
The PASCAL Visual Object Classes Challenge

2010 (VOC2010) Development Kit

Mark Everingham John Winn

May 8, 2010

Contents

1 Challenge 3

2 Data 3
2.1 Classification/Detection Image Sets 4
2.2 Segmentation Image Sets . 5
2.3 Person Layout Taster Image Sets 5
2.4 Action Classification Taster Image Sets 6
2.5 Ground Truth Annotation . 6
2.6 Segmentation Ground Truth . 7
2.7 Person Layout Taster Ground Truth 8
2.8 Action Classification Taster Ground Truth 8

3 Classification Task 8
3.1 Task . 8
3.2 Competitions . 9
3.3 Submission of Results . 9
3.4 Evaluation . 9

3.4.1 Average Precision (AP) 10

4 Detection Task 10
4.1 Task . 10
4.2 Competitions . 10
4.3 Submission of Results . 11
4.4 Evaluation . 11

5 Segmentation Task 12
5.1 Task . 12
5.2 Competitions . 12
5.3 Submission of Results . 12
5.4 Evaluation . 12

1

6 Person Layout Taster 13
6.1 Task . 13
6.2 Competitions . 13
6.3 Submission of Results . 13
6.4 Evaluation . 15

7 Action Classification Taster 15
7.1 Task . 15
7.2 Competitions . 15
7.3 Submission of Results . 16
7.4 Evaluation . 16

8 Development Kit 17
8.1 Installation and Configuration . 17
8.2 Example Code . 18

8.2.1 Example Classifier Implementation 18
8.2.2 Example Detector Implementation 18
8.2.3 Example Segmenter Implementation 18
8.2.4 Example Layout Implementation 18
8.2.5 Example Action Implementation 18

8.3 Non-MATLAB Users . 19

9 Using the Development Kit 19
9.1 Image Sets . 19

9.1.1 Classification/Detection Task Image Sets 19
9.1.2 Classification Task Image Sets 19
9.1.3 Segmentation Image Sets 20
9.1.4 Person Layout Taster Image Sets 21
9.1.5 Action Classification Taster Image Sets 21
9.1.6 Action Class Image Sets 22

9.2 Development Kit Functions . 22
9.2.1 VOCinit . 22
9.2.2 PASreadrecord(filename) 23
9.2.3 viewanno(imgset) . 26

9.3 Classification Functions . 26
9.3.1 VOCevalcls(VOCopts,id,cls,draw) 26

9.4 Detection Functions . 26
9.4.1 VOCevaldet(VOCopts,id,cls,draw) 26
9.4.2 viewdet(id,cls,onlytp) 27

9.5 Segmentation Functions . 27
9.5.1 create segmentations from detections(id,confidence) 27
9.5.2 VOCevalseg(VOCopts,id) 27
9.5.3 VOClabelcolormap(N) . 27

9.6 Layout Functions . 27
9.6.1 VOCwritexml(rec,path) 27
9.6.2 VOCevallayout pr(VOCopts,id,draw) 28
9.6.3 VOCevallayout f(VOCopts,id,draw) 28

9.7 Action Functions . 28
9.7.1 VOCevalaction(VOCopts,id,cls,draw) 28

2

1 Challenge

The goal of this challenge is to recognize objects from a number of visual object
classes in realistic scenes (i.e. not pre-segmented objects). There are twenty
object classes:

• person

• bird, cat, cow, dog, horse, sheep

• aeroplane, bicycle, boat, bus, car, motorbike, train

• bottle, chair, dining table, potted plant, sofa, tv/monitor

There are three main tasks:

• Classification: For each of the classes predict the presence/absence of at
least one object of that class in a test image.

• Detection: For each of the classes predict the bounding boxes of each
object of that class in a test image (if any).

• Segmentation: For each pixel in a test image, predict the class of the
object containing that pixel or ‘background’ if the pixel does not belong
to one of the twenty specified classes.

In addition, there are two “taster” tasks:

• Person Layout: For each ‘person’ object in a test image (indicated by
a bounding box of the person), predict the presence/absence of parts
(head/hands/feet), and the bounding boxes of those parts.

• Action Classification: For each of the action classes predict if a specified
person (indicated by their bounding box) in a test image is performing
the corresponding action. There are nine action classes:

– phoning; playing a musical instrument; reading; riding a bicycle or
motorcycle; riding a horse; running; taking a photograph; using a
computer; walking

Finally a taster on large scale visual recognition is being run by the Ima-
geNet organizers. Further details can be found at their website: http://www.

image-net.org/challenges/LSVRC/2010/index.

2 Data

The VOC2010 database contains a total of 21,738 annotated images. The data
is released in two phases: (i) training and validation data with annotation is
released with this development kit; (ii) test data without annotation is released
at a later date.

3

Table 1: Statistics of the main image sets. Object statistics list only the ‘non-
difficult’ objects used in the evaluation.

train val trainval test

img obj img obj img obj img obj

Aeroplane 283 369 296 369 579 738 – –
Bicycle 228 305 243 309 471 614 – –

Bird 340 486 326 485 666 971 – –
Boat 222 345 210 342 432 687 – –

Bottle 300 507 283 507 583 1014 – –
Bus 180 245 173 253 353 498 – –
Car 523 892 507 882 1030 1774 – –
Cat 502 563 503 569 1005 1132 – –

Chair 469 946 456 944 925 1890 – –
Cow 125 228 123 236 248 464 – –

Diningtable 209 234 206 234 415 468 – –
Dog 591 707 608 709 1199 1416 – –

Horse 209 306 216 315 425 621 – –
Motorbike 225 306 228 305 453 611 – –

Person 1717 3559 1831 3737 3548 7296 – –
Pottedplant 225 408 225 413 450 821 – –

Sheep 152 344 138 357 290 701 – –
Sofa 205 224 201 227 406 451 – –

Train 226 261 227 263 453 524 – –
Tvmonitor 247 342 243 341 490 683 – –

Total 4998 11577 5105 11797 10103 23374 – –

2.1 Classification/Detection Image Sets

For the classification and detection tasks there are four sets of images provided:

train: Training data

val: Validation data (suggested). The validation data may be used as addi-
tional training data (see below).

trainval: The union of train and val.

test: Test data. The test set is not provided in the development kit. It will be
released in good time before the deadline for submission of results.

