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ABSTRACT: The Fractional Quantum Hall states with non-Abelian statistics are

studied. Those states are shown to be characterized by non-Abelian topological orders

and are identified with some of the Jain’s states. The gapless edge states are found to be

described by non-Abelian Kac-Moody algebras. It is argued that the topological orders

and the associated properties are robust against any kinds of small perturbations.
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It becomes more and more clear that the ground states of strongly interacting elec-
tron systems may contain very rich structures1,2,3,4,5,6 which cannot be characterized by
broken symmetries and are called the topological orders.2 Physical characterizations of
the topological orders are discussed in Ref. 2,6. It is shown that the Fractional Quantum
Hall (FQH) states, the chiral spin states and anyon superfluid states contain non-trivial
topological orders characterized by the Abelian Chern-Simons (CS) theories.2,3,5,7 It is
interesting to know whether the non-Abelian (NA) topological orders characterized by the
NA CS theories8 can be realized in strongly interacting electron systems or not. In this
paper we will construct some FQH states which contain NA topological orders. The ef-
fective theory of these states is shown be NA CS theory and the quasiparticles carry NA
statistics8 We will also discuss how to understand the NA statistics in terms of the electron
wave function.

Different electron wave functions with filling fraction 1/2n have been constructed in
Ref. 4. The quasiparticles in these states were shown to have NA statistics, provided
that these states are incompressible and the quasiparticles have finite size for a local
Hamiltonian.

The spirit of our discussion is very similar to that in the mean field approach of
the spin liquid states.9,10 The similar construction is also used to study the SU(N) spin
chains.11 Consider a two dimensional spinless (i.e., spin polarized) electron system in
strong magnetic field with filling fraction ν = M/N . For convenience we will put the
electron system on a lattice, thus the electron Hamiltonian has a form

H =
∑

ij

[tije
ieAijc

†
icj + Vijninj ] (1)

where Aij is the electromagnetic gauge potential on the lattice and ni = c
†
ici. To construct

a FQH state with a NA topological order, we would like to break each electron into N
partons12 ψa each carrying electric charge e/N :

c = ψ1ψ2...ψN =
1

N !

∑

ab...c

εab...cψaψb...ψc (2)

where ψa are fermionic fields and N is odd. After substituting (2) into (1) and making a
mean field approximation we reach the following mean field Hamiltonian

Hmean =
∑

ij

tije
ieAij/NUij,abψ

†
iaψjb (3)

where

Uij,aa′ = eieAij
N−1

N

(
1

N !

)2
〈εab...c(ψb...ψc)

†
i εa′b′...c′(ψb′...ψc′)j〉 (4)

The mean field solution Uij can be obtained by minimizing the average of the Hamiltonian
(1) on the ground state of Hmean in (3) (i.e., E = 〈Φmean|H|Φmean〉). Let us assume that
there exists a Hamiltonian H such that the mean field solution takes the most symmetric
form Uij,ab = ηδab. In this case the mean field Hamiltonian (3) describes N kinds of free
partons in magnetic field, each with a filling fraction ν = M . Thus the mean field ground
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state wave function is given by Φmean(za
i ) =

∏N
a=1 χM (za

i ) where za
i is the coordinate of

the a-th kind of the partons and χM (zi) is the fermion wave function of M filled Landau
levels.

Notice that the mean field theory (3) contains a lot of unphysical degrees of freedom
arisen from the breaking of the electrons into partons. In order to use the mean field theory
to describe the original electron system we need to project into the physical Hilbert space
which satisfies the constraint

ψ
†
1iψ1i = ... = ψ

†
NiψNi (5)

In the physical Hilbert space, different kinds of the partons always move together. The
bound states of the partons correspond to the original electrons. The electron ground state
wave function can be obtained by doing the projection on the mean field wave function
Φmean by setting z1

i = z2
i = ... = zi where zi is the electron coordinate. The electron wave

function obtained this way is just one of the FQH wave functions propose by Jain.12 In
the following we will call such a state NAF (NA FQH) state.

The wave function of the NAF state, [χM (zi)]N , is the exact ground state of the
following local Hamiltonian.13 The kinetic energy in the Hamiltonian is such that the
first NM − N + 1 Landau levels have zero energy and other Landau levels have finite
positive energies. One such kinetic energy is given by

∏NM−N
I=0 [K − (I + 1

2)ωc] where
K = − 1

2m(∂i − ieAi)2. The two-body potential in the Hamiltonian has a form V (r) ∝
∂2N−2δ(r). One can easily see that the Hamiltonian is positive definite, and the NAF state
has zero energy because the electrons in the ground state all lie in the first NM −N + 1
Landau levels and the ground state wave function has N -th order zeros as zi → zj . However
it is not clear whether the state has the highest filling fraction among the zero energy states
(this is related to the incompressibility). We can only show that among the Jain’s states12

the NAF state is the zero energy state with highest filling fraction. We do not know whether
it is sufficient to only consider the Jain’s states. It would be interesting to numerically test
the incompressibility of the NAF state for the above Hamiltonian. Numerical calculations
has only been done for the projection into first two Landau levels.14 In this case one indeed
find the Jain’s 2/5 state to be the exact incompressible ground state.

The projection, or the constraint (5), can be realized by including a gauge field. Notice
that under local SU(N) transformations ψai → Wi,abψbi, Wi ∈ SU(N), the electron
operator ci in (2) is invariant. Thus the Hamiltonian contain a local SU(N) symmetry after
we substitute (2) into (1). The local SU(N) symmetry manifest itself as a gauge symmetry
in the mean field Hamiltonian (3). Notice that (3) is invariant under the SU(N) gauge
transformation Wi: ψi → Wiψi and Uij → WiUijW

†
j . The gauge fluctuation in the mean

field theory can be included by replacing the mean field value Uij = η by Uij = ηexp(iaij)
where aij is a N × N hermitian matrix. aij is just the SU(N) gauge potential on the
lattice. The time component of the SU(N) gauge field can be included by adding a term10

ψ
†
i a0(i)ψi to the mean field Hamiltonian. The constraint (5) is equivalent to the following

constraint10

JI
µ(i) = 0, I = 1, ..., N2 − 1 (6)

where JI
µ are the SU(N) charge and the current density. The constraint (6) can be

enforced in the mean field theory by integrating out the gauge field fluctuation aµ.10 After
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the projection, the only surviving states are those which are invariant under the local
SU(N) transformations. Those states correspond to the physical electron states.

The effective theory of the NAF state described above can be obtained by first inte-
grating out ψa field:

L0eff =
M

4πN
Aµ∂νAλεµνλ +

M

8π
Traµfνλεµνλ (7)

which is just the level M SU(N) CS theory.8 fµν in (7) is the strength of the SU(N)
gauge field. The quasiparticle excitations in the NAF state correspond to the holes in
various Landau levels of the partons. Those excitations are created by the parton fields
ψa. After including the gauge fields, the properties of the quasiparticles are described by
the following effective Lagrangian

Lqeff =
∑

ψ†[(i∂t +
e

N
A0 + a0)−

1
2m

(∂i − i
e

N
Ai − iai)

2]ψ (8