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Reminder: Homework 2 Due Today 

 Homework 2 

 Due today 

 

 Homework 3 

 Will be out later today! 

 REP MOVS in Microprogrammed LC-3b, Pipelining, Delay Slots, 
Interlocking, … 
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Reminder: Lab Assignment 2 Due Friday 

 Lab Assignment 2 

 Due this Friday, Feb 15 

 Single-cycle MIPS implementation in Verilog 

 All labs are individual assignments 

 No collaboration; please respect the honor code 

 Do not forget the extra credit portion! 
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Readings for Next Few Lectures 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 Recommended: 

 McFarling, “Combining Branch Predictors,” DEC WRL Technical 
Report, 1993. 
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Also, … 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Tomorrow: IEEE Tech Talk and CALCM Seminar 

 Tuesday, February 12, 4:30-6:30pm, Hamerschlag 1107 

 Dr. Richard E. Kessler, Cavium Fellow and Principal Architect 

 Designing Efficient Processor Cores for Multicore Networking 

 Abstract: 

 The design of CPUs has always required a balance of performance and 
efficiency in power, area, and complexity. The emergence of multicore 
SoCs armed with accelerators for packet processing has shifted this 
balance from solely single-thread performance to a combination of 
single-thread performance and efficient parallel processing. This shift 
requires a new style of core with short and deterministic pipelines, 
caches and memory systems optimized for low latency and high 
bandwidth, and an architecture that scales to 48-plus cores on a chip. 
This talk demonstrates how continuously emerging application 
demands shaped the fundamental principles behind OCTEON processor 
cores and supporting on-chip accelerators. 
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Monday: IEEE Tech Talk and CALCM Seminar 

 Monday, February 11, 4:30-6:30pm, Hamerschlag 1107 

 Dr. Richard E. Kessler, Cavium Fellow and Principal Architect 

 Designing Efficient Processor Cores for Multicore Networking 

 

 Break-out Session:  

 Cavium is building a community of university and industry partners around the 
32-core OCTEON II solution, with evaluation boards in use by students and 
professors at several universities globally. This break-out session for students 
will be conducted at the conclusion of the talk above to describe the evaluation 
board hardware, the Cavium SDK, and various semester-long student projects 
appropriate for upper level undergraduates or first year masters students. 
Other aspects of the OCTEON program will be briefly described, including a 
multi-university workshop planned in May for students to present their OCTEON 
project and compete for the OCTEON Trophy. 
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Last Lecture 

 Control dependence handling 
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Today’s Agenda 

 Branch prediction techniques 

 

 Wrap up control dependence handling 
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Control Dependence Handling 
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Review: Branch Types 

Type Direction at 
fetch time 

Number of 
possible next 
fetch addresses? 

When is next 
fetch address 
resolved? 

Conditional Unknown 2 Execution (register 
dependent) 

Unconditional Always taken 1 Decode (PC + 
offset) 

Call Always taken 1 Decode (PC + 
offset) 

Return Always taken Many Execution (register 
dependent) 

Indirect Always taken Many Execution (register 
dependent) 
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Different branch types can be handled differently 



Review: How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Review: Branch Prediction 

 Idea: Predict the next fetch address (to be used in the next 
cycle) 

 

 Requires three things to be predicted at fetch stage: 

 Whether the fetched instruction is a branch 

 (Conditional) branch direction 

 Branch target address (if taken) 

 

 Observation: Target address remains the same for a 
conditional direct branch across dynamic instances 

 Idea: Store the target address from previous instance and access 
it with the PC 

 Called Branch Target Buffer (BTB) or Branch Target Address 
Cache 
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target address 

Review: Fetch Stage with BTB 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current instruction 

Always-taken CPI = [ 1 + (0.20*0.3) * 2 ]  = 1.12   (70% of branches taken)
  

 



Simple Branch Direction Prediction Schemes 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 
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More Sophisticated Direction Prediction 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 Program analysis based  (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 

 Two-bit counter based prediction 

 Two-level prediction (global vs. local) 

 Hybrid 
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Static Branch Prediction (I) 

 Always not-taken 

 Simple to implement: no need for BTB, no direction prediction 

 Low accuracy: ~30-40% 

 Compiler can layout code such that the likely path is the “not-
taken” path 

 

 Always taken 

 No direction prediction 

 Better accuracy: ~60-70%  

 Backward branches (i.e. loop branches) are usually taken 

 Backward branch: target address lower than branch PC 

 

 Backward taken, forward not taken (BTFN) 

 Predict backward (loop) branches as taken, others not-taken 
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Static Branch Prediction (II) 

 Profile-based 

 Idea: Compiler determines likely direction for each branch 
using profile run. Encodes that direction as a hint bit in the 
branch instruction format.  

