
An Efficient Heuristic Approach for Security Against
Multiple Adversaries

Paper #297

ABSTRACT
In adversarial multiagent domains, security, commonly defined as
the ability to deal with intentional threats from other agents, is a
critical issue. This paper focuses on domains where these threats
come from unknown adversaries. These domains can be modeled
as Bayesian games; much work has been done on finding equilibria
for such games. However, it is often the case in multiagent security
domains that one agent can commit to a mixed strategy which its
adversaries observe before choosing their own strategies. In this
case, the agent can maximize reward by finding an optimal strat-
egy, without requiring equilibrium. Previous work has shown this
problem of optimal strategy selection to be NP-hard. Therefore,
we present a heuristic called ASAP, with three key advantages to
address the problem. First, ASAP searches for the highest-reward
strategy, rather than a Bayes-Nash equilibrium, allowing it to find
feasible strategies that exploit the natural first-mover advantage of
the game. Second, it provides strategies which are simple to under-
stand, represent, and implement. Third, it operates directly on the
compact, Bayesian game representation, without requiring conver-
sion to normal form. We provide an efficient Mixed Integer Linear
Program (MILP) implementation for ASAP, along with experimen-
tal results illustrating significant speedups and higher rewards over
other approaches.

1. INTRODUCTION
In many multiagent domains, agents must act in order to pro-

vide security against attacks by adversaries. A common issue that
agents face in such security domains is uncertainty about the ad-
versaries they may be facing. For example, a security robot may
need to make a choice about which areas to patrol, and how often
[17]. However, it will not know in advance exactly where a robber
will choose to strike. A team of unmanned aerial vehicles (UAVs)
[1] monitoring a region undergoing a humanitarian crisis may also
need to choose a patrolling policy. They must make this decision
without knowing in advance whether terrorists or other adversaries
may be waiting to disrupt the mission at a given location. It may
indeed be possible to model the motivations of types of adversaries
the agent or agent team is likely to face in order to target these ad-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

versaries more closely. However, in both cases, the security robot
or UAV team will not know exactly which kinds of adversaries may
be active on any given day.

A common approach for choosing a policy for agents in such
scenarios is to model the scenarios as Bayesian games. A Bayesian
game is a game in which agents may belong to one or more types;
the type of an agent determines its possible actions and payoffs.
The distribution of adversary types that an agent will face may
be known or inferred from historical data. Usually, these games
are analyzed according to the solution concept of a Bayes-Nash
equilibrium, an extension of the Nash equilibrium for Bayesian
games. However, in many settings, a Nash or Bayes-Nash equi-
librium is not an appropriate solution concept, since it assumes that
the agents’ strategies are chosen simultaneously [5].

In some settings, one player can commit to a strategy before
the other players choose their strategies, and by doing so, attain
a higher reward than if the strategies were chosen simultaneously.
These scenarios are known as Stackelberg games [6]. In a Stackel-
berg game, a leader commits to a strategy first, and then a follower
(or group of followers) selfishly optimize their own rewards, con-
sidering the action chosen by the leader. For example, the security
agent (leader) may first commit to a mixed strategy for patrolling
various areas in order to be unpredictable to the robbers (follow-
ers). The robbers, after observing the pattern of patrols over time,
can then choose their own strategy of choosing a location to rob.

To see the advantage of being the leader in a Stackelberg game,
consider a simple game with the payoff table as shown in Table 1.
The leader is the row player and the follower is the column player.
Here, the leader’s payoff is listed first.

1 2 3
1 5,5 0,0 3,10
2 0,0 2,2 5,0

Table 1: Payoff table for example normal form game.

The only Nash equilibrium for this game is when the leader plays
2 and the follower plays 2 which gives the leader a payoff of 2.
However, if the leader commits to a uniform mixed strategy of
playing 1 and 2 with equal (0.5) probability, the follower’s best
response is to play 3 to get an expected payoff of 5 (10 and 0 with
equal probability). The leader’s payoff would then be 4 (3 and 5
with equal probability). In this case, the leader now has an incen-
tive to deviate and choose a pure strategy of 2 (to get a payoff of
5). However, this would cause the follower to deviate to strategy
2 as well, resulting in the Nash equilibrium. Thus, by committing
to a strategy that is observed by the follower, and by avoiding the
temptation to deviate, the leader manages to obtain a reward higher
than that of the best Nash equilibrium.

The problem of choosing an optimal strategy for the leader to
commit to in a Stackelberg game is analyzed in [5] and found to
be NP-hard in the case of a Bayesian game with multiple types of
followers. Thus, efficient heuristic techniques for choosing high-
reward strategies in these games is an important open issue. Meth-
ods for finding optimal leader strategies for non-Bayesian games
[5] can be applied to this problem by converting the Bayesian game
into a normal-form game by the Harsanyi transformation [8]. If, on
the other hand, we wish to compute the highest-reward Nash equi-
librium, new methods using mixed-integer linear programs (MILPs)
[18] may be used, since the highest-reward Bayes-Nash equilib-
rium is equivalent to the corresponding Nash equilibrium in the
transformed game. However, by transforming the game, the com-
pact structure of the Bayesian game is lost. In addition, since the
Nash equilibrium assumes a simultaneous choice of strategies, the
advantages of being the leader are not considered.

