
Lecture 7

Amortized Analysis

7.1 Overview

This lecture discusses a useful form of analysis, called amortized analysis, for problems in which
one must perform a series of operations, and our goal is to analyze the time per operation. The
motivation for amortized analysis is that looking at the worst-case time per operation can be too
pessimistic if the only way to produce an expensive operation is to “set it up” with a large number
of cheap operations beforehand.

We also introduce the notion of a potential function which can be a useful aid to performing this
type of analysis. A potential function is much like a bank account: if we can take our cheap
operations (those whose cost is less than our bound) and put our savings from them in a bank
account, use our savings to pay for expensive operations (those whose cost is greater than our
bound), and somehow guarantee that our account will never go negative, then we will have proven
an amortized bound for our procedure.

As in the previous lecture, in this lecture we will avoid use of asymptotic notation as much as
possible, and focus instead on concrete cost models and bounds.

7.2 Introduction

So far we have been looking at static problems where you are given an input (like an array of n
objects) and the goal is to produce an output with some desired property (e.g., the same objects,
but sorted). For next few lectures, we’re going to turn to problems where we have a series of
operations, and goal is to analyze the time taken per operation. For example, rather than being
given a set of n items up front, we might have a series of n insert, lookup, and remove requests to
some database, and we want these operations to be efficient.

Today, we’ll talk about a useful kind of analysis, called amortized analysis for problems of this sort.
The definition of amortized cost is actually quite simple:

Definition 7.1 The amortized cost of n operations is the total cost of the operations divided by
n.

Analyzing the amortized cost, however, will often require some thought if we want to do it well.
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We will illustrate how this can be done through several examples.

7.3 Example #1: implementing a stack as an array

Say we want to use an array to implement a stack. We have an array A, with a variable top that
points to the top of the stack (so A[top] is the next free cell). This is pretty easy:

• To implement push(x), we just need to perform:

A[top] = x;

top++;

• To implement x=pop(), we just need to perform:

top--;

x = A[top];

(first checking to see if top==0 of course...)

However, what if the array is full and we need to push a new element on? In that case we can
allocate a new larger array, copy the old one over, and then go on from there. This is going to be
an expensive operation, so a push that requires us to do this is going to cost a lot. But maybe
we can “amortize” the cost over the previous cheap operations that got us to this point. So, on
average over the sequence of operations, we’re not paying too much. To be specific, let us define
the following cost model.

Cost model: Say that inserting into the array costs 1, taking an element out of the array costs 1,
and the cost of resizing the array is the number of elements moved. (Say that all other operations,
like incrementing or decrementing “top”, are free.)

Question 1: What if when we resize we just increase the size by 1. Is that a good idea?

Answer 1: Not really. If our n operations consist of n pushes then even just considering the
array-resizing cost we will incur a total cost of at least 1 + 2 + 3 + 4 + . . . + (n− 1) = n(n− 1)/2.
That’s an amortized cost of (n− 1)/2 per operation just in resizing.

Question 2: What if instead we decide to double the size of the array when we resize?

Answer 2: This is much better. Now, in any sequence of n operations, the total cost for resizing
is 1 + 2 + 4 + 8 + . . . + 2i for some 2i < n (if all operations are pushes then 2i will be the largest
power of 2 less than n). This sum is at most 2n − 1. Adding in the additional cost of n for
inserting/removing, we get a total cost < 3n, and so our amortized cost per operation is < 3.
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7.4 Piggy banks and potential functions

Here is another way to analyze the process of doubling the array in the above example. Say that
every time we perform a push operation, we pay $1 to perform it, and we put $2 into a piggy bank.
So, our out-of-pocket cost per push is $3. Any time we need to double the array, from size L to
2L, we pay for it using money in the bank. How do we know there will be enough money ($L) in
the bank to pay for it? Because after the last resizing, there were only L/2 elements in the array
and so there must have been at least L/2 new pushes since then contributing $2 each. So, we can
pay for everything by using an out-of-pocket cost of at most $3 per operation. Putting it another
way, by spending $3 per operation, we were able to pay for all the operations plus possibly still
have money left over in the bank. This means our amortized cost is at most 3.1

This “piggy bank” method is often very useful for performing amortized analysis. The piggy bank
is also called a potential function, since it is like potential energy that you can use later. The
potential function is the amount of money in the bank. In the case above, the potential is 2 times
the number of elements in the array after the midpoint. Note that it is very important in this
analysis to prove that the bank account doesn’t go negative. Otherwise, if the bank account can
slowly drift off to negative infinity, the whole proof breaks down.

Definition 7.2 A potential function is a function of the state of a system, that generally should
be non-negative and start at 0, and is used to smooth out analysis of some algorithm or process.

Observation: If the potential is non-negative and starts at 0, and at each step the actual cost
of our algorithm plus the change in potential is at most c, then after n steps our total cost is at
most cn. That is just the same thing we were saying about the piggy bank: our total cost for the
n operations is just our total out of pocket cost minus the amount in the bank at the end.

Sometimes one may need in an analysis to “seed” the bank account with some initial positive
amount for everything to go through. In that case, the kind of statement one would show is that
the total cost for n operations is at most cn plus the initial seed amount.

Recap: The motivation for amortized analysis is that a worst-case-per-operation analysis can
give overly pessimistic bound if the only way of having an expensive operation is to have a lot of
cheap ones before it. Note that this is different from our usual notion of “average case analysis”: we
are not making any assumptions about the inputs being chosen at random, we are just averaging
over time.

