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Abstract. Recent research in algebraic K-theory focusses on Wald-
hausen’s construction of the K-theory spectrum and computations in
homotopy theory using trace methods. The purpose of this article is to
survey the more classical foundations always keeping in mind the con-
nections to geometry and topology.

Chapter 1 reviews the construction and properties of topological K-
theory and can be skipped by a reader familiar with this material. Chap-
ter 2 then begins the exploration of geometric connections by asking for
which dimensions Rn admits the structure of a division algebra, a ques-
tion known as the Hopf invariant one problem. Related to this is the
question of how many independent vector fields fit on the spheres Sn

which we answer in chapter 3. Wall’s finiteness obstruction, Whitehead
torsion, the K-theory of schemes, and the geometric motivation for higher
K-theory will be discussed in chapter 4 for which we will introduce al-
gebraic K-theory of rings and categories. The last chapter discusses the
equivariant story.

This monograph is work in progress. Please feel free to email me
with feedback, suggestions or corrections.
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CHAPTER 1

Basics of Topological K-Theory

1.1. K-Theory as a Cohomology Theory

In this section all spaces are assumed to be compact and Hausdorff and
we will by default be dealing with complex vector bundles unless mentioned
otherwise. Our first take on K-theory will be to make the direct sum oper-
ation on vector bundles into an addition operation in a group.

Let Vect(X) be the set of isomorphism classes of vector bundles over a
space X. The trivial n-dimensional vector bundle we write as εn → X or nε
or even just n to avoid confusion with the notation En which we will use to
denote the nth tensor power of a bundle E. We denote the space of sections
of a bundle E → X by ΓE. We can form new bundles from old ones by
operations from linear algebra such as direct sum, tensor product, and Hom.
A morphism between bundles p : E → X and q : F → X in Vect(X) is a
map φ : E → F such that q ◦ φ = p, and the restriction φx : Ex → Fx is
a vector space homomorphism. Morphisms between E and F form a vector
space isomorphic to Γ Hom(E,F ).

Whitney sum of bundles gives Vect(X) the structure of an abelian
monoid with zero element ε0 and we apply the Grothendieck construction
or group completion to Vect(X) to obtain an abelian group K(X), called
the (complex) K-theory of X.

Recall that the Grothendieck group M+ of an abelian monoid M is the
group of formal differences m− n of elements of M , where m− n ' m′− n′
if and only if there is some p ∈M such that m+ n′ + p = m′ + n+ p in M .
Denote by [m−n] the equivalence class of m−n. There is a natural inclusion
M →M+ sending m to [m− 0] =: [m] and addition in M+ is defined in the
obvious way [m−n]+[m′−n′] = [(m+m′)−(n+n′)]. The inverse of [m−n]
is then [n−m] and M+ is an abelian group (since M is abelian). M+ also
has the universal property that any monoid homomorphism ψ : M → G to
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1.1. K-THEORY AS A COHOMOLOGY THEORY 5

a group G factors uniquely through the inclusion m 7→ [m].

M
ψ //

� _

��

G

M+
∃!φ

==

The homomorphism φ is defined by φ([m− n]) = ψ(m)− ψ(n).
Alternatively, one can describe the Grothendieck group M+ of an abelian

monoid M as the free abelian group on generators [m], m ∈ M , subject to
the relations [m+m′] = [m]+[m′]. This construction has the same universal
property by defining φ([m]) = ψ(m) and extending by linearity. Applying
the universal property of each of these descriptions to each other we conclude
that the resulting group completions are isomorphic.

Example 1.1.1. Vector bundles over a point are trivial so Vect(x0) = N
and K(x0) = Z.

Just like in singular cohomology, along with K(X) we have a reduced

version K̃(X) which is roughly K(X) modulo trivial bundles. Let x0 be a
basepoint of X and define reduced K-theory

K̃(X) = ker(i∗ : K(X)→ K(x0))

where i∗ is restriction of vector bundles to the basepoint. Let c : X → x0 be
the constant map, then i∗ ◦ c∗ = id so the exact sequence of abelian groups

0→ K̃(X)→ K(X)
i∗→ K(x0) ∼= Z→ 0

splits and K(X) ∼= K̃(X) ⊕ Z. Note that this splitting is non-canonical
unless X is a pointed space.

There is another interpretation for K̃(X) which we will need: say that
two bundles E and E ′ are stably isomorphic if there exist trivial bundles εn

and εm such that E ⊕ εn ∼= E ⊕ εm. This is an equivalence relation, and we
denote by S(X) the set of stable classes {E} of bundles over X. We can give
S(X) the structure of an abelian monoid by defining {E}+{E ′} = {E+E ′}
with zero element {εn} for any n. Even more is true:

Fact 1.1.2. For each vector bundle E → X with X compact Hausdorff there
exists a vector bundle E ′ → X such that E ⊕ E ′ ∼= εn for some n. [Hat09,
Proposition 1.4]

It follows that S(X) is an abelian group and one can show

Proposition 1.1.3. Let X be a pointed compact space. Then K̃(X) ∼=
S(X). [AGP02, Theorem 9.3.8]
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Note that by (1.1.2) every element in K(X) can be represented by [E−εn]
for some n since [E − E ′] = [(E ⊕ E ′′) − (E ′ ⊕ E ′′)] = [(E ⊕ E ′′) − εn] for
some appropriate E ′′.

To ease notation, let us now drop the brackets from [E] and just write
E. Consider the ring structure of K(X) induced by tensor product of vector
bundles with identity the trivial bundle 1. We will write (E1−E ′1)(E2−E ′2) =

E1 ⊗ E2 − E1 ⊗ E ′2 + E ′1 ⊗ E ′2 − E ′1 ⊗ E2. If X is a pointed space K̃(X)
being the kernel of the ring homomorphism i∗ : K(X) → K(x0) is an ideal
and thus also a ring in its own right.

Since pullback preserves direct sums and tensor product, K(−) and

K̃(−) become contravariant functors from the category of (pointed) compact
spaces to commutative rings. That they are also functors on the homotopy
category of (pointed) compact spaces follows from the following string of
propositions.

Lemma 1.1.4. Let Y be a closed subspace of a compact space X and let
E → X be a vector bundle over X. Then any section of the restriction EY
extends to a section of E.

Proof. Apply Tietze’s extension theorem to extend the given section
locally and use compactness and partitions of unity to glue the local pieces
to a global section. Details in [AB64, Lemma 1.1]. �

Lemma 1.1.5. Let Y be a closed subspace of a compact space X and let E →
X and F → X be two vector bundles over X. Then any isomorphism s :
EY → FY extends to an isomorphism EU → FU for some open U containing
Y .

Proof. We have mentioned before that morphisms between EY and FY
are in one-to-one correspondence with sections of Hom(E,F )Y . Seeing s
as a section of Hom(E,F )Y we extend it to a section t of Hom(E,F ) by
the above lemma. Let U be the subset of X of points x such that tx is
an isomorphism. Then Y ⊆ U and U is open because GLn(C) is open in
End(Cn). �

Proposition 1.1.6. Let Y be a compact space, f : Y ×I → X be a homotopy
and E a vector bundle over X. Then f ∗0E

∼= f ∗1E.

Proof. Apply the previous lemma to the bundles f ∗E and π∗f ∗t E and
the subspace Y × t ⊂ Y × I where π : Y × I → Y is the projection.
Clearly, the two bundles are isomorphic on this subspace. Hence they are
also isomorphic on some strip Y ×δt where δt is a neighborhood of t in I. But
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this means that the isomorphism class of f ∗t E is a locally constant function
of t. Since I is connected it must in fact be constant and f ∗0E

∼= f ∗1E. �

Corollary 1.1.7. A homotopy equivalence f : A→ B of paracompact spaces
induces a bijection f ∗ : Vectn(B) → Vectn(A). In particular, every vector
bundle over a contractible paracompact base is trivial.

We can also define an external product µ : K(X)⊗K(Y )→ K(X × Y )
by a ∗ b := µ(a ⊗ b) = p∗1(a)p∗2(b) where p1 and p2 are the projections of
X × Y onto X respectively Y . One quickly checks that this is indeed a ring
homomorphism.

Let us now begin the calculation of K(X) in nontrivial cases. Of partic-
ular importance are the rings K(Sn) for bundles over spheres.

Proposition 1.1.8. There is a bijection between Vectn(Sk) and the set
[Sk−1,GLn(C)] of homotopy classes of maps Sk−1 → GLn(C).

Proof. Given such a clutching function f : Sk−1 → GLn(C), we con-
struct a vector bundle Ef the usual way by glueing two copies of Dk×Cn (the
upper and lower hemisphere of Sk) along the equator Sk−1×Cn = ∂Dk×Cn

according to (x, v)→ (x, f(x)v).
Going the other way, if E → Sk is any rank n vector bundle, the restric-

tion to the upper respectively lower hemisphere E± is trivial by the previous
fact. Let h± : E± → Dk × Cn be trivializations, then h+h

−1
− defines a map

Sk−1 → GLn(C) which yields a homotopy class [h+h
−1
− ] ∈ [Sk−1,GLn(C)].

These constructions are inverses of each other. Moreover, Ef depends up
to isomorphism only on the homotopy class of f , and h+ and h− are unique
up to homotopy so that these constructions are indeed well-defined [Hat09,
Proposition 1.11]. �

Since GLn(C) is connected, we get an immediate

Corollary 1.1.9. Vectn(S1) ∼= {εn} so that K(S1) ∼= Z and K̃(S1) = 0.

Example 1.1.10. Over S2 = CP 1 we have the canonical line bundle H. It
satisfies (H ⊗ H) ⊕ ε1 ∼= H ⊕ H. So see this, let f : S1 → GL1(C) be the
clutching function of H given by z 7→ z and consider the clutching functions
for both sides of the claimed relation. They are the maps S1 → GL2(C)
given by

(f ⊗ f)⊕ id : z 7→
(
z2 0
0 1

)
and f ⊕ f : z 7→

(
z 0
0 z

)
It is now not difficult to construct a homotopy between (f ⊗ f) ⊕ id and
f ⊕ f : let αt ∈ GL2(C) be a path from the identity matrix

(
1 0
0 1

)
to the
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matrix
(

0 1
1 0

)
of the transformation which swaps the two factors of C × C.

Then the matrix product (f ⊕ id)αt(id⊕f)αt gives a homotopy from f ⊕ f
to (f ⊗ f)⊕ id.

In K(S2) this relation implies H2 + 1 = 2H, or (H− 1)2 = 0, so we have
a natural ring homomorphism Z[H]/(H − 1)2 → K(S2). Tensoring with
K(X) and composing with the external product µ from above yields:

Theorem 1.1.11 (Product Theorem). The map K(X)⊗Z[H]/(H − 1)2 →
K(X × S2) is an isomorphism of rings for all compact Hausdorff spaces X.
[Hat09, Theorem 2.2]

Taking X to be a point we obtain:

Corollary 1.1.12. K(S2) ∼= Z[H]/(H − 1)2 as rings.

Since K̃(S2) = ker(K(S2) → K(x0)), we see that K̃(S2) ∼= 〈L− 1〉 as

an abelian group. Moreover, since (H − 1)2 = 0 the multiplication in K̃(S2)
is completely trivial.

We proceed to higher dimensional spheres. To do so, we need some more
computational tools. In particular, we construct long exact sequences in K-

theory. Let (X,A) be a pair of spaces. Define K̃(X,A) as K̃(X/A) taking
A as the basepoint. Inclusion and quotient give the exact sequence

A→ X → X/A

and applying K̃ we get the sequence

K̃(X/A)→ K̃(X)→ K̃(A).

Fact 1.1.13. The above sequence in K̃ is exact. [Hat09, Proposition 2.9]

There is a nice way to extend the short exact sequence from above to
the left: let C and S denote cone and suspension respectively and consider
the following diagram.

A // X // X ∪ CA
��

// (X ∪ CA) ∪ CX
��

// ((X ∪ CA) ∪ CX) ∪ C(X ∪ CA))

��
X/A SA SX

The pattern is simple: each space in the first row is obtained from its prede-
cessor by attaching a cone on the subspace two steps back in the sequence.
The vertical maps are the quotient maps collapsing the newly attached cone.
It is often true that collapsing a contractible subspace is a homotopy equiv-

alence which would yield an isomorphism in K̃. This is in fact true:
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Fact 1.1.14. If A is contractible, the quotient map q : X → X/A induces a
bijection q∗ : Vectn(X/A)→ Vectn(X) for all n. [Hat09, Lemma 2.10]

By (1.1.14) and repeated application of (1.1.13) we obtain a long exact

sequence of K̃ groups

· · · → K̃(SX)→ K̃(SA)→ K̃(X/A)→ K̃(X)→ K̃(A).(1)

Example 1.1.15. Let X = A∨B be the one-point union of A and B, then
X/A = B and the sequence breaks up into split short exact sequences so

that K̃(A ∨B) ∼= K̃(A)⊕ K̃(B).

Next, we would like to understand the K-theory of the suspension of
a space. Recall that ΣX = S ∧ X where Σ is reduced suspension and
X ∧ Y = X × Y/X ∨ Y is wedge product. Let x0 be the basepoint of X.
Since ΣX is the quotient space of SX obtained by collapsing {x0} × I to a

point, we have K̃(SX) ∼= K̃(ΣX) by (1.1.14). We are thus led to consider

the K̃ long exact sequence associated to the pair (X × Y,X ∨ Y ):

K̃(S(X × Y )) // K̃(S(X ∨ Y )) //

∼=��

K̃(X ∧ Y ) // K̃(X × Y ) // K̃(X ∨ Y )
∼=��

K̃(SX)⊕ K̃(SY ) K̃(X)⊕ K̃(Y )

The first vertical isomorphism follows from Σ(X ∨ Y ) ≈ ΣX ∨ ΣY . The
last horizontal map is a split surjection with splitting (a, b) 7→ p∗1(a) + p∗2(b)
where p1 and p2 are the projections as per usual. We thus get a splitting

K̃(X × Y ) ∼= K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y ).

Now consider the external product on K̃. Let a ∈ K̃(X) and b ∈ K̃(Y ).
Then a ∗ b = p∗1(a)p∗2(b) ∈ K(X × Y ). By definition p∗1(a) restricts to zero

over Y and p∗2(b) restricts to zero over X so that a ∗ b ∈ K̃(X × Y ) and it

restricts to zero in K̃(X) ⊕ K̃(Y ). Thus a ∗ b can be seen as an element

in K̃(X ∧ Y ) and this means reducing the external product to K̃ gives a

ring homomorphism K̃(X) ⊗ K̃(Y ) → K̃(X ∧ Y ). In fact, more is true:
every statement about this reduced external product is equivalent to the
same statement about the unreduced external product. This follows from
the splitting we already mentioned: we have

K(X)⊗K(Y ) ∼= (K̃(X)⊗ K̃(Y ))⊕ K̃(X)⊕ K̃(Y )⊕ Z
and

K(X × Y ) ∼= K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y )⊕ Z.
So ring homomorphisms K(X)⊗K(Y )→ K(X×Y ) are determined by ring

homomorphisms K̃(X)⊗ K̃(Y )→ K̃(X ∧ Y ) and vice versa.
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Now taking Y to be S2 we can state the Bott Periodicity Theorem:

Theorem 1.1.16 (Bott Periodicity). The morphism β : K̃(X)→ K̃(S2X),
β(x) = (H − 1) ∗ x where H is the canonical line bundle over S2 = CP 1 is
a ring isomorphism for all compact Hausdorff spaces X.

Proof. Recall that H − 1 is the generator of K̃(S2) ∼= Z so that β is
the composition

K̃(X)
∼=→ K̃(S2)⊗ K̃(X)

∗→ K̃(S2X).

Since the reduced external product corresponds to the unreduced external
product, this is equivalent to the Product Theorem by the remarks immedi-
ately preceeding this theorem. �

Example 1.1.17. We have seen earlier that K̃(S1) = 0 and K̃(S2) = Z.

It follows by Bott periodicity that K̃(Sn) is Z for n even and 0 for n odd.

In particular, we see that a generator of K̃(S2k) is (H − 1) ∗ · · · ∗ (H − 1)

and that multiplication in K̃(S2k) is trivial since multiplication in K̃(S2) is
trivial.

Example 1.1.18. K̃(S2k ∧ X) ∼= K̃(S2k) ⊗ K̃(X) as rings. This follows
from iterated Bott periodicity.

Example 1.1.19. K(S2k×X) ∼= K(S2k)⊗K(X) as rings. This follows from
the previous example by the same argument that showed the equivalence of
reduced and unreduced Bott periodicity. In particular, since K(S2k) ∼=
Z[α]/(α2), we have K(S2k × S2l) ∼= Z[α, β]/(α2, β2).

Bott Periodicity allows us to turn K̃-theory into a reduced cohomology
theory in the sense of Eilenberg and MacLane as follows. Looking at the

long exact sequence (1), we define K̃−n(X) := K̃(SnX) and K̃−n(X,A) =

K̃(Sn(X/A)). Negative indices are chosen so that the “coboundary maps”
increase dimension just as in ordinary cohomology. We also extend to pos-

itive degrees using Bott Periodicity by setting K̃2i(X) = K̃0(X) = K̃(X)

and K̃2i+1(X) = K̃1(X) = K̃(SX). Then the long exact sequence rolls up
into a six-term exact sequence.

K̃0(X,A) // K̃0(X) // K̃0(A)

��

K̃1(A)

OO

K̃1(X)oo K̃1(X,A)oo

Let K̃∗(X) = K̃0(X) ⊕ K̃1(X), then we define a product on this group

as follows. First notice that a product K̃i(X) ⊗ K̃j(Y ) → K̃i+j(X ∧ Y ) is
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obtained from the reduced external product by replacing X and Y by SiX

and SjY respectively. Thus we get a product K̃∗(X)⊗K̃∗(X)→ K̃∗(X∧X).

We compose this with the map K̃∗(X∧X)→ K̃∗(X) induced by the diagonal
map X → X ∧X, x 7→ (x, x).

While multiplication in K̃(X) is commutative (tensor product of bun-

dles), this is not the case in K̃∗(X):

Fact 1.1.20. Multiplication in K̃∗(X) is graded commutative, i.e. αβ =

(−1)ijβα for α ∈ K̃i(X) and β ∈ K̃j(X). [Hat09, Proposition 2.14]

Use one-point compactification to extend the definition of K-theory to

locally compact spaces without basepoints Kn(X) = K̃n(X+). The new
K0(X) and the original K(X) agree when X is already compact, in which
case X+ := X

∐
∗ is the disjoint union with a point: extend a vector bundle

on X by giving it the fiber zero at the point ∗; and conversely assign to a
bundle E → X

∐
∗ the element (E|X)− (E∗×X) in K(X), where E∗ is the

fiber over the disjoint basepoint.

For n = 1 our definition yields K1(X) = K̃1(X+) = K̃(S(X+)) ∼=
K̃(SX ∨ S1) ∼= K̃(SX)⊕ K̃(S1) ∼= K̃(SX) = K̃1(X).

Finally, since X+ ∧ Y+ = (X × Y )+, the external product K̃∗(X) ⊗
K̃∗(Y ) → K̃∗(X ∧ Y ) gives a product K∗(X) ⊗K∗(Y ) → K∗(X × Y ) and

the ring structure on K∗(X) is obtained similarly to that on K̃∗(X).

1.2. K-Theory as a Homotopy Theory

The definitions from the previous section have a homotopical interpreta-
tion. To avoid confusion, let Y be a pointed space and recall that unpointed
maps from a space X to Y are the same as pointed maps between X+ and Y ,
in symbols [X, Y ] = [X+, Y ]∗. For the remainder of this section we will then
use [−,−] to denote homotopy classes of pointed maps of spaces adjoining
a disjoint basepoint + if needed.

Again let X be a compact Hausdorff space. By the classification theorem
of vector bundles Vectn(X) is naturally isomorphic to [X+,BU(n)] where
BU(n) ' Gn(C∞). Note that BU(n) is connected and comes with a natural
basepoint 1. Let γn → BU(n) be the universal bundle over BU(n). Then the
bundle γn⊕ ε1 → BU(n) induces a classifying map in : BU(n)→ BU(n+ 1).
This map is an inclusion. More specifically, we can think of BU(n + 1) as
Gn+1(C∞⊕C). Then in sends an n-plane p in C∞ to the (n+1)-plane p⊕C.
We can thus define BU to be the colimit of BU(n).
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Theorem 1.2.1. Give Z the discrete topology. For X compact and Haus-
dorff, there is a natural isomorphism K(X) ∼= [X+, BU × Z], and for X
a pointed, compact, and Hausdorff space, there is a natural isomorphism

K̃(X) ∼= [X,BU × Z].

Proof. Since both functors send disjoint unions to cartesian products,
we may assume X is connected. By the discussion after (1.1.2) we can see
elements of K(X) as formal differences E− εn. The first isomorphism sends
such an element of K(X) to (f, rankE − n) where f : X → BU(rankE) ⊂
BU is the classifying map.

Now let X be a pointed space. The second isomorphism follows from
the first since i∗ : K(X) → K(x0) ∼= Z can be identified with the map
[X+,BU×Z] → [S0,BU×Z] induced by the inclusion S0 ↪→ X+ since BU
is connected. This identified map has kernel [X/S0,BU×Z] = [X,BU×Z].

�

This theorem thus enables us to represent K-theory in the sense of Brown
representability [AGP02, Theorem 12.2.22]. We can also use this interpre-
tation to define K-theory for non-compact spaces. For X a space of the
homotopy type of a CW complex, we define K(X) = [X+,BU×Z] and if X

is moreover a pointed space then K̃(X) = [X,BU×Z].
We would hope that these spaces have a ring structure just like in the

compact case. That this is indeed the case follows from the fact that BU×Z
is a ring space up to homotopy [May99, p.201].

In this context, the Bott periodicity theorem (1.1.16) says that

[X,BU×Z] ∼= K̃(X)→ K̃(Σ2X) ∼= [X,Ω2(BU×Z)]

is an isomorphism. Letting X = BU×Z, this means that we have a homo-
topy equivalence

BU×Z ' Ω2(BU×Z).

Example 1.2.2. We can use this result to calculate the homotopy groups
of BU: first note that for i ≥ 0

πi+2(BU) ∼= πi+2(BU×Z) ∼= πi(Ω
2(BU×Z)) ∼= πi(BU×Z)

∼=

{
Z if i = 0;

πi(BU) if i ≥ 1.

This means the homotopy groups of BU repeat with period two. Since
BU is connected we get π0(BU) = 0 and from the above we get π2n(BU) =
π2(BU) ∼= Z. We also have π1(BU) = [S1,BU] = [S0,Ω BU] = [S0, U ] =
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π0(U) = 0 since U is connected and Ω BU ' U. By periodicity, π2n+1(BU) =
0. Thus,

πi(BU) =


0 if i = 0;

Z if i > 0 is even;

0 if i > 0 is odd.

As before, we can extend the definition of these K̃-groups to negative

integers by defining K̃−n = K̃(ΣnX) and then extending to positive integers

using Bott periodicity. We can show that K̃∗ thus defined satisfies the
axioms of a reduced cohomology theory.

Recall that an Ω-spectrum consists of a collection of pointed spaces
{Pn}n∈Z and weak homotopy equivalences Pn

∼→ ΩPn+1 called structure
maps. Moreover, every Ω-spectrum gives rise to a reduced generalized coho-

mology theory defined by k̃n(X) = [X,Pn]∗. See [AGP02, Theorem 12.3.3]
for details.

Example 1.2.3. Using what we have just discussed, we see that the family
of spaces P2n = BU×Z and P2n+1 = Ω(BU×Z) ' U for n ∈ Z forms an

Ω-spectrum, namely the one giving rise to K̃-theory.