Table 1 summarizes the number of objects and images (containing at least
one object of a given class) for each class and image set. The data has been split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. To increase the amount of data, the dataset includes images from the
2008/2009 datasets. The assignment of images to training/test sets follows the
2008/2009 assignments i.e. the 2008/2009 training/test sets are a subset of the
corresponding 2010 sets. Note that no annotation for the 2008/2009 test sets
has been released.

4

Table 2: Statistics of the segmentation image sets.

train val trainval test

img obj img obj img obj img obj

Aeroplane 59 70 57 66 116 136 – –
Bicycle 49 62 48 62 97 124 – –

Bird 64 86 72 90 136 176 – –
Boat 56 89 50 64 106 153 – –

Bottle 55 94 62 82 117 176 – –
Bus 48 64 51 83 99 147 – –
Car 83 130 78 146 161 276 – –
Cat 85 102 84 93 169 195 – –

Chair 94 194 76 154 170 348 – –
Cow 38 85 44 76 82 161 – –

Diningtable 54 55 50 53 104 108 – –
Dog 78 97 78 97 156 194 – –

Horse 49 67 56 69 105 136 – –
Motorbike 55 61 48 65 103 126 – –

Person 260 451 266 474 526 925 – –
Pottedplant 54 83 61 126 115 209 – –

Sheep 41 92 42 117 83 209 – –
Sofa 54 62 63 76 117 138 – –

Train 50 57 56 61 106 118 – –
Tvmonitor 59 74 54 74 113 148 – –

Total 964 2075 964 2128 1928 4203 – –

2.2 Segmentation Image Sets

For the segmentation task, corresponding image sets are provided as in the
classification/detection tasks. To increase the amount of data, the training and
validation image sets include images from the 2007–2009 segmentation tasters.
The test set contains only 2008–2010 images (i.e. those for which no annotation
has been released), and is a subset of the test set for the main tasks for which
pixel-wise segmentations have been prepared. Table 2 summarizes the number of
objects and images (containing at least one object of a given class) for each class
and image set, for the combined 2007–2010 data. In addition to the segmented
images for training and validation, participants are free to use the un-segmented
training/validation images supplied for the main classification/detection tasks,
and any annotation provided for the main challenge e.g. bounding boxes.

2.3 Person Layout Taster Image Sets

For the person layout taster task, corresponding image sets are provided as in
the classification/detection tasks. A person is indicated by a bounding box,
and each person has been annotated with part layout (head, hands, feet). As
in the segmentation task, the training and validation image sets include images
from the 2007–2009 person layout tasters. The test set contains only 2008–2010
images (i.e. those for which no annotation has been released), and is disjoint

5

Table 3: Statistics of the person layout taster image sets. Object statistics list
only the ‘person’ objects for which layout information (parts) is present.

train val trainval test

img obj img obj img obj img obj

Person 207 296 169 260 376 556 – –

Table 4: Statistics of the action classification taster image sets.

train val trainval test

img obj img obj img obj img obj

Phoning 25 25 25 26 50 51 – –
Playinginstrument 27 38 27 38 54 76 – –

Reading 25 26 26 27 51 53 – –
Ridingbike 25 33 25 33 50 66 – –

Ridinghorse 27 35 26 36 53 71 – –
Running 26 47 25 47 51 94 – –

Takingphoto 25 27 26 28 51 55 – –
Usingcomputer 26 29 26 30 52 59 – –

Walking 25 41 26 42 51 83 – –
Total 226 301 228 307 454 608 – –

from the test set for the main tasks. Table 3 summarizes the number of ‘person’
objects annotated with layout for each image set.

2.4 Action Classification Taster Image Sets

For the action classification taster task, corresponding image sets are provided
as in the classification/detection tasks. A person is indicated by a bounding box,
and each person has been annotated with the set of actions they are performing
from the set {phoning, playing a musical instrument, reading, riding a bicycle
or motorcycle, riding a horse, running, taking a photograph, using a computer,
walking}. The image sets are disjoint from those of the main task and person
layout taster task. Note that they are not fully annotated – only ‘person’ objects
forming part of the training and test sets are annotated. Table 4 summarizes
the action statistics for each image set.

2.5 Ground Truth Annotation

Objects of the twenty classes listed above are annotated in the ground truth.
For each object, the following annotation is present:

• class: the object class e.g. ‘car’ or ‘bicycle’

• bounding box: an axis-aligned rectangle specifying the extent of the
object visible in the image.

6

• view: ‘frontal’, ‘rear’, ‘left’ or ‘right’. The views are subjectively marked
to indicate the view of the ‘bulk’ of the object. Some objects have no view
specified.

• ‘truncated’: an object marked as ‘truncated’ indicates that the bounding
box specified for the object does not correspond to the full extent of the
object e.g. an image of a person from the waist up, or a view of a car
extending outside the image.

• ‘occluded’: an object marked as ‘occluded’ indicates that a significant
portion of the object within the bounding box is occluded by another
object.

• ‘difficult’: an object marked as ‘difficult’ indicates that the object is con-
sidered difficult to recognize, for example an object which is clearly visible
but unidentifiable without substantial use of context. Objects marked as
difficult are currently ignored in the evaluation of the challenge.

In preparing the ground truth, annotators were given a detailed list of guidelines
on how to complete the annotation. These are available on the main challenge
web-site [1].

Note that for the action classification taster images, only people have been
annotated, and only the bounding box is available. Note also that for these
images the annotation is not necessarily complete i.e. there may be unannotated
people.

2.6 Segmentation Ground Truth

a. b. c.

Figure 1: Example of segmentation ground truth. a. Training image b. Class
segmentation showing background, car, horse and person labels. The cream-
colored ‘void’ label is also used in border regions and to mask difficult objects. c.
Object segmentation where individual object instances are separately labelled.

