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Geometry of Crystals

Crystal is a solid composed of atoms, ions or molecules that
demonstrate long range periodic order in three dimensions
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The Crystalline State

State of

Fixed

Fixed

Matter Volume | Shape Order Properties
4 Gas No No No Isotropic
o ¢

Liquid Yes No Short-range Isotropic

Solid :

(amorphous) Yes Yes Short-range Isotropic

polid Yes Yes Long-range Anisotropic

(crystalline)




Crystal Lattice

N

# Not only atom, ion or molecule
positions are repetitious — there are
certain symmetry relationships in
their arrangement.
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Crystal Lattice
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Two-dimensional lattice with lattice parameters g, b and »




Crystal Lattice
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Crystal Lattice

p
% : : : :
# Lattice vectors, lattice parameters and interaxial angles

Lattice vector a b C
¢ Lattice parameter a c
Interaxial angle o Y

c dAb=7Yy

anc =0

B o b bAC =«

b
7 7

A lattice is an array of points in space in which the environment of each point is identical



Crystal Lattice
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Lattice

Not a lattice




Crystal Lattice

N

g # Unit cell content

= Coordinates of all atoms

= Types of atoms

= Site occupancy

» Individual displacement parameters

a=b=3.902A4, c=4.156 A

For PbTiO;: o

Y1 Y2 Y3

m
Density: 0=y (g cm3)

M
Mass of atoms in a unit cell: m = Z X N
A
where:
Z — number of chemical formula units per unit cell
M — molar mass
N, = 6.023 x 1023 mol! — Avogadro number

ZXM
Then: o= N <V (g cm3)

+ 1 x 303.067
"~ 6.023:1023 x 63.278 - 1024

=7.952 (gcm?3)



Crystal Lattice
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# They can be represented by symmetry operators

D :
# Usually unit cell has more than one molecule or group of atoms

@)

°0O

Oe
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Oe
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°0O

180¢° rotation




Symmetry
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L/
# Symmetry is a property of a crystal which is used to describe repetitions of a
pattern within that crystal.

# Description is done using symmetry operators

R Rotation (about axis O)
R—R—R o = 360°/n
. where nis the fold of the axis
Translation n=1 23,4 or6)
o
m O A
R A

T

Inversion

Mirror reflection




Two-dimensional ™ R
Symmetry Elements

o~ AR
1. One-fold axis (no symmetry) @) Fo _F
cc=c_ mn
H H
2. Vertical mirror line - cis-difluorosthene
m
3. Vertical and horizontal mirror A|R H H
lines (3) Se—c”  2mm
““m = C\y
alg
4, Two-fold rotation axis m sthens
5 Three-fold rotation axis R H F
| @ 0 Sc=c{ 2
F H
H trans-difluoroethene
H
R HA /|_H
C C
(5) A H- SN N 3
« |
DS c
F~|~H
H

trifluoralkylammonia




Two-dimensional
Symmetry Elements

Tree-fold axis + vertical mirror line

Four-fold axis + mirror lines

g
NV
6.
7. Four-fold axis
8.
0. Six-fold axis
10.

Six-fold axis + mirror lines

10 two-dimensional
crystallographic or plane
point groups

KB L

3m
4
(4) - rotane, C12|-|1
F
| WOF,
F— ?— F 4mm
F
tungsten oxyfluoride
- rotane, CaH24
/
____(a\
/c— H 6mm
—C
N

benzene




The Five Plane
Lattices
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c2mm

pémm

The hexagonal p-lattice




Rectangular c lattice and primitive
rhombic p lattice
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Choice of a unit cell is arbitrary.
Any four lattice points which outline parallelogram can be joined up to form a unit cell.




Two-dimensional
Symmetry Elements

Combination of a point group symmetries with the lattice gives rise to an additional

symmetry element: a glide line

AlR AlR
H*R AR
H+R HWR

m M m

Reflection symmetry

N}

mop .
Al oAl

R X
AL A °’~,

R 'R

e 4

g 9 d o2
Reflection-glide symmetry ?o ’




Two-dimensional Symmetry Elements

The Seventeen Plane Groups
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P2g9 (8) 180" symmetry

Lattice type: p for primitive, c¢ for centred.
Symmetry elements: m for mirror lines, g for glide lines, 4 for 4-fold axis etc.
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90° symmetry

Notes:

R
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R R
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p3m1 (15)

120" symmetry 60° symmetry

Each group has a symbol and a number in ( ).

The symbol denotes the lattice type (primitive or centered), and the major symmetry elements
The numbers are arbitrary, they are those of the International Tables Vol.1, pp 58 - 72

K.M.Crennell (2000)
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Bravais Lattices and Crystal Systems
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# In three dimensions: point symmetry elements and translational symmetry
elements.