CHAPTER 2

The Hopf Invariant One Problem

2.1. Division Algebras, Parallelizable Spheres, and H-Spaces

As a first application, we will use K-theory to prove Adams’ theorem
on the Hopf invariant which shows for which dimensions Rn admits the
structure of a division algebra.

Recall that a division algebra is an algebraA over R without zero divisors.
Here are four examples:

(1) A = R with the usual multiplication.
(2) A = R2 = C with the multiplication of complex numbers. Note that

if we were to define a multiplication on R2 by (a, b)(c, d) = (ac, bd)
we would get zero divisors.

(3) A = R4 = H with the multiplication of Hamilton quaternions, i.e.
if 1, i, j, k are the four basis vectors define ij = k, jk = i, ki = j,
i2 = j2 = k2 = −1. Another way to obtain these rules is via the
Cayley-Dickson construction applied to ordered pairs of complex
numbers: let a + bj = (a, b) ∈ C × C and define (a, b)(c, b) =
(ac − d̄b, da + bc̄). Then for instance ij = (i, 0)(0, 1) = (0, i) and
j(0, i) = (0, 1)(0, i) = (0 − ī, 0) = (i, 0) = i. So by declaring
(0, i) =: k we have recovered the usual rules ij = k and jk = i.
While C was an associative and commutative algebra, H is only
associative.

(4) A = R8 = O with the multiplication of Cayley octonians. This mul-
tiplication is defined via the Cayley-Dickson construction applied to
pairs of quaternions. O is a nonassociative algebra.

Note how at each stage of applying the Cayley-Dickson construction we
lose more and more nice properties. First commutativity, then associativity.
One may ask whether we could apply the Cayley-Dickson construction ad
infinitum to come up with more examples of division algebras. This is not
the case. Applying the Cayley-Dickson construction to pairs of octonians,
i.e. applying it to R16, we produce an algebra called the sedonians, S, which
contains zero divisors. Denoting the basis vectors of R16 by 1, e1, . . . , e15,
the reader may wish to check that (e3 + e10)(e6 − e15) = 0. That the above

14
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four examples are in fact the only four examples of division algebras coming
from Rn is the content of the theorem we wish to prove in this chapter.

To get there, we begin with the following result:

Proposition 2.1.1. If Rn has the structure of a division algebra, then Sn−1

is parallelizable.

Recall that this means that T (Sn−1) = {(x, y) ∈ Sn−1 × Rn : 〈x, y〉 =
0} → Sn−1 is trivial.

Proof. We construct n − 1 linearly independent sections of T (Sn−1).
Choose a basis {1, e2, . . . , en} of Rn. Take x ∈ Sn−1 and define vi(x) =
xei − 〈x, xei〉x for i ≥ 2. Then 〈x, vi(x)〉 = 0, and so (x, vi(x)) ∈ T (Sn−1).
Since 1, e2, . . . , en are linearly independent, so are x, xe2, . . . , xen. Thus
v2(x), . . . , vn(x) are also linearly independent. �

From here, Bott and Milnor in [BM58], and independently Kervaire in
[Ker58] proved that n = 2, 4, or 8 by using earlier work of Bott on the
orthogonal groups On. However, we will use a different route by observing
that parallelizable spheres have an additional structure, namely that of an
H-space. Recall that an H-space is a topological space with a continuous
multiplication map having a two-sided identity element. This is weaker than
a topological group since we are neither assuming associativity nor inverses.
From the above four examples, we see that S1, S3, and S7 are H-spaces
by restricting the respective multiplications to the respective unit spheres.
Note how S7 is not a topological group since it is not associative.

Proposition 2.1.2. If Sn−1 is parallelizable, then Sn−1 is an H-space.

Proof. Let v1, . . . , vn−1 be linearly independent sections of the tangent
bundle. By Gram-Schmidt, we may assume that they are orthonormal for
all x ∈ Sn−1. For e1 the first standard basis vector, we may also assume
that v1(e1), . . . , vn−1(e1) are the standard basis vectors e2, . . . , en by chang-
ing the sign of vn−1 if necessary to get the orientations right and then de-
forming the vector fields near e1. Let αx ∈ SO(n) send the standard basis
to x, v1(x), . . . , vn−1(x). Then the map (x, y) 7→ αx(y) defines an H-space
structure since (x, e1) = αx(e1) = x and (e1, x) = αe1(x) = x since αe1 is the
identity map. �

Next, we will define an invariant that is equal to ±1 if a sphere admits
an H-space structure and show that this invariant can take on the value
±1 only if n = 1, 2, or 4 thus closing the circle of implications and showing
that the only Rn division algebras are the ones we exposed with our four
examples above.
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We begin by showing that n has to be even:

Proposition 2.1.3. Sn−1 cannot be an H-space when n > 1 is odd.

Proof. Suppose µ : Sn−1 × Sn−1 → Sn−1 is an H-space multiplica-
tion. Since n − 1 is even, by example (1.1.19) we get an induced ring
homomorphism µ∗ : Z[γ]/(γ2) → Z[α, β]/(α2, β2). µ∗(γ) is of the form
r+ pα+ qβ +mαβ for r, p, q,m ∈ Z. We know 0 = µ∗(γ2) = (µ∗(γ))2. This
leads to

r2 + 2rpα + 2rqβ + 2(rm+ pq)αβ = 0

so r = 0 and pq = 0. However, p = q = 1. This can be seen by considering
the inclusions ik : Sn−1 → Sn−1 × Sn−1 for k = 1, 2 onto either of the
subspaces Sn−1 × {e} or {e} × Sn−1. i∗1 sends α to γ and β to zero, and the
other way around for i∗2. But the composition i∗k ◦µ∗ = id∗ for k = 1, 2 since
µ is an H-space structure. Hitting µ∗(γ) with i∗k we conclude p = q = 1 as
claimed which is a contradiction. �

Next, suppose we are given a map g : Sn−1 × Sn−1 → Sn−1 such as an
H-structure. We can then define an associated map H(g) : S2n−1 → Sn

called the Hopf construction as follows: regard S2n−1 as ∂(Dn × Dn) =
Sn−1×Dn ∪Dn× Sn−1, and Sn as the union of two disks Dn

+ and Dn
−. The

former is also known as the join Sn−1 ∗ Sn−1 and the latter as the reduced
suspension ΣSn−1. Then H(g) is defined on Sn−1×Dn as |y|g(x, y/|y|) ∈ Dn

+

and on Dn × Sn−1 as |x|g(x/|x|, y) ∈ Dn
−, or, if you like the join/suspension

point of view, this is the same as [x, t, y] 7→ [g(x, y), t].
We now specialize to spheres Sn−1 which admit an H-space structure

g. We’ve seen that this means n must be even. So replace n by 2n. Let
f = H(g) : S4n−1 → S2n and consider the mapping cone Cf . This is just S2n

with a 4n-cell attached via f . The quotient Cf/S
2n is S4n and we consider

the rolled up six-term exact sequence for the pair (Cf , S
2n).

K̃0(S4n) // K̃0(Cf ) // K̃0(S2n)

��

K̃1(S2n)

OO

K̃1(Cf )oo K̃1(S4n)oo

Since K̃1(S2n) = K̃1(S4n) = 0 this reduces to the short exact sequence

0→ K̃(S4n)
p∗→ K̃(Cf )

i∗→ K̃(S2n)→ 0.

Let b2k = (H − 1) ∗ · · · ∗ (H − 1) denote the generator of K̃(S2k). We

let α = p∗(b4n) ∈ K̃(Cf ) be the image of the generator of K̃(S4n) and

we let β ∈ K̃(Cf ) map to the generator of K̃(S2n), i.e. i∗(β) = b2n. Since
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multiplication in K̃(S2n) is trivial β2 = β⊗β maps to zero. Thus β2 = h(f)α
where h(f) ∈ Z is called the Hopf invariant of f . We need to show that it is
independent of the choice of β. So suppose i∗(β′) = b2n. Then i∗(β′−β) = 0,
and so β′ − β = p∗(mb4n) = mα for some m ∈ Z and (β′)2 = β2 + 2mαβ +
m2α2 = β2 + 2mαβ since α2 = p∗(b2

4n) = 0. So it suffices to show that
αβ = 0. Since i∗(α) = 0, i∗(αβ) = 0 and so αβ = kα for some k ∈ Z.
Multiply this equation by β to get kαβ = αβ2 = mα2 = 0 so that αβ = 0

as required since αβ lies in the torsion free subgroup K̃(S4n) ⊆ K̃(Cf ).
An alternative definition of the Hopf invariant goes via cohomology: the

mapping cone of a map f : S2n−1 → Sn where n ≥ 2 has a single n-cell i
and a single 2n-cell j so that the differential in the cellular chain complex
of Cf is zero for dimensional reasons. Hence Hn(Cf ;Z) is free abelian on
x = [i] and H2n(Cf ;Z) is free abelian on y = [j]. Then x ∪ x = ky for some
k ∈ Z. In fact, k = h(f). This can be shown by using the Chern character
as we will explain later in these notes (see the discussion around (3.3.5) for
details).

Example 2.1.4. As an example, we calculate the Hopf invariant of the Hopf
fibration f : S3 → S2 defined by (z1, z2) 7→ [z1, z2] under the identification
S3 ⊂ C2 and S1 ∼= CP 1. This is precisely the attaching map of a 4-cell
as in the construction of CP 2. Since H∗(CP 2;Z) = Z[t]/t3 where t is the
generator of H2(CP 2,Z) it follows that h(f) = 1. From the higher Hopf
bundles, we also get maps of Hopf invariant one from the attaching maps of
the 8-cell and 16-cell of HP 2 and OP 2, respectively.

We are finally ready to connect H-space structures with a particular
Hopf invariant:

Proposition 2.1.5. If S2n−1 admits and H-space structure g, then the Hopf
construction f := H(g) has Hopf invariant ±1.

Proof. Let e be the identity element for the H-space structure, and
let Φ : (D2n × D2n, ∂(D2n × D2n)) → (Cf , S

2n) be the characteristic map
of the 4n-cell of Cf . Restricting Φ to {e} × D2n respectively D2n × {e} is
precisely the attaching map f = H(g) restricted to {e} × D2n respectively
D2n × {e}. But f restricted to these sets is the identity by the fact that g
is an H-space structure (see the construction of H(g) above). Thus these
restrictions of Φ induce homeomorphisms of {e}×D2n to D2n

+ and D2n×{e}
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to D2n
− respectively. We thus obtain the following commutative diagram:

K̃(Cf )⊗ K̃(Cf )
⊗ // K̃(Cf )

K̃(Cf , D
2n
+ )⊗ K̃(Cf , D

2n
− )

∼=Φ∗⊗Φ∗

��

∼=(1.1.14)

OO

⊗ // K̃(Cf , S
2n)

p∗

OO

∼=
��

K̃(D2n × {e}, ∂D2n × {e})⊗ K̃({e} ×D2n, {e} × ∂D2n)
∼=

(1.1.18)
// K̃(D2n ×D2n, ∂(D2n ×D2n))

We now chase the diagram: starting with β2 = β ⊗ β in the upper left
ring, we can map this element to a generator of the ring in the bottom row

of the diagram since β is an element mapping to the generator of K̃(S2n)
by definition. This generator in turn gets mapped via p∗ to ±α again by

definition, since α was defined to be the image of a generator of K̃(Cf , S
2n).

Thus by commutativity β2 = ±α, which means that H(f) = ±1. �

So for which n does there exist a map of Hopf invariant ±1? This is the
famous Hopf invariant one problem and here is the answer:

Theorem 2.1.6 (Adams’ Theorem). There exists a map f : S4n−1 → S2n

of Hopf invariant ±1 only when n = 1, 2, or 4.

The proof of this theorem will occupy the rest of this chapter. Meanwhile,
putting the four propositions and the final theorem of this section together
we obtain:

Corollary 2.1.7. The only values of n for which Rn is a division algebra are
n = 1, 2, 4, and 8. These cases are realized by R,C,H, and O respectively.

On a historical note, as mentioned above this result was known by the
work of Bott and Milnor respectively Kervaire in 1958 before Adams solved
the Hopf invariant one problem in 1960.

2.2. Adams Operations and the Splitting Principle

To proceed with the proof of Adams’ theorem we need some tools that
we will introduce in this section. We begin with the analog of Steenrod
operations in K-theory. Here are their basic properties.

Theorem 2.2.1 (Adams Operations). There exist ring homomorphisms ψk :
K(X)→ K(X), defined for all compact Hausdorff spaces X and all integers
k ≥ 0, and satisfying:

(1) ψkf ∗ = f ∗ψk for all maps f : X → Y (naturality),
(2) ψk(L) = Lk if L is a line bundle,
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(3) ψkψl = ψkl,
(4) ψp(α) ≡ αp mod p for p a prime,

(5) ψk(α) = knα for α ∈ K̃(S2n) a generator.

Note that since ψk are ring homomorphisms, ψk(L1 ⊕ · · · ⊕ Ln) = Lk1 +
· · ·+ Lkn. So property (2) characterizes the operations whenever E is a sum
of line bundles. We would thus like a general definition for ψk(E) that
specializes to this formula when E is a sum of line bundles. That every
vector bundle can be pulled back to a sum of line bundles is the content of
the splitting principle which we shall discuss now.

Theorem 2.2.2 (Splitting Principle). Given a vector bundle E → X with
X compact Hausdorff, there is a compact Hausdorff space F (E) and a map
p : F (E) → X such that the induced map p∗ : K∗(X) → K∗(F (E)) is
injective and p∗(E) splits as a sum of line bundles.

Thus by the injectivity, if a statement is true for sums of line bundles, it
is true for all bundles. In particular this means that properties (1) and (2)
completely characterize the Adams operations. The following Leray-Hirsch
type theorem for K-theory will be used in the proof.

Fact 2.2.3. Let E → X be a rank n vector bundle and let H be the canonical
line bundle over the projectivization p : P (E) → X. Then K∗(P (E)) is
the free K∗(X)-module with basis {1, H, . . . , Hn−1} and module structure
induced by pullback p∗. Moreover,

n∑
i=0

(−1)iΛi(E)H i = 0

where Λi(E) is the ith exterior power bundle constructed from E. [May99,
p. 206]

Proof of the Splitting Principle. If E has rank 1, there is noth-
ing to prove. So suppose E has rank n ≥ 2 and consider the projectivization

P (E)
p→ X of E. This is the bundle whose fiber at a point p ∈ X is P (Ep),

the projectivization of the vector space Ep. Equivalently, this bundle is de-
scribed by the transition functions ĝαβ : Uα ∩ Uβ → PGLn(C) induced from
gαβ : Uα ∩ Uβ → GLn(C). Thus, a point of P (E) is a pair (p, l) where
p ∈ X and l is a line through the origin in Ep. Consider the pullback
p∗(E) → P (E). The fiber over a point (p, l) ∈ P (E) is Ep. p

∗(E) contains
the canonical line bundle H → P (E) whose fiber at (p, l) is the collection
of vectors in Ep that lie on the line l. Thus p∗(E) splits as H ⊕ E ′ for
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E ′ → P (E) the subbundle of p∗(E) orthogonal to H with respect to some
choice of inner product.

By the above fact, K∗(X) is included in K∗(P (E)) as the part generated
by 1 ∈ K∗(P (E)). If E ′ is a line bundle we are thus done. If not, repeat
the process and consider P (E ′), splitting off another line bundle. A point
of P (E ′) over (p, l1) in P (E) is a triple (p, l1, l2) where l2 is a line in the
orthogonal complement of l1 in Ep. After a finite number of repetitions we
obtain the flag bundle F (E)→ X, whose points are n-tuples of orthogonal
lines through the origin in fibers of E and the pullback of E over F (E) splits
as a sum of line bundles. F (E) → X induces an injection on K∗ since it
is a composition of maps with this property. The whole process may be
visualized as follows:

E

��

H1 ⊕ E1

��

H1 ⊕H2 ⊕ E2

��

· · · H1 ⊕H2 ⊕ · · · ⊕ En−1

��
X P (E)oo P (E1)oo · · ·oo P (En−2) = F (E)oo

�

Note that this procedure also works for sums of vector bundles by pulling
back to the flag bundle of one summand at a time and then composing the
pullbacks.

Returning to the Adams operations, the idea is to use the exterior powers
Λk(E) which already satisfy many desirable properties:

(i) Λk(E1 ⊕ E2) ∼=
⊕

i+j=k (ΛiE1 ⊗ ΛjE2),

(ii) Λ0(E) = ε1,
(iii) Λ1(E) = E,
(iv) Λk(E) = 0 for k > rankE,
(v) f ∗(Λi(E)) = Λi(f ∗(E)) for f : X → Y .

Define λt(E) =
∑

i Λ
i(E)ti ∈ K(X)[t]. This sum is finite by property

(iv), and we can rewrite property (i) as λt(E1 ⊕ E2) = λt(E1) ⊗ λt(E2).
When E is a sum of line bundles Li, then λt(E) =

∏
i λt(Li) =

∏
i (1 + Lit)

by properties (ii), (iii), and (iv). But
∏

i (1 + Lit) =
∑

i σi(L1, . . . , Ln)ti

where σi is the ith elementary symmetric polynomial in the Lj’s. Thus
Λi(E) = σi(L1, . . . , Ln) whenever E = L1 ⊕ · · · ⊕ Ln.

By the fundamental theorem on symmetric polynomials, every degree k
symmetric polynomial can be expressed as a unique polynomial in σ1, . . . , σk.
In particular, ψk(E) = Lk1+· · ·+Lkn = sk(σ1(L1, . . . , Ln), . . . , σk(L1, . . . , Ln)),
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for some sk called a Newton polynomial. For a general bundle E (not neces-
sarily a sum of line bundles), we now set

ψk(E) := sk(Λ
1(E), . . . ,Λk(E)),

then this definition extends our observation for sums of line bundles.
So what are these Newton polynomials? First of all, they are independent

of n as can be seen by setting Ln = 0 to go from n to n−1. To get a recursive
formula for sk, let n = k and consider (x+t1) · · · (x+tk) = xk+σ1x

k−1+· · ·+
σk. Now let x = −ti, then (−1)k−1tki = (−1)k−1σ1t

k−1
i + (−1)k−2σ2t

k−2
i +

· · ·+ σk. Or equivalently, tki = σ1t
k−1
i − σ2t

k−2
i + · · ·+ (−1)k−1σk. Summing

over i we get

tk1 + · · ·+ tkk = σ1sk−1 − σ2sk−2 + · · ·+ (−1)k−2σk−1s1 + (−1)k−1kσk.

Here are the first few Newton polynomials:

s1 = σ1

s2 = σ2
1 − 2σ2

s3 = σ3
1 − 3σ1σ2 + 3σ3

s4 = σ4
1 − 4σ2

1σ2 + 4σ1σ3 + 2σ2
2 − 4σ4

Armed with this definition, we now proceed to show that the Adams
operations satisfy the claimed properties.

Proof of (2.2.1). Working in Vect(X), property (1) is a consequence
of property (v) of exterior powers. ψk(E1 ⊕ E2) = ψk(E1) + ψk(E2) fol-
lows from the defining property of the Newton polynomial and the splitting
principle by the remark right after its proof.

To see that ψk are also multiplicative, note that if E is the sum of Li
and E ′ the sum of L′j, then E⊗E ′ is the sum of Li⊗L′j. So by the splitting

principle the following computation suffices: ψk(E⊗E ′) =
∑
ψk(Li⊗L′j) =∑

(Li ⊗ L′j)k =
∑
Lki ⊗ L′j

k = (
∑
Lki )⊗ (

∑
L′j

k) = ψk(E)ψk(E ′).
For property (3), the splitting principle and additivity reduce us to the

case ψkψl(L) = Lkl = ψkl(L). Similarly for (4), ψp(E) = Lp1 + · · · + Lpn ≡
(L1 + · · ·+ Ln)p = Ep mod p.

Since ψk are additive, they descend to K(X) by the universal property.

All other properties descend similarly. Since K̃(X) is the kernel of i∗ :

K(X)→ K(x0), ψk restricts to an operation on K̃(X) by naturality. ψk also
behave well with respect to the external product since α ∗ β was defined as
p∗1(α)p∗2(β) and so once again by naturality we get ψk(α∗β) = ψk(α)∗ψk(β).
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We use this observation to prove property (v). First, consider the case

n = 1. It suffices to show ψk(α) = kα for α a generator of K̃(S2). One
such generator is α = H − 1 as seen just after (1.1.12). Then ψk(α) =
ψk(H − 1) = Hk − 1 = (1 + α)k − 1 = 1 + kα − 1 = kα where we have

used property (2) and the fact that multiplication in K̃(S2) is trivial. When

n > 1, assume the desired formula holds in K̃(S2n−2). By Bott periodicity

(external product) we have K̃(S2n) ∼= K̃(S2) ⊗ K̃(S2n−2). Thus it suffices
to check the formula on the external product of the two generators α ∗ β.
ψk(α ∗ β) = ψk(α) ∗ ψk(β) = kα ∗ kn−1β = kn(α ∗ β). �

We are now ready to prove Adams’ theorem.

2.3. Proof of Adams’ Theorem

Recall the setup. We have a map f : S2n−1 → Sn with Hopf invariant
±1. That means we have the short exact sequence

K̃(S4n)
p∗ // K̃(Cf )

i∗ // K̃(S2n)

b4n
� // α, β � // b2n

such that β2 = ±α.

Proof of Adams’ Theorem (2.1.6). The proof boils down to a com-
putation using Adams operations. We have ψk(α) = k2nα by naturality and
property (5) of the Adams operations. We also have i∗(ψk(β)) = knb2n so
that ψk(β)− knβ = µkα for some µk ∈ Z since ψk(β)− knβ ∈ ker i∗. Thus

ψkψl(β) = ψk(lnβ + µlα) = knlnβ + (k2nµl + lnµk)α.

But ψkψl = ψkl = ψlψk. This means swapping k and l in the above line
gives the same expression which can only be if the coefficient of α is the
same under this swap, i.e. k2nµl + lnµk = l2nµk + knµl or equivalently

kn(kn − 1)µl = ln(ln − 1)µk.(2)

Next, by property (4) we have ψ2(β) ≡ β2 = h(f)α mod 2. But we also
just computed ψ2(β) = 2nβ + µ2α. So µ2 ≡ h(f) mod 2. By assumption
h(f) = ±1 so µ2 must be odd (in fact this is true for h(f) any odd number).
Setting k = 2 and l = 3 in (2) we obtain 2n(2n− 1)µ3 = 3n(3n− 1)µ2. Thus
2n divides 3n − 1 since µ2 is odd. Applying the fact from number theory
below finishes the proof. �

Fact 2.3.1. If 2n divides 3n − 1 then n = 1, 2, or 4. [Hat09, Lemma 2.22]
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There is nothing mysterious about this fact. Writing n = 2lm with m
odd, one shows by induction that the highest power of 2 dividing 3n − 1 is
2 for l = 0 and 2l+2 for l > 0. Then from this we have n ≤ l + 2, so that
2l ≤ 2lm = n ≤ l+ 2, which means l ≤ 2 and n ≤ 4. The cases n = 1, 2, 3, 4
can be checked by hand.



CHAPTER 3

Vector Fields on Spheres

3.1. From Vector Fields to Stiefel Manifolds

Related to the parallelizability of spheres is the following question: what
is the maximal number k of vector fields X1, . . . , Xk on the n-dimensional
sphere Sn such that X1(p), . . . , Xk(p) ∈ TpS

n are linearly independent for
each p ∈ Sn? The goal of this chapter is to answer this question.

