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Abstract

It is amazing to see how many webpages are devoted to the art of finding the date
of Easter Sunday. Just for illustration, the reader may search for terms such as Gre-
gorian calendar, date of Easter, or Easter algorithm. Sophisticated essays as well as
less enlightening contributions are presented, and many a doubt is expressed about the
reliability of some results obtained with some Easter algorithms. In short, there is still a
great interest in those problems.

Gregorian Easter algorithms exist for two centuries (or more?), but most of their
history is rather obscure. Some reasons may be that some important sources are written
in Latin or in the German of Goethe’s time, or they are difficult to discover. Without
being complete, the following paper is intended to shed light on how those techniques
emerged and evolved.1 Like a microcosm, the history of Easter algorithms resembles
the history of any science: it is a story of trials, errors, and successes, and, last but not
least, a story of offended pride.

1. Definitions

Easter is the first Sunday strictly after the Paschal Full Moon, i. e. Luna XIV pas-
chalis. Such a full moon does not denote an astronomical phenomenon that occurs at a
specific moment, but is an ecclesiastical term that names a specific day, usually defined
by tables such as Table 2. What those tables are based on and how they can be compiled
will later be shown.

Intentionally, this definition leaves the role of the date of the equinox somewhat
vague. What interests me here is the interval in which the Paschal Full Moon is allowed
to fall. Dionysius Exiguus writes in his Epistola prima scripta anno Christi 525,

Thus the heavenly Authority decreed that Easter should be celebrated from the evening
of the 14th day to the 21st of the first [lunar] month [of spring]. But nothing is said about
the beginning and end of this month. The 318 bishops [of the Council of Nicea] therefore
investigated the tradition of Moses in greater detail. [...] They came to the conclusion
that it was the new crescent moon from and including 8 March up to and including 5
April which should decide the beginning of the first month. We must therefore carefully

1 A number of articles, published before 1910, are cited in: A. Fraenkel, “Die Berechnung des
Osterfestes.” Journal für die reine und angewandte Mathematik, Volume 138 (1910), 133–146.
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investigate the days from and including 21 March up to and including 18 April to find
Luna 14 paschalis.2

In the following, the term Easter means always Gregorian or Western Easter, i. e. the
date of Easter is determined according to the Calendar Reform of 1582. Moon and sun
mean always the ecclesiastical terms. If not otherwise stated, all translations are made
by myself. As above, textual explanations and omissions are enclosed by brackets.

The floor function �x� denotes the largest integer smaller than or equal to a given real
number x. Thus �62/19� = 3, i.e. the integer part of the fraction 62/19, but �−62/19� =
−4. For integers a, c(c > 0), we define a mod c = a − �a/c� × c. For instance,
62 mod 19 = 5, i. e. the integer remainder. The function mod c has some useful prop-
erties:

(1) If b = a mod c, then (b − a)/c is an integer. The converse is false: (24 − 62)/19
is an integer, but 24 �= 62 mod 19.

(2) If b = a mod c, then 0 ≤ b ≤ c − 1.
(3) If z is an arbitrary integer, then a mod c = (a + z × c) mod c.

2. Gauß’ Osterformel

In August 1800 C. F. Gauß published an algorithm for determining the date of Eas-
ter day for any given year, usually called Osterformel (“Easter formula”).3 His aim, he
claimed, was to present a purely analytical solution where chronological terms such as
Golden Number or Epact were not applied, and since higher arithmetic was not supposed,
every enthousiast could do the calculations; moreover, his algorithm would please each
connoisseur by its simplicity and elegance. Three months before he recorded concisely
in his diary, “Around the same days (16 May) we elegantly solved the chronological
problem of the Paschal feast [i. e. Easter].”4

It is often said that Gauß was the first scholar who worked out such a rule. This
is not quite true. In 1776 J. H. Lambert published some lengthy and clumsy remarks
under the title Einige Anmerkungen über die Kirchenrechnung where he demonstrated
a rule for finding the Eastern Easter only.5 He did not succeed in mastering the western
counterpart and ended up in the remarkable sentence, “A general formula is partly too
detailed by itself partly no longer general, because Clauius [Clavius], who designed
the Gregorian calendar, differed several times from the general principles which it [the
calendar] is based upon.” It is also often said that Gauß had invented his rule in order to

2 The English translation is taken from G. Teres, “Time computation and Dionysius Exiguus.”
Journal for the history of astronomy, Volume 15 (1984), 177–188.

