the cathode are shown at E.-July 12th, 1934.

Forthcoming Engagements.

Secretaries of Institutions, Societies, \&c., desirous of having notices of meetings inserted in this column, are requested to note hould reach this office on or before, the morning of the Monday of the week preceding the meetings. In all cases the mine and PLACE at which the meeting is to be held should be clearly stated.

Friday, August 31st, to Sunday, September 9th, Inst. of Gas Engineers.-Visit to Second International Gas Inst. of GAS Engineers.-
Conference, Zürich and Swiss Tour. For papers and reports, see page 97.
Monday, Seftember 3rd, to Thursday, September 6th.
Inst. of Metals.-Annual Autumn Meeting, Manchester For programme, see page 61, July 20th.
Monday, September 10th, to Thursday, September 13th. Iron and Steel Inst.-Autumn meeting in Belgium and uxemburg. For programme see page 169.
Friday, September 21st, to Sunday, September 23rd. Women's Engineering Soc,-Twelfth Annual Conference of Women Engineers to be held at Norwich.
Friday to Monday, September 21 st to Seftember 24 th. Assoc. of Special Libraries and Information Bureaud. Assoc. of Special Libraries and Informa
-Oxford. Programme, see page 10, July 6th.
f.B.I. Mission to Manchoukuo.-The Federation of British Industries has decided to send an industrial mission in the mmediate future to Manchoukuo, for the purpose of studying industry can co-pere with The mission will also pay a short visit of courtesy and goodwil to Japan, with the object of establishing friendly contact with the representative organisations of Japanese industry and com colonel Lord Barnby, Past President of the Federation of British Industries ; Sir Charles Seligman, senior director of eligman Brothers, Ltd., bankers ; vice-chairman, Commercia Union Assurance Company ; director, National Discount Company ; Mr. Guy Locock, Director of the Federation of Britis解 and Steel Federation.