Example 3.1.1. We claim that we can find at least one nonvanishing vector
field on all odd spheres. So suppose n = 2k − 1 is odd. Then we can
regard Sn as {z ∈ Ck : |z| = 1} and notice that iz ⊥ z since, intuitively,
i corresponds to a 90 degree rotation. So X(z) = iz is a nonvanishing
vector field on Sn. To make this precise, we use the inner product (dot
product) induced from R2k, i.e. writing z = a+ bi = (a, b) where a, b ∈ Rk,
we have 〈z1, z2〉 = a1.a2 + b1.b2. Then notice that i(a, b) = (−b, a). So
〈X(z), z〉 = 〈iz, z〉 = 〈(−b, a), (a, b)〉 = −(b.a) + a.b = 0 so that X(z) ⊥ z
and so X is a nonvanishing vector field on Sn as claimed.

Example 3.1.2 (Hairy Ball Theorem). On the contrary, suppose now that
n is even and suppose that we have a nonvanishing vector field X on Sn. We
may assume X(p) is of unit length by dividing X(p) by |X(p)| if necessary
which we can do since X is nonvanishing. Now consider the homotopy
h : I × Sn → Sn defined by ht(p) = p cos(πt) + X(p) sin(πt). That this is
well-defined follows from 〈ht(p), ht(p)〉 = p.p cos2(πt)+X(p).X(p) sin2(πt) =
cos2(πt) + sin2(πt) = 1. Moreover, h0(p) = p and h1(p) = −p. So h is a
homotopy between the identity and the antipodal map. Thus the Brouwer
degree (a homotopy invariant) of the antipodal map is 1. However, it is well
known (see for instance [Vic94, Corollary 1.22]) that the antipodal map of
an n-sphere has Brouwer degree (−1)n+1 and since n is even this produces a
contradiction. Thus, there are no nonvanishing vector fields on even spheres.

We continue with the discussion. By applying Gram-Schmidt, any k-
tuple of everywhere linearly independent vector fields can be converted into
a k-tuple of everywhere orthonormal vector fields. An orthonormal k-tuple
of vectors v1, . . . , vk ∈ TpS

n together with the point p ∈ Sn constitute an

24
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orthonormal (k + 1)-tuple (p, v1, . . . , vk) ∈ Rn+1 also known as a (k + 1)-
frame in Rn+1. The set of all orthonormal (k + 1)-frames in Rn+1, denoted
by Vk+1(Rn+1), is also known as a Stiefel manifold. It is a manifold in the
following way: every (k + 1)-frame (p, v1, . . . , vk) can be completed to an
orthonormal basis (p, v1, . . . , vk, w1 . . . , wm) of Rn+1 where m = n− k. The
vectors in such an orthonormal basis constitute the column vectors of a
matrix in O(n+ 1), the Lie group of (n+ 1)× (n+ 1) orthogonal matrices.
The different choices of completing vectors (w1, . . . , wm) correspond to an
orbit for the free action of the subgroup O(m) ⊂ O(n + 1) placed in the
lower right hand corner. Vk+1(Rn+1) is therefore the homogeneous space
O(n+ 1)/O(m) = O(n+ 1)/O(n− k).

Example 3.1.3. We have O(n + 1)/O(n) ≈ V1(Rn+1) = Sn and O(n +
1)/O(n− 1) ≈ V2(Rn+1) = {(p, v) ∈ Sn × TpSn : |v| = 1} is the subspace of
unit tangent vectors of TSn. Also, Vn(Rn+1) = O(n+ 1)/O(1) = SO(n+ 1)
since we can complete an n-frame to an n+ 1-frame in such a way that the
resulting matrix has positive determinant. In fact, by the same argument
Vk+1(Rn+1) = SO(n+ 1)/ SO(n− k) whenever k < n+ 1.

Define π : Vk+1(Rn+1) → Sn by (p, v1, . . . , vk) 7→ p. This map cor-
responds to O(n + 1)/O(m) → O(n + 1)/O(n) induced by the inclusion
O(m) ⊆ O(n). Thus π is a fiber bundle and a k-tuple of everywhere
orthonormal vector fields X1, . . . , Xk on Sn defines a section σ : Sn →
Vk+1(Rn+1) taking p to the (k + 1)-frame (p,X1(p), . . . , Xk(p)). So now the
original question has become: what is the largest k for which the bundle
π : Vk+1(Rn+1)→ Sn has a section?

3.2. Clifford Algebras and the Lower Bound

Let us from now on change our indexing slightly and ask to find k linearly
independent vector fields on Sn−1. By the discussion above this is equivalent
to asking for a section of Vk+1(Rn) → Sn−1. We continue with answering
this question by constructing as many vector fields as possible using linear
algebra.

Fix k ≥ 0, the Clifford algebra Ck is the free associative algebra over R
with generators 1, e1, . . . , ek subject to the relations eiej + ejei = 0 for i 6= j
and e2

i = −1.

Example 3.2.1. C0 = R, C1
∼= C by identifying e1 with ±i, and C2

∼=
H with for instance e1 7→ i, e2 7→ j, e1e2 7→ k. Note that none of these
isomorphisms are canonical.
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A basis for Ck is given by the set of words {ei1 · · · eim : m ≥ 0, i1 < · · · <
im} made up of ordered nonrepeating sequences of generators. It follows

that dimCk = 1 + k +
(
k
2

)
+ · · · +

(
k
k

)
=
∑k

i=0

(
k
i

)
= 2k. We also need the

observation that the set Gk := {±ei1 · · · eim : m ≥ 0, i1 < · · · < im} is a
multiplicative subgroup of Ck. Then, given an algebra representation of Ck,
i.e. a Ck-module structure on some n-dimensional vector space V , we can
produce a Gk-invariant inner product

∑
g∈Gk 〈g−, g−〉 on V by taking any

inner product 〈−,−〉 on V and averaging over the Gk-action. With this
inner product we can define a sphere S(V ) ≈ Sn−1 and obtain

Proposition 3.2.2. Let V be a faithful Ck-module. Then there is a Gk-
invariant inner product on V such that the assignments p 7→ eip for 1 ≤ i ≤
k define a k-tuple of orthonormal vector fields on S(V ) ≈ Sn−1.

Proof. We have (p, eip) = (eip,−p) = −(p, eip) by symmetry of the
inner product. But then (p, eip) = 0 and so eip ∈ TpS(V ). Moreover,
(eip, eip) = 1 by the Gk-invariance of the inner product and (eip, ejp) =
(eiejeip, eiejejp) = (ejp,−eip) = −(eip, ejp) so that (eip, ejp) = 0 and our
vector fields are orthonormal. Hence (p, e1p, . . . , ekp) ∈ Vk+1(V ). �

We will thus set out to determine representations of Ck. We start this
process by computing the algebras Ck. This can be done inductively by
defining related Clifford algebras C ′k with generators 1, e′1, . . . , e

′
k and rela-

tions e′ie
′
j + e′je

′
i = 0 for i 6= j and e′i

2 = +1.

Example 3.2.3. C ′1 has one generator whose square is 1. So C ′1
∼= R2 via for

instance e′1 7→ (1,−1) where multiplication is defined by (a, b)(c, d) = (ac, bd)
(not a divison algebra). We can also show that C ′2

∼= M2(R), the group of
(2 × 2)-matrices over R. One isomorphism is given by e′1 7→ A =

(
1 0
0 −1

)
and e′2 7→ B =

(
0 1
1 0

)
, i.e. reflection through two lines that are separated by

45 degrees. That this is an isomorphism follows from the fact that any real
(2× 2)-matrix can be written as a linear combination of 1, A,B, and AB.

Examples (3.2.1) and (3.2.3) are all we need to compute the remaining
Clifford algebras by the following

Lemma 3.2.4. Ck+2
∼= C ′k ⊗R C2 and C ′k+2

∼= Ck ⊗R C
′
2.

Proof. The first isomorphism is given by

ei 7→

{
1⊗ ei if i = 1, 2;

e′i−2 ⊗ e1e2 if i > 2.
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This map is surjective since its image generates C ′k ⊗ C2. Moreover, range
and domain have the same dimension so that we are dealing with an iso-
morphism. The second isomorphism is similar. �

We then compute the Ck inductively using the following standard iso-
morphisms of real algebras:

(1) Mn(R)⊗ A ∼= Mn(A) where A is any R-algebra;
(2) Mn(R)⊗Mm(R) ∼= Mnm(R) induced by the isomorphism Rn⊗Rm ∼=

Rnm;
(3) H ⊗ C ∼= M2(C) where we see H as a subalgebra of M2(C) by

sending (a, b) ∈ H to
(
a b
−b̄ ā

)
. We now have three ways of seeing

elements of H. For example, i = (i, 0) =
(
i 0
0 −i

)
, j = (0, 1) =

(
0 1
−1 0

)
,

and k = (0, i) =
(

0 i
i 0

)
. We then send

(
a b
−b̄ ā

)
⊗ z ∈ H ⊗ C to(

za zb
−zb̄ zā

)
. That this is an isomorphism follows from the fact that

the generators 1, A,B, and AB of M2(C) as in (3.2.3) are mapped
to by (1, 0)⊗ 1, (i, 0)⊗−i, (0, i)⊗−i, and (0, 1)⊗ 1 respectively;

(4) H ⊗ H ∼= M4(R) given by φ(z1 ⊗ z2)z = z1zz̄2 for z ∈ R4 ∼= H.
To show that this is an isomorphism, it suffices to show that φ is
surjective since the dimensions of source and target agree. That
this is so follows from the fact that every real matrix with just one
nonzero entry, the collection of which generate M4(R), is in the
image of φ. For instance, φ(1 ⊗ 1) = 1, φ(i ⊗ i)i = i, φ(i ⊗ i)j =
−j, φ(i ⊗ i)k = −k and similar relations hold for φ(j ⊗ j) and
φ(k ⊗ k). Then φ((1 ⊗ 1 + i ⊗ i + j ⊗ j + k ⊗ k)/4) maps 1 to 1
and i, j, k to zero. More computations for φ(i ⊗ j), φ(i ⊗ k), and
φ(j ⊗ k) and linear combinations thereof can be used to construct
the remaining required matrices.

The result is the following table:

k Ck C ′k
0 R R
1 C R2

2 H M2(R)
3 H2 M2(C)
4 M2(H) M2(H)
5 M4(C) M2(H)2

6 M8(R) M4(H)
7 M8(R)2 M8(C)
8 M16(R) M16(R)

k + 8 M16(R)⊗ Ck M16(R)⊗ C ′k



3.2. CLIFFORD ALGEBRAS AND THE LOWER BOUND 28

The last line, which we will refer to as periodicity of the Clifford algebra,
follows from Ck+8

∼= C2 ⊗ C ′2 ⊗ C2 ⊗ C ′2 ⊗ Ck ∼= M16(R)⊗ Ck.
We are now ready to look at the representations. Starting with R,C, and

H, we see that these are all skew fields and thus satisfy complete reducibility,
i.e. it suffices to look at irreducible representations. Up to isomorphism
there is only one irreducible representation of each of these algebras, namely
the action of each algebra on itself. Moreover, the category of R-modules
is equivalent to the category of Mn(R)-modules for any ring R where a
given representation V of R induces a representation of Mn(R) on V n in the
obvious way. Thus, looking at the above table and using periodicity there is
precisely one irreducible representation of Ck for k = 0, 1, 2, 4, 5, 6 mod 8.

Finally, the category of (R × S)-modules is equivalent to the category
of R-modules times the category of S-modules by defining an R-module
U := (1, 0) ·M and an S-module V := (0, 1) ·M from an (R × S)-module
M . Thus, by looking again at our table we find that there are precisely two
irreducible representations of Ck for k = 3, 7 mod 8.

Writing ak = min(dimV : V is a representation of Ck) and φ(k) =
log2(ak) we thus obtain the following table:

k Ck ak φ(k)
0 R 1 0
1 C 2 1
2 H 4 2
3 H2 4 2
4 M2(H) 8 3
5 M4(C) 8 3
6 M8(R) 8 3
7 M8(R)2 8 3
8 M16(R) 16 4

k + 8 M16(R)⊗ Ck 16ak φ(k) + 4

Let’s apply this to the sphere Sn−1. By (3.2.2) we know that there are
k linearly independent vector fields on Sak−1. Likewise, if ak divides n then
there are k linearly independent vector fields on Scak−1 which corresponds
to the direct sum of c copies of the smallest dimensional irreducible repre-
sentation associated to Ck. We hence wish to find the largest k for which ak
divides n.

Let’s write n = m2c+4d where m is odd and 0 ≤ c ≤ 3. By the above
table, ak = 2φ(k) so ak divides n if and only if φ(k) ≤ c+ 4d = φ(b) + 4d for
some 0 ≤ b ≤ 7. But φ(b) + 4d = φ(b + 8d) again by the above table. So
we’re looking for the largest k such that φ(k) ≤ φ(b+8d). We can obviously
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achieve equality and maximize k for a given c by taking b = 2c − 1 which
we can again see from the above table. Let us write ρ(n) = 2c + 8d then the
largest k such that ak divides n is kmax = ρ(n)− 1.

Thus, using Clifford algebras, we have succeeded in constructing ρ(n)−1
linearly independent vector fields on Sn−1. Here is a table for the first few
cases.

c+ 4d 0 1 2 3 4 5 6 7
ρ(n)− 1 0 1 3 7 8 9 11 15

We have proved

Theorem 3.2.5 (Hurwitz-Radon-Eckmann). There exist ρ(n)− 1 indepen-
dent vector fields on Sn−1.

Adams showed that this is in fact the best we can do. The rest of this
chapter will be dedicated to proving that ρ(n)−1 is indeed an upper bound.

3.3. K-Theory of Projective Spaces

We will from now on need to distinguish between complex and real K-
theory and use the notation KF where F is C or R. Also denote by H
respectively L the complex respectively real canonical line bundle.

The purpose of this section is to prove the following

Proposition 3.3.1. Let σ(k) be the number of integers i such that 0 < i ≤ k

and i ≡ 0, 1, 2 or 4 mod 8. Then K̃R(RP k) = Z/2σ(k) and is generated by
λ = L− 1 subject to the two relations λ2 = −2λ and λσ(k)+1 = 0.

We will use this fact repeatedly to prove Adams’ theorem but the calcu-
lations involved are interesting in their own rights. First, here is a table of
the values σ(k) can take.

k 0 1 2, 3 4, 5, 6, 7 8 k + 8
σ(k) 0 1 2 3 4 σ(k) + 4

Comparing this to the table for φ(k) from the section on Clifford algebras,

we see that σ(k) = φ(k) and so the order of K̃R(RP k) is in fact ak as defined
in that section.
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The cohomology of real projective space is well known. Here is a re-
minder.

Hp(RP 2k+1;Z) =


Z if p = 0, 2k + 1;

Z/2 if p is even, 0 < p < 2k + 1;

0 otherwise.

Hp(RP 2k;Z) =


Z if p = 0;

Z/2 if p is even, 0 < p ≤ 2k;

0 otherwise.

Hp(RP k;Z/2) =

{
Z/2 if 0 ≤ p ≤ k;

0 otherwise.

Also recall the following

Fact 3.3.2. Let X have the homotopy type of a CW complex. Then the first
Stiefel-Whitney class w1 : Vect1

R(X) → H1(X;Z/2) and the first Chern
class c1 : Vect1

C(X)→ H2(X;Z) define ring isomorphisms, i.e. real respec-
tively complex line bundles are characterized by them. [Hat09, Proposition
3.10]

We begin with the complex case.

Proposition 3.3.3. KC(CP k) = Z[H]/(H−1)k+1 where H is the canonical
line bundle.

Proof. Recall from the construction of the Adams operations that
Λi(E) = σi(L1, . . . , Ln) whenever E = L1⊕· · ·⊕Ln is a sum of line bundles.
So
∑n

i=0 (−1)iΛi(E)H i =
∑n

i=0 (−1)iσi(L1, . . . , Ln)H i =
∏n

i=1 (H − Li).
Applying the Leray-Hirsch Theorem of K-theory (2.2.3) to the trivial bun-
dle of rank k + 1 over a point, we obtain that KC(CP k) is generated as a

Z-module by H subject to the relation
∏k+1

i=1 (H − 1) = (H − 1)k+1 = 0 as
required. �

Next we want to compute K̃C(RP k). For this we need three tools. First,
we need a result connecting the complex and real canonical line bundles.
Let c : KR(X) → KC(X) be complexification of vector bundles and let
π : RP 2k+1 → CP k be the standard projection given by sending a real line
to the complex line on which it lies. Then

Lemma 3.3.4. Over RP 2k+1, cL = π∗H and this common element is non-
trivial if k > 0.
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Proof. The case k = 0 being trivial, suppose k > 0. By (3.3.2)
complex line bundles over RP 2k+1 are classified by their first Chern class
c1 ∈ H2(RP 2k+1;Z) = Z/2. Since c1(π∗H) = π∗(c1(H)) 6= 0, it suffices to
show that cL is nontrivial. Let r : KC(X) → KR(X) be induced by the
map forgetting the complex structure, then we have rc = 2. But rcL = 2L
has nontrivial total Stiefel-Whitney class 1 + x2 where x is the generator of
H∗(RP 2k+1;Z/2) ∼= Z/2[x]/(x2k+2) and so cL must be nontrivial as well. �

The second tool establishes a connection between K-theory and coho-
mology. We’ll define a ring homomorphism ch : K∗F (X)→ H∗(X;Q) called
the Chern character and describe this for K∗(X) = K∗C(X). The real case
is similar.

For a line bundle L→ X, define

ch(L) = ec1(L) = 1 + c1(L) + c1(L)2/2! + · · · ∈ H∗(X;Q)

and so for a product of line bundles ch(L1⊗L2) = ec1(L1⊗L2) = ec1(L1)+c1(L2) =
ch(L1)ch(L2) by (3.3.2). For the Chern character to land in the direct sum
rather than direct product, we impose from now on that X be a finite CW
complex or slightly more generally a finite cell complex. For a direct sum of
line bundles E = L1⊕· · ·⊕Ln we would like ch(E) =

∑
i ch(Li) =

∑
i e
αi =

n+ (α1 + · · ·+αn) + · · ·+ (αk1 + · · ·+αkn)/k! + · · · where αi = c1(Li) and are
called the Chern roots. This looks reminiscent of the Newton polynomials we
saw during the construction of the Adams operations (2.2.1). Indeed, there
we saw that αk1 + · · ·+αkn = sk(σ1(α1, . . . , αn), . . . , σk(α1, . . . , αn)). But now
cj(E) = σj(α1, . . . , αn) since the total Chern class of E is (1 + α1) · · · (1 +
αn) = 1+σ1(α1, . . . , αn)+· · ·+σn(α1, . . . , αn). Hence the preceeding formula
can be rewritten as

ch(E) = rankE +
∑
k>0

sk(c1(E), . . . , ck(E))/k!.

All these results only hold for E a sum of line bundles. Since, however,
this last formula makes sense for arbitrary vector bundles, we take this as
the general definition extending the special case.

Note that the definition of ch is natural with respect to pullback of bun-
dles. We can thus apply the splitting principle to check in exactly the same
way as with the Adams operations that ch : Vect(X) → Heven(X;Q) is
also multiplicative and thus extends to a ring homomorphism ch : K(X)→
Heven(X;Q).

Naturality also implies that ch behaves well with respect to external

product, and that there is a reduced form ch : K̃(X) → H̃even(X;Q)
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since these reduced rings are kernels of restriction maps. We extend to
ch : K∗(X)→ H∗(X;Q) by the following commutative diagram

K̃0(SX)
ch //

∼=
��

H̃even(SX;Q)

∼=
��

K1(X)
ch // Hodd(X;Q).

Theorem 3.3.5. Let X be a finite cell complex. The map K∗(X) ⊗ Q →
H∗(X;Q) induced by the Chern character is an isomorphism.

Proof. Recall (1.1.16). Since ch((H−1)∗x) = ch(H−1)ch(x) we have
the following commutative diagram

K̃(X)
∼= //

ch
��

K̃(S2X)

ch
��

H̃∗(X;Q)
∼= // H̃∗(S2X;Q).

The bottom row is cup product with ch(H−1) = ch(H)−1 = 1+c1(H)−1 =
c1(H), a generator of H2(S2;Z) and so by the Künneth formula (see for
instance [Hat02, Theorem 3.16]) this map is an isomorphism.

Observe, then, that if we takeX = S2n, we get an isomorphism K̃(S2n)→
H2n(S2n;Z) by induction on n. Recalling (1.1.17), this isomorphism means
K∗(S2n)⊗Q ∼= H∗(S2n;Q) and we have proved the result for spheres.

We now proceed by induction on the number of cells of X. The result is
trivial for just one cell, a 0-cell. For the induction step, let X be obtained
from a subcomplex A by attaching a cell. Apply the rationalized Chern
character to the long exact sequence in K-theory associated to the pair
(X,A) to obtain the following diagram

· · · // K∗(SA)⊗Q //

��

K∗(X/A)⊗Q //

��

K∗(X)⊗Q //

��

K∗(A)⊗Q //

��

K∗(SX/SA)⊗Q
��

// · · ·

· · · // H∗(SA;Q) // H∗(X/A;Q) // H∗(X;Q) // H∗(A;Q) // H∗(SX/SA;Q) // · · · .

The rows are exact since tensoring with Q preserves exactness. Recall that
the “boundary map” in K-theory was defined via pullbacks (1.1.14) so that
all squares commute by naturality of the Chern character. X/A and SX/SA
are spheres, and SA is homotopy equivalent to a cell complex with the same
number of cells as A by collapsing the suspension of a 0-cell. Thus by
induction and having proved the case of spheres, we can apply the five-
lemma to get that K∗(X)⊗Q→ H∗(X;Q) is an isomorphism as well. �
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The third and final tool we need for the computation of K̃C(RP k) is a
spectral sequence in K-theory.

Theorem 3.3.6 (Atiyah-Hirzebruch Spectral Sequence). Let X be a fi-
nite cell complex and let Xp be its p-skeleton. Let Kn

F (X) be filtered by
the groups Kn

F,p(X) = ker(Kn
F (X) → Kn

F (Xp−1)). Then there exists a right

half-plane multiplicative spectral sequence Ep,q
2 = Hp(X,Kq

F (∗))⇒ Kp+q
F (X)

with Ep,q
∞ = GpK

p+q
F (X) = Kp+q

F,p (X)/Kp+q
F,p+1(X) the pth graded piece. The

differential dr : Ep,q
r → Ep+r,q−r+1

r shifts degree by (r,−r + 1). The multipli-
cation on the E2 page is given by cohomology cup product.

By Bott periodicity, the rings Kq
F (∗) are periodic with period 2 for F = C

and period 8 for F = R and are given as follows.

q 0 1 2 3 4 5 6 7

K−qC (∗) Z 0 Z 0 Z 0 Z 0
K−qR (∗) Z Z/2 Z/2 0 Z 0 0 0

Recall (3.3.4). For odd real projective space let ν = c(L− 1) = π∗(H −
1) ∈ KC(RP 2k+1) and extend that definition to the even case by letting
ν = i∗ν ∈ KC(RP 2k) where i : RP 2k → RP 2k+1 is the inclusion.

Proposition 3.3.7. Let f = bk/2c. Then K̃C(RP k) = Z/2f and is gener-
ated by ν subject to the relations ν2 = −2ν and νf+1 = 0.

Proof. The case k = 1 being trivial, suppose k > 1 so that ν 6= 0 by
(3.3.4). Since tensor product commutes with pullback it suffices to show
that the two relations hold for k odd, i.e. ν = π∗(H − 1). Now ν2 = −2ν is
equivalent to (1 + ν)2 = (cL)2 = 1, so it suffices to show that L2 = 1. We
either have L2 = 1 or L2 = L since real line bundles are classified by their
first Stiefel-Whitney class in H1(RP 2k+1;Z/2) = Z/2. The latter would
imply the contradiction L = 1 since all line bundles are invertible. The
other relation follows from (H − 1)f+1 = 0 in KC(CP f ) (3.3.3).

