
Handbook on Software Engineering and Knowledge Engineering 

#. A Survey of Software Inspection Technologies 

Oliver Laitenberger 

Fraunhofer Institute for Experimental Software Engineering (IESE) 
Sauerwiesen 6 

D-67661 Kaiserslautern, Germany 
Email: Oliver.Laitenberger@iese.fhg.de 

Abstract 

Software inspection is a proven method that enables the detection and removal of 
defects in software artifacts as soon as these artifacts are created. It usually 
involves activities in which a team of qualified personnel determines whether the 
created artifact is of sufficient quality. Detected quality deficiencies are 
subsequently corrected. In this way an inspection can not only contribute towards 
software quality improvement, but also lead to significant budget and time 
benefits. These advantages have already been demonstrated in many software 
development projects and organizations. 
After Fagan's seminal paper presented in 1976, the body of work in software 
inspection has greatly increased and matured. This survey is to provide an 
overview of the large body of contributions in the form of incremental 
improvements and/or new methodologies that have been proposed to leverage 
and amplify the benefits of inspections within software development and even 
maintenance projects. To structure this large volume of work, it introduces, as a 
first step, the core concepts and relationships that together embody the field of 
software inspection. In a second step, the survey discusses the inspection-related 
work in the context of the presented taxonomy. 
The survey is beneficial for researchers as well as practitioners. Researchers can 
use the presented survey taxonomy to evaluate existing work in this field and 
identify new research areas. Practitioners, on the other hand, get information on 
the reported benefits of inspections. Moreover, they find an explanation of the 
various methodological variations and get guidance on how to instantiate the 
various taxonomy dimensions for the purpose of tailoring and performing 
inspections in their software projects.   
 
Keywords 
Software Quality, Defect Costs, Software Inspection, Reading Techniques  



Handbook on Software Engineering and Knowledge Engineering 

Introduction 

It has been more than 20 years since Michael Fagan described the inspection 
approach in the software domain [40]1. Since then many others, such as Gilb and 
Graham [47], have fine-tuned the inspection method to make it an even more 
cost-effective instrument for tackling quality deficiencies and defect costs. In 
fact, it has been claimed that inspection technologies can lead to the detection and 
correction of anywhere between 50 percent and 90 percent of the defects [47]. 
Moreover, early defect detection and removal improve the predictability of soft-
ware projects and help project managers stay within schedule, since problems are 
unveiled throughout the early development phases. Most of the stated benefits of 
inspections have already been demonstrated in many projects and organizations. 
However, most of the published inspection work has not been integrated into a 
broader context, that is, into a coherent body of knowledge, hence making the 
work difficult to reconcile and evaluate for software practitioners. To provide a 
systematic and encompassing view of the research and practice in software 
inspection, this survey portrays the current state of the art and practice as 
published in available software inspection publications.  
The survey consists of two main parts. The first includes a taxonomy of the core 
concepts and relationships that together embody the software inspection field. 
This taxonomy is organized around four primary dimensions -- technical, 
economics, organizational, and tools -- with which we attempt to characterize the 
nature of software inspection. While these primary dimensions are most relevant 
for the major areas of software development, we elicited from the literature 
particular sub-dimensions that are principal for the work in the software 
inspection area. The second part describes the various contributions and 
integrates them into the taxonomy, taking into account their specific 
particularities. This can make it much easier for researchers and practitioners to 
get an overview of relevant inspection work including its empirical validation.  
Researchers and practitioners can profit from this survey in different ways. 
Researchers can use the presented taxonomy to characterize new work in the 
inspection-related field and identify fruitful areas for future research. 
Practitioners, on the other hand, find information about inspection-related 
benefits. This information may pave the road for the use of the inspection method 
in projects. Moreover, they find a road-map in the form of a taxonomy that helps 
them focus quickly on the best suited inspection approach adapted to their 
particular environment. 

                                                 
1 In this survey, we consider inspection to be an approach that involve a well-defined and 
disciplined process in which qualified personnel analyse a software product using a reading 
technique for the purpose of detecting defects. We acknowledge that others may define the term 
“software inspection” differently. 



Handbook on Software Engineering and Knowledge Engineering 

Integration of Software Inspection in the Development Context 
One prevalent reason for the use of inspection technology in software projects is 
the inevitability of defects. Even with the best development technologies in place, 
defects cannot be completely avoided. This stems from the fact that software 
development is a human-based activity, and, thus, prone to defects. A defect can 
be characterized as any product anomaly, that is, any deviation from the required 
quality properties that needs to be tracked and resolved.  
To be most effective, software inspections need to be fully integrated into the 
software development process from a technical as well as from a management 
point of view. Figure 1 presents an example using a simplified version of the 
Vorgehensmodell (V-Model) [19]. The products are sufficiently generic, and are 
found in one form or another in most, if not all, development process models.  
 

Architecture Architecture Architecture Architecture 

Problem descriptionProblem descriptionProblem descriptionProblem description

Customer requirementsCustomer requirementsCustomer requirementsCustomer requirements

Developer requirementsDeveloper requirementsDeveloper requirementsDeveloper requirements

Executable subsystemsExecutable subsystemsExecutable subsystemsExecutable subsystems

Executable systemExecutable systemExecutable systemExecutable system

Usable systemUsable systemUsable systemUsable system

Used systemUsed systemUsed systemUsed system

DesignDesignDesignDesign

CodeCodeCodeCode

Executable modulesExecutable modulesExecutable modulesExecutable modules
Inspected against
Bases for 

Integrated in

Tested against

Architecture Architecture Architecture Architecture 

Problem descriptionProblem descriptionProblem descriptionProblem description

Customer requirementsCustomer requirementsCustomer requirementsCustomer requirements

Developer requirementsDeveloper requirementsDeveloper requirementsDeveloper requirements

Executable subsystemsExecutable subsystemsExecutable subsystemsExecutable subsystems

Executable systemExecutable systemExecutable systemExecutable system

Usable systemUsable systemUsable systemUsable system

Used systemUsed systemUsed systemUsed system

DesignDesignDesignDesign

CodeCodeCodeCode

Executable modulesExecutable modulesExecutable modulesExecutable modules
Inspected against
Bases for 

Integrated in

Tested against
 

Figure 1: A Generic Software Development Model 

The V-model is not a process model per se, but rather a product model since it 
does not define the sequence of development steps that must be followed to 
create the generic software development products. Hence, it is applicable with all 
process models for which products are developed in sequence, in parallel, or 
incrementally. The point is that the logical relationship between development 
products should be maintained and a software inspection can be triggered and 
scheduled as soon as a development product or parts of it are created. A typical 
example is a piece of code that is checked against the design document. This 
survey elaborates upon the question of how to set up and run inspections to 
achieve the stated goals, i.e., the achieve a certain level of effectiveness from a 
technical, economic, organizational, and tool perspective. 



Handbook on Software Engineering and Knowledge Engineering 

Related Work 
Findings about inspections have not been easy to reconcile and consolidate due to 
the sheer volume of work already published. Hence, it is not surprising that the 
available surveys [70] [83] [106] [127] [135] only cover the most relevant 
published research in their reviews. 
Broadly speaking, existing surveys can be summarized as follows. Kim et al. [70] 
present a framework for software development technical reviews including 
software inspection, Freedman and Weinberg's technical review  [131], and 
Yourdon's walkthrough  [140]. They segment the framework according to aims 
and benefits of reviews, human elements, review process, review outputs, and 
other matters. Macdonald et al. [83] describe the scope of support for the 
currently available inspection process and review tools. Porter et al. [106] focus 
their attention on the organizational attributes of the software inspection process, 
such as the team size or the number of sessions, to understand how these 
attributes influence the costs and benefits of software inspection. Wheeler et al. 
[135] discuss the software inspection process as a particular type of peer review 
process and elaborate the differences between software inspection, walkthroughs, 
and other peer review processes. Tjahjono [127] presents a framework for formal 
technical reviews (FTR) including objective, collaboration, roles, synchronicity, 
technique, and entry/exit-criteria as dimensions. Tjahjono's framework aims at 
determining the similarities and differences between the review process of 
different FTR methods, as well as identifying potential review success factors. 
All of these surveys contribute to the knowledge of software inspection by 
identifying factors that may impact inspection success. However, none of them 
presents its findings from a more global perspective. This makes it difficult for 
practitioners to determine which inspection method or refinement to choose, 
should they want to introduce inspection or improve on their current inspection 
approach. 

Organization of this Survey 
We organized this survey as follows. Section 2 presents the study methodology 
including our approach to identify and select the relevant software inspection 
literature. Section 3 describes the core concepts and relationships that together 
define the notion of software inspection in the form of a taxonomy. Section 4  
discusses the most important literature sources in the context of the presented 
taxonomy. Section 5 concludes. 
 
 



Handbook on Software Engineering and Knowledge Engineering 

Study Methodology 

Survey Motivation and Principles 
Literature surveys have long played a central role in the accumulation of 
scientific knowledge. As science is a cumulative endeavor, any one theory or 
finding is suspect because of the large array of validity threats that must be ruled 
out. Moreover, all too often new techniques and methods are proposed and 
introduced, without building on the extensive body of knowledge that is 
incorporated in the ones already available. These problems can be somewhat 
alleviated by establishing the current facts using the mechanism of literature 
surveys. The facts are the dependable relationships among the various concepts 
that occur despite any biases that may be present in particular studies because of 
the implicit theories behind the investigators' choice of observations, measures, 
and instruments. Hence, a literature survey makes the implicit theories explicit by 
identifying their commonalities and differences, often from a specific angle when 
the body of knowledge has become very rich. In some cases, a literature survey 
may even be an impetus for the unification of existing theories to induce a new, 
more general theory that can be empirically tested afterwards. 
To achieve these goals, a survey must fulfill several principles: First, it must be 
well-contained, that is, encapsulate its work within a clearly defined scope where 
the benefits of doing so can be well-understood and accepted. Second, a survey 
must provide profound breadth and depth regarding the literature relevant to its 
defined scope. Finally, it must present a unified vocabulary reconciling the most 
important terms in a field. 
The first principle is the hardest to fulfill and illustrates the fact that there cannot 
be one single method for developing a survey since it is so tightly coupled with 
the notion of scope. The scope is, in fact, what defines the gist of a survey and 
hence, depending on the particular interest of the authors, a survey can be geared 
in different directions. This is clearly illustrated by the different directions taken 
by the five surveys we mentioned above. Each used a particular scope and 
rationale for its motivation.  
To fulfill the second and third survey principles, finding and selecting the 
relevant literature is of utmost importance. We attempted to collect any 
publication fitting our definition of inspection, which captures, we believe, the 
essence of other definitions. However, no single method for locating relevant 
literature is perfect [28]. Hence, we utilized a combination of methods to locate 
articles and papers on our subject. 

 



Handbook on Software Engineering and Knowledge Engineering 

Sampling Approach 
We conducted searches of the following two inspection libraries: Bill 
Brykczynski's collection of inspection literature [21] [136] and the Formal 
Technical Review Library [59]. To be sure not to miss a paper recently 
published, we performed three additional steps in search of inspection articles: 
First, we employed a keyword search in the INSPECT database of the OCLC 
[97] and the library of the Association of Computing Machinery [3] using the 
keyword "software inspection". Second, we manually searched the following 
journals published 1990 and 1998: IEEE Transactions on Software Engineering, 
IEEE Software, Journal of Systems & Software, Communications of the ACM, 
and ACM Software Engineering Notes. Finally, we looked at the reference 
sections of books dealing with software inspection [47] [124] and some 
conference proceedings. Table 1 shows the results of our literature search. The 
reader must keep in mind that some articles are cross-referenced among several 
libraries. We made the results of our literature search available on-line [44]. 
 

Source Number of Articles 

Literature in [136] 147 

FTR-Library 204 

OCLC Database 55 

ACM Database 21 

IEEE Transactions on Software Engineering 12 

IEEE Software 9 

Journal of Systems & Software 8 

Communications of the ACM 4 

ACM Software Engineering Notes 3 

Other  17 

Table 1: Summary of Search Results. 
 