In this paper we introduce an efficient heuristic method for ap-
proximating the optimal leader strategy for security domains, known
as ASAP (Agent Security via Approximate Policies). This method
has three key advantages. First, it directly searches for an optimal
strategy, rather than a Nash (or Bayes-Nash) equilibrium, thus al-
lowing it to find high-reward non-equilibrium strategies like the one
in the above example. Second, it generates policies with a support
which can be expressed as a uniform distribution over a multiset of
fixed size as proposed in [13]. This allows for policies that are sim-
ple to understand and represent [13], as well as a parameter (the size
of the multiset) that controls the simplicity of the policy and can be
tuned. Third, the method allows for a Bayes-Nash game to be ex-
pressed compactly without requiring conversion to a normal-form
game, allowing for large speedups over existing Nash methods such
as [18] and [12].

The rest of the paper is organized as follows. In Section 2 we
fully describe the patrolling domain and its properties. Section 3
introduces the Bayesian game, the Harsanyi transformation, and
existing methods for finding an optimal leader’s strategy in a Stack-
elberg game. Then, in Section 4 the ASAP algorithm is presented
for normal-form games, and in Section 5 we show how it can be
adapted to the structure of Bayesian games with uncertain adver-
saries. Experimental results showing a higher reward and faster
policy computation in comparison to existing Nash methods are
shown in Section 6. We then conclude with a discussion of related
work in Section 7.

2. THE PATROLLING DOMAIN
In most security patrolling domains, the security agents (which

could be UAVs [1] or security robots [17]) cannot feasibly patrol
all areas all the time. Instead, they must choose a policy by which
they patrol various routes at different times, taking into account
factors such as the likelihood of crime in different areas, possible
targets for crime, and the security agents’ own resources (number
of security agents, amount of available time, fuel, etc.). It is usu-
ally beneficial for this policy to be nondeterministic so that robbers
cannot safely rob certain locations, knowing that they will be safe
from the security agents [15]. To demonstrate the utility of our al-
gorithm, we use a simplified version of such a domain, expressed
as a game.

The most basic version of our game consists of two players: the
security agent (the leader) and the robber (the follower) in a world
consisting of m houses, 1 . . . m. The security agent’s set of pure
strategies consists of possible routes of d houses to patrol (in an
order). The security agent can choose a mixed strategy so that the
robber will be unsure of exactly where the security agent may pa-

trol, but the robber will know the mixed strategy the security agent
has chosen. For example, the robber can observe over time how
often the security agent patrols each area. With this knowledge, the
robber must choose a single house to rob. We assume that the rob-
ber generally takes a long time to rob a house. If the house chosen
by the robber is not on the security agent’s route, then the rob-
ber successfully robs the house. Otherwise, if it is on the security
agent’s route, then the earlier the house is on the route, the easier
it is for the security agent to catch the robber before he finishes
robbing it.

We model the payoffs for this game with the following variables:

• vl,x: value of the goods in house l to the security agent.

• vl,q: value of the goods in house l to the robber.

• cx: reward to the security agent of catching the robber.

• cq: cost to the robber of getting caught.

• pl: probability that the security agent can catch the robber at
the lth house in the patrol (pl < pl′ ⇐⇒ l′ < l).

The security agent’s set of possible pure strategies (patrol routes)
is denoted by X and includes all d-tuples i =< w1, w2, ..., wd >
with w1 . . . wd = 1 . . . m. where no two elements are equal (the
agent is not allowed to return to the same house). The robber’s
set of possible pure strategies (houses to rob) is denoted by Q and
includes all integers j = 1 . . . m. The payoffs (security agent,
robber) for pure strategies i, j are:

• −vl,x, vl,q , for j = l /∈ i.

• plcx+(1−pl)(−vl,x),−plcq +(1−pl)(vl,q), for j = l ∈ i.

With this structure it is possible to model many different types
of robbers who have differing motivations; for example, one robber
may have a lower cost of getting caught than another, or may value
the goods in the various houses differently. If the distribution of
different robber types is known or inferred from historical data,
then the game can be modeled as a Bayesian game [6].

3. BAYESIAN GAMES
A Bayesian game contains a set of N agents, and each agent n

must be one of a given set of types θn. For our patrolling domain,
we have two agents, the security agent and the robber. θ1 is the set
of security agent types and θ2 is the set of robber types. Since there
is only one type of security agent, θ1 contains only one element.
During the game, the robber knows its type but the security agent
does not know the robber’s type. For each agent (the security agent
or the robber) n, there is a set of strategies σn and a utility function
un : θ1 × θ2 × σ1 × σ2 → <.

A Bayesian game can be transformed into a normal-form game
using the Harsanyi transformation [8]. Once this is done, new,
linear-program (LP)-based methods for finding high-reward strate-
gies for normal-form games [5] can be used to find a strategy in the
transformed game; this strategy can then be used for the Bayesian
game. While methods exist for finding Bayes-Nash equilibria di-
rectly, without the Harsanyi transformation [11], they find only a
single equilibrium in the general case, which may not be of high
reward. Recent work [18] has led to efficient mixed-integer linear
program techniques to find the best Nash equilibrium for a given
agent. However, these techniques do require a normal-form game,
and so to compare the policies given by ASAP against the optimal
policy, as well as against the highest-reward Nash equilibrium, we
must apply these techniques to the Harsanyi-transformed matrix.
The next two subsections elaborate on how this is done.

