
Chapter 4
Using Abstract Data Types

Nothing remained in whose reality she could believe, save
those abstract ideas.

— Virginia Woolf, Night and Day, 1919

Objectives

• To appreciate the advantages of abstract data types as a software development strategy.

• To develop significant facility with the Vector, Grid, Stack, Queue, Map, Lexicon,
and Scanner classes from the client perspective.

• To understand the angle-bracket syntax required to use parameterized types in C++.

• To be able to explain the explain the advantages of the Vector and Grid classes over
one- and two-dimensional arrays with regard to flexibility and safety.

• To understand the difference between the Stack and Queue classes in terms of the
ordering of their elements.

• To gain some experience with the strategy of discrete-time simulation.

• To understand the Map class as a mapping from keys to values and to develop some
intuition about when to use it.

• To know how to use the Lexicon class as an easily searchable list of words.

• To understand how to use the Scanner class to extract tokens from a string or an input
file.

• To appreciate the role of iterators in working with abstract classes.
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As you know from your programming experience, data structures can be assembled to
form hierarchies.  The atomic data types—such as int, char, double, and enumerated
types—occupy the lowest level in the hierarchy.  To represent more complex
information, you combine the atomic types to form larger structures.  These larger
structures can then be assembled into even larger ones in an open-ended process.
Collectively, these assemblages of information into more complex types are called data
structures.

As you learn more about programming, however, you will discover that particular data
structures are so useful that they are worth studying in their own right.  Moreover, it is
usually far more important to know how those structures behave than it is to understand
their underlying representation.  For example, even though a string might be represented
inside the machine as an array of characters, it also has an abstract behavior that
transcends its representation.  A type defined in terms of its behavior rather than its
representation is called an abstract data type, which is often abbreviated to ADT.
Abstract data types are central to the object-oriented style of programming, which
encourages thinking about data structures in a holistic way.

In this chapter, you will have a chance to learn about seven classes—Vector, Grid,
Stack, Queue, Map, Lexicon, and Scanner—each of which represents an important
abstract data type.  For the moment, you will not need to understand how to implement
those classes.  In subsequent chapters, you’ll have a chance to explore how each of these
classes can be implementated and to learn about the algorithms and data structures
necessary to make those implementations efficient.

Being able to separate the behavior of a class from its underlying implementation is a
fundamental precept of object-oriented programming.  As a design strategy, it offers the
following advantages:

• Simplicity.  Hiding the internal representation from the client means that there are
fewer details for the client to understand.

• Flexibility.  Because a class is defined in terms of its public behavior, the programmer
who implements one is free to change its underlying private representation.  As with
any abstraction, it is appropriate to change the implementation as long as the interface
remains the same.

• Security.  The interface boundary acts as a wall that protects the implementation and
the client from each other.  If a client program has access to the representation, it can
change the values in the underlying data structure in unexpected ways.  Making the
data private in a class prevents the client from making such changes.

The ADT classes used in this book are inspired by and draw much of their structure
from a more advanced set of classes available for C++ called the Standard Template
Library, or STL for short.  Although the STL is extremely powerful and provides some
capabilities beyond the somewhat simplified class library covered in this book, it is also
more difficult to understand from both the client and implementation perspectives.  One
of the primary advantages of using the simplified class library is that you can easily
understand the entire implementation by the time you finish this book.  Understanding the
implementation gives you greater insight into how classes work in general and what
libraries like the Standard Template Library are doing for you behind the scenes.
Experience has shown, however, that you will be able to understand the implementation
of a class more easily if you have first had a chance to use with that class as a client.



Using Abstract Data Types – 125 –

4.1  The Vector class
One of the most valuable classes in the Standard Template Library and the simplified
version of it used in this book is the Vector class, which represents a generalization of
the array concept presented in section 2.4.  To use the Vector class, you must include its
interface, just as you would for any of the libraries in Chapter 3.  The interfaces for each
of the ADT classes introduced in this chapter is simply the name of the class spelled with
a lowercase initial letter and followed with the extension .h at the end.  Every program
that wants to use the Vector class must therefore include the line

#include "vector.h"

Arrays are a fundamental type in almost all programming languages and have been
part of programming language designs since the beginnings of the field.  Arrays,
however, have a number of weaknesses that can make using them difficult, such as the
following:

• Arrays are allocated with a particular size that doesn’t change after the array is
allocated.

• Even though arrays have a fixed size, C++ does not in fact make that size available to
the programmer.  In most applications, you need to keep track of the effective size of
the array, as discussed in Chapter 2.

• It is impossible to insert new elements into an array or to delete elements without
writing a fair amount of code to shift the existing elements to new index positions.

• Many languages, including both C and C++, make no effort to ensure that the elements
you select are actually present in the array.  For example, if you create an array with 25
elements and then try to select the value at index position 50, C++ will not ordinarily
detect this as an error.  Instead, the program will blithely go on and look at the memory
addresses at which element 50 would appear if the array were long enough.  It would
be far better if arrays in C++ (as they do in Java) implemented bounds checking,
which means that every array access checks to see whether the index is valid.

The Vector class solves each of these problems by reimplementing the array concept
in the form of an abstract data type.  You can use the Vector class in place of arrays in
any application, usually with surprisingly few changes in the source code and only a
minor reduction in efficiency.  In fact, once you have the Vector class, it’s unlikely that
you will have much occasion to use arrays at all, unless you actually have to implement
classes like Vector, which, not surprisingly, uses arrays in its underlying structure.  As a
client of the Vector class, however, you are not interested in that underlying structure
and can leave the array mechanics to the programmers who implement the abstract data
type.

As a client of the Vector class, you are concerned with a different set of issues and
need to answer the following questions:

1. How is it possible to specify the type of object contained in a Vector?
2. How does one create an object that is an instance of the Vector class?
3. What methods are available in the Vector class to implement its abstract behavior?

The next three sections explore the answers to each of these questions in turn.
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Specifying the base type of a Vector
Most of the classes covered in this chapter contain other objects as part of a unified
collection.  Such classes are called either container classes or collection classes.  In
C++, container classes must specify the type of object they contain by including the type
name in angle brackets following the class name.  For example, the class Vector<int>
represents a vector whose elements are integers, Vector<char> specifies a vector whose
elements are single characters, while Vector<string> specifies one in which the
elements are strings.  The type enclosed within the angle brackets is called the base type
for the collection and is analogous to the element type of a conventional array.

Classes that include a base-type specification are called parameterized classes in the
object-oriented community.  In C++, parameterized classes are more often called
templates, which reflects the fact that C++ compilers treat Vector<int>, Vector<char>,
and Vector<string> as independent classes that share a common structure.  The name
Vector acts as a template for stamping out a whole family of classes, in which the only
difference is what type of value can appear as an element of the vector.  For now, all you
need to understand is how to use templates; the process of implementing basic templates
is described in Chapter 9.

Declaring a new Vector object
One of the philosophical principles behind abstract data types is that clients should be
able to think of them as if they were built-in primitive types.  Thus, just as you would
declare an integer variable by writing a declaration such as

int n;

it ought to be possible to declare a new vector by writing

Vector<int> vec;

In C++, that is precisely what you do.  That declaration introduces a new variable named
vec, which is—as the template marker in angle brackets indicates—a vector of integers.

As it happens, however, there is more going on in that declaration than meets the eye.
Unlike declarations of a primitive type, declarations of a new class instance automatically
initialize the object by invoking a special method called a constructor.  The constructor
for the Vector class initializes the underlying data structures so that they represent a
vector with no elements, which is called an empty vector, to which you can later add any
elements you need.  As a client, however, you have no idea what those underlying data
structures are.  From your point of view, the constructor simply creates the Vector object
and leave it ready for you to use.

Operations on the Vector class
Every abstract data type includes a suite of methods that define its behavior  The methods
exported by the Vector class appears in Table 4-1.  As you can see, the Vector class
includes methods that correspond directly to standard array operations (selecting an
individual element and determining the length) along with new methods that extend the
traditional array behavior (adding, inserting, and removing, elements).

Given that every Vector you create starts out with no elements, one of the first things
you need to learn is how to add new elements to a Vector object.  The usual approach is
to invoke the add method, which adds a new element at the end of the Vector.  For
example, if vec is an empty array of integers as declared in the preceding section,
executing the code



Using Abstract Data Types – 127 –

Table 4-1  Methods exported by the Vector class

size() Returns the number of elements in the vector.

isEmpty() Returns true if the vector is empty.

getAt(index) Returns the element of the vector that appears at the specified
index position.  As a convenience, the Vector class also
makes it possible to select an element using array notation, so
that vec[i] selects the element of vec at index position i.

setAt(index, value) Sets the element at the specified index to the new value.
Attempting to reset an element outside the bounds of the
vector generates an error.

add(value) Adds a new element at the end of the vector.

insertAt(index, value) Inserts the new value before the specified index position.

removeAt(index) Deletes the element at the specified index position.

clear() Removes all elements from the vector.

iterator() Returns an iterator that cycles through the elements of the
vector in turn.  Iterators are discussed in section 4.8.

vec.add(10);
vec.add(20);
vec.add(30);

would create a three-element vector containing the values 10, 20, and 30.  Conceptually,
you could diagram the resulting structure just as if it were an array:

vec

0 1 2

1 0 2 0 3 0

The major difference between the vector and the array is that you can add additional
elements to the vector.  For example, if you subsequently called

vec.add(40);

the vector would expand to make room for the new element, like this:

vec

0 1 2

1 0 2 0 3 0

3

4 0

The insertAt method allows you to add new elements in the middle of a vector.  The
first argument to insertAt is an index number, and the new element is inserted before
that position.  For example, if you call

vec.insertAt(2, 25);

the value 25 is inserted before index position 2, as follows:

vec

0 1 2

1 0 2 0 2 5

3

3 0

4

4 0
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Internally, the implementation of the Vector class has to take care of moving the values
30 and 40 over one position to make room for the 25.  From your perspective as a client,
all of that is handled magically by the class.

The Vector class also lets you remove elements.  For example, calling

vec.removeAt(0);

removes the element from position 0, leaving the following values:
vec

0 1 2

2 0 2 5 3 0

3

4 0

Once again, the implementation takes care of shifting elements to close the hole left by
the deleted value.

Now that you have a way of getting elements into a vector, it would be useful to know
how to examine them once they are there.  The counterpart to array selection in the
Vector class is the getAt method, which takes an index number and returns the value in
that index position.  For example, given the most recent of vec, calling vec.getAt(2)
would return the value 30.  If you were to call vec.getAt(5), the bounds-checking code
in the Vector implementation would signal an error because no such element exists.

Symmetrically, you can change the value of an element by calling the setAt method.
Calling

vec.setAt(3, 35);

would change the value in index position 3 to 35, like this:
vec

0 1 2

2 0 2 5 3 0

3

3 5

Even though the getAt and setAt methods are relatively simple to use, hardly anyone
in fact calls these methods directly.  One of the characteristics of C++ that sets it apart
from most other languages is that classes can override the definition of the standard
operators  In particular, C++ allows classes to override the selection operator used to
select elements in an array.  This feature makes it possible for the Vector class to support
exactly the same selection syntax as arrays.  To select the element at position i, all you
need to write is

vec[i];

To change an element, all you need to do is assign to the selected element.  Thus, you can
set element 3 in vec to 35 by writing

vec[3] = 35;

The resulting syntax is marginally shorter but considerably more evocative of the array
operations that the Vector class tries to emulate.

Iterating through the elements of a Vector
As with conventional arrays, one of the most common programming patterns used with
vectors is iteration, in which you cycle through each of the elements in turn.  The basic
idiom for doing so is
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for (int i = 0; i < vec.size(); i++) {
   loop body
}

Inside the loop body, you can refer to the current element as vec[i].