 

+ Per branch prediction (more accurate than schemes in 
previous slide)  accurate if profile is representative! 

-- Requires hint bits in the branch instruction format 

-- Accuracy depends on dynamic branch behavior: 

  TTTTTTTTTTNNNNNNNNNN  50% accuracy 
TNTNTNTNTNTNTNTNTNTN  50% accuracy 

-- Accuracy depends on the representativeness of profile input 
set 
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Static Branch Prediction (III) 

 Program-based (or, program analysis based) 

 Idea: Use heuristics based on program analysis to determine 
statically-predicted direction 

 Opcode heuristic: Predict BLEZ as NT (negative integers used as 
error values in many programs) 

 Loop heuristic: Predict a branch guarding a loop execution as taken 
(i.e., execute the loop) 

 Pointer and FP comparisons: Predict not equal 

 

+ Does not require profiling 

-- Heuristics might be not representative or good 

-- Requires compiler analysis and ISA support 

 

 Ball and Larus, ”Branch prediction for free,” PLDI 1993. 

 20% misprediction rate 
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Static Branch Prediction (III) 

 Programmer-based 

 Idea: Programmer provides the statically-predicted direction 

 Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken 

 

 

+ Does not require profiling or program analysis 

+ Programmer may know some branches and their program better than 
other analysis techniques 

-- Requires programming language, compiler, ISA support 

-- Burdens the programmer?  
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Aside: Pragmas 

 Idea: Keywords that enable a programmer to convey hints 
to lower levels of the transformation hierarchy 

 

 if (likely(x)) { ... } 

 if (unlikely(error)) { … } 

 

 Many other hints and optimizations can be enabled with 
pragmas 

 E.g., whether a loop can be parallelized 

 #pragma omp parallel 

 Description 

 The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code. 

 
22 



Static Branch Prediction 

 All previous techniques can be combined 

 Profile based 

 Program based 

 Programmer based 

 

 How would you do that? 

 

 What are common disadvantages of all three techniques? 

 Cannot adapt to dynamic changes in branch behavior  

 This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…) 
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Dynamic Branch Prediction 

 Idea: Predict branches based on dynamic information 
(collected at run-time) 

 

 Advantages 

+ Prediction based on history of the execution of branches 

   + It can adapt to dynamic changes in branch behavior 

+ No need for static profiling: input set representativeness 
problem goes away 

 

 Disadvantages 

-- More complex (requires additional hardware) 
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Last Time Predictor 

 Last time predictor 

 Single bit per branch (stored in BTB) 

 Indicates which direction branch went last time it executed 

    TTTTTTTTTTNNNNNNNNNN  90% accuracy 

 

 Always mispredicts the last iteration and the first iteration 
of a loop branch 

 Accuracy for a loop with N iterations = (N-2)/N 

 

+ Loop branches for loops with large number of iterations 

-- Loop branches for loops will small number of iterations 

  TNTNTNTNTNTNTNTNTNTN    0% accuracy 
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Last-time predictor CPI = [ 1 + (0.20*0.15) * 2 ]  = 1.06   (Assuming 85% accuracy)
  

 



Implementing the Last-Time Predictor 
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BTB 

BTB idx 

N-bit 
tag 
table 

1         0 

PC+4 

nextPC 

= 

The 1-bit BHT (Branch History Table) entry is updated with 
the correct outcome after each execution of a branch 

tag 

One 
Bit 
Per  
branch 

taken? 



