
Redis as a Reliable Work
Queue
Percona University 2015-02-12

Introduction

Tom DeWire
Principal Software Engineer
Bronto Software

Chris Thunes
Senior Software Engineer
Bronto Software

Introduction

Introduction

Introduction

Bronto Features

§  Communication
•  Email
•  Social
•  SMS

§  Contact Management

•  Manual
•  Segmentation

§  Marketing Automation
•  Workflows

§  Commerce Integration
•  Purchase History
•  Cart Recovery

§  Integration

•  SOAP/REST API
•  Third Party Connectors

Introduction

Cyber Monday 2014

Peak Daily Totals

Peak Hourly Totals

Emails Sent Events Processed

~170M per Day ~400M per Day

~2000 per Second ~4700 per Second

Emails Sent Events Processed

~14M per Hour ~32M per Hour

~3900 per Second ~8900 per Second

Distributed Work Queueing

Service

Service

Service

Client

Local work queues…

Distributed Work Queueing

Service

Service

Service

Client

Lost or
Orphaned

Excessive
Growth

Local work queues…handle failure poorly

Distributed Work Queueing

Service

Service

Service

Client

Unbalanced
Growth

Local work queues…handle unbalanced loads poorly

Distributed Work Queueing

Service

Service

Service

Client

Local work queues… may be bad neighbors

Distributed Work Queueing

Service

Service

Service

Client

What about putting the work in a relational database?

Distributed Work Queueing

Service

Service

Service

Client

What about putting the work in a relational database?

Please don’t do that…

Why are they
doing this to

me?

Distributed Work Queueing

Service
Producer Client

Service
Consumer

Queue

Distributed work queues…

Distributed Work Queueing

Service
Producer

Service
Producer

Service
Producer

Client

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Queue

Distributed work queues…decouple producers and consumers

Distributed Work Queueing

Service
Producer

Service
Producer

Service
Producer

Client

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Service
Consumer

Queue

Distributed work queues…are more fault tolerant

Distributed Work Queueing

Service
Producer

Service
Producer

Client

Service
Consumer

Service
Consumer

Queue

Queue

Distributed work queues… partition for availability and/or scale

Distributed Work Queueing

Great… But where can I get one?

§ Kafka
§ Kestrel
§  Starling
§ BeanstalkD
§  SwiftMQ
§ RabbitMQ
§ ActiveMQ
§ Qpid
§ Apollo
§  SQS (Simple Queue Service)
§ …and lots more I’ve simply forgotten or ignored

There are plenty of options in this space.

Distributed Work Queueing

Why did we go with Redis?

§ Existing deployment
§ Existing operational experience
§ Existing development experience
§ Works well without specialized hardware
§  Favorable balance of throughput vs. durability
§  Flexibility to support alternate queue schemes (e.g. with key-

based aggregation)

We don’t regret building this on Redis, and we feel it will be a
solid contribution to the open source ecosystem.

Redis

The fundamentals…

§ NoSQL database
§ Key/Value style
§ Data structures
§ Memory only
§ Durable to disk
§  Fast, fast, fast

Redis

Under the covers…

§ C application
§  Single threaded
§  Strongly consistent
§ Durability via snapshots (RDB)
§ Durability via redo logs (AOF)
§  Scriptable on server-side (LUA)
§  Simple protocol
§ Replication

Redis

Is it ACID? No…
Single Operations

§  Atomic
§  Consistent
§  Isolated

Multi Operation Transactions

§  Atomic
§  Isolated

Server Scripted Transactions
§  Atomic
§  Isolated

Redis is not consistent per ACID because it does not support rollbacks.
Redis is not durable per ACID because it does not require persistence to disk.

Redis

Durability in Redis
RDB (Redis Database)

§  Point in time snapshot
§  Scheduled or on-demand
§  Performed in a forked process
§  Compact file format
§  Fastest restore time
§  Larger window for data loss

There are workloads that can make good use of the scheduled and/or
explicit RDB snapshots, but the queue case is not one of them.

Redis

Durability in Redis
AOF (Append Only File)

§  Streaming log of operations
§  Periodic log rewriting from live data via fork
§  Reduced chance of corruption due to append only strategy
§  Multiple fsync() policies

•  Never
•  Every second
•  Every operation

§  Slightly reduced performance due to more frequent disk interaction

AOF with the ‘every second’ fsync policy is a good fit for us.