As an example, the following code writes out the contents of the vector vec as a
comma-separated list enclosed in square brackets:

cout << "[";
for (int i = 0; i < vec.size(); i++) {
   if (i > 0) cout << ", ";
   cout << vec[i];
}
cout << "]" << endl;

If you were to execute this code given the most recent contents of vec, you would see the
following output on the screen:

 [20, 25, 30, 35]

Passing a Vector as a parameter
The code at the end of the preceding section is so useful (particularly when you’re
debugging and need to see what values the vector contains), that it would be worth
defining a function that does it.  At one level, encapsulating those lines as a single
function is easy; all you have to do is add the appropriate function header, like this:

void PrintVector(Vector<int> & vec) {
   cout << "[";
   for (int i = 0; i < vec.size(); i++) {
      if (i > 0) cout << ", ";
      cout << vec[i];
   }
   cout << "]" << endl;
}

The header line, however, involves one subtlety that you absolutely have to understand
before you can use the library classes effectively.  As described in Chapter 1, the & before
the parameter name indicates that the argument to PrintVector is passed by reference,
which means that the vector in the caller is shared with the vector in the function.
Passing by reference is more efficient than C++’s default model of passing by value,
which specifies that the entire contents of the argument vector must be copied before
passing it along to the function.  More importantly, passing by reference makes it
possible for you to write functions that change the contents of a vector.  As an example,
the following function adds the contents of an integer array to a vector, making it possible
to convert an array into its vector counterpart:

void AddArrayToVector(Vector<int> & vec, int array[], int n) {
   for (int i = 0; i < n; i++) {
      vec.add(array[i]);
   }
}

If you had left out the ampersand in this header line, the function would have no effect at
all.  The code would happily add the first n elements from array to a vector, but that
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COMMON PITFALLS

When you are using the
classes in the template
library, you should always
pass them by reference.
The C++ compiler won’t
notice if you don’t, but the
results are unlikely to be
what you intend.

vector would be a copy of the one the caller supplied.  As soon as
AddArrayToVector returned, that copy would go away, leaving the
original value unchanged.  This kind of error is easy to make, and you
should learn to look for it when your programs go awry.

The revfile.cpp program in Figure 4-1 shows a complete C++
program that uses Vector  to reverse the lines in a file.  The
AskUserForInputFile and ReadTextFile in this example will
probably come in handy in a variety of applications, and you might
want to keep a copy of this program around so that you can cut-and-
paste these functions into your own code.

Figure 4-1  Program to print the lines of a file in reverse order

/*
 * File: revfile.cpp
 * -----------------
 * This program reads in a text file and then displays the lines of
 * the file in reverse order.
 */

#include "genlib.h"
#include "simpio.h"
#include "vector.h"
#include <string>
#include <iostream>
#include <fstream>

/* Function prototypes */

void ReadTextFile(ifstream & infile, Vector<string> & lines);
void AskUserForInputFile(string prompt, ifstream & infile);
void PrintReversed(Vector<string> & lines);

/* Main program */

int main() {
ifstream infile;
AskUserForInputFile("Input file: ", infile);
Vector<string> lines;
ReadTextFile(infile, lines);
infile.close();
PrintReversed(lines);
return 0;

}

/*
 * Reads an entire file into the Vector<string> supplied by the user.
 */

void ReadTextFile(ifstream & infile, Vector<string> & lines) {
while (true) {
string line;
getline(infile, line);
if (infile.fail()) break;
lines.add(line);

}
}
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/*
 * Opens a text file whose name is entered by the user.  If the file
 * does not exist, the user is given additional chances to enter a
 * valid file.  The prompt string is used to tell the user what kind
 * of file is required.
 */

void AskUserForInputFile(string prompt, ifstream & infile) {
while (true) {
cout << prompt;
string filename = GetLine();
infile.open(filename.c_str());
if (!infile.fail()) break;
cout << "Unable to open " << filename << endl;
infile.clear();

}
}

/*
 * Prints the lines from the Vector<string> in reverse order.
 */

void PrintReversed(Vector<string> & lines) {
for (int i = lines.size() - 1; i >= 0; i--) {
cout << lines[i] << endl;

}
}

4.2  The Grid class
Just as the Vector class simulates—and improves upon—a single-dimensional array, the
Grid class is designed to provide a better implementation of two-dimensional arrays in
C++.  As with Vector, the Grid class contains individual elements, which means that you
need to use parameterized type templates to specify the base type.  Thus, if you want to
create a two-dimensional grid that contains characters, the appropriate class name would
be Grid<char>.

The discipline for creating a new Grid object is slightly different from that of Vector,
mostly because clients tend to use the Grid class in a different way.  Particularly when
you are reading in elements of a vector from a file, as was true in the revfile.cpp
program in Figure 4-1, it seems natural to start with an empty vector and then add new
elements as you go along.  For the most part, that’s not the way people use two-
dimensional arrays.  In most cases, you know the size of the two-dimensional array that
you want to create.  It therefore makes sense to specify the dimensions of a Grid object
when you create it.

In the Grid class, the most commonly used constructor takes two arguments, which
specify the number of rows and the number of columns.  When you declare a Grid
variable, you include these arguments in parentheses after the variable, as in a method
call.  For example, if you want to declare a grid with three rows and two columns in
which each value is a double, you could do so by issuing the following declaration:

Grid<double> matrix(3, 2);

Even though the elements of the matrix are created by the constructor, they may not be
initialized in any helpful way.  If the elements of the grid are objects, they will be
initialized by calling the default constructor for that class, which is simply the
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constructor that takes no arguments.  If the elements, however, are of a primitive type like
double, C++ does not initialize them, and their values depend on whatever happened be
in the memory locations to which those variables were assigned.  It is therefore a good
programming practice to initialize the elements of a Grid explicitly before you use them.

To initialize the elements of a grid, you need to know what methods are available to
manipulate the values the grid contains.  The most common methods in the Grid class are
shown in Table 4-2.  As you can see from the table, the Grid class does include getAt
and setAt methods that allow you to work with individual elements, but it is far more
common to use the more familiar bracket-selection syntax.  For example, if you want to
set every element in the matrix grid to 0.0, you could do so with the following code:

Table 4-2  Methods exported by the Grid class

numRows()
numCols()

These methods return the number of rows and the number of
columns, respectively.

getAt(row, col) Returns the element of the grid that appears at the specified
row and column.  As a convenience, the Grid class also makes
it possible to select an element using array notation, so that
grid[row][col] selects the element at the specified location.

setAt(row, col, value) Sets the element at the specified index to the new value.
Attempting to reset an element outside the bounds of the
vector generates an error.

resize(rows, cols) Changes the dimensions of the grid as specified by the rows
and cols parameters.  Any previous contents of the grid are
discarded.

iterator() Returns an iterator that makes it easy to cycle through the
elements of the grid.

for (int i = 0; i < matrix.numRows(); i++) {
   for (int j = 0; j < matrix.numCols(); j++) {
      matrix[i][j] = 0.0;
   }
}

Because so many games—including chess, checkers, and go—are played on two-
dimensional boards, the Grid class is often useful in applications that play those games.
One particularly simple grid-based game is tic-tac-toe, which is played on a board with
three rows and three columns, as follows:

Players take turns placing the letters X and O in the empty squares, trying to line up three
identical symbols horizontally, vertically, or diagonally.

If you want to represent a tic-tac-toe board using the classes provided in this chapter,
the obvious approach is to use a Grid with three rows and three columns.  Given that
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each of the elements contains a character—an X, an O, or a space—the declaration of a
board will presumably look like this:

Grid<char> board(3, 3);

You will have a chance to see an program that plays tic-tac-toe in Chapter 7, but for now,
it is probably sufficient to look at how you might manipulate a tic-tac-toe board declared
in this way.  Figure 4-2, for example, contains the code for checking to see whether a
player has won the game by looking to see whether the same character appears in every
cell of a row, a column, or a diagonal.

Figure 4-2  Program to check whether a player has won a tic-tac-toe game

/*
 * Checks to see whether the specified player identified by mark
 * ('X' or 'O') has won the game.  To reduce the number of special
 * cases, this implementation uses the helper function CheckLine
 * so that the row, column, and diagonal checks are the same.
 */

bool CheckForWin(Grid<char> & board, char mark) {
for (int i = 0; i < 3; i++) {
if (CheckLine(board, mark, i, 0, 0, 1)) return true;
if (CheckLine(board, mark, 0, i, 1, 0)) return true;

}
if (CheckLine(board, mark, 0, 0, 1, 1)) return true;
return CheckLine(board, mark, 2, 0, -1, 1);

}

/*
 * Checks a line extending across the board in some direction.
 * The starting coordinates are given by the row and col
 * parameters.  The direction of motion is specified by dRow
 * and dCol, which show how to adjust the row and col values
 * on each cycle.  For rows, dRow is always 0; for columns,
 * dCol is 0.  For diagonals, the dRow and dCol values will
 * be +1 or -1 depending on the direction of the diagonal.
 */

bool CheckLine(Grid<char> & board, char mark, int row, int col,
               int dRow, int dCol) {
for (int i = 0; i < 3; i++) {
if (board[row][col] != mark) return false;
row += dRow;
col += dCol;

}
return true;

}

4.3  The Stack class
One of the simplest classes in the ADT library is the Stack class, which is used to model
a data structure called a stack, which turns out to be particularly useful in a variety of
programming applications.  A stack provides storage for a collection of data values,
subject to the restriction that values must be removed from a stack in the opposite order
from which they were added, so that the last item added to a stack is always the first item
that gets removed.
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Because of their importance in computer science, stacks have acquired a terminology
of their own.  The values stored in a stack are called its elements.  Adding a new element
to a stack is called pushing that element; removing the most recent item from a stack is
called popping the stack.  Moreover, the order in which stacks are processed is
sometimes called LIFO, which stands for “last in, first out.”

The conventional (and possibly apocryphal) explanation for the words stack, push, and
pop is that they come from the following metaphor.  In many cafeterias, plates for the
food are placed in spring-loaded columns that make it easy for people in the cafeteria line
to take the top plate, as illustrated in the following diagram:

When a dishwasher adds a new plate, it goes on the top of the stack, pushing the others
down slightly as the spring is compressed, as shown:

Customers can only take plates from the top of the stack.  When they do, the remaining
plates pop back up.  The last plate added to the stack is the first one a customer takes.

The primary reason that stacks are important in programming is that nested function
calls behave in a stack-oriented fashion.  For example, if the main program calls a
function named F, a stack frame for F gets pushed on top of the stack frame for main.

F

main

Local variables for F

If F calls G, a new stack frame for G is pushed on top of the frame for F.

G

F

Local variables for G

main
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When G returns, its frame is popped off the stack, restoring F to the top of the stack as
shown in the original diagram.

The structure of the Stack class
Like Vector and Grid, Stack is a collection class that requires you to specify the base
type.  For example, Stack<int> represents a stack whose elements are integers, and
Stack<string> represents one in which the elements are strings.  Similarly, if you had
previously defined the classes Plate and Frame to contain all the information required to
represent a dinner plate and the stack frame for a function, you could represent the stacks
described in the preceding two sections with the parameterized classes Stack<Plate>
and Stack<Frame>.  The default constructor for the Stack class creates an empty stack.
The complete list of methods exported by the Stack class appears in Table 4-3.

Table 4-3  Methods exported by the Stack class

size() Returns the number of elements currently on the stack.

isEmpty() Returns true if the stack is empty.

push(value) Pushes value on the stack so that it becomes the topmost element.

pop() Pops the topmost value from the stack and returns it to the caller.
Calling pop on an empty stack generates an error.

peek() Returns the topmost value on the stack without removing it.  As with
pop, calling peek on an empty stack generates an error.

clear() Removes all the elements from a stack.

Stacks and pocket calculators
One interesting applications of stacks is in electronic calculators, where they are used to
store intermediate results of a calculation.  Although stacks play a central role in the
operation of most calculators, that role is easiest to see in scientific calculators that
require users to enter expressions in a form called reverse Polish notation, or RPN.