Considering the very large number of published articles available, it was 
impossible to give full attention to every article within this survey, although we 
carefully considered each and every one of them. We excluded articles based on 
the following rules: (a) the article is an opinion paper and, therefore, does not 



Handbook on Software Engineering and Knowledge Engineering 

represent tangible inspection experiences, (b) it takes considerable effort (money 
or time) to get an article, (c) one or several authors published several papers 
about similar work in journals and conference proceedings -- in this case, we 
considered the most relevant journal publication --, (d) an article does only 
provide a weak research or practical contribution, although we acknowledge the 
subjectivity of this criteria. However, we avoided the dangers of ignoring papers 
because they do not fit neatly into our taxonomy. When in doubt, we included 
them. Overall, we included a total of 120 articles and reports about software 
inspection in this survey.  
Although we consider the selected sample of papers as representative of the work 
in the inspection area, we are aware that the published papers are only a biased 
sample of inspection work actually carried out in reality. There are two principal 
reasons for this, which we can only be aware of, without any hope of overcoming 
them: 
• The "File drawer problem" - unpublished as well as unretrievable null 

results stored away by unknown researchers [114]. When inspections are 
unsuccessfully applied, they are most often not reported in the literature. In 
all the articles we reviewed, there is only one, which shows that inspection 
did not have the expected benefits [122]. Yet, we believe that there might 
be more unsuccessful inspection trials. 

• The successful use of inspection might also be only sporadically reported, 
since that may reveal defect information unpalatable to companies 
engaged in competitive industries [1]. 

A Taxonomy for Inspection Approaches 

Based on the selected literature, we derived a taxonomy to articulate the core 
concepts and relationships of software inspection. This taxonomy is organized 
around four primary dimensions -- technical, economic, organizational, and tools. 
With them, we characterized the nature of software inspection. For each primary 
dimension, we used a selection criterion in the form of a concrete goal to elicit 
from the relevant literature. Yet, though necessary, these four primary 
dimensions are not unique. They are relevant to the major areas of software 
development. Hence, we elicited from the literature particular sub-dimensions 
that we saw as fundamental to the nature and application of software inspection. 
Figure 2 shows the elicited dimensions and sub-dimensions. 
 
 
 
 
 
 
 



Handbook on Software Engineering and Knowledge Engineering 

 
 

     Figure 2: Dimensions and Subdimensions of the identified Taxonomy. 

 
We briefly describe below each dimension and its associated primary goals. The 
major goal of the technical dimension is to characterize the different inspection 
methods so as to identify similarities and differences among them. For this, each 
inspection approach needs to be characterized in more detail according to the 

Software 
Inspection

Technical  
Dimension 

Goal:  
Characterize 

different  
inspection 

methodological 
variations 

Economic  
Dimension 

Goal:  
Characterize 
the economic 

effects  
inspections  
have on the  
project and  
vice versa 

Organiza-
tional  

Dimension
Goal:  

Characterize
the effects 
inspections 
have on the 
organization 

and  
vice versa 

Tool  
Dimension 

Goal:  
Characterize 

the support for 
inspections  
with tools 

Process 

Prod-
ucts 

Team Roles
Size, and  
Selection 

Reading 
Technique 

Quality

Effort 

Dura-
tion 

Non-quantitative
Benefits 

Team

Project 
Structure

Environment

Purpose 

Supported 
Inspection 
Approach 



Handbook on Software Engineering and Knowledge Engineering 

activities performed (process), the inspected software product (product), the 
different team roles as well as overall optimal size and selection (team roles, size, 
and selection), and the technique applied to detect defects in the software product 
(reading technique)2. The economic dimension provides information on the 
effects that inspections have on a project and vice versa. This information is 
primarily relevant for decision makers or managers. They are most often 
interested in the way inspections influence product quality (quality), project 
effort (effort), and project duration (duration). However, inspections might also 
have other effects that a manager might be interested in, such as their 
contribution to team building or education in a particular project (others). The 
organizational dimension characterizes the effects inspections have on the whole 
organization and vice versa. For the organizational dimension, we elicited team 
(team), project structure (project structure), and environment (environment) as 
particular subdimensions. These subdimensions provide important information on 
the context in which inspections take place. Finally, the tool dimension describes 
how tools can support software inspections. For this dimension, we elicited the 
purpose of the various tools (purpose) and investigated how they support a given 
inspection approach (supported inspection approach). 
We have to state that the dimensions are not completely orthogonal, that is, one 
dimension may be related to another dimension, but this is unavoidable. For 
example, a manager might base his/her decision about introducing inspections on 
the cost/benefit ratio inspections had in previous projects. Yet, we have done our 
best to minimize such overlap. 
We now proceed by discussing in details each of Figure 2's dimensions and 
subdimensions using the relevant articles. 

                                                 
 



Handbook on Software Engineering and Knowledge Engineering 

Discussion of published Work in the Context of the Taxonomy   

The Technical Dimension of Software Inspection 
Inspections must be tailored to fit particular development situations. To do this, it 
is essential to characterize the technical dimension of current inspection methods 
and their refinements to grasp the similarities and differences among them. As 
depicted in Figure 3, the technical dimension of our taxonomy includes the 
inspection process, the inspected product, the team roles participants have in an 
inspection as well as the team size, and the reading technique as subdimensions. 
Each of the subdimensions is discussed in more detail in this section. In total, we 
have identified 64 references relevant to this dimension. 
 

Figure 3: The Technical Dimension of Software Inspection. 

Process 
To explain the various similarities and differences among the inspection methods, 
a reference model for software inspection processes is needed. To define such a 
reference model, we adhered to the purpose of the various activities within an 
inspection rather than their organization. This allows us to provide an unbiased 
examination of the different approaches. We identified six major process phases: 
Planning, Overview, Defect Detection, Defect Collection, Defect Correction, and 
Follow-up. These phases can be found in many inspection methods or their 



Handbook on Software Engineering and Knowledge Engineering 

refinements. However, the question of how each phase is organized and 
performed often distinguishes one method from another. 

Planning 
The objective of the planning phase is to organize a particular inspection when 
materials to be inspected pass entry criteria, such as when source code 
successfully compiles without syntax errors. This phase includes the selection of 
inspection participants, their assignment to roles, the scheduling of the inspection 
meeting, and the partitioning and distribution of the inspection material. In most 
literature, this phase is not described in much detail, except in [1] [40] [47] [124]. 
However, we consider planning important to mention as a separate phase because 
there must be a person within a project or organization who is responsible for 
planning all inspection activities, even if such an individual plays numerous 
roles. 

Overview 
The overview phase consists of a first meeting in which the author explains the 
inspected product to other inspection participants. The main goal of the overview 
phase is to make the inspected product more lucid and, therefore, easier to 
understand and inspect for participants. Such a first meeting can be particularly 
valuable for the inspection of early artifacts, such as requirements or design 
documents, but also for complex source code. However, this meeting consumes 
effort and increases the duration of an inspection. Moreover, it may focus the 
attention of inspectors on particular issues, which prohibits an independent 
assessment of the inspected artifact. These limitations may be one reason why 
Fagan [40] states that an overview meeting for code inspection is not necessary. 
This statement is supported by Gilb and Graham [47]. They call the overview 
meeting the "Kickoff Meeting" and point out that such a meeting can be held, if 
desired, but is not compulsory for every inspection cycle. However, other authors 
consider this phase essential for effectively performing the subsequent inspection 
phases. Ackerman et al. [1], for example, argue that the overview brings all 
inspection participants to the point where they can easily read and analyze the 
inspected artifact. In fact, most published applications of inspections report 
performing an overview meeting [29] [34] [42] [43] [68] [71] [110] [111] [116] 
[125] [129] [134]. However, there are also examples that either did not perform 
one or did not report the performance of one [13] [73]. 
We found three conditions under which an overview meeting is definitely 
justified and beneficial. First, when the inspected artifact is complex and difficult 
to understand. In this case, explanations from the author about the inspected 
artifact facilitate the understanding of the inspected product for inspection 
participants. Second, if the inspected artifact belongs to a large software system, 
the author may want to explain the relationship between the inspected artifact and 
the whole software system to other participants. Third, new team members 



Handbook on Software Engineering and Knowledge Engineering 

participate in the inspection. Since they are inexperienced, explanations from the 
author put them in a position to inspect the artifact. In all three cases, 
explanations by the author may help other participants perform more effective 
inspection and save time in later inspection phases. 

Defect Detection 
The defect detection phase can be considered the core of an inspection. The main 
goal of the defect detection phase is to scrutinize a software artifact to identify 
defects. How to organize this phase is still debated in the literature. More 
specifically, the issue is whether defect detection is more an individual activity 
and hence should be performed individually, or whether defect detection is a 
group activity and should therefore be conducted as part of a group meeting, that 
is, an inspection meeting. Fagan [40] reports that a group meeting provides a 
synergy effect, that is, most of the defects are detected because inspection 
participants meet and scrutinize the inspection artifact together. He makes the 
implicit assumption that interaction contributes something to an inspection that is 
more than the mere combination of individual results. Fagan refers to this effect 
as the "phantom" inspector. However, others found little synergy in an inspection 
meeting. The most cited reference for this position is a paper by L. Votta [130]. 
His position is empirically supported in [117]. 
In many cases, authors distinguish between a "preparation" phase of an 
inspection, which is performed individually, and a "meeting" phase of an 
inspection, which is performed within a group [1] [40] [46] [56] [124]. However, 
it often remains unclear whether the preparation phase is performed with the goal 
detecting defects or just understanding the inspected artifact to detect defects 
later on in a meeting phase. For example, Ackerman et al. [1] state that a 
preparation phase lets the inspectors thoroughly understand the inspected artifact. 
They do not explicitly state that the goal of the preparation phase is defect 
detection. Bisant and Lyle [9] consider individual preparation as the vehicle for 
education. Other examples mention that the inspected artifact should be 
individually studied in detail throughout a preparation phase, but do not explicitly 
state education as a goal per se [25] [34] [42] [79]. 
Since the literature on software inspection does not provide a definite answer on 
which alternative to choose, we looked at some literature from the psychology of 
small group behavior [33] [80] [121]. Psychologists found that an answer to the 
question whether individuals or groups are more effective, depends upon the past 
experience of the persons involved, the kind of task they are attempting to 
complete, the process that is being investigated, and the measure of effectiveness. 
Since at least some of these parameters vary in the context of a software 
inspection, we recommend that the defect detection activity be organized as both 
individual and group activity with a strong emphasis on the former. Individual 
defect detection with the explicit goal to look for defects that should be resolved 
before the document is approved ensures that inspectors are well prepared for all 
following inspection steps. This may require extra effort on the inspectors' behalf 



Handbook on Software Engineering and Knowledge Engineering 

since each of them has to understand and scrutinize the inspected document on an 
individual basis. However, the effort is justified because, if a group meeting is 
performed later on, each inspector can play an active role rather than hiding 
himself or herself in the group and, thus, make a significant contribution to the 
overall success of an inspection.  
Knight and Myers [72] [73] suggested the Phased Inspection Method. The main 
idea behind Phased Inspections is for each inspection phase to be divided into 
several mini-inspections or phases. Mini-inspections are conducted by one or 
more inspectors and are aimed at detecting defects of one particular class or type. 
This is the most important difference to "Conventional" inspections, which check 
for many classes or types of defects in a single examination. If there is more than 
one inspector, they will meet just to reconcile their defect list. The phases are 
done in sequence, that is, inspection does not progress to the next phase until 
rework has been completed on the previous phase.  
Although Knight and Myers state that phased inspections are intended to be used 
on any work product, they only present some empirical evidence of the 
effectiveness of this approach for the code inspections. However, Porter et al. 
argue based on the results of their experiments [108], that multiple session 
inspections, that is, mini-inspections, with repair in between are not more 
effective for defec t detection but are more costly than conventional inspections. 
This may be one explanation why we did not find extensive use of the phased 
inspection approach in practice. 
There has been noticeable growth in research on how individual defect detection 
takes place and can be supported with adequate techniques [5] [6] [109]. We 
tackle this issue later in more detail when we discuss reading techniques to 
support defect detection. 