For the segmentation image sets, each image has two corresponding types of
ground truth segmentation provided:

7

• class segmentation: each pixel is labelled with the ground truth class or
background.

• object segmentation: each pixel is labelled with an object number (from
which the class can be obtained) or background.

Figure 1 gives an example of these two types of segmentation for one of the
training set images. The ground truth segmentations are provided to a high de-
gree of accuracy, but are not pixel accurate, as this would have greatly extended
the time required to gather these segmentations. Instead, they were labelled so
that a bordering region with a width of five pixels may contain either object
or background. Bordering regions are marked with a ‘void’ label (index 255),
indicating that the contained pixels can be any class including background. The
void label is also used to mask out ambiguous, difficult or heavily occluded ob-
jects and also to label regions of the image containing objects too small to be
marked, such as crowds of people. All void pixels are ignored when comput-
ing segmentation accuracies and should be treated as unlabelled pixels during
training.

In addition to the ground truth segmentations given, participants are free
to use any of the ground truth annotation for the classification/detection tasks
e.g. bounding boxes.

2.7 Person Layout Taster Ground Truth

For the person layout taster task, ‘person’ objects are additionally annotated
with three ‘parts’:

• head – zero or one per person

• hand – zero, one, or two per person

• foot – zero, one, or two per person

For each annotated person, the presence or absence of each part is listed, and for
each part present, the bounding box is specified. The test images for the person
layout taster are disjoint from the main image sets. There are no ‘difficult’
objects.

2.8 Action Classification Taster Ground Truth

For the action classification taster task, ‘person’ objects are annotated with
bounding box and a set of flags, one per action class e.g. ‘phoning’ or ‘walking’.
For each action the flag indicates if the person is performing the corresponding
action. Note that actions are not mutually exclusive, for example a person may
simultaneously be walking and phoning. The image sets are disjoint from the
main tasks and layout taster tasks. There are no ‘difficult’ objects.

3 Classification Task

3.1 Task

For each of the twenty object classes predict the presence/absence of at least
one object of that class in a test image. The output from your system should be

8

a real-valued confidence of the object’s presence so that a precision/recall curve
can be drawn. Participants may choose to tackle all, or any subset of object
classes, for example “cars only” or “motorbikes and cars”.

3.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
1 Classification trainval test

2 Classification any but VOC test test

In competition 1, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 2, any source of training data may be used except the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“flickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

3.3 Submission of Results

A separate text file of results should be generated for each competition (1 or
2) and each class e.g. ‘car’. Each line should contain a single identifier and the
confidence output by the classifier, separated by a space, for example:

comp1_cls_test_car.txt:

...

2009_000001 0.056313

2009_000002 0.127031

2009_000009 0.287153

...

Greater confidence values signify greater confidence that the image contains
an object of the class of interest. The example classifier implementation (sec-
tion 8.2.1) includes code for generating a results file in the required format.

3.4 Evaluation

The classification task will be judged by the precision/recall curve. The principal
quantitative measure used will be the average precision (AP). Example code for
computing the precision/recall and AP measure is provided in the development
kit. See also section 3.4.1.

Images which contain only objects marked as ‘difficult’ (section 2.5) are
currently ignored by the evaluation. The final evaluation may include separate
results including such “difficult” images, depending on the submitted results.

9

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method – all parameter tuning must be conducted using the training and
validation data alone.

3.4.1 Average Precision (AP)

The computation of the average precision (AP) measure has been changed in
VOC2010 to improve precision and ability to measure differences between meth-
ods with low AP. It is computed as follows:

1. Compute a version of the measured precision/recall curve with precision
monotonically decreasing, by setting the precision for recall r to the max-
imum precision obtained for any recall r′ ≥ r.

2. Compute the AP as the area under this curve by numerical integration.
No approximation is involved since the curve is piecewise constant.

Note that in previous years the AP is computed by sampling the monotoni-
cally decreasing curve at a fixed set of uniformly-spaced recall values 0, 0.1, 0.2, . . . , 1.
By contrast, VOC2010 effectively samples the curve at all unique recall values.

4 Detection Task

4.1 Task

For each of the twenty classes predict the bounding boxes of each object of
that class in a test image (if any). Each bounding box should be output with
an associated real-valued confidence of the detection so that a precision/recall
curve can be drawn. Participants may choose to tackle all, or any subset of
object classes, for example “cars only” or “motorbikes and cars”.

4.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
3 Detection trainval test

4 Detection any but VOC test test

In competition 3, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 4, any source of training data may be used except the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“flickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

10

4.3 Submission of Results

A separate text file of results should be generated for each competition (3 or 4)
and each class e.g. ‘car’. Each line should be a detection output by the detector
in the following format:

<image identifier> <confidence> <left> <top> <right> <bottom>

where (left,top)-(right,bottom) defines the bounding box of the detected
object. The top-left pixel in the image has coordinates (1, 1). Greater confidence
values signify greater confidence that the detection is correct. An example file
excerpt is shown below. Note that for the image 2009 000032, multiple objects
are detected:

comp3_det_test_car.txt:

...

2009_000026 0.949297 172.000000 233.000000 191.000000 248.000000

2009_000032 0.013737 1.000000 147.000000 114.000000 242.000000

2009_000032 0.013737 1.000000 134.000000 94.000000 168.000000

2009_000035 0.063948 455.000000 229.000000 491.000000 243.000000

...

The example detector implementation (section 8.2.2) includes code for generat-
ing a results file in the required format.

4.4 Evaluation

The detection task will be judged by the precision/recall curve. The principal
quantitative measure used will be the average precision (AP) (see section 3.4.1).
Example code for computing the precision/recall and AP measure is provided
in the development kit.

Detections are considered true or false positives based on the area of overlap
with ground truth bounding boxes. To be considered a correct detection, the
area of overlap ao between the predicted bounding box Bp and ground truth
bounding box Bgt must exceed 50% by the formula:

ao =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(1)

Example code for computing this overlap measure is provided in the develop-
ment kit. Multiple detections of the same object in an image are considered
false detections e.g. 5 detections of a single object is counted as 1 correct detec-
tion and 4 false detections – it is the responsibility of the participant’s system
to filter multiple detections from its output.