3 C. F. Gauß, “Berechnung des Osterfestes,” Monatliche Correspondenz zur Beförderung der
Erd- und Himmels-Kunde, Aug. 1800 (= Werke VI, 73–79) (Note: Werke = Gauß’collected work,
Göttingen 1863).

4 C. F. Gauß, Werke X, Abt. 1, 547-548. The original text is in Latin; verbatim, Gauß writes,
“Iisdem diebus circa (Mai. 16.) problema chronologicum de festo paschali eleganter resolvimus.
(Promulg[atum] in Zachii Comm. liter. Aug. 1800, p. 121, 223.)”.

5 J. H. Lambert, “Einige Anmerkungen über die Kirchenrechnung,” Astronomisches Jahrbuch
oder Ephemeriden für das Jahr 1778, Berlin 1776, 210–226.



Gauß and the Making of Easter Algorithms 441

Table 1. Gauß’ final Osterformel. The condition (11M + 11) mod 30 < 19 can be replaced by
a > 10

yr = year yr = 1777
(1) a = yr mod 19 a = 10
(2) b = yr mod 4 b = 1
(3) c = yr mod 7 c = 6
(4) k = �yr/100� k = 17
(5) p = �(13 + 8k)/25� p = 5
(6) q = �k/4� q = 4
(7) M = (15 − p + k − q) mod 30 M = 23
(8) N = (4 + k − q) mod 7 N = 3
(9) d = (19a + M) mod 30 d = 3

(10) e = (2b + 4c + 6d + N) mod 7 e = 5
(11) Easter is 22 + d + e March, or d + e − 9 April 30 March

(12.1) If d = 29 and e = 6, replace 26 April by 19 April.
(12.2) If d = 28, e = 6, and (11M + 11) mod 30 < 19,
replace 25 April by 18 April.

find out precisely the date of his birth; the only information he got from his mother was
that he was born on a Wednesday in 1777, eight days before Ascension Day.6 This might
be a pretty legend. Gauß could be quite as well somewhat disappointed from a reading
of Lambert’s article and decided to search for a proper solution. In fact, Gauß’ method
can be employed too to find the Orthodox date of Easter. Unfortunately, the Osterformel
was erroneous, and Gauß created much confusion during the following 16 years. After
the article of 1800, already mentioned, he published a simplified version in 18077, a
modified version for the period 1700–1900 in 18118 and a final version9, correcting a
mistake found by his student P. Tittel in 181610; there is also an undated and unpublished
note by Gauß on the matter, probably from the period between 1807 and 181111.

In order to understand the flaws in the earlier versions we compare these with the
final version of 1816 on which Table 1 is based.

– 1800: In his first paper (cited above) Gauß proposes p = � k/3� instead of p = �13 +
8 k)/25�, which is correct; see Table 1, (5). As a consequence, results become
wrong from 4200 onwards. In 4213 for instance, Easter will not fall on 25 April
but on 28 March.

6 Ph. Maennchen, “Gauß als Zahlenrechner,” ch. X, “Chronologische Arbeiten,” 49–63. In:
C F. Gauß, Werke X, Abt. 2.

7 C. F. Gauß, “Noch etwas über die Bestimmung des Osterfestes,” Braunschweigisches
Magazin (1807) (= Werke VI, 82–86).

8 C. F. Gauß, “Eine leichte Methode den Ostersonntag zu finden,” Astronomisches Jahrbuch
für das Jahr1814, Berlin 1811 (= Werke XI, Abt. 1, 199–200).

9 C. F. Gauß, “Berichtigung zu dem Aufsatze: Berechnung des Osterfestes Mon. Corr. 1800
Aug. S. 121,” Zeitschrift für Astronomie und verwandte Wissenschaften,Volume 1 (1816) (= Werke
XI, Abt. 1, 201–202).

10 P. Tittel, “Methodus technica, brevis, perfacilis ac perpetua construendi Calendarium eccle-
siasticum stylo tam novo quam vetere, Goettingae 1816” (= Werke XI, Abt. 1, 204–205).

11 C. F. Gauß, “Praecepta universalia ad computandum diem paschatis anni cuiuslibet dati
secundum calendarium tum Gregorianum tum Iulianum,” (= Werke XI, Abt. 1, 211–214).
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– 1807: Gauß does not present any expressions for p and q, but a table of M and N up
to 2499. The condition (11M + 11) mod 30 < 19 in (12.2) is replaced by the
equivalent but more convenient condition a > 10.