Defect Collection 
In most published inspection processes, more than one person participates in an 
inspection and scrutinizes a software artifact for defects. Hence, the defects 
detected by each inspection participant must be collected and documented. 
Furthermore, a decision must be made whether a purported defect is really a 
defect. These are the main objectives of the defect collection phase. A further 
objective may be to decide whether the inspected artifact needs to be reinspected. 
The defect collection phase is most often performed in a group meeting. There, 
the decision as to whether or not a defect is really a defect is often a group 
decision. The same holds for the decision as to whether to perform a reinspection. 
This decision is often based on a subjective estimation of the defect content. A 
recent study revealed that this estimate can be quite accurate [39]. To make the 
reinspection decision more objective, some authors suggest to apply statistical 
models, such as capture-recapture models, for estimating the remaining number 
of defects in the software product after inspection [2] [22] [38] [115] [137]. If the 
estimate exceeds a certain threshold, the software product needs to be 
reinspected. However, recent studies [14] [15] showed that statistical estimators 



Handbook on Software Engineering and Knowledge Engineering 

are not very accurate for inspections with less than four inspection participants. 
Further research is necessary to validate this finding. In addition to statistical 
estimation models, graphical defect content estimation approaches are currently 
being investigated [138]. 
Since a group meeting is effort consuming and increases the development 
schedule, some authors suggest that such a meeting for inspections be abandoned. 
Instead, they offer the following alternatives [130]: Managed meetings, 
depositions, and correspondence. Managed meetings are well-structured meetings 
with a limited number of participants. A deposition is a three-person meeting in 
which the author, a moderator, and an inspector collect the inspectors' findings 
and comments. Correspondence includes forms of communication where the 
inspections and author never actually meet (e.g., by using electronic mail). Some 
researchers have elaborated on these alternatives [63]. Sauer et al. [118], for 
example, provide some theoretical underpinning for depositions. They suggest 
that the most experienced inspectors collect the defects and decide upon whether 
these are real or not. 
In general, research does not seem to provide a conclusive answer to the question 
of whether inspection meetings pay off. We recommend that practitioners start 
with the "traditional" meeting-based approach and try later on whether non-
meeting based approaches provide equivalent benefits. Regarding the benefits of 
group meetings, they also provide more intangible benefits such as dissemination 
of product information, development experiences, or enhancement of team spirit 
as reported in [30] [43]. Although difficult to measure, these benefits must be 
taken into account when a particular inspection approach is evaluated in addition 
to the number of defects it helps detect and remove.  
On the other hand, these meetings are not problem-solving sessions. Neither 
personal conflicts among people or departments nor radically alternate solutions -
- complete rewrite or redesign -- of the inspected artifact should be discussed 
there. 

Defect Correction 
Throughout the defect correction phase, the author reworks and resolves defects 
found [40] or rationalizes their existence [122]. For this he or she edits the 
material and deals with each reported defect. There is only little discussion in the 
literature about this activity [47] [124]. 

Follow-up  
The objective of the follow-up phase is to check whether the author has resolved 
all defects. For this, one of the inspection participants verifies the defect 
resolution. Doolan reports that the moderator checks that the author has taken 
some remedial action for each defect detected [34]. However, others do not report 
a follow-up phase [95] [116] [122]. They either did not perform one or did not 



Handbook on Software Engineering and Knowledge Engineering 

consider it important. Furthermore, many consider the follow-up phase optional 
like the overview phase. 

Products 
The product dimension refers to the type of product that is usually inspected. The 
term product refers not only to the final delivered software system, but also to 
any documentation produced in the context of a software development project. 
Barry Boehm [12] stated that one of the most prevalent and costly mistakes made 
in software projects today is deferring the activity of detecting and correcting 
software problems until late in the project. This statement supports the use of 
software inspection for early life-cycle documents. However, a look at the 
literature reveals that in most cases inspection was applied to code documents. 
Figure 4 depicts how inspection was applied to various software products 
phasewise3. We found 20, 32, 55, and 12 papers that talk about the inspection of 
requirements, design, code, and testcase documents, respectively. These numbers 
demonstrate that the use of inspection is biased towards code documents. 
Although code inspection improves the code quality and provides savings, the 
savings are higher for early life-cycle artifacts as shown in a recent study [16], 
which integrates published inspection results into a coherent cost/benefit-model. 
The results of the study reveal that the introduction of code inspection saves 39 
percent of defect costs compared to testing alone. The introduction of design 
inspection saves 44 percent of defect costs compared to testing alone. These 
findings motivate the use of inspections especially throughout the early 
development phases.  
  

Figure 4: Number of References for the Inspection of various Software Development 
Products. 

                                                 
3 We should note that some articles describe software inspection for several products. This explains 
why we only included 119 articles in this diagram. 

2 0

3 2

5 5

1 2

0

1 0

2 0

3 0

4 0

5 0

6 0

R e q u i r e m e n ts
D o c u m e n ts

D e s ig n
D o c u m e n t s

C o d e
D o c u m e n t s

T e s tc a s e
D o c u m e n ts



Handbook on Software Engineering and Knowledge Engineering 

The product dimension is also influenced by the development approach. Software 
inspections have been primarily used with products resulting from conventional 
structured development processes. Object-oriented products, particularly of the 
graphical form, have so far not been adequately addressed by inspection methods.  
Although some work in the area of object-oriented inspections exists [35] [128], 
there is a general lack of research regarding how the key features of the object-
oriented paradigm impact software inspections.  

Team Roles, Size, and Selection 

Team Roles 
Three important questions practitioners usually have about roles in software 
inspections are (1) what roles are involved in an inspection, (2) how many people 
are assigned to each role, and (3) how should people be selected for each roles. 
For the first question, a number of specific roles are assigned to inspection 
participants. Hence, each inspection participant has a clear and specific 
responsibility. The roles and their responsibilities are described in [1][40][116]. 
There is not much disagreement regarding the definition of inspection roles. In 
the following, we describe each of these roles in more detail: 
• Organizer 

The organizer plans all inspection activities within a project or even across 
projects. 

• Moderator 
The moderator ensures that inspection procedures are followed and that 
team members perform their responsibilities for each phase. He or she 
moderates the inspection meeting if there is one. In this case, the 
moderator is the key person in a successful inspection as he or she 
manages the inspection team and must offer leadership. Special training 
for this role is suggested. 

• Inspector 
Inspectors are responsible for detecting defects in the target software 
product. Usually all team members can be assumed to be inspectors, 
regardless of their other roles in the inspection team. 

• Reader/Presenter 
If an inspection meeting is performed, the reader will present the inspected 
products at an appropriate pace and lead the team through the material in a 
complete and logical fashion. The material should be paraphrased at a 
suitable rate for detailed examination. Paraphrasing means that the reader 
should explain and interpret the material rather than reading it literally. 

• Author 
The author has developed the inspected product and is responsible for the 
correction of defects during rework. During an inspection meeting, he or 



Handbook on Software Engineering and Knowledge Engineering 

she addresses specific questions the reader is not able to answer. The 
author must not serve as moderator, reader, or recorder. 

• Recorder 
The recorder is responsible for logging all defects in an inspection defect 
list during the inspection meeting. 

• Collector 
The collector collects the defects found by the inspectors if there is no 
inspection meeting. 

Team Size 
To answer the second question, that is, how to assign resources to these roles in 
an optimal manner, the reported numbers in the literature are not uniform. Fagan 
recommends to keep the inspection team small, that is, four people [40] and 
Bisant and Lyle [9] have found performance advantages in an experiment with 
two persons: one inspector and the author, who can also be regarded as an 
inspector. Kusumoto et al. recently investigated the two-person approach in an 
educational environment [75]. Weller presents some data from a field study using 
three to four inspectors [133]. Madachy presents data showing that the optimal 
size is between three and five people [87]. Bourgeois corroborates these results in 
a different study [13]. Porter et al.'s experimental results suggest that reducing the 
number of inspectors from 4 to 2 may significantly reduce effort without 
increasing inspection interval or reducing effectiveness [107]. 
Martin et al. proposed the N-fold inspection method [68] [89] [119]. This 
inspection method is based on the hypothesis that a single inspection team can 
find only a fraction of the defects in a software product and that multiple teams 
will not significantly duplicate each others efforts. In an N-fold inspection, N 
teams each carry out parallel independent inspections of the same software 
artifact. In a sense, N-fold inspection scales up some ideas of scenario-based 
reading techniques, which are applied in the conventional inspection approach on 
an individual level, to a team level. The inspection participants of each 
independent inspection follow the various inspection steps of a conventional 
inspection as outlined previously, that is, individual defect detection with an Ad-
hoc reading technique and defect collection in a meeting. The N-Fold inspection 
approach ends with a final step in which the results of each inspection team are 
merged into one defect list. It has been hypothesized that N different teams will 
detect more defects than a single large inspection team. In fact, there is already 
empirical evidence confirming this hypothesis [129]. However, if N independent 
teams inspect one particular document, inspection cost will be high. This limits 
this inspection approach to the inspection of early life-cycle artifacts for which 
very high quality really does matter, such as the aircraft industry, or safety 
critical systems [129]. 
We assume that there is no definite answer to the optimal number of inspectors 
and teamsize. An answer rather depends on the type of product and the 
environment in which an inspection is performed and the costs associated with 



Handbook on Software Engineering and Knowledge Engineering 

defect detection and correction in later development phases. However, in absence 
of a clear answer, we recommend starting with one team that consists of three to 
four people: One author, one or two inspectors, and one moderator (also playing 
the role of the presenter and scribe. After a few inspections, the benefits of 
adding an additional inspector or an additional team can be empirically evaluated. 
The evaluation involves an examination whether an additional person or team 
helps detect more defects, i.e., leads to an increase in inspection effectiveness and 
defect coverage. Of course, one must also address the question whether the effort 
for the extra person or team really pays off. 

Team Selection 
The final question is how to select members of an inspection team. Primary 
candidates for the role of inspectors are personnel involved in product 
development [41]. Outside inspectors may be brought in when they have a 
particular expertise that would add to the inspection [96]. Inspectors should have 
good experience and knowledge4 [10] [41] [124]. However, the selection of 
inspectors according to experience and knowledge has two major implications. 
First, inspection results heavily depend upon human factors. This often limits the 
pool of relevant inspectors to a few developers working on similar or interfacing 
products [1]. Second, personnel with little experience are not chosen as 
inspectors although they may learn and, thus, profit a lot from inspection. Defect 
detection, that is, reading techniques, which we discuss later on in more detail, 
may alleviate these problems. 
It is sometimes recommended that managers should neither participate nor attend 
an inspection [68] [96]. This stems from the fact that inspections should be used 
to assess the quality of the software product, not the quality of the people who 
create the product [41]. Using inspection data to evaluate people may result in 
less than honest and thorough inspections, since inspectors may be reluctant to 
identify defects if finding them results in a poor performance evaluation for a 
colleague.  

Reading Technique 
Recent empirical studies demonstrate that defect detection is more an individual 
than a group activity as assumed by many inspection methods and refinements 
[103] [130]. Moreover, these empirical studies show that a particular organization 
of the inspection process does not explain most of the variation in inspection 
results. Rather, one expects that inspection results depend on inspection 
participants themselves [108] and their strategies for understanding the inspected 
artifact [113]. Therefore, supporting inspection participants, that is, inspectors, 
with particular techniques that help them detect defects in software products, may 

                                                 
4 In most cases, the kind of experience and knowledge is not well-defined in the articles.  



Handbook on Software Engineering and Knowledge Engineering 

increase the effectiveness of an inspection team most. We refer to such 
techniques as reading techniques.  
A reading technique can be defined as a series of steps or procedures whose 
purpose is to guide an inspector in acquiring a deep understanding of the 
inspected software product. The comprehension of inspected software products is 
a prerequisite for detecting subtle and/or complex defects, those often causing the 
most problems if detected in later life-cycle phases. In a sense, a reading 
technique can be regarded as a mechanism or strategy for the individual inspector 
to detect defects in the inspected product. Of course, whether inspectors take 
advantage of this mechanism or strategy is up to them. At least, it is intended that 
inspectors use the available reading techniques since this makes the result of the 
defect detection activity less dependent on human factors, such as experience.  
Even though reading is one of the key activities for individual defect detection 
[6], few documented reading techniques are currently available to support the 
activity. We found that ad-hoc reading and checklist-based reading are the most 
popular reading techniques used today for defect detection in inspection [40] 
[47].  
Ad-hoc reading, by nature, offers very little reading support at all since a 
software product is simply given to inspectors without any direction or guidelines 
on how to proceed through it and what to look for. However, ad-hoc does not 
mean that inspection participants do not scrutinize the inspected product 
systematically. The word `ad-hoc' only refers to the fact that no technical support 
is given to them for the problem of how to detect defects in a software artifact. In 
this case, defect detection fully depends on the skill, the knowledge, and the 
experience of an inspector. Training sessions in program comprehension as 
presented in [113] may help subjects develop some of these capabilities to 
alleviate the lack of reading support. Although an ad-hoc reading approach was 
only mentioned a few times in the literature [34] [122], we found many articles in 
which little was mentioned about how an inspector should proceed in order to 
detect defects. Hence, we assumed that in most of these cases no particular 
reading technique was provided because otherwise it would have been stated. 
Checklists offer stronger, boilerplate support in the form of questions inspectors 
are to answer while reading the document. These questions concern quality 
aspects of the document. Checklists are advocated in more than 25 articles. See, 
for example, [1] [40] [41] [54] [126], and Gilb and Grahams' manuscript [47]. 
Although reading support in the form of a list of questions is better than none 
(such as ad-hoc), checklist-based reading has several weaknesses. First, the 
questions are often general and not sufficiently tailored to a particular 
development environment. A prominent example is the following question: “Is 
the inspected artifact correct?” Although this checklist question provides a 
general framework for an inspector on what to check, it does not tell him or her 
in a precise manner how to en-sure this quality attribute. In this way, the checklist 
provides little support for an inspector to understand the inspected artifact. But 
this can be vital to detect major application logic defects. Second, concrete 



Handbook on Software Engineering and Knowledge Engineering 

instructions on how to use a checklist are often missing, that is, it is often unclear 
when and based on what information an inspector is to answer a particular 
checklist question. This weakness becomes apparent when looking at the 
example presented above. In fact, several strategies are actually feasible to 
address all the questions in a checklist. The following approach characterizes the 
one end of the spectrum: The inspector takes a single question, goes through the 
whole artifact, answers the question, and takes the next question. The other end is 
defined by the following procedure: The inspector reads the document. 
Afterwards he or she answers the questions of the checklist. It is quite unclear 
which approach inspectors follow when using a checklist and how they achieved 
their results in terms of defects detected. The final weakness of a checklist is the 
fact that checklist questions are often limited to the detection of defects that 
belong to particular defect types. Since the defect types are based on past defect 
information [24], inspectors may not focus on defect types not previously 
detected and, therefore, may miss whole classes of defects. 
To address some of the presented difficulties, one can develop a checklist 
according to the following principles: 

• The length of a checklist should not exceed one page. 
• The checklist question should be phrased as precise as possible. 
• The checklist should be structured so that the quality attribute is clear to 

the inspector and the question give hints on how to assure the quality 
attribute. 

