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The months of the Hindus are lunar, their years are solar;
therefore their new year’s day must in each solar year

fall by so much earlier as the lunar year is shorter than the solar. . . .
If this precession makes up one complete month,

they act in the same way as the Jews,
who make the year a leap year of 13 months . . . ,

and in a similar way to the heathen Arabs.

— Alberuni’s India

1 Introduction

The world’s many calendars are of three primary types: diurnal, solar, and
lunar; see the third edition of our Calendrical Calculations [3] (henceforth
CC ). All three are represented among the many calendars of the Indian
subcontinent.

• A diurnal calendar is a day count, either a simple count, like the Julian day
number used by astronomers, or a complex, mixed-radix count, like the
Mayan long count (see Sect. 10.1 of CC ). The classical Indian day count
(ahargan. a) is used for calendrical purposes.

• Solar calendars have a year length that corresponds to the solar year.
All modern solar calendars add leap days at regular intervals to adjust the

1 Nachum Dershowitz is a professor of computer science at Tel Aviv University. His
research interests include rewriting theory, equational reasoning, abstract state
machines, the Church–Turing Thesis, Boolean satisfiability, and natural language
processing, in addition to calendrical algorithms.

2 Edward M. Reingold is a professor and former chairman of the Department of
Computer Science at the Illinois Institute of Technology. Aside from calendars,
his research interests are in theoretical computer science, especially the design
and analysis of algorithms and data structures.

B.S. Yadav and M. Mohan (eds.), Ancient Indian Leaps into Mathematics, 1
DOI 10.1007/978-0-8176-4695-0 1, c© Springer Science+Business Media, LLC 2011



2 Nachum Dershowitz and Edward M. Reingold

mean length of the calendar year to better approximate the true solar year.
The solar (saura) calendar is more popular in northern India; a similar one
is in use in Nepal.3

• A lunar (cāndra) calendar has as its primary component a mensural unit
that corresponds to the lunar synodic month. It can be purely lunar, as in
the 12-month Islamic calendar year (see Chap. 6 of CC ), or it can incor-
porate occasional leap months, as in the Hebrew lunisolar calendar (see
Chap. 7 of CC ). Several forms of the lunisolar calendar are in use in India
today; the Tibetan Phugpa or Phug-lugs calendar is somewhat similar (see
Chap. 19 of CC ).

In general, a date is determined by the occurrence of a cyclical event
(equinox, lunar conjunction, and so on) before some “critical” time of day,
not necessarily during the same day. For a “mean” (madhyama) calendar, the
event occurs at fixed intervals; for a “true” (spas. t.a) calendar, the (approximate
or precise) time of each actual occurrence of the event must be calculated.
Various astronomical values were used by the Indian astronomers Āryabhat.a
(circa 300 c.e.), Brahmagupta (circa 630 c.e.), the author of Sūrya-Siddhānta

(circa 1000 c.e.), and others.
We systematically apply the formulæ for cyclic events in Chap. 1 of

CC to derive formulæ for generic mean single-cycle and dual-cycle calen-
dars; see Chap. 12 of CC for more details. Solar calendars are based on
the motion of the sun alone, so they fit a single cycle pattern; luniso-
lar calendars, on the other hand, take both the solar and lunar cycles
into account, so they require double-cycle formulæ. We apply these generic
algorithms to the old Indian solar and lunisolar calendars, which are based
on mean values (see Chap. 9 of CC ). We also use the code in CC to
compare the values obtained by the much more complicated true Indian
calendars (Chap. 18 of CC ) with their modern astronomical counterparts.
Unless noted otherwise, we centre our astronomical calculations on the year
1000 c.e.

We ignore many trivial differences between alternative calendars, such
as eras (year count). Some Indian calendars count “elapsed” years, begin-
ning with year 0; others use “current,” 1-based years. The offsets of some
common eras from the Gregorian year are summarized in Table 1. Indian
month names are given in Table 2. Tamil names are different. There are
also regional differences as to which is the first month of the year. Fi-
nally, calendars are local, in the sense that they depend on local times of
sunrise.

The next brief section describes the Indian day count. Section 3 presents
a generic solar calendar and shows how the mean Indian solar calendar fits
the pattern. It is followed by a section that compares the later, true calendar
with modern astronomical calculations. Similarly, Sect. 5 presents a generic

3 We have been unable to ascertain the precise rules of the Nepalese solar calendar.
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Table 1. Some eras, given as the offset from the Gregorian year

Era Current year Elapsed year

Kali Yuga +3102 +3101
Nepalese +877
Kollam +823
Vikrama +58 +57

Śaka −77 −78
Bengal −593
Caitanya −1486

Table 2. Indian month names

Vedic Zodiacal sign Month

1 Madhu Mes.a (Aries) m�q Vaísākha v{шAх
2 Mādhava Vr.s.abha (Taurus) v� qB Jyes.t.ha >y�¤
3 Śukra Mithuna (Gemini) EmT! n Ās.ād. ha aAqAY
4 Śuchi Karka (Cancer) кк Śrāvan. a �AvZ
5 Nabhas Sim. ha (Leo) Es\h Bhādrapada BAdý pd
6 Nabhasya Kanyā (Virgo) к�yA Āśvina aAE�n
7 Issa Tulā (Libra) t! lA Kārtika кAEtк
8 Ūrja Vr.ścika (Scorpio) v� E�к Mārgaś̄ırs.a mAgшFq
9 Sahas Dhanus (Sagittarius) Dn! ŝ Paus.a pOq
10 Sahasya Makara (Capricorn) mкr Māgha mAG
11 Tapas Kumbha (Aquarius) к! MB Phālguna PASg! n
12 Tapasya Mı̄na (Pisces) mFn Caitra c{/

lunisolar calendar and its application to the Indian version, and is followed by
a section on the true and astronomical versions. Section 7 discusses aspects
of the traditional calculation of the time of sunrise. Finally, Sect. 8 outlines
the difficulty of computing the day of observance of holidays based on the
lunisolar calendar.

Following the style of CC, the algorithms in this paper are presented as
mathematical function definitions in standard mathematical format. All cal-
endar functions were automatically typeset directly from the Common Lisp
functions listed in the appendix.

2 Diurnal Calendars

In most cases, a calendar date is a triple 〈y, m, d〉, where year y can be any
positive or negative integer, and month m and day d are positive integers,
possibly designated “leap.” A day count is convenient as an intermediate
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Table 3. Day count correlations

Date (Julian) j.a.d. Ahargan. a r.d.