3.1 Harsanyi Transformation
The first step in solving Bayesian games is to apply the Harsanyi

transformation [8] that converts the incomplete information game
into a normal form game. Given that the Harsanyi transformation
is a standard concept in game theory, we explain it briefly through
a simple example without introducing the mathematical formula-
tions. Let us assume there are two robber types a and b in the
Bayesian game. Robber a will be active with probability α, and
robber b will be active with probability 1− α. The rules described
in Section 2 allow us to construct simple payoff tables.

Assume that there are two houses in the world (1 and 2) and
hence there are two patrol routes (pure strategies) for the agent:
{1,2} and {2,1}. The robber can rob either house 1 or house 2
and hence he has two strategies (denoted as 1l, 2l for robber type
l). Since there are two types assumed (denoted as a and b), we
construct two payoff tables (shown in Table 2) corresponding to
the security agent playing a separate game with each of the two
robber types with probabilities α and 1− α. First, consider robber
type a. Borrowing the notation from the domain section, we assign
the following values to the variables: v1,x = v1,q = 3/4, v2,x =
v2,q = 1/4, cx = 1/2, cq = 1, p1 = 1, p2 = 1/2. Using these
values we construct a base payoff table as the payoff for the game
against robber type a. For example, if the security agent chooses
route {1,2} when robber a is active, and robber a chooses house 1,
the robber receives a reward of -1 (for being caught) and the agent
receives a reward of 0.5 for catching the robber. The payoffs for the
game against robber type b are constructed using different values.

Security agent: {1,2} {2,1}
Robber a

1a -1, .5 -.375, .125
2a -.125, -.125 -1, .5

Robber b
1b -.9, .6 -.275, .225
2b -.025, -.025 -.9, .6

Table 2: Payoff tables: Security Agent vs Robbers a and b

Using the Harsanyi technique involves introducing a chance node,
that determines the robber’s type, thus transforming the security
agent’s incomplete information regarding the robber into imperfect
information [3]. The Bayesian equilibrium of the game is then pre-
cisely the Nash equilibrium of the imperfect information game. The
transformed, normal-form game is shown in Table 3. In the trans-
formed game, the security agent is the column player, and the set
of all robber types together is the row player. Suppose that robber
type a robs house 1 and robber type b robs house 2, while the se-
curity agent chooses patrol {1,2}. Then, the security agent and the
robber receive an expected payoff corresponding to their payoffs
from the agent encountering robber a at house 1 with probability α
and robber b at house 2 with probability 1− α.

3.2 Finding an Optimal Strategy
Although a Nash equilibrium is the standard solution concept for

games in which agents choose strategies simultaneously, in our se-
curity domain, the security agent (the leader) can gain an advantage
by committing to a mixed strategy in advance. Since the followers
(the robbers) will know the leader’s strategy, the optimal response
for the followers will be a pure strategy. Given the common as-
sumption, taken in [5], in the case where followers are indifferent,
they will choose the strategy that benefits the leader, there must
exist a guaranteed optimal strategy for the leader [5].

From the Bayesian game in Table 2, we constructed the Harsanyi
transformed bimatrix in Table 3. We denote X = σθ2

1 = σ1 and
Q = σθ2

2 as the index sets of the security agent and robbers’ pure
strategies, respectively, with R and C as the corresponding pay-
off matrices. Rij is the reward of the security agent and Cij is
the reward of the robbers when the security agent takes pure strat-
egy i and the robbers take pure strategy j. A mixed strategy for the
security agent is a probability distribution over its set of pure strate-
gies and will be represented by a vector x = (px1, px2, . . . , px|X|),
where pxi ≥ 0 and

P
pxi = 1. Here, pxi is the probability that

the security agent will choose its ith pure strategy.
The optimal mixed strategy for the security agent can be found

in time polynomial in the number of rows in the normal form game
using the following linear program formulation from [5].

For every possible pure strategy j by the follower (the set of all
robber types),

max
P

i∈X pxiRij

s.t. ∀j′ ∈ Q,
P

i∈σ1
pxiCij ≥

P
i∈σ1

pxiCij′P
i∈X pxi = 1

∀i∈X , pxi = 0

(1)

Then, for all feasible follower strategies j, choose the one that max-
imizes

P
i∈X pxiRij , the reward for the security agent (leader).

The pxi variables give the optimal strategy for the security agent.
Note that while this method is polynomial in the number of rows

in the transformed, normal-form game, the number of rows in-
creases exponentially with the number of robber types. Using this
method for a Bayesian game thus requires running |σ2||θ2| separate
linear programs. This is not a surprise, since finding the optimal
strategy to commit to for the leader in a Bayesian game is NP-hard
[5].