In reverse Polish notation, operators are entered after the operands to which they
apply.  For example, to compute the result of the expression

50.0 * 1.5 + 3.8 / 2.0

on an RPN calculator, you would enter the operations in the following order:

ENTER50.0 x1.5 3.8 /2.0 +ENTER

When the ENTER button is pressed, the calculator takes the previous value and pushes it
on a stack.  When an operator button is pressed, the calculator first checks whether the
user has just entered a value and, if so, automatically pushes it on the stack.  It then
computes the result of applying the operator by

• Popping the top two values from the stack
• Applying the arithmetic operation indicated by the button to these values
• Pushing the result back on the stack

Except when the user is actually typing in a number, the calculator display shows the
value at the top of the stack.  Thus, at each point in the operation, the calculator display
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and stack contain the values shown:

ENTER ENTER50.0 x1.5

3.8

/ +

Display

Stack

50.0 50.0

50.0 50.0

1.5 75.0

75.0 75.0 75.0

3.8

3.8

3.8
75.0
3.8

1.9

75.0

76.9

76.9

Buttons 2.0

2.0

1.9

To implement the RPN calculator described in the preceding section in C++ requires
making some changes in the user-interface design.  In a real calculator, the digits and
operations appear on a keypad.  In this implementation, it is easier to imagine that the
user enters lines on the console, where those lines take one of the following forms:

• A floating-point number
• An arithmetic operator chosen from the set +, -, *, and /
• The letter Q, which causes the program to quit
• The letter H, which prints a help message
• The letter C, which clears any values left on the stack

A sample run of the calculator program might therefore look like this:

 RPN Calculator Simulation (type H for help)
 > 50.0
 > 1.5
 > *
 75
 > 3.8
 > 2.0
 > /
 1.9
 > +
 76.9
 > Q

Because the user enters each number on a separate line terminated with the RETURN key,
there is no need for any counterpart to the calculator’s ENTER button, which really serves
only to indicate that a number is complete.  The calculator program can simply push the
numbers on the stack as the user enters them.  When the calculator reads an operator, it
pops the top two elements from the stack, applies the operator, displays the result, and
then pushes the result back on the stack.

The complete implementation of the calculator application appears in Figure 4-3.

4.4  The Queue class
As you learned in section 4.3, the defining feature of a stack is that the last item pushed is
always the first item popped.  As noted in the introduction to that section, this behavior is
often referred to in computer science as LIFO, which is an acronym for the phrase “last
in, first out.”  The LIFO discipline is useful in programming contexts because it reflects
the operation of function calls; the most recently called function is the first to return.
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Figure 4-3  Implementation of a calculator that uses reverse Polish notation

/*
 * File: rpncalc.cpp
 * -----------------
 * This program simulates an electronic calculator that uses
 * reverse Polish notation, in which the operators come after
 * the operands to which they apply.
 */

#include <iostream>
#include <cctype>
#include "genlib.h"
#include "simpio.h"
#include "strutils.h"
#include "stack.h"

/* Private function prototypes */

void ApplyOperator(char op, Stack<double> &operandStack);
void HelpCommand();
void ClearStack(Stack<double> &operandStack);

/* Main program */

int main() {
    Stack<double> operandStack;

    cout << "RPN Calculator Simulation (type H for help)" << endl;
    while (true) {
        cout << "> ";
        string line = GetLine();
        char ch = toupper(line[0]);
        if (ch == 'Q') {
            break;
        } else if (ch == 'C') {
            ClearStack(operandStack);
        } else if (ch == 'H') {
            HelpCommand();
        } else if (isdigit(ch)) {
            operandStack.push(StringToReal(line));
        } else {
            ApplyOperator(ch, operandStack);
        }
    }
    return 0;
}



Using Abstract Data Types – 138 –

/*
 * Function: ApplyOperator
 * Usage: ApplyOperator(op, operandStack);
 * ---------------------------------------
 * This function applies the operator to the top two elements on
 * the operand stack.  Because the elements on the stack are
 * popped in reverse order, the right operand is popped before
 * the left operand.
 */

void ApplyOperator(char op, Stack<double> &operandStack) {
    double result;

    double rhs = operandStack.pop();
    double lhs = operandStack.pop();
    switch (op) {
      case '+': result = lhs + rhs; break;
      case '-': result = lhs - rhs; break;
      case '*': result = lhs * rhs; break;
      case '/': result = lhs / rhs; break;
      default:  Error("Illegal operator");
    }
    cout << result << endl;
    operandStack.push(result);
}

/*
 * Function: HelpCommand
 * Usage: HelpCommand();
 * ---------------------
 * This function generates a help message for the user.
 */

void HelpCommand() {
    cout << "Enter expressions in Reverse Polish Notation," << endl;
    cout << "in which operators follow the operands to which" << endl;
    cout << "they apply.  Each line consists of a number, an" << endl;
    cout << "operator, or one of the following commands:" << endl;
    cout << "  Q -- Quit the program" << endl;
    cout << "  H -- Display this help message" << endl;
    cout << "  C -- Clear the calculator stack" << endl;
}

/*
 * Function: ClearStack
 * Usage: ClearStack(stack);
 * -------------------------
 * This function clears the stack by popping elements until empty.
 */

void ClearStack(Stack<double> &stack) {
    while (!stack.isEmpty()) {
        stack.pop();
    }
}
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In real-world situations, however, its usefulness is more limited.  In human society, our
collective notion of fairness assigns some priority to being first, as expressed in the
maxim “first come, first served.”  In programming, the usual phrasing of this ordering
strategy is “first in, first out,” which is traditionally abbreviated as FIFO.

A data structure that stores items using a FIFO discipline is called a queue.  The
fundamental operations on a queue—which are analogous to the push and pop operations
for stacks—are called enqueue and dequeue.  The enqueue operation adds a new
element to the end of the queue, which is traditionally called its tail.  The dequeue
operation removes the element at the beginning of the queue, which is called its head.

The conceptual difference between these structures can be illustrated most easily with
a diagram.  In a stack, the client must add and remove elements from the same end of the
internal data structure, as follows:

Push

Pop
base of
stack

top of
stack

Stack:

In a queue, the client adds elements at one end and removes them from the other, like this:

head of
queue

tail of
queue

Queue:

Enqueue

Dequeue

As you might expect from the fact that the conceptual  are so similar, the structure of
the Queue class looks very much like its Stack counterpart.  The list of methods in the
Queue class shown in Table 4-4 bears out that supposition.  The only differences are in
the terminology, which reflects the difference in the ordering of the elements.

Table 4-4 Methods exported by the Queue class

size() Returns the number of elements currently on the queue.

isEmpty() Returns true if the queue is empty.

enqueue(value) Adds value to the tail of the queue.

dequeue() Removes the element at the head of the queue and returns it to the
caller.  Calling dequeue on an empty queue generates an error.

peek() Returns the value at the head of the queue without removing it.  As
with dequeue , calling peek on an empty queue generates an error.

clear() Removes all the elements from a queue.

The queue data structure has many applications in programming.  Not surprisingly,
queues turn up in many situations in which it is important to maintain a first-in/first-out
discipline in order to ensure that service requests are treated fairly.  For example, if you
are working in an environment in which a single printer is shared among several
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computers, the printing software is usually designed so that all print requests are entered
in a queue.  Thus, if several users decide to enter print requests, the queue structure
ensures that each user’s request is processed in the order received.

Queues are also common in programs that simulate the behavior of waiting lines.  For
example, if you wanted to decide how many cashiers you needed in a supermarket, it
might be worth writing a program that could simulate the behavior of customers in the
store.  Such a program would almost certainly involve queues, because a checkout line
operates in a first-in/first-out way.  Customers who have completed their purchases arrive
in the checkout line and wait for their turn to pay.  Each customer eventually reaches the
front of the line, at which point the cashier totals up the purchases and collects the
money.  Because simulations of this sort represent an important class of application
programs, it is worth spending a little time understanding how such simulations work.

Simulations and models
Beyond the world of programming, there are an endless variety of real-world events and
processes that—although they are undeniably important—are nonetheless too
complicated to understand completely.  For example, it would be very useful to know
how various pollutants affect the ozone layer and how the resulting changes in the ozone
layer affect the global climate.  Similarly, if economists and political leaders had a more
complete understanding of exactly how the national economy works, it would be possible
to evaluate whether a cut in the capital-gains tax would spur investment or whether it
would exacerbate the existing disparities of wealth and income.

When faced with such large-scale problems, it is usually necessary to come up with an
idealized model, which is a simplified representation of some real-world process.  Most
problems are far too complex to allow for a complete understanding.  There are just too
many details.  The reason to build a model is that, despite the complexity of a particular
problem, it is often possible to make certain assumptions that allow you to simplify a
complicated process without affecting its fundamental character.  If you can come up
with a reasonable model for a process, you can often translate the dynamics of the model
into a program that captures the behavior of that model.  Such a program is called a
simulation.

It is important to remember that creating a simulation is usually a two-step process.
The first step consists of designing a conceptual model for the real-world behavior you
are trying to simulate.  The second consists of writing a program that implements the
conceptual model.  Because errors can occur in both steps of the process, maintaining a
certain skepticism about simulations and their applicability to the real world is probably
wise.  In a society conditioned to believe the “answers” delivered by computers, it is
critical to recognize that the simulations can never be better than the models on which
they are based.

The waiting-line model
Suppose that you want to design a simulation that models the behavior of a supermarket
waiting line.  By simulating the waiting line, you can determine some useful properties of
waiting lines that might help a company make such decisions as how many cashiers are
needed, how much space needs to be reserved for the line itself, and so forth.

The first step in the process of writing a checkout-line simulation is to develop a model
for the waiting line, detailing the simplifying assumptions.  For example, to make the
initial implementation of the simulation as simple as possible, you might begin by
assuming that there is one cashier who serves customers from a single queue.  You might
then assume that customers arrive with a random probability and enter the queue at the
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end of the line.  Whenever the cashier is free and someone is waiting in line, the cashier
begins to serve that customer.  After an appropriate service period—which you must also
model in some way—the cashier completes the transaction with the current customer, and
is free to serve the next customer in the queue.

Discrete time
Another assumption often required in a model is some limitation on the level of accuracy.
Consider, for example, the time that a customer spends being served by the cashier.  One
customer might spend two minutes; another might spend six.  It is important, however, to
consider whether measuring time in minutes allows the simulation to be sufficiently
precise.  If you had a sufficiently accurate stopwatch, you might discover that a customer
actually spent 3.14159265 minutes.  The question you need to resolve is how accurate
you need to be.

For most models, and particularly for those intended for simulation, it is useful to
introduce the simplifying assumption that all events within the model happen in discrete
integral time units.  Using discrete time assumes that you can find a time unit that—for
the purpose of the model—you can treat as indivisible.  In general, the time units used in
a simulation must be small enough that the probability of more than one event occurring
during a single time unit is negligible.  In the checkout-line simulation, for example,
minutes may not be accurate enough; two customers could easily arrive in the same
minute.  On the other hand, you could probably get away with using seconds as the time
unit and discount the possibility that two customers arrive in precisely the same second.

Although the checkout-line example assumes that simulation time is measured in
seconds, in general, there is no reason you have to measure time in conventional units.
When you write a simulation, you can define the unit of time in any way that fits the
structure of the model.  For example, you could define a time unit to be five seconds and
then run the simulation as a series of five-second intervals.

Events in simulated time
The real advantage of using discrete time units is not that it makes it possible to work
with variables of type int instead of being forced to use type double.  The most
important property of discrete time is that it allows you to structure the simulation as a
loop in which each time unit represents a single cycle.  When you approach the problem
in this way, a simulation program has the following form:

for (int time = 0; time < SIMULATION_TIME; time++) {
    Execute one cycle of the simulation.
}

Within the body of the loop, the program performs the operations necessary to advance
through one unit of simulated time.

Think for a moment about what events might occur during each time unit of the
checkout-line simulation.  One possibility is that a new customer might arrive.  Another
is that the cashier might finish with the current customer and go on the serve the next
person in line.  These events bring up some interesting issues.  To complete the model,
you need to say something about how often customers arrive and how much time they
spend at the cash register.  You could (and probably should) gather approximate data by
watching a real checkout line in a store.  Even if you collect that information, however,
you will need to simplify it to a form that (1) captures enough of the real-world behavior
to be useful and (2) is easy to understand in terms of the model.  For example, your
surveys might show that customers arrive at the line on average once every 20 seconds.
This average arrival rate is certainly useful input to the model.  On the other hand, you
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would not have much confidence in a simulation in which customers arrived exactly once
every 20 seconds.  Such an implementation would violate the real-world condition that
customer arrivals have some random variability and that they sometimes bunch together.

For this reason, the arrival process is usually modeled by specifying the probability
that an arrival takes place in any discrete time unit instead of the average time between
arrivals.  For example, if your studies indicated that a customer arrived once every 20
seconds, the average probability of a customer arriving in any particular second would be
1/20 or 0.05.  If you assume that arrivals occur randomly with an equal probability in
each unit of time, the arrival process forms a pattern that mathematicians call a Poisson
distribution.