Let’s look at the E2-page of the spectral sequence in complex K-theory
for RP k. The entries are given by Hp(RP k;Kq

C(∗)).
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Ep,q
2 , k even Ep,q

2 , k odd

0 1 2 3 4 · · · k − 1 k k + 1 · · ·

...

−2

−1

0

1

2

3

4

...

Z Z/2 Z/2 Z/2

Z Z/2 Z/2 Z/2

Z Z/2 Z/2 Z/2

Z Z/2 Z/2 Z/2

0 1 2 3 4 · · · k − 1 k k + 1 · · ·

...

−2

−1

0

1

2

3

4

...

Z Z/2 Z/2 Z/2 Z

Z Z/2 Z/2 Z/2 Z

Z Z/2 Z/2 Z/2 Z

Z Z/2 Z/2 Z/2 Z

−−−−−−−−→
p

−−−−−−−−→
p

Recall that the differential dr shifts degree by (r,−r + 1). For the even
case, the checkerboard pattern forces all differentials to be zero since one
of the integers (r,−r + 1) must be odd. Therefore Ep,q

2 = Ep,q
∞ . The only

possible difference in the odd case is that there may be some differentials (for
example d3) mapping from Z/2 to Z in the last nonzero column. However,
any such map is trivial and so the spectral sequence is trivial in the odd case

also. Hence the associated graded ring to K̃C(RP k),
⊕

p≥1E
p,−p
∞ , is a direct

sum of the f = bk/2c copies of Z/2 on the diagonal of the E2-page.
Since ch(ν) = π∗(ch(H − 1)) = π∗(c1(H)), by the Chern character iso-

morphism (3.3.5) ν can be seen as the generator of E2,−2
2 = H2(RP 2k+1;Z) =

Z/2. By naturality of the Chern character this is also true for RP 2k where
ν = i∗ν. Hence the powers νi generate the successive E2i,−2i

2 terms since
multiplication on the E2-page is given by cohomology cup product.

So now that we know all the quotients of the filtration KC,p(RP k) =
ker(KC(RP k)→ KC(RP p−1)), it remains to inductively work our way back

up to KC,1(RP k) = K̃C(RP k)

0 = KC,k+1(RP k) ⊆ KC,k(RP k) ⊆ · · · ⊆ KC,1(RP k) ⊆ KC(RP k).

We begin with the last nonzero term on the diagonal which is Ek,−k
∞ in the

even case and E
k−1,−(k−1)
∞ in the odd case. Up to an index shift by 1, the

argument is the same for the two cases from here on so let us focus on k
even. Now Z/2 = Ek,−k

∞ = KC,k(RP k)/KC,k+1(RP k) = KC,k(RP k). More-

over, E
k−1,−(k−1)
∞ = KC,k−1(RP k)/KC,k(RP k) = 0 so that KC,k−1(RP k) ∼=

KC,k(RP k) = Z/2. This provides the base case j = 0, 1 of an induction that
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the group extensions

0→ KC,k−(j−1)(RP k) ↪→ KC,k−j(RP k) � Ek−j,−(k−j)
∞ → 0

yield isomorphisms{
KC,k−j(RP k) ∼= Z/2j/2+1 when j is even;

KC,k−j(RP k) ∼= KC,k−(j−1)(RP k) ∼= Z/2(j+1)/2 when j is odd.

The odd case is clear since E
k−j,−(k−j)
∞ = 0 whenever j is odd. For the

even case, we have KC,k−(j−1)(RP k) ∼= KC,k−(j−2)(RP k) ∼= Z/2(j−2)/2+1 =

Z/2j/2 where the first isomorphism follows since j− 1 is odd and the second
isomorphism follows by the inductive hypothesis. Thus the group extension
now becomes

0→ Z/2j/2 ↪→ KC,k−j(RP k) � Z/2→ 0.

This means KC,k−j(RP k) can only be either Z/2j/2+1 or Z/2j/2 ⊕ Z/2.

However, as stated before E
k−j,−(k−j)
∞ = Z/2 is generated by ν(k−j)/2 and

Z/2j/2 = KC,k−(j−2)(RP k) coming from the term E
k−(j−2)
∞ is generated by

ν(k−(j−2))/2 = ν(k−j)/2+1. But now νi+1 = −2νi as follows from the relation
ν2 = −2ν. Hence, there is only one generator involved and so KC,k−j(RP k)
must be isomorphic to Z/2j/2+1. This finishes the induction.

We then obtain K̃C(RP k) which is KC,1(RP k) = KC,k−(k−1)(RP k) ∼=
KC,k−(k−2)(RP k) ∼= Z/2(k−2)/2+1 = Z/2k/2 = Z/2f since f = bk/2c and k is
even. This finishes the proof. �

From here, our goal for this section to calculate K̃R(RP k) is finally within
reach.

Proof of (3.3.1). We examine the diagonal Ep,−p
2 = Hp(RP k;Kp

R(∗))
for p ≥ 1 on the E2-page of the spectral sequence in real K-theory to ob-

tain information about the associated graded ring to K̃R(RP k). By Bott
periodicity, we see that the only nonzero terms on the diagonal occur for
p ≡ 0, 1, 2, or 4 mod 8 and that all of them are Z/2. It follows that there
are σ(k) copies of Z/2 on this diagonal and hence there are at most 2σ(k)

elements in the group K̃R(RP k).

Consider the complexification homomorphism c : K̃R(RP k)→ K̃C(RP k).

By (3.3.7) K̃C(RP k) is generated by ν = cλ and so c is an epimorphism for all
k. Additionally, for k ≡ 6, 7, 8 mod 8 we have f = bk/2c = σ(k). Indeed,
if k = 6 + 8d or k = 7 + 8d then σ(k) = 3 + 4d = f as we saw right after
the statement of (3.3.1). Similarly, if k = 8d then σ(k) = 4d = f . Hence in
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those cases K̃C(RP k) contains 2f = 2σ(k) elements and so all the nonzero E2

terms on the diagonal survive to the E∞-page and c must be an isomorphism

and λ a generator for K̃R(RP k) = Z/2σ(k).
For the other cases, there is always some K > k such that K ≡ 6, 7, or

8 mod 8. The inclusion RP k ↪→ RPK induces a map of spectral sequences
and it follows that the E2 terms survive in those cases as well and that
K̃R(RP k) = Z/2σ(k) with generator λ for all k.

Finally, λ2 = −2λ follows from L2 = 1 which we proved in (3.3.7) and
λσ(k)+1 follows from this first relation and the fact that 2σ(k)λ = 0. �

3.4. The Upper Bound

We begin with a definition: two vector bundles E and E ′ over a common
base space X are said to be fiber homotopy equivalent if there exists a bundle
map θ : E → E ′ such that the restriction S(E) → S(E ′) is a homotopy
equivalence over X, i.e. the homotopies in question are through maps that
send fibers to fibers. This implies in particular the weaker condition that for
each point p ∈ X, the map θp : S(E)p → S(E ′)p is a homotopy equivalence.
It is a theorem of Dold [Jam76, Theorem 4.2] that a bundle map inducing
a homotopy equivalence on each fiber is a fiber homotopy equivalence so
long as E and E ′ have the homotopy type of CW complexes and X is path-
connected.

Recall that we’re trying to find an upper bound for the number of vector
fields on a sphere and reduced the problem to finding the largest k for
which Vk+1(Rn) → Sn−1 has a section. Suppose a section s exists. Then
we can define a map ŝ : Sk × Sn−1 → Sk × Sn−1 by sending (v, p) to
(v, s(p)v). Indeed, we regard Sk as a subspace of Rk+1 and recall that
Vk+1(Rn) = O(n)/O(n − k − 1) so that s(p) acts on v as an (n × (k + 1))-
matrix acting on a (k + 1)-vector. Moreover, since s(p) is an orthogonal
matrix, it is true that |s(p)v| = 1 whenever |v| = 1. But even more is true:
taking the Z/2-Borel quotient on the target of this map we determine that
ŝ(−v, p) = (−v,−s(p)v) = (v, s(p)v) = ŝ(v, p) so that ŝ descends to a map
RP k × Sn−1 → Sk ×Z/2 S

n−1.
Note that RP k×Sn−1 is just the sphere bundle of the real trivial bundle

εn (also written nε or simply n) over RP k and that Sk×Z/2S
n−1 is the sphere

bundle of nL (direct sum of n copies of L) where L = {(l, x) ∈ RP k×Rk+1 :
x ∈ l} = Sk ×Z/2 R is the real canonical line bundle over RP k. This proves
the first part of
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Proposition 3.4.1. Suppose Sn−1 admits k linearly independent vector
fields. Then there is a bundle map n → nL over RP k, which is a fiber
homotopy equivalence.

Proof. We’ve seen earlier that the question of finding vector fields on
spheres is equivalent to finding a section of the Stiefel manifold. Given a
section s, we just showed above how to construct a bundle map ŝ : S(n)→
S(nL) and we can extend this to a bundle map n→ nL by radial extension
(v, p) 7→ (v, |p|ŝ(p/|p|)). It remains to show that this extension is a fiber
homotopy equivalence. By Dold’s theorem, it suffices to show that ŝv :
Sn−1 → Sn−1, p 7→ s(p)v is a homotopy equivalence for each v ∈ RP k. For
this in turn to be true, it suffices to show that ŝv is homotopic to the identity.
First note that ŝv ' ŝe1 where e1 is the first basis vector in Rk+1 since Sk

is path-connected. Also note that s(p)e1 = p by the way we constructed
the homeomorphism Vk+1(Rn) ≈ O(n)/O(n− k − 1). Thus ŝe1 = id and so
ŝv ' id as required. �

In this case, nL is said to be fiber homotopy trivial. In fact, we can
define an equivalence relation on vector bundles by saying that bundles E
and E ′ are J-equivalent, written E 'J E ′, if and only if there exist integers
n,m such that S(E ⊕ εn) has the same fiber homotopy type as S(E ′ ⊕ εm).

That is, the idea is similar to that of K̃ just that now we are dealing with
sphere bundles instead of vector bundles and fiber homotopy equivalences
instead of bundle isomorphisms. The set of J-equivalence classes of real
vector bundles over a base space X is denoted by J(X). There is a natural

functor J : K̃R(X)→ J(X).
If E and E ′ are two bundles over X, then S(E⊕E ′) = S(E)∗S(E ′) where

∗ denotes the fiber join of sphere bundles. This is the equivalent notion of
Whitney sum of vector bundles in the category of sphere bundles. The join
of two topological spaces X and Y is defined as X ∗Y = X×I×Y/ ∼ where
(x, 0, y) ∼ (x, 0, y′) and (x, 1, y) ∼ (x′, 1, y). The product of two spheres isn’t
another sphere, the join of two spheres, however, is. This can best be seen
by the description X ∗ Y ≈ ∂(CX × CY ). The fiber join is then obtained
by taking the join S(E)p ∗ S(E ′)p on each fiber and then pulling back along
the diagonal map X → X ×X.

Now the join of two homotopy equivalences is again a homotopy equiv-
alence since (f ∗ g)[x, t, y] = [f(x), t, g(y)]. It follows that if E1 'J E2 and
E ′1 'J E ′2 then E1 ⊕ E ′1 'J E2 ⊕ E ′2 so that direct sum grants J(X) the
structure of an abelian group with zero element J(ε0). It also follows that
J is a surjective group homomorphism. The celebrated result is



3.4. THE UPPER BOUND 38

Theorem 3.4.2 (Adams). J : K̃R(RP k)→ J(RP k) is an isomorphism.

From this we finally get the answer to our initial question.

Corollary 3.4.3. There are at most ρ(n) − 1 linearly independent vector
fields on Sn−1.

Proof. We have shown that nL → RP k is fiber homotopy trivial, i.e.
nL 'J n, when Sn−1 admits k linearly independent vector fields. By Adams’

theorem this implies nL ' n in K̃R(RP k). Equivalenty, n(L− 1) = 0 in the

formal difference notation of unreduced K-theory. But by (3.3.1) K̃R(RP k)
is of order ak and generated by (L − 1). Hence ak divides n. Hence, the
largest k for which Sn−1 admits k linearly independent vector fields is the
largest k for which ak divides n which we have seen to be ρ(n)− 1 when we
proved theorem (3.2.5). �

By combining (3.2.5) and (3.4.3), we get that there are precisely ρ(n)−1
linearly independent vector fields on Sn−1. Notice that it thus follows that
ρ(n) = n if and only if Sn−1 is parallelizable. A quick check then reveals

Corollary 3.4.4 (Bott, Milnor; Kervaire). The only parallelizable spheres
are S0, S1, S3, and S7.

We already saw another proof of this result in (2.1.6) from Chapter 2. As
mentioned there, this result was known before either of Adams’ theorems.

There are two different ways in the literature in which Adams’ theorem is
proved. We follow [Jam76, Chapter 9], [Kar78, Chapter V], and [Sha11].
For the other proof see [Ada62], [Gor70] or [Nor01].

Proof Sketch of (3.4.2). The idea is to define characteristic classes
ρmF (E) ∈ KF (E) of F -vector bundles E where F is R or C. The construction
of these classes is similar to that of the Stiefel-Whitney classes except that
one uses the Adams operations in lieu of Steenrod squares and the Thom
isomorphism in K-theory rather than cohomology.

Recall that the Thom space of an n-vector bundle E → X is defined
as T (E) = Sph(E)/X where ξ : Sph(E) → X is the bundle obtained
from E by taking one-point compactification on each fiber. We also have a
projection map π : Sph(E)→ T (E). By composing the product of ξ and π
with the diagonal map on Sph(E) we obtain a map Sph(E) → Sph(E) ×
Sph(E) → X × T (E). Note that this map sends all points at ∞ to X ×
{∞}. Thus, it factors through a map ∆ : T (E) → X+ ∧ T (E) called the

Thom diagonal. In reduced complex K-theory this induces a map K̃(X+ ∧
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T (E)) → K̃(T (E)) and by external product in reduced complex K-theory

a map K(X)⊗ K̃(T (E))→ K̃(T (E)).

There is a special element λE ∈ K̃(T (E)) termed the Thom class whose

characterizing property is that it restricts to a generator of K̃(T (Ep)) =

K̃(Snp ) for each p ∈ B.

Theorem 3.4.5 (Thom Isomorphism Theorem). The Thom diagonal in-

duces a map Φ : K(X)→ K̃(T (E)), Φ(x) = x∗λE which is a K(X)-module
isomorphism.

We see that λE = Φ(1). The same theorem holds true for real K-theory
when one restricts to Spin(8d)-bundles, that is, bundles with vanishing first
and second Stiefel-Whitney classes whose rank is a multiple of 8.

We define ρmF : VectF (X)→ KF (X) by ρmF (E) = Φ−1ψmF (λE), implicitly
restricting the domain of definition to Spin(8d)-bundles for F = R. In honor
of their discoverer, these classes are called Bott classes. Sometimes they are
also referred to as cannibalistic classes as their input is a characteristic class
itself (the Thom class).

Let L be the canonical line bundle over RP k. Then as an example:

Lemma 3.4.6. For m odd, ρmR (4dL⊕4d) = m4d(1+m2d−1
2m2d λ) where λ = L−1

is the generator of K̃R(RP k).

Lemma 3.4.7. Let E be a Spin(8d)-bundle over RP k, such that the bundles
8d and E are fiber homotopy equivalent. Then for m odd, ρmR (E) = m4d.

These lemmata enable us to prove Adams theorem. By (3.3.1) K̃R(RP k)
is generated by L−1. So suppose J(n(L−1)) = 0, i.e. nL is fiber homotopy

trivial. We wish to show that ak, the order of K̃R(RP k), divides n. We
begin with the observation that fiber homotopy equivalent bundles have the
same Stiefel-Whitney classes as can be seen from their definition in terms
of the Thom isomorphism and Steenrod squares. As discussed before, the
total Stiefel-Whitney class of L, w(L), is 1 + x where x is the generator of
H∗(RP 2k+1;Z/2) ∼= Z/2[x]/(x2k+2). By fiber homotopy triviality we require
that w(nL) = (1 + x)n ≡ 1 = w(n) mod 2. But (1 + x)n = 1 + nx+ n(n−
1)/2x2 + · · · . Thus if k = 0, then n must be a multiple of 2 = a1. If k > 0,
then n must be a multiple of 4, say n = 4d. Note that by (3.4.1) 4dL⊕4d is a
Spin(8d)-bundle fiber homotopy equivalent to 8d. By the previous lemmata,

this implies m2d

2
(m2d − 1)λ = 0 for all odd m. But then m2d

2
(m2d − 1) ≡ 0

mod ak. We’ve seen that ak = 2φ(k) so this means (m2d−1) ≡ 0 mod 2φ(k)+1

since m is odd. Now let m = 3 and write n = 4d = 2 · 2d and 2d = 2lp
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with p odd. Since l ≥ 1, we have seen in the discussion after (2.3.1) that
the largest power of 2 dividing 32d − 1 is l+ 2. This means l+ 2 ≥ φ(k) + 1
and so n = 4d = 2(2lp) = 2l+1p ≥ 2φ(k)p ≥ 2φ(k) = ak. That is, ak divides n
as required.

�



CHAPTER 4

Geometry and Topology in Algebraic K-Theory

4.1. K0 of Rings, Swan’s Theorem, Wall’s Finiteness Obstruction

Now that we have seen some of the power of the K-functor applied to
the category of topological spaces, let us see how we can generalize it to
other categories and draw applications from it. Historically, Grothendieck
first defined K-theory on the category of schemes to study algebraic vector
bundles which led to what is now called algebraic K-theory. The content of
Swan’s theorem, our first application, is that topological K-theory is just a
special case of algebraic K-theory.

Unless otherwise stated, in this chapter let R be an associative ring with
unit. Recall that an R-module P is said to be projective if there exists
another R-module Q such that P ⊕ Q is a free R-module. If additionally
we require that P be finitely generated then P ⊕ Q ∼= Rn for some n. The
set P(R) of isomorphism classes of finitely generated projective R-modules
forms an abelian monoid under direct sum. We define the zeroth algebraic
K-theory of a ring R, K0(R), as the Grothendieck group (§1.1) of P(R).

The reason we use a subscript 0 is that K0 is a covariant functor from
rings to abelian groups. To see this, start with a ring homomorphism φ :
R → S. We then have an induced homomorphism φ∗ : P(R) → P(S),
P 7→ S ⊗R P . Indeed, if P is a finitely generated projective R-module, then
(S ⊗R P ) ⊕ (S ⊗R Q) ∼= S ⊗R (P ⊕ Q) ∼= S ⊗R (Rn) ∼= Sn and so S ⊗R P
is a finitely generated projective S-module. φ∗ is a homomorphism since
tensor product commutes with direct sum and so φ∗ descends to the group
completion to yield a homomorphism K0(R)→ K0(S).

Example 4.1.1. If R = F is a field, then a finitely generated projective
F -module is just a finite dimensional F -vector space and so P(F ) ∼= N and
K0(F ) ∼= Z. Similarly, over a principal ideal domain every projective module
is free by the structure theorem for modules over principal ideal domains.
Hence K0(Z) ∼= Z and K0(F [x]) ∼= Z where F is a field.

Just like in the topological case, we can define the zeroth reduced alge-
braic K-theory of a ring R. For any ring R with unit, there is a unique ring

41



4.1. K0 OF RINGS, SWAN’S THEOREM, WALL’S FINITENESS OBSTRUCTION 42

homomorphism ι : Z→ R sending 1 to the unit of R. We define

K̃0(R) = coker(ι∗ : K0(Z) ∼= Z→ K0(R)).

As before, K̃0(R) measures the non-obvious part of K0(R), i.e. K0(R) mod-
ulo free modules. Since projective modules satisfy the equivalent of fact
(1.1.2) by definition, the proof of (1.1.3) goes through as before to show

that K̃0(R) are stable classes of finitely generated projective R-modules. In

particular, if [P ] = 0 ∈ K̃0(R) then P is stably free, i.e. its direct sum with
some free module is free.

Let F = R or C. To state Swan’s theorem, recall that the sheaf of
sections of an F -vector bundle p : E → X is Γ(U,E) := {s : U →
p−1(U) continuous : p ◦ s = idU} for every open U ⊆ X. To avoid con-
fusion, recall that the sections of a sheaf F over an open subset U are the
elements of F(U) =: Γ(U,F). Once we identify a vector bundle E with its
sheaf of sections there will be no ambiguity in using the same letter E for
both of these and the notation Γ(U,E) will be consistent.

Example 4.1.2. The sheaf of sections of the trivial line bundle X×F → X
is the sheaf OX of continuous functions of X. That is, for every open U ⊆ X
one has OX(U) = Γ(U,OX) = {f : U → F : f is continuous}.

Note that the sheaf of sections U 7→ Γ(U,E) is moreover an OX-module
(i.e. an abelian sheaf F with a pairing OX ⊗ F → F so that F(U) has the
structure of anOX(U)-module). The module structure is given by (f ·s)(x) =
f(x)s(x).

Theorem 4.1.3 (Swan). Let X be a compact Hausdorff space. Then there
is an equivalence of categories between VectF (X) and P(Γ(X,OX)) which
descends to an isomorphism K0

F (X)→ K0(Γ(X,OX)).

Proof. Given a bundle E, we consider the global sections Γ(X,E). We
need to show that this is a finitely generated projective Γ(X,OX)-module
and that every such module arises this way. Finite generation is given locally
over some U by the basis vectors e1, . . . , en of F n since E is locally trivial. By
compactness, we can cover X by finitely many such open sets Ui and choose
a partition of unity {fi} subordinate to this covering. Then eij := fiej is
supported on Ui and extends to all of X by setting eij(x) = 0 for x /∈ Ui. By
construction the finitely many eij generate Γ(X,E) as a Γ(X,OX)-module.

To see that Γ(X,E) is projective, recall that by (1.1.2) there is a bundle
E ′ such that E ⊕ E ′ ∼= X × F k for some k. Hence Γ(X,E) ⊕ Γ(X,E ′) ∼=
Γ(X,E ⊕ E ′) ∼= Γ(X,OX)k.
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Conversely, we start with a finitely generated projective module P . Then
there exists a module Q such that P ⊕ Q ∼= Γ(X,OX)n for some n. Thus,
we can regard P as a collection of functions X → F n and define

E := {(x, v1, . . . , vn) ∈ X × F n : ∃s ∈ P with s(x) = (v1, . . . , vn)}.

Let p : E → X be projection onto the first factor. The fibers are F -
vector spaces since P is a Γ(X,OX)-module. It only remains to check local
triviality. We do this by constructing local sections. Given x ∈ X, choose
f 1, . . . , fk ∈ P forming a basis at x of the subspace Ex = p−1(x) of F n.
Express f i = (f i1, . . . , f

i
n) in terms of the standard basis vectors of F n. Then

linear independence of f 1(x), . . . , fk(x) is equivalent to being able to find
integers 1 ≤ j1 < · · · < jr ≤ n such that the determinant of

f 1
j1

f 2
j1
· · · f rj1

f 1
j2

f 2
j2
· · · f rj2

...
...

...
f 1
jr f 2

jr · · · f rjr


is nonzero at x. Similarly, we can follow the above procedure for the com-
plementary module Q and find g1, . . . , gn−k ∈ Q forming a basis at x of
the complementary vector subspace of F n such that the determinant of the
corresponding matrix is also nonzero at x. Since determinants are continu-
ous, there is some neighborhood U of x where neither determinant vanishes.
For each y in this U f 1(y), . . . , fk(y) are linearly independent and gener-
ate a k-dimensional subspace of F . We then have E|U ∼= U × F k since
the complement contains the (n − k)-dimensional subspace generated by
g1(y), . . . , gn−k(y).