4. HEURISTIC APPROACHES
Given that finding the optimal strategy for the leader is NP-hard,

we provide a heuristic approach. In this heuristic we limit the pos-
sible mixed strategies of the leader to select actions with probabil-
ities that are integer multiples of 1/k for a predetermined integer
k. Previous work [15] has shown that strategies with high entropy
are beneficial for security applications when opponents’ utilities
are completely unknown. In our domain, if utilities are not con-
sidered, this method will result in uniform-distribution strategies.
One advantage of such strategies is that they are compact to rep-
resent (as fractions) and simple to understand; therefore they can
be efficiently implemented by real organizations. We aim to main-
tain the advantage provided by simple strategies for our security
application problem, incorporating the effect of the robbers’ re-
wards on the security agent’s rewards. Thus, the ASAP heuristic
will produce strategies which are k-uniform. A mixed strategy is
denoted k-uniform if it is a uniform distribution on a multiset S of
pure strategies with |S| = k. A multiset is a set whose elements
may be repeated multiple times; thus, for example, the mixed strat-
egy corresponding to the multiset {1, 1, 2} would take strategy 1
with probability 2/3 and strategy 2 with probability 1/3. ASAP al-
lows the size of the multiset to be chosen in order to balance the
complexity of the strategy reached with the goal that the identified
strategy will yield a high reward.

Another advantage of the ASAP heuristic is that it operates di-
rectly on the compact Bayesian representation, without requiring
the Harsanyi transformation. This is because the different follower
(robber) types are independent of each other. Hence, evaluating
the leader strategy against a Harsanyi-transformed game matrix

{1,2} {2,1 }
{1a, 1b} −1α− .9(1− α), .5α + .6(1− α) −.375α− .275(1− α), .125α + .225(1− α)
{1a, 2b} −1α− .025(1− α), .5α− .025(1− α) −.375α− .9(1− α), .125α + .6(1− α)
{2a, 1b} −.125α− .9(1− α),−.125α + .6(1− α) −1α− .275(1− α), .5α + .225(1− α)
{2a, 2b} −.125α− .025(1− α),−.125α− .025(1− α) −1α− .9(1− α), .5α + .6(1− α)

Table 3: Harsanyi Transformed Payoff Table

is equivalent to evaluating against each of the game matrices for
the individual follower types. This independence property is ex-
ploited in ASAP to yield a decomposition scheme. Note that the LP
method introduced by [5] to compute optimal Stackelberg policies
is unlikely to be decomposable into a small number of games as it
was shown to be NP-hard for Bayes-Nash problems. Finally, note
that ASAP requires the solution of only one optimization problem,
rather than solving a series of problems as in the LP method of [5].

For a single follower type, the algorithm works the following
way. Given a particular k, for each possible mixed strategy x for the
leader that corresponds to a multiset of size k, evaluate the leader’s
payoff from x when the follower plays a reward-maximizing pure
strategy. We then take the mixed strategy with the highest payoff.

We need only to consider the reward-maximizing pure strate-
gies of the followers (robbers), since for a given fixed strategy x
of the security agent, each robber type faces a problem with fixed
linear rewards. If a mixed strategy is optimal for the robber, then
so are all the pure strategies in the support of that mixed strategy.
Note also that because we limit the leader’s strategies to take on
discrete values, the assumption from Section 3.2 that the followers
will break ties in the leader’s favor is not significant, since ties will
be unlikely to arise. This is because, in domains where rewards are
drawn from any random distribution, the probability of a follower
having more than one pure optimal response to a given leader strat-
egy approaches zero, and the leader will have only a finite number
of possible mixed strategies.

Our approach to characterize the optimal strategy for the security
agent makes use of properties of linear programming. We briefly
outline these results here for completeness, for detailed discussion
and proofs see one of many references on the topic, such as [2].
Every linear programming problem, such as:

max cT x | Ax = b, x ≥ 0,

has an associated dual linear program, in this case:

min bT y | AT y ≥ c.

These primal/dual pairs of problems satisfy weak duality: For any x
and y primal and dual feasible solutions respectively, cT x ≤ bT y.
Thus a pair of feasible solutions is optimal if cT x = bT y, and
the problems are said to satisfy strong duality. In fact if a linear
program is feasible and has a bounded optimal solution, then the
dual is also feasible and there is a pair x∗, y∗ that satisfies cT x∗ =
bT y∗. These optimal solutions are characterized with the following
optimality conditions:

• primal feasibility: Ax = b, x ≥ 0

• dual feasibility: AT y ≥ c

• complementary slackness: xi(A
T y − c)i = 0 for all i.

Note that this last condition implies that

cT x = xT AT y = bT y,

which proves optimality for primal dual feasible solutions x and y.

In the following subsections, we first define the problem in its
most intuititive form as a mixed-integer quadratic program, and
then show how this problem can be converted into a mixed-integer
linear program.

4.1 Mixed-Integer Quadratic Program
We begin with the case of a single type of follower. Let the

leader be the row player and the follower the column player. We
denote by x the vector of strategies of the leader and q the vector
of strategies of the follower. We also denote X and Q the index
sets of the leader and follower’s pure strategies, respectively. The
payoff matrices R and C correspond to: Rij is the reward of the
leader and Cij is the reward of the follower when the leader takes
pure strategy i and the follower takes pure strategy j. Let k be the
size of the multiset.