In some cases the length of a checklist may exceed one page. In these cases, it 
may be possible to make inspectors responsible for different parts of the 
checklist. Although these actions can be taken, a checklist still provides very little 
guidance for inspectors on how the perform the various checks. This weakness 
led to the development of more procedural reading techniques. 
Techniques providing more structured and precise reading instructions include 
both a reading technique denoted "Reading by Stepwise Abstraction" for code 
documents advocated by the Cleanroom community [36] [37] [81], as well as a 
technique suggested by Parnas et. al. called Active Design Review  [98] [99] for 
the inspection of design documents.  
 
The technique “Reading by Stepwise Abstraction” was described in the context 
of the Verification-based Inspection approach [37]. This is an inspection 
variation used in conjunction with the Cleanroom software development method. 
Although this method requires the author(s) to perform various inspections of 
work products, the inspection process itself is not well described in the literature. 
We found that it consists of at least one step, in which individual inspectors 
examine the work product using "Reading by Stepwise Abstraction". This 
technique requires an inspector to read a sequence of statements in the code and 
to abstract the functions these statements compute. An inspector repeats this 
procedure until the final function of the inspected code artifact has been 
abstracted and can be compared to the specification. This reading technique is 



Handbook on Software Engineering and Knowledge Engineering 

limited to code artifact, though it provides a more formal approach for inspectors 
to check the functional correctness [37]. We found little information on the 
inspection process after the individual defect detection step. However, the 
Cleanroom approach is one of the few development approaches in which defect 
detection and inspection activities are tightly integrated in and coupled with 
development activities. The Cleanroom approach and its integrated inspection 
approach have been applied to several development projects [6] [31] [36].  
 
Parnas and Weiss suggest an inspection method denoted as Active Design 
Reviews (ADR) for inspecting design documents [98] [99]. The authors believe 
that in conventional design inspections, inspectors are given too much 
information to examine, and that they must participate in large meetings, which 
only allow for limited interaction between inspectors and author. To tackle theses 
issues inspectors are chosen based on their specific level of expertise skills and 
assigned to ensure thorough coverage of design documents. Only two roles are 
defined within the ADR process. An inspector has the expected responsibility of 
finding defects, while the designer is the author of the design being scrutinized. 
There is no indication of who is responsible for setting up and coordinating the 
review. The ADR process consists of three steps. It begins with an overview step, 
where the designer presents an overview of the design and meeting times are set. 
The next step is the defect detection step for which the author provides 
questionnaires to guide the inspectors. The questions are designed such that they 
can only be answered by careful study of the design document, that is, inspectors 
have to elaborate the answer instead of stating yes/no. Some of the questions 
reinforce an active inspection role by making assertions about design decisions. 
For example, he or she may be asked to write a program segment to implement a 
particular design in a low-level design document being inspected. The final step 
is defect collection, which is performed in inspection meetings. However, each 
inspection meeting is broken up into several smaller, specialized meetings, each 
of which concentrates on one quality property of the artifact. An example is 
checking consistency between assumptions and functions, that is, determining 
whether assumptions are consistent and detailed enough to ensure that functions 
can be correctly implemented and used. 
Active Design Review is an important inspection variation because ADR 
inspectors are guided by a series of questions posed by the author(s) of the design 
in order to encourage a thorough defect detection step. Thus, inspectors get 
reading support when scrutinizing a design document. Although little empirical 
evidence shows the effectiveness of this approach, other researchers based their 
inspection variations upon these ideas [23] [72]. 
 
A more recent development in the area of reading techniques for individual 
defect detection in software inspection is Scenario-based reading [6]. The essence 
of the Scenario-based reading idea is the use of the notion of scenarios that 
provide custom guidance for inspectors on how to detect defects. A scenario may 



Handbook on Software Engineering and Knowledge Engineering 

be a set of questions or a more detailed description for an inspector on how to 
perform the document review. Principally, a scenario limits the attention of an 
inspector to the detection of particular defects as defined by the custom guidance. 
Since each inspector may use a different scenario, and each scenario focuses on 
different defect types, it is expected that the inspection team, together, becomes 
more effective. Hence, it is clear that the effectiveness of a scenario-based 
reading technique depends on the content and design of the scenarios. So far, 
researchers have suggested three different approaches for developing scenarios 
and, therefore, three different scenario-based reading techniques: Defect-based 
Reading [109] for inspecting requirements documents, a scenario-based reading 
technique based on function points for inspecting requirements documents [23], 
and Perspective-based Reading for inspecting requirements documents [5] or 
code documents [76].  
The main idea behind Defect-based Reading is for different inspectors to focus 
on different defect classes while scrutinizing a requirements document [93] [105] 
[109] [117]. For each defect class, there is a scenario consisting of a set of 
questions an inspector has to answer while reading. Answering the questions 
helps an inspector primarily detect defects of that particular class. The defect-
based reading technique has been validated in a controlled experiment with 
students as subjects. The major finding was that inspectors applying Defect-based 
Reading detect more defects than inspectors applying either Ad-hoc or checklist-
based reading.  
Cheng and Jeffery have chosen a slightly different approach to define scenarios 
for defect detection in requirements documents [23]. This approach is based on 
Function Point Analysis (FPA). FPA defines a software system in terms of its 
inputs, files, inquiries, and outputs. The scenarios, that is, the Function Point 
Scenarios, are developed around these items. A Function Point Scenario consists 
of questions and directs the focus of an inspector to a specific function-point item 
within the inspected requirements document. The researchers carried out an 
experiment to investigate the effectiveness of this approach compared to an ad-
hoc approach. The experimental results show that, on average, inspectors 
following the ad-hoc approach found more defects than inspectors following the 
function-point scenarios. However, experience seemed to be a confounding factor 
that biased the results of the experiment.  
The main idea behind the perspective-based reading technique is that a software 
product should be inspected from the perspective of different stakeholders [5] 
[18] [76] [77]. The rationale is that there is no single monolithic definition of 
software quality, and little general agreement about how to define any of the key 
quality properties, such as correctness, maintainability, or testability. Therefore, 
inspectors of an inspection team have to check software quality as well as the 
software quality factors of a software artifact from different perspectives. The 
perspectives mainly depend upon the roles people have within the software 
development or maintenance process. For each perspective, either one or multiple 
scenarios are defined, consisting of repeatable activities an inspector has to 



Handbook on Software Engineering and Knowledge Engineering 

perform, and questions an inspector has to answer. The activities are typical for 
the role within the software development or maintenance process, and help an 
inspector increase his or her understanding of the software product from the 
particular perspective. For example, designing test cases is a typical activity 
performed by a tester. Therefore, an inspector reading from the perspective of a 
tester may have to think about designing test cases to gain an understanding of 
the software product from the tester's point of view. Once understanding is 
achieved, questions about an activity or questions about the result of an activity 
can help an inspector identify defects.  
Reading a document from different perspectives is not a completely new idea. It 
was seeded in early articles on software inspection, but never worked out in 
detail. Fagan [40] reports that a piece of code should be inspected by the real 
tester. Fowler [42] suggests that each inspection participant should take a 
particular point of view when examining the work product. Graden et al. [49] 
state that each inspector must denote the perspective (customer, requirements, 
design, test, maintenance) by which they have evaluated the deliverable. So far, 
the perspective-based reading technique has been applied to inspecting 
requirements documents [5], object-oriented design models [77], and code 
documents [76].  
General prescriptions about which reading technique to use in which 
circumstances can rarely be given. However, in order to compare them, we set up 
the following criteria: Application Context, Usability, Repeatability, 
Adaptability, Coverage, Training, and Validation. The criteria are to provide 
answers to the following questions: 
• Application Context: To which software products can a reading technique 

be applied and to which software products has a reading technique already 
been applied?  

• Usability: Does a reading technique provide prescriptive guidelines on 
how to scrutinize a software product for defects? 

• Repeatability: Are the results of an inspector's work repeatable, that is, are 
the results such as the detected defects, independent of the person looking 
for defects? 

• Adaptability: Is a reading technique adaptable to particular aspects, e.g., 
notation of the document, or typical defect profiles in an environment? 

• Coverage: Are all required quality properties of the software product, such 
as correctness or completeness, verified in an inspection? 

• Training required: Does the reading technique require some training on the 
inspectors’ behalf? 

• Validation: How was the reading technique validated, that is, how broadly 
has it been applied so far? 

Table 2 below characterizes each reading technique according to these criteria. 
We use question marks in cases for which no clear answer can be provided. 
 
 



Handbook on Software Engineering and Knowledge Engineering 

Reading 
Technique 

Characteristics 

 Application 
Context 

Usabil-
ity 

Repeatabil-
ity 

Adaptability Coverage Training 
required 

Validation 

Ad-hoc All Prod-
ucts  

No No No No No Industrial 
Practice 

Checklists All Prod-
ucts  

No No Yes Case 
Dependent 

No Industrial 
Practice 

Reading by 
stepwise 
Abstraction 

All Prod-
ucts allow-
ing ab-
straction, 
Functional 
Code 

Yes Yes No High for 
correctness 
defects 

Yes Applied 
primarily in 
Cleanroom 
projects 

Active 
Design 
Reviews 

Design, 
Design 

Yes Yes Yes ? ? Initial Case 
Study 

Defect-
based 
reading 

All Prod-
ucts, Re-
quirements 

Yes Case 
Dependent 

Yes High Yes Experimen-
tal Valida-
tion 

Reading 
based on 
function 
points 

All Prod-
ucts, Re-
quirements 

Yes Case 
Dependent 

Yes ? Yes Experimen-
tal Valida-
tion 

Perspec-
tive-based 
reading 

All Prod-
ucts , 
Require-
ments, 
Design, 
Code 

Yes  Yes Yes High  Yes Experimen-
tal Valida-
tion and 
initial 
Industrial 
Use 

 Table 2: Characterization of Reading Techniques. 

The Economic Dimension of Software Inspection 
One of the most important criteria for choosing a particular inspection approach 
is the effort a particular inspection method or refinement consumes. Effort is an 
issue in which project managers are mainly interested. Hence, we refer to this 
dimension as the managerial dimension. To make a sound evaluation, that is, to 
determine whether it is worth spending effort on inspection, one must also 
consider how inspections affect the quality of the software product as well as the 
cost and the duration of the project in which they are applied. We discuss a 
sample of 24 articles in the context of these three subdimensions. 
In the context of a software development project, the investigation of inspection 
benefits is usually done in a separate analysis phase after one or several 
inspections have been performed. The analysis phase, therefore, does not directly 
belong to the inspection process. It rather represents a kind of characterization or 
improvement process in addition to inspections.   