2 January 4713 b.c.e. (noon) 1 −588,464.5 −1,721,423.5
18 February 3102 b.c.e. (midnight) 588,465.5 0 −1,132,959
3 January 1 c.e. (midnight) 1,721,425.5 1,132,960 1

device for conversions between calendars. One can count days from the first
day of a calendar, normally 〈1, 1, 1〉, called the epoch. So 〈1, 1, 1〉, 〈1, 1, 2〉,
and so on correspond to (elapsed) day count 0, 1, and so on. Days prior
to the epoch have negative day counts and nonpositive year numbers. Day
counts can be 0-based or 1-based; that is, the epoch may be assigned 0 or 1.
In CC, we use the Rata Die (r.d.) count, day 1 of which is 1 January 1
(Gregorian).

The ahargan. a (“heap of days”) is a 0-based day count of the Kali Yuga
(k.y.) era, used in Indian calendrical calculations. The k.y. epoch, day 0 of the
ahargan. a count, is Friday, 18 February 3102 b.c.e. (Julian). Its correlations
with r.d. and with the midday-to-midday Julian day number (j.a.d., popular
among astronomers) are given in Table 3. An earlier count, with much larger
numbers, was used by Āryabhat.a. We use the onset of the Kali Yuga, r.d.

−1,143,959, for our hindu-epoch.

3 Mean Solar Calendars

The modern Indian solar calendar is based on a close approximation to the
true times of the sun’s entrance into the signs of the sidereal zodiac. The
Hindu names of the zodiac are given in Table 2. Traditional calendarists em-
ploy medieval epicyclic theory (see [11] and Sect. 18.1 of CC ); others use a
modern ephemeris. Before about 1100 c.e., however, Hindu calendars were
usually based on average times. The basic structure of the calendar is similar
for both the mean (madhyama) and true (spas. t.a) calendars. The Gregorian,
Julian, and Coptic calendars are other examples of mean solar calendars; the
Persian and French Revolutionary are two examples of true solar calendars.
In this and the following section, we examine these two solar calendar
schemes.

The Indian mean solar calendar, though only of historical interest, has a
uniform and mathematically pleasing structure. (Connections between leap-
year structures and other mathematical tasks are explored in [4].) Using the
astronomical constants of the Ārya-Siddhānta yields 149 leap years of 366
days, which are distributed evenly in a cycle of 576 years. Similarly, 30-day
and 31-day months alternate in a perfectly evenhanded manner.
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3.1 Single-Cycle Calendars

The mean solar calendar is an instance of a general single-cycle calendar
scheme. Consider a calendar with mean year length of Y days, where Y is a
positive real number. If Y is not a whole number, then there will be common
years of length ⌊Y ⌋ and leap years of length ⌈Y ⌉, with a leap-year frequency
of Y mod 1.

To convert between r.d. dates and single-cycle dates, we apply formulæ
(1.73) and (1.77) from Sect. 1.12 of CC. Suppose that a year is divided into
months of length as close to equal as possible. For a standard 12-month year,
the average length of a month would be M = Y/12. Some months, then,
should be ⌊M⌋ days long, and the rest ⌈M⌉ days. Alternatively, a year may
include a 13th short month, in which case M is the mean length of the first
12 months. (In any case, we may assume that Y ≥ M ≥ 1.)

A day is declared “New Year” if the solar event occurs before some critical
moment. In other words, if tn is the critical moment of day n, then n is
New Year if and only if the event occurs during the interval [tn − 1, tn). The
beginnings of new months may be handled similarly or may be determined by
simpler schemes, depending on the calendar; we discuss this below.

Suppose that the sun was at the critical longitude at the critical time t−1

of day −1, the day before the epoch, so that day −1 just missed being New
Year. Finally, assume that a leap day, when there is one, is added at year’s
end. The number n of elapsed days from the calendar’s epoch 〈0, 0, 0〉 until a
date 〈y, m, d〉 (all three components are for now 0-based) is simply

⌊yY ⌋ + ⌊mM⌋ + d, (1)

with inverse
y = ⌈(n + 1)/Y ⌉ − 1,

n′ = n − ⌊yY ⌋,
m = ⌈(n′ + 1)/M⌉ − 1,
d = n′ − ⌊mM⌋.

(2)

If the rule is that the event may occur up to and including the critical
moment, then n is New Year if and only if the event occurs during the interval
(tn − 1, tn]. Accordingly, we need to change some ceilings and floors in the
above formulæ. Supposing that the event transpired exactly at that critical
moment t0 of the epoch, the elapsed-day calculation becomes:

⌈yY ⌉ + ⌈mM⌉ + d. (3)

The inverse function, assuming Y ≥ M ≥ 1, converting a day count n into a
0-based date, 〈y, m, d〉, is

y = ⌊n/Y ⌋,
n′ = ⌊n mod Y ⌋,
m = ⌊n′/M⌋,
d = ⌊n′ mod M⌋.

(4)
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The above four formulæ (1–4) assume that months are determined in the
same way as are years, from a specified average value M , and, therefore, follow
the same pattern every year (except for the leap day in the final month of
leap years).4 There is an alternative version of mean solar calendars in which
month lengths can vary by 1 day, and are determined by the mean position of
the sun each month. In this case, we combine the calculation of the number
of days in the elapsed years and those of the elapsed months. Assuming a
12-month year with M = Y/12, we have

⌊yY + mM⌋ + d (5)

or

⌈yY + mM⌉ + d, (6)

depending on whether the “before” or “not after” version is required. The
inverses for these two variable-month versions are

y = ⌈(n + 1)/Y ⌉ − 1,
m′ = ⌈(n + 1)/M⌉ − 1,
m = m′ mod 12,
d = n − ⌊m′M⌋,

(7)

and
y = ⌊n/Y ⌋,

m = ⌊n/M⌋ mod 12,
d = ⌊n mod M⌋,

(8)

respectively.

3.2 Generic Single-Cycle Calendars

The critical event for a calendar sometimes occurs exactly at the calendar’s
epoch (k.y., in the Indian case). However, often an additional complication is
introduced, wherein the relevant critical event occurred some fraction of a day
before the critical time for the epoch. Furthermore, the cyclical month pattern
may have its own starting point. Accordingly, for the fixed-month calendar,
we are given the following constants:

1. The calendar epoch, single-cycle-epoch, an integer.
2. The offset of the first critical event, delta-year, a number in the range

[0, 1).
3. The average year length, average-year-length, of at least 1 day.