We first fix the policy of the leader to some k-uniform policy
x. The value xi is the number of times pure strategy i is used in
the k-uniform policy, which is selected with probability xi/k. We
formulate the optimization problem the follower solves to find its
optimal response to x as the following linear program:

max
X
j∈Q

X
i∈X

1

k
Cijxi qj

s.t.
P

j∈Q qj = 1

q ≥ 0.

(2)

The objective function maximizes the follower’s expected reward
given x, while the constraints make feasible any mixed strategy q
for the follower. The dual to this linear programming problem is
the following:

min a

s.t. a ≥
X
i∈X

1

k
Cijxi j ∈ Q. (3)

From strong duality and complementary slackness we obtain that
the maximum reward value for the follower a is the value of ev-
ery pure strategy with qj > 0, that is in the support of the optimal
mixed strategy. Therefore each of these pure strategies is optimal.
Optimal solutions to the follower’s problem are characterized by
linear programming optimality conditions: primal feasibility con-
straints in (2), dual feasibility constraints in (3), and complemen-
tary slackness

qj

a−

X
i∈X

1

k
Cijxi

!
= 0 j ∈ Q.

These conditions must be included in the problem solved by the
leader in order to consider only best responses by the follower to
the k-uniform policy x.

The leader seeks the k-uniform solution x that maximizes its
own payoff, given that the follower uses an optimal response q(x).

Therefore the leader solves the following integer problem:

max
X
i∈X

X
j∈Q

1

k
Rijq(x)j xi

s.t.
P

i∈X xi = k
xi ∈ {0, 1, . . . , k}.

(4)

Problem (4) maximizes the leader’s reward with the follower’s best
response (qj for fixed leader’s policy x and hence denoted q(x)j)
by selecting a uniform policy from a multiset of constant size k. We
complete this problem by including the characterization of q(x)
through linear programming optimality conditions. To simplify
writing the complementary slackness conditions, we will constrain
q(x) to be only optimal pure strategies by just considering integer
solutions of q(x). The leader’s problem becomes:

maxx,q

X
i∈X

X
j∈Q

1

k
Rijxiqj

s.t.
P

i xi = kP
j∈Q qj = 1

0 ≤ (a−
P

i∈X
1
k
Cijxi) ≤ (1− qj)M

xi ∈ {0, 1,, k}
qj ∈ {0, 1}.

(5)

Here, the constant M is some large number. The first and fourth
constraints enforce a k-uniform policy for the leader, and the sec-
ond and fifth constraints enforce a feasible pure strategy for the
follower. The third constraint enforces dual feasibility of the fol-
lower’s problem (leftmost inequality) and the complementary slack-
ness constraint for an optimal pure strategy q for the follower (right-
most inequality). In fact, since only one pure strategy can be se-
lected by the follower, say qh = 1, this last constraint enforces that
a =

P
i∈X

1
k
Cihxi imposing no additional constraint for all other

pure strategies which have qj = 0.
We conclude this subsection noting that Problem (5) is an in-

teger program with a non-convex quadratic objective in general,
as the matrix R need not be positive-semi-definite. Efficient solu-
tion methods for non-linear, non-convex integer problems remains
a challenging research question. In the next section we show a re-
formulation of this problem as a linear integer programming prob-
lem, for which a number of efficient commercial solvers exist.

4.2 Mixed-Integer Linear Program
We can linearize the quadratic program of Problem 5 through the

change of variables zij = xiqj , obtaining the following problem

maxq,z

P
i∈X

P
j∈Q

1
k
Rijzij

s.t.
P

i∈X

P
j∈Q zij = kP

j∈Q zij ≤ k

kqj ≤
P

i∈X zij ≤ kP
j∈Q qj = 1

0 ≤ (a−
P

i∈X
1
k
Cij(

P
h∈Q zih)) ≤ (1− qj)M

zij ∈ {0, 1,, k}
qj ∈ {0, 1}

(6)

PROPOSITION 1. Problems (5) and (6) are equivalent.

Proof: Consider x, q a feasible solution of (5). We will show
that q, zij = xiqj is a feasible solution of (6) of same objective
function value. The equivalence of the objective functions, and
constraints 4, 6 and 7 of (6) are satisfied by construction. The fact

that
P

j∈Q zij = xi as
P

j∈Q qj = 1 explains constraints 1, 2, and
5 of (6). Constraint 3 of (6) is satisfied because

P
i∈X zij = mqj .

Let us now consider q, z feasible for (6). We will show that q and
xi =

P
j∈Q zij are feasible for (5) with the same objective value.

In fact all constraints of (5) are readily satisfied by construction. To
see that the objectives match, notice that if qh = 1 then the third
constraint in (6) implies that

P
i∈X zih = k, which means that

zij = 0 for all i ∈ X and all j 6= h. Therefore,

xiqj =
X
l∈Q

zilqj = zihqj = zij .

This last equality is because both are 0 when j 6= h. This shows
that the transformation preserves the objective function value, com-
pleting the proof.