These constructions are inverses of each other and so we have an equiv-
alence of categories which descends to an isomorphism in the respective
K-theories since both constructions are additive. �

Our next application addresses the following question: when is a space
homotopy equivalent to a finite CW complex? It is known that all compact
manifolds are. This is clear for piecewise linear, and smooth manifolds since
they admit triangulations by finite simplicial complexes. More generally
we consider finitely dominated spaces, that is, spaces which are deformation
retracts of finite CW complexes. In fact, every finitely dominated space is
homotopy equivalent to a CW complex but not necessarily a finite one (see
[Hat02, Proposition A.11] or [Mil59] for the original). Consequently, we
ask when is a finitely dominated CW complex homotopy equivalent to a
finite one?
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Examples 4.1.4. Here are some finitely dominated spaces:

(1) Every absolute neighborhood retract (ANR) and in particular every
euclidean neighborhood retract (ENR) is a deformation retract of a
finite simplicial complex [Hat02, Corollary A.8].

(2) Every compact topological manifold X is an ENR [Hat02, Corol-
lary A.9]. Thus, every compact topological manifold is finitely dom-
inated. Alternatively, one can also first show using Morse theory
that such X has the homotopy type of a CW complex K. Let
f : X → K, g : K → X be such a homotopy equivalence. Then
f(X) is contained in a finite subcomplex Q ⊆ K, since X is com-
pact [Hat02, Corollary A.1], and X is finitely dominated by Q via
f and g|Q.

So suppose that X is a path-connected CW complex finitely dominated

by K. We are thus given maps K
r // X
i

oo such that r ◦ i ' idX . Starting

from K and r, we are going to construct another finite complex K̄ and a
weak homotopy equivalence r̄ : K̄ → X. By Whitehead’s theorem r̄ will be
a homotopy equivalence.

We begin by producing an isomorphism of fundamental groups.

Proposition 4.1.5. For r : K → X a finite domination of CW complexes,
we may attach finitely many 2-cells to K to form K̄ and extend r to r̄ : K̄ →
X such that r̄ induces an isomorphism of fundamental groups.

Proof. The map r∗ : π1(K)→ π1(X) is surjective since r ◦ i ' idX . We
will succeed if we can attach finitely many 2-cells to K to kill ker(r∗). For
this to work we need ker(r∗) to be finitely generated.

This is indeed so: let {gi} be a finite set of generators for π1(K) (π1(K) is
generated by the 1-skeleton of K which is finite), and let α = i∗◦r∗ : K → K.
We claim that the normal closure P π1(K) of P = {giα(g−1

i )} generates ker r∗.
To see this, first note that

r∗(giα(g−1
i )) = r∗(gi)r∗d∗r∗(g

−1
i ) = r∗(gi)r∗(g

−1
i ) = 1

since r∗ ◦ d∗ = id∗. Thus P π1(K) ⊆ ker(r∗). To show the reverse inclusion,
we first note that every gα(g−1) ∈ P π1(K). This can be done by induction
on word length. For instance,

g1g2α((g1g2)−1) = g1g2α(g−1
2 )α(g−1

1 ) = g1g2α(g−1
2 )g−1

1 g1α(g−1
1 ) ∈ P π1(K).

Then if g ∈ ker(r∗), we have g = gα(g−1) ∈ P π1(K) since α(g−1) = i∗ ◦
r∗(g

−1) = 1.
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So now let {[γi : S1 → K]} be a finite set of generators for ker(r∗).
Attach 2-cells using the γi to kill ker(r∗). r extends over the new cells to a
map r̄ because the images d∗([γi]) = [d ◦ γi : S1 → X] are null-homotopic,
i.e. extend over the disk D2. Also note that r̄ ◦ i = r ◦ i ' idX , since the
new cells are not in the image of i. �

Let us replace our new symbols r̄ and K̄ by the old r and K to avoid
notational build-up. We may assume without loss of generality that r is an
inclusion of the subcomplex K into X by replacing X with the mapping
cylinder Mf which is homotopic to X. Consider the long exact homotopy
sequence of the pair (K,X)

· · · → πk+1(r)→ πk(K)
r∗→ πk(X)→ πk(r)→ · · · ,

where πk(r) := πk(X,K). An isomorphism of fundamental groups thus
implies π1(r) = 0.

We then take universal covers and lifts such that r̃ ◦ ĩ ' idX̃ . Having
turned r into an inclusion, we now have at our disposal a long exact sequence
in homology:

· · · → H3(X̃, K̃)→ H2(K̃)
d̃∗→ H2(X̃)→ H2(X̃, K̃)→ 0

(the terms on the right are zero since universal covers are simply-connected).

ĩ∗ : H2(X̃) → H2(K̃) splits the long exact sequence into short exact se-
quences

· · · → Hk+1(X̃, K̃)→ Hk(K̃)→ Hk(X̃)→ 0, k ≥ 2.

Thus H2(X̃, K̃) = 0. By the relative Hurewicz theorem π2(r̃) = π2(X̃, K̃) ∼=
H2(X̃, K̃) = 0. But since the fiber over any point of a covering map is
discrete, it follows from the long exact homotopy sequence of the fibration

X̃ → X that πi(r̃) ∼= πi(r) for i > 1. In particular, π2(r) = 0. r is thus
2-connected.

From here on, the process of attaching cells to kill even higher homotopy
groups is a construction due to Milnor. To review it, recall that an element
of πn(r) is the homotopy class of a map Dn → X which carries the boundary
Sn−1 into K.

Construction 4.1.6. Let K
r→ X be an (n−1)-connected map with n ≥ 3.

Then r∗ : π1(K) ∼= π1(X) and we let r̃ : K̃ → X̃ denote a lift of r to the
universal covers. πn(r̃) ∼= πn(r) is a module over Z[π] where π := π1(X),



4.1. K0 OF RINGS, SWAN’S THEOREM, WALL’S FINITENESS OBSTRUCTION 46

and we let {gj}j∈J denote a set of generators. Let

K̄ = K
⋃

gj |Sn−1

{enj }j∈J .

Then there is an extension r̄ : K̄ → X of r, where r̄|enj is defined by gj. In

case J is finite, K̄ is obtained from K by attaching a finite number of n-cells
and it isn’t hard to show that r̄ is n-connected [Var89, §6 Lemma 1.3].

By iterating the above construction we obtain a homotopy equivalence
betweenX and a CW complex built fromK. The key to building a finite CW
complex is for the Z[π]-modules πn(r) to be finitely generated at every step.
How might one go about this? Given an (n− 1)-connected map r : K → X
with n ≥ 3, we have already seen how to use the relative Hurewicz theorem

to get an isomorphism πn(r) ∼= Hn(X̃, K̃) of Z[π]-modules. It thus suffices

to show that Hn(X̃, K̃) is finitely generated as a Z[π]-module.

Note that the cellular chain complex C∗(X̃) is generally not finitely gen-

erated so that a priori there is no reason to believe that Hn(X̃, K̃) should be.
Suppose, however, that our boldest hopes were true and we could find a chain
complex A∗ of finitely generated, free Z[π]-modules that is chain-homotopy

equivalent to C∗(X̃) so that we could compute Hn(X̃, K̃) as Hn(A∗). We
would then solve the problem:

Proposition 4.1.7. If A∗ is a positive chain complex of finitely generated,
free Z[π]-modules with Hk(A∗) = 0 for k < n, then Hn(A∗) is a finitely
generated, projective Z[π]-module.

Proof. Let

Zk := ker(∂k : Ak → Ak−1),

Bk := im(∂k+1 : Ak+1 → Ak).

Then Z0 = A0 and Zk = Bk for k < n since Hk(A∗) = 0 in this range. We
thus have the following exact sequences of Z[π]-modules:

0→ Z1 → A1 → A0 → 0

0→ Z2 → A2 → Z1 → 0

· · ·
0→ Zn → An → Zn−1 → 0.

Since Ai are finitely generated and free by hypothesis, the first sequence
splits to show that Z1 is finitely generated, projective over Z[π]. This implies
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that the second sequence splits and hence Z2 is finitely generated, projec-
tive over Z[π]. Proceeding thus we finally see that Zn is finitely generated,
projective. Since Hn(A∗) is a quotient of Zn, this finishes the proof. �

Alas, there is an obstruction to finding such a chain complex. Wall
showed that it is always possible to find a bounded chain complex A∗ of
finitely generated, projective Z[π]-modules chain-homotopy equivalent to

C∗(X̃, K̃) if X is finitely dominated. However, this complex may or may
not be free. In fact, it would suffice that the chain complex be stably free,
for we will show in the proof below that a finitely generated, stably free chain
complex is chain-homotopy equivalent to a finitely generated, free one. This
motivates the definition of the Wall finiteness obstruction of X, an element

of K̃0(Z[π]), in the next theorem.
Recall that a chain complex C∗ is of finite type if there exists an N such

that Cn = 0 for |n| ≥ N and each Ck is finitely generated. For instance, the
cellular chain complex of a finite CW complex is of finite type.

Theorem 4.1.8 (Wall’s Finiteness Obstruction). Let X be a path-connected,
finitely dominated CW complex. Then π := π1(X) is finitely presented and

C∗(X̃) is chain-homotopy equivalent to a chain complex A∗ of finite type of
projective Z[π]-modules. Moreover, the Wall finiteness obstruction w(X) of
X which is the Euler characteristic

χ(A∗) :=
∑
i

(−1)i[Ai] ∈ K̃0(Z[π])

of A∗ is well-defined, and w(X) = 0 if and only if X is homotopy equivalent
to a finite CW complex. [Wal65, Wal66]

Proof Sketch. We only prove the very last assertion that vanishing
of the finiteness obstruction is equivalent to X having the homotopy type to
a finite CW complex. For other parts of the proof see Wall’s original papers
cited above or Rosenberg’s partial exposition in [Ros94, §1.7].

First suppose that X is homotopy equivalent to a finite CW complex

Z. Then C∗(X̃) is chain-homotopy equivalent to C∗(Z̃) which is a complex

of finite type of free Z[π]-modules. Thus w(X) = χ(C∗(Z̃)) = 0 since free

modules vanish in K̃0(Z[π]).
Conversely suppose that w(X) = 0 and that we have already found

a chain-homotopy equivalent chain complex A∗ of finite type of projective
Z[π]-modules. We show that A∗ is chain-homotopy equivalent to a chain
complex of finite type of free Z[π]-modules which completes the proof by
Milnor’s construction and the discussion before the theorem.
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Suppose Aj = 0 for j outside of an interval {k, k+ 1, . . . , k+n}. Choose
projective modules Qn, . . . , Q0 such that Ak+n ⊕Qn is free, Ak+n−1 ⊕Qn ⊕
Qn−1 is free, and in general such that Ak+j⊕Qj+1⊕Qj is free for 0 ≤ j < n.
If T∗ is chain-contractible, then replacing A∗ by A∗ ⊕ T∗ doesn’t change the
chain-homotopy type. So define (T j∗ , d

T j) by

T ji =

{
0 i 6= k + j, k + j − 1;

Qj i = k + j, k + j − 1

with dT
j

k+j : Qj → Qj the identity map. This is clearly contractible and

B∗ := A∗ ⊕
n⊕
j=0

T j∗

has free modules in all degrees except perhaps in degree k−1 where Bk−1 =
Q0. Thus

0 = w(X) = χ(A∗) = χ(B∗) = (−1)k−1[Bk−1] ∈ K̃0(Z[π]).

Hence Q0 is stably free, i.e. there are free modules F, F ′ such that Q0⊕F ∼=
F ′. Let (S∗, d

S) be defined by

Sj =

{
0 j 6= k − 1, k − 2;

F j = k − 1, k − 2

with dSk−1 : F → F the identity map. Then D∗ := D∗ ⊕ S∗ is of finite
type and has free modules in all degrees and is chain-homotopy equivalent
to A∗. �

It follows that any simply-connected, finitely dominated space is homo-
topy equivalent to a finite CW complex. The same could be true for any
finitely dominated space with torsion-free fundamental group as it is conjec-

tured that K̃0(Z[π]) = 0 for any torsion-free group π.

4.2. K0 of Schemes

To avoid pathologies, we will from now on assume all rings and schemes
Noetherian until further notice. We will remind the reader of this hypothesis
in some crucial situations by bracketing (Noetherian).

Our goal in this section is to define aK-theory of schemes that generalizes
that of just topological spaces. Since topological K-theory deals with topo-
logical vector bundles, we would like to come up with a generalized notion
of “vector bundle” that we can apply to schemes. Swan’s theorem showed
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that the category of vector bundles over a topological space X is equiva-
lent to that of finitely generated projective Γ(X,OX)-modules. A scheme
is a locally ringed space with a sheaf of commutative rings OX , termed
the structure sheaf, which generalizes the sheaf of continous functions on a
topological space X. We could thus define an algebraic vector bundle over a
scheme X to be a finitely generated projective Γ(X,OX)-module extending
the topological definition. This will be the right definition when X is an
affine scheme. However, to encode the information contained in a general
scheme, we need to frame the discussion in terms of sheaves rather than
modules.

To do so, we first show that the category of topological vector bundles
is also equivalent to that of locally free OX-modules, i.e. sheaves, of finite
rank. Recall that an OX-module F on a scheme X is locally free of rank n
if there exists a (Zariski) open covering X =

⋃
i Ui such that F|Ui ∼= O⊕nUi .

Example 4.2.1. The sheaf of sections of a topological vector bundle of rank
n defined in the previous section is a locally free OX-module of rank n since
vector bundles are locally trivial.

Conversely, given a locally free OX-module F of rank n, we can find
trivializations ψi : F|Ui ∼= O⊕nUi so that the transition maps ψij := (ψi ◦
ψ−1
j )|Ui∩Uj : O⊕nUi∩Uj ∼= O

⊕n
Ui∩Uj can be seen as elements of GLn(OUi∩Uj). By

definition, ψij|Ui∩Uj∩Uk ◦ψjk|Ui∩Uj∩Uk = ψik|Ui∩Uj∩Uk so that the ψij are cocy-
cles that we can use to construct a vector bundle E of rank n. Since these
two constructions are inverse to each other we obtain

Proposition 4.2.2. Associating to a vector bundle its sheaf of sections de-
fines an equivalence of categories between vector bundles over a topological
space X and locally free OX-modules of finite rank.

Extending this interpretation to schemes, we define an algebraic vector
bundle over a scheme X to be a locally free OX-module of finite rank. We
also denote by Vect(X) the category of algebraic vector bundles over a
scheme X.

Fact 4.2.3. When X = Spec(R) is an affine scheme, then Vect(X) is
equivalent to P(R). [Wei12, Example I.5.1.2]

However, over a general scheme this is not necessarily true. For example,
the projective lifting property fails for every vector bundle over the projective
line P1

R = Proj(R[x, y]) [Wei12, Example I.5.4]. Thus, in general we cannot
hope to define the K-theory of a scheme as K0 of some ring as we did in the
topological setting.
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In fact, historically the K-theory of rings was only a special case of the
K-theory of schemes as Grothendieck was led to define the K-group as the
free abelian group with generators the coherent sheaves on a scheme subject
to a relation that identifies any extension of two sheaves with their sum. By
the above fact, in the affine case any extension of sheaves splits and so many
authors now define the K-theory of a ring R as K(R) := K(Spec(R)) =
K(P(R)).

Let us make these notions precise. First of all, there is a natural way to
take the group completion of a small symmetric monoidal category, i.e. a
small category C equipped with a functor � : C × C → C, a distinguished
object e and the following three natural isomorphisms: x�y ∼= y�x, e�x ∼=
x, and x�(y�z) ∼= (x�y)�z. The isomorphism classes of objects of C,
Ciso, form an abelian monoid with respect to �. We thus define K�

0 (C) :=
K0(Ciso).

Examples 4.2.4. Some group completions of symmetric monoidal cate-
gories:

(1) Any category with a direct sum ⊕ is symmetric monoidal. This
includes P(R) and Vect(X) for a topological space X. Since the
above definition is precisely how we constructed the Grothendieck
group in (1.1), we see that K0(R) = K⊕0 (P(R)) and K0(X) =
K⊕0 (Vect(X)).

(2) Let Setsfin denote the category of finite sets. It has a product ×
and a coproduct, the disjoint sum

∐
. Then K

∐
0 (Setsfin) = Z while

K×0 (Setsfin) = 0 since the empty set satisfies ∅ = ∅×X for all finite
sets X. However, the set of isomorphism classes of nonempty finite
sets is N>0 and the product of finite sets corresponds to multiplica-
tion. Since the group completion of the abelian monoid N×>0 is the
group Q×>0 we find that K×0 (Setsfin r∅) = Q×>0.

(3) Let G be a finite group and denote by RepC(G) the category of
finite-dimensional complex representations of G. It is symmet-
ric monoidal under ⊕. We denote K⊕0 (RepC(G)) by R(G). By
Maschke’s Theorem [Ser77, Theorem 1], all representations of G
are completely reducible so that RepC(G) ∼= Nk, a basis being the
k irreducible representations [V1], . . . , [Vk] of G. By character the-
ory [Ser77, Theorem 7], k is equal to the number of conjugacy
classes of G. As an abelian group R(G) ∼= Zk. The tensor product
of two representations is also a representation and so R(G) admits
the structure of a ring called the representation ring of G. This
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example is related to a variant of topological K-theory which will
be discussed in chapter 5.

For a scheme X, Vect(X) is symmetric monoidal and we could define
K-theory of a scheme with respect to this structure. However, this turns
out not to be right idea. The reason is that we would like to talk about
kernels, cokernels and do homological algebra but Vect(X) is not an abelian
category. To see this, take for instance the trivial vector bundle ε1 on X = R.
We can define a bundle map f from ε1 to itself by f(x, y) = (x, xy). If
Vect(X) were abelian, then the kernel of f should be a bundle and so the
rank of the bundle ker(f) over each point of X should be the same since
X is connected. However, the rank of ker(f) is 0 everywhere except at
x = 0 where it is 1. We can also see this algebraically: in P(Z) consider the
multiplication homomorphism n : Z → Z. Clearly, the cokernel cannot be
projective since it has torsion.

Instead, we embed Vect(X) in the smallest abelian category containing
the algebraic vector bundles and define a K-theory respecting this embed-
ding. This is the category Coh(X) of coherent O(X)-modules. Recall that
an OX-module F is coherent if there is an open covering X =

⋃
Ui such

that F|Ui ∼= M̃i for some finitely generated OX(Ui)-module Mi where M̃i is

the OUi-module defined on distinguished open sets by M̃i(D(f)) = (Mi)f .
In particular, every algebraic vector bundle E is coherent since for an open

U = Spec(R), R̃ = OU and so E|Ui ∼= O⊕nUi ∼= R̃i

n ∼= R̃n
i .

Fact 4.2.5. Let X be a (Noetherian) scheme. The category Coh(X) is
abelian. [Har06, II.5.7]

Given a small abelian category A, we define its Grothendieck group
K0(A) as the free abelian group with generators [A] for each object A of
A and with one relation [A] = [A′] + [A′′] for every short exact sequence
0 → A′ → A → A′′ → 0 in A. Here are some identities which hold in
K0(A):

(1) [0] = 0,
(2) if A ∼= A′, then [A] = [A′] (take A′′ = 0),
(3) [A′ ⊕ A′′] = [A′] + [A′′] (take A = A′ ⊕ A′′).

If two abelian categories are equivalent then their Grothendieck groups are
naturally isomorphic as (2) implies that they have the same presentation.
By (3) the group K0(A) is a quotient of the group K⊕0 (A) by considering A
as a symmetric monoidal category. This means that K0(A) is often easier
to compute as it is smaller.
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In the same way we define K-theory for an exact category, which is an
additive subcategory of an abelian category which is closed under extensions
(any extension in the abelian category of two objects in the subcategory is
isomorphic to an object in the subcategory). The function A → K0(A)
defined by A 7→ [A] is a universal additive function (f(A) = f(A′) + f(A′′)
for each exact sequence 0 → A′ → A → A′′ → 0) in the sense that every
additive function factors through it.

Examples 4.2.6. (1) For a (Noetherian) ring R, P(R) is an additive
subcategory of the abelian category of finitely generated R-modules.
Since every exact sequence of projective modules splits, we have
K0(P(R)) = K0(R). A category with this property is called split
exact.

(2) For a topological space X, Vect(X) can be embedded in the abelian
category of families of vector spaces over X. Vect(X) is also split
exact by (1.1.2). Hence K0(Vect(X)) = K⊕0 (Vect(X)) = K0(X).

These constructions give rise to the K-theory of a scheme X: Vect(X)
is an additive subcategory of the abelian category Coh(X). We can thus
associate to X the two K-groups

K0(X) := K0(Vect(X)), and K ′0(X) := K0(Coh(X)).

The latter is sometimes also denoted by G0(X) and called G-theory. The
inclusion Vect(X) ⊆ Coh(X) is an exact functor (sends exact sequences to
exact sequences) and thus yields a Cartan homomorphism K0(X)→ K ′0(X).

Fact 4.2.7. If X is smooth, then the Cartan homomorphism is an isomor-
phism. [Fri07, Theorem 4.19]

[Wei12, Example I.5.4] shows that exact sequences in Vect(X) do not
necessarily split. In general, the K-theory of the exact category Vect(X)
is thus distinctly different from the K-theory of the symmetric monoidal
category Vect(X).

Fact 4.2.8. Let f : X → Y be a morphism of (Noetherian) schemes. Then
f induces a pullback functor [Har06, II.5.8]

f ∗ : Vect(Y )→ Vect(X), f ∗(E) = f−1E ⊗f−1OY OX .

If f is flat, then f ∗ is exact. Moreover, if f is proper then for every coherent
sheaf F , Rif∗(F) is also coherent [Vak12, Theorem 20.8.1] where Rif∗ are
the right derived functors of the direct image f∗F(U) = F(f−1(U)), and f
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induces a pushforward functor

f! : Coh(X)→ Coh(Y ), f!(F) =
∑
i

(−1)iRif∗(F)

which is exact. [Wei12, Lemma II.6.2.6]

Thus seen as functors from Schemes to Ab, K ′0 is both covariant and
contravariant, and K0 is contravariant with respect to appropriate mor-
phisms. For smooth schemes, it follows from (4.2.7) that K0 is also covari-
ant.

Finally, the tensor product of vector bundles defines a biexact functor
Vect(X) × Vect(X) → Vect(X) [Wei12, I.5.3] inducing a bilinear map
K0(X) ⊗Z K0(X) → K0(X). Thus K0(X) has a commutative, associative
product [E ] · [E ′] = [E ⊗OX E ′] with unit [OX ]. It can be shown that the
pullback and pushforward functors above preserve tensor products [Vak12,
Theorem 17.3.7]. Thus, K0 and K ′0 are functors from Schemes to CRings.

4.3. Riemann-Roch

Having defined K-theory of a scheme, our next goal is to state Grothen-
dieck’s Riemann-Roch theorem. To do so, we need to develop an analog of
the Chern character defined in singular cohomology. In all instances, the
term “Chern character” refers to map from K-theory to a (co)homology
theory. Since we are working with schemes, a possible (co)homology theory
would be that of Chow rings. We recall the necessary notions.

An algebraic k-cycle on a schemeX is a finite formal sum of k-dimensional
subschemes with integer coefficients. For example, on an integral scheme of
dimension d, a Weil divisor is a (d − 1)-cycle. The group ZkX of k-cycles
is very large and we introduce an equivalence relation to slim it down. We
say that a k-cycle Z on X is rationally equivalent to zero if and only if there
exist (k + 1)-dimensional subschemes V1, . . . , Vn of X × P1 with dominant
projections fi : Vi → P1 such that Z =

∑
i [Vi(0)]− [Vi(∞)] where [Vi(p)]

denotes the cycle associated to the scheme-theoretic fibre f−1
i (p). If we re-

gard P1 as a line, we can think of this notion as an algebro-geometric analog
of cobordism. See [Ful98, §1.6] for more details on rational equivalence.