7.5 Example #2: a binary counter

Imagine we want to store a big binary counter in an array A. All the entries start at 0 and at
each step we will be simply incrementing the counter. Let’s say our cost model is: whenever we
increment the counter, we pay $1 for every bit we need to flip. (So, think of the counter as an

1In fact, if you think about it, we can pay for pop operations using money from the bank too, and even have $1
left over. So as a more refined analysis, our amortized cost is $3 per push and $−1 per successful pop (a pop from a
nonempty stack).
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array of heavy stone tablets, each with a “0” on one side and a “1” on the other.) For instance,
here is a trace of the first few operations and their cost:

A[m] A[m-1] ... A[3] A[2] A[1] A[0] cost
0 0 ... 0 0 0 0

$1
0 0 ... 0 0 0 1

$2
0 0 ... 0 0 1 0

$1
0 0 ... 0 0 1 1

$3
0 0 ... 0 1 0 0

$1
0 0 ... 0 1 0 1

$2

In a sequence of n increments, the worst-case cost per increment is O(log n), since at worst we flip
lg(n) + 1 bits. But, what is our amortized cost per increment? The answer is it is at most 2. Here
are two proofs.

Proof 1: Every time you flip 0 → 1, pay the actual cost of $1, plus put $1 into a piggy bank. So
the total amount spent is $2. In fact, think of each bit as having its own bank (so when you turn
the stone tablet from 0 to 1, you put a $1 coin on top of it). Now, every time you flip a 1 → 0, use
the money in the bank (or on top of the tablet) to pay for the flip. Clearly, by design, our bank
account cannot go negative. The key point now is that even though different increments can have
different numbers of 1 → 0 flips, each increment has exactly one 0 → 1 flip. So, we just pay $2
(amortized) per increment.

Equivalently, what we are doing in this proof is using a potential function that is equal to the
number of 1-bits in the current count. Notice how the bank-account/potential-function allows us
to smooth out our payments, making the cost easier to analyze.

Proof 2: Here is another way to analyze the amortized cost. First, how often do we flip A[0]?
Answer: every time. How often do we flip A[1]? Answer: every other time. How often do we flip
A[2]? Answer: every 4th time, and so on. So, the total cost spent on flipping A[0] is n, the total
cost spent flipping A[1] is n/2, the total cost flipping A[2] is n/4, etc. Summing these up, the
total cost spent flipping all the positions in our n increments is at most 2n.

7.6 Example #3: What if it costs us 2k to flip the kth bit?

Imagine a version of the counter we just discussed in which it costs 2k to flip the bit A[k]. (Suspend
disbelief for now — we’ll see shortly why this is interesting to consider). Now, in a sequence of n
increments, a single increment could cost as much as n, but the claim is the amortized cost is only
O(log n) per increment. This is probably easiest to see by the method of “Proof 2” above: A[0]
gets flipped every time for cost of $1 each (a total of $n). A[1] gets flipped every other time for
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cost of $2 each (a total of at most $n). A[2] gets flipped every 4th time for cost of $4 each (again,
a total of at most $n), and so on up to A[blg nc] which gets flipped once for a cost at most $n. So,
the total cost is O(n log n), which is O(log n) amortized per increment.

7.7 Example #4: A simple amortized dictionary data structure

One of the most common classes of data structures are the “dictionary” data structures that
support fast insert and lookup operations into a set of items. In the next lecture we will look at
balanced-tree data structures for this problem in which both inserts and lookups can be done with
cost only O(log n) each. Note that a sorted array is good for lookups (binary search takes time
only O(log n)) but bad for inserts (they can take linear time), and a linked list is good for inserts
(can do them in constant time) but bad for lookups (they can take linear time). Here is a method
that is very simple and almost as good as the ones in the next lecture. This method has O(log2 n)
search time and O(log n) amortized cost per insert.

The idea of this data structure is as follows. We will have a collection of arrays, where array i has
size 2i. Each array is either empty or full, and each is in sorted order. However, there will be no
relationship between the items in different arrays. The issue of which arrays are full and which are
empty is based on the binary representation of the number of items we are storing. For example,
if we had 11 items (where 11 = 1 + 2 + 8), the data structure might look like this:

A0: [5]
A1: [4,8]
A2: empty
A3: [2, 6, 9, 12, 13, 16, 20, 25]

To perform a lookup, we just do binary search in each occupied array. In the worst case, this takes
time O(log(n/2) + log(n/4) + log(n/8) + . . . + 1) = O(log2 n).

What about inserts? We’ll do this like mergesort. To insert the number 10, we first create an array
of size 1 that just has this single number in it. We now look to see if A0 is empty. If so we make
this be A0. If not (like in the above example) we merge our array with A0 to create a new array
(which in the above case would now be [5, 10]) and look to see if A1 is empty. If A1 is empty, we
make this be A1. If not (like in the above example) we merge this with A1 to create a new array
and check to see if A2 is empty, and so on. So, inserting 10 in the example above, we now have:

A0: empty
A1: empty
A2: [4, 5, 8, 10]
A3: [2, 6, 9, 12, 13, 16, 20, 25]

Cost model: To be clear about costs, let’s say that creating the initial array of size 1 costs 1,
and merging two arrays of size m costs 2m (remember, merging sorted arrays can be done in linear
time). So, the above insert had cost 1 + 2 + 4.

For instance, if we insert again, we just put the new item into A0 at cost 1. If we insert again, we
merge the new array with A0 and put the result into A1 at a cost of 1 + 2.
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Claim 7.1 The above data structure has amortized cost O(log n) per insert.

Proof: With the cost model defined above, it’s exactly the same as the binary counter with cost
2k for counter k.


