
18-447  

Computer Architecture 

Lecture 11: Branch Prediction 

 

 

Prof. Onur Mutlu 

Carnegie Mellon University 

Spring 2013, 2/11/2013 

 

 

 



Reminder: Homework 2 Due Today 

 Homework 2 

 Due today 

 

 Homework 3 

 Will be out later today! 

 REP MOVS in Microprogrammed LC-3b, Pipelining, Delay Slots, 
Interlocking, … 

2 



Reminder: Lab Assignment 2 Due Friday 

 Lab Assignment 2 

 Due this Friday, Feb 15 

 Single-cycle MIPS implementation in Verilog 

 All labs are individual assignments 

 No collaboration; please respect the honor code 

 Do not forget the extra credit portion! 

 

3 



Readings for Next Few Lectures 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 Recommended: 

 McFarling, “Combining Branch Predictors,” DEC WRL Technical 
Report, 1993. 

4 



Also, … 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  

5 



Tomorrow: IEEE Tech Talk and CALCM Seminar 

 Tuesday, February 12, 4:30-6:30pm, Hamerschlag 1107 

 Dr. Richard E. Kessler, Cavium Fellow and Principal Architect 

 Designing Efficient Processor Cores for Multicore Networking 

 Abstract: 

 The design of CPUs has always required a balance of performance and 
efficiency in power, area, and complexity. The emergence of multicore 
SoCs armed with accelerators for packet processing has shifted this 
balance from solely single-thread performance to a combination of 
single-thread performance and efficient parallel processing. This shift 
requires a new style of core with short and deterministic pipelines, 
caches and memory systems optimized for low latency and high 
bandwidth, and an architecture that scales to 48-plus cores on a chip. 
This talk demonstrates how continuously emerging application 
demands shaped the fundamental principles behind OCTEON processor 
cores and supporting on-chip accelerators. 

6 



Monday: IEEE Tech Talk and CALCM Seminar 

 Monday, February 11, 4:30-6:30pm, Hamerschlag 1107 

 Dr. Richard E. Kessler, Cavium Fellow and Principal Architect 

 Designing Efficient Processor Cores for Multicore Networking 

 

 Break-out Session:  

 Cavium is building a community of university and industry partners around the 
32-core OCTEON II solution, with evaluation boards in use by students and 
professors at several universities globally. This break-out session for students 
will be conducted at the conclusion of the talk above to describe the evaluation 
board hardware, the Cavium SDK, and various semester-long student projects 
appropriate for upper level undergraduates or first year masters students. 
Other aspects of the OCTEON program will be briefly described, including a 
multi-university workshop planned in May for students to present their OCTEON 
project and compete for the OCTEON Trophy. 

7 



Last Lecture 

 Control dependence handling 

 

 

8 



Today’s Agenda 

 Branch prediction techniques 

 

 Wrap up control dependence handling 

 

 

9 



Control Dependence Handling 

10 



Review: Branch Types 

Type Direction at 
fetch time 

Number of 
possible next 
fetch addresses? 

When is next 
fetch address 
resolved? 

Conditional Unknown 2 Execution (register 
dependent) 

Unconditional Always taken 1 Decode (PC + 
offset) 

Call Always taken 1 Decode (PC + 
offset) 

Return Always taken Many Execution (register 
dependent) 

Indirect Always taken Many Execution (register 
dependent) 

11 

Different branch types can be handled differently 



Review: How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 

 

 

12 



How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 

 

 

13 



Review: Branch Prediction 

 Idea: Predict the next fetch address (to be used in the next 
cycle) 

 

 Requires three things to be predicted at fetch stage: 

 Whether the fetched instruction is a branch 

 (Conditional) branch direction 

 Branch target address (if taken) 

 

 Observation: Target address remains the same for a 
conditional direct branch across dynamic instances 

 Idea: Store the target address from previous instance and access 
it with the PC 

 Called Branch Target Buffer (BTB) or Branch Target Address 
Cache 

14 



15 

target address 

Review: Fetch Stage with BTB 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current instruction 

Always-taken CPI = [ 1 + (0.20*0.3) * 2 ]  = 1.12   (70% of branches taken)
  

 



Simple Branch Direction Prediction Schemes 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 

 

16 



More Sophisticated Direction Prediction 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 Program analysis based  (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 