You might also choose to make simplifying assumptions about how long it takes to
serve a particular customer.  For example, the program is easier to write if you assume
that the service time required for each customer is uniformly distributed within a certain
range.  If you do, you can use the RandomInteger function from the random.h interface
to pick the service time.

Implementing the simulation
Even though it is longer than the other programs in this chapter, the code for the
simulation program is reasonably easy to write and appears in Figure 4-4.  The core of the
simulation is a loop that runs for the number of seconds indicated by the parameter
SIMULATION_TIME.  In each second, the simulation performs the following operations:

1. Determine whether a new customer has arrived and, if so, add that person to the
queue.

2. If the cashier is busy, note that the cashier has spent another second with the current
customer.  Eventually, the required service time will be complete, which will free the
cashier.

3. If the cashier is free, serve the next customer in the waiting line.

The simulation is controlled by the following parameters:

• SIMULATION_TIME—This parameter specifies the duration of the simulation.
• ARRIVAL_PROBABILITY—This parameter indicates the probability that a new customer

will arrive at the checkout line during a single unit of time.  In keeping with standard
statistical convention, the probability is expressed as a real number between 0 and 1.

• MIN_SERVICE_TIME, MAX_SERVICE_TIME—These parameters define the legal range of
customer service time.  For any particular customer, the amount of time spent at the
cashier is determined by picking a random integer in this range.

In addition to these parameters, there is also a variable traceFlag that controls whether
the program produces a debugging log.  The flag is set to false in the finished version of
the application, but it is probably a good idea to leave the debugging code in the program.
That way, if someone needs to modify the program later, they can set traceFlag to true
and see the debugging output.

When the simulation is complete, the program reports the simulation parameters along
with the following results:

• The number of customers served
• The average amount of time customers spent in the waiting line
• The average length of the waiting line
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Figure 4-4  Program to simulate a checkout line

/*
 * File: checkout.cpp
 * ------------------
 * This program simulates a checkout line, such as one you
 * might encounter in a grocery store.  Customers arrive at
 * the checkout stand and get in line.  Those customers wait
 * in the line until the cashier is free, at which point
 * they are served and occupy the cashier for some period
 * of time.  After the service time is complete, the cashier
 * is free to serve the next customer in the line.
 *
 * In each unit of time, up to the parameter SIMULATION_TIME,
 * the following operations are performed:
 *
 * 1. Determine whether a new customer has arrived.
 *    New customers arrive randomly, with a probability
 *    determined by the parameter ARRIVAL_PROBABILITY.
 *
 * 2. If the cashier is busy, note that the cashier has
 *    spent another minute with that customer.  Eventually,
 *    the customer's time request is satisfied, which frees
 *    the cashier.
 *
 * 3. If the cashier is free, serve the next customer in line.
 *    The service time is taken to be a random period between
 *    MIN_SERVICE_TIME and MAX_SERVICE_TIME.
 *
 * At the end of the simulation, the program displays the
 * parameters and the following computed results:
 *
 * o  The number of customers served
 * o  The average time spent in line
 * o  The average number of people in line
 */

#include "genlib.h"
#include "random.h"
#include "queue.h"
#include <iostream>
#include <iomanip>

/* Simulation parameters */

const int SIMULATION_TIME = 2000;
const double ARRIVAL_PROBABILITY = 0.1;
const int MIN_SERVICE_TIME =  5;
const int MAX_SERVICE_TIME = 15;
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/*
 * Type: customerT
 * ---------------
 * A customer is represented using a record
 * containing the following information:
 *
 * o The customer number (for debugging traces)
 * o The arrival time (to compute the waiting time)
 * o The time required for service
 */

struct customerT {
    int customerNumber;
    int arrivalTime;
    int serviceTime;
};

/*
 * Type: simDataT
 * --------------
 * This type stores the data required for the simulation.  The
 * main program declares a variable of this type and then passes
 * it by reference to every other function in the program.
 */

struct simDataT {
    Queue<customerT> queue;
    customerT activeCustomer;
    bool hasActiveCustomer;
    int time;
    int numCustomers;
    int numServed;
    long totalWaitTime;
    long totalLineLength;
};

/*
 * Debugging option: traceFlag
 * ---------------------------
 * This variable controls whether the simulation produces a
 * debugging trace.
 */

static bool traceFlag = true;

/* Private function prototypes */

void InitializeSimulation(simDataT & sd);
void RunSimulation(simDataT & sd);
void EnqueueCustomer(simDataT & sd);
void ProcessQueue(simDataT & sd);
void ServeCustomer(simDataT & sd);
void DismissCustomer(simDataT & sd);
void ReportResults(simDataT & sd);
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/* Main program */

int main() {
simDataT simData;

Randomize();
InitializeSimulation(simData);
RunSimulation(simData);
ReportResults(simData);
return 0;

}

/*
 * Function: InitializeSimulation
 * Usage: InitializeSimulation(simData);
 * -------------------------------------
 * This function initializes the simulation data block whose
 * address is passed as the argument.
 */

void InitializeSimulation(simDataT & sd) {
sd.hasActiveCustomer = false;
sd.numServed = 0;
sd.totalWaitTime = 0;
sd.totalLineLength = 0;

}

/*
 * Function: RunSimulation
 * Usage: RunSimulation(simData);
 * ------------------------------
 * This function runs the actual simulation.  In each time unit,
 * the program first checks to see whether a new customer arrives.
 * Then, if the cashier is busy (indicated by the boolean flag
 * in the hasActiveCustomer field), the program decrements
 * the service time counter for that customer.  Finally, if the
 * cashier is free, it serves another customer from the queue
 * and updates the necessary bookkeeping data.
 */

void RunSimulation(simDataT & sd) {
for (sd.time = 0; sd.time < SIMULATION_TIME; sd.time++) {
if (RandomChance(ARRIVAL_PROBABILITY)) {
EnqueueCustomer(sd);

}
ProcessQueue(sd);

}
}
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/*
 * Function: EnqueueCustomer
 * Usage: EnqueueCustomer(simData);
 * --------------------------------
 * This function simulates the arrival of a new customer.
 */

void EnqueueCustomer(simDataT & sd) {
customerT c;

sd.numCustomers++;
c.customerNumber = sd.numCustomers;
c.arrivalTime = sd.time;
c.serviceTime = RandomInteger(MIN_SERVICE_TIME, MAX_SERVICE_TIME);
sd.queue.enqueue(c);
if (traceFlag) {
cout << setw(4) << sd.time << ": Customer " << c.customerNumber
     << " arrives and gets in line." << endl;

}
}

/*
 * Function: ProcessQueue
 * Usage: ProcessQueue(simData);
 * -----------------------------
 * This function processes a single time cycle for the queue.
 */

void ProcessQueue(simDataT & sd) {
if (!sd.hasActiveCustomer) {
if (!sd.queue.isEmpty()) {
ServeCustomer(sd);

}
} else {
if (sd.activeCustomer.serviceTime == 0) {
DismissCustomer(sd);

} else {
sd.activeCustomer.serviceTime--;

}
}
sd.totalLineLength += sd.queue.size();

}

/*
 * Function: ServeCustomer
 * Usage: ServeCustomer(simData);
 * ------------------------------
 * This function is called when the cashier is free and a
 * customer is waiting.  The effect is to serve the first
 * customer in the line and update the total waiting time.
 */
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void ServeCustomer(simDataT & sd) {
customerT c = sd.queue.dequeue();
sd.activeCustomer = c;
sd.hasActiveCustomer = true;
sd.numServed++;
sd.totalWaitTime += (sd.time - c.arrivalTime);
if (traceFlag) {
cout << setw(4) << sd.time << ": Customer "
     << c.customerNumber << " reaches cashier." << endl;

}
}

/*
 * Function: DismissCustomer
 * Usage: DismissCustomer(simData);
 * --------------------------------
 * This function is called when the active customer's service
 * time has dropped to 0. The cashier becomes free and the
 * program no longer needs to hold the customer's storage.
 */

void DismissCustomer(simDataT & sd) {
if (traceFlag) {
cout << setw(4) << sd.time << ": Customer "
     << sd.activeCustomer.customerNumber
     << " leaves cashier." << endl;

}
sd.hasActiveCustomer = false;

}

/*
 * Function: ReportResults
 * Usage: ReportResults(simData);
 * ------------------------------
 * This function reports the results of the simulation.
 */

void ReportResults(simDataT & sd) {
cout << "Simulation results given the following parameters:"
     << endl;
cout << fixed << setprecision(2);
cout << "  SIMULATION_TIME:     " << setw(4)
     << SIMULATION_TIME << endl;
cout << "  ARRIVAL_PROBABILITY: " << setw(7)
     << ARRIVAL_PROBABILITY << endl;
cout << "  MIN_SERVICE_TIME:     " << setw(4)
     << MIN_SERVICE_TIME << endl;
cout << "  MAX_SERVICE_TIME:     " << setw(4)
     << MAX_SERVICE_TIME << endl;
cout << endl;
cout << "Customers served:     " << setw(4)
     << sd.numServed << endl;
cout << "Average waiting time: " << setw(7)
     << double(sd.totalWaitTime) / sd.numServed << endl;
cout << "Average line length:  " << setw(7)
     << double(sd.totalLineLength) / SIMULATION_TIME << endl;

}
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For example, the following sample run shows the results of the simulation for the
indicated parameter values:

 Simulation results given the following parameters:
   SIMULATION_TIME:     2000
   ARRIVAL_PROBABILITY:    0.05
   MIN_SERVICE_TIME:       5
   MAX_SERVICE_TIME:      15

 Customers served:       117
 Average waiting time:    15.24
 Average line length:      0.90

The behavior of the simulation depends significantly on the values of its parameters.
Suppose, for example, that the probability of a customer arriving increases from 0.05 to
0.10.  Running the simulation with these parameters gives the following results:

 Simulation results given the following parameters:
   SIMULATION_TIME:     2000
   ARRIVAL_PROBABILITY:    0.10
   MIN_SERVICE_TIME:       5
   MAX_SERVICE_TIME:      15

 Customers served:       166
 Average waiting time:   237.47
 Average line length:     23.35

As you can see, doubling the probability of arrival causes the average waiting time to
grow from approximately 15 seconds to nearly four minutes, which is obviously a
dramatic increase.  The reason for the poor performance is that the arrival rate in the
second run of the simulation means that new customers arrive at the same rate at which
they are served.  When this arrival level is reached, the length of the queue and the
average waiting time begin to grow very quickly.  Simulations of this sort make it
possible to experiment with different parameter values.  Those experiments, in turn, make
it possible to identify potential sources of trouble in the corresponding real-world
systems.

4.5 The Map class
This section introduces another generic collection called a map, which is conceptually
similar to a dictionary.  A dictionary allows you to look up a word to find its meaning.  A
map is a generalization of this idea that provides an association between an identifying
tag called a key and an associated value, which may be a much larger and more
complicated structure.  In the dictionary example, the key is the word you’re looking up,
and the value is its definition.

Maps have many applications in programming.  For example, an interpreter for a
programming language needs to be able to assign values to variables, which can then be
referenced by name.  A map makes it easy to maintain the association between the name
of a variable and its corresponding value.  When they are used in this context, maps are
often called symbol tables, which is just another name for the same concept.
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The structure of the Map class
As with the collection classes introduced earlier in this chapter, Map is implemented as a
template class than must be parameterized with its value type.  For example, if you want
to simulate a dictionary in which individual words are associated with their definitions,
you can start by declaring a dictionary variable as follows:

Map<string> dictionary;

Similarly, if you use a Map to store values of floating-point variables in a programming
language, you could start with the following definition:

Map<double> symbolTable;

These definitions create empty maps that contain no keys and values.  In either case, you
would subsequently need to add key/value pairs to the map.  In the case of the dictionary,
you could read the contents from a data file.  For the symbol table, you would add new
associations whenever an assignment statement appeared.

It is important to note that the parameter for the Map class specifies the type of the
value, and not the type of the key.  In many implementations of collection classes—
including, for example, the one in the Standard Template Library and its counterpart in
the Java collection classes—you can specify the type of the key as well.  The Map class
used in this book avoid considerable complexity by insisting that all keys be strings.
Strings are certainly the most common type for keys, and it is usually possible to convert
other types to strings if you want to use them as map keys.  For example, if you want to
use integers as keys, you can simply call the IntegerToString function on the integer
version of the key and then use the resulting string for all map operations.