Given this transformation to a mixed-integer linear program (MILP),
we now show how we can apply our decomposition technique on
the MILP to obtain significant speedups for Bayesian games with
multiple follower types.

5. DECOMPOSITION FOR MULTIPLE AD-
VERSARIES

The MILP developed in the previous section handles only one
follower. Since our security scenario contains multiple follower
(robber) types, we change the response function for the follower
from a pure strategy into a weighted combination over various pure
follower strategies where the weights are probabilities of occur-
rence of each of the follower types.

5.1 Decomposed MIQP
To admit multiple adversaries in our framework, we modify the

notation defined in the previous section to reason about multiple
follower types. We denote by x the vector of strategies of the leader
and ql the vector of strategies of follower l, with L denoting the in-
dex set of follower types. We also denote by X and Q the index
sets of leader and follower l’s pure strategies, respectively. We also
index the payoff matrices on each follower l, considering the ma-
trices Rl and Cl.

Using this modified notation, we characterize the optimal solu-
tion of follower l’s problem given the leaders k-uniform policy x,
with the following optimality conditions:

X
j∈Q

ql
j = 1

al −
X
i∈X

1

k
Cl

ijxi ≥ 0

ql
j(a

l −
X
i∈X

1

k
Cl

ijxi) = 0

ql
j ≥ 0

Again, considering only optimal pure strategies for follower l’s
problem we can linearize the complementarity constraint above.
We incorporate these constraints on the leader’s problem that se-
lects the optimal k-uniform policy. Therefore, given a priori prob-
abilities pl, with l ∈ L of facing each follower, the leader solves
the following problem:

maxx,q

X
i∈X

X
l∈L

X
j∈Q

pl

k
Rl

ijxiq
l
j

s.t.
P

i xi = kP
j∈Q ql

j = 1

0 ≤ (al −
P

i∈X
1
k
Cl

ijxi) ≤ (1− ql
j)M

xi ∈ {0, 1,, k}
ql

j ∈ {0, 1}.

(7)

Problem (7) for a Bayesian game with multiple follower types
is indeed equivalent to Problem (5) on the payoff matrix obtained
from the Harsanyi transformation of the game. In fact, every pure
strategy j in Problem (5) corresponds to a sequence of pure strate-
gies jl, one for each follower l ∈ L. This means that qj = 1 if
and only if ql

jl
= 1 for all l ∈ L. In addition, given the a pri-

ori probabilities pl of facing player l, the reward in the Harsanyi
transformation payoff table is Rij =

P
l∈L plRl

ijl
. The same re-

lation holds between C and Cl. These relations between a pure
strategy in the equivalent normal form game and pure strategies in
the individual games with each followers are key in showing these
problems are equivalent.

5.2 Decomposed MILP
We can linearize the quadratic programming problem 7 through

the change of variables zl
ij = xiq

l
j , obtaining the following prob-

lem

maxq,z

P
i∈X

P
l∈L

P
j∈Q

pl

k
Rl

ijz
l
ij

s.t.
P

i∈X

P
j∈Q zl

ij = kP
j∈Q zl

ij ≤ k

kql
j ≤

P
i∈X zl

ij ≤ kP
j∈Q ql

j = 1

0 ≤ (al −
P

i∈X
1
k
Cl

ij(
P

h∈Q zl
ih)) ≤ (1− ql

j)MP
j∈Q zl

ij =
P

j∈Q z1
ij

zl
ij ∈ {0, 1,, k}

ql
j ∈ {0, 1}

(8)

PROPOSITION 2. Problems (7) and (8) are equivalent.

Proof: Consider x, ql, al with l ∈ L a feasible solution of (7).
We will show that ql, al, zl

ij = xiq
l
j is a feasible solution of (8)

of same objective function value. The equivalence of the objective
functions, and constraints 4, 7 and 8 of (8) are satisfied by con-
struction. The fact that

P
j∈Q zl

ij = xi as
P

j∈Q ql
j = 1 explains

constraints 1, 2, 5 and 6 of (8). Constraint 3 of (8) is satisfied be-
cause

P
i∈X zl

ij = kql
j .

Lets now consider ql, zl, al feasible for (8). We will show that
ql, al and xi =

P
j∈Q z1

ij are feasible for (7) with the same ob-
jective value. In fact all constraints of (7) are readily satisfied by
construction. To see that the objectives match, notice for each l
one ql

j must equal 1 and the rest equal 0. Let us say that ql
jl

= 1,
then the third constraint in (8) implies that

P
i∈X zl

ijl
= k, which

means that zl
ij = 0 for all i ∈ X and all j 6= jl. In particular this

implies that

xi =
X
j∈Q

z1
ij = z1

ij1 = zl
ijl

,

this last equality from constraint 6 of (8). Therefore xiq
l
j = zl

ijl
ql

j =

zl
ij . This last equality is because both are 0 when j 6= jl. This

shows that the transformation preserves the objective function value,
completing the proof.

We can therefore solve this equivalent linear integer program
with efficient integer programming packages which can handle prob-
lems with thousands of integer variables. We implemented the de-
composed MILP and the results are shown in the following section.