 Two-bit counter based prediction 

 Two-level prediction (global vs. local) 

 Hybrid 

 

17 



Static Branch Prediction (I) 

 Always not-taken 

 Simple to implement: no need for BTB, no direction prediction 

 Low accuracy: ~30-40% 

 Compiler can layout code such that the likely path is the “not-
taken” path 

 

 Always taken 

 No direction prediction 

 Better accuracy: ~60-70%  

 Backward branches (i.e. loop branches) are usually taken 

 Backward branch: target address lower than branch PC 

 

 Backward taken, forward not taken (BTFN) 

 Predict backward (loop) branches as taken, others not-taken 

 18 



Static Branch Prediction (II) 

 Profile-based 

 Idea: Compiler determines likely direction for each branch 
using profile run. Encodes that direction as a hint bit in the 
branch instruction format.  

 

+ Per branch prediction (more accurate than schemes in 
previous slide)  accurate if profile is representative! 

-- Requires hint bits in the branch instruction format 

-- Accuracy depends on dynamic branch behavior: 

  TTTTTTTTTTNNNNNNNNNN  50% accuracy 
TNTNTNTNTNTNTNTNTNTN  50% accuracy 

-- Accuracy depends on the representativeness of profile input 
set 

19 



Static Branch Prediction (III) 

 Program-based (or, program analysis based) 

 Idea: Use heuristics based on program analysis to determine 
statically-predicted direction 

 Opcode heuristic: Predict BLEZ as NT (negative integers used as 
error values in many programs) 

 Loop heuristic: Predict a branch guarding a loop execution as taken 
(i.e., execute the loop) 

 Pointer and FP comparisons: Predict not equal 

 

+ Does not require profiling 

-- Heuristics might be not representative or good 

-- Requires compiler analysis and ISA support 

 

 Ball and Larus, ”Branch prediction for free,” PLDI 1993. 

 20% misprediction rate 

 20 



Static Branch Prediction (III) 

 Programmer-based 

 Idea: Programmer provides the statically-predicted direction 

 Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken 

 

 

+ Does not require profiling or program analysis 

+ Programmer may know some branches and their program better than 
other analysis techniques 

-- Requires programming language, compiler, ISA support 

-- Burdens the programmer?  

 

 

21 



Aside: Pragmas 

 Idea: Keywords that enable a programmer to convey hints 
to lower levels of the transformation hierarchy 

 

 if (likely(x)) { ... } 

 if (unlikely(error)) { … } 

 

 Many other hints and optimizations can be enabled with 
pragmas 

 E.g., whether a loop can be parallelized 

 #pragma omp parallel 

 Description 

 The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code. 

 
22 



Static Branch Prediction 

 All previous techniques can be combined 

 Profile based 

 Program based 

 Programmer based 

 

 How would you do that? 

 

 What are common disadvantages of all three techniques? 

 Cannot adapt to dynamic changes in branch behavior  

 This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…) 

23 



Dynamic Branch Prediction 

 Idea: Predict branches based on dynamic information 
(collected at run-time) 

 

 Advantages 

+ Prediction based on history of the execution of branches 

   + It can adapt to dynamic changes in branch behavior 

+ No need for static profiling: input set representativeness 
problem goes away 

 

 Disadvantages 

-- More complex (requires additional hardware) 

  

 

24 



Last Time Predictor 

 Last time predictor 

 Single bit per branch (stored in BTB) 

 Indicates which direction branch went last time it executed 

    TTTTTTTTTTNNNNNNNNNN  90% accuracy 

 

 Always mispredicts the last iteration and the first iteration 
of a loop branch 

 Accuracy for a loop with N iterations = (N-2)/N 

 

+ Loop branches for loops with large number of iterations 

-- Loop branches for loops will small number of iterations 

  TNTNTNTNTNTNTNTNTNTN    0% accuracy 

  

25 

Last-time predictor CPI = [ 1 + (0.20*0.15) * 2 ]  = 1.06   (Assuming 85% accuracy)
  

 



Implementing the Last-Time Predictor 

 

26 

BTB 

BTB idx 

N-bit 
tag 
table 

1         0 

PC+4 

nextPC 

= 

The 1-bit BHT (Branch History Table) entry is updated with 
the correct outcome after each execution of a branch 

tag 

One 
Bit 
Per  
branch 

taken? 