4 In CC, formulæ are given for the hybrid case where years are determined by the
“not after” convention, but months by a “before” rule. There are also various
cosmetic differences between the formulæ given here and in CC.
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4. The average month length, average-month-length, at least 1 day long,
but no longer than an average year.

5. The offset for the first month, delta-month, also in the range [0, 1).

In the “before” version of the rules, the critical yearly event for the epochal
year occurred delta-year days after the earliest possible moment, which is
1 − delta-year days before the critical time. Similarly, the critical monthly
event for the first month of the calendar occurred delta-month days after
its earliest possible time.

To convert a single-cycle 1-based date to an r.d. date, we add to the epoch
the days before the year , the days before month in year , and the days before
day in month, taking the initial offsets into account:

fixed-from-single-cycle
(

year month day

)

def
= (9)

single-cycle-epoch

+ ⌊(year − 1) × average-year-length + delta-year⌋

+ ⌊(month − 1) × average-month-length + delta-month⌋ + day − 1

In the other direction, we compute the single-cycle date from an r.d. date
by determining the year from the start of the mean year using (1.68) from
CC, the month from (1.68) applied to the month parameters, and the day by
calculating the remainder:

single-cycle-from-fixed (date)
def
= (10)

year month day

where

days = date − single-cycle-epoch

year =

⌈

days + 1 − delta-year

average-year-length

⌉

n = days

−
⌊

delta-year + (year − 1) × average-year-length
⌋

month =

⌈

n + 1 − delta-month

average-month-length

⌉

day = n + 1

−
⌊

delta-month

+ (month − 1) × average-month-length
⌋

,
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The Coptic calendar, with average-year-length of 365 1
4 days, is also a

single-cycle calendar, but we need to use an artificial average-month-length

of 30 to accommodate its twelve 30-day months, which are followed by an
extra “month” of epagomenē lasting 5–6 days. Also, single-cycle-epoch =
r.d. 103,605, delta-year = 1/4, and delta-month = 0. Compare Table 1.4
and Chap. 4 of CC.

The Julian (old style) calendar, on the other hand, even though it has
the same year length as the Coptic, does not fit our scheme, because of its
irregular month lengths; see Chap. 3 of CC.

It should be stressed that for these functions to operate correctly for ra-
tional parameters, precise arithmetic is incumbent. Otherwise, 4 years, say, of
average length 365 1

4 might not add up to an integral number of days, wreaking
havoc on functions using floors, ceilings, and modular arithmetic.

For the alternate version, where the critical event may occur at the critical
time, delta-year is the fraction of the day before the critical moment of the
epoch at which the event occurred. The same is true for delta-month. So,
we have, instead,

alt-fixed-from-single-cycle
(

year month day

)

def
= (11)

single-cycle-epoch

+ ⌈(year − 1) × average-year-length − delta-year⌉

+ ⌈(month − 1) × average-month-length − delta-month⌉ + day − 1

alt-single-cycle-from-fixed (date)
def
= (12)

year month day

where

days = date − single-cycle-epoch + delta-year

year =

⌊

days

average-year-length

⌋

+ 1,

n = ⌊days mod average-year-length⌋ + delta-month

month =

⌊

n

average-month-length

⌋

+ 1,

day = ⌊n mod average-month-length⌋ + 1.

This version, too, works for the Coptic calendar, but with delta-year = 1
2 .

Now for the variable-month version. As before, we have the epoch of the
calendar single-cycle-epoch, the average year length average-year-length,
and the initial offset delta-year. However, instead of the fixed-month
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structure given by average-month-length and delta-month, we simply
specify the (integral) number of months in the year, months-per-year. To
convert between r.d. dates and dates on this single-cycle mean calendar, we
again apply formulæ (1.65) and (1.68) from Sect. 1.12 of CC, but with minor
variations.

In this case, to convert a single-cycle date to an r.d. date, we add the
days before the mean month in year , and the days before day in month:

var-fixed-from-single-cycle
(

year month day

)

def
= (13)

single-cycle-epoch

+
⌊

(year − 1) × average-year-length + delta-year

+ (month − 1) × mean-month-length
⌋

+ day − 1

where

mean-month-length =
average-year-length

months-per-year

In the other direction, we compute the single-cycle date from an r.d.

date by determining the year from the start of the mean year using (1.68),
the month from (1.68) applied to the month parameters, and the day by
subtraction:

var-single-cycle-from-fixed (date)
def
= (14)

year month day

where

days = date − single-cycle-epoch

offset = days + 1 − delta-year

year =

⌈

offset

average-year-length

⌉

,

mean-month-length =
average-year-length

months-per-year
,

m ′ =

⌈

offset

mean-month-length

⌉

− 1,

month = 1 + (m ′ mod months-per-year)

day = days + 1

− ⌊delta-year + m ′ × mean-month-length⌋
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3.3 Indian Mean Solar Calendar

Unlike other solar calendars, especially the universally used Gregorian, the
Indian calendars are based on the sidereal (nakshatra) year. The old Hindu
mean (madhyama) solar calendar is an example of the second version of our
generic solar calendar, using an estimate of the length of the sidereal year and
mean sunrise as the critical time.

However, we need the fourth version of the formulæ, with the determining
event occurring before or at the critical time:

alt-var-fixed-from-single-cycle
(

year month day

)

def
=

(15)

single-cycle-epoch

+
⌈

(year − 1) × average-year-length − delta-year

+ (month − 1) × mean-month-length
⌉

+ day − 1

where

mean-month-length =
average-year-length

months-per-year

and

alt-var-single-cycle-from-fixed (date)
def
= (16)

year month day

where

days = date − single-cycle-epoch + delta-year

mean-month-length =
average-year-length

months-per-year

year =

⌊

days

average-year-length

⌋

+ 1

month = 1 +

( ⌊

days

mean-month-length

⌋

mod months-per-year

)

day = ⌊days mod mean-month-length⌋ + 1

Following the First Ārya Siddhānta regarding year length, the constants
we would need are:
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single-cycle-epoch
def
= hindu-epoch (17)

average-year-length
def
= 365

149

576
(18)

delta-year
def
=

1

4
(19)

months-per-year
def
= 12 (20)

The above algorithms give a 1-based year number. The necessary changes
for versions of the Indian calendar that use elapsed years (including those in
CC ) are trivial.