Table 4-5 Methods exported by the Map class

size() Returns the number of key/value pairs contained in the map.

isEmpty() Returns true if the map is empty.

put(key, value) Associates the specified key and value in the map.  If key has no
previous definition, a new entry is added; if a previous association
exists, the old value is discarded and replace by the new one.

get(key) Returns the value currently associated with key in the map.  If
there is no such value, get generates an error.

remove(key) Removes key from the map along with any associated value.  If key
does not exist, this call leaves the map unchanged.

containsKey(key) Checks to see whether key is associated with a value.  If so, this
method returns true; if not, it returns false.

clear() Removes all the key/value pairs from the map.

iterator() Returns an iterator that makes it easy to cycle through the keys in
the map.

The most common methods used with the Map class appear in Table 4-5.  Of these, the
ones that implement the fundamental behavior of the map concept are put and get.  The
put method creates an association between a key and a value.  Its operation is analogous
to assigning a value to a variable in C++: if there is a value already associated with the
key, the old value is replaced by the new one.  The get method retrieves the value most
recently associated with a particular key and therefore corresponds to the act of using a
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variable name to retrieve its value.  If no value appears in the map for a particular key,
calling get with that key generates an error condition.  You can check for that condition
by calling the containsKey method, which returns true or false depending on whether
the key exists in the map.

A few simple diagrams may help to illustrate the operation of the Map class in more
detail.  Suppose that you have declared the symbolTable variable to be a Map<double>
as you saw earlier in the section.  That declaration creates an empty map with no
associations, which can be represented as the following empty box:

symbolTable

 

Once you have the map, you can use put to establish new associations.  For example, if
you were to call

symbolTable.put("pi", 3.14159);

the conceptual effect would be to add an association inside the box between the key "pi"
and the value 3.14159, as follows:

symbolTable

pi = 3.14159
 

If you then called

symbolTable.put("e", 2.71828);

a new association would be added between the key "e" and the value 2.71828, like this:

symbolTable

pi = 3.14159
e = 2.71828

You can then use get to retrieve these values.  Calling symbolTable.get("pi") would
return the value 3.14159, and calling symbolTable.get("pi") would return 2.71828.

Although it hardly makes sense in the case of mathematical constants, you could
change the values in the map by making additional calls to put.  You could, for example,
reset the value associated with "pi" (as an 1897 bill before the Indiana State General
Assembly sought to do) by calling

symbolTable.put("pi", 3.2);

which would leave the map in the following state:

symbolTable

pi = 3.2
e = 2.71828

At this point, calling symbolTable.containsKey("pi") would return true; by contrast,
calling symbolTable.containsKey("x") would return false.
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Using maps in an application
If you fly at all frequently, you quickly learn that every airport in the world has a three-
letter code assigned by the International Air Transport Association (IATA).  For example,
John F. Kennedy airport in New York City is assigned the three-letter code JFK.  Other
codes, however, are considerably harder to recognize.  Most web-based travel systems
offer some means of looking up these codes as a service to their customers.

Suppose that you have been asked to write a simple C++ program that reads a three-
letter airport code from the user and responds with the location of that airport.  The data
you need is in the form of a text file called AirportCodes.txt, which contains a list of
the several thousand airport codes that IATA has assigned.  Each line of the file consists
of a three-letter code, an equal sign, and the location of the airport.  If the file were sorted
in descending order by passenger traffic as of 2007, the file would begin with the lines in
Figure 4-5.

Figure 4-5. The first 25 lines in AirportCodes.txt

ATL=Atlanta, GA, USA
ORD=Chicago, IL, USA
LHR=London, England, United Kingdom
HND=Tokyo, Japan
LAX=Los Angeles, CA, USA
CDG=Paris, France
DFW=Dallas/Ft Worth, TX, USA
FRA=Frankfurt, Germany
PEK=Beijing, China
MAD=Madrid, Spain
DEN=Denver, CO, USA
AMS=Amsterdam, Netherlands
JFK=New York, NY, USA
HKG=Hong Kong, Hong Kong
LAS=Las Vegas, NV, USA
IAH=Houston, TX, USA
PHX=Phoenix, AZ, USA
BKK=Bangkok, Thailand
SIN=Singapore, Singapore
MCO=Orlando, FL, USA
EWR=Newark, NJ, USA
DTW=Detroit, MI, USA
SFO=San Francisco, CA, USA
NRT=Tokyo, Japan
LGW=London, England, United Kingdom

.

.

.

Given the Map class, the code for this application fits on a single page, as shown in
Figure 4-6.  That program makes it possible for the user to see the following sample run:

 Airport code: LHR
 LHR is in London, England, United Kingdom
 Airport code: SFO
 SFO is in San Francisco, CA, USA
 Airport code: XXX
 There is no such airport code
 Airport code:
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Figure 4-6  Program to look up three-letter airport codes

/*
 * File: airports.cpp
 * ------------------
 * This program looks up a three-letter airport code in a Map object.
 */

#include "genlib.h"
#include "simpio.h"
#include "strutils.h"
#include "map.h"
#include <iostream>
#include <fstream>
#include <string>

/* Private function prototypes */

void ReadCodeFile(Map<string> & map);

/* Main program */

int main() {
Map<string> airportCodes;
ReadCodeFile(airportCodes);
while (true) {
cout << "Airport code: ";
string code = ConvertToUpperCase(GetLine());
if (code == "") break;
if (airportCodes.containsKey(code)) {
cout << code << " is in " << airportCodes.get(code) << endl;

} else {
cout << "There is no such airport code" << endl;

}
}
return 0;

}

/* Reads the data file into the map */

void ReadCodeFile(Map<string> & map) {
ifstream infile;
infile.open("AirportCodes.txt");
if (infile.fail()) Error("Can't read the data file");
while (true) {
string line;
getline(infile, line);
if (infile.fail()) break;
if (line.length() < 4 || line[3] != '=') {
Error("Illegal data file line: " + line);

}
string code = ConvertToUpperCase(line.substr(0, 3));
map.put(code, line.substr(4));

}
infile.close();

}
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Maps as associative arrays
The Map class overloads the square bracket operators used for array selection so that the
statement

map[key] = value;

acts as a shorthand for

map.put(key, value);

and the expression map[key] returns the value from map associated with key in exactly
the same way that map.get(key) does.  While these shorthand forms of the put and get
methods are certainly convenient, using array notation for maps is initially somewhat
surprising, given that maps and arrays seem to be rather different in their structure.  If
you think about maps and arrays in the right way, however, they turn out to be more alike
than you might at first suspect.

The insight necessary to unify these two seemingly different structures is that you can
think of arrays as structures that map index positions to elements.  For example, the array

scores

0 1 2 3 4

9.2 9.7 9.0 9.59.9

used as an example in Chapter 2 maps the key 0 into the value 9.2, the key 1 into 9.9, the
key 2 into 9.7, and so forth.  Thus, an array is in some sense just a map with integer keys.
Conversely, you can think of a map as an array that uses strings as index positions, which
is precisely what the overloaded selection syntax for the Map class suggests.

Using array syntax to perform map-like operations is becoming increasingly common
in programming languages beyond the C++ domain.  Many popular scripting languages
implement all arrays internally as maps, making it possible use index values that are not
necessarily integers.  Arrays implemented using maps as their underlying representation
are called associative arrays.

4.6  The Lexicon class
A lexicon is conceptually a dictionary from which the definitions have been removed.
Given a lexicon, you can only tell whether a word exists; there are no definitions or
values associated with the individual words.

The structure of the Lexicon class
The Lexicon class offers two different forms of the constructor.  The default constructor
creates an empty lexicon to which you can add new words.  In many applications,
however, it is convenient to provide the constructor with the name of a data file that
contains the words you want to include.  For example, if the file EnglishWords.dat
contains a list of all English words, you could use that file to create a lexicon using the
followng declaration:

Lexicon english("EnglishWords.dat");

The implementation of the Lexicon class allows these data files to be in either of two
formats:

1. A text file in which the words appear in any order, one word per line.



Using Abstract Data Types – 154 –

2. A precompiled data file that mirrors the internal representation of the lexicon.  Using
precompiled files (such as EnglishWords.dat) is more efficient, both in terms of
space and time.

Unlike the classes presented earlier in this chapter, Lexicon does not require a type
parameter, because a lexicon doesn’t contain any values.  It does, of course, contain a set
of words, but the words are always strings.

The methods available in the Lexicon class appear in Table 4-6.  The most commonly
used method is containsWord, which checks to see if a word is in the lexicon.  Assuming
that you have initialized the variable english so that it contains a lexicon of all English
words, you could see if a particular word exists by writing a test such as the following:

if (english.containsWord(word)) . . .

And because it is useful to make such tests in a variety of applications, you can also
determine whether any English words begin with a particular substring by calling

if (english.containsPrefix(prefix)) . . .

A simple application of the Lexicon class
In many word games, such as the popular Scrabble™ crossword game, it is critical to
memorize as many two letter words as you can, because knowing the two-letter words
makes it easier to attach new words to the existing words on the board.  Given that you
have a lexicon containing English words, you could create such a list by generating all
two-letter strings and then using the lexicon to check which of the resulting combinations
are actually words.  The code to do so appears in Figure 4-7.

As you will discover in section 4.8, it is also possible to solve this problem by going
through the lexicon and printing out the words whose length is two.  Given that there are
more than 100,000 English words in the lexicon and only 676 (26 x 26) combinations of
two letters, the strategy used in Figure 4-7 is probably more efficient.

Table 4-6 Methods exported by the Lexicon class

size() Returns the number of words in the lexicon.

isEmpty() Returns true if the lexicon is empty.

add(word) Adds a new word to the lexicon.  If the word is already in
the lexicon, this call has no effect; each word may appear
only once.  All words in a lexicon are stored in lower case.

addWordsFromFile(name) Adds all the words in the named file to the lexicon.  The
file must either be a text file, in which case the words are
listed on separate lines, or a precompiled data file, in
which the contents of the file match the internal structure
of the lexicon.  The addWordsFromFile method can read a
precompiled file only if the lexicon is empty.

containsWord(word) Returns true if word is in the lexicon.

containsPrefix(prefix) Returns true if any of the words in the lexicon start with
the specified prefix.

clear() Removes all the elements from a lexicon.

iterator() Returns an iterator that makes it easy to cycle through the
words in the lexicon.
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Figure 4-7  Program to display all two-letter English words

/*
 * File: twoletters.cpp
 * --------------------
 * This program generates a list of the two-letter words.
 */

#include "genlib.h"
#include "lexicon.h"
#include <iostream>

int main() {
Lexicon english("EnglishWords.dat");
string word = "xx";
for (char c0 = 'a'; c0 <= 'z'; c0++) {
word[0] = c0;
for (char c1 = 'a'; c1 <= 'z'; c1++) {
word[1] = c1;
if (english.containsWord(word)) {
cout << word << endl;

}
}

}
return 0;

}

Why are lexicons useful if maps already exist
If you think about it, a lexicon is in many ways just a simplified version of a map in
which you ignore the values altogether.  It would therefore be easy enough to build most
of the Lexicon class on top of the Map class.  Adding a word to the lexicon corresponds
to calling put using the word as the key; checking whether a word exists corresponds to
calling containsKey.

Given that the Map class already provides most of the functionality of the Lexicon, it
may seem odd that both classes are included in this book.  When we designed the ADT
library, we chose to include a separate Lexicon class for the following reasons:

• Not having to worry about the values in a map makes it possible to implement the
lexicon in a more efficient way, particularly in terms of how much memory is required
to store the data.  Given the data structure used in the Lexicon implementation, the
entire English dictionary requires approximately 350,000 bytes.  If you were to use a
Map to store the words, the storage requirements would be more than five times greater.

• The underlying representation used in the lexicon makes it possible to check not only
whether a word exists in the lexicon, but also to find out whether any word in the
lexicon starts with a particular set of letters (the containsPrefix method).

• The lexicon representation ensures that the words remain in alphabetical order.