We define the Chow group of a scheme X, Ak(X), as the group of k-cycles
modulo rational equivalence. We write A∗(X) for the direct sum of the Chow
groups. A ring structure on A∗(X) is given by the “Moving Lemma” [Fri07,
Theorem 4.20] which could be seen as an algebro-geometric analog of Thom’s
transversality theorem. It asserts that a cycle of codimension r and a cycle
of codimension s can be moved within their rational equivalence class so that
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their intersection is generically transverse meaning that the intersection of
any two irreducible components is either empty or of codimension r + s.
Writing Ak(X) = Ad−k(X) where d = dim(X), this gives an intersection
pairing Ar(X) ⊗ As(X) → Ar+s(X), [V1] · [V2] = [V1 ∩ V2] and we call
A∗(X) :=

⊕
k A

k(X) the Chow ring.

Fact 4.3.1 (cf. (4.2.8)). Chow rings are functorial with respect to flat pull-
backs f ∗([V ]) = [f−1(V )] and proper pushforwards

f∗([V ]) =

{
deg(V/f(V ))[f(V )] if dim(f(V )) = dim(V );

0 if dim(f(V )) < dim(V )

where deg(V/f(V )) = [K(V ) : K(f(V ))] is the (finite) degree of the induced
extension of function fields. [Ful98, Theorems 1.4 and 1.7]

Examples 4.3.2. Here are some examples of Chow rings:

(1) A∗(PnC) = Z[y]/(yn+1) where y corresponds to the subscheme Pn−1
C ⊂

PnC (a hyperplane section). So yi corresponds to the intersection of
i generic linear hyperplanes which is just the class of Pn−iC ⊆ PnC.

(2) For a general smooth scheme X, A0(X) is the free abelian group on
[X], so A0(X) ∼= H0(X,Z) ∼= Z. Also, A1(X) is the group of Weil
divisors modulo linear equivalence which is known to be isomorphic
to Pic(X), the group of algebraic line bundles on X, which in turn
conincides with H1(X,O×X). Thus A1(X) ∼= H1(X,O×X) ∼= Pic(X).
It is also true that the higher Chow rings can be described as coho-
mology rings (cf. “Bloch’s formula”).

We now proceed to define the Chern classes and the Chern character
of algebraic vector bundles using a Leray-Hirsch type theorem. There are
Leray-Hirsch type theorems for singular cohomology and topological K-
theory (2.2.3). What these theorems have in common is that they express
the cohomology theory of the projectivization of a bundle in terms of the
cohomology theory of the base space and a polynomial relation whose coeffi-
cients can be used to define characteristic classes. This is one way to define
Chern classes of topological vector bundles and this was also used when we
defined the Adams operations.

To state the Leray-Hirsch theorem for Chow rings, we need to make sense
of the projectivization of an algebraic line bundle. We begin by constructing
the “total space” of an algebraic vector bundle. If M is a free R-module of
rank n then the symmetric algebra SymR(M) is isomorphic to R[x1, . . . , xn],
where x1, . . . , xn is a basis of M . This yields a natural projection map
Spec(SymR(M))→ Spec(R) since Spec(SymR(M)) ∼= Spec(R[x1, . . . , xn]) ∼=
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An
Z ×Spec(Z) Spec(R). We readily globalize this construction: if E is an

algebraic vector bundle over X, then pE : Spec(SymOX E
∨) → X is lo-

cally the product projection of the previous construction. Setting V (E) :=
Spec(SymOX E

∨), we may thus think of an algebraic vector bundle E on X
as a map of varieties pE : V (E) → X satisfying properties which are the
algebro-geometric anologs of the properties of a topological bundle projec-
tion. We consider the dual sheaf E∨ := HomOX (E ,OX) so that the associa-
tion E 7→ V (E∨) is covariantly functorial.

Similarly, we define the projectivization of E as πE : P (E) → X where
P (E) := Proj(SymOX (E)). Then P (E) comes equipped with a canonical line
bundle OP (E)(1) which we can identify with a divisor class in A1(P (E)) as
mentioned in example (2) above.

Theorem 4.3.3 (cf. 2.2.3). Let E be a rank n vector bundle on a smooth
scheme X and let ζ ∈ A1(P (E)) be the divisor class associated to the canon-
ical line bundle OP (E)(1). Then A∗(P (E)) is the free A∗(X)-module with
basis {1, ζ, . . . , ζn−1} and module structure induced by pullback π∗E . [Ful98,
Theorem 3.3]

We can thus express ζn as a linear combination of 1, ζ, . . . , ζn−1 with
coefficients in A∗(X). These coefficients are by definition the Chern classes
ci(E) ∈ Ai(X) of E :

A∗(P (E)) = A∗(X)[ζ]/
n∑
i=0

(−1)ici(E)ζn−i.

In this equation by ci(E) we really mean π∗E(ci(E)). Chern classes are
natural with respect to pullbacks since pullback and projectivization com-
mute. Moreover, using the algebro-geometric analog of the splitting principle
(2.2.2), one can show that the higher Chern classes are uniquely determined
by the assignment of the first Chern class to line bundles.

Theorem 4.3.4 (Splitting Principle). Let E be an algebraic vector bundle
of rank n on a scheme X. Then there exists a splitting scheme F (E) and
a flat morphism p : F (E) → X such that the induced map p∗ : A∗(X) →
A∗(F (E)) is injective and p∗E splits, i.e. it has a filtration by subbundles
p∗E = En ⊇ En−1 ⊇ · · · ⊇ E1 ⊇ E0 = 0 whose successive quotients are
line bundles Li ∼= Ei/Ei−1. Thus, [p∗(E)] =

∑
i[Li] in K0(F (E)). [Ful98,

Theorem 3.2]

Using this theorem, we can also define the Chern character ch : K0(X)→
A∗(X)⊗Q for a scheme X in exact analogy to how we defined it for topo-
logical spaces, namely by imposing additivity ch(E ⊕ E ′) = ch(E) + ch(E ′)
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and declaring

ch(L) = ec1(L) = 1 + c1(L) + c1(L)2/2! + · · · ∈ A∗(X)⊗Q
for a line bundle L. Note that this definition is natural with respect to
pullbacks. For a general vector bundle E of rank n we are thus led to set
ch(E) =

∑
i e
αi where αi = c1(Li) are the Chern roots of E obtained from the

splitting principle. Using the Newton polynomials sk this can be expanded
as

ch(E) = rank E +
∑
k>0

sk(c1(E), . . . , ck(E))/k!.(3)

By the splitting principle, ch : Vect(X)→ A∗(X)⊗Q is also multiplicative
since the first Chern class is additive on tensor products [Ful98, Proposition
2.5(e)]. Moreover:

Proposition 4.3.5. The Chern character ch : Vect(X) → A∗(X) ⊗ Q is
additive on short exact sequences.

Proof. Let 0 → E ′ → E → E ′′ → 0 be an exact sequence of vector
bundles on X, and let p : F (X)→ X be a simultaneous splitting morphism
for E ′ and E ′′. Recall that 0 → p∗E ′ → p∗E → p∗E ′′ → 0 is exact by
(4.2.8). We have filtrations p∗E ′ = E ′n ⊇ E ′n−1 ⊇ · · · ⊇ E ′1 ⊇ E ′0 = 0 and
p∗E ′′ = E ′′m ⊇ E ′′m−1 ⊇ · · · ⊇ E ′′1 ⊇ E ′′0 = 0. By exactness p∗E/(p∗E ′ ⊕
E ′′m−1) ∼= p∗E ′′/E ′′m−1

∼= L′′m, and so these induce a filration

0 = E ′0 ⊆ · · · ⊆ E ′n = p∗E ′ ⊆ p∗E ′ ⊕ E ′′1 ⊆ · · · ⊆ p∗E ′ ⊕ E ′′m−1 ⊆ p∗E .

Hence ch(E) =
∑

k e
c1(Lk) =

∑
i e
c1(L′i) +

∑
j e

c1(L′′j ) = ch(E ′) + ch(E ′′). �

Thus, ch factors through K0(X) by the universal property of K0 and
becomes a ring homomorphism.

We now have almost all the necessary constructions in place to state
Grothendieck’s Riemann-Roch theorem. This theorem describes how the
Chern character commutes with the pushforward (4.2.8) induced by a proper
morphism f : X → Y of smooth varieties. The defect to commute is mea-
sured by a characteristic class called the Todd class. Just like the Chern
character, by the splitting principle the Todd class td : K0(X)→ A∗(X)⊗Q
is characterized by the following properties:

(1) td ◦ f ∗ = f ∗ ◦ td for all proper morphisms f : X → Y of smooth
schemes (naturality),

(2) td(E ⊕ E ′) = td(E) · td(E ′),
(3) td(L) = c1(L)/(1−e−c1(L)) =

∑∞
i=0(−1)iBic1(L)i/i! = 1+c1(L)/2+

c1(L)2/12− c1(L)4/720 + · · · where Bi is the ith Bernoulli number.
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This leads to td(E) =
∏

i αi/(1 − e−αi) where again αi are the Chern
roots of E . Expanding this we get

td(E) = 1+
1

2
c1+

1

12
(c2

1+c2)+
1

24
c1c2+

1

720
(−c4

1+4c2
1c2+3c2

2+c1c3−c4)+· · · ,

where ci := ci(E). Moreover, if 0 → E ′ → E → E ′′ → 0 is exact, then one
can show similarly to how was done for the Chern character that td(E) =
td(E ′) · td(E ′′). So td : Vect(X)→ A∗(X)⊗Q descends to K0(X) as a group
homomorphism from the additive to the multiplicative structure.

Recall that the tangent sheaf of a smooth k-scheme X is defined as the
locally free OX-module TX := Ω∨X/k of rank n = dimX, the dual sheaf of
the cotangent sheaf ΩX/k.

Theorem 4.3.6 (Grothendieck’s Riemann-Roch Theorem). Let f : X → Y
be a proper morphism of smooth varieties over an algebraically closed field
k. Then for any E ∈ K0(X),

ch(f!(E)) · td(TY ) = f∗(ch(E) · td(TX)).

A modern proof can be found in [Ful98, Theorem 15.2]. See [Vak04,
Classes 18 and 19] for the standard proof.

As a first application we show that Grothendieck’s Riemann-Roch theo-
rem generalizes

Theorem 4.3.7 (Hirzebruch’s Riemann-Roch Theorem). Let E ∈ K0(X) be
a vector bundle on a smooth variety X of dimension n over an algebraically
closed field k. Then

χ(X, E) =

∫
X

ch(E) · td(TX).

A few comments are in order. The left-hand side is the Euler-Poincaré
characteristic of E defined as χ(X, E) =

∑
i(−1)i dimH i(X, E). That this is

well-defined (i.e. that χ(X,−) is an additive function) follows from the long
exact sequence in sheaf cohomology.

The integral on the right-hand side is called the top graded degree and
defined as follows: given a cycle Z ∈ A∗(X) ⊗ Q, take its top graded piece∑
qpp in An(X) ⊗ Q which is a finite formal sum of points with rational

coefficients and consider
∫
X
Z :=

∑
qp[K(p) : k] =

∑
qp where again [K(p) :

k] is the degree of the induced field extension which is 1 in our case because
k is algebraically closed.
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Proof of (4.3.7). Apply Grothendieck’s Riemann-Roch theorem to
the projection to a point f : X → ∗ = Spec(k) and recall the pushfor-
ward of cycles defined on a single subvariety V ⊆ X by:

f∗([V ]) =

{
deg(V/f(V ))[f(V )] if dim(f(V )) = dim(V );

0 if dim(f(V )) < dim(V ).

Since f(V ) = Spec(k), K(f(V )) = k and dim(f(V )) = 0. So this becomes

f∗([V ]) =

{
[K(V ) : k] = 1 if 0 = dim(V );

0 if 0 < dim(V )

where we used that k is algebraically closed. It follows that for a general
cycle Z ∈ A∗(X) f∗(Z) =

∫
X
Z.

On the left-hand side, it is clear that td(T∗) = 1. Moreoever, it turns out
that for each i ≥ 0 and for each sheaf F , Rif∗(F) is the sheaf associated
to the presheaf V 7→ H i(f−1(V ),F|f−1(V )) [Har06, III.8.1]. Thus, in our
case we have Rif∗(E) is the sheaf Spec(k) 7→ H i(X, E) and so f!(E) =∑

(−1)iRif∗(E) =
∑

(−1)iH i(X, E). Finally ch(f!(E)) = rank(f!(E)) by (3)
since Ai(∗) = 0 for i > 0 and so all Chern classes are zero. This finishes the
proof. �

This theorem in turn generalizes

Theorem 4.3.8 (Riemann-Roch Theorem). For any divisor D on a compact
Riemann surface X of genus g := dimH1(X,OX), one has

dimH0(X,OD)− dimH1(X,OD) = degD + 1− g.
Proof. Apply Hirzebruch’s Riemann-Roch theorem to the sheaf OD

associated to the divisor D. Since c1(OD) = D, we have ch(OD) = 1 + D.
The tangent sheaf TX is the dual of ΩX . Thus TX ∼= O−K where K is the
canonical divisor (any two canonical divisors are linearly equivalent). But
then td(TX) = 1 + 1

2
c1(O−K) = 1 − 1

2
K. By Hirzebruch’s Riemann-Roch

theorem we obtain

χ(X,OD) = dimH0(X,OD)− dimH1(X,OD)

=

∫
X

(1 +D)

(
1− 1

2
K

)
= deg

(
D − 1

2
K

)
.

Setting D = 0 in the above lines so that OD = OX we obtain 1 − g =
−1

2
deg(K). Thus, we can then rewrite the preceeding equation as

dimH0(X,OD)− dimH1(X,OD) = degD + 1− g.
�
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Another important corollary of Grothendieck’s Riemann-Roch theorem
is

Theorem 4.3.9 (cf. (3.3.5)). Let X be a smooth variety. Then ch : K0(X)⊗
Q→ A∗(X)⊗Q is a ring isomorphism. [Ful98, Example 15.2.6]

We apply this to establish another connection between algebraic and
topological vector bundles. Let X be a scheme of finite type over C, such as
a subvariety of PnC or An

C. Consider the closed C-valued points X(C) of X.
X(C) is covered by open sets U(C) homeomorphic to analytic subsets (zero
loci of holomorphic functions) of An

C(C), and An
C(C) ∼= Cn. Thus, X(C) has

the structure of an analytic space and we write Xan := (X(C),Oan) for the
ringed space X(C) with the analytic topology and the sheaf of holomorphic
functions. We can of course also consider X(C) as a topological space only
and will write X top := (X(C),Otop) for X(C) as a ringed space with the
sheaf of continuous functions. If we require X to be projective, then X(C) is
compact because it is a closed subspace of the compact space PnC(C) ∼= CP n.

The inclusion map X(C) → X induces morphisms of ringed spaces
X top → Xan → X which in turn yields functors Vect(X)→ Vect(Xan)→
Vect(X top). By (4.2.2) Vect(X top) ∼= Vect(X(C)) where the latter is the
category of complex topological vector bundles over the topological space
X(C). We thus obtain a natural map

K0(X)→ K0(X(C)).

It is an open problem to understand the kernel and image of this map,
especially after tensoring with Q:

A∗(X)⊗Q ∼= K0(X)⊗Q→ K0(X(C))⊗Q ∼= Heven(X(C);Q),(4)

where we have used the Chern character isomorphisms (4.3.9) and (3.3.5).
The kernel of (4) is the subspace ofA∗(X)⊗Q consisting of rational equiv-

alence classes of algebraic cycles on X which are homologically equivalent to
0. The image of (4) can be identified with those classes in Heven(X(C);Q)
represented by algebraic cycles - the subject of the Hodge conjecture!

4.4. K1 of Rings and Simple-Homotopy Theory

The following definition of K1 of a ring may seem ad hoc at first but
we will see in the next section that this is not so. It turns out to be the
correct definition for turning algebraic K-theory into a cohomology theory
with associated spectrum just like we did for topological K-theory in the
first chapter. K1 is of particular importance for simple-homotopy theory as
it houses the Whitehead torsion invariant which we discuss below.
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Recall that the commutator subgroup [G,G] of a group G is the subgroup
generated by its commutators [g, h] = ghg−1h−1. It is a normal subgroup
and has the universal property that every homomorphism from G to an
abelian group factors through G/[G,G]. Define K1(R) of a ring (associative
and with unit) as the abelian group

K1(R) := GL(R)/[GL(R),GL(R)]

where GL(R) is the infinite general linear group. The group operation in
K1(R) will usually be written additively [A] + [B] = [AB] with unit [1] = 0.

A ring homomorphism R→ S gives a natural homomorphism GL(R)→
GL(S) and thus a map K1(R) → K1(S) by the universal property. K1 is
thus a functor from rings to abelian groups.

If R is commutative, then the determinant of a matrix provides a group
homomorphism GL(R) → R× onto the group R× of units of R. By the
universal property this induces a surjection det : K1(R) → R× and we
write SK1(R) := ker(det). The natural inclusion of R× = GL1(R) into
GL(R) splits the exact sequence SK1(R) ↪→ K1(R) � R× so that K1(R) ∼=
R× ⊕ SK1(R).

A matrix with coefficients in a ring R is called elementary if it coincides
with the identity matrix except for one off-diagonal element r ∈ R. We
will use the notation eij(r) for the elementary matrix with element r in
the (i, j)-position. Let En(R) ≤ GLn(R) denote the subgroup generated by
these elementary matrices and let E(R) ≤ GL(R) be their colimit.

Interpreting matrices as linear operators on column vectors, eij(r) is the
elementary row operation of adding r times row j to row i and En(R) is
the subgroup of all matrices that can be reduced to the identity matrix via
these row operations only. GL(R)/E(R) measures the obstruction to such
a reduction. In this light, it is easy to see that eij(r)eij(s) = eij(r + s) and
that eij(−r) is the inverse of eij(r).

Recall that a group is called perfect if G = [G,G]. Clearly, every perfect
subgroup of a group is contained in the commutator of the group.

Lemma 4.4.1. If n ≥ 3 then En(R) is perfect.

Proof. If i, j, k are distinct then eij(r) = [eik(r), ekj(1)]. �

Proposition 4.4.2 (Whitehead’s Lemma). For any ring R, E(R) is the
commutator subgroup of GL(R). Hence K1(R) = GL(R)/E(R).

Proof. By the previous lemma we know E(R) ⊆ [GL(R),GL(R)]. Con-
versely, every commutator in GLn(R) can be expressed as a product in
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GL2n(R):

[g, h] =

(
g 0
0 g−1

)(
h 0
0 h−1

)(
(hg)−1 0

0 hg

)
.

But each matrix of this form can be expressed as a product in E2n(R)(
g 0
0 g−1

)
=

(
1 g
0 1

)(
1 0
−g−1 1

)(
1 g
0 1

)(
0 −1
1 0

)
since

(
0 −1
1 0

)
=
(

1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
and by Gaussian elimination every matrix

with 1’s on the diagonal belongs to E(R) (inductively kill off all super-
diagonals). �

There is a convenient way for adding elements in K1(R): given A,B ∈
GL(R) form their block sum A ⊕ B =

(
A 0
0 B

)
=
(
AB 0
0 1

)(
B−1 0

0 B

)
. Since(

B−1 0
0 B

)
∈ E(R) by the argument from the above proposition, we have

[A⊕B] = [AB ⊕ 1] = [AB].

Example 4.4.3. If F is a field, we show that K1(F ) = F×. Indeed, by
Gaussian elimination every invertible matrix can be turned into the identity
matrix by a sequence of row operations which correspond to elementary
matrices of three types:

(1) adding one row to another row (eij(r) for i 6= j),
(2) row swaps (a block

(
0 1
1 0

)
on the diagonal of the identity matrix),

(3) and taking multiplies of one row with itself (eii(r)).

If a matrix has determinant 1, then there must be an even number of row
swaps and for every row that gets multiplied by r, another row must get
multiplied by 1/r. It is not hard to show that two consecutive type (2) and
two consecutive type (3) operations (r and 1/r) are products of type (1) op-
erations so that in fact E(F ) = SL(F ). But then K1(F ) = GL(F )/E(F ) ∼=
GL(F )/ SL(F ) ∼= F× where the last isomorphism is given by taking deter-
minant. Similarly, if R is a Euclidean domain then Gaussian elimination
still works using the Euclidean algorithm to find least common multiplies
needed for type (1) and (3) operations. So then again E(R) = SL(R), and
K1(R) = R×. Thus for instance K1(Z) = Z× = Z/2 and K1(F [x]) = F×.

The perhaps most important application of K1 to topology comes from
simple-homotopy theory. As in the case of Wall’s finiteness obstruction
(4.1.8), the rings of interest are integral group rings Z[G] where the group
G is often the fundamental group of some topological space. We define the
Whitehead group Wh(G) of a group G as the abelian group which is the
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quotient of K1(Z[G]) by the image of the trivial units ±G = {±g : g ∈
G} ⊆ Z[G]× = GL1(Z[G]).

Examples 4.4.4. Here are some examples of Whitehead groups:

(1) If G = {1}, then Wh(G) = K1(Z)/[±1] = {[1]} is trivial by the
above example.

(2) If G is finite abelian, Z[G] is a commutative ring so that we can
define a determinant as in (4.4.3). Z[G] is also a Euclidean domain
by taking the absolute value of the augmentation map ε(

∑
ngg) =∑

ng as the Euclidean function and using the Euclidean algorithm
of Z. Hence K1(Z[G]) ∼= Z[G]× and Wh(G) is the group of units of
Z[G] modulo trivial units.

(3) LetG = π1(X, x0) be the fundamental group of some path-connected
space X computed with respect to some basepoint x0. Then there is
an inner automorphism f : π1(X, x0) → π1(X, x1), σ 7→ φ−1σφ for
any other basepoint x1 and so Wh(π1(X, x0)) ∼= Wh(π1(X, x1)) and
we may write π1(X) without reference to the basepoint. Moreover,
f∗ : Wh(π1(X))→ Wh(π1(X)) is the identity since the correspond-
ing automorphism of GLn(Z[π1(X)]) is given by

(aij) 7→

 φ
. . .

φ

−1

(aij)

 φ
. . .

φ


and Wh(π1(X)) is commutative. Hence, X → Wh(π1(X)) gives a
well-defined functor from the category of path-connected spaces to
the category of abelian groups.

A priori it may not seem clear that the Whitehead group is ever nontrivial
so consider the following

Example 4.4.5. Let C5 be the cyclic group of order 5 with generator t.
We exhibit an element of infinite order in Wh(C5) = Z[C5]×/ ± C5. Let
a = 1 − t − t−1, then one can check that (1 − t − t−1)(1 − t2 − t3) = 1
and so a ∈ Z[C5]×. Define a homomorphism α : Z[C5] → C by t → e2πi/5,
then ±C5 maps into the roots of unity and so α induces a homomorphism
β : Wh(C5) → R×+, b 7→ |α(b)|. Now β(a) = |1 − e2πi/5 − e−2πi/5| = |1 −
2 cos(2π/5)| ≈ 0.4 and so a cannot be of finite order.

The motivation for defining Whitehead groups is that they house an
algebraic obstruction to a homotopy equivalence between two manifolds to
be “simple”. Simple-homotopy type is a finer invariant than homotopy type
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and can be used to distinguish homotopy equivalent spaces which are not
homeomorphic.

A famous application of simple-homotopy theory is the s-cobordism
theorem, “s” for simple. First recall that an h-cobordism is a cobordism
(W ;M,M ′) such that the inclusions M ↪→ W and M ′ ↪→ W are homotopy
equivalences. An h-cobordism is an s-cobordism if the homotopy equiva-
lences are simple. The main result of simple-homotopy theory to be dis-
cussed below is that a homotopy equivalence such as M ↪→ W is simple if
and only if an associated invariant τ(W,M) ∈ Wh(π) named Whitehead
torsion vanishes (π := π1(M) = π1(W )).