4 True Solar Calendars

One may say that a solar calendar is astronomical if the start of its years
is determined by the actual time of a solar event. The event is usually an
equinox or solstice, so we presume that it is the moment at which the true
solar longitude attains some given value, named critical-longitude below,
and can assume that the true and mean times of the event differ by at most
5 days.

The astronomical Persian calendar (Chap. 14 of CC ) uses a critical solar
longitude of 0◦ for the vernal equinox and apparent noon in Tehran as its
critical moment. The defunct French Revolutionary calendar (Chap. 16 of CC )
used a critical solar longitude of 180◦ for the autumnal equinox and apparent
midnight in Paris as its critical moment.5

4.1 Generic Solar Calendars

Fixed-month versions of the true calendar usually have idiosyncratic month
lengths. This is true of both the Persian and Bahá’́ı calendars; see Chaps. 14
and 15 of CC. So we restrict ourselves to the determination of New Year.
First, we define a function to determine the true longitude at the critical
time of any given day, where the critical time is determined by some function
critical-time:

true-longitude (date)
def
= (21)

solar-longitude (critical-time (date))

5 A generic version of such calendars was mentioned in our paper [2] as Lisp macros.
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Since solar longitude increases at different paces during different seasons, we
search for the first day the sun attains the critical-longitude, beginning 5
days prior to the mean time:

solar-new-year-on-or-after (date)
def
= (22)

MIN
d≥start

{

critical-longitude ≤ true-longitude (d)

≤ critical-longitude + 2

}

where

λ = true-longitude (date)

start = date − 5

+
⌊

average-year-length × 1
360

× ((critical-longitude− λ) mod 360)
⌋

The initial estimate is based on the current solar longitude λ, with an average
daily increase of 360◦/Y .

Solar New Year (Sowramana Ugadi) in a given Gregorian year is then
computed as follows:

hindu-solar-new-year (g-year )
def
= (23)

solar-new-year-on-or-after
(

fixed-from-gregorian
(

g-year january 1

) )

which uses the r.d. from Gregorian conversion function fixed-from-

gregorian (2.17) of CC.
For a variable-month version of the true calendar, such as the Indian solar

calendar and its relatives, the start of each month is also determined by the
true solar longitude:

solar-from-fixed (date)
def
= year m + 1 date − begin + 1 (24)

where

λ = true-longitude (date)

m =

⌊

λ

30◦

⌋

year = round

(

critical-time (date) − solar-epoch

average-year-length
−

λ

360◦

)
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Table 4. Sidereal year values

Source Length

First Ārya-Siddhānta 365.258681 365d6h12m30s

Brahma-Siddhānta 365.258438 365d6h12m 9s

Original Sūrya-Siddhānta 365.258750 365d6h12m36s

Present Sūrya-Siddhānta 365.258756 365d6h12m36.56s

Modern Value (for 1000 c.e.) 365.256362 365d6h 9m 8.44s

approx = date − 3 − (⌊λ⌋ mod 30◦)

begin = MIN
i≥approx

{

m =

⌊

true-longitude (i)

30◦

⌋

}

This function can be inverted using the methods of Sect. 18.5 of CC.

4.2 True Indian Solar Calendar

For the Indian solar calendar, we need to use the Indian sidereal longitude
function (hindu-solar-longitude in CC ) in place of solar-longitude (in
the true-longitude function). The length of the sidereal year according to
the Sūrya-Siddhānta is

average-year-length = 365
279457

1080000
.

(See Table 4.) The year begins when the sun returns to sidereal longitude 0◦.
There are various critical times of day that are used to determine exactly
which day is New Year.

• According to the Orissa rule (followed also in Punjab and Haryana),
sunrise is used. In other words, the solar month is determined by the
stellar position of the sun the following morning:

orissa-critical (date)
def
= hindu-sunrise (date + 1) (25)

where hindu-sunrise is sunrise according to the Indian rule or practice
[(18.33) in CC ]. See Sect. 7 for details.

• According to the Tamil rule, sunset of the current day is used:

tamil-critical (date)
def
= hindu-sunset (date) , (26)

where hindu-sunset is sunset according to the Indian rule or practice.
• According to the Malayali (Kerala) rule, 1:12 p.m. (seasonal time) on the

current day is used:
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malayali-critical (date)
def
= (27)

hindu-sunrise (date)

+ 3
5 × (hindu-sunset (date) − hindu-sunrise (date)) ,

Kerala also uses a different critical longitude.
• According to some calendars from Madras, apparent midnight at the end

of the day is used:

madras-critical (date)
def
= (28)

hindu-sunset (date)

+ 1
2 × (hindu-sunrise (date + 1) − hindu-sunset (date)) .

• According to the Bengal rule (also in Assam and Tripura), midnight at
the start of the civil day is usually used, unless the zodiac sign changes
between 11:36 p.m. and 12:24 a.m. (temporal time), in which case various
special rules apply, depending on the month and on the day of the week.

See [8, p. 12] and [1, p. 282]. The function critical-time should be set to one
of these.

4.3 Indian Astronomical Solar Calendar

For an astronomical Indian solar calendar, we need to substitute an astronom-
ical calculation of sidereal longitude for solar-longitude in true-longitude.
We should also use astronomical geometric sunrise (and/or sunset) for
hindu-sunrise (and hindu-sunset) in critical-time; see Sect. 7.

The difference between the equinoctal and sidereal longitude (the
ayanāmsha) changes with time, as a direct consequence of precession of the
equinoxes. It is uncertain what the zero point of Indian sidereal longitude is,
but it is customary to say that the two measurements coincided circa 285
c.e., the so-called “Lahiri ayanāmsha.” Others (for example [10, Sect. 18])
suggest that the two measurements coincided around 560 c.e. Either way,
the overestimate of the length of the mean sidereal year used by the sid-
dhantas leads to a growing discrepancy in the calculation of solar longi-
tude; see Table 4. (The length of the sidereal year is increasing by about
10−4 s/year.)

The Indian vernal equinox, when the sun returns to the sidereal longitude
0◦, is called Mesha sam. krānti. Solar New Year, the day of Mesha sam. krānti,
as computed by hindu-solar-new-year with traditional year lengths, is
nowadays about 4 days later than that which would be obtained by astro-
nomical calculation (assuming the Lahiri value).