– 18??: After Gauß’ death a Latin manuscript was found, written by himself in his per-
sonal copy of C. Wolf’s textbook Elementa matheseos universae. There, Gauß
proposes the condition 11M + 11 mod 30 < 8 instead of <19. Otherwise, the
exceptions are the same as in 1800.

– 1811: This paper is even worse than better. Gauß presents his algorithm for the 18th
and 19th century only, and the two exceptions (12.1) and (12.2) are replaced
by the rule that 19 April should always be substituted for 26 April and 18 April
for 25 April. This proposal fails for the years 1734 and 1886.

– 1816: Finally, Gauß’ student P. Tittel found out that p is wrong and Gauß corrected
for it, admitting, “I owe this remark to Herr Dr Tittel, who is at present in Göt-
tingen, and is devoting himself to the study of the astronomical sciences with
excellent eagerness.” In the same year Tittel himself published a work in which
he gave a full account of the ecclesiastical computus.

In 1815 J. B. Delambre critized Gauß sharply,

Monsieur Gauss a donné dans la Correspondance Astronomique de M. de Zach, année
1800, deuxième partie, page 129, des formules très-curieuses pour trouver le jour de
Pâques, sans avoir besoin ni de l’Epacte, ni du Nombre d’or, ni de la Lettre Dominicale.
Il n’a fait qu’en indiquer la démonstration, en avertissant qu’elle suppose ses principes
encore inédits d’Arithmétique transcendante. [...] J’ai reconnu depuis qu’on pouvait [...]
donner ainsi une solution complète et directe des problèmes du Calendrier Grégorien.
Ces formules sont aussi simples au moins que celles de M. Gauss, et la démonstration en
découle des principes de l’arithmétique ordinaire.12

Delambre seems to be angry with a 23-year-old man (in 1800!) who claims to have
solved the problem on the grounds of “higher arithmetic” while simple divisions are
needed only. It is interesting to note that Gauß never reviewed this specific issue of a
journal he has reviewed repeatedly. Ironically, Delambre’s algorithm is erroneous too.

Gauß’ Osterformel looks undoubtedly odd, and in particular the two exceptions
(12.1) and (12.2) appear artificial. A better understanding of Gauß’ Osterformel, how-
ever, requires some discussion of the Gregorian Easter reckoning.

3. The Gregorian computus paschalis

The Gregorian computus is explained in a voluminous and rare book by Chr. Clavi-
us.13 A more easily accessible source is The Catholic Encyclopedia.14

12 J. B. Delambre, “Formules pour calculer la Lettre Dominicale, le Nombre d’Or, l’Epacte et
la fête de Pâques, pour une année Grégorienne ou Julienne quelconque,” Connaissance des tems
pour l’an1817, Paris 1815, 307–317.

13 Chr. Clavius, “Romani Calendarii a Gregorio XIII P. M. restituti explicatio,” Roma 1603.
14 “The Catholic Encyclopedia,” Online Edition 1999.
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The term Epact is the key to the Gregorian Easter reckoning. To every year yr larger
than 1582 a Golden Number

gn = (yr mod 19) + 1

is assigned. The Restored Epact

epr = (11 × gn − 10) mod 30

improves the antegregorian epact (11 × gn − 11) mod 30 and is supposed to mea-
sure reliably the moon’s age on 0 January for the years from 1583 up to 1699. For the
following centuries

cy = �yr/100� + 1.

However, two corrections are applied, the (accumulated) solar equation

sol = �(3 × cy)/4� − 12,

omitting three leap days in every four centuries, and the (accumulated) lunar equation

lun = �(8 × cy + 5)/25� − 5

by which eight extra days in 2500 years are added to compensate for the deficiency of the
19-year lunar (or Metonic) cycle. In this way, the moon is kept fairly well synchronized
with the sun. We call

epp = (−sol + lun) mod 30

the Principal Epact. The Gregorian Epact, or simply Epact, is then defined by

epg = (epr − sol + lun) mod 30 = (epr + epp) mod 30.