6. EXPERIMENTAL RESULTS
The patrolling domain and the payoffs for the associated game

are detailed in Sections 2 and 3. We performed experiments for this
game in worlds of three and four houses with patrols consisting of
two houses. The description given in Section 2 is used to generate
a base case for both the security agent and robber payoff functions.
The payoff tables for additional robber types are constructed and
added to the game by adding a random distribution of varying size
to the payoffs in the base case. All games are normalized so that,
for each robber type, the minimum and maximum payoffs to the
security agent and robber are 0 and 1, respectively.

Using the data generated, we performed the experiments using
four methods for generating the security agent’s strategy:

• uniform randomization

• ASAP

• the multiple linear programs method from [5] (to find the true
optimal strategy)

• the highest reward Bayes-Nash equilibrium, found using the
MIP-Nash algorithm [18]

The last three methods were applied using CPLEX 8.1. Because
the last two methods are designed for normal-form games rather
than Bayesian games, the games were first converted using the
Harsanyi transformation [8]. The uniform randomization method is
simply choosing a uniform random policy over all possible patrol
routes. We use this method as a simple baseline to measure the per-
formance of our heuristics. We anticipated that the uniform policy
would perform reasonably well since maximum-entropy policies
have been shown to be effective in multiagent security domains
[15]. The highest-reward Bayes-Nash equilibria were used in order
to demonstrate the higher reward gained by looking for an optimal
policy rather than an equilibria in Stackelberg games such as our
security domain.

Based on our experiments we present three sets of graphs to
demonstrate (1) the runtime of ASAP compared to other common
methods for finding a strategy, (2) the reward guaranteed by ASAP
compared to other methods, and (3) the effect of varying the pa-
rameter k, the size of the multiset, on the performance of ASAP.
In the first two sets of graphs, ASAP is run using a multiset of
80 elements; in the third set this number is varied. The first set of
graphs, shown in Figure 1 shows the runtime graphs for three-house
(left column) and four-house (right column) domains. Each of the
three rows of graphs corresponds to a different randomly-generated
scenario. The x-axis shows the number of robber types the secu-
rity agent faces and the y-axis of the graph shows the runtime in
seconds. All experiments that were not concluded in 30 minutes
(1800 seconds) were cut off. The runtime for the uniform policy
is always negligible irrespective of the number of adversaries and
hence is not shown.

The ASAP algorithm clearly outperforms the optimal, multiple-
LP method as well as the MIP-Nash algorithm for finding the highest-
reward Bayes-Nash equilibrium with respect to runtime. For a

Figure 1: Runtimes for various algorithms on problems of 3
and 4 houses.

domain of three houses, the optimal method cannot reach a solu-
tion for more than seven robber types, and for four houses it can-
not solve for more than six types within the cutoff time in any of
the three scenarios. MIP-Nash solves for even fewer robber types
within the cutoff time. On the other hand, ASAP runs much faster,
and is able to solve for at least 20 adversaries for the three-house
scenarios and for at least 12 adversaries in the four-house scenar-
ios within the cutoff time. The runtime of ASAP does not increase
strictly with the number of robber types for each scenario, but in
general, the addition of more types increases the runtime required.

The second set of graphs, Figure 2, shows the reward to the patrol
agent given by each method for three scenarios in the three-house
(left column) and four-house (right column) domains. This reward
is the utility received by the security agent in the patrolling game,
and not as a percentage of the optimal reward, since it was not pos-
sible to obtain the optimal reward as the number of robber types
increased. The uniform policy consistently provides the lowest re-
ward in both domains; while the optimal method of course pro-
duces the optimal reward. The ASAP method remains consistently
close to the optimal, even as the number of robber types increases.
The highest-reward Bayes-Nash equilibria, provided by the MIP-
Nash method, produced rewards higher than the uniform method,
but lower than ASAP. This difference clearly illustrates the gains in
the patrolling domain from committing to a strategy as the leader
in a Stackelberg game, rather than playing a standard Bayes-Nash
strategy.

The third set of graphs, shown in Figure 3 shows the effect of the
multiset size on runtime in seconds (left column) and reward (right
column), again expressed as the reward received by the security
agent in the patrolling game, and not a percentage of the optimal

Figure 2: Reward for various algorithms on problems of 3 and
4 houses.

reward. Results here are for the three-house domain. The trend is
that as as the multiset size is increased, the runtime and reward level
both increase. Not surprisingly, the reward increases monotonically
as the multiset size increases, but what is interesting is that there is
relatively little benefit to using a large multiset in this domain. In
all cases, the reward given by a multiset of 10 elements was within
at least 96% of the reward given by an 80-element multiset. The
runtime does not always increase strictly with the multiset size;
indeed in one example (scenario 2 with 20 robber types), using a
multiset of 10 elements took 1228 seconds, while using 80 elements
only took 617 seconds. In general, runtime should increase since a
larger multiset means a larger domain for the variables in the MILP,
and thus a larger search space. However, an increase in the number
of variables can sometimes allow for a policy to be constructed
more quickly due to more flexibility in the problem.