Handbook on Software Engineering and Knowledge Engineering 

Quality 
Some authors state that inspections can reduce the number of defects reaching 
testing by ten times [45]. However, these statements are often based on personal 
opinion rather than on collected inspection data. Hence, we focus our discussion 
about quality on examples of published inspection data taken from the literature. 
We emphasize that many of the data reported in the literature are not presented in 
a manner that allows straightforward comparison and analysis as pointed out by 
[16]. Table 3 summarizes the results of our analysis. It demonstrates the current 
trend that inspections help detect defects and, thus, improve the quality of the 
inspected documents. We need to emphasize that a direct comparison of 
inspection results between environments should not be done, e.g., one company 
is not “better” than another one just because the defect detection effectiveness is 
higher.  
 

Reference Environment Result 
Aetna Life Casuality 38 defects from 46 detected 

IBM Respond, United  
Kingdom 

93% of all defects were detected by 
inspections 

Fagan [40][41] 

Standard Bank of South Africa Over 50% of all defects detected by 
inspection 

Weller [132] Bull HN Information  
Systems 

70% of all defect detected by inspection 

Grady and 
van Slack [51] 

Hewlett-Packard 60%-70% of all defects detected by 
inspection 

Shirey [122]  60%-70% of all defects detected by 
inspection 

Barnard and 
Price [4] 

AT&T Bell Laboratories 30%-75% of all defects detected by 
inspection 

McGibbon [92] Cardiac Pacemakers  Inc. 70% to 90% of all defects detected by 
inspection 

Collofello and 
Woodfield [26] 

Large real time software project Defect detection effectiveness is 54% for 
design inspection, 64% for code inspec-

tion, and 38% for testing 

Kitchenham et 
al. [71] 

ICL 57.7% of all defects found by code in-
spection 

Franz and 
Shih [43] 

Hewlett Packard 19% of all defects found by inspection 

A. Gately [46] Raytheon Systems  
Company 

The average number of defects found by 
inspection is 18.2. 

Conradi et al. 
[27] 

Ericsson The average number of defects found by 
inspection is 3.41. 

Table 3: Summary of Inspection Results with respect to Quality. 



Handbook on Software Engineering and Knowledge Engineering 

Fagan [40] presents data from a development project at Aetna Life and Casualty. 
Two programmers have written an application program of eight modules (4439 
non-commentary source statements) in Cobol. Design and code inspections were 
introduced into the development process. After 6 months of actual usage, 46 
defects had been detected during development and usage of the program. Fagan 
reports that 38 defects had been detected by design and code inspections together, 
yielding a defect detection effectiveness for inspections of 82%. In this case, the 
defect detection effectiveness was defined as the ratio of defects found and the 
total number of defects in the inspected software product. The remaining 8 
defects had been found during unit test and preparation for acceptance test. In 
another article, Fagan[41] publishes data from a project at IBM Respond, United 
Kingdom. Seven programers developed a program of 6271 LOC in PL/1. Over 
the life cycle of the product, 93% of all defects were detected by inspections. He 
also mentions two projects of the Standard Bank of South Africa (143 KLOC) 
and American Express (13 KLOC of system code), each with a defect detection 
effectiveness for inspections of over 50% without using trained inspection 
moderators.  
Weller [132] presents data from a project at Bull HN Information Systems, which 
replaced inefficient C code for a control microprocessor with Forth. After system 
tests had been completed, code inspection effectiveness was around 70%. Grady 
and van Slack [51] report on experiences from achieving widespread inspection 
use at HP. In one of the company's divisions, inspections (focusing on code) 
typically found 60 to 70% of the defects. Shirey [122] states that defect detection 
effectiveness of inspections is typically reported to range from 60 to 70%. 
Barnard and Price [4] cite several references and report a defect detection 
effectiveness for code inspections varying from 30% to 75%. In their 
environment at AT&T Bell Laboratories, the authors achieved a defect detection 
effectiveness for code inspections of more than 70%. McGibbon [92] presents 
data from Cardiac Pacemakers Inc. where inspections are used to improve the 
quality of life-critical software. They observed that inspections removed 70 to 
90% of all faults detected during development. Collofello and Woodfield [26] 
evaluated reliability-assurance techniques in a case study - a large real-time 
software project that consisted of about 700,000 lines of code developed by over 
400 developers. The respective defect detection effectiveness is reported to be 
54% for design inspections, 64% for code inspections, and 38% for testing. More 
recently, Raz and Yaung [110] presented the results of an analysis of defect-
escape data from design inspection in two maintenance releases of a large 
software product. They found that the less effective inspections were those with 
the largest time investment, the likelihood of defect escapes being clearly 
affected by the way in which the time was invested and by the size of the work 
product inspected. Kitchenham et al. [71] report on experience at ICL, where 
57.7% of defects were found by software inspections. The total proportion of 
development effort devoted to inspections was only 6%. Gilb and Graham [47] 
include experience data from various sources in their discussion of the benefits 



Handbook on Software Engineering and Knowledge Engineering 

and costs of inspections. IBM Rochester Labs publish values of 60% for source 
code inspections, 80% for inspections of pseudocode, and 88% for inspections of 
module and interface specifications. Grady  [50] performs a cost/benefit analysis 
for different techniques, among them design and code inspections. He states that 
the average percentage of defects found for design inspections is 55%, and 60% 
for code inspections. Franz and Shih [43] present data from code inspection of a 
sales and inventory tracking systems project at HP. This was a batch system 
written in COBOL. Their data indicate that inspections had 19% effectiveness for 
defects that could also be found during testing. Myers [95] performed an 
experiment to compare program testing to code walkthroughs and inspections. 
This research is based on work performed earlier by Hetzel [53]. The subjects 
were 59 highly experienced data processing professionals testing and inspecting a 
PL/I program. Myers [95] reports an average effectiveness value of 38% for 
inspections. This controlled experiment was replicated several times [7] [66] 
[139] with similar results.  A. Gately [46] presents some results from the 
Raytheon Systems Company. In this study, historical review data from a large 
real-time embedded system were analyzed. She found an average number of 
defects of 18.2 defects. Conradi et al. [27] present some review results from 
Ericsson. They studied two projects in which reviews and testing were used. The 
data comes from a site that passed CMM level 2 certification and aims for level 3 
in the year 2000. They report an avarage number of defects of 3.41. 

Effort 
It is necessary for a project manager to have a precise understanding of the effort 
associated with inspections. Since inspection is a human-based activity, 
inspection costs are determined by human effort. The most important question 
addressed in literature is whether an inspection effort is worth making when 
compared to the effort for other defect detection activities, such as testing. Most 
of the literature present solid data supporting the claim that the costs for detecting 
and removing defects during inspections is much lower than detecting and 
removing the same defects in later phases. Table 4 summarizes the results of our 
analysis.  
 
 
 
 
 
 
 
 
 
 
 
 



Handbook on Software Engineering and Knowledge Engineering 

Reference Environment Result 
Kaner [68] Jet Propulsion  

Laboratory 
Ratio of the cost of fixing defects during in-

spection to fixing them  
during formal testing range from 1:10 to 1:34 

Remus [112] IBM Santa Teresa Lab Ratio of the cost of fixing defects during in-
spection to fixing them  

during formal testing is 1:20 

Kan [67] IBM Rochester Lab Ratio of the cost of fixing defects during in-
spection to fixing them during formal testing is 

1:13 

Ackerman et al. [1] Different Projects 0.58 – 5 hours per defect found (lower than in 
testing) 

Weller [133] Bull HN Information 
Systems 

1.43 hours per defect in inspection and 6 hours 
in testing 

Collofello and 
Woodfield [26] 

Large real time  
software project 

7.5 hours per defect for design  
inspection, 6.3 hours per defect for code in-

spection, and 11.6 hours per defect for testing 

Franz and Shih  
[43] 

Hewlett Packard 1 hour per defect for inspection and 6 hours 
per defect for testing 

Kelly et al. [69] Jet Propulsion  
Laboratory 

1.75 hours per defect of design  
inspection, 1.46 hours per defect for code 
inspection, 17 hours per defect for testing 

Kitchenham et al. 
[71] 

ICL 1.58 hours per defect in design  
inspection 

Gilb and  
Graham [47] 

Applicon 0.9 hours to find and fix a major  
defect. 

Bourgeois [13] Lockheed Martin West-
ern Development Labs 

1.3 hours per defect found and 1.4-1.8 hour 
per defect found and fixed 

Table 4: Summary of Inspection Results with respect to Effort. 

The Jet Propulsion Laboratory (JPL) found the ratio of the cost of fixing defects 
during inspections to fixing them during formal testing ranged from 1:10 to 1:34 
[68], at the IBM Santa Teresa Lab the ratio was 1:20 [112], and at the IBM 
Rochester Lab it was 1:13 [67].  
We must say that authors often relate the costs to either the size of the inspected 
product or the number of defects found. Ackerman et al. [1] present data on 
different projects as a sample of values from the literature and from private 
reports:  
• The development group for a small warehouse-inventory system used 

inspections on detailed design and code. For detailed design, they reported 
3.6 hours of individual preparation per thousand lines, 3.6 hours of 
meeting time per thousand lines, 1.0 hours per defect found, and 4.8 hours 
per major defect found (major defects are those that will affect execution). 
For source code, the results were 7.9 hours of preparation per thousand 
lines, 4.4 hours of meetings per thousand lines, and 1.2 hours per defect 
found.  



Handbook on Software Engineering and Knowledge Engineering 

• A major government-systems developer reported the following results 
from inspection of more than 562,000 lines of detailed design and 249,000 
lines of source code: For detailed design, 5.76 hours of individual 
preparation per thousand lines, 4.54 hours of meetings per thousand lines, 
and 0.58 hours per defect found. For code, 4.91 hours of individual 
preparation per thousand lines, 3.32 hours of meetings per thousand lines, 
and 0.67 hours per defect found.  

• Two quality engineers from a major government-systems contractor 
reported 3 to 5 staff-hours per major defect detected by inspections, 
showing a surprising consistency over different applications and 
programming languages.  

• A banking computer-services firm found that it took 4.5 hours to eliminate 
a defect by unit testing compared to 2.2 hours by inspection (these were 
probably source code inspections).  

• An operating-system development organization for a large mainframe 
manufacturer reported that the average effort involved in finding a design 
defect by inspections is 1.4 staff-hours compared to 8.5 staff-hours of 
effort to find a defect by testing.  

Weller [133] reports data from a project that performed a conversion of C code to 
Fortran for several timing-critical routines. While testing the rewritten code, it 
took 6 hours per failure. It was known from a pilot project in the organization that 
they had been finding defects in inspections at a cost of 1.43 hours per defect. 
Thus, the team stopped testing and inspected the rewritten code, detecting defects 
at a cost of less than 1 hour per defect.  
Collofello and Woodfield [26] estimate some factors for which they had 
insufficient data. They performed a survey among many of the 400 members of a 
large real-time software project who were asked to estimate the effort needed to 
detect and correct a defect for different techniques. The results were 7.5 hours for 
a design error, 6.3 hours for a code error, both detected by inspections, 11.6 hours 
for an error found during testing, and 13.5 hours for an error discovered in the 
field.  
Franz and Shihs data [43] indicate that the average effort per defect for code 
inspections was 1 hour and for testing 6 hours. In presenting the results of 
analyzing inspections data at JPL, Kelly et al. [69] report that it takes up to 17 
hours to fix defects during formal testing, based on a project at JPL. They also 
report approximately 1.75 hours to find and fix defects during design inspections, 
and approximately 1.46 hours during code inspections. 
There are also examples that present findings from applying inspections only as a 
quality assurance activity. Kitchenham et al. [71], for instance, report on 
experience at ICL where the cost of finding a defect in design inspections was 
1.58 hours.  
Gilb and Graham [47] include experience data from various sources in their 
discussion of the benefits and costs of inspections. A senior software engineer 
describes how software inspections started at Applicon. In the first year, 9 code 



Handbook on Software Engineering and Knowledge Engineering 

inspections and 39 document inspections (documents other than code) were 
conducted and an average effort of 0.8 hours was spent to find and fix a major 
problem. After the second year, a total of 63 code inspections and 100 document 
inspections had been conducted and the average effort to find and fix a major 
problem was 0.9 hours. 
Bourgeois [13] reports experience from a large maintenance program within 
Lockheed Martin Western Development Labs where software inspections 
replaced structured walkthroughs in a number of projects. The analyzed program 
was staffed by more than 75 engineers who maintain and enhance over 2 million 
lines of code. The average effort for 23 software inspections (6 participants) was 
1.3 staff-hours per defect found and 2.7 staff-hours per defect found and fixed. 
Bourgeois also presents data from Jet Propulsion Laboratory, which is used as an 
industry standard. There, the average effort for 171 software inspections (5 
inspection participants) was 1.1 staff-hours per defect found and 1.4 to 1.8 staff-
hours per defect found and fixed.  
Because inspection is a human-intensive activity and, therefore, effort 
consuming, managers are often critical or even reluctant to use them the first 
time. Part of the problem is the perception that software inspections cost more 
than they are worth. However, available quantitative evidence as presented above 
indicates that inspections have had significant positive impact on the quality of 
the developed software and that inspections are more cost-effective than other 
defect detection activities, such as testing. Furthermore, it is important to keep in 
mind that besides quality improvement and cost savings realized by finding and 
fixing defects before they reach the customer, other benefits are often associated 
with performing inspections. These benefits, such as learning, are often difficult 
to measure, but they also have an impact on quality, productivity, and the success 
of a software development project. 