Objects marked as ‘difficult’ (section 2.5) are currently ignored by the evalua-
tion. The final evaluation may include separate results including such “difficult”
images, depending on the submitted results.

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method – all parameter tuning must be conducted using the training and
validation data alone.

11

5 Segmentation Task

5.1 Task

For each test image pixel, predict the class of the object containing that pixel or
’background’ if the pixel does not belong to one of the twenty specified classes.
The output from your system should be an indexed image with each pixel index
indicating the number of the inferred class (1-20) or zero, indicating background.

5.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
5 Segmentation trainval test

6 Segmentation any but VOC test test

For competition 5, any annotation provided in the VOC train and val

sets may be used for training, for example segmentation, bounding boxes or
particular views e.g. ‘frontal’ or ‘left’. However, if training uses annotation of
any images other than the segmented training images, this must be reported as
part of the submission (see below) since this allows a considerably larger training
set. Participants are not permitted to perform additional manual annotation of
either training or test data.

For competition 6, any source of training data may be used except the pro-
vided test images.

5.3 Submission of Results

Submission of results should be as collections of PNG format indexed image files,
one per test image, with pixel indices from 0 to 20. The PNG color map should
be the same as the color map used in the provided training and validation an-
notation (MATLAB users can use VOClabelcolormap – see section 9.5.3). The
example segmenter implementation (section 8.2.3) includes code for generating
results in the required format. Participants may choose to include segmenta-
tions for only a subset of the 20 classes in which case they will be evaluated on
only the included classes.

For competition 5, along with the submitted image files, participants must
also state whether their method used segmentation training data only or both
segmentation and bounding box training data. This information will be used
when analysing and presenting the competition results.

5.4 Evaluation

Each segmentation competition will be judged by average segmentation accuracy
across the twenty classes and the background class. The segmentation accuracy
for a class will be assessed using the intersection/union metric, defined as the
number of correctly labelled pixels of that class, divided by the number of pixels

12

labelled with that class in either the ground truth labelling or the inferred
labelling. Equivalently, the accuracy is given by the equation,

segmentation accuracy =
true positives

true positives + false positives + false negatives

Code is provided to compute segmentation accuracies for each class, and the
overall average accuracy (see section 9.5.2).

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method – all parameter tuning must be conducted using the training and
validation data alone.

6 Person Layout Taster

6.1 Task

For each ‘person’ object in a test image (their bounding box is provided) pre-
dict the presence/absence of parts (head/hands/feet), and the bounding boxes
of those parts. The prediction for a person layout should be output with an as-
sociated real-valued confidence of the layout so that a precision/recall curve can
be drawn. Only a single estimate of layout should be output for each person.

The success of the layout prediction depends both on: (i) a correct prediction
of parts present/absent (e.g. is the hand visible or occluded); (ii) a correct
prediction of bounding boxes for the visible parts.

6.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

No. Task Training data Test data
7 Layout trainval test

8 Layout any but VOC test test

In competition 7, any annotation provided in the VOC train and val sets
may be used for training, for example bounding boxes or particular views e.g.
‘frontal’ or ‘left’. Participants are not permitted to perform additional manual
annotation of either training or test data.

In competition 8, any source of training data may be used except the provided
test images. Researchers who have pre-built systems trained on other data are
particularly encouraged to participate. The test data includes images from
“flickr” (www.flickr.com); this source of images may not be used for training.
Participants who have acquired images from flickr for training must submit them
to the organizers to check for overlap with the test set.

6.3 Submission of Results

To support the hierarchical (person+parts) nature of this task, an XML format
has been adopted for submission of results. A separate XML file of results

13

should be generated for each competition (6 or 7). The overall format should
follow:

<results>

<layout>

... layout estimate 1 ...

</layout>

<layout>

... layout estimate 2 ...

</layout>

</results>

Each detection is represented by a <layout> element. The order of detections
is not important. An example detection is shown here:

<layout>



<object>1</object>

<confidence>-1189</confidence>

<part>

<class>head</class>

<bndbox>

<xmin>191</xmin>

<ymin>25</ymin>

<xmax>323</xmax>

<ymax>209</ymax>

</bndbox>

</part>

<part>

<class>hand</class>

<bndbox>

<xmin>393</xmin>

<ymin>206</ymin>

<xmax>488</xmax>

<ymax>300</ymax>

</bndbox>

</part>

<part>

<class>hand</class>

<bndbox>

<xmin>1</xmin>

<ymin>148</ymin>

<xmax>132</xmax>

<ymax>329</ymax>

</bndbox>

</part>

</layout>

The <image> element specifies the image identifier. The <object> specifies the
index of the object to which the layout relates (the first object in the image has
index 1) and should match that provided in the image set files (section 9.1.4).

14

The <confidence> element specifies the confidence of the layout estimate, used
to generate a precision/recall curve as in the detection task.

Each <part> element specifies the detection of a particular part of the per-
son i.e. head/hand/foot. If the part is predicted to be absent/invisible, the
corresponding element should be omitted. For each part, the <class> element
specifies the type of part: head, hand or foot. The <bndbox> element specifies
the predicted bounding box for that part; bounding boxes are specified in image
co-ordinates and need not be contained in the provided person bounding box.

To ease creation of the required XML results file for MATLAB users, a
function is included in the development kit to convert MATLAB structures to
XML. See the VOCwritexml function (section 9.6.1). The example person layout
implementation (section 8.2.4) includes code for generating a results file in the
required format.

6.4 Evaluation

The person layout task will principally be judged by how well each part in-

dividually can be predicted. For each of the part types (head/hands/feet) a
precision/recall curve will be computed, using the confidence supplied with the
person layout to determine the ranking. A prediction of a part is considered
true or false according to the overlap test, as used in the detection challenge, i.e.
for a true prediction the bounding box of the part overlaps the ground truth by
at least 50%. For each part type, the principal quantitative measure used will
be the average precision (AP) (see section 3.4.1). Example code for computing
the precision/recall curves and AP measure is provided in the development kit.