To calculate the sidereal longitude, we use the algorithm for precession in
[7, pp. 136–137], as coded in (13.39) of CC, precession. The values given by
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this function need to be compared with its value when the ayanāmsha was 0,
given, according to some authorities, by the following:

sidereal-start
def
= (29)

precession
(

universal-from-local

(mesha-samkranti (285 c.e.) ,hindu-locale)
)

,

where mesha-samkranti (18.51) of CC gives the local time of the (sidereal)
equinox, Ujjain is our hindu-locale, and universal-from-local is one of the
time conversion functions ((13.8) of CC ). Then:

sidereal-solar-longitude (t)
def
= (30)

(

solar-longitude (t) − precession (t)

+ sidereal-start
)

mod 360

as in (13.40) of CC. That done, we can compare the astronomical calendar
with the approximations used in the true Indian calendar.

The cumulative effect over the centuries of the difference in length of the
sidereal year on the time of Mesha sam. krānti, and on the sidereal longitude
at that time, is shown in Fig. 1. In 1000 c.e., it stood at about 1◦37′.

The average difference between the calculated sidereal longitude and the
astronomical values was 2◦3′ during 1000–1002 c.e. In addition, Fig. 2 shows
a periodic discrepancy of up to ±12′ between the siddhāntic estimate of so-
lar longitude and the true values. The figure also suggests that neither the

0

1

2

3

4

5

0 500 1000 1500 2000 2500

Fig. 1. Increasing difference, for 285–2285 c.e., between siddhāntic and astronom-
ical sidereal longitudes in degrees (solid line) and days (dashed line), assuming
coincidence in 285
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Fig. 2. Difference (1000–1001 c.e.) between siddhāntic and astronomical sidereal
solar longitude (solid black line) in hours. Dotted white line (atop the black line) uses
the mathematical sine function, rather than an interpolated tabular sine; dashed line
uses a fixed epicycle; they are virtually indistinguishable

interpolated stepped sine function used in traditional astronomy nor the fluc-
tuating epicycle of Indian theory (using the smallest [best] size, instead) make
a noticeable difference for the sun. In other words, the tabular sine and arc-
sine functions (see Table 18.2 in CC ) are precise enough for the purpose,
while the theory of changing epicycle (see Fig. 18.2 in CC ) is unnecessary for
the sun.

The difference in longitude for a given moment t , Ujjain local time, is
calculated as:

hindu-solar-longitude(t)
−sidereal-solar-longitude(universal-from-local(t,hindu-locale))

5 Lunisolar Calendars

The lunisolar calendar type is represented by the Chinese (see Chap. 17 of
CC ), Hebrew (see Chap. 7 of CC ), and Easter (see Chap. 8 of CC ) calendars
today, as well as those of some of the Indian and other Asian cultures (for ex-
ample, the Tibetan Phugpa calendar; see Chap. 19 of CC ), and was historically
very popular. The basic idea is that months follow the lunar cycle, with leap
months added every 2–3 years, so that the average year length matches the
sun’s apparent celestial revolution. Indian lunisolar calendars can be further
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subdivided into those whose months begin with each new moon (the amānta

scheme) and those that go from full moon to full moon (pūrn. imānta).
The Hebrew and Easter calendars follow a fixed leap-year cycle, as did the

old Hindu mean lunisolar calendar; the Chinese and modern Hindu calendars
determine each month and year according to the true positions of the sun
and moon. Unlike the Hebrew lunisolar calendar, with its 19-year cycle of 7
leap years, Indian intercalated months, in the mean scheme, do not follow a
short cyclical pattern. Rather, in the Ārya-Siddhānta version, there are 66,389
leap years in every 180,000-year cycle. The Hebrew, Easter, and mean Indian
leap-year rules all distribute leap years evenly over the length of the cycle.

Lunisolar calendars can also come in the same two flavours, fixed- and
variable-month patterns. The Indian mean lunisolar calendar has variable
months, like its solar sister; the Hebrew calendar has a more-or-less fixed
scheme (see Chap. 7 of CC for details).

In the fixed-month scheme, one fixed month (usually the last) of the 13
months of a leap year is considered the leap month, so one can just number
them consecutively. This is not true of the Indian calendar, in which any
month can be leap, if it starts and ends within the same (sidereal) zodiacal
sign.

Unlike other calendars, a day on the mean Indian calendar can be omitted

any time in a lunar month, since the day number is determined by the phase
of the mean moon. Here we concentrate on the leap year structure; see CC

for other details.

5.1 A Generic Dual-Cycle Calendar

Let Y and M be the lengths of the mean solar year and lunar month in
days, respectively, where Y ≥ M ≥ 1 are positive real numbers. If Y is not a
multiple of M , then there will be common years of ⌊Y/M⌋ months and leap
years of length ⌈Y/M⌉ months. Then a year has Y/M months on average,
with a leap-year frequency of (Y mod M)/M .

The basic idea of the dual-cycle calendar is to first aggregate days into
months and then months into years. Elapsed months are counted in the same
way as years are on the single-cycle calendar, using an average length of M
instead of Y . Then, years are built from multiple units of months, rather than
days, again in a similar fashion to a single-cycle calendar.

For the Indian mean lunar calendar, according to the Ārya Siddhānta, we
would use the values

M = 29 2362563
4452778 ,

Y = 365 149
576 ,

and sunrise as the critical time of day. The Hebrew calendar also follows a
dual-cycle pattern, with

M = 29 13753
25920 ,

Y = 285
19 M,
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and noon as critical moment, but exceptions can lead to a difference of up to
3 days.

To convert from a 0-based lunisolar date 〈y, m, d〉 to a day count, use

⌈(⌊yY/M⌋ + m)M⌉ + d. (31)

In the other direction, we have:

m′ = ⌊n/M⌋,
y = ⌈(m′ + 1)M/Y ⌉ − 1,

m = m′ − ⌊yY/M⌋,
d = n − ⌈m′M⌉.

(32)

When the leap month is not fixed and any month can be leap as in the In-
dian calendar, we would use an extra Boolean component for dates 〈y, m, ℓ, d〉,
and would need to determine which month is leap. On the Chinese calendar,
the first lunar month in a leap year during which the sun does not change its
zodiacal sign (counting from month 11 to month 11) is deemed leap. In the
Indian scheme, the rule is similar: any month in which the sidereal sign does
not change is leap.

As was the case for the solar calendars, there are variants corresponding
to whether the critical events may also occur at the critical moments. See
Sect. 12.2 of CC.