7. SUMMARY AND RELATED WORK
This paper focuses on security for agents patrolling in hostile en-

vironments. In these environments, intentional threats are caused
by adversaries about whom the security patrolling agents have in-
complete information. Specifically, we deal with situations where
the adversaries’ actions and payoffs are known but the exact ad-
versary type is unknown to the security agent. Agents acting in
the real world quite frequently have such incomplete information
about other agents. Bayesian games have been a popular choice to
model such incomplete information games [3]. The Gala toolkit
is one method for defining such games [10, 9] without requiring
the game to be represented in normal form via the Harsanyi trans-
formation [8]; Gala’s guarantees are focused on fully competitive
games. Much work has been done on finding optimal Bayes-Nash

Figure 3: Reward for ASAP using multisets of 10, 30, and 80
elements

equilbria for subclasses of Bayesian games, finding single Bayes-
Nash equilibria for general Bayesian games [11] or approximate
Bayes-Nash equilibria [19]. Less attention has been paid to finding
the optimal strategy to commit to in a Bayesian game (the Stackel-
berg scenario [16]). However, the complexity of this problem was
shown to be NP-hard in the general case [5], which also provides
algorithms for this problem in the non-Bayesian case.

Therefore, we present a heuristic called ASAP, with three key
advantages towards addressing this problem. First, ASAP searches
for the highest reward strategy, rather than a Bayes-Nash equilib-
rium, allowing it to find feasible strategies that exploit the natu-
ral first-mover advantage of the game. Second, it provides strate-
gies which are simple to understand, represent, and implement.
Third, it operates directly on the compact, Bayesian game represen-
tation, without requiring conversion to normal form. We provide
an efficient Mixed Integer Linear Program (MILP) implementation
for ASAP, along with experimental results illustrating significant
speedups and higher rewards over other approaches.

As mentioned earlier, our k-uniform strategies are similar to the
k-uniform strategies of [13]. While that work provides epsilon
error-bounds based on the k-uniform strategies, their solution con-
cept is still that of a Nash equilibrium, and they do not provide
efficient algorithms for obtaining such k-uniform strategies. This
contrasts with ASAP, where our emphasis is on a highly efficient
heuristic approach that is not focused on equilibrium solutions.

Finally the patrolling problem which motivated our work has re-
cently received growing attention from the multiagent community
due to its wide range of applications [4, 14]. However most of this
work is focused on either limiting energy consumption involved in
patrolling [7] or optimizing on criteria like the length of the path

traveled [4, 14], without reasoning about any explicit model of an
adversary[15].

8. REFERENCES
[1] R. W. Beard and T. McLain. Multiple UAV cooperative

search under collision avoidance and limited range
communication constraints. In IEEE CDC, 2003.

[2] D. Bertsimas and J. Tsitsiklis. Introduction to Linear
Optimization. Athena Scientific, 1997.

[3] J. Brynielsson and S. Arnborg. Bayesian games for threat
prediction and situation analysis. In FUSION, 2004.

[4] Y. Chevaleyre. Theoretical analysis of multi-agent patrolling
problem. In AAMAS, 2004.

[5] V. Conitzer and T. Sandholm. Choosing the best strategy to
commit to. In ACM Conference on Electronic Commerce,
2006.

[6] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
[7] C. Gui and P. Mohapatra. Virtual patrol: A new power

conservation design for surveillance using sensor networks.
In IPSN, 2005.

[8] J. C. Harsanyi and R. Selten. A generalized Nash solution for
two-person bargaining games with incomplete information.
Management Science, 18(5):80–106, 1972.

[9] D. Koller, N. Megiddo, and B. von Stengel. Fast algorithms
for finding randomized strategies in game trees. In
Proceedings of the 26th ACM Symposium on Theory of
Computing, pages 750–759, 1994.

[10] D. Koller and A. Pfeffer. Generating and solving imperfect
information games. In IJCAI, pages 1185–1193, 1995.

[11] D. Koller and A. Pfeffer. Representations and solutions for
game-theoretic problems. Artificial Intelligence,
94(1):167–215, 1997.

[12] C. Lemke and J. Howson. Equilibrium points of bimatrix
games. Journal of the Society for Industrial and Applied
Mathematics, 12:413–423, 1964.

[13] R. J. Lipton, E. Markakis, and A. Mehta. Playing large
games using simple strategies. In ACM Conference on
Electronic Commerce, 2003.

[14] A. Machado, G. Ramalho, J. D. Zucker, and A. Drougoul.
Multi-agent patrolling: an empirical analysis on alternative
architectures. In MABS, 2002.

[15] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Security
in multiagent systems by policy randomization. In AAMAS,
2006.

[16] T. Roughgarden. Stackelberg scheduling strategies. In ACM
Symposium on TOC, 2001.

[17] S. Ruan, C. Meirina, F. Yu, K. R. Pattipati, and R. L. Popp.
Patrolling in a stochastic environment. In 10th Intl.
Command and Control Research Symp., 2005.

[18] T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer
programming methods for finding nash equilibria. In AAAI,
2005.

[19] S. Singh, V. Soni, and M. Wellman. Computing approximate
Bayes-Nash equilibria with tree-games of incomplete
information. In ACM Conference on Electronic Commerce,
2004.