# For point symmetry elements:
= centers of symmetry
= mirror planes
= inversion axes

# For translational symmetry elements:
= glide planes
m  SCrew axes

We end up with 230 space groups (was 17 plane groups) distributed
among 14 space lattices (was 5 plane lattices) and 32 point group
symmetries (instead of 10 plane point symmetries)




The 14 Space (Bravais) Lattices

F g
@ The systematic work was ®) ® /e ®

-
done by Frankenheim in Simple Face-centered Body-centered
1835. Proposed 15 space cubic cubic cubic
lattices.
4 In 1848 Bravais pointed that ®
. . (P) {
two of his lattices were
identical (unfortunate for Simple Body-centered Hexagonal
Frankenheim). tetragonal tetragonal
# Today we have 14 Bravais
lattices.
® ) (© ®
Simple Body-centered Base-centered Face-centered
orthorhombic orthorhombic orthorhombic orthorhombic
®) 4 a4
Simple Base-centered Triclinic
Rhombohedral Monoclinic monoclinic

a, b, c—unit cell lengths; «a, B, y - angles between them




Crystal Symmetry

N

J<ﬁ> 7 axial systems + 32 point groups — 230 unique space groups

# A 3-D crystal must have one of these 230 arrangements, but the atomic coordinates

(i.e. occupied equipoints) may be very different between different crystals

Crystal Class Non-ceptrosymmetric Centr_osymmetric Minimum Rotational

Point Group Point Group Symmetry
Triclinic 1 1 One 1-fold
Monoclinic 2, m 2/m One 2-fold

Orthorombic 222, mm?2 mmm Three 2-folds
Tetragonal 4,422, 4, 4mm, 42m 4/m, 4/ mmm One 4-fold
Rhombohedral 3,32, 3m 3, 3m One 3-fold
Hexagonal 6, 622, 6, 6mm, 6m?2 6/m, 6/mmm One 6-fold

Cubic 23,432, 43m m3, m3m Four 3-folds




Centrosymmetric Lattices

Space group symbols for the 14 centrosymmetnc Bravals Iattlces

ipi e R P
/1 — e piioiiag
| Triclinic P1
Monoclinic P2/m C2/m
Orthorhombic P2/m2/m2/m C2/m2/m2/m | 12/m2/m2/m F2/m2/m 2/m
Tetragonal P4/m2/m2/m [4/m 2/m 2/m
Trigonal R32/m
P 6/m2/m2/m
Hexagonal
Cubic P 4/m3 2/m [ 4/m32/m F 4/m32/m

Number and coordinates of the lattice pomts in the unit cells of the Bravais Iattlces

- No.of lattice points in unit cell

Coordmates of lattice points‘in‘tinit cell

w&-—(

1
2

2

0,0,0
0,0,04

0,0,0;
0,0,0;
0,0,0;
0,0,0;
0,0,0;

B B B B O
-

b= W
- -

o NI»—‘

A




The Symmetry of Bravais Lattices

Point group symmetry Point group symmetry
5 of-the cube of the orthorhombic cell

———

N 4
N -

# Nine mirror planes # Three mirror planes
#® Three four-fold axes #® Three two-fold axes
# Four three-fold axes

# Six two-fold axes

N




The 14 Space (Bravais) Lattices

. Bravais Lattice
g System Axial lengths and angles lattice symbol
N
) Three equal axes at right angles Simple P
Cubic —p= ZB =y = 90° Body-centered I
a=2=6 %=P=7"= Face-centered F
Three axes at right angles, two equal Simple P
Tetragonal
a=b#c¢, oa=pf=7=90° Body-centered I
Simple P
Ortharhorabi Three unequal axes at right angles Body-centered I
rehorhombic aztb#c, oa=pf=y=90° Base-centered C
Face-centered F
Three equal axes, equally inclined )
Rhombohedral* Simple R
a=b=c¢ a=Bf=y2£90°
7 crystal systems
Two equal coplanar axes at 120°,
Hexagonal third axis at right angles Slmple P
a-=-b#e¢0=p=90% (y=120?)
Three unequal axes, .
Monoclinic one pair not at right angles Simple P
Base-centered C
azb#c, oa=7=90°=#p
Three unequal axes, unequally inclined
Triclinic and none at right angles Simple P

azb#c, (AxPzy#90°)

* Also called trigonal.
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Crystal Lattice & Directions