Duration 
Inspections do not only consume effort, but they also have an impact on the 
product's development cycle time. Inspection activities are scheduled in a way in 
which all people involved can participate and fulfill their roles. Thus, the interval 
for the completion of all activities will range from at least a few days up to a few 
weeks. During this period, other work that relies on the inspected software 
product may be delayed. Hence, duration might be a crucial aspect for a project 
manager if time to market is a critical issue during development. However, only 
few articles present information on the global inspection duration.  
Votta discusses the effects of time loss due to scheduling contention. He reports 
that inspection meetings account for 10 percent of the development interval 
[130]. Due to the delays, he advises substituting inspection meetings with other 
forms of defect collection. 



Handbook on Software Engineering and Knowledge Engineering 

The Organizational Dimension of Software Inspection 
Fowler [42] states that the introduction of inspection is more than giving 
individuals the set of skills on how to perform inspections: It also introduces a 
new process within an organization. Hence, it affects the whole organization, that 
is, the team, the project structure, and the environment. We identified 6 
references relevant to this dimension. 

Team 
An important factor regarding software inspection is the human factor. A 
Software inspection is driven by its participants, i.e., the members of a project 
team. Hence, the success or failure of software inspection as a tool for quality 
improvement and cost reduction heavily depends on human factors. If team 
members are unwilling to perform inspections, all efforts will be deemed to fail. 
Franz and Shih [43] point out that attitude about defects is the key to effective 
inspections. Once the inevitability of defects is accepted, team members often 
welcome inspections as a defect detection method. To overcome objections, 
Russell reports on an advertising campaign to persuade project teams that 
inspections really do work [116]. An advice we often found in the literature was 
to exclude management from an inspection [43] [68]. This is suggested to avoid 
any misconception that inspection results are used for personnel evaluation. 
Furthermore, training is deemed essential [1] [42]. Training allows project 
members to build their own opinion on how inspections work and how crucial 
defect data are within an environment for triggering further empirically justified 
process improvements. 

Project Structure 
Inspection per se is a human-based activity. Especially when meetings are 
performed, authors are confronted with the defects they created. This can easily 
result in personal conflicts, particularly in project environments with a strict 
hierarchy. Hence, one must consider the project structure to anticipate the 
conflict potential among participants. Depending on this potential for conflict, 
one must decide whether an inspection moderator belongs to the development 
team or must come from an independent department. This is vital in cases in 
which inspection is applied between sub-groups of one project. Personal conflicts 
within an inspection result in demotivation for performing inspection at all. 

Environment 
Introducing inspections is a technology transfer initiative. Hence, issues revolve 
around the need to deal with a software development organization, not just in 
terms of its workers but also in terms of its culture, management, budget, quality, 
and productivity goals. All these aspects can be subsumed in the subdimension 
environment of an organization. Fowler [42] states that preparing the 
organization for using inspections dovetails with adapting the inspections to the 



Handbook on Software Engineering and Knowledge Engineering 

local technical issues. Furthermore, the new process must be carefully designed 
to serve in the organization's environment and culture. Based on their inspection 
experiences at Hewlett-Packard, Grady and Van Slack [51] suggest a four stage 
process for inspection technology transfer: Experimental stage, initial guideline 
stage, widespread belief and adoption stage, and standardization stage. The 
experimental stage comprises the first inspection activities within an 
organization, and is often limited to a particular project of an organization. Based 
on the experiences in this project, first guidelines can be developed. This is the 
starting point for the initial guideline stage. In this stage, the inspection approach 
is defined in more detail and training material is created. The widespread belief 
and adoption stage takes advantage of the available experiences and training 
material to adopt inspection to several projects. Finally, the standardization stage 
helps build an infrastructure structure strong enough to achieve and hold 
inspection competence. This approach follows a typical new technology transfer 
model. 

The Tool Dimension of Software Inspection 
Currently, few tools supporting inspections are available. Some of them were 
developed by researchers to investigate software (often source code) inspection 
and none of the academic tools has reached commercial status yet. There may be 
some commercial tools available that we were not aware of, since they have not 
been discussed in the inspection literature. We analyzed, discussed, and classified 
the following ten inspection tools: (1) PAE (Program Assurance Environment) 
[8], which can be seen as an extended debugger and represents an exception in 
the list of tools. (2) InspecQ [73] concentrates on the support of the Phased 
Inspection process model developed by Knight and Meyers (3) ICICLE [20] 
supports the defect detection phase as well as the defect collection phase in a 
face-to-face meeting. (4) Scrutiny [48] and (5) CSI [90], support synchronous, 
distributed meetings to enable the inspection process for geographically separated 
development teams. (6) CSRS [62]  (7) InspectA [73], (8) Hypercode  [101], and 
(9) AISA [102] removes the conventional defect collection phase and replace it 
with a public discussion phase were participants vote on defect-annotations. (10) 
ASSIST [83] uses its own process modelling language and executes any desired 
inspection process model. All tools provide more or less comfortable document 
handling facilities for browsing documents on-line.  
To compare the various tools, we developed Table 3 according to the various 
phases of the inspection process. For the defect detection phase we added a row 
to characterize the capability of a tool to automate the defect detection process 
(e.g., with rule sets). For the defect collection phase, we added a row to 
determine whether a tool supports defect collection in a synchronous (i.e. same 
time), asynchronous (i.e., different time), local (i.e., same place), or distributed 
(i.e., different place) manner. We focused on whether a tool provides facilities to 
control and measure the inspection process, and on the infrastructure on which 
the tool is running (a cross `x' indicates support and a minus `-' no support). Of 



Handbook on Software Engineering and Knowledge Engineering 

course, for source code products various compilers are available that can perform 
type and syntactical checking. This may remove some burden from inspectors. 
Furthermore, support tools, such as Lint for C, may help detect further classes of 
defects. However, the use of these tools is limited to particular development 
situations and may only lighten the inspection burden. 
 

 PAE ICICLE Scruti-
ny 

CSRS Ins-
pecQ 

ASSISST CSI/ 
CAIS 

Inspec-
tA 

Hyper-
Code  

AISA 

Refer-
ences 

          

           

Planning 
Support 

- - - X X X - X X - 

           

Defect 
Detection 
Support 

X X X X X X X X X X 

Auto-
mated 
Defect 
Detection 

X X - - X - - - - - 

Annota-
tion Sup-
port 

- X X X X X X X X x 

Document 
Handling 
Support 

C-
Cod

e 

C-code Code Code/
Text 

C-
Code 
Ada 

Code Code Code Code/ 
Text 

Code/
Text/

Graph 

Reading 
Tech-
nique 

Che
cklist 

Checklist - Checkl
ist 

Checkl
ist 

- Check
list 

Check-
list 

- - 

           

Defect 
Collection 
Support 

- X X X - X X X X X 

           

(Synch/As
ynch)/(Lo
cal/Distrib
uted)  

-/- 
-/- 

S/- 
L/- 

S/- 
L/D 

-/A 
-/D 

-/- 
-/- 

S/A 
l/D 

S/A 
L/D 

-/A 
-/D 

S/A 
-/D 

-/A 
-/D 

Defect 
Correction 
Support 

- - - - - - - (x) (x) x 

           

Inspection 
Process 

- - - X X X - X X X 



Handbook on Software Engineering and Knowledge Engineering 

Control 
possible 

           

Process 
Meas-
urement 
Support 

- X X X - X X X X x 

Defect 
Statistics 

- X X X - X X X X X 

           
Supported 
Infrastruc-
ture 

Unix Unix/X-
Windows 

ConvB Ergret ? LAN Suite E-Mail WWW WWW 

Table 3: Overview of Inspection Tools. 

We must admit that the question of how to support inspections with tools is 
addressed by many researchers and companies. Hence, we might have missed 
some tool that may be beneficial for an inspection. 

 



Handbook on Software Engineering and Knowledge Engineering 

Conclusions 

This survey presented a survey of work in the area of software inspection. The 
survey introduced a detailed description of the core concepts and relationships 
that together define the field of software inspection technologies. 
This type of survey is beneficial to researchers and practitioners for various 
reasons. First, it provides a roadmap in the form of a taxonomy that allows for the 
identification of available inspection methods and experience. Hence, this survey 
helps identify the ingredients of the best-suited inspection approach for a 
particular situation through the combination of the various dimensions. Second, 
the work helps structure the large amount of published inspection work. This 
structure presents the gist of the inspection work so far performed and helps 
researchers and practitioners characterize the nature of new work in the 
inspection field. In a sense, this structure also helps define a common vocabulary 
that depicts the software inspection area. Third, the survey presents an overview 
of the current state of research as well as an analysis of today's knowledge in the 
software inspection field.  
We have to state that each survey has its limitations because it can only be a 
snapshot of the work that is currently in progress. Furthermore, a survey usually 
represents only a fraction of articles that are available on a subject. However, in 
this case we analyzed more than four hundred references. We are therefore 
convinced that this survey represents a good snapshot of the inspection-related 
work. 

Acknowledgment 

I am grateful to Jean-Marc DeBaud who participated in an earlier version of this 
survey as well as the anonymous reviewers for their comments on this chapter. 

 



Handbook on Software Engineering and Knowledge Engineering 

References 
[1] Ackerman, A. F., Buchwald, L. S., and Lewsky, F. H., 1989. Software Inspec-

tions: An Effective Verification Process. IEEE Software, 6(3): 31-36. 
[2] Ardissone, M. P. , Spolverini, M., and Valentini, M., 1998. Statistical Decision 

Support Method for In-process Inspections, Proceedings of the 4th International 
Conference on Achieving Quality In Software, pp. 135-143. 

[3] Association of Computing Machinery, 1998. The ACM Digital Library. 
http://www.acm.org/dl/. 

[4] Barnard, J. and Price, A., 1994. Managing Code Inspection Information. IEEE 
Software, 11(2):59-69. 

[5] Basili, V., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sorumgard, S., and 
Zelkowitz, M., 1996. The Empirical Investigation of Perspective-based Reading. 
Journal of Empirical Software Engineering, 2(1):133-164. 

[6] Basili, V. R., 1997. Evolving and Packaging Reading Technologies. Journal of 
Systems and Software, 38(1). 

[7] Basili, V. R. and Selby, R. W., 1987. Comparing the effectiveness of software 
testing techniques. IEEE Transactions on Software Engineering, 
13(12):1278-1296. 

[8] Belli, F. and Crisan, R., 1996. Towards Automation of Checklist-based Code-
Reviews. Proceedings of the 8th International Symposium on Software Reliability 
Engineering. 

[9] Bisant, D. B. and Lyle, J. R., 1989. A Two-Person Inspection Method to Improve 
Programming Productivity. IEEE Transactions on Software Engineering, 
15(10):1294-1304. 

[10] Blakely, F. W. and Boles, M. E., 1991. A Case Study of Code Inspections. Hew-
lett-Packard Journal, 42(4):58-63. 

[11]   Blalock, H. M., 1979. Theory Construction. Prentice Hall, Englewood Cliffs. 
[12]   Boehm, B. W., 1981. Software Engineering Economics. Advances in Computing 

Science and Technology. Prentice Hall. 
[13]   Bourgeois, K. V., 1996. Process Insights from a Large-Scale Software Inspections 

Data Analysis. Cross Talk, The Journal of Defense Software Engineering, 17-23. 
[14]   Briand, L., El Emam, K., Freimut, B., and Laitenberger, O., 1997. Quantitative 

Evaluation of Capture-Recapture Models to Control Software Inspections. Pro-
ceedings of the 9th International Symposium on Software Reliability Engineer-
ing. 

[15]   Briand, L. El Emam,, K., Freimut, B., Laitenberger, O., 2000. A Comprehensive 
Evaluation of Capture-Recapture Models for Estimating Software Defect Content, 
IEEE Transactions on Software Engineering, Vol. 26, No. 6. 

[16]   Briand, L., E -Emam, K., Fussbroich, T., and Laitenberger, O., 1998. Using Si-
mulation to Build Inspection Efficiency Benchmarks for Development Projects. 
Proceedings of the 20th International Conference on Software Engineering, pages 
340-349. 