Although these characteristics of the Lexicon class are clearly advantages, it is still
somewhat surprising that these reasons focus on what seem to be implementation details,
particularly in light of the emphasis this chapter places on ignoring such details.  By
choosing to include the Lexicon class, those details are not being revealed to the client.
After reading the justification for the Lexicon class, you have no idea why it might be
more efficient than the Map class for storing a list of words, but you might well choose to
take advantage of that fact.
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4.7  The Scanner class
The last of the abstract data types introduced in this chapter is the Scanner class, which
provides a useful tool for dividing up a string into meaningful units that are larger than a
single character.  After all, when you read text on a page, you don’t ordinarily pay much
attention to the individual letters.  Your eye instead groups letters to form words, which it
then recognizes as independent units.  The Scanner class does much the same thing: it
divides an input string into its component tokens, which are ordinarily either

• A sequence of consecutive alphanumeric characters (letters or digits), or
• A single-character string consisting of a space or punctuation mark

For example, if the scanner were initialized to extract tokens from the string

This line contains 10 tokens.

successive calls to the scanner package would return those ten individual tokens as shown
by the boxes on the following line:

This    line    contains    10    tokens  .

Using the Scanner class
When you want to use the Scanner class, you typically go through the following steps:

1. Create a new scanner object.  As with the abstract data types introduced earlier in this
chapter, your first responsibility when using a scanner is to declare a new scanner
object, like this:

Scanner scanner;

The scanner object, which is called scanner in this example, keeps track of all the
state information it needs to know the order in which tokens should be delivered.  The
methods in the Scanner class all operate on a particular scanner object, which means
that you must always specify scanner as a receiver in any calls that you make.

2. Initialize the input to be scanned.  Once you have a scanner instance, you can then
initialize your scanner input by calling

scanner.setInput(str);

where str is the string from which the tokens are scanned.  Alternatively, if you want
to read tokens from a file, you can call call

scanner.setInput(infile);

where infile is an ifstream object, as described in section 3.4.

3. Read tokens from the scanner.  Once you have initialized the scanner input, you can
process each of its tokens individually by calling scanner.nextToken() for each
token in the input.  When all the tokens have been consumed, the method
scanner.hasMoreTokens() returns false, which means that the standard idiom for
iterating through each token in turn looks like this:

while (scanner.hasMoreTokens()) {
    string token = scanner.nextToken();
    Do something with the token you’ve found.
}
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Because it is often easier to check for a sentinel value, the nextToken method returns
the empty string if you call it after the last token has been read.

You can use the same scanner instance many times by calling setInput for each string
you want to split into tokens, so you don’t need to declare a separate scanner for each
string that you have.

Figure 4-8 offers a simple example of how to use the scanner to create a program that
reports all words in a text file that aren’t in the English lexicon.

Figure 4-8  Program to check spelling in a text file

/*
 * File: spellcheck.cpp
 * --------------------
 * This program checks the spelling of words in an input file.
 */

#include "genlib.h"
#include "simpio.h"
#include "lexicon.h"
#include "scanner.h"
#include <string>
#include <cctype>
#include <iostream>
#include <fstream>

/* Function prototypes */

bool IsAllAlpha(string & str);
void AskUserForInputFile(string prompt, ifstream & infile); (see page 131)

/* Main program */

int main() {
ifstream infile;
Lexicon english("EnglishWords.dat");
Scanner scanner;
AskUserForInputFile("Input file: ", infile);
scanner.setInput(infile);
while (scanner.hasMoreTokens()) {
string word = scanner.nextToken();
if (IsAllAlpha(word) && !english.containsWord(word)) {
cout << word << " is not in the dictionary" << endl;

}
}
infile.close();
return 0;

}

/* Returns true if a string contains only alphabetic characters. */

bool IsAllAlpha(string & str) {
for (int i = 0; i < str.length(); i++) {
if (!isalpha(str[i])) return false;

}
return true;

}
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Setting scanner options
As you can see from Table 4-7, most of the methods in the Scanner class allow clients to
redefine what character sequences count as individual tokens.  By default, the scanner
recognizes only two classes of tokens: sequences of alphanumeric characters and single
characters that fall outside the alphanumeric set.  Depending on the application, clients
may want to change this interpretation.  For example, a C++ compiler has to recognize
numbers like 3.14159265 and quoted strings like "hello, world" as single tokens.  A
browser must do the same with the tags like <p> (start a new paragraph) and <b> (switch
to a boldface font) that are part of the Hypertext Markup Language (HTML) in which
most web pages are written.  In many contexts, including both the compiler and the web
browser, it is useful to ignore whitespace characters—spaces, tabs, and end-of-line
markers—because these characters serve only to separate tokens and have no semantic
value in themselves.

These capabilities are incorporated into the Scanner class as option settings.  You
enable a particular option by calling a method with an argument that specified the
behavior you want.  To enhance readability, the Scanner  class defines a set of
enumerated type constants whose names describe as closely as possible exactly what the
option does.  For example, if you want to ignore whitespace characters, you can call

scanner.setSpaceOption(Scanner::IgnoreSpaces);

The names of the constants used to set each option are described in Table 4-7 along with
the method to which those constants apply.

The Scanner class also exports a method called saveToken that comes in handy in a
variety of applications.  This method solves the problem that arises from the fact that you
often don’t know that you want to stop reading a sequence of tokens until you’ve read the
token that follows that sequence.  Unless your application is prepared to deal with the
new token at that point in the code, it is convenient to put that token back in the scanner
stream where it can be read again when the program is ready to do so.

4.8  Iterators
The twoletter.cpp program introduced in Figure 4-7 earlier in this chapter computes a
list of all two-letter words by generating every possible combination of two letters and
then looking up each one to see whether that two-letter string appears in the lexicon of
English words.  Another strategy that accomplishes the same result is to go through every
word in the lexicon and display the words whose length is equal to 2.  To do so, all you
need is some way of stepping through each word in a Lexicon object, one at a time.

Stepping through the elements of a collection class is a fundamental operation that
each class must provide through its interface.  Moreover, if the package of collection
classes is well designed, clients should be able to use the same strategy to perform that
operation, no matter whether they are cycling through all elements in a vector or a grid,
all keys in a map, or all words in a lexicon.  In most modern software packages, including
the library ADTs used in this book and the Standard Template Library on which those
classes are based, the process of cycling through the elements of a collection is provided
through a class called an iterator.  Each abstract collection class in the library—with the
exception of Stack and Queue, for which being able to process the elements out of order
would violate the LIFO or FIFO discipline that defines those type—exports its own
Iterator class, but defines that class so that all iterators behave in the same way.  Once
you learn how to use an iterator for one class, you can easily transfer that knowledge to
any of the other classes.
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Table 4-7 Methods exported by the Scanner class

setInput(str) Sets the scanner input source so that new tokens are taken
from the string str.  Any unread tokens remaining from the
preceding call to setInput are discarded.

setInput(stream) Sets the scanner input source so that new tokens are taken
from the input stream stream.  Opening and closing the
input stream are the responsibility of the client.  As with
the string version of this method, any unread tokens from
a previous call are discarded.

hasMoreTokens() Returns true if the scanner contains additional tokens.

nextToken() Reads the next token from the input source (either a string
or a file) and returns it as a string.  If no more tokens
exist, nextToken returns the empty string.

saveToken(token) Stores the specified token in the private state of the
scanner so that it will be returned the next time
nextToken is called.

setSpaceOption(option)
getSpaceOption()

Allows the client to control whether whitespace
characters (spaces, tabs, and ends of lines) are returned as
single-character tokens or skipped entirely.  The option
parameter must be one of the following constant names:
Scanner::PreserveSpaces
Scanner::IgnoreSpaces

setNumberOption(option)
getNumberOption()

Allows the client to control whether numeric strings are
recognized as single tokens.  The option parameter must be
one of the following constant names:
Scanner::ScanNumbersAsLetters
Scanner::ScanNumbersAsIntegers
Scanner::ScanNumbersAsReals

By default, digits are considered just like letters; the other
options allow the scanner to read an complete number.

setStringOption(option)
getStringOption()

Allows the client to control whether quoted strings are
recognized as single tokens.  The option parameter must be
one of the following constant names:
Scanner::ScanQuotesAsPunctuation
Scanner::ScanQuotesAsStrings

By default, quotation marks act like any other punctuation
mark; if ScanQuotesAsStrings is in effect, a quoted
string is treated as a single token.

setBracketOption(option)
getBracketOption()

Allows the client to control whether HTML tags enclosed
in angle brackets (such as <p> or <font>) are recognized
as single tokens.  The option parameter must be one of the
following constant names:
Scanner::ScanBracketsAsPunctuation
Scanner::ScanBracketsAsTag

By default, angle brackets act like any other punctuation
mark; if ScanBracketsAsTag is in effect, the entire tag
(including the angle brackets) is treated as a single token.
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The standard iterator pattern
The general pattern for using an iterator is illustrated by the following code fragment,
which iterates over every word in the now-familiar lexicon of English words:

Lexicon::Iterator iter = english.iterator();
while (iter.hasNext()) {
    string word = iter.next();
    code to work with that word
}

The iterator method in the Lexicon class returns an iterator that provides each word in
the lexicon, one at a time.  The iterator class itself is defined as a nested subclass within
Lexicon, so its full name is Lexicon::Iterator.  The first line in this example therefore
applies the iterator method to the lexicon stored in the variable english and then
stores the resulting iterator object in the variable iter, which has been suitably declared
with the full name of its type.

Once you have the iterator variable, you then enter a loop that continues as long as the
iterator has more elements to process.  The hasNext method returns a Boolean value that
indicates whether any additional elements remain, which is exactly what you need for the
condition in the while loop.  Inside the loop, the next method returns the next element in
the collection.  In this example, calling iter.next() returns the next word from the
English language lexicon, which is then stored in the string variable word.

The code that needs to go into the body of the loop depends, of course, on what you’re
trying to do.  If, for example, you want to list all two-letter English words using the
iterator model, the code to do so will look like this:

Lexicon::Iterator iter = english.iterator();
while (iter.hasNext()) {
    string word = iter.next();
    if (word.length() == 2) {
        cout << word << endl;
    }
}

The type of value produced by the next method depends on the class in which the iterator
is created.  In the Map and Lexicon classes, next always returns a value of type string.
In the Array and Grid classes, next returns a value whose type matches the base type of
that collection.  Thus, an iterator for an Array<int> will produce values of type int, and
an iterator for a Grid<char> will produce values of type char.

Iteration order
More interesting than the issue of what type of value an iterator produces is the question
of the order in which those values are generated.  Each container class defines its own
policy about iteration order, which is usually chosen so that the underlying
implementation can make iterators efficient.  The classes you’ve already seen make the
following guarantees about the order of values:

• The iterator for the Vector class generates the elements in the order of the index
position, so that the element in position 0 comes first, followed by the element in
position 1, and so on, up to the end of the vector.  The order in which elements are
returned by the iterator is therefore the same as the order in which elements are
processed by the standard for loop pattern for iterating through an array:
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for (int i = 0; i < vec.size(); i++) {
    code to process vec[i]
}

• The iterator for the Grid class steps through the elements of row 0 in order, then the
elements of row 1, and so forth.  This order is iteration strategy for Grid is thus
analogous to using the following for loop pattern:

for (int row = 0; row < grid.numRows(); row++) {
    for (int col = 0; col < grid.numCols(); col++) {
        code to process grid[row][col]
    }
}

This order, in which the row subscript appears in the outer loop, is called row-major
order.

• The iterator for the Map class makes no guarantees about the order in which the keys
are returned.  As you will discover in Chapter 12, the most efficient representation for
storing keys in a map is incompatible with, for example, keeping them in alphabetical
order.

• The iterator for the Lexicon class always returns words in alphabetical order, with all
words converted to lower case.  The ability to process words alphabetically is one of
the principal advantages of the Lexicon class.

When you use an iterator, it is important that you do not modify the contents of the
collection object over which the iteration is performed, because such changes may
invalidate the data structures stored within the iterator.  If, for example, you are iterating
over the keys in a map, deleting the current key may make it impossible for the iterator to
figure out how to get to the next key.  The implementations of the iterators used in this
text check that the structure has not changed as the iterator proceeds through it, but that
may not be the case for iterators that exist in other packages.