Theorem 4.4.6 (s-Cobordism Theorem of Barden-Mazur-Stallings). Let
CAT be the category of topological manifolds, smooth manifolds or PL man-
ifolds and let M be a compact CAT manifold of dimension n ≥ 5. Then
Whitehead torsion defines a one-to-one correspondence

{h-cobordisms on M}/(isomorphisms relM)→ Wh(π)

[(W ;M,M ′)] 7→ τ(W,M)

between isomorphism classes of h-cobordisms on M and elements of the
Whitehead group. In particular, an h-cobordism is trivial, i.e. W is CAT
isomorphic to M×[0, 1] (relM) if and only if its Whitehead torsion vanishes.

It follows that any simply-connected h-cobordism is trivial. Moreover,
just like in the case of Wall’s finiteness obstruction it is conjectured that
Wh(π) = 0 for any torsion-free group π. Thus, any h-cobordism with
torsion-free fundamental group would be trivial.

Corollary 4.4.7 (Poincaré Conjecture for n ≥ 5). For n ≥ 5, a closed
n-manifold Σ which has the homotopy type of Sn is homeomorphic to Sn.

Proof. First assume that n ≥ 6. Cut out two open disks Dn
1 , D

n
2 from

Σ, viewed as “polar caps” of the homotopy sphere. What remains is a
manifold W with the homotopy type of a cylinder and with two bound-
ary components each homeomorphic to Sn−1 with n − 1 ≥ 5. Since π :=
π1(W ) = π1(Sn−1) = 1, Wh(π) = 1 as we saw in (4.4.4). But then the
Whitehead torsion which is an element of this group must vanish and we are
in a position to apply the s-cobordism theorem to conclude that there is a
homeomorphism h : Σ \ (Dn

1 ∪Dn
2 )→ Sn−1× [0, 1] with h|∂Dn1 = id. Extend

h to Σ \ Dn
2 by taking the identity map on Dn

1 . On the other end, h|∂Dn2
is a homeomorphism f̃ : Sn−1 → Sn−1. So the problem is whether we can
extend this homeomorphism to a homeomorphism f : Dn → Dn. Indeed,

this can be done by radial extension, i.e. f(reiθ) = rf̃(eiθ). We have arrived
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at a homeomorphism Σ → Dn
1 ∪f Dn

2 . Such a manifold is called a twisted
sphere. The proof is completed by showing that any twisted sphere Dn

1 ∪fDn
2

is homeomorphic to Sn. To see this, define a map g : Dn
1 ∪f Dn

2 → Sn as
follows. Let en+1 = (0, . . . , 0, 1) ∈ Rn+1, let i : Dn

1 ↪→ Sn be the embedding
of Dn

1 onto the southern hemisphere (xn+1 ≤ 0) of Sn and write every point
of Dn

2 as tv, 0 ≤ t ≤ 1 with v ∈ ∂Dn
2 . Then

g(u) =

{
i(u) if u ∈ Dn

1 ;

i(f−1(v)) sin(πt
2

) + en+1 cos(πt
2

) if u = tv ∈ Dn
2

is a one-to-one, continuous map onto Sn and hence is a homeomorphism.
For n = 5, we use the fact that all 5-manifolds with the homotopy

type of S5 bound a 6-manifold [KM63], i.e. that in that case there exists
some manifold V such that ∂V = Σ. Since Σ ' S5, it follows that V
is contractible. That is, the homotopy equivalence ∂V ' ∂D6 extends to
a homotopy equivalence V ' D6. Cutting out a D6 from the interior of
V , we obtain an h-cobordism between Σ and ∂D6 = S5. Since everything
is simply-connected, we apply the s-cobordism theorem in the category of
smooth manifolds to find a diffeomorphism between Σ and S5. Note that
this means that there are no exotic 5-spheres! �

The main idea of simple-homotopy theory is to build up homotopy equiv-
alences as composites of simple moves. This works particularly well in the
category of finite, connected relative CW complexes (X,A), i.e. A is a
Hausdorff space and X is obtained from A by attaching finitely many cells.

Figure 1. An elementary collapse

We will say the inclusion A ↪→ X is an
elementary collapse, denoted X ↘e

A, if X is obtained from A by at-
taching two cancelling cells in adja-
cent dimensions. By this we mean
that X = (A ∪f ek−1) ∪g ek for some
k, such that f : Sk−2 → A is the at-
taching map for the (k − 1)-cell and
g : Sk−1 → (A ∪f Bk−1) is the at-
taching map for the k-cell, and that
g maps one hemisphere of Sk−1 iden-
tically onto the (k − 1)-cell and the
other hemisphere into A. Thus, X
can be viewed as the mapping cylinder of a map Dk−1

− → A and A is a
deformation retract of X.
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More generally, we say X collapses to A or A expands to X and write
X ↘ A or A↗ X ifX = X0 ↘e X1 ↘e X2 ↘e · · · ↘e Xn = A. Finally, the
inclusion A ↪→ X is called a simple-homotopy equivalence if it is in the equiv-
alence relation generated by↘, i.e. X = X0 ↗ X1 ↘ X2 ↗ · · · ↘ Xn = A.

Example 4.4.8. The “house with two rooms” H
shown on the right is contractible and ∗ ↪→ H is
a simple-homotopy equivalence. However, H is not
collapsible, i.e. some expansions are needed. To see
this, pour cement through cylinder A until the lower
room and A are filled up. This corresponds to an el-
ementary expansion with a 3-cell. Do the same with
the other cylinder labeled B. Then H expands to
D3. Now D3 clearly collapses to a point ∗. Hence
H ↗ D3 ↘ ∗.

Every simple-homotopy equivalence is a homotopy equivalence. The con-
verse is not true in general. Moreover, by a theorem of Chapman [Cha74]
homeomorphic finite CW complexes are simple-homotopy equivalent. It is
in this sense that simple-homotopy type is a finer invariant than just ho-
motopy type in trying to decide whether homotopy equivalent spaces are
homeomorphic.

The Whitehead torsion of A ↪→ X is defined from the relative cellular
chain complex C∗(X̃, Ã) of universal covers. We begin by defining torsion
of a general chain complex.

Let C : Cn → Cn−1 → · · · → C0 be a chain complex of modules over a
ring R such that each Ci is free with a preferred basis ci, and each homology
group Hi(C) vanishes. Such a chain complex is called acyclic and based. We

wish to define the torsion of C in K̃1(R) := K1(R)/[(−1)] where (−1) ∈
GL1(R). The reason that we use K̃1 rather than K1 is that it is both messy
and unnecessary for us to deal with ordered bases.

Two pathologies can occur in dealing with free modules over a ring R.
The first is that Rm ∼= Rn may not imply m = n. However, we will only
consider group ringsR = Z[G] which admit an augmentation map ε : Z[G]→
Z so that Z[G]m ∼= Z[G]n implies Zm = Z⊗Z[G] (Z[G])m ∼= Z⊗Z[G] (Z[G])n =
Zn.

The second pathology does occur for group rings, so we cannot assume
it away: it is not necessarily true that a submodule of a free module is
free. In particular, let Bi denote the image of the boundary homomorphism
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∂ : Ci+1 → Ci and let Zi+1 = Bi+1 denote its kernel, then we cannot assume
that Bi is free. However, Bi is stably free. To see this, we use the following

Lemma 4.4.9. Consider a short exact sequence 0 → X → Y → Z → 0 of
R-modules. If Y and Z are stably free, then X is also stably free.

Proof. Since Z is projective the exact sequence splits so that Y ∼=
X ⊕ Z. Thus if Z ⊕ F ∼= F ′ and Y ⊕ F ∼= F ′′ where F, F ′, F ′′ are free, it
follows that X ⊕ F ′ ∼= X ⊕ Z ⊕ F ∼= Y ⊕ F ∼= F ′′. �

Returning to the acyclic, based chain complex Cn → · · · → C0 it then
follows by induction using the exact sequences 0→ Zi+1 → Ci+1 → Bi → 0
that Bi is stably free.

Given a free R-module F , with two different bases b = (b1, . . . , bk) and

c = (c1, . . . , ck) we can assign an element in K̃1(R) by considering the change
of basis matrix. That is, let ci =

∑
rijbj to obtain a nonsingular matrix

(rij) with entries in R. Write [c/b] := [(rij)] ∈ K̃1(R) for the corresponding

element in K̃1. The identities [d/c] + [c/b] = [d/b] and [b/b] = 0 show that
this is an equivalence relation.

We would like to do something similar with stably free modules by con-
sidering bases of the free module of which they are a summand of. So let
Fi denote the standard free module of rank i, with standard basis f1, . . . , fi.
An s-basis b for a stably free module M is a basis (b1, . . . , br+t) for some
free module F ′ ∼= M ⊕ Ft where t can be any nonnegative integer. Given
two s-bases b = (b1, . . . , br+t) and c = (c1, . . . , cr+u) for M , choose an integer
v ≥ max(t, u). Extend b to a basis for M ⊕ Fv by setting br+i = 0 ⊕ fi for
i ≥ t+ 1. Similarly extend c to a basis for M ⊕ Fv. Let (rij) be the change
of basis matrix in GLr+v(R) of these two extended bases and let [c/b] be the

corresponding element in K̃1(R). This construction does not depend on the
choice of v since we are working in the infinite general linear group.

We can now proceed with our acyclic, based chain complex C : Cn →
· · · → C0. Choose an s-basis bi for each Bi. Since Ci/Zi ∼= Ci/Bi

∼= Bi−1,
we see that the bases bi and bi−1 combine to yield a new basis bi, bi−1 for Ci.
Define the torsion of C as

τ(C) =
∑

(−1)i[bi, bi−1/ci].

This does not depend on the choice of the bi since, choosing different

bases b̃i, we have∑
(−1)i [̃bi, b̃i−1/ci] =

∑
(−1)i([bi, bi−1/ci] + [̃bi/bi] + [̃bi−1/bi−1])
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where the last two terms sum up to zero. Of course, τ(C) does depend on
the basis of C. The motivation for defining the Whitehead group the way
we did is to eliminate this dependence as we shall see now.

So consider the situation of a finite, connected relative CW complex
(X,A) where the inclusion f : A ↪→ X is a homotopy equivalence so that
π := π1(A) = π1(X). We consider the associated relative cellular chain

complex C∗(X̃, Ã) of the universal covers X̃ and Ã. As before, C∗(X̃, Ã) is
a complex of free Z[π]-modules, and is of finite type since X is finite. It is

also acyclic because the homology groups Hi(X̃, Ã;Z) = Hi(X,A;Z[π]) of
this complex are zero since A is a deformation retract of X.

If we were given a preferred basis cp for each module Cp(X̃, Ã) then the

torsion τ(C∗(X̃, Ã)) ∈ K̃1(Z[π]) ∈ K̃1(Z[π]) would be defined. Conveniently,
the geometry of the situation determines a preferred basis as follows: let
e1, . . . , eα denote the k-cells of X r A. For each ei choose a representative

cell ẽi of X̃ lying over ei. Furthermore, choose an orientation ±1 so that

ẽi determines a basis element of Ck(X̃, Ã) which we may also denote by ẽi.

Then cp = (ẽ1, . . . , ẽα) is the required basis for Cp(X̃, Ã).

Example 4.4.10. Let X = RP n with n > 1. Then X = e0 ∪ e1 ∪ · · · ∪ en
and X̃ = Sn. The lifted CW structure is Sn = e0

+∪e0
−∪e1

+∪e1
−∪· · ·∪en+∪en−

with ei± being the upper and lower hemispheres of Si. As a Z[π]-module,
Ci(S

n) is then free and of rank 1 with basis either ei+ or ei−.

As mentioned before, the only arbitrariness in defining torsion comes
from how we choose the basis cp. Any other lift of ei differs from ẽi by an
element of the fundamental group and any other orientation by −1 so that
we see now that this indeterminacy is precisely removed by quotienting out

by the subgroup {±g : g ∈ π}. Denote the image of τ(C∗(X̃, Ã)) in Wh(π)
by τ(X,A) and call it the Whitehead torsion.

Theorem 4.4.11 (Fundamental Theorem of Simple-Homotopy Theory).
Let (X,A) be a finite, connected relative CW complex where the inclusion
f : A ↪→ X is a homotopy equivalence so that π := π(A) = π(X). Then f
is simple if and only if τ(X,A) = 0.

Proof Sketch. If X ↘e A, then τ(X,A) = 0. This follows since the
cellular chain complex of an elementary collapse is given by ∂k : Ck(X,A)→
Ck−1(X,A) so that Bk = Bk−2 = 0 and Bk−1 = ker(∂k−1) = Ck−1(X,A).
Hence [bk−1, bk−2/ck−1] = [bk−1/ck−1] = [ck−1/ck−1] = [1]. The only other
nontrivial term is [bk, bk−1/ck] = [bk−1/ck] = [ck−1/ck] which is given by the
boundary map ∂k : Ck(X,A)→ Ck−1(X,A). But by definition ∂k maps the
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noncollapsed hemisphere of ∂ek = Sk−1 identically onto ek−1 as illustrated
in figure (1). Hence [bk, bk−1/ck] = [1] also and τ(X,A) = 0.

Next observe that if A = Xn ↪→ Xn−1 ↪→ · · · ↪→ X0 = X and all
the inclusions are homotopy equivalences of finite CW complexes, then
τ(X,A) = τ(X,X1) + · · · + τ(Xn−1, A). This follows from the fact that
Ci(X,A;R) = Ci(X,X1;R)⊕ · · · ⊕Ci(Xn−1, A;R). In particular, if X ↘ A
so that X = X0 ↘e X1 ↘e · · · ↘e Xn = A then τ(X,A) = 0 since each
piece vanishes.

More generally, if f : A ↪→ X is simple, then we might have to deal
with a mix of expansions and collapses, e.g. X ↗ Y ↘ A. But then
0 = τ(Y,A) = τ(Y,X) + τ(X,A) = τ(X,A). Hence the Whitehead torsion
vanishes in this case also.

Conversely, suppose that τ(X,A) = 0. The first step in showing that
f : A ↪→ X is a simple-homotopy equivalence is called cell-trading [Coh73,
7.3]. If e is a cell of X \A of minimal dimension i, one constructs a simple-
homotopy equivalence X → X ′ relA so that X ′ has one less i-cell and one
more (i + 1)-cell than X and all other cells remain unchanged. It follows
that one may assume that all the cells added to A to form X are in two
consecutive dimension k and k − 1. Thus, the chain complex C∗(X,A) is
described by an invertible matrix ∂k : Ck(X,A) → Ck−1(X,A). Since the
torsion is zero, we may assume that [(∂k)] = [ck−1/ck] ∈ Wh(π) is a product
of elementary matrices eij(r), r ∈ Z[π] for i 6= j, and matrices eii(±g), g ∈ π.
Let M be a matrix of one of these types and write ∂k = ∂′k ◦M , then there
is a technique called cell-sliding [Coh73, 8.3] by which one can produce a
simple-homotopy equivalence X → X ′ relA so that C∗(X

′, A) has boundary
map ∂′k. We have thus reduced the situation to the case where A ↪→ X has
the chain complex

C∗(X,A) : · · · → 0→ Z[π]m
1→ Z[π]m → 0→ · · · .

There is one last technique, cell-cancellation [Coh73, 8.2], which then says
that A ↪→ X is a simple-homotopy equivalence. �

The concept of Whitehead torsion can be carried over
from inclusions to general homotopy equivalences f : X →
Y between finite, connected CW complexes. As often in
such situations, we begin by forming the mapping cylinder
Mf . The cell structure on Mf is chosen in the obvious way
so that X(= X × {0}) and Y are disjoint subcomplexes of
Mf (see the figure on the right). Clearly Y is a deformation
retract of Mf and we could consider τ(Mf , Y ). However:
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Lemma 4.4.12. The torsion τ(Mf , Y ) is zero.

Proof. Let f(p) : Xp → Y denote the restriction of f to the p-skeleton
of X, so that

Y = Mf(−1) ⊆Mf(0) ⊆Mf(1) ⊆ · · · ⊆Mf(n) = Mf .

Then τ(Mf , Y ) =
∑

p τ(Mf(p),Mf(p−1)) and each term is zero since Mf(p)

collapses to Mf(p−1) and we have seen in the last theorem that this means
the torsion τ(Mf(p),Mf(p−1)) is zero. �

Instead, note that f being a homotopy equivalence implies that Y de-
formation retracts to f(X) and so X is also a deformation retract of Mf .
Define the Whitehead torsion of a cellular homotopy equivalence f : X → Y
as τ(f) := τ(Mf , X) ∈ Wh(π) where π := π1(Mf ) ∼= π1(Y ) ∼= π1(X).

This definition agrees with our old definition when f is an inclusion
since then X ↪→ Y ↪→Mf so that τ(f) = τ(Mf , X) = τ(Mf , Y )+τ(Y,X) =
τ(Y,X).

One can go even further and define Whitehead torsion for a homotopy
equivalence f : X → Y which is not cellular. By the cellular approximation
theorem [AGP02, Theorem 5.1.44] f is homotopic to a cellular map f0

so define τ(f) := τ(f0). This is well-defined since Whitehead torsion is
homotopy invariant, i.e. if f0 ' f1 then τ(f0) = τ(f1). To see this, note that
Cf0 and Cf1 differ by a homotopy F of the attaching maps. It is enough to
consider the case Cf0 = X∪f0Dk and Cf1 = X∪f1Dk where F : Sk−1×I → X
is the homotopy. Define W = X∪F (Dk×I) where we glue Dk×I to X along
Sk−1×I. Then (W,A) is a finite relative CW complex and Cf0 ↗e W ↘e Cf1
so that τ(Cf0 , A) = τ(Cf1 , A) since the torsion of any elementary collapse is
zero and τ(W,A) = τ(W,Cf0) + τ(Cf0 , A) = τ(W,Cf1) + τ(Cf1 , A).

Finally, how does simple-homotopy theory apply to manifolds? One can
give a smooth manifold the structure of a simplicial complex and hence
that of a CW complex by constructing a triangulation. Triangulations are
unique up to subdivision and one can show that the torsion of a homotopy
equivalence X → Y of smooth manifolds is invariant under subdivision of the
pair (X, Y ) [Mil66, Theorem 7.1]. Compact smooth manifolds thus have a
well-defined simple-homotopy type. By the theory of Kirby and Siebenmann
[KS69] the same also holds for topological manifolds.

4.5. Higher K-Theory and its Geometric Motivation

In this section we will see the main geometric motivation for defining
higher K-theory. We will do this in a somewhat roundabout fashion by
going from the most modern (Waldhausen K-theory) to the more classical
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ideas (QuillenK-theory) and see how they are interrelated. CAT will denote
any of the categories of topological, smooth or PL manifolds.

Recall that the s-cobordism theorem (4.4.6) settled the existence ques-
tion of product structures on an h-cobordism. An h-cobordism (W ;M,M ′)
is CAT isomorphic to M × [0, 1] if and only if it is an s-cobordism. One

may ask about uniqueness: given two product structures f, g : W
≈→ M ×

[0, 1](relM), when is f isotopic to g? To answer this question we look at the
topological group P (M) := CAT(M × I,M × 0) of CAT automorphisms
of M × I restricting to the identity on M = M × 0. Note that f ◦ g−1

belongs to P (M) and the uniqueness problem becomes a question about the
path-connected components of P (M), i.e. what is π0(P (M))?

P (M) is called the space of pseudo-isotopies. The reason for the name
is that if a pseudo-isotopy F ∈ P (M) commutes with the projection map
M × I → I (i.e. it preserves the level sets M × t for all t ∈ [0, 1]), then it
induces an isotopy between idM and F |M×1.

If M is simply-connected, it is a theorem of Cerf [Cer70] that P (M) is
path-connected and thus every pseudo-isotopy is an isotopy. In general the
obstruction for this to happen is the the following:

Theorem 4.5.1 (Pseudo-Isotopy Theorem of Hatcher-Wagoner). If M is a
smooth compact connected manifold of dimension n ≥ 5 with fundamental
group π, then there is a surjection of π0(P (M)) onto Wh2(π). [Hat73]

In analogy to the aforementioned Wh(π) which we will from now on
write as Wh1(π), Wh2(π) is defined as a quotient of the second higher K-
group K2(Z[π]) which we won’t say anything particular about. Instead, we
attack the more general question of higher K-theory head on by extracting
its main geometric motivation from a recent book by Waldhausen, Jahren,
and Rognes [JRW12].

Here is the general idea. One begins by seeing the s-cobordism theorem
as a computation of the set of path components of the space HCAT(M)
of h-cobordisms built on M such that π0H

CAT(M) ∼= Wh1(M) whenever
dimM ≥ 5. The goal of the parametrized h-cobordism theorem is to com-
pute the homotopy type of HCAT(M) in general. Unfortunately, one needs
to settle for a stable parametrized h-cobordism theorem.

Let us explain these terms a little. Let M be a compact CAT manifold.
Define the CAT h-cobordism space H(M) = HCAT(M) of M as a simplicial
set. Its 0-simplices are the compact CAT h-cobordisms on M . For each
q ≥ 0, a q-simplex of H(M) is a CAT bundle of h-cobordisms over ∆q, the
standard topological q-simplex. We get a topological space by geometric
realization.
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We remove concerns about the validity of certain statements only in
particular dimensions by stabilizing the problem. Consider the map

σ : H(M)→ H(M × I)

where I = [0, 1], sending an h-cobordism W on M to the h-cobordism W ×I
on M × I. The stable h-cobordism space of M is the colimit

HCAT(M) = colimkH
CAT(M × Ik).

The model for the homotopy type of HCAT(M) is

Theorem 4.5.2 (Stable Parametrized h-Cobordism Theorem). There is a
natural homotopy equivalence

HCAT(M) ' ΩWhCAT(M)

for each compact CAT manifold M .

Here WhCAT(M) is the CAT Whitehead space defined in terms of Wald-
hausen’s A(M) known as the algebraic K-theory of spaces [Wal85]. To de-
fine A(M), let M be a CW complex and let R(M) be the category of CW
complexes Y obtained from M by attaching cells, and having M as a retract.
We require some sort of finiteness condition on these CW complexes to avoid
an Eilenberg swindle which would make our K-theory trivial. One way to
do this is to impose that only finitely many cells be attached to M to obtain
Y . This category is denoted by Rf (M). Another option is to require that
all such Y are finitely dominated. We then write Rfd(M).

In any case, all variants of R(M) are Waldhausen categories [Wei12,
§II.9], that is categories with cofibrations and weak equivalences, which in
our case are cellular inclusions fixing M and (weak) homotopy equivalences
respectively. We continue with Rf (M). Waldhausen’s S•-construction of
Rf (M) is then defined as a simplicial Waldhausen category S•Rf (M), and
the algebraic K-theory space of M is defined to be the loop space of the
geometric realization of the simplicial subcategory of weak equivalences h in
S•Rf (M)

A(M) = Ω|hS•Rf (M)|.
The K-groups of a Waldhausen category as above are the homotopy groups
of the K-theory space, e.g.

Ki(Rf (M)) = πi(A(M)),

and one computes K0(Rf (M)) = Z. Similary, one finds K0(Rfd(M)) =
Z[π1(M)].