State Machine for Last-Time Prediction 

 

27 

predict 
taken 

predict 
not 

taken 

actually 
not taken 

actually 
taken 

actually 
taken 

actually 
not taken 



Improving the Last Time Predictor 

 Problem: A last-time predictor changes its prediction from 
TNT or NTT too quickly  

 even though the branch may be mostly taken or mostly not 
taken 

 

 Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome 

 Use two bits to track the history of predictions for a branch 
instead of a single bit  

 Can have 2 states for T or NT instead of 1 state for each 

 

 Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981. 

 

 
28 



Two-Bit Counter Based Prediction 

 Each branch associated with a two-bit counter 

 One more bit provides hysteresis 

 A strong prediction does not change with one single 
different outcome 

 

 Accuracy for a loop with N iterations = (N-1)/N 

 TNTNTNTNTNTNTNTNTNTN    50% accuracy 

              (assuming init to weakly taken) 

 

+ Better prediction accuracy 

 

-- More hardware cost (but counter can be part of a BTB entry) 

 
29 

2BC predictor CPI = [ 1 + (0.20*0.10) * 2 ]  = 1.04   (90% accuracy)  

 



State Machine for 2-bit Saturating Counter 
 Counter using saturating arithmetic 

 There is a symbol for maximum and minimum values 

 

30 

pred 
taken 

11 

pred 
taken 

10 

pred 
!taken 

01 

pred 
!taken 

00 

actually 
taken 

actually 
taken 

actually 
!taken 

actually 
!taken 

actually 
!taken 

actually 
!taken 

actually 
taken 

actually 
taken 



Hysteresis Using a 2-bit Counter 

 

31 

pred 
taken 

pred 
taken 

pred 
!taken 

pred 
!taken 

actually 
taken 

actually 
taken actually 

!taken 

actually 
!taken 

actually 
!taken 

actually 
!taken 

actually 
taken 

actually 
taken 

Change prediction after 2 consecutive mistakes 

“weakly 
taken” 

“strongly 
taken” 

“weakly 
!taken” 

“strongly 
!taken” 



Is This Enough? 

 ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction) 

 

 Is this good enough? 

 

 How big is the branch problem? 

32 



Rethinking the The Branch Problem 

 Control flow instructions (branches) are frequent 

 15-25% of all instructions 

 

 Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor 

 N cycles: (minimum) branch resolution latency 

 Stalling on a branch wastes instruction processing bandwidth 
(i.e. reduces IPC) 

 N x IW instruction slots are wasted (IW: issue width) 

 

 How do we keep the pipeline full after a branch? 

 Problem: Need to determine the next fetch address when 
the branch is fetched (to avoid a pipeline bubble) 

 33 



Importance of The Branch Problem 
 Assume a 5-wide superscalar pipeline with 20-cycle branch resolution 

latency 
 

 How long does it take to fetch 500 instructions?  

 Assume no fetch breaks and 1 out of 5 instructions is a branch 

 100% accuracy  
 100 cycles (all instructions fetched on the correct path) 

 No wasted work 

 99% accuracy 
 100 (correct path) + 20 (wrong path) = 120 cycles 

 20% extra instructions fetched 

 98% accuracy 
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles  

 40% extra instructions fetched  

 95% accuracy 
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles 

 100% extra instructions fetched 

 34 



Can We Do Better? 

 Last-time and 2BC predictors exploit “last-time” 
predictability 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed) 

 Local branch correlation 

 

 

35 



Global Branch Correlation (I) 

 Recently executed branch outcomes in the execution path 
is correlated with the outcome of the next branch 

 

 

 

 If first branch not taken, second also not taken 

 

 

 

 If first branch taken, second definitely not taken 

36 



Global Branch Correlation (II) 

 

 

 

 

 If Y and Z both taken, then X also taken 

 If Y or Z not taken, then X also not taken 

 

 

 

37 



Global Branch Correlation (III) 

 Eqntott, SPEC 1992 

 

 if (aa==2)   ;; B1 

       aa=0; 

 if (bb==2)   ;; B2 

       bb=0; 

 if (aa!=bb) {      ;; B3 

       …. 