6 True Lunisolar Calendar

The general form of the determination of New Year on a lunisolar calendar is
as follows:

1. Find the moment s when the sun reaches its critical longitude.
2. Find the moment p when the moon attains its critical phase before (or

after) s.
3. Choose the day d before (or after) p satisfying additional criteria.

Some examples include:

• The Nicæan rule for Easter is the first Sunday after the first full moon on
or after the day of the vernal equinox; see Chap. 8 of CC.

• The classical rule for the first month (Nisan) of the Hebrew year was that
it starts on the eve of the first observable crescent moon no more than a
fortnight before the vernal equinox; see Sect. 20.4 of CC.

• The 11th month of the Chinese calendar almost always begins with the
new moon on or before the day of the winter solstice (270◦). The Chinese
New Year is almost always the new moon on or after the day the sun
reaches 300◦; see Chap. 17 of CC.
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• The Indian Lunar New Year is the (sunrise-to-sunrise) day of the last
new moon before the sun reaches the edge of the constellation Aries
(0◦ sidereal); see Chap. 18 of CC.

Using the functions provided in CC :

1. The moment s can be found with solar-longitude-after (13.33).
2. Finding the moment p can be accomplished with lunar-phase-at-or-

before (13.54) or lunar-phase-at-or-after (13.55).
3. Choosing the day is facilitated by kday-on-or-after and its siblings

(Sect. 1.10).

For example, the winter-solstice-to-winter-solstice period is called a sùı on
the Chinese calendar. Hence, the start of the Chinese month in which a sùı

begins, that is, the month containing the winter solstice (almost always the
11th month, but on occasion a leap 11th month) is determined by:

sui-month-start-on-or-after (date)
def
= (33)

⌊

standard-from-universal

(moon , chinese-location (date))
⌋

where

sun = universal-from-standard
( ⌊

standard-from-universal
(

solar-longitude-after (270◦, date),

chinese-location (date)
) ⌋

,

chinese-location (date)
)

moon = lunar-phase-at-or-before (0◦, sun + 1)

For the Indian calendars, the functions should use sidereal longitudes and
can be traditional or astronomical, as desired. Using the astronomical code of
CC, we can define:

sidereal-solar-longitude-after (φ, t)
def
= (34)

u−l<ε

MIN
x∈[a,b]

{

((sidereal-solar-longitude (x) − φ) mod 360) < 180◦

}

where

ε = 10−5,

rate =
average-year-length

360◦
,
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τ = t + rate ×
( (

φ − sidereal-solar-longitude (t)
)

mod 360
)

,

a = max {t, τ − 5} ,

b = τ + 5.

The function MIN performs a bisection search in [a, b] with accuracy ε.
For the traditional Hindu calendar, we would use (18.50) in CC,

hindu-solar-longitude-at-or-after instead of sidereal-solar-longitude-

after, and use the following in place of lunar-phase-at-or-before:

hindu-lunar-phase-at-or-before (φ, t)
def
= (35)

u−l<ε

MIN
x∈[a,b]

{

((hindu-lunar-phase (x) − φ) mod 360) < 180◦

}

,

where

ε = 2−17,

τ = t −hindu-synodic-month× 1
360

× ((hindu-lunar-phase (t) − φ) mod 360) ,

a = τ − 2,

b = min {t, τ + 2} .

Then we can use the following to compute the start of Indian lunisolar
month m:

hindu-lunar-month-on-or-after (m, date)
def
= (36)

{

date if moon ≤ hindu-sunrise (date),

date + 1 otherwise,

where

λ = (m − 1) × 30◦,

sun = hindu-solar-longitude-after (λ, date) ,

moon = hindu-lunar-phase-at-or-before (0◦, sun) ,

date = ⌊moon⌋ ,

The time of the tithis (lunar “days,” corresponding to 30ths of the lunar
phase cycle) differs an average of less than 13min between the traditional and
astronomical calculations (again in 1000 c.e.). See Fig. 3.
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Figure 4 shows the same (nil) impact of sine and epicycle (using the biggest
epicycle) on the calculation of lunar sidereal longitude as we found in the solar
case. Moreover, the sixteenth century correction (b̄ıja) of Gann. esa Daivajna
for the length of the anomalistic months (from 488,203 revolutions of the
apogee in a yuga to 488,199) also is of no consequence (in the sixteenth century
as well as in the 11th). The difference between the calculated longitude and
astronomical values was 1◦56′ ± 3◦25′.

In the true version of the Indian lunisolar calendar, months, called kshaya,
may also be expunged when two zodiacal sign transitions occur in one lunar
month. Thus, even a 12-month year can have a leap month (as was the case
in 1963–1964), and a leap year can even have two (as in 1982–1983). See our
Calendrical Tabulations [6]. The code above does not check whether month
m is expunged.

There are several competing conventions as to the placement and naming
of leap months and excision of suppressed months; see [8, p. 26].

7 Sunrise

Generally, Indian calendarists advocate the use of geometric sunrise for cal-
endrical determinations:6

hindu-sunrise (date)
def
= dawn (date,hindu-locale, 0◦) . (37)

Lahiri, however, suggests a depression angle of 47′ (including 31′ for refrac-
tion); astronomers typically use 50′.

As is well known, the original siddhāntic calculation for sunrise uses a
simple approximation for the equation of time. Figure 5 compares the two
versions. Using an accurate equation of time, but otherwise following the
siddhāntic method for sunrise, gives close agreement with geometric sunrise.
See Fig. 6.

8 Holidays

Many of the holidays in India depend on the local lunisolar calendar. Table 5
lists some of the more popular holidays. (For a comprehensive list in English,
see [9].) There is a very wide regional variance in timing and duration of
holidays.