Recall the S•-construction on a Waldhausen category C. Its output is a
simplicial Waldhausen category S•C defined as follows.
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• S0C is the zero category.
• S1C is the category C, but whose objects A are thought of as cofi-

brations 0 � A.
• S2C is the extension category of C. Its objects are cofibration se-

quences E : A1 � A2 � A12 in C (the axioms of a Waldhausen
category imply that every cofibration has a cokernel A12 := A2/A1).
A morphism E → E ′ is a commutative diagram

A12u12
��

A′12

E :
��

A1
// //

u1
��

A2

OOOO

u2
��

E ′ : A′1 // // A′2

OOOO

A morphism is a cofibration if u1, u2, and the pushout map A′1 ∪A1

A2 → A′2 are cofibrations in C. A morphism is a weak equivalence
if u1, u2 (and hence u12) are weak equivalences in C.
• SnC is the category whose objects A• are sequences of n cofibrations

in C:
A• : 0 = A0 � A1 � A2 � · · ·� An

together with a choice of every subquotient Aij = Aj/Ai (0 < i ≤
j ≤ n). These choices are to be compatible in the sense that there
is a commutative diagram

A(n−1)n

A23
// // · · · // // A2n

A12
// // A13

// //

OOOO

· · · // // A1n

OOOO

A1
// // A2

OOOO

// // A3

OOOO

// // · · · // // An

OOOO

(5)

and a morphism A• → B• is a natural transformation of sequences
(and hence of the above commutative diagrams). A morphism is
a cofibration when for every 0 ≤ i < j < k ≤ n the map of
cofibration sequences (Aij � Aik � Ajk) → (Bij � Bik � Bjk)
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is a cofibration in S2C. A morphism is a weak equivalence if each
Ai → Bi (and hence each Aij → Bij) is a weak equivalence in C.

It remains to specify the face and degeneracy maps to produce a sim-
plicial category. For each n ≥ 0 and for each 0 ≤ i ≤ n, define an exact
functor ∂i : SnC → Sn−1C by omitting the row Ai∗ and the column con-
taining Ai in (5), and reindexing the Ajk as needed. Similarly, define exact
functors si : SnC → Sn+1C by duplicating Ai in A•, and reindexing with the
normalization Ai(i+1) = 0.

Then the SnC fit together to form a simplicial Waldhausen category S•C,
and the subcategories wSnC of weak equivalences fit together to form a
simplicial category wS•C.

Having produced a simplicial Waldhausen category S•Rf (M), we can
reiterate the S•-construction to obtain a sequence of spaces

Ω|hS•Rf (M)|, |hS•Rf (M)|, |hS•S•Rf (M)|, . . . , |hS•S• · · ·S•Rf (M)|, . . .
with appropriate structure maps defining an Ω-spectrum A(M), which has
A(M) as its underlying infinite loop space. WhCAT(M) is then defined as
the homotopy cofiber of a spectrum map to A(M). See [JRW12, Definition
1.3.2] for details.

WhCAT(M) is so defined that

π0(HDiff (M)) = π1(WhDiff (M)) = Wh1(π1(M)),

and
π1(HDiff (M)) = π2(WhDiff (M)) = π0(PDiff(M))

where PDiff = colimk P
Diff(M × Ik) is the stable pseudo-isotopy space. We

thus have agreement with the earlier discussion. Hopefully this doesn’t come
as a complete surprise considering that

K0(Rfd(M)) = π0(A(M)) = π1(|hS•Rfd(M)|) = Z[π1(M)].

Higher homotopy groups extract other geometric information.
The above definition of K-theory of a Waldhausen category generalizes

that of an exact category given by Quillen. Quillen’sQ-construction takes an
exact category C and produces an auxiliary category Q(C). This category
has the same objects as C but a morphism from A to B in Q(C) is an
equivalence class of zig-zag diagrams

A
j
� Q

i
� B

where j is an admissible epimorphism and i is an admissible monomorphism
in C. Recall that a monomorphism is admissible if it can be completed to
a short exact sequence and similarly for an admissible epimorphism. Two



4.5. HIGHER K-THEORY AND ITS GEOMETRIC MOTIVATION 74

zig-zags are equivalent if there is an isomorphism between them which is the
identity on A and B. To compose A � Q1 � B with B � Q2 � C we
form the pullback and compose:

Q1 ×B Q2
// //

����

Q2
// //

����

C

A Q1
oooo // // B

The K-theory space of an exact category is then the loop space of the clas-
sifying space of the category Q(C)

K(C) = Ω BQ(C).
The K-groups of C are the homotopy groups of the K-theory space

Ki(C) = πi(KC).
Every exact category defines a Waldhausen category with cofibrations be-

ing admissible monomorphisms and weak equivalences being isomorphisms
i.

Theorem 4.5.3. For any exact category C, there is a natural homotopy
equivalence |iS•C|

∼→ BQ(C). [Wal85, §1.9]

Quillen’s Q-construction in turn generalizes Quillen’s +-construction
first used to define higher K-theory of rings.

Let X be a pointed connected CW complex and P a perfect normal
subgroup of π1(X). A map X → X+ is said to be a +-construction relative
to P when all the following hold:

(i) X+ is a connected CW complex (based at the image of the base point
of X).

(ii) The map π1(X)→ π1(X+) is surjective with kernel P .
(iii) The map X → X+ induces an isomorphism on homology for any local

coefficient system on X+.

The last requirement is equivalent to the homotopy fiber F (X → X+)

being homologically acyclic, i.e. H̃∗(F (X → X+);Z) = 0. X+ is called the
+-construction and its main feature is that the perfect normal subgroup P
has been killed from its fundamental group.

Theorem 4.5.4 (Quillen). The +-construction exists and can be obtained
by attaching only 2-cells and 3-cells to X. Moreover, X+ is unique up to
homotopy equivalence relX.
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Proof Sketch. One begins by forming a complex Y by attaching one
2-cell ep for each element p ∈ P along a chosen 1-cell representing p. Then
π1(Y ) = π1(X)/P . Next one shows that H2(Y ) is isomorphic to the direct
sum of H2(X) and the free abelian group generated by the classes [ep], and
that each [ep] lies in the image of the Hurewicz homomorphism π2(Y ) →
H2(Y ). This enables us to choose representing maps S2 → Y , along which
we can attach 3-cells to form a complex Z which is a +-construction relative
to P . See [Ros94, Theorem 5.2.2] for details. �

Recall from (4.4.1) that E(R) = [GL(R),GL(R)] is a perfect normal
subgroup of GL(R). We define the K-theory space of a ring R to be

K(R) = B GL(R)+ ×K0(R),

where the +-construction on B GL(R) is taken relative to E(R). Having
seen the idea already two times now, it is not surprising anymore that the
K-groups of R are defined to be the homotopy groups of the K-theory space,
i.e.

Ki(R) = πi(K(R)).

Clearly, π0(K(R)) = K0(R) by construction. Furthermore, π1(K(R)) =
π1(B GL(R)+) = π1(B GL(R))/E(R) = GL(R)/E(R) = K1(R), so this def-
inition of K-groups is consistent with our previous definitions. Recall that
P(R) is the exact category of finitely generated projective modules over R.
We then have

Theorem 4.5.5 (Quillen). For any ring R, there is a natural homotopy

equivalence K(P(R)) = Ω BQ(P(R))
∼→ K(R). [Sri91, Theorem 7.7]

We have thus established agreement between the three versions of higher
K-theory introduced.



CHAPTER 5

The Equivariant Story

5.1. Equivariant Homotopy Theory

The aim of this chapter is to explain the basics of equivariant algebraic
topology, in particular equivariant K-theory.

We begin with some facts from equivariant homotopy theory. Let G be
a fixed topological group. We work in the category TopG of G-spaces and
G-maps. The usual constructions on spaces apply. In particular, G acts
diagonally on Cartesian products of G-spaces and acts by conjugation on
the space Map(X, Y ) of (nonequivariant) maps between G-spaces X and Y ,
i.e. (g · f)(x) := gf(g−1x). As usual, we take all spaces to be Hausdorff
and compactly generated (which means that a subspace is closed if its inter-
section with each compact subspace is closed). We then have the familiar
adjunction

Map(X × Y, Z) ≈G Map(X,Map(Y, Z))

which is a G-homeomorphism.
Subgroups of G are assumed to be closed. For H ⊂ G, we have the fixed

point functor (−)H : TopG → Top where XH = {x : hx = x for h ∈ H}.
For x ∈ X, Gx = {g ∈ G : gx = x} is called the isotropy group of x. We
will soon see that a lot of equivariant homotopy theory reduces to ordinary
homotopy theory of fixed point spaces. The Weyl group associated to H is
WGH := NGH/H, where NGH = {g ∈ G : gH = Hg} is the normalizer of
H in G, will appear frequently. Note that XH and the orbit space X/H are
WGH-spaces.

Given a subgroup H ⊂ G, we have some important adjunctions. First,
the forgetful functor U : TopG → TopH is right adjoint to the induced G-
space functor G ×H − : TopH → TopG where G ×H X is the quotient of
G×X where we identify (gh, x) with (g, hx). Then

MapG(G×H X, Y ) ∼= MapH(X,UY ),(6)

where these are now sets of equivariant maps. Of course, these sets can be
given the structure of an equivariant space. In particular, U is also a left
adjoint to the coinduced G-space functor MapH(G,−) : TopH → TopG with
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left G-action given by (g · f)(g′) = f(g′g):

MapH(UX, Y ) ∼= MapG(X,MapH(G, Y )).

Another important adjunction follows by observing that

MapG(K,X) ∼= Map(K,XG) and G×H K ≈G G/H ×K
when K is a space regarded as a G-space with the trivial action. By using
(6) we then obtain that (−)H is right adjoint to the functor G/H × − :
Top→ TopG.

MapG(G/H ×X, Y ) ∼= Map(X, Y H)(7)

A G-homotopy between G-maps X → Y is a homotopy h : X × I → Y
that is a G-map, where G acts trivially on I. A G-map f : X → Y is said
to be a weak G-equivalence if fH : XH → Y H is a weak equivalence for all
H ⊂ G.

One can also develop the theory of pointed G-spaces by replacing prod-
ucts with smash products and all of the above results go through unchanged.
In either case, a cofibration is defined by the homotopy extension property
and a fibration by the homotopy lifting property analogous to the nonequiv-
ariant case, except that all maps in sight are G-maps.

In equivariant algebraic topology, orbits G/H play the role of points,
and the set of G-maps G/H → G/H can be identified with WGH. Staying
true to this slogan, the analog of a nonequivariant CW complex is a G-CW
complex which is a G-space X with a decomposition X = colimXk such
that

X0 =
∐
α∈A0

G/Hα, Xn+1 = Xn ∪φn

 ∐
α∈An+1

Dn+1 ×G/Hα


where Dn+1 × G/Hα are G-cells and φn is made up of attaching G-maps
φn,α : Sn × G/Hα → Xn. By (7) these attaching maps are determined by
nonequivariant maps Sn → (Xn)Hα which allows the inductive analysis of
G-CW complexes by reduction to nonequivariant homotopy theory.

Many of our favorite nonequivariant CW complex theorems go through
with similar proofs. Let [X, Y ]G denote set of G-homotopy classes of G-maps
X → Y .

Theorem 5.1.1 (Whitehead Theorem). If X is a G-CW complex and f :
Y → Z is a weak G-equivalence, then

f∗ : [X, Y ]G → [X,Z]G

is a bijection. [May96, Corollary 3.3]
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It follows that a weak G-equivalence Y → Z between G-CW complexes
is a G-homotopy equivalence by taking X = Z and then X = Y in the
previous theorem.

Theorem 5.1.2 (Cellular Approximation). Any G-map f : X → Y between
G-CW complexes is G-homotopic to a cellular map. [May96, Chapter 1,
Corollary 3.5]

Theorem 5.1.3 (CW Approximation). For any G-space X, there is a G-
CW complex Y and a weak G-equivalence Y → X. [May96, Chapter 1,
Theorem 3.6]

A G-space is said to be G-connected if GH is connected for all H ⊂ G.
In contrast to the nonequivariant world, it is often insufficient to consider
only G-connected spaces. Another important theorem is

Theorem 5.1.4. Let G be a compact Lie group. Then any compact smooth
G-manifold has a finite G-CW complex structure. [Mat71, Proposition 4.4]

Unfortunately, Kirby-Siebenmann theory does not hold in this context
and while topological G-manifolds have the homotopy types of G-CW com-
plexes they may not be finite. On that note, Milnor’s results on spaces of
the homotopy type of CW complexes [Mil59] discussed in the context of
Wall’s finiteness obstruction in the previous chapter generalize to G-spaces
[Wan80]. In particular, Map(X, Y ) has the homotopy type of a G-CW com-
plex if X is a compact G-space and Y has the homotopy type of a G-CW
complex.

5.2. Equivariant K-Theory

We continue the discussion for vector bundles with group actions. A
G-vector bundle over a G-space X is a G-space E with a G-map p : E → X
such that

(i) p : E → X is an ordinary (nonequivariant) complex vector bundle;
(ii) for each g ∈ G and x ∈ X the map g : Ex → Egx is a vector space

homomorphism.

This is not to be confused with the notion of a principal G-bundle which
is a fiber bundle p : E → X with E a G-space such that G preserves the
fibers of p and acts freely and transitively on them.

A section of a G-vector bundle p : E → X is a (nonequivariant) map
s : X → E such that p ◦ s = idX . We denote the space of sections by ΓE
and the subspace of equivariant sections ΓGE. As with ordinary bundles we
can form new bundles from old ones by operations from linear algebra such
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as direct sum, tensor product, and Hom. A morphism between G-vector
bundles p : E → X and q : F → X in the category VectG(X) of G-vector
bundles is a G-map φ : E → F such that

(i) q ◦ φ = p;
(ii) the restriction φx : Ex → Fx is a vector space homomorphism.

If V is any complex representation of G then we can form the G-vector
bundle X × V → X. Any such bundle is called trivial and denoted by V.
Given any G-vector bundle p : E → X and any G-map f : Y → X we can
also consider the pullback f ∗(E) in the category of G-spaces.

For the rest of this chapter we will assume that G is compact and X is
a fixed compact G-space unless otherwise stated. VectG(X) is symmetric
monoidal with respect to ⊕ and we can consider its group completion to ob-
tain an abelian group KG(X) called the equivariant K-theory of X. Tensor
product makes KG(X) into a commutative ring.

Examples 5.2.1. (1) Let ∗ be a point then VectG(∗) = RepC(G) and
KG(∗) ∼= R(G) (cf. 4.2.4).

(2) More generally, consider G-vector bundles over the homogeneous
space G/H. Given an H-module V form the bundle G ×H V →
G×H ∗ = G/H. Conversely, given a bundle p : E → G/H form the
H-module p−1(H) which is the fiber over the trivial coset. Then
these maps are inverses of each other and so KG(G/H) = R(H).

Since pullback preserves direct sums and tensor product, KG(−) becomes
a contravariant functor from compact G-spaces to commutative rings. That
KG(−) is also a functor on the homotopy category of compact G-spaces
follows from the the same three propositions as in the nonequivariant case
after some adjustments.

Lemma 5.2.2. Let Y be a closed G-subspace of a compact G-space X and
let E → X be a G-vector bundle over X. Then any equivariant section of
the restriction EY extends to an equivariant section of E.

Proof. Proceed as in (1.1.4) to obtain a section s. Average s by using
the Haar measure on G to obtain an equivariant section

sG =

∫
G

s ◦ gdg.

Here we need the compactness of G. �

Lemma 5.2.3. Let Y be a closed G-subspace of a compact G-space X and let
E → X and F → X be two G-vector bundles over X. Then any isomorphism
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s : EY → FY extends to an isomorphism EU → FU for some G-neighborhood
U containing Y .

Proof. Apply the previous lemma to the G-vector bundle Hom(E,F )
and proceed as in (1.1.5). �

This in turn implies just as in (1.1.6):

Proposition 5.2.4. Let Y be a compact G-space, f : Y × I → X be a
G-homotopy, and E a G-vector bundle over X. Then f ∗0E

∼= f ∗1E.

Similarly to the nonequivariant case, equivariant K-theory is in fact a
multiplicative G-cohomology theory. By this we mean a sequence of con-
travariant functors hnG (−∞ < n < ∞) on the homotopy category of pairs
of G-CW complexes into the category of commutative rings together with
natural transformations δn : hnG(A) → hn+1

G (X,A) satisfying equivariant
exactness and excision axioms just like in the nonequivariant case.

Examples 5.2.5. Other examples of G-cohomology theories:

(1) Cohomology of orbit spaces hnG(X) = Hn(X/G;Z).
(2) The Borel cohomology hnG(X) = hn(EG ×G X), where EG is the

universal principal G-vector bundle and hn is a cohomology theory
of spaces.

There is a reduced version of equivariant K-theory, K̃G(−), defined on
the homotopy category of compact pointed G-spaces. It is defined just as
in the ordinary case as the group of stable equivalence classes of G-vector
bundles over X. For this one needs the following generalization of (1.1.2):

Fact 5.2.6. For each G-vector bundle E → X there exists a G-vector bundle
E ′ → X and a G-module V such that E ⊕ E ′ ∼= V, i.e. E ⊕ E ′ is trivial.
[Seg68, Proposition 2.4]

The proof uses the Peter-Weyl theorem to define E ′ as the orthogonal

complement to E. K̃G(X) can be naturally identified with the kernel of the
map KG(X)→ R(G) induced by inclusion of a basepoint.

As in the nonequivariant case, there is an exact sequence of a pair [Seg68,

Proposition 2.6] used to define K̃−nG (X) := K̃G(SnX) for n ∈ N via suspen-
sion. One-point compactification extends the definition of equivariant K-

theory to locally compact spaces without basepoints: K−qG (X) := K̃−qG (X+).
When X is compact the new K0

G(X) and the original KG(X) coincide as
before. By

Fact 5.2.7 (Equivariant Bott Periodicity). K̃−qG (X) is naturally isomorphic

to K̃−q−2
G (X). [Seg68, Proposition 3.5]
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we can extend the theories to positive integers. Finally, the map col-
lapsing X to a point induces a map R(G) → K∗G(X) given by V → V.
In summary, K∗G(X) is thus a Z/2-graded R(G)-algebra. This allows us
to localize and complete at ideals of R(G). An interesting candidate is
I = ker(ε : R(G) → Z) known as the augmentation ideal. Here are some
useful properties of equivariant K-theory.

(1) Free Action: If G acts freely on X then there is a canonical ring
isomorphism K(X/G) ∼= KG(X). [Seg68, Proposition 2.1]

(2) Trivial Action: When G acts trivially on X we have a homomor-
phism K(X)→ KG(X) giving a vector bundle the trivial G-action.
This map induces a ring homomorphism µ : R(G) ⊗ K(X) →
KG(X) which is an algebra isomorphism. [Seg68, Proposition 2.2]

Example 5.2.8. This enables us to determine the remaining equi-
variant K-theory of a point:

K1
G(∗) = K̃1

G(∗+) = K̃G(S(∗+))

= K̃G(S1)

= ker(KG(S1)→ R(G))

= ker(R(G)⊗K(S1)→ R(G)) by above

= ker(id : R(G)→ R(G)) by (1.1.9)

= 0.

(3) If H is a closed subgroup of G and X is an H-space, then we have an
inclusion i : X ≈ H×HX ↪→ G×HX which induces an isomorphism
i∗ : K∗G(G ×H X)

∼→ K∗H(X). K∗G(G/H) ∼= K∗H(∗) is a special case
of this.

(4) Thom Isomorphism Theorem: The Thom homomorphism φ∗ :
K∗G(X)→ K∗G(E) is an algebra isomorphism for any G-vector bun-
dle E on a locally compact G-space X. [Seg68, Proposition 3.2]

(5) Atiyah-Hirzebruch Spectral Sequence: Let X be a finite G-
CW complex. Then associated to the skeletal filration

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · ⊂ X

there exists a multiplicative spectral sequence with

Ep,q
2 = Hp

G(X,KqG)⇒ Kp+q
G (X)

where Hp
G(X,KqG) is Bredon cohomology with coefficient system KqG

defined by G/H 7→ Kq
G(G/H). By our previous remarks Kq

G(G/H)
is R(H) for q even and vanishes for q odd. [Mat73, Theorem 8.1]
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(6) Hodgkin Spectral Sequence: This is the analog of the Künneth
Theorem. Let X and Y be locally compact G-spaces and let G be a
compact connected Lie group such that π1(G) is torsion free. Then
there exists a spectral sequence with

Ep,q
2 = Torp,qR(G)(K

∗
G(X), K∗G(Y ))⇒ Kp+q

G (X × Y ).

[BZ00, Theorem 2.3] Sadly, not much is currently known for G with
torsion or not connected, e.g. when G is a finite group. Rosenberg
worked out the case G = Z/2 in [Ros12].

Example 5.2.9. Let G be a compact connected Lie group with
torsion free fundamental group acting on itself by conjugation. Us-
ing the Hodgkin Spectral Sequence it can be shown that K∗G(G) ∼=
Ω∗R(G)/Z as R(G)-modules, where Ω∗R(G)/Z is the algebra of Grothen-

dieck differentials. In fact, there is an algebra isomorphism. [BZ00]

(7) Localization: If X is a locally compact G-space, and p is a prime of
R(G) with support H, a closed subgroup of G, then the restriction

K∗G(X)p → K∗G(G.XH)p

is an isomorphism. Here the support of a prime of R(G) is the
smallest subgroup of G such that p is the inverse image of a prime
in R(H) under i∗ : R(G)→ R(H). [Seg68, Proposition 4.1]

Example 5.2.10. Recall that R(G) can also be interpreted as the
character ring, i.e. the ring generated by characters χV : G→ C of
complex representations V of G. If p is the ideal of all characters
vanishing at some g ∈ G, then S = 〈g〉. Indeed, (i∗)−1(0) = p.

(8) Atiyah-Segal Completion Theorem: Let X be a finite G-CW
complex. Then K∗(X ×G EG) ∼= K∗G(X)Î where I is the aforemen-
tioned augmentation ideal. In particular, if X = ∗ is a point then
K0(BG) = R(G)Î and K1(BG) = 0.

Example 5.2.11. We can use this theorem to compute the non-
equivariant K-theory of CP∞ (cf. 3.3.3):

K∗(CP∞) = K∗(BS1) =

{
R(S1)Î if ∗ = 0;

0 if ∗ = 1.

Now the irreducible complex representations of S1 are given by
the characters z 7→ zm, m ∈ Z, generated by x : z 7→ z. So
R(S1) = Z[Z] ∼= Z[x, x−1]. The augmentation ideal I is (x − 1)
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since the sum of coefficients of a Laurent polynomial f(x) is zero,
i.e. f(1) = 0, if and only if x− 1 divides f(x). Thus,

R(S1)Î = Z[x, x−1](̂x−1) = Z[t+ 1, (t+ 1)−1](̂t) = Z[[t]]

since 1 + t is invertible in the formal power series ring.

(9) Leray-Hirsch Theorem: Let E → X be a rank n G-vector bun-
dle and let H be the canonical line bundle over the projectivization
P (E) → X. Then K∗G(P (E)) is generated as a K∗G(X)-algebra by
H, modulo the relation

∑n
i=0 (−1)iΛi(E)H i = 0. [Seg68, Proposi-

tion 3.9]

Example 5.2.12. We use this to compute the equivariantK-theory
of the action of S1 on S2 by rotation about the z-axis. Let x : C→ ∗
be the bundle with S1 acting on C by complex multiplication and
let 1 : C→ ∗ denote the bundle with the trivial action on C. Then
P (x⊕ 1) is S2 with the action we are considering. Thus

K∗S1(S2) = K∗S1(∗)[H]

/(
2∑
i=0

(−1)iΛi(x⊕ 1)H i

)
which means K1

S1(S2) = 0. Moreover, recall that

2∑
i=0

(−1)iΛi(x⊕ 1)H i =
2∑
i=0

(−1)iσi(x, 1)H i = (H − x)(H − 1)

since x and 1 are both line bundles (cf. 3.3.3). Thus

K0
S1(S2) = Z[x, x−1][H]

/
(H2 −H(x+ 1) + x) .
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