A simple iterator example
In the discussion of Pig Latin in section 3.3, the words used to illustrate the rules for
forming Pig Latin words were alley and trash.  These words have the interesting property
that their Pig Latin forms—alleyway and ashtray—happen to be other English words.
Such words are not all that common; in the lexicon stored in the file EnglishWords.dat,
there are only 27 words with that property out of over 100,000 English words.  Given
iterators and the PigLatin function from Figure 3-5, it is easy to write a program that
lists them all:

int main() {
    cout << "This program finds words that remain words when "
         << "translated to Pig Latin." << endl;
    Lexicon dictionary("EnglishWords.dat");
    Lexicon::Iterator iter = dictionary.iterator();
    while (iter.hasNext()) {
        string word = iter.next();
        string pig = PigLatin(word);
        if (pig != word && dictionary.containsWord(pig)) {
            cout << word << " -> " << pig << endl;
        }
    }
    return 0;
}
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Computing word frequencies
Computers have revolutionized many fields of academic inquiry, including some in
which the use of such modern tools might at first seem surprising.  Over the last few
decades, computer analysis has become central to resolving questions of disputed
authorship.  For example, there are plays from the Elizabethan era that might have been
written by Shakespeare, even though they are not part of the traditional canon.
Conversely, several Shakespearean plays that are attributed to Shakespeare have parts
that don’t sound like his other works and may have in fact been written by someone else.
To resolve such questions, Shakespearean scholars often compute the frequency of
particular words that appear in the text and see whether those frequencies match what we
expect to find based on an analysis of Shakespeare’s known works.

Suppose, for example, that you have a text file containing a passage from Shakespeare,
such as the following well-known lines from Act 5 of Macbeth:

macbeth.txt

Tomorrow, and tomorrow, and tomorrow
Creeps in this petty pace from day to day

If you are trying to determine the relative frequency of words in Shakespeare’s writing,
you need to have a program that counts how many times each word appears in the data
file.  Thus, given the file macbeth.txt, your would like your program to produce
something like the following output:

 and                2
 creeps             1
 day                2
 from               1
 in                 1
 pace               1
 petty              1
 this               1
 to                 1
 tomorrow           3

The code for the word frequency program appears in Figure 4-9.  Given the tools you
have at your disposal from the earlier sections in this chapter, the code required to

Figure 4-9  Program to keep track of the frequency of words in a text file

/*
 * File: wordfreq.cpp
 * ------------------
 * This program computes the frequency of words in a text file.
 */

#include "genlib.h"
#include "simpio.h"
#include "map.h"
#include "scanner.h"
#include <string>
#include <cctype>
#include <iostream>
#include <fstream>
#include <iomanip>
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/* Private function prototypes */

void CreateFrequencyTable(ifstream & infile, Map<int> & wordCounts);
void DisplayWordCounts(Map<int> & wordCounts);
void AskUserForInputFile(string prompt, ifstream & infile); (see page 131)
bool IsAllAlpha(string & str); (see page 157)

/* Main program */

int main() {
ifstream infile;
Map<int> wordCounts;
AskUserForInputFile(infile);
CreateFrequencyTable(infile, wordCounts);
infile.close();
DisplayWordCounts(wordCounts);
return 0;

}

/*
 * Creates a frequency table that reads through the input file
 * and counts how often each word appears.  The client supplies
 * both the input file stream and the map used to keep track of
 * the word count.
 */

void CreateFrequencyTable(ifstream & infile, Map<int> & wordCounts) {
Scanner scanner;
scanner.setInput(infile);
scanner.setSpaceOption(Scanner::IgnoreSpaces);
while (scanner.hasMoreTokens()) {
string word = ConvertToLowerCase(scanner.nextToken());
if (IsAllAlpha(word)) {
if (wordCounts.containsKey(word)) {
wordCounts[word]++;

} else {
wordCounts[word] = 1;

}
}

}
}

/*
 * Displays the count associated with each word in the frequency
 * table.
 */

void DisplayWordCounts(Map<int> & wordCounts) {
Map<int>::Iterator iter = wordCounts.iterator();
while (iter.hasNext()) {
string word = iter.next();
cout << left << setw(15) << word
     << right << setw(5) << wordCounts[word] << endl;

}
}
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tabulate word frequencies is quite straightforward.  The Scanner class is clearly the right
mechanism for going through the words in the file, just as it was for the spelling checker
in Figure 4-8.  To keep track of the mapping between words and their associated counts, a
Map<int> is precisely what you need.  And when you need to go through the entries in
the map to list the word counts, Iterator provides just the right tool.

The only minor problem with this implementation is that the words don’t appear in
alphabetical order as they did in the proposed sample run created during the design phase.
Because the iterator for the Map class is allowed to produce the keys in any order, they
will ordinarily come out in some jumbled fashion.  Given the implementation of the Map
class as it exists, the program happens to produce the output

 pace               1
 to                 1
 day                2
 tomorrow           3
 petty              1
 and                2
 creeps             1
 from               1
 in                 1
 this               1

but any other order would be equally possible.

It’s not hard to get the output to come out in alphabetical order.  In fact, as you will have
a chance to discover in exercise 16, the library classes in this chapter make it possible to
display this list alphabetically with just a few additional lines of code.  It might, however,
be even more useful to present the list in descending order of frequency.  To do that, it
will be useful to understand the sorting algorithms presented in Chapter 6.

Summary
This chapter introduced seven C++ classes—Vector, Grid, Stack, Queue, Map, Lexicon,
and Scanner—that form a powerful collection of programming tools.  For the moment,
you have looked at these classes only as a client.  In subsequent chapters, you will have a
chance to learn more about how they are implemented.  Important points in this chapter
include:

• Data structures that are defined in terms of their behavior rather their representation are
called abstract data types.  Abstract data types have several important advantages over
more primitive data structures such as arrays and records.  These advantages include:

1. Simplicity.  The representation of the underlying data representation is not
accessible, which means that there are fewer details for the client to understand.

2. Flexibility.  The implementer is free to enhance the underlying representation as
long as the methods in the interface continue to behave in the same way.

3. Security.  The interface barrier prevents the client from making unexpected
changes in the internal structure.

• Classes that contain other objects as elements of an integral collection are called
container classes or, equivalently, collection classes.  In C++, container classes are
usually defined using a template or parameterized type, in which the type name of the
element appears in angle brackets after the name of the container class.  For example,
the class Vector<int> signifies a vector containing values of type int.
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• The Vector class is an abstract data type that behaves in much the same fashion as a
one-dimensional array but is much more powerful.  Unlike arrays, a Vector can grow
dynamically as elements are added and removed.  They are also more secure, because
the implementation of Vector checks to make sure that selected elements exist.

• The Grid class provides a convenient abstraction for working with two-dimensional
arrays.

• The Stack class represents a collection of objects whose behavior is defined by the
property that items are removed from a stack in the opposite order from which they
were added: last in, first out (LIFO).  The fundamental operations on a stack are push,
which adds a value to the stack, and pop, which removes and returns the value most
recently pushed.

• The Queue class is similar to the Stack class except for the fact that elements are
removed from a queue in the same order in which they were added: first in, first out
(FIFO).   The fundamental operations on a queue are enqueue, which adds a value to
the end of a queue, and dequeue, which removes and returns the value from the front.

• The Map class makes it possible to associate keys with values in a way that makes it
possible to retrieve those associations very efficiently.    The fundamental operations
on a map are put, which adds a key/value pair, and get, which returns the value
associated with a particular key.

• The Lexicon class represents a word list.  The fundamental operations on a map are
add, which stores a new word in the list, and containsWord, which checks to see
whether a word exists in the lexicon.

• The Scanner class simplifies the problem of breaking up a string or an input file into
tokens that have meaning as a unit.  The fundamental operations on an scanner are
hasMoreTokens, which determines whether more tokens can be read from the scanner,
and nextToken, which returns the next token from the input source.

• Most collection classes define an internal class named Iterator that makes it easy to
cycle through the contents of the collection.  The fundamental operations on an iterator
are hasNext, which determines whether more elements exist, and next, which returns
the next element from the collection.

Review questions
1. True or false: An abstract data type is one defined in terms of its behavior rather than

its representation.

2. What three advantages does this chapter cite for separating the behavior of a class
from its underlying implementation?

3. What is the STL?

4. If you want to use the Vector class in a program, what #include line do you need to
add to the beginning of your code?

5. List at least three advantages of the Vector class over the more primitive array
mechanism available in C++.

6. What is meant by the term bounds-checking?

7. What type name would you use to store a vector of Boolean values?

8. True or false: The default constructor for the Vector class creates a vector with ten
elements, although you can make it longer later.
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9. What method do you call to determine the number of elements in a Vector?

10. If a Vector object has N elements, what is the legal range of values for the first
argument to insertAt?  What about for the first argument to removeAt?

11. What feature of the Vector class makes it possible to avoid explicit use of the getAt
and setAt methods?

12. Why is it important to pass vectors and other collection object by reference?

13. What declaration would you use to initialize a variable called chessboard to an 8 x 8
grid, each of whose elements is a character?

14. Given the chessboard variable from the preceding exercise, how would you assign
the character 'R' (which stands for a white rook in standard chess notation) to the
squares in the lower left and lower right corners of the board?

15. What do the acronyms LIFO and FIFO stand for?  How do these terms apply to
stacks and queues?

16. What are the names of the two fundamental operations for a stack?

17. What are the names for the corresponding operations for a queue?

18. What does the peek operation do in each of the Stack and Queue classes?

19. What are the names for the corresponding operations for a queue?

20. Describe in your own words what is meant by the term discrete time in the context of
a simulation program.

21. True or false: In the Map class used in this book, the keys are always strings.

22. True or false: In the Map class used in this book, the values are always strings.

23. What happens if you call get for a key that doesn’t exist in a map?

24. What are the syntactic shorthand forms for get and put that allow you to treat a map
as an associative array?

25. Why do the libraries for this book include a separate Lexicon class even though it is
easy to implement the fundamental operations of a lexicon using the Map class?

26. What are the two kinds of data files supported by the constructor for the Lexicon
class?

27. What is the purpose of the Scanner class?

28. What options are available for controlling the definition of the tokens recognized by
the Scanner class?

29. What is an iterator?

30. What reason is offered for why there is no iterator for the Stack and Queue class?

31. What is the standard idiom for using an iterator to cycle through the elements of a
collection?
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32. True or false: The iterator for the Map class guarantees that individual keys will be
delivered in alphabetical order.

33. True or false: The iterator for the Lexicon class guarantees that individual words
will be delivered in alphabetical order.

34. What would happen if you removed the call to scanner.setSpaceOption in the
implementation of createFrequencyTable in Figure 4-9?  Would the program still
work?

Programming exercises
1. In Chapter 2, exercise 8, you were askd to write a function RemoveZeroElements

that eliminated any zero-valued elements from an integer array.  That operation is
much easier in the context of a vector, because the Vector class makes it possible to
add and remove elements dynamically.  Rewrite RemoveZeroElements so that the
function header looks like this:

void RemoveZeroElements(Vector<int> & vec);

2. Write a function

bool ReadVector(ifstream & infile, Vector<double> & vec);

that reads lines from the data file specified by infile, each of which consists of a
floating-point number, and adds them to the vector vec.  The end of the vector is
indicated by a blank line or the end of the file.  The function should return true if it
successfully reads the vector of numbers; if it encounters the end of the data file
before it reads any values, the function should return false.

To illustrate the operation of this function, suppose that you have the data file

SquareAndCubeRoots.txt

1.0000
1.4142
1.7321
2.0000

1.0000
1.2599
1.4422
1.5874
1.7100
1.8171
1.9129
2.0000

and that you have opened infile as an ifstream on that file.  In addition, suppose
that you have declares the variable roots as follows:

Vector<double> roots;

The first call to ReadVector(infile, roots) should return true after initializing
roots so that it contains the four elements shown at the beginning of the file.  The
second call would also return true and change the value of roots to contain the
eight elements shown at the bottom of the file.  Calling ReadVector a third time
would return false.
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3. Given that it is possible to insert new elements at any point, it is not difficult to keep
elements in order as you create a Vector.  Using ReadTextFile as a starting point,
write a function

void SortTextFile(ifstream & infile, Vector<string> & lines);

that reads the lines from the file into the vector lines, but keeps the elements of the
vector sorted in lexicographic order instead of the order in which they appear in the
file.  As you read each line, you need to go through the elements of the vector you
have already read, find out where this line belongs, and then insert it at that position.

4. The code in Figure 4-2 shows how to check the rows, columns, and diagonals of a
tic-tac-toe board using a single helper function.  That function, however, is coded in
such a way that it only works for 3 x 3 boards.  As a first step toward creating a
program that can play tic-tac-toe on larger grids, reimplement the CheckForWin and
CheckLine functions so that they work for square grids of any size.