In general, holidays do not occur in leap months or on leap days. If a
month is skipped, as happens intermittently (with gaps of 19–141 years be-
tween occurrences), then the “lost” holidays are moved to the next month,

6 Pal Singh Purewal [personal communication, April 29, 2002]: “Most Indian al-
manac editors give and advocate the use of the centre of the solar disk for sunrise
without refraction.”
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ā
n
ti
c

a
n
d

a
st

ro
n
o
m

ic
a
l
si
d
er

ea
l
lu

n
a
r
lo

n
g
it
u
d
e

(t
h
ic

k
so

li
d

bl
a
ck

li
n
e)

.
T
h
in

n
er

w
h
it
e

li
n
e

(l
a
rg

el
y

a
to

p
th

e
bl

a
ck

li
n
e)

u
se

s
th

e
m

a
th

em
a
ti
ca

l
si
n
e

fu
n
ct

io
n
,

ra
th

er
th

a
n

a
n

in
te

rp
o
la

te
d

ta
b
u
la

r
si
n
e;

d
a
sh

ed
li
n
e

(l
a
rg

el
y

ov
er

ly
in

g
th

e
w
h
it
e

li
n
e)

u
se

s
a

fi
x
ed

ep
ic

y
cl

e;
th

e
bl

a
ck

d
o
tt
ed

li
n
e

(l
a
rg

el
y

ov
er

ly
in

g
th

e
w
h
it
e

li
n
e)

is
sa

n
s

b̄ı
ja

co
rr

ec
ti
o
n
;
th

ey
a
re

v
ir

tu
a
ll
y

in
d
is
ti
n
g
u
is
h
a
b
le



24 Nachum Dershowitz and Edward M. Reingold

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

−1
−2
−3
−4
−5
−6
−7
−8
−9

−10
−11
−12
−13
−14
−15
−16

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

−0.001

−0.002

−0.003

−0.004

−0.005

−0.006

−0.007

−0.008

−0.009

−0.010

−0.011

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 5. The equation of time in 1000 c.e. The astronomical version is shown as
a solid line; the Hindu version is shown as a dashed line. The left vertical axis is
marked in minutes and the right vertical axis is marked in fractions of a day

depending again on regional conventions. In many places, rather than skip
a whole month, two half months are skipped and their holidays are moved
backward or forward, depending on which lost half-month they are meant to
occur in.

The precise day of observance of a lunisolar event usually depends on the
time of day (sunrise, noon, midnight, etc.) at which the moon reaches a critical
phase (tithi). According to [5], for example, Ganēśa Chaturth̄ı is celebrated
on the day in which tithi (lunar day) 4 is current in whole or in part during
the midday period from 10:48 a.m. to 1:12 p.m. (temporal time). If that lunar
day is current during that time frame on two consecutive days, or if it misses
that time frame on both days, then it is celebrated on the former day.7

Some functions for holiday calculations are provided in Sect. 19.6 of CC.

7 Precise details for the individual holidays are difficult to come by.
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Fig. 6. Sunrise, Hindu and astronomical, 1000 c.e. difference in sunrise times is
shown as a solid line; the difference of just the equation of time calculation is shown
as a dashed line. The vertical scale is in minutes

Table 5. Some Hindu lunisolar holidays

Holiday Lunar date(s)

New Year (Chandramana Ugadi) Caitra 1
Birthday of Rāma Caitra 9

Birthday of Krishna (Janmāsht.amı̄) Śrāvan. a 23
Ganēśa Chaturth̄ı Bhādrapada 3 or 4
Dashara (Nava Rathri), last 3 days Āśvina 8–10
Diwali, last day Kārtika 1
Birthday of Vishnu (Ekadashi) Mārgaś̄ırs.a 11

Night of Śiva Māgha 28 or 29
Holi Phālguna 15
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Appendix: The Lisp Code

This appendix contains the Common Lisp source code for the algorithms
presented in the preceding sections. CC should be consulted for undefined
functions and macros.

1 (defun fixed-from-single-cycle (s-date)

2 ;; TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date)))

6 (+ single-cycle-epoch

7 (floor (+ (* (1- year) average-year-length)

8 delta-year))

9 (floor (+ (* (1- month) average-month-length)

10 delta-month))

11 day -1)))

1 (defun single-cycle-from-fixed (date)

2 ;; TYPE fixed-date -> single-cycle-date

3 (let* ((days (- date single-cycle-epoch))

4 (year (ceiling (- days -1 delta-year)

5 average-year-length))

6 (n (- days (floor (+ delta-year

7 (* (1- year) average-year-length)))))

8 (month (ceiling (- n -1 delta-month) average-month-length))

9 (day (- n -1 (floor (+ delta-month

10 (* (1- month)

11 average-month-length))))))

12 (hindu-solar-date year month day)))

1 (defun alt-fixed-from-single-cycle (s-date)

2 ;; TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date)))

6 (+ single-cycle-epoch

7 (ceiling (- (* (1- year) average-year-length)

8 delta-year))

9 (ceiling (- (* (1- month) average-month-length)

10 delta-month))

11 day -1)))

1 (defun alt-single-cycle-from-fixed (date)

2 ;; TYPE fixed-date -> single-cycle-date

3 (let* ((days (+ (- date single-cycle-epoch) delta-year))

4 (year (1+ (quotient days average-year-length)))

5 (n (+ (floor (mod days average-year-length)) delta-month))

6 (month (1+ (quotient n average-month-length)))
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7 (day (1+ (floor (mod n average-month-length)))))

8 (hindu-solar-date year month day)))

1 (defun var-fixed-from-single-cycle (s-date)

2 ;; TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date))

6 (mean-month-length (/ average-year-length

7 months-per-year)))

8 (+ single-cycle-epoch

9 (floor (+ (* (1- year) average-year-length)

10 delta-year

11 (* (1- month) mean-month-length)))

12 day -1)))

1 (defun var-single-cycle-from-fixed (date)

2 ;; TYPE fixed-date -> single-cycle-date

3 (let* ((days (- date single-cycle-epoch))

4 (offset (- days -1 delta-year))

5 (year (ceiling offset average-year-length))

6 (mean-month-length (/ average-year-length

7 months-per-year))

8 (m-prime (1- (ceiling offset mean-month-length)))

9 (month (+ 1 (mod m-prime months-per-year)))

10 (day (- days -1

11 (floor

12 (+ delta-year

13 (* m-prime mean-month-length))))))

14 (hindu-solar-date year month day)))

1 (defun alt-var-fixed-from-single-cycle (s-date)

2 ;; TYPE single-cycle-date -> fixed-date

3 (let* ((year (standard-year s-date))

4 (month (standard-month s-date))

5 (day (standard-day s-date))

6 (mean-month-length (/ average-year-length

7 months-per-year)))

8 (+ single-cycle-epoch

9 (ceiling (+ (* (1- year) average-year-length)

10 (- delta-year)

11 (* (1- month) mean-month-length)))

12 day -1)))

1 (defun alt-var-single-cycle-from-fixed (date)

2 ;; TYPE fixed-date -> single-cycle-date

3 (let* ((days (+ (- date single-cycle-epoch) delta-year))

4 (mean-month-length (/ average-year-length

5 months-per-year))

6 (year (1+ (quotient days average-year-length)))
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7 (month (+ 1 (mod (quotient days mean-month-length)

8 months-per-year)))

9 (day (1+ (floor (mod days mean-month-length)))))

10 (hindu-solar-date year month day)))

1 (defun true-longitude (date)

2 ;; TYPE moment -> longitude

3 (solar-longitude (critical-time date)))

1 (defun solar-new-year-on-or-after (date)

2 ;; TYPE fixed-date -> fixed-date

3 ;; Fixed date of solar new year on or after fixed date.