[17]   Briand, L. C., Differding, C. M., and Rombach, H. D., 1996. Practical guidelines 
for measurement-based process improvement. Software Process, 2(4):253-280. 



Handbook on Software Engineering and Knowledge Engineering 

[18]   Briand, L. C.,  Freimut, B.G., Klein, B., Laitenberger, O., and Ruhe, G.,  1998. 
Quality Assurance Technologies for the EURO Conversion - Industrial Experi-
ence at Allianz Life Assurance, in 2nd International Software Quality Week 
Europe, Brussels, Belgium. 

[19]   Bröhl, A.-P. and Dröschel, W., 1995. Das V-Modell. Oldenbourg. 
[20]   Brothers, L., Sembugamoorthy, V., and Muller, M., 1990. ICICLE: Groupware 

for Code Inspection. Proceedings of the ACM Conference on Computer Sup-
ported Cooperative Work, pages 169-181. 

[21]   Brykczynski, B. and Wheeler, D. A., 1993. An Annotated Bibliography on Soft-
ware Inspections. ACM SIGSOFT Software Engineering Notes, 18(1):81-88. 

[22]   Cai, K., 1998, On Estimating the Number of Defects Remaining in Software, 
Journal of Systems and Software, vol. 40, pp. 93-114. 

[23]   Cheng, B. and Jeffrey, R., 1996. Comparing Inspection Strategies for Software 
Requirements Specifications. Proceedings of the 1996 Australian Software Engi-
neering Conference, pages 203-211. 

[24]   Chernak, Y., 1996. A Statistical Approach to the Inspection Checklist Formal 
Synthesis and Improvement. IEEE Transactions on Software Engineering, 
22(12):866-874. 

[25]   Christenson, D. A., Steel, H. T., and Lamperez, A. J., 1990. Statistical quality 
control applied to code inspections. IEEE Journal Selected Areas in Communica-
tion, 8(2):196-200. 

[26]   Collofello, J. S. and Woodfield, S. N., 1989. Evaluating the effectiveness of reli-
ability-assurance techniques. Journal of Systems and Software, 9:191-195. 

[27]   Conradi, R., Marjara, A.S., and Skatevik, B., 1999. Empirical Studies of Inspec-
tion and Test Data, in Proceedings of the First Conference on Product-Focused 
Process Improvement, Oulo, Finland. 

[28]   Cooper, H. M., 1982. Scientific guidelines for conducting integrative research 
reviews. Review of Educational Research, 52(2):291-302. 

[29]   Crossman, T. D., 1991. A Method of Controlling Quality of Applications Soft-
ware. South African Computer Journal, 5:70-74. 

[30]   D’Astous, P., Robillard, P. N., 2000. Characterizing Implicit Information during 
Peer Review Meetings, Proceedings of the 22nd International Conference on 
Software Engineering, Limerick. 

[31]   Deck, M., 1994. Cleanroom Software Engineering to reduce Software Cost. 
Technical report, Cleanroom Software Engineering Associates, 6894 Flagstaff 
Rd. Boulder, CO 80302. 

[32]   DeMarco, T., 1982. Controlling Software Projects. Yourdon Press, N.Y. 
[33]   Dennis, A. and Valacich, J., 1993. Computer brainstorms: More heads are better 

than one. Journal of Applied Social Psychology, 78(4):531-537. 
[34]   Doolan, E. P., 1992. Experience with Fagan's Inspection Method. Soft-

ware-Practice and Experience, 22(3):173-182. 
[35]   Dunsmore, A., Roper, M., Wood, M., 2000. Object-Oriented Inspection in the 

Face of Delocalisation, Proceedings of the 22nd International Conference on 
Software Engineering, Limerick. 

[36]   Dyer, M., 1992a. The Cleanroom Approach to Quality Software Development. 
John Wiley and Sons, Inc. 

[37]   Dyer, M., 1992b. Verification-based Inspection. Proceedings of the 26th Annual 
Hawaii International Conference on System Sciences, pages 418-427. 



Handbook on Software Engineering and Knowledge Engineering 

[38]   Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G., and VanderWiel, S., 1992. 
Estimating Software Fault Content before Coding. Proceedings of the 14th Inter-
national Conference on Software Engineering, pages 59-65. 

[39]   El Emam, K., Laitenberger, O., Harbich, H., 2000. The Application of Subjective 
Effectiveness to Controlling Software Inspections, Journal of Systems and Soft-
ware, vol. 54, no. 2.  

[40]   Fagan, M. E., 1976. Design and Code Inspections to Reduce Errors in Program 
Development. IBM Systems Journal, 15(3):182-211. 

[41]   Fagan, M. E., 1986. Advances in Software Inspections. IEEE Transactions on 
Software Engineering, 12(7):744-751. 

[42]   Fowler, P. J., 1986. In-process Inspections of Workproducts at AT&T. AT&T 
Technical Journal, 65(2):102-112. 

[43]   Franz, L. A. and Shih, J. C., 1994. Estimating the Value of Inspections and Early 
Testing for Software Projects. CS-TR- 6, Hewlett-Packard Journal. 

[44]   Fraunhofer Institute for Experimental Software Engineering, 1998. An Inspection 
Bibliography. http://www.iese.fhg.de/Inspections. 

[45]   Freedman, D. P. and Weinberg, G. M., 1990. Handbook of Walkthroughs, Inspec-
tions, and Technical Reviews. Dorset House Publishing, New York, 3rd edition. 

[46]   Gately, A.A., 1999, Design and Code Inspection Metrics, in International Confer-
ence on Software Management and Applications of Software Measurement, San 
Jose, Ca. 

[47]   Gilb, T. and Graham, D., 1993. Software Inspection. Addison-Wesley Publishing 
Company. 

[48]   Gintell, J., Houde, M., and McKenney, R., 1995. Lessons learned by building and 
using Scrutiny, a collaborative software inspection system. Proceedings of the 7th 
International Workshop on Computer-Aided Software Engineering, pages 
350-357. 

[49]   Graden, M. E., Horsley, P. S., and Pingel, T. C., 1986. The Effects of Software 
Inspections on a major Telecommunications-project. AT&T Technical Journal, 
65(3):32-40. 

[50]   Grady, R. B., 1994. Successfully applying software metrics. IEEE Computer, 
27(9):18-25. 

[51]   Grady, R. B. and van Slack, T., 1994. Key Lessons in Achieving Widespread 
Inspection Use. IEEE Software, 11(4):46-57. 

[52]   Hatton, L., 1998. Does OO Sync with How We Think? IEEE Software, 
15(3):46-54. 

[53]   Hetzel, W. C., 1976. An Experimental Analysis of Program Verification Meth-
ods. PhD thesis, University of North Carolina at Chapel Hill, Department of 
Computer Science. 

[54]   Humphrey, W. H., 1995. A Discipline for Software Engineering. Addison-
Wesley. 

[55]   International Software Engineering Research Network, 1998. Bibliography of the 
International Software Engineering Research Network. 
http://www.iese.fhg.de/ISERN/pub/isern_biblio_tech.html. 

[56]   Iisakka, J.,  Tervonen, I.,  1998. Painless inprovements to the review process, 
Software Quality Journal, vol. 7, pp. 11-20. 

[57]   Jackson, A. and Hoffman, D., 1994. Inspecting module interface specifications. 
Software Testing, Verification and Reliability, 4(2):101-117. 



Handbook on Software Engineering and Knowledge Engineering 

[58]   Jalote, P. and Haragopal, M., 1998. Overcoming the NAH Syndrome for Inspec-
tion Deployment. Proceedings of the Twentieth International Conference on 
Software Engineering, pages 371-378. 

[59]   Johnson, P., 1998a. The WWW Formal Technical Review Archive. 
http://zero.ics.hawaii.edu/johnson/FTR. 

[60]   Johnson, P. M., 1998b. Reengineering Inspection. Communications of the ACM, 
41(2):49-52. 

[61]   Johnson, P. M. and Tjahjono, D., 1993. Improving Software Quality through 
Computer Supported Collaborative Review. Proceedings of the 19th International 
Conference on Software Engineering, pages 61-76. 

[62]   Johnson, P. M. and Tjahjono, D., 1997. Assessing software review meetings: A 
controlled experimental study using CSRS. ACM Press, pages 118-127. 

[63]   Johnson, p.M.,  Tjahjono, D., 1998, Does Every Inspection Really Need a Meet-
ing, Journal of Empirical Software Engineering, vol. 3, no. 1, pp. 9-35. 

[64]   Jones, C., 1994. Gaps in the Object-oriented Paradigm. IEEE Computer, 
27(6):90-91. 

[65]   Jones, C., 1996. Software Defect-Removal Efficiency. IEEE Computer, 
29(4):94-95. 

[66]   Kamsties, E. and Lott, C. M., 1995. An empirical evaluation of three defect-
detection techniques. In: Schäfer, W. and Botella, P., editors, Proceedings of the 
5th European Software Engineering Conference, pages 362-383. Lecture Notes in 
Computer Science Nr. 989, Springer-Verlag. 

[67]   Kan, S. H., 1995. Metrics and Models in Software Quality Engineering. Addison-
Wesley Publishing Company. 

[68]   Kaner, C. , 1998. The Performance of the N-Fold Requirement Inspection Me-
thod, Requirements Engineering Journal, vol. 2, no. 2, pp. 114-116. 

[69]   Kelly, J. C., Sherif, J. S., and Hops, J., 1992. An Analysis of Defect Densities 
found during Software Inspections. Journal of Systems and Software, 17:111-117. 

[70]   Kim, L. P. W., Sauer, C., and Jeffery, R., 1995. A framework for software devel-
opment technical reviews. Software Quality and Productivity: Theory, Practice, 
Education and Training. 

[71]   Kitchenham, B., Kitchenham, A., and Fellows, J., 1986. The effects of inspec-
tions on software quality and productivity. Technical Report 1, ICL Technical 
Journal. 

[72]   Knight, J. C. and Myers, E. A., 1991. Phased Inspections and their Implementa-
tion. ACM SIGSOFT Software Engineering Notes, 16(3):29-35. 

[73]   Knight, J. C. and Myers, E. A., 1993. An Improved Inspection Technique. Com-
munications of the ACM, 36(11):51-61. 

[74]   Kusumoto, S., 1993. Quantitative Evaluation of Software Reviews and Testing 
Processes. PhD thesis, Faculty of the Engineering Science of Osake University. 

[75]   Kusumoto, S., Chimura, A., Kikuno, T., Matsumoto, K., Mohri, Y., 1998. A 
Promising Approach to Two-Person Software Review in an Educational Envi-
ronment, Journal of Systems and Software, no. 40, pp. 115-123. 

[76]   Laitenberger, O. and DeBaud, J.-M., 1997. Perspective-based Reading of Code 
Documents at Robert Bosch GmbH. Information and Software Technology, 
39:781-791.  

[77]   Laitenberger, O., 2000. Cost-Effective Detection of Software Defects with Per-
spective-based Inspection, PhD-Thesis, University of Kaiserslautern, ISBN 3-
8167-5583-6. 



Handbook on Software Engineering and Knowledge Engineering 

[78]    Land, L. P. W., Sauer, C., and Jeffery, R., 1997. Validating the Defect Detection 
Performance Advantage of Group Designs for Software Reviews: Report of a La-
boratory Experiment Using Program Code. Proceedings of the 6th European 
Software Engineering Conference, pages 294-309. Lecture Notes in Computer 
Science No 1301, ed. Mehdi Jazayeri, Helmut Schauer. 

[79]   Letovsky, S., Pinto, J., Lampert, R., and Soloway, E., 1987. A Cognitive Analysis 
of a Code Inspection. In Empirical Studies of Programming, pages 231-247.  

[80]   Levine, J. M. and Moreland, R. L., 1990. Progress in Small Group Research. 
Annual Review of Psychology, 41:585-634. 

[81]   Linger, R. C., Mills, H. D., and Witt, B. I., 1979. Structured Programming: The-
ory and Practice. Addison-Wesley Publishing Company. 

[82]    Macdonald, F., 1997. Assist v1.1 User Manual. Technical Report RR-96-199 
[EFoCS-22-96], Empirical Foundations of Computer Science, (EFoCS), Univer-
sity of Strathclyde, UK. 

[83]   Macdonald, F. and Miller, J., 1995. Modelling Software Inspection Methods for 
the Application of Tool Support. Technical Report RR-95-196 [EFoCS-16-95], 
Empirical Foundations of Computer Science, (EFoCS), University of Strathclyde, 
UK. 