The Gregorian Epact is a function of the Golden Number and thus changes from
year to year, whereas the Principal Epact is constant over one century at least. To each
Principal Epact belongs a 19-year cycle of Gregorian Epacts, repeating itself as long as
the Principal Epact is not changed. Once the Gregorian Epact is known, all new and full
moons of a specific year are known following a simple scheme of alternating 29-day
and 30-day months. The Paschal Full Moon falls on

pf m = 44 − epg March, or on pf m + 30 March if pf m < 21.

The papal calendar commission made two additional decisions.

(1) In deviating from tradition, Epact 24 makes possible that Easter Sunday can fall on
26 April, a date not possible before. For the sake of consistency the Paschal Full
Moon of Epact 24 is replaced by 18 April, the Paschal Full Moon of Epact 25.

(2) Within the same 19-year cycle of Golden Numbers the full moons must not fall twice
on the same date. Such a coincidence happens with Epacts 24 and 25 in the centuries
20, 21 and 22, for instance. Therefore, the commission introduced a “second” Epact
25, denoted here by 25*, which is used as if it were Epact 26.
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Table 2. Relationship between Epacts and Paschal Full Moons according to the Gregorian reform

Epact Full Moon Epact Full Moon Epact Full Moon

0 13 April 10 3 April 20 24 March
1 12 April 11 2 April 21 23 March
2 11 April 12 1 April 22 22 March
3 10 April 13 31 March 23 21 March
4 9 April 14 30 March 24 18 April
5 8 April 15 29 March 25 18 April
6 7 April 16 28 March 25* 17 April
7 6 April 17 27 March 26 17 April
8 5 April 18 26 March 27 16 April
9 4 April 19 25 March 28 15 April

29 14 April

In short, both rules read as follows:

if epg = 24, or epg = 25 and gn > 11, then epg should be replaced by epg + 1.

An overview is given in Table 2. It should be noted that Epacts 24 and 25, and likewise
Epacts 25* and 26, can never both occur during the same 19-year cycle.

The problem remains to determine the Sunday after the Paschal Full Moon. This can
be done by using the Dominical Letter which is the letter of the first Sunday of a year if
the first seven days are designated with the first seven letters of the alphabet. By a cyclic
succession the Dominical Letter marks all Sundays of a year, and in particular Easter
Sunday. For the sake of brevity I take here a somewhat different approach.

In the year 1583, 6 March was the first Sunday of March, because 15 October 1582
was a Friday. In every year after 1583 the first Sunday of March falls either one or two
days earlier than in the year before, depending on the Gregorian leap year rule: 4 March
1584, 3 March 1585, 2 March 1586, 1 March 1587. –1 March 1588, i. e. 28 February
1588, is a Sunday again, and 6 March 1588 is the first Sunday of March. In general,

f sd = (6 − (�(5 × yr)/4� − �(5 × 1583)/4�) + sol) mod 7

= 6 − (�(5 × yr)/4� − 1978) + sol) mod 7

= (6 − (�(5 × yr)/4� − 4) + sol) mod 7

= (10 − �(5 × yr)/4� + sol) mod 7

is the first Sunday of March in the year yr, provided that fsd = 7 is taken whenever
fsd = 0. Easter day is then

pf m + 7 − (pf m + 7 − f sd) mod 7 = ed March.

Using x = 10 − �(5 × yr)/4� + sol, one may write more elegantly

pf m + 7 − (pf m − x) mod 7 = ed March.
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Table 3. The Gregorian computus summarized

gn = (yr mod 19) + 1
epr = (11 × gn − 10) mod 30
cy = �yr/100� + 1
sol = �(3 × cy)/4� − 12
lun = �(8 × cy + 5)/25� − 5
epg = (epr − sol + lun) mod 30
if epg = 24, or epg = 25 and gn > 11, then epg is replaced by epg + 1
pf m = 44 − epg

if pf m < 21, then pfm is replaced by pf m + 30
fsd = (10 − �(5 × yr)/4� + sol) mod 7
ed = pf m + 7 − (pf m + 7 − f sd) mod 7
if ed > 31, Easter Day is (ed − 31) April, otherwise ed March

In other words,

if ed > 31, Easter day is (ed − 31) April, otherwise ed March.

A summary is given in Table 3.
The exposition above is a slightly modified unfolding of D. Knuth’s algorithm, first

published some 40 years ago.15

4. Gauß’ Osterformel continued

One may agree that Gauß was rather secretive. In his paper from 1800 however, he
gives some deeper insight in his thinking processes. These processes, as I understand
them, are the subject of the present section.