Invitation to propose evaluation schemes. We invite participants to pro-
pose additional evaluation schemes for the person layout task. In particular, we
are interested in schemes which (i) evaluate accuracy of complete layout predic-
tions; (ii) incorporate the notion of ranking of results by confidence. If you have
a successful layout prediction method and insight please propose promising eval-
uation techniques in the form of (i) motivation and explanation; (ii) MATLAB
implementation compatible with the VOC results format.

7 Action Classification Taster

7.1 Task

For each of the nine action classes predict if a specified person (indicated by
their bounding box) in a test image is performing the corresponding action.
The output from your system should be a real-valued confidence that the action
is being performed so that a precision/recall curve can be drawn. Participants
may choose to tackle all, or any subset of action classes, for example “walking
only” or “walking and running”.

7.2 Competitions

Two competitions are defined according to the choice of training data: (i) taken
from the VOC trainval data provided, or (ii) from any source excluding the
VOC test data provided:

15

No. Task Training data Test data
9 Classification trainval test

10 Classification any but VOC test test

In competition 9, any annotation provided in the VOC train and val sets
may be used for training. Participants may use images and annotation for
any of the competitions for training e.g. horse bounding boxes/segmentation
to learn ‘ridinghorse’. Participants are not permitted to perform additional
manual annotation of either training or test data.

In competition 10, any source of training data may be used except the pro-
vided test images. Researchers who have pre-built systems trained on other
data are particularly encouraged to participate. The test data includes images
from “flickr” (www.flickr.com); this source of images may not be used for
training. Participants who have acquired images from flickr for training must
submit them to the organizers to check for overlap with the test set.

7.3 Submission of Results

A separate text file of results should be generated for each competition (9 or
10) and each action class e.g. ‘phoning’. Each line should contain a single image
identifier, object index, and the confidence output by the classifier, separated
by a space, for example:

comp9_action_test_phoning.txt:

...

2010_006107 1 0.241236

2010_006107 2 0.758739

2010_006108 1 0.125374

...

The image identifier and object index specify the ‘person’ object to which the
output corresponds; these are provided in the corresponding image sets. Greater
confidence values signify greater confidence that the person is performing the
action of interest. The example implementation (section 8.2.5) includes code
for generating a results file in the required format.

7.4 Evaluation

The action classification task will be judged by the precision/recall curve. The
principal quantitative measure used will be the average precision (AP) (see
section 3.4.1). Example code for computing the precision/recall and AP measure
is provided in the development kit.

Participants are expected to submit a single set of results per method em-
ployed. Participants who have investigated several algorithms may submit one
result per method. Changes in algorithm parameters do not constitute a differ-
ent method – all parameter tuning must be conducted using the training and
validation data alone.

16

8 Development Kit

The development kit is packaged in a single gzipped tar file containing MATLAB
code and (this) documentation. The images, annotation, and lists specifying
training/validation sets for the challenge are provided in a separate archive
which can be obtained via the VOC web pages [1].

8.1 Installation and Configuration

The simplest installation is achieved by placing the development kit and chal-
lenge databases in a single location. After untarring the development kit, down-
load the challenge image database and untar into the same directory, resulting
in the following directory structure:

VOCdevkit/ % development kit

VOCdevkit/VOCcode/ % VOC utility code

VOCdevkit/results/VOC2010/ % your results on VOC2010

VOCdevkit/local/ % example code temp dirs

VOCdevkit/VOC2010/ImageSets % image sets

VOCdevkit/VOC2010/Annotations % annotation files

VOCdevkit/VOC2010/JPEGImages % images

VOCdevkit/VOC2010/SegmentationObject % segmentations by object

VOCdevkit/VOC2010/SegmentationClass % segmentations by class

If you set the current directory in MATLAB to the VOCdevkit directory you
should be able to run the example functions:

• example classifier

• example detector

• example segmenter

• example layout

• example action

If desired, you can store the code, images/annotation, and results in separate
directories, for example you might want to store the image data in a common
group location. To specify the locations of the image/annotation, results, and
working directories, edit the VOCinit.m file, e.g.

% change this path to point to your copy of the PASCAL VOC data

VOCopts.datadir=’/homes/group/VOCdata/’;

% change this path to a writable directory for your results

VOCopts.resdir=’/homes/me/VOCresults/’;

% change this path to a writable local directory for the example code

VOCopts.localdir=’/tmp/’;

Note that in developing your own code you need to include the VOCdevkit/VOCcode
directory in your MATLAB path, e.g.

>> addpath /homes/me/code/VOCdevkit/VOCcode

17

8.2 Example Code

Example implementations are provided for all tasks. The aim of these (minimal)
implementations is solely to demonstrate use of the code in the development kit.

8.2.1 Example Classifier Implementation

The file example classifier.m contains a complete implementation of the clas-
sification task. For each VOC object class a simple classifier is trained on the
train set; the classifier is then applied to the val set and the output saved to
a results file in the format required by the challenge; a precision/recall curve is
plotted and the ‘average precision’ (AP) measure displayed.

8.2.2 Example Detector Implementation

The file example detector.m contains a complete implementation of the de-
tection task. For each VOC object class a simple (and not very successful!)
detector is trained on the train set; the detector is then applied to the val set
and the output saved to a results file in the format required by the challenge;
a precision/recall curve is plotted and the ‘average precision’ (AP) measure
displayed.

8.2.3 Example Segmenter Implementation

An example segmenter is provided which converts detection results into seg-
mentation results, using create segmentations from detections (described
below). For example:

>> example_detector;

>> example_segmenter;

This runs the example detector, converts the detections into segmentations and
displays a table of per-class segmentation accuracies, along with an overall av-
erage accuracy.

8.2.4 Example Layout Implementation

The file example layout.m contains a complete implementation of the person
layout task. A simple (and not very successful!) layout predictor is trained on
the train set; the layout predictor is then applied to the val set and the output
saved to a results file in the format required by the challenge; a precision/recall
curve is plotted and the ‘average precision’ (AP) measure displayed.