      } 

 

If B1 is not taken (i.e. aa==0@B3) and B2 is not taken (i.e. bb=0@B3) 
then B3 is certainly taken 

    

 

 

38 



Capturing Global Branch Correlation 

 Idea: Associate branch outcomes with “global T/NT history” 
of all branches 

 Make a prediction based on the outcome of the branch the 
last time the same global branch history was encountered 

 

 Implementation: 

 Keep track of the “global T/NT history” of all branches in a 
register  Global History Register (GHR) 

 Use GHR to index into a table of that recorded the outcome that 
was seen for that GHR value in the recent past  Pattern 

History Table (table of 2-bit counters) 

 

 Global history/branch predictor 

 Uses two levels of history (GHR + history at that GHR) 
39 



Two Level Global Branch Prediction 

 First level: Global branch history register (N bits) 

 The direction of last N branches 

 Second level: Table of saturating counters for each history entry 

 The direction the branch took the last time the same history was 
seen 

40 

1 1 ….. 1 0 

GHR 

(global 

history 

register) 

00 …. 00 

00 …. 01 

00 …. 10 

11 ….  11 

0 1 

2 3 

index 

Pattern History Table (PHT)  

previous one  

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 



How Does the Global Predictor Work? 

 

 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993. 

 
41 



Intel Pentium Pro Branch Predictor 

 4-bit global history register 

 Multiple pattern history tables (of 2 bit counters) 

 Which pattern history table to use is determined by lower 
order bits of the branch address 

42 



Improving Global Predictor Accuracy 

 Idea: Add more context information to the global predictor to take into 
account which branch is being predicted 

 Gshare predictor: GHR hashed with the Branch PC 

+ More context information 

+ Better utilization of PHT    

-- Increases access latency 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 

 43 



44 

target address 

One-Level Branch Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current instruction 



45 

target address 

Two-Level Global History Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

Global branch  
history PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Which direction earlier 

branches went 

Address of the  

current instruction 



46 

target address 

Two-Level Gshare Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

Global branch  
history 

XOR 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Which direction earlier 

branches went 

Address of the  

current instruction 



Can We Do Better? 

 Last-time and 2BC predictors exploit “last-time” 
predictability 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed) 

 Local branch correlation 

 

 

47 



Local Branch Correlation 

 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993. 

48 



Capturing Local Branch Correlation 

 Idea: Have a per-branch history register 

 Associate the predicted outcome of a branch with “T/NT history” 
of the same branch 

 Make a prediction is based on the outcome of the branch the 
last time the same local branch history was encountered 

 

 Called the local history/branch predictor 

 Uses two levels of history (Per-branch history register + 
history at that history register value) 

49 



Two Level Local Branch Prediction 

 First level: A set of local history registers (N bits each) 

 Select the history register based on the PC of the branch 

 Second level: Table of saturating counters for each history entry 

 The direction the branch took the last time the same history was 
seen 

50 

1 1 ….. 1 0 

Local history 

registers 

00 …. 00 

00 …. 01 

00 …. 10 

11 ….  11 

0 1 

2 3 

index 

Pattern History Table (PHT)  

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 



51 

target address 

Two-Level Local History Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current instruction 

Which directions earlier instances of *this branch* went 



Hybrid Branch Predictors 

 Idea: Use more than one type of predictor (i.e., multiple 
algorithms) and select the “best” prediction 

 E.g., hybrid of 2-bit counters and global predictor 

 

 Advantages: 

 + Better accuracy: different predictors are better for different branches 

 + Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up) 

 

 Disadvantages: 

 -- Need “meta-predictor” or “selector” 

 -- Longer access latency 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 

 52 



Alpha 21264 Tournament Predictor 

 

 

 

 

 

 

 

 Minimum branch penalty: 7 cycles 

 Typical branch penalty: 11+ cycles 

 48K bits of target addresses stored in I-cache 

 Predictor tables are reset on a context switch 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 

 53 



Branch Prediction Accuracy (Example) 

 Bimodal: table of 2bc indexed by branch address 

54 



Biased Branches 

 Observation: Many branches are biased in one direction 
(e.g., 99% taken) 

 

 Problem: These branches pollute the branch prediction 
structures  make the prediction of other branches difficult 

by causing “interference” in branch prediction tables and 
history registers 

 

 Solution: Detect such biased branches, and predict them 
with a simpler predictor 

 

 Chang et al., “Branch classification: a new mechanism for improving 
branch predictor performance,” MICRO 1994. 

55 