Table 4 shows a complete 19-year cycle of a = yr mod 19 for the years 1710–1728. In
column 4 pfm – 21, the number of days after the earliest Paschal Full Moon, is expressed
as a linear combination of 11 and 19. This shows nicely that the date of the Paschal Full
Moon is either 11 days earlier or 19 days later than in the year before. The transition
from a = 18 to a = 0 involves 18 days only, i. e. an omission of one day out of 19 days
known as saltuslunae, the moon’s jump. In general, one may write

pf m − 21 = 23 − µ × 11 + ν × 19, where µ + ν = a

and one finds finally

pf m − 21 = 23 − 30µ + 19a = (19a + 23) mod 30

which is equal to Gauß’ d for 1700–1899, see (9) in Table 1.

15 D. Knuth, “The Calculation of Easter...,” Communications of the Association for Computing
Machinery, Volume 5, Number 4, April, 1962, 209–210.
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Table 4. The Pascal Full Moons of a complete 19-year cycle for 1700-1899

year a pfm pf m − 21 = epg

1767 0 44 23 = 23 −0 × 11 + 0 × 19 0
1768 1 33 12 = 23 −1 × 11 + 0 × 19 11
1769 2 22 1 = 23 −2 × 11 + 0 × 19 22
1770 3 41 20 = 23 −2 × 11 + 1 × 19 3
1771 4 30 9 = 23 −3 × 11 + 1 × 19 14
1772 5 49 28 = 23 −3 × 11 + 2 × 19 25
1773 6 38 17 = 23 −4 × 11 + 2 × 19 6
1774 7 27 6 = 23 −5 × 11 + 2 × 19 17
1775 8 46 25 = 23 −5 × 11 + 3 × 19 28
1776 9 35 14 = 23 −6 × 11 + 3 × 19 9
1777 10 24 3 = 23 −7 × 11 + 3 × 19 20
1778 11 43 22 = 23 −7 × 11 + 4 × 19 1
1779 12 32 11 = 23 −8 × 11 + 4 × 19 12
1780 13 21 0 = 23 −9 × 11 + 4 × 19 23
1781 14 40 19 = 23 −9 × 11 + 5 × 19 4
1782 15 29 8 = 23 −10 × 11 + 5 × 19 15
1783 16 48 27 = 23 −10 × 11 + 6 × 19 26
1784 17 37 16 = 23 −11 × 11 + 6 × 19 7
1785 18 26 5 = 23 −12 × 11 + 6 × 19 18

March

Gauß knew that 21 March 1700 was a Sunday. If 22 +d + e March is the date of
Easter in the year yr, where 0 ≤ e ≤ 6, the number of days between both dates is

nod = 1 + d + e + i + 365 × (yr − 1700).

Here, i denotes the number of leap days and is given by

i =
{

(yr − b − 1700)/4 for 1700 ≤ yr ≤ 1799

(yr − b − 1700)/4 − 1 for 1800 ≤ yr ≤ 1899

Since nod is divisible by 7, it follows that

(1 + d + i + 365 × (yr − 1700)) mod 7 = (7 − e) mod 7.

After some simple, but cumbersome transformations Gauß finally ends up with the
expression

e = (2b + 4c + 6d +
{

3 for 1700 ≤ yr ≤ 1799
4 for 1800 ≤ yr ≤ 1899

}
) mod 7

For convenience, the whole algorithm is summarized in Table 5.
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Table 5. Gauß’ Osterformel for 1700–1899