State Machine for Last-Time Prediction 
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predict 
taken 

predict 
not 

taken 

actually 
not taken 

actually 
taken 

actually 
taken 

actually 
not taken 



Improving the Last Time Predictor 

 Problem: A last-time predictor changes its prediction from 
TNT or NTT too quickly  

 even though the branch may be mostly taken or mostly not 
taken 

 

 Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome 

 Use two bits to track the history of predictions for a branch 
instead of a single bit  

 Can have 2 states for T or NT instead of 1 state for each 

 

 Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981. 
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Two-Bit Counter Based Prediction 

 Each branch associated with a two-bit counter 

 One more bit provides hysteresis 

 A strong prediction does not change with one single 
different outcome 

 

 Accuracy for a loop with N iterations = (N-1)/N 

 TNTNTNTNTNTNTNTNTNTN    50% accuracy 

              (assuming init to weakly taken) 

 

+ Better prediction accuracy 

 

-- More hardware cost (but counter can be part of a BTB entry) 
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2BC predictor CPI = [ 1 + (0.20*0.10) * 2 ]  = 1.04   (90% accuracy)  

 



State Machine for 2-bit Saturating Counter 
 Counter using saturating arithmetic 

 There is a symbol for maximum and minimum values 
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pred 
taken 

11 

pred 
taken 

10 

pred 
!taken 

01 

pred 
!taken 

00 

actually 
taken 

actually 
taken 

actually 
!taken 

actually 
!taken 

actually 
!taken 

actually 
!taken 

actually 
taken 

actually 
taken 



Hysteresis Using a 2-bit Counter 

 

31 

pred 
taken 

pred 
taken 

pred 
!taken 

pred 
!taken 

actually 
taken 

actually 
taken actually 

!taken 

actually 
!taken 

actually 
!taken 

actually 
!taken 

actually 
taken 

actually 
taken 

Change prediction after 2 consecutive mistakes 

“weakly 
taken” 

“strongly 
taken” 

“weakly 
!taken” 

“strongly 
!taken” 



Is This Enough? 

 ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction) 

 

 Is this good enough? 

 

 How big is the branch problem? 
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Rethinking the The Branch Problem 

 Control flow instructions (branches) are frequent 

 15-25% of all instructions 

 

 Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor 

 N cycles: (minimum) branch resolution latency 

 Stalling on a branch wastes instruction processing bandwidth 
(i.e. reduces IPC) 

 N x IW instruction slots are wasted (IW: issue width) 

 

 How do we keep the pipeline full after a branch? 

 Problem: Need to determine the next fetch address when 
the branch is fetched (to avoid a pipeline bubble) 
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Importance of The Branch Problem 
 Assume a 5-wide superscalar pipeline with 20-cycle branch resolution 

latency 
 

 How long does it take to fetch 500 instructions?  

 Assume no fetch breaks and 1 out of 5 instructions is a branch 

 100% accuracy  
 100 cycles (all instructions fetched on the correct path) 

 No wasted work 

 99% accuracy 
 100 (correct path) + 20 (wrong path) = 120 cycles 

 20% extra instructions fetched 

 98% accuracy 
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles  

 40% extra instructions fetched  

 95% accuracy 
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles 

 100% extra instructions fetched 
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Can We Do Better? 

 Last-time and 2BC predictors exploit “last-time” 
predictability 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed) 

 Local branch correlation 
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Global Branch Correlation (I) 

 Recently executed branch outcomes in the execution path 
is correlated with the outcome of the next branch 

 

 

 

 If first branch not taken, second also not taken 

 

 

 

 If first branch taken, second definitely not taken 
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Global Branch Correlation (II) 

 

 

 

 

 If Y and Z both taken, then X also taken 

 If Y or Z not taken, then X also not taken 
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Global Branch Correlation (III) 

 Eqntott, SPEC 1992 

 

 if (aa==2)   ;; B1 

       aa=0; 

 if (bb==2)   ;; B2 

       bb=0; 

 if (aa!=bb) {      ;; B3 

       …. 