Figure 4-10  Dürer etching with a magic square5. A magic square is a two-dimensional grid of
integers in which the rows, columns, and
diagonals all add up to the same value.  One of
the most famous magic squares appears in the
1514 engraving “Melencolia I” by Albrecht
Dürer shown in Figure 4-10, in which a 4 x 4
magic square appears in the upper right, just
under the bell.  In Dürer’s square, which can
be read more easily as

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

all four rows, all four columns, and both
diagonals add up to 34.

A more familiar example is the following
3 x 3 magic square in which each of the rows,
columns, and diagonals add up to 15, as
shown:

=158 1 6
3 5 7
4 9 2

8 1 6
3 5 7
4 9 2

8 1 6
3 5 7
4 9 2

=15

=15

=1
5

=1
5

=1
5

=15

=15
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Implement a function

bool IsMagicSquare(Grid<int> & square);

that tests to see whether the grid contains a magic square.  Note that your program
should work for square grids of any size.  If you call IsMagicSquare with a grid in
which the number of rows and columns are different, it should simply return false.

6. In the last several years, a new logic puzzle called Sudoku has become quite popular
throughout the world.  In Sudoku, you start with a 9 x 9 grid of integers in which
some of the cells have been filled in with digits between 1 and 9.  Your job in the
puzzle is to fill in each of the empty spaces with a digit between 1 and 9 so that each
digit appears exactly once in each row, each column, and each of the smaller 3 x 3
squares.  Each Sudoku puzzle is carefully constructed so that there is only one
solution.  For example, given the puzzle shown on the left of the following diagram,
the unique solution is shown on the right:

2 4 5 8

4 1 8 2

6 7 3 9

2 3 9 6

9 6 7 1

1 7 5 3

9 6 8 1

2 9 5 6

8 3 6 9          

3 9 2 4 6 5 8 1 7

7 4 1 8 9 3 6 2 5

6 8 5 2 7 1 4 3 9

2 5 4 1 3 8 7 9 6

8 3 9 6 2 7 1 5 4

1 7 6 9 5 4 2 8 3

9 6 7 5 8 2 3 4 1

4 2 3 7 1 9 5 6 8

5 1 8 3 4 6 9 7 2

Although you won’t have learned the algorithmic strategies you need to solve
Sudoku puzzles until later in this book, you can easily write a method that checks to
see whether a proposed solution follows the Sudoku rules against duplicating values
in a row, column, or outlined 3 x 3 square.  Write a function

bool CheckSudokuSolution(Grid<int> puzzle);

that performs this check and returns true if the puzzle is a valid solution.  Your
program should check to make sure that puzzle contains a 9 x 9 grid of integers and
report an error if this is not the case.

7. Write a program that uses a stack to reverse a sequence of integers read in one per
line from the console, as shown in the following sample run:

 Enter a list of integers, ending with 0:
 > 10
 > 20
 > 30
 > 40
 > 0
 Those integers in reverse order are:
   40
   30
   20
   10
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8. Write a C++ program that checks whether the bracketing operators (parentheses,
brackets, and curly braces) in a string are properly matched.  As an example of
proper matching, consider the string

{ s = 2 * (a[2] + 3); x = (1 + (2)); }

If you go through the string carefully, you discover that all the bracketing operators
are correctly nested, with each open parenthesis matched by a close parenthesis, each
open bracket matched by a close bracket, and so on.  On the other hand, the
following strings are all unbalanced for the reasons indicated:

(([]) The line is missing a close parenthesis.
)( The close parenthesis comes before the open parenthesis.
{(}) The bracketing operators are improperly nested.

The reason that this exercise fits in this chapter is that one of the simplest strategies
for implementing this program is to store the unmatched operators on a stack.

9. Bob Dylan’s 1963 song “The Times They Are A-Changin’” contains the following
lines, which are themselves paraphrased from Matthew 19:30:

And the first one now
Will later be last
For the times they are a-changin’

In keeping with this revolutionary sentiment, write a function

void ReverseQueue(Queue<string> & queue);

that reverses the elements in the queue.  Remember that you have no access to the
internal representation of the queue and will need to come up with an algorithm,
presumably involving other structures, that accomplishes the task.

10. The checkout-line simulation in Figure 4-4 can be extended to investigate important
practical questions about how waiting lines behave.  As a first step, rewrite the
simulation so that there are several independent queues, as is usually the case in
supermarkets.  A customer arriving at the checkout area finds the shortest checkout
line and enters that queue.  Your revised simulation should calculate the same results
as the simulation in the chapter.

11. As a second extension to the checkout-line simulation, change the program from the
previous exercise so that there is a single waiting line served by multiple cashiers—a
practice that has become more common in recent years.  In each cycle of the
simulation, any cashier that becomes idle serves the next customer in the queue.  If
you compare the data produced by this exercise and the preceding one, what can you
say about the relative advantages of these two strategies?

12. If waiting lines become too long, customers can easily become frustrated and may
decide to take their business elsewhere.  Simulations may make it possible to reduce
the risk of losing customers by allowing managers to determine how many cashiers
are required to reduce the average waiting time below a predetermined threshold.
Rewrite the checkout-line simulation from exercise 11 so that the program itself
determines how many cashiers are needed.  To do so, your program must run the
complete simulation several times, holding all parameters constant except the
number of cashiers.  When it finds a staffing level that reduces the average wait to an
acceptable level, your program should display the number of cashiers used on that
simulation run.
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13. Write a program to simulate the following experiment, which was included in the
1957 Disney film, Our Friend the Atom, to illustrate the chain reactions involved in
nuclear fission.  The setting for the experiment is a large cubical box, the bottom of
which is completely covered with an array of 625 mousetraps, arranged to form a
square grid 25 mousetraps on a side.  Each of the mousetraps is initially loaded with
two ping-pong balls.  At the beginning of the simulation, an additional ping-pong
ball is released from the top of the box and falls on one of the mousetraps.  That
mousetrap springs and shoots its two ping-pong balls into the air.  The ping-pong
balls bounce around the sides of the box and eventually land on the floor, where they
are likely to set off more mousetraps.

In writing this simulation, you should make the following simplifying
assumptions:

• Every ping-pong ball that falls always lands on a mousetrap, chosen randomly by
selecting a random row and column in the grid.  If the trap is loaded, its balls are
released into the air.  If the trap has already been sprung, having a ball fall on it
has no effect.

• Once a ball falls on a mousetrap—whether or not the trap is sprung—that ball
stops and takes no further role in the simulation.

• Balls launched from a mousetrap bounce around the room and land again after a
random number of simulation cycles have gone by.  That random interval is
chosen independently for each ball and is always between one and four cycles.

Your simulation should run until there are no balls in the air.  At that point, your
program should report how many time units have elapsed since the beginning, what
percentage of the traps have been sprung, and the maximum number of balls in the
air at any time in the simulation.

14. In May of 1844, Samuel F. B. Morse sent the message “What hath God wrought!” by
telegraph from Washington to Baltimore, heralding the beginning of the age of
electronic communication.  To make it possible to communicate information using
only the presence or absence of a single tone, Morse designed a coding system in
which letters and other symbols are represented as coded sequences of short and long
tones, traditionally called dots and dashes.  In Morse code, the 26 letters of the
alphabet are represented by the following codes:

A • J • S • • •
B • • • K • T
C • • L • • • U • •
D • • M V • • •
E • N • W •
F • • • O X • •
G • P • • Y •
H • • • • Q • Z • •
I • • R • •

If you want to convert from letters to Morse code, you can store the strings for each
letter in an array with 26 elements; to convert from Morse code to letters, the easiest
approach is to use a map.

Write a program that reads in lines from the user and translates each line either to
or from Morse code depending on the first character of the line:

• If the line starts with a letter, you want to translate it to Morse code.  Any
characters other than the 26 letters should simply be ignored.
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• If the line starts with a period (dot) or a hyphen (dash), it should be read as a
series of Morse code characters that you need to translate back to letters.  Each
sequence of dots and dashes is separated by spaces, but any other characters
should be ignored.

The program should end when the user enters a blank line.  A sample run of this
program (taken from the messages between the Titanic and the Carpathia in 1912)
might look like this:

 Morse code translator
 > SOS TITANIC
 ... --- ... - .. - .- -. .. -.-.
 > WE ARE SINKING FAST
 .-- . .- .-. . ... .. -. -.- .. -. --. ..-. .- ... -
 > .... . .- -.. .. -. --. ..-. --- .-. -.-- --- ..-
 HEADING FOR YOU
 >

15. In Chapter 3, exercise 6, you were asked to write a function IsPalindrome that
checks whether a word is a palindrome, which means that it reads identically
forward and backward.  Use that function together with the lexicon of English words
to print out a list of all words in English that are palindromes.

16. As noted in the chapter, it is actually rather easy to change the wordfreq.cpp
program from Figure 4-8 so that the words appear in alphabetical order.  The only
thing you need to do is think creatively about the tools that you already have.  Make
the necessary modifications to the program to accomplish this change.

17. As noted in section 4.5, a map is often called a symbol table when it is used in the
context of a programming language, because it is precisely the structure you need to
store variables and their values.  For example, if you are working in an application in
which you need to assign floating-point values to variable names, you could do so
using a map declared as follows:

Map<double> symbolTable;

Write a C++ program that declares such a symbol table and then reads in
command lines from the user, which must be in one of the following forms:

• A simple assignment statement of the form

var = number

This statement should store the value represented by the token number in the
symbol table under the name var.  Thus, if the user were to enter

pi = 3.14159

the string pi should be assigned a value of 3.14159 in symbolTable.

• The name of a variable alone on a line.  When your program reads in such a line,
it should print out the current value in the symbol table associated with that name.
Thus, if pi has been defined as shown in the preceding example, the command

pi

should display the value 3.14159.
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• The command list, which is interpreted by the program as a request to display
all variable/value pairs currently stored in the symbol table, not necessarily in any
easily discernable order.

• The command quit, which should exit from the program.

Once you have implemented each of these command forms, your program should be
able to produce the following sample run:

 Symbol Table Test
 > pi = 3.14159
 > e = 2.71828
 > x = 2.00
 > pi
 3.14159
 > e
 2.71828
 > list
 e = 2.71828
 x = 2
 pi = 3.14159
 > x = 42
 > list
 e = 2.71828
 x = 42
 pi = 3.14159
 > a = 1.5
 > list
 e = 2.71828
 x = 42
 pi = 3.14159
 a = 1.5
 > quit

Note that the output of the list command does not appear in any easily discernable
order.

18. Rewrite the RPN calculator from Figure 4-3 so that it uses the Scanner class to read
its input tokens from a single line, as illustrated by the following sample run:

 RPN Calculator Simulation
 > 1 2 3 * +
 7
 > 50.0 1.5 * 3.8 2.0 / +
 76.9
 > quit

19. Probably because solving problems by computer can generate such intense
frustration, computer science courses seem to generate more than their share of
plagiarism.  In several universities, the situation has gotten so bad that computer
science departments have had to develop software to help detect cases of academic
misconduct.  The usual approach taken in such programs is to compare the structure
of two programs, ignoring differences that are easy for students to change, such as
the names of variables and procedures.
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Consider, for example, the two program fragments shown below, each of which
sums the elements in an integer array.

student1.dat

int Total(int array[], int n) {
    int i, total;

    total = 0;
    for (i = 0; i < n; i++) {
        total += array[i];
    }
    return total;
}

student2.dat

int FindSum(int list[], int nList) {
    int i, sum;

    sum = 0;
    for (i = 0; i < nList; i++) {
        sum += list[i];
    }
    return sum;
}

The names of the functions and many of the variables are different, but the two
programs are otherwise exactly the same.  In code samples this short, it is likely that
two programs were created independently, but one would start to get suspicious if
the structural similarity went on for page after page.

Write a program that uses two instances of the Scanner class to perform a line-
by-line comparison of two input files.  The output of the program should be the
percentage of lines in the files that “match.”  Two lines are defined as matching if
their corresponding tokens match all the way across.  Two tokens match if either of
the following is true:

• The tokens are the same string.
• The tokens both begin with a letter.

For example, the tokens "sum" and "total" match because both begin with a letter.
In the student1.dat and student2.dat sample files, every line matches perfectly
under this definition, so the program should report that 100 percent of the lines
match.