a = yr mod 19
b = yr mod 4
c = yr mod 7
d = (19a + 23) mod 19

e = (2b + 4c + 6d +
{

3 for 1700 ≤ yr ≤ 1799
4 for 1800 ≤ yr ≤ 1899

}
) mod 7

Easter falls on 22 + d + e March or d + e − 9 April

Table 6. The Paschal Full Moons for a complete 19-year cycle for 1900–2199

year a pf m pf m − 21 = epg

1995 0 45 24 = 24 − 0 × 11 + 0 × 19 29
1996 1 34 13 = 24 − 1 × 11 + 0 × 19 10
1997 2 23 2 = 24 − 2 × 11 + 0 × 19 21
1998 3 42 21 = 24 − 2 × 11 + 1 × 19 2
1999 4 31 10 = 24 − 3 × 11 + 1 × 19 13
2000 5 49 28 = 24 − 3 × 11 + 2 × 19−1 24
2001 6 39 18 = 24 − 4 × 11 + 2 × 19 5
2002 7 28 7 = 24 − 5 × 11 + 2 × 19 16
2003 8 47 26 = 24 − 5 × 11 + 3 × 19 27
2004 9 36 15 = 24 − 6 × 11 + 3 × 19 8
2005 10 25 4 = 24 − 7 × 11 + 3 × 19 19
2006 11 44 23 = 24 − 7 × 11 + 4 × 19 0
2007 12 33 12 = 24 − 8 × 11 + 4 × 19 11
2008 13 22 1 = 24 − 9 × 11 + 4 × 19 22
2009 14 41 20 = 24 − 9 × 11 + 5 × 19 3
2010 15 30 9 = 24 −10 × 11 + 5 × 19 14
2011 16 48 27 = 24 −10 × 11 + 6 × 19−1 25*
2012 17 38 17 = 24 −11 × 11 + 6 × 19 6
2013 18 27 6 = 24 −12 × 11 + 6 × 19 17

March

Indeed, the problem is elegantly solved. Some difficulties, however, arise when
extending the limit beyond 1899, see Table 6. This table is valid for the entire period
1900–2199.

Together, Tables 4 and 6 contain all possible Paschal Full Moons. For a = 5 and
a = 16, correspondig to epg = 24 and epg = 25*, the scheme is disturbed according to
the exception rules of the calendar commission. Instead of correcting for d, and leaving
unchanged the date of Easter day as in Table 7, Gauß changed the date. Both strategies
yield the same results, but, in a sense, Gauß’strategy is more efficient because corrections
are only made when necessary.



448 R. Bien

Table 7. Gauß’ Osterformel; the exceptions are redefined. General expressions for d and e are
given in Table 1

a = yr mod 19
b = yr mod 4
c = yr mod 7

d = (19a +
{

23 for 1700 ≤ yr ≤ 1899
24 for 1900 ≤ yr ≤ 2199

}
) mod 30

if d = 29, or d = 28 and a > 10, then replace d by d − 1

e = (2b + 4c + 6d +




3 for 1700 ≤ yr ≤ 1799
4 for 1800 ≤ yr ≤ 1899
5 for 1900 ≤ yr ≤ 2099
6 for 2100 ≤ yr ≤ 2199




) mod 7

Easter falls on 22 + d + e March or d + e − 9 April

In particular in Germany, Gauß’ Osterformel has occasioned a number of variants,
e. g. by J. Hartmann16,17,18,19, Joh. Bach20, F. W. Ristenpart21, C. Wortelboer22 and,
recently, H. Lichtenberg23.

Hartmann, director of the Göttingen observatory, provides another example of how
Easter algorithms may cause deeper emotions; the controversy was aired in the Astronom-
ische Nachrichten. In 1912 he published an “Easter formula”, in which the exceptions
were rearranged in a similar way as in Table 7. He was proud of making them nearly
“not noticeable”. Dr Bach, a gymnasialdirektor (director of a secondary school), was not
pleased. He let Hartmann know, that he was the author of a book in which twelve Easter
algorithms were listed; and Gauß’ Osterformel was less complicated than Hartmann’s
formula. Then Ristenpart, director of the observatory at Santiago de Chile, realized that
Hartmann’s algorithm is not quite suitable to mental arithmetic. Hartmann found him-

16 J. Hartmann, “Osterformel,” Astronomische Nachrichten,Volume 187, Number 4473 (1910),
129–134.

17 J. Hartmann, “Antwort auf Herrn J. Bachs Bemerkungen zu meiner Osterformel,” Astro-
nomische Nachrichten, Volume 190, Number 4541 (1912), 81–84.

18 J. Hartmann, “Über den Zweck einer Osterformel,” Astronomische Nachrichten, Volume
190, Number 4560, 1912, 451–454.

19 J. Hartmann, “Notiz zur Osterformel,” Astronomische Nachrichten, Volume 204, Number
4879 (1917), 123–126.

20 Jos. Bach, “Drei Osterformeln,” Astronomische Nachrichten, Volume 189, Number 4517
(1911), 73–80.

21 F. W. Ristenpart, “Osterformel mit kleinen Zahlen,” Astronomische Nachrichten, Volume
190, Number 4548 (1912), 211–216.