      } 

 

If B1 is not taken (i.e. aa==0@B3) and B2 is not taken (i.e. bb=0@B3) 
then B3 is certainly taken 
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Capturing Global Branch Correlation 

 Idea: Associate branch outcomes with “global T/NT history” 
of all branches 

 Make a prediction based on the outcome of the branch the 
last time the same global branch history was encountered 

 

 Implementation: 

 Keep track of the “global T/NT history” of all branches in a 
register  Global History Register (GHR) 

 Use GHR to index into a table of that recorded the outcome that 
was seen for that GHR value in the recent past  Pattern 

History Table (table of 2-bit counters) 

 

 Global history/branch predictor 

 Uses two levels of history (GHR + history at that GHR) 
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Two Level Global Branch Prediction 

 First level: Global branch history register (N bits) 

 The direction of last N branches 

 Second level: Table of saturating counters for each history entry 

 The direction the branch took the last time the same history was 
seen 
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1 1 ….. 1 0 

GHR 

(global 

history 

register) 

00 …. 00 

00 …. 01 

00 …. 10 

11 ….  11 

0 1 

2 3 

index 

Pattern History Table (PHT)  

previous one  

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 



How Does the Global Predictor Work? 

 

 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993. 
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Intel Pentium Pro Branch Predictor 

 4-bit global history register 

 Multiple pattern history tables (of 2 bit counters) 

 Which pattern history table to use is determined by lower 
order bits of the branch address 
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Improving Global Predictor Accuracy 

 Idea: Add more context information to the global predictor to take into 
account which branch is being predicted 

 Gshare predictor: GHR hashed with the Branch PC 

+ More context information 

+ Better utilization of PHT    

-- Increases access latency 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 
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target address 

One-Level Branch Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current instruction 
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target address 

Two-Level Global History Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

Global branch  
history PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Which direction earlier 

branches went 

Address of the  

current instruction 
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target address 

Two-Level Gshare Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

Global branch  
history 

XOR 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Which direction earlier 

branches went 

Address of the  

current instruction 



Can We Do Better? 

 Last-time and 2BC predictors exploit “last-time” 
predictability 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed) 

 Local branch correlation 
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Local Branch Correlation 

 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993. 
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Capturing Local Branch Correlation 

 Idea: Have a per-branch history register 

 Associate the predicted outcome of a branch with “T/NT history” 
of the same branch 

 Make a prediction is based on the outcome of the branch the 
last time the same local branch history was encountered 

 

 Called the local history/branch predictor 

 Uses two levels of history (Per-branch history register + 
history at that history register value) 
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Two Level Local Branch Prediction 

 First level: A set of local history registers (N bits each) 

 Select the history register based on the PC of the branch 

 Second level: Table of saturating counters for each history entry 

 The direction the branch took the last time the same history was 
seen 

50 

1 1 ….. 1 0 

Local history 

registers 

00 …. 00 

00 …. 01 

00 …. 10 

11 ….  11 

0 1 

2 3 

index 

Pattern History Table (PHT)  

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 
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target address 

Two-Level Local History Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current instruction 

Which directions earlier instances of *this branch* went 



Hybrid Branch Predictors 

 Idea: Use more than one type of predictor (i.e., multiple 
algorithms) and select the “best” prediction 

 E.g., hybrid of 2-bit counters and global predictor 

 

 Advantages: 

 + Better accuracy: different predictors are better for different branches 

 + Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up) 

 

 Disadvantages: 

 -- Need “meta-predictor” or “selector” 

 -- Longer access latency 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 
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Alpha 21264 Tournament Predictor 

 

 

 

 

 

 

 

 Minimum branch penalty: 7 cycles 

 Typical branch penalty: 11+ cycles 

 48K bits of target addresses stored in I-cache 

 Predictor tables are reset on a context switch 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 
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Branch Prediction Accuracy (Example) 

 Bimodal: table of 2bc indexed by branch address 
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Biased Branches 

 Observation: Many branches are biased in one direction 
(e.g., 99% taken) 

 

 Problem: These branches pollute the branch prediction 
structures  make the prediction of other branches difficult 

by causing “interference” in branch prediction tables and 
history registers 

 

 Solution: Detect such biased branches, and predict them 
with a simpler predictor 

 

 Chang et al., “Branch classification: a new mechanism for improving 
branch predictor performance,” MICRO 1994. 
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