N

Two-dimensional lattice with parameters aand b

r=ua-+vb




Lattice Directions

N

L

r=ua+vb+wc

For the lattice points v, v, w': /

For the points in space v, v; w’ that /

S E
e s

are not lattice points: .‘b{/’/ ;/ ",/’
\
r=u'a+vb+w'e \

:(n+u1)a+(p+vl)b+(q+wl)c
= (na+pb+qc)+(ula+vlb+w1c)

n, p, g— integers
u, vy, w, — fractions




Indexing Lattice Directions
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# Direction must pass through the origin
# Coordinates of point P (in fractions of g, band c) are 1, V2, 1 = [212]
# For point Q coordinates are V2, Va, V> = [212]

[212] — defines direction for OL

For OS — the direction is [110]

r,, =2a+1b+2¢
r,,, =1la+1b+0c




Indexing Lattice Directions

N

g # Specific direction = [uvw]

Example:

Family of directions = <uvw>

:%%: <310>

© © © © 6 606 ©
@) @ 6 @
@) @ 6 @
o Q @)
@ 6 @
9 @) ©) b.
©) O O
@) ©) @) @)
© © 6 © ©6 606 ©

/ [3-10]




Indexing Lattice Directions

N

L/
# Directions related by symmetry are called directions of a form.

[1-11]

[001]

[210]

Specific direction = [uvw]

[6i0]

We have: [111], [-111], [-1-1-1], [11-1], ...

1L

<111>

Family of directions = <uvw>
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The Crystallographic Planes

. 11 11 11 (11)
21 121 12 (12)
14 '::> 11/4 ~— 41 (41)
1 oo 11/ 10 (10)




Definition of the Miller Indices

N

# Let's draw a plane at 2xg, 5xb, 2xc

The intercepts 2 5 2

The reciprocals 1/2 | 1/5 | 1/2
Multiply by 10 5 2 5
The Miller indices (525)

Specific plane = (hk/)

Family of planes = {hk/}

(525)




Definition of the Miller Indices

N

& @ @@

For plane A a/2, b/2, and 1c= 2, 2, 1 = plane is (221)

Forplane B 1g, 15,and 2c=1,1,1/2 = 2, 2, 1 = planeis (221)

For plane C 3a/2, 35/2, and 3c= 2/3, 2/3, 1/3 = 2, 2, 1 = plane is (221)
For plane D 2a, 25, and 4c= 1/2, 1/2, 1/4 = 2, 2, 1 = plane is (221)

# By the set of crystallographic planes hk/, we mean a
set of parallel equidistant planes, one of which
passes through the origin, and the next nearest
makes intercepts g/h, b/k, and ¢// on the three
crystallographic axes.

# The integers Ak/ are usually called the Miller indices.

a

VVq




Miller Indices

N

(110) (220)

(321) (112)

S

o




Miller Indices and Zone Axis Symbols

N

g Closures for crystallographic indices

[uvw] = square brackets designate a direction in the lattice from the origin to a point. Used to
collectively include all the faces of a crystals whose intersects (i.e., edges) parallel each other.
These are referred to as crystallographic zones and they represent a direction in the crystal
lattice.

<uvw> — designate family of directions.

(hkl) = parenthesis designate a crystal face or a family of planes throughout a crystal lattice.

{hkl} = "squiggly" brackets or braces designate a set of faces that are equivalent by the
symmetry of the crystal. The set of face planes results in the crystal form. {100} in the
isometric class includes (100), (010), (001), (-100), (0-10) and (00-1), while for the triclinic
{100} only the (100) is included.

d-spacing is defined as the distance between adjacent planes. When X-rays diffract
due to interference amongst a family of similar atomic planes, then each
diffraction plane may be reference by it's indices d,,




Miller Indices and Zone Axis Symbols

N

J@ For cubic crystal:

= Direction symbols
+ <100> = [100], [-100], [010], 0 -10], [001], [00O -1]

+ <110> = 12 combinations

= Miller indices
+ {100} = (100), (-100), (010), (0 -10), (001), (00 -1)

v

o <111> = [11-1], [-1 -11], [1 -11], [-11 -1], [-111], [1 -1 -1], [111], [-1 -1 -1]

Orthorhombic crystal

v

Q‘\Q\

[110]

[110]




Lattice Plane Spacings

N
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#  For crystal with orthogonal axes:

OAcosa = ON — (a/h)cosa =d,, > cosa = (ﬁjdhk,
a

# For angles B and vy:

k
cos ff = (gjdhkl

cosy = (ijdhkl
C
Lattice plane — (/Ak/)
#  Since for orthogonal axes: ON - interplanar spacing

cos’ a+cos” B+cos’y =1
*  We write: 2 2 2
(ﬁ] d;kz +(Ej d}?kl +(£) d;sz =1
a b c
# For a cubic crystal @ = b= ¢ hence

1 W +k*+1

= 2

2
d a




Lattice Plane Spacings

N

“Cubic:
Tetragonal:
Hexagonal:

Rhombohedral:

&
Orthorhombic:

Monoclinic:

Triclinic:

1 R+ i*+D

d? a*
1 W+ kP
7 to

1_4h2+hk+k2 ?
E_3 a’ +?