4 (let* ((lambda (true-longitude date))

5 (start

6 (+ date -5

7 (floor (* average-year-length 1/360

8 (mod (- critical-longitude lambda) 360))))))

9 (next d start

10 (<= critical-longitude

11 (true-longitude d)

12 (+ critical-longitude 2)))))

1 (defun hindu-solar-new-year (g-year)

2 ;; TYPE gregorian-year -> fixed-date

3 ;; Fixed date of Hindu solar New Year in Gregorian year.

4 (solar-new-year-on-or-after

5 (fixed-from-gregorian

6 (gregorian-date g-year january 1))))

1 (defun solar-from-fixed (date)

2 ;; TYPE fixed-date -> solar-date

3 ;; Solar date equivalent to fixed date.

4 (let* ((lambda (true-longitude date))

5 (m (quotient lambda (deg 30)))

6 (year (round (- (/ (- (critical-time date) solar-epoch)

7 average-year-length)

8 (/ lambda (deg 360)))))

9 (approx ; 3 days before start of mean month.

10 (- date 3

11 (mod (floor lambda) (deg 30))))

12 (begin ; Search forward for beginning...

13 (next i approx ; ... of month.

14 (= m (quotient (true-longitude i)

15 (deg 30))))))

16 (hindu-solar-date year (1+ m) (- date begin -1))))

1 (defun orissa-critical (date)

2 ;; TYPE fixed-date -> moment

3 ;; Universal time of critical moment on or after date

4 ;; according to the Orissa rule

5 (hindu-sunrise (1+ date)))
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1 (defun tamil-critical (date)

2 ;; TYPE fixed-date -> moment

3 ;; Universal time of critical moment on or after date

4 ;; according to the Tamil rule

5 (hindu-sunset date))

1 (defun malayali-critical (date)

2 ;; TYPE fixed-date -> moment

3 ;; Universal time of critical moment on or after date

4 ;; according to the Malayali rule

5 (+ (hindu-sunrise date)

6 (* 3/5 (- (hindu-sunset date) (hindu-sunrise date)))))

1 (defun madras-critical (date)

2 ;; TYPE fixed-date -> moment

3 ;; Universal time of critical moment on or after date

4 ;; according to the Madras rule

5 (+ (hindu-sunset date)

6 (* 1/2 (- (hindu-sunrise (1+ date)) (hindu-sunset date)))))

1 (defconstant sidereal-start

2 (precession (universal-from-local

3 (mesha-samkranti (ce 285))

4 hindu-locale)))

1 (defun sidereal-solar-longitude (tee)

2 ;; TYPE moment -> angle

3 ;; Sidereal solar longitude at moment tee

4 (mod (+ (solar-longitude tee)

5 (- (precession tee))

6 sidereal-start)

7 360))

1 (defun sui-month-start-on-or-after (date)

2 ;; TYPE fixed-date -> fixed-date

3 ;; Fixed date of start of Chinese month containing solstice

4 ;; occurring on or after date.

5 (let* ((sun (universal-from-standard

6 (floor (standard-from-universal

7 (solar-longitude-after (deg 270) date)

8 (chinese-location date)))

9 (chinese-location date)))

10 (moon (lunar-phase-at-or-before (deg 0) (1+ sun))))

11 (floor (standard-from-universal moon (chinese-location date)))))

1 (defun sidereal-solar-longitude-after (phi tee)

2 ;; TYPE (season moment) -> moment

3 ;; Moment UT of the first time at or after tee

4 ;; when the sidereal solar longitude will be phi degrees.

5 (let* ((varepsilon 1d-5) ; Accuracy of solar-longitude.

6 (rate ; Mean days for 1 degree change.
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7 (/ average-year-length (deg 360)))

8 (tau ; Estimate (within 5 days).

9 (+ tee

10 (* rate

11 (mod (- phi (sidereal-solar-longitude tee)) 360))))

12 (a (max tee (- tau 5))) ; At or after tee.

13 (b (+ tau 5)))

14 (binary-search ; Bisection search.

15 l a

16 u b

17 x (< (mod (- (sidereal-solar-longitude x) phi) 360)

18 (deg 180l0))

19 (< (- u l) varepsilon))))

1 (defun hindu-lunar-phase-at-or-before (phi tee)

2 ;; TYPE (phase moment) -> moment

3 ;; Moment UT of the last time at or before tee

4 ;; when the Hindu lunar-phase was phi degrees.

5 (let* ((varepsilon (expt 2 -17)) ; Accuracy.

6 (tau ; Estimate.

7 (- tee

8 (* hindu-synodic-month 1/360

9 (mod (- (hindu-lunar-phase tee) phi) 360))))

10 (a (- tau 2))

11 (b (min tee (+ tau 2)))) ; At or before tee.

12 (binary-search ; Bisection search.

13 l a

14 u b

15 x (< (mod (- (hindu-lunar-phase x) phi) 360)

16 (deg 180l0))

17 (< (- u l) varepsilon))))

1 (defun hindu-lunar-month-on-or-after (m date)

2 ;; TYPE (hindu-lunar-month fixed-date) -> fixed-date

3 ;; Fixed date of first lunar moon on or after fixed date.

4 (let* ((lambda (* (1- m) (deg 30)))

5 (sun (hindu-solar-longitude-after lambda date))

6 (moon (hindu-lunar-phase-at-or-before (deg 0) sun))

7 (date (floor moon)))

8 (if (<= moon (hindu-sunrise date))

9 date (1+ date))))

1 (defun hindu-sunrise (date)

2 ;; TYPE fixed-date -> moment

3 ;; Geometrical sunrise at Hindu locale on date.

4 (dawn date hindu-locale (deg 0)))
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