22 G. Wortelboer, “Eine Osterformel,” Astronomische Nachrichten, Volume 262, Number 6269
(1937), 71–74.

23 H. Lichtenberg, “Zur Interpretation der Gaußschen Osterformel und ihrerAusnahmeregeln,”
Historia Mathematica, Volume 24 (1997), 441–444.
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self in an unpleasant situation and made a reply to both scholars. He came to questions
such as what the use of Easter algorithms was, and why those rules were so similar; and
finally, it has remained a grin without a cat.

5. Preliminary conclusion

It becomes clear, so far, that any Easter algorithm should consist of two basic steps,

(1) finding the Paschal Full Moon by the Gregorian Epact or a substitute, e. g. by
M = (22 − epp) mod 30,

(2) finding the Sunday that follows the Paschal Full Moon.

The Gregorian exceptions can be applied either in step (1) or in step (2). They may
be camouflaged as Chr. Zeller24 proposed, following H. Kinkelin.25 For instance, both
conditions

“if d = 29, or d = 28 and a > 10, then replace d by d − 1”

(see Table 7), and

“replace in any case d by d − �(d + �a/11�)/29�”

have the very same effect.
Keeping in mind the two construction steps, the final discussion can be shortened

without any loss of understanding.

6. Oudin’s work

In his article from 1815, Delambre nicely translated Clavius’ tables and rules into
arithmetical formulae, giving the Dominical Letter, the Epact, and the date of Easter
Day.26 He failed when describing the Gregorian exceptions.

In 1940 J.-M. Oudin published a treatise, admirable for its lucidity of exposition.27 In
its first part, Gauß’ and Delambre’s errors are discussed in great detail, because he found
(see p. 391), “Les deux grands géomètres Gauss et Delambre, dans les solutions qu’ils
ont données de ce problème, ont commis certaines erreurs que des auteurs modernes rep-
roduisent encore [...].” Oudin defends the Osterformel against Delambre’s accusations,
for instance, that no real proof was presented. Unfortunately, Gauß himself somewhat
cryptically said, “The investigation by which the formula [...] is found is based on higher
arithmetic, for which I presently cannot refer to any publication; and certainly, it cannot

24 Chr. Zeller, “Kalender-Formeln,” Acta Mathematica, Volume 9 (1886), 131–136.
25 H. Kinkelin, “Berechnung des christlichen Osterfests,” Zeitschrift für Mathematik und Phy-

sik, Volume 15 (1870), 217–228.
26 See reference 12.
27 J.-M. Oudin, “Étude sur la date de Pâques,” Bulletin astronomique, deuxième série, Volume

12 (1940), 391–410.
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Table 8. Oudin’s algorithm

m = year
c = �m/100�
k = �(c − 17)/25�
r = (c − �c/4� − �(c − k)/3� + 19 × (m mod 19) + 15) mod 30

R =




r − 1, if r = 29

r − 1, if r = 28, and m mod 19 > 10

r else
J = (m + �m/4� + R + 2 − c + �c/4�) mod 7
P = 28 + R − J March

be demonstrated here in its full simplicity.”28 Subsequently, Ph. Maennchen29, R. Wolf30

and others continued in disseminating the legend of the insufficient proof. Simply, the
proof lies in the fact that Clavius’ tables and rules are precisely translated: all possible
30 Paschal Full Moons and their secular variations are discussed, and a general formula
indicates Easter Sunday. By the same token, the validity of any other Easter algorithm
can be proven.

In the second part, Oudin demonstrates, that

– the period of the Principal Epacts epp is 300,000 years,
– the period of Gauß’ quantity M is 300,000 years,
– the period of the Gregorian Epacts epg is 5,700,000 years, and
– the period of the dates of Easter is 5,700,000 years, too.

The Easter period turns out to be extremely long; Homo habilis appeared on earth
about 2 million years ago. The antegregorian Easter period amounts to 532 years only.

In the last part, Oudin presents his own algorithm, see Table 8. The quantity r is
nothing else but Gauß’ quantity d. As in section 5, the expression for R may be replaced
by

R = r − �(r + �(m mod 19)/11�/29�
In his modification of Oudin’s algorithm L. E. Doggett31 employs

R = r − �r/28� × (1 − �r/28� × �29/(r + 1)� × �(21 − (m mod 19))/11�)

It should be mentioned that, in his original version, Doggett did not use the floor function,
but simply discarded the noninteger part of a fraction.