8.2.5 Example Action Implementation

The file example action.m contains a complete implementation of the action
classification task. For each VOC action class a simple classifier is trained on
the train set; the classifier is then applied to all specified ‘person’ objects in
the val set and the output saved to a results file in the format required by the
challenge; a precision/recall curve is plotted and the ‘average precision’ (AP)
measure displayed.

18

8.3 Non-MATLAB Users

For non-MATLAB users, the file formats used for the VOC2010 data should be
straightforward to use in other environments. Image sets (see below) are vanilla
text files. Annotation files are XML format and should be readable by any
standard XML parser. Images are stored in JPEG format, and segmentation
ground truth in PNG format.

9 Using the Development Kit

The development kit provides functions for loading annotation data. Example
code for computing precision/recall curves and segmentation accuracy, and for
viewing annotation is also provided.

9.1 Image Sets

9.1.1 Classification/Detection Task Image Sets

The VOC2010/ImageSets/Main/ directory contains text files specifying lists of
images for the main classification/detection tasks.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier. The following MATLAB code reads the image list into a cell array of
strings:

imgset=’train’;

ids=textread(sprintf(VOCopts.imgsetpath,imgset),’%s’);

For a given image identifier ids{i}, the corresponding image and annotation
file paths can be produced thus:

imgpath=sprintf(VOCopts.imgpath,ids{i});

annopath=sprintf(VOCopts.annopath,ids{i});

Note that the image sets used are the same for all classes. For each competition,
participants are expected to provide output for all images in the test set.

9.1.2 Classification Task Image Sets

To simplify matters for participants tackling only the classification task, class-
specific image sets with per-image ground truth are also provided. The file
VOC2010/ImageSets/Main/<class> <imgset>.txt contains image identifiers and
ground truth for a particular class and image set, for example the file car train.txt

applies to the ‘car’ class and train image set.
Each line of the file contains a single image identifier and ground truth label,

separated by a space, for example:

...

2009_000040 -1

2009_000042 -1

2009_000052 1

...

19

The following MATLAB code reads the image list into a cell array of strings
and the ground truth label into a corresponding vector:

imgset=’train’;

cls=’car’;

[ids,gt]=textread(sprintf(VOCopts.clsimgsetpath, ...

cls,imgset),’%s %d’);

There are three ground truth labels:

-1: Negative: The image contains no objects of the class of interest. A classi-
fier should give a ‘negative’ output.

1: Positive: The image contains at least one object of the class of interest.
A classifier should give a ‘positive’ output.

0: “Difficult”: The image contains only objects of the class of interest marked
as ‘difficult’.

The “difficult” label indicates that all objects of the class of interest have
been annotated as “difficult”, for example an object which is clearly visible but
difficult to recognize without substantial use of context. Currently the eval-
uation ignores such images, contributing nothing to the precision/recall curve
or AP measure. The final evaluation may include separate results including
such “difficult” images, depending on the submitted results. Participants are
free to omit these images from training or include as either positive or negative
examples.

9.1.3 Segmentation Image Sets

The VOC2010/ImageSets/Segmentation/ directory contains text files specify-
ing lists of images for the segmentation task.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier. The following MATLAB code reads the image list into a cell array of
strings:

imgset=’train’;

ids=textread(sprintf(VOCopts.seg.imgsetpath,imgset),’%s’);

For a given image identifier ids{i}, file paths for the corresponding image,
annotation, segmentation by object instance and segmentation by class can be
produced thus:

imgpath=sprintf(VOCopts.imgpath,ids{i});

annopath=sprintf(VOCopts.annopath,ids{i});

clssegpath=sprintf(VOCopts.seg.clsimgpath,ids{i});

objsegpath=sprintf(VOCopts.seg.instimgpath,ids{i});

Participants are expected to provide output for all images in the test set.

20

9.1.4 Person Layout Taster Image Sets

The VOC2010/ImageSets/Layout/ directory contains text files specifying lists
of image for the person layout taster task.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier, and a single object index. Together these specify a ‘person’ object for
which layout is provided or to be estimated, for example:

...

2009_000595 1

2009_000595 2

2009_000606 1

...

The following MATLAB code reads the image list into a cell array of strings
and the object indices into a corresponding vector:

imgset=’train’;

[imgids,objids]=textread(sprintf(VOCopts.layout.imgsetpath, ...

VOCopts.trainset),’%s %d’);

The annotation for the object (bounding box only in the test data) can then
be obtained using the image identifier and object index:

rec=PASreadrecord(sprintf(VOCopts.annopath,imgids{i}));

obj=rec.objects(objids{i});

9.1.5 Action Classification Taster Image Sets

The VOC2010/ImageSets/Action/ directory contains text files specifying lists
of images and ‘person’ objects for the action classification taster task.

The files train.txt, val.txt, trainval.txt and test.txt list the im-
age identifiers for the corresponding image sets (training, validation, train-
ing+validation and testing). Each line of the file contains a single image iden-
tifier. The following MATLAB code reads the image list into a cell array of
strings:

imgset=’train’;

ids=textread(sprintf(VOCopts.action.imgsetpath,imgset),’%s’);

For a given image identifier ids{i}, the corresponding image and annotation
file paths can be produced thus:

imgpath=sprintf(VOCopts.imgpath,ids{i});

annopath=sprintf(VOCopts.annopath,ids{i});

Note that the image sets used are the same for all action classes. For each
competition, participants are expected to provide output for all ‘person’ objects
in each image of the test set.

21

9.1.6 Action Class Image Sets

To simplify matters for participants tackling the action classification task, ac-
tion class-specific image sets with per-object ground truth are also provided.
The file VOC2010/ImageSets/Action/<class> <imgset>.txt contains image
identifiers, object indices and ground truth for a particular action class and im-
age set, for example the file phoning train.txt applies to the ‘phoning’ action
class and train image set.

Each line of the file contains a single image identifier, single object index,
and ground truth label, separated by a space, for example:

...

2010_006215 1 1

2010_006217 1 -1

2010_006217 2 -1

...