§  No expected data loss due to process failure
§  One second of potential data loss due to machine failure

Redis

Naïve Queueing

Service
Producer

Service
Consumer

Producer creates work payload

work

Redis

Naïve Queueing

Service
Producer

Service
Consumer

LPUSH my_queue work

my_queue (list)
work

Redis

Naïve Queueing

Service
Producer

Service
Consumer

RPOP my_queue

my_queue (list)

work

Redis

Naïve Queueing

Service
Producer

Service
Consumer

Consumer processes work

work

Redis

Naïve Queueing

Service
Producer

Service
Consumer

…but what if something goes wrong?

work

Reliable Queueing

Created Pending Working
enqueue

Complete
dequeue release

requeue

Created Pending
enqueue

Complete
dequeue

Naïve Queueing

Reliable Queueing

Delayed

delay time

Reliable Queueing

Redis and LUA Scripting

Think of it as a stored procedure.
§  Loaded via EVAL
§  Invoked via EVALSHA
§ Atomic execution

-- Move the ready UUIDs from the delayed set back into the pending list.
-- These UUIDs are ready when their ZSCORE is less than that of the current time "now",
-- passed in as a parameter to this function.
-- They will be added back to the front of the pending list, rather than the end of it.
local function requeueDelayed(pendingList, delayedZSet, now)
 -- Get the UUIDs of the items ready to be requeued from the delayed set
 local ready_uuids = redis.call('ZRANGEBYSCORE', delayedZSet, 0, now)

 if #ready_uuids == 0 then
 return 0
 end

 -- Move the items from the delayed set to the front of the pending list
 zrem_safe(delayedZSet, ready_uuids)
 rpush_safe(pendingList, ready_uuids)

 return #ready_uuids
end

Redis

Reliable Queueing

Service
Producer

Service
Consumer

enqueue()

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

Redis

Reliable Queueing

Service
Producer

Service
Consumer

enqueue()
1.  Generate {UUID}
2.  LPUSH my_queue_pending {UUID}
3.  HSET my_queue_values {UUID} {work}

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

The work is now in the pending state.

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

dequeue()

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

dequeue()
1.  RPOP my_queue_pending
2.  ZADD my_queue_working {timestamp} {UUID}
3.  HGET my_queue_values {UUID}
4.  Return {work} to consumer

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

work

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

The work is now in the working state, safely dequeued, with an
immutable copy still on the Redis server.

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

work

Redis

Reliable Queueing

Service
Producer

Service
Consumer

release()

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

release()
1.  ZREM my_queue_working {UUID}
2.  HDEL my_queue_values {UUID}

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

The work is now in the completed state, completely processed,
with no copy remaining in Redis.

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

Redis

Reliable Queueing

Service
Producer

Service
Consumer

What if something goes wrong during processing?

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

work

Redis

Reliable Queueing

Service
Producer

Service
Consumer

requeue()

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

requeue()
1.  ZREM {UUID}
2.  LPUSH {UUID}

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

The work has now returned to the pending state, and will be
reissued as soon as it returns to the head of the queue.

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work UUID

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

What if something really goes wrong during processing?

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID

work

Redis

Reliable Queueing

Service
Producer

Service
Consumer

sweep()

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID
work

Service
Consumer

Redis

Reliable Queueing

Service
Producer

Service
Consumer

sweep()
1.  ZRANGEBYSCORE my_queue_working 0 {timestamp – stale}
2.  LPUSH my_queue_pending {UUIDs}
3.  ZREM {UUIDs}

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID
work

Service
Consumer

UUID

Redis

Reliable Queueing

Service
Producer

Service
Consumer

The work has now returned to the pending state, and will be
reissued as soon as it returns to the head of the queue.

my_queue (LUA)

my_queue_pending
(LIST)

my_queue_values (MAP)

my_queue_working
(ZSET)

work

UUID

UUID
work

Service
Consumer

Reliable Queueing

The real implementation does a lot more…

§ Asynchronous API
§ Operation pipelining
§ Opportunistic batching
§ Pre-fetching
§ Per-item deferment
§ Per-item statistics

•  Enqueue time
•  Dequeue time / count
•  Requeue time / count

§ Metrics instrumentation
•  Queue throughput & timing
•  Batching effectiveness

•  Queue size
•  Queue lag

Reliable Queueing

Some benchmarks…

§ Bronto’s Redis Client implementation
§ Bronto’s Reliable Queue implementation
§ Redis running on Intel(R) Xeon(R) CPU E5-2430 @ 2.20GHz
§ All tests are single threaded, with one connection
§ All tests use single byte queue name and item payload

Scenario Enqueue Dequeue &
Release

No pipelining,
No batching

6,700 items/sec 2,900 items/sec

Pipelining (1024),
No batching

62,040 items/sec 14,029 items/sec

Pipelining (1024),
Batching (256)

236,922 items/sec 70,706 items/sec

Bronto Open Source

We are planning on releasing the entire suite to the
open source community.

§ Redis Client
•  Asynchronous
•  Pipelining
•  Protocol access
•  Scripting supports

§ Redis Benchmarking Tools

•  Scriptable benchmark runs
•  Support for rapid LUA iteration and testing

§ Bronto’s Reliable Queue implementation
•  Everything you just heard about

Bronto Open Source

We are planning on releasing the entire suite to the
open source community.

§ Redis Client
•  Asynchronous
•  Pipelining
•  Protocol access
•  Scripting supports

§ Redis Benchmarking Tools

•  Scriptable benchmark runs
•  Support for rapid LUA iteration and testing

§ Bronto’s Reliable Queue implementation
•  Everything you just heard about

Coming this Spring.

Thanks for listening!

Questions?