[84]   Macdonald, F., Miller, J., Brooks, A., Roper, M., and Wood, M., 1996b. Apply-
ing Inspection to Object-oriented Software. Software Testing, Verification, and 
Reliability, 6:61-82. 

[85]   Macdonald, F., Miller, J., Brooks, A., Roper, M., and Wood, M., 1996a. 
Automating the Software Inspection Process. Automated Software Engineering, 
3(193):193-218. 

[86]   MacLeod, J. M., 1993. Implementing and Sustaining a Software Inspection Pro-
gram in an R&D Environment. Hewlett-Packard Journal. 

[87]   Madachy, R., Little, L., and Fan, S., 1993. Analysis of a successful Inspection 
Program. Procceding of the 18th Annual NASA Software Eng. Laboratory Work-
shop, pages 176-198. 

[88]   Marciniak, J. J., 1994. Reviews and Audits. In: Marciniak, J. J., editor, Encyclo-
pedia of Software Engineering, volume 2, pages 1084-1090. John Wiley and 
Sons. 

[89]   Martin, J. and Tsai, W.T., 1990. N-fold Inspection: A Requirements Analysis 
Technique. Communications of the ACM, 33(2):225-232. 

[90]   Mashayekhi, V., Drake, J. M., Tsai, W.T., and Riedl, J., 1993. Distributed, Col-
laborative Software Inspection. IEEE Software, 10:66-75. 

[91]   McCabe, T. J., 1976. A Complexity Measure. IEEE Transactions on Software 
Engineering, 2(4):308-320. 

[92]   McGibbon, T., 1996. A Business Case for Software Process Improvement. Tech-
nical Report F30602-92-C-0158, Data & Analysis Center for Software (DACS). 
URL: http://www.dacs.com/techs/roi.soar/soar.html. 

[93]   Miller, J., Wood, M.,  and Roper, M., 1998, Further Experiences with Scenarios 
and Checklists, Journal of Empirical Software Engineering, vol. 3, no. 3, pp. 37-
64. 

[94]   Murphy, P. and Miller, J., 1997. A Process for Asynchronous Software Inspec-
tion. Proceedings of The 8th International Workshop on Software Technology 
and Engineering Practice, pages 96-104. 

[95]   Myers, G. J., 1978. A controlled experiment in program testing and code walk-
throughs/inspections. Communications of the ACM, 21(9):760-768. 



Handbook on Software Engineering and Knowledge Engineering 

[96]   National Aeronautics and Space Administration, 1993. Software Formal Inspec-
tion Guidebook. Technical Report NASA-GB-A302, National Aeronautics and 
Space Administration. http://satc.gsfc.nasa.gov/fi/fipage.html. 

[97]   OCLC, 1998. Online Computer Library Center. 
http://www.oclc.org/oclc/menu/home1.html. 

[98]   Parnas, D. L., 1987. Active Design Reviews: Principles and Practice. Journal of 
Systems and Software, 7:259-265. 

[99]   Parnas, D. L. and Weiss, D., 1985. Active Design Reviews: Principles and Prac-
tices. Proceedings of the 8th International Conference on Software Engineering, 
pages 132-136. Also Available as NRL Report 8927, 18 November 1985. 

[100]   Pedhazur, E. J., 1982. Multiple Regression in Behavioral Research. Hartcourt 
Brace College Publishers, second edition. 

[101]   Perpich, J., Perry, D., Porter, A., Votta, L., and Wade, M., 1997. Anywhere, 
Anytime Code Inspections: Using the Web to Remove Inspection Bottlenecks in 
Large-Scale Software Development. Proceedings of the 19th International Con-
ference on Software Engineering, pages 14-21. 

[102]   Perry, D. E., Porter, A., Votta, L. G., and Wade, M. W., 1996. Evaluating Work-
flow and Process Automation in Wide-Area Software Development. In: Montan-
gero, C., editor, Proceedings of the 5th European Workshop on Software Process 
Technology, Lecture Notes in Computer Science Nr. 1149, pages 188-193, Ber-
lin, Heidelberg. Springer-Verlag. 

[103]   Porter, A. A. and Johnson, P. M., 1997. Assessing Software Review Meetings: 
Results of a Comparative Analysis of Two Experimental Studies. IEEE Transac-
tions on Software Engineering, 23(3):129-144. 

[104] Porter, A. A., Siy, H., Mockus, A., and Votta, L., 1998. Understanding the Sour-
ces of Variation in Software Inspections. ACM Transactions on Software Engi-
neering and Methodology, 7(1):41-79. 

[105] Porter, A.A.,  Votta, L., Comparing Detection Methods for Software Require-
ments Inspection: A Replication using Professional Subjects, 1998. Journal of 
Empirical Software Engineering, vol. 3, no. 4, pp. 355-378. 

[106] Porter, A. A., Siy, H., and Votta, L. G., 1995a. A Review of Software Inspec-
tions. Technical Report CS-TR-3552, UMIACS-TR-95-104, Department of Com-
puter Science, University of Maryland, College Park, Maryland 20742. 

[107] Porter, A. A., Siy, H. P., Toman, C. A., and Votta, L. G., 1997. An Experiment to 
Assess the Cost-Benefits of Code Inspections in Large Scale Software Develop-
ment. IEEE Transactions on Software Engineering, 23(6):329-346. 

[108] Porter, A. A. and Votta, L. G., 1997. What Makes Inspections Work? IEEE Soft-
ware, pages 99-102. 

[109] Porter, A. A., Votta, L. G., and Basili, V. R., 1995b. Comparing Detection Meth-
ods for Software Requirements Inspections: A Replicated Experiment. IEEE 
Transactions on Software Engineering, 21(6):563-575. 

[110] Raz, T. and Yaung, A. T., 1997. Factors affecting design inspection effectiveness 
in software development. Information and Software Technology, 39:297-305. 

[111] Reeve, J. T., 1991. Applying the Fagan Inspection Technique. Quality Forum, 
17(1):40-47. 

[112] Remus, H., 1984. Integrated Software Validation in the View of Inspec-
tions/Reviews. Software Validation, pages 57-65. 



Handbook on Software Engineering and Knowledge Engineering 

[113] Rifkin, S. and Deimel, L., 1994. Applying Program Comprehension Techniques 
to Improve Software Inspection. Proceedings of the 19th Annual NASA Software 
Eng. Laboratory Workshop. NASA. 

[114] Rosenthal, R., 1979. The "file drawer problem" and tolerance for null results. 
Psychological Bulletin, 86(3):638-641. 

[115] Runeson, P., Wohlin, C., 1998. Journal of Empirical Software Engineering, An 
Experimental Evaluation of an Experience-Based Capture-Recapture Method in 
Software Code Inspections, vol. 3, no. 4, pp. 381-406. 

[116] Russell, G. W., 1991. Experience with Inspection in Ultralarge-Scale Develop-
ments. IEEE Software, 8(1):25-31. 

[117] Sandahl, K., Blomkvist, O., Karlsson, J., Krysander, C., Lindvall, M., and Ohls-
son, N.,  1998. An Extended Replication of an Experiment for Assessing Methods 
for Software Requirements Inspection, vol. 3, no. 4, pp. 327-354. 

[118] Sauer, C., Jeffery, R., Lau, L., and Yetton, P., 2000. The Effectiveness of Soft-
ware Development Technical Reviews: A Behaviorally Motivated Program of 
Research, IEEE Transactions on Software Engineering, vol. 26, no. 1. 

[119] Schneider, G. M., Martin, J., and Tsai, W. T., 1992. An experimental study of 
fault detection in user requirements documents. ACM Transactions on Software 
Engineering and Methodology, 1(2):188-204. 

[120] Seaman, C. B. and Basili, V. R., 1998. Communication and Organization: An 
Empirical Study of Discussion in Inspection Meetings. IEEE Transactions on 
Software Engineering, 24(6):559-572. 

[121] Shaw, M. E., 1976. Group Dynamics: The Psychology of Small Group Behav-
iour. McGraw Hill Inc. 

[122] Shirey, G. C., 1992. How Inspections Fail. Proceedings of the 9th International 
Conference on Testing Computer Software, pages 151-159. 

[123] Stein, M., Riedl, J., Harner, S., and Mashayekhi, V., 1997. A Case Study of Dis-
tributed, Asynchronous Software Inspection. Proceedings of the 19th Interna-
tional Conference on Software Engineering, pages 107-117. IEEE Computer So-
ciety Press. 

[124] Strauss, S. H. and Ebenau, R. G., 1993. Software Inspection Process. McGraw 
Hill Systems Design & Implementation Series. 

[125] Svendsen, F. N., 1992. Experience with inspection in the maintenance of soft-
ware. Proceedings of the 2nd European Conference on Software Quality Assur-
ance. 

[126] Tervonen, I., 1996. Support for Quality-Based Design and Inspection. IEEE 
Software, 13(1):44-54. 

[127] Tjahjono, D., 1996. Exploring the effectiveness of formal technical review factor 
with CSRS, a collaborative software review system. PhD thesis, Department of 
Information and Computer Science, University of Hawaii. 

[128] Travassos, G., Shull, F., Fredericks, M., and Basili, V.R., 1999. Detecting defects 
in object oriented designs: Using reading techniques to increase software quality. 
In the Conference on Object-oriented Programming Systems, Languages & Ap-
plications (OOPSLA). 

[129] Tripp, L. L., Stuck, W. F., and Pflug, B. K., 1991. The Application of Multiple 
Team Inspections on a Safety-Critical Software Standard. Proceedings of the 4th 
Software Engineering Standards Application Workshop, pages 106-111. IEEE 
Computer Society Press. 



Handbook on Software Engineering and Knowledge Engineering 

[130] Votta, L. G., 1993. Does Every Inspection Need a Meeting? ACM Software Eng. 
Notes, 18(5):107-114. 

[131] Weinberg, G. M. and Freedman, D. P., 1984. Reviews, Walkthroughs, and In-
spections. IEEE Transactions on Software Engineering, 12(1):68-72. 

[132] Weller, E. F., 1992. Experiences with Inspections at Bull HN Information Sys-
tem. Proceedings of the 4th Annual Software Quality Workshop. 

[133] Weller, E. F., 1993. Lessons from Three Years of Inspection Data. IEEE Soft-
ware, 10(5):38-45. 

[134] Wenneson, G., 1985. Quality Assurance Software Inspections at NASA Ames: 
Metrics for Feedback and Modification. Proceedings of the 10th Annual Software 
Engineering Workshop. 

[135] Wheeler, D. A., Brykczinski, B., and Meeson, R. N., 1996. Software Inspection - 
An Industrial Best Practice. IEEE Computer Society Press. 

[136] Wheeler, D. A., Brykczynski, B., and Jr., R. N. M., 1997. Software Peer Reviews. 
In: Thayer, R. H., editor, Software Engineering Project Management. IEEE Com-
puter Society. 

[137] Wiel, S. A. V. and Votta, L. G., 1993. Assessing Software Designs Using Cap-
ture-Recapture Methods. IEEE Transactions on Software Engineering, 
19(11):1045-1054. 

[138] Wohlin, C. and Runeson, P., 1998. Defect Content Estimations from Review 
Data. Proceedings of the 20th International Conference on Software Engineering, 
pages 400-409. 

[139] Wood, M., Roper, M., Brooks, A., and Miller, J., 1997. Comparing and Combin-
ing Software Defect Detection Techniques: A Replicated Empirical Study. Pro-
ceeding of the 6th European Software Engineering Conference, Lecture Notes in 
Computer Science No 1301, ed. Mehdi Jazayeri, Helmut Schauer, pages 262-277.  

[140] Yourdon, E., 1989. Structured Walkthroughs. Prentice Hall, 4th edition, N.Y. 
[141] Yourdon, E., 1997. Death March Projects. Prentice Hall. 


	Abstract
	Introduction
	Integration of Software Inspection in the Development Context
	Related Work
	Organization of this Survey

	Study Methodology
	Survey Motivation and Principles
	Sampling Approach

	A Taxonomy for Inspection Approaches
	Discussion of published Work in the Context of the Taxonomy
	The Technical Dimension of Software Inspection
	Process
	Planning
	Overview
	Defect Detection
	Defect Collection
	Defect Correction
	Follow-up
	Products
	Team Roles, Size, and Selection
	Team Roles
	Team Size
	Team Selection
	Reading Technique

	The Economic Dimension of Software Inspection
	Quality
	Effort
	Duration

	The Organizational Dimension of Software Inspection
	Team
	Project Structure
	Environment

	The Tool Dimension of Software Inspection

	Conclusions
	Acknowledgment
	References