The following MATLAB code reads the image identifiers into a cell array
of strings, the object indices into a vector, and the ground truth label into a
corresponding vector:

imgset=’train’; cls=’phoning’;

[imgids,objinds,gt]=textread(sprintf(VOCopts.action.clsimgsetpath,

cls,imgset),’%s %d %d’);

The annotation for the object (bounding box and actions) can then be ob-
tained using the image identifier and object index:

rec=PASreadrecord(sprintf(VOCopts.annopath,imgids{i}));

obj=rec.objects(objids{i});

There are two ground truth labels:

-1: Negative: The person is not performing the action of interest. A classifier
should give a ‘negative’ output.

1: Positive: The person is performing the action of interest. A classifier
should give a ‘positive’ output.

9.2 Development Kit Functions

9.2.1 VOCinit

The VOCinit script initializes a single structure VOCopts which contains options
for the PASCAL functions including directories containing the VOC data and
options for the evaluation functions (not to be modified).

The field classes lists the object classes for the challenge in a cell array:

VOCopts.classes={’aeroplane’,’bicycle’,’bird’,’boat’,...

’bottle’,’bus’,’car’,’cat’,...

’chair’,’cow’,’diningtable’,’dog’,...

’horse’,’motorbike’,’person’,’pottedplant’,...

’sheep’,’sofa’,’train’,’tvmonitor’};

22

The field actions lists the action classes for the action classification task in
a cell array:

VOCopts.actions={’phoning’,’playinginstrument’,’reading’,...

’ridingbike’,’ridinghorse’,’running’,...

’takingphoto’,’usingcomputer’,’walking’};

The field trainset specifies the image set used by the example evaluation
functions for training:

VOCopts.trainset=’train’; % use train for development

Note that participants are free to use both training and validation data in
any manner they choose for the final challenge.

The field testset specifies the image set used by the example evaluation
functions for testing:

VOCopts.testset=’val’; % use validation data for development

Other fields provide, for convenience, paths for the image and annotation
data and results files. The use of these paths is illustrated in the example
implementations.

9.2.2 PASreadrecord(filename)

The PASreadrecord function reads the annotation data for a particular image
from the annotation file specified by filename, for example:

>> rec=PASreadrecord(sprintf(VOCopts.annopath,’2009_000067’))

rec =

folder: ’VOC2009’

filename: ’2009_000067.jpg’

source: [1x1 struct]

size: [1x1 struct]

segmented: 0

imgname: ’VOC2009/JPEGImages/2009_000067.jpg’

imgsize: [500 334 3]

database: ’The VOC2009 Database’

objects: [1x6 struct]

The imgname field specifies the path (relative to the main VOC data path)
of the corresponding image. The imgsize field specifies the image dimen-
sions as (width,height,depth). The database field specifies the data source
(VOC2009 or VOC2010). The segmented field specifies if a segmentation is
available for this image. The folder and filename fields provide an alterna-
tive specification of the image path, and size an alternative specification of the
image size:

>> rec.size

ans =

23

width: 500

height: 334

depth: 3

The source field contains additional information about the source of the image
e.g. web-site and owner. This information is obscured until completion of the
challenge.

Objects annotated in the image are stored in the struct array objects, for
example:

>> rec.objects(2)

ans =

class: ’person’

view: ’Right’

truncated: 0

occluded: 0

difficult: 0

label: ’PASpersonRight’

orglabel: ’PASpersonRight’

bbox: [225 140 270 308]

bndbox: [1x1 struct]

polygon: []

mask: []

hasparts: 1

part: [1x4 struct]

The class field contains the object class. The view field contains the view:
Frontal, Rear, Left (side view, facing left of image), Right (side view, facing
right of image), or an empty string indicating another, or un-annotated view.

The truncated field being set to 1 indicates that the object is “truncated”
in the image. The definition of truncated is that the bounding box of the object
specified does not correspond to the full extent of the object e.g. an image of
a person from the waist up, or a view of a car extending outside the image.
Participants are free to use or ignore this field as they see fit.

The occluded field being set to 1 indicates that the object is significantly
occluded by another object. Participants are free to use or ignore this field as
they see fit.

The difficult field being set to 1 indicates that the object has been anno-
tated as “difficult”, for example an object which is clearly visible but difficult to
recognize without substantial use of context. Currently the evaluation ignores
such objects, contributing nothing to the precision/recall curve. The final evalu-
ation may include separate results including such “difficult” objects, depending
on the submitted results. Participants may include or exclude these objects
from training as they see fit.

The bbox field specifies the bounding box of the object in the image, as
[left,top,right,bottom]. The top-left pixel in the image has coordinates
(1, 1). The bndbox field specifies the bounding box in an alternate form:

24

>> rec.objects(2).bndbox

ans =

xmin: 225

ymin: 140

xmax: 270

ymax: 308

For backward compatibility, the label and orglabel fields specify the PAS-
CAL label for the object, comprised of class, view and truncated/difficult flags.
The polygon and mask fields specify polygon/per-object segmentations, and are
not provided for the VOC2010 data.

The hasparts field specifies if the object has sub-object “parts” annotated.
For the VOC2010 data, such annotation is available for a subset of the ‘person’
objects, used in the layout taster task. Object parts are stored in the struct
array part, for example:

>> rec.objects(2).part(1)

ans =

class: ’head’

view: ’’

truncated: 0

occluded: 0

difficult: 0

label: ’PAShead’

orglabel: ’PAShead’

bbox: [234 138 257 164]

bndbox: [1x1 struct]

polygon: []

mask: []

hasparts: 0

part: []

The format of object parts is identical to that for top-level objects. For the
‘person’ parts in the VOC2010 data, parts are not annotated with view, or
truncated/difficult flags. The bounding box of a part is specified in image
coordinates in the same way as for top-level objects. Note that the object parts
may legitimately extend outside the bounding box of the parent object.

For ‘person’ objects in the action classification taster image sets, objects are
additionally annotated with the set of actions being performed. The hasactions
field specifies if the object has actions annotated. Action flags are stored in the
struct actions, for example:

>> rec.objects(1).actions

ans =

phoning: 1

25

playinginstrument: 0

reading: 0

ridingbike: 0

ridinghorse: 0

running: 0

takingphoto: 0

usingcomputer: 0

walking: 0

There is one flag for each of the nine action classes, with the flag set to true (1)
if the person is performing the corresponding action. Note that actions are not
mutually-exclusive.