1 (W + K+ P)sin’a + 2(hk + kI + hl)cos’a — cos a)

dZ

a*(1 — 3cos’a + 2cos’a)

1 (h_2 . k*sin” 8 L I* 2hlcos B)
~ sin? B\ a2 b* c? ac

1 1
= W(Suhz + Szzkz + S33lz + 2512]1]( + 2823’([ + 2S13h1) <

/~ 'V = volume of unit cell

S, = b’csin’a,

S,, = a*c*sin® B,

Sy = a*b’sin’y,

S1, = abc*(cosacosB — cosvy),

S,3 = a’bc(cosBeosy — cosa),

\_ 813 = ab’c(cosycosa — cosp).



Special Case: Trigonal & Hexagonal Lattices

N

L/
# (1-10), (100), and (010) are indices different in type but describe
crystallographically equivalent lattice planes.
# Introducing the fourth axis — U. We have Miller-Bravais indices (hkil).
# All indices of the planes are of the same form — {10 -10}.
)
h+ k+ 7 =0=/i=-(h+ Kk ={hk/} \
NN N N/ \/ N\
VAVERRVAVAVAVAY,
b b
~Y ~Y
X
- / wy V\ / wyw y
T A
\;1 1207 2 ( a) (b)




The Reciprocal Lattice

d =K/d,

N

K Reciprocal lattice vectors d,=K/d,,
d,=K/d,

K —is a constant

™\ planes normal to
3 planes 1

planes

normal to
normal to planes 3

planes 2

AIN




The Reciprocal Lattice
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»
* *
* *
* * -
* *
*
* *
* - -
* *
* . .




g —
(00'\3 0))

Reciprocal lattice

Monoclinic unit cell Reciprocal lattice it cell
planes {0 /) vectors unit ce R S
L ] [ ] g
£ o g
a* = d>1k00 and a*‘ = l/dloo; * e -

¢’ =dy, and ¢ =1/d,,




The Reciprocal Lattice

N

h0l section

012

section




The Reciprocal Lattice

N

L/
# Consider a real space unit cell with real lattice basis vectors a, b and ¢
# We define a set of reciprocal lattice basis vectors by:

* _l _& volume of real space
alln V(b><c _a-(bxc)«// unit cell
b’ :%(cxa) |
¢ =%(a><b) a

/
c* 1 a-b plane




The Reciprocal Lattice

N

L/ . . . . .
# Just like we can define a real space lattice in terms of our real space lattice
vectors, we can define a reciprocal space lattice in terms of our reciprocal space
lattice vectors:

r=d,, =ha’ +kb" +Ic’

The real and reciprocal space lattice vectors form an orthonormal set:

a-b=a"-c=0

} similar for 6" and ¢

a’-a=1
We can define a reciprocal unit cell with volume V*:

7 =a"-(b xc’) Ve =1

# Now we can write:

r,, =ua+vb+we

d,, =ha +kb" +Ic’




The Reciprocal Lattice
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020 040
y i
(200
*130
-—(211 220 240
=310 =330
700 420 440

Plane of a cubic 7 crystal L zaxis Reciprocal lattice points




The Reciprocal Lattice

N

002

000

022
112
[ ]
202
011 . 121
" 101 #211
02
»110
200

222

220

Cubic F reciprocal lattice unit cell of
a cubic 7 direct lattice

002

000

202
111
[

200

022

020

222

220

Cubic 7 reciprocal lattice unit cell of
a cubic F direct lattice




The Reciprocal Lattice

N

L/
# d-spacing of lattice planes
d,, =ha +kb +ic
d, d, = diz =(ha +kb +ic")-(ha" +kb +Ic’)

hkl

for orthorombic, tetragonal, cubic: a -b" =0

. 2 2 2
therefore: Lz:ha* ‘ha" +kb kb +1c - Ie” =—2+—2+l—2
d’, a- b~ ¢

# Angle p between plane normals (A, 4) and (A kh4)

the angle between two vectorsis cos p = %
a

d* %
hlklll ' h2k212

%

therefore: cosp=

*

hkidy |7 hokaly
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