28 See reference 3.
29 See reference 6.
30 R. Wolf, “Handbuch der Astronomie, zweiter Halbband,” Zürich 1891, 622–625.
31 L. E. Doggett, “Calendars,” In Explanatory Supplement to the Astronomical Almanac, edited

by P. K. Seidelmann, Hill Valley 1992.
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Table 9. Algorithm of an anonymous correspondent

Divide By And call the

Quotient Remainder

The year of our Lord 19 – a
” ” ” ” ” 100 b c

b 4 d e
b + 8 25 f –

b − f + 1 3 g –
19a + b − d − g + 15 30 – h

c 4 i k
32 + 2e + 2i − h − k 7 – l

a + 11h + 22l 451 m –
h + l − 7m + 114 31 n o

n is the number of the month of the year and o + 1 is the
number of the day of the month on which Easter falls.

7. An anonymous correspondent

It seems that in Britain, and in its former colonies as well, people were not inclined to
get involved in those debates. Probably, they determined the date of Easter by using the
tables appended in their Common Prayer Books. It is worth to note that R. W. Mallen32

presents a translation of the official tables into a BASIC programme, valid for 1583 to
4099.

It only seems so. In 1818 Easter Sunday fell on the first full moon in spring, in
contradiction to the Calendar Act of 1750 (24 Geo. II cap. 23), which defines Easter as
“the first Suaday [sic] after the first full moon which happens [on or] next after the 21th
day of March, and if the full moon happens upon a Sunday, Easter-day is the Sunday
after.”

Some discussion arose. A. de Morgan, known today mainly for his contribution to
mathematical logic, finally cut the knot. He explained – in accordance with Clavius’
statements – that moon is neither an astronomical nor a mean moon, but a fiction based
on cyclic reckoning, and presented a general recipe to find Easter for any year. The
whole story can be found in de Morgan’s collection A Budget of Paradoxes which is still
a source of great intellectual pleasure.33

In 1876 Nature published an algorithm submitted by “an anonymous correspondent
from New York”, see Table 9.34 The quantity h is equal to Gauß’ quantity d, and the
Gregorian exceptions are hidden in m. Thus, it is a Gaußian-type algorithm. The method

32 R. W. Mallen, “Easter Dating Method,” Website of the Astronomical Society of South Aus-
tralia, 2000.

33 A. de Morgan, “A Budget of Paradoxes,” Volume 1, Chicago and London 1915, 356-357.
The first edition appeared in 1872.

34 Anonymous, “To find Easter ‘for ever’ ”, Nature, April 20, 1876, 487.
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is of great beauty and has been adopted by the British people almost immediately; I
mention here S. Butcher’s Ecclesiastical Calendar and H. Spencer Jones’ textbook.35,36

Some decades ago, J. Meeus brought this algorithm to Continental Europe.37

Conclusion

“In considering the fact, that the date of Easter Sunday is available for sufficiently
long periods of time [...], a discussion of the various ways which have been proposed
for determinig Easter dates, is of interest neither to historians nor to chronologists.”38

I have not followed this advice of F. K. Ginzel’s although he is right in some sense. I
would rather think, it is not very useful to construct new Easter algorithms, which nec-
essarily must be variants of known algorithms. One might get the impression that some
scholars are ignoring the work of others, and reinvent the wheel. In my personal opin-
ion, Oudin’s paper, a work of unique clarté, is the final keystone. Perhaps, I stand alone
with my opinion. Being not a psychologist, I am aware, however, of the fascination
of the lunar cycle, a cycle that “hath been already old of time, which was before us
(Ec. 1 v. 10).” So, the race for the ultimate solution may go on.

Acknowledgements. I am grateful to Noel Swerdlow for communicating my paper and to Henk
Bos for his careful editing and his valuable suggestions.

Astronomisches Rechen-Institut
Mönchhofstraße 12–14

69120 Heidelberg
Germany

reinhold@ari.uni-heidelberg.de

(Received June 6, 2003)
Published online March 12, 2004 – © Springer-Verlag 2004

35 S. Butcher, “Ecclesiastical Calendar,” Dublin/London 1876, 226.
36 H. Spencer Jones, “General Astronomy,” 3rd edition, London 1951, 66.
37 J. Meeus, “Astronomical Formulae for Calculators,” 2nd edition, Richmond 1982, 31–33.
38 F. K. Ginzel, “Handbuch der mathematischen und technischen Chronologie,” Volume 3,

Leipzip 1914, 265–266.