9.2.3 viewanno(imgset)

The viewanno function displays the annotation for images in the image set
specified by imgset. Some examples:

>> viewanno(’Main/train’);

>> viewanno(’Main/car_val’);

>> viewanno(’Layout/train’);

>> viewanno(’Segmentation/val’);

9.3 Classification Functions

9.3.1 VOCevalcls(VOCopts,id,cls,draw)

The VOCevalcls function performs evaluation of the classification task, com-
puting a precision/recall curve and the average precision (AP) measure. The
arguments id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=VOCevalcls(VOCopts,’comp1’,’car’,true);

See example classifier for further examples. If the argument draw is true,
the precision/recall curve is drawn in a figure window. The function returns
vectors of recall and precision rates in rec and prec, and the average precision
measure in ap.

9.4 Detection Functions

9.4.1 VOCevaldet(VOCopts,id,cls,draw)

The VOCevaldet function performs evaluation of the detection task, computing
a precision/recall curve and the average precision (AP) measure. The arguments
id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=VOCevaldet(VOCopts,’comp3’,’car’,true);

See example detector for further examples. If the argument draw is true, the
precision/recall curve is drawn in a figure window. The function returns vectors
of recall and precision rates in rec and prec, and the average precision measure
in ap.

26

9.4.2 viewdet(id,cls,onlytp)

The viewdet function displays the detections stored in a results file for the
detection task. The arguments id and cls specify the results file to be loaded,
for example:

>> viewdet(’comp3’,’car’,true)

If the onlytp argument is true, only the detections considered true positives by
the VOC evaluation measure are displayed.

9.5 Segmentation Functions

9.5.1 create segmentations from detections(id,confidence)

This function creates segmentation results from detection results.
create segmentations from detections(id) creates segmentations from

the detection results with specified identifier e.g. comp3. This is achieved by
rendering the bounding box for each detection in class order, so that later classes
overwrite earlier classes (e.g. a person bounding box will overwrite an overlap-
ping an aeroplane bounding box). All detections will be used, no matter what
their confidence level.

create segmentations from detections(id,confidence) does the same,
but only detections above the specified confidence will be used.

See example segmenter for an example.

9.5.2 VOCevalseg(VOCopts,id)

The VOCevalseg function performs evaluation of the segmentation task, com-
puting a confusion matrix and segmentation accuracies for the segmentation
task. It returns per-class percentage accuracies, the average overall percentage
accuracy, and a confusion matrix, for example:

>> [accuracies,avacc,conf,rawcounts] = VOCevalseg(VOCopts,’comp3’)

Accuracies are defined by the intersection/union measure. The optional fourth
output ‘rawcounts’ returns an un-normalized confusion matrix containing raw
pixel counts. See example segmenter for another example. This function will
also display a table of overall and per-class accuracies.

9.5.3 VOClabelcolormap(N)

The VOClabelcolormap function creates the color map which has been used for
all provided indexed images. You should use this color map for writing your
own indexed images, for consistency. The size of the color map is given by N,
which should generally be set to 256 to include a color for the ‘void’ label.

9.6 Layout Functions

9.6.1 VOCwritexml(rec,path)

The VOCwritexml function writes a MATLAB structure array to a correspond-
ing XML file. It is provided to support the creation of XML results files for the
person layout taster. An example of usage can be found in example layout.

27

9.6.2 VOCevallayout pr(VOCopts,id,draw)

The VOCevallayout pr function performs evaluation of the person layout task,
computing a precision/recall curve and the average precision (AP) measure for
each part type (head/hands/feet). The arguments id and cls specify the results
file to be loaded, for example:

>> [rec,prec,ap]=VOCevallayout_pr(VOCopts,’comp7’,true);

See example layout for further examples. If the argument draw is true, the
precision/recall curves are drawn in a figure window. The function returns vec-
tors of recall and precision rates in reci and prec{i}, and the average precision
measure in ap{i}, where the index i indexes the part type in VOCopts.parts.

9.6.3 VOCevallayout f(VOCopts,id,draw)

The VOCevallayout f function performs secondary evaluation of the person
layout task, computing a curve of f-measure versus recall. The arguments id

and cls specify the results file to be loaded, for example:

>> [f,rec]=VOCevallayout_f(VOCopts,’comp7’,true);

*** This information is preliminary and subject to change ***

9.7 Action Functions

9.7.1 VOCevalaction(VOCopts,id,cls,draw)

The VOCevalaction function performs evaluation of the action classification
task, computing a precision/recall curve and the average precision (AP) mea-
sure. The arguments id and cls specify the results file to be loaded, for example:

>> [rec,prec,ap]=VOCevalcls(VOCopts,’comp9’,’phoning’,true);

See example action for further examples. If the argument draw is true, the
precision/recall curve is drawn in a figure window. The function returns vectors
of recall and precision rates in rec and prec, and the average precision measure
in ap.

Acknowledgements

We gratefully acknowledge the following, who spent many long hours provid-
ing annotation for the VOC2010 database: Yusuf Aytar, Jan Hendrik Becker,
Patrick Buehler, Miha Drenik, Chris Engels, Ali Eslami, Adrien Gaidon, Sam
Johnson, Jyri Kivinen, Lubor Ladicky, Markus Mathias, Alastair Moore, Glenn
Sheasby, Paul Sturgess, David Tingdahl, Josiah Wang.

We also thank Alexander Sorokin for production and support of the anno-
tation systems for Mechanical Turk, Ivan Laptev for development of the action
classification task, and Marcin Eichner, Marcin Marszalek and Andrea Vedaldi
for testing on the development kit.

The preparation and running of this challenge is supported by the EU-funded
PASCAL2 Network of Excellence on Pattern Analysis, Statistical Modelling
and Computational Learning. We are grateful to Alyosha Efros for providing
additional funding for annotation on Mechanical Turk.

28

References

[1] The PASCAL Visual Object Classes Challenge (VOC2010). http://

pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/index.html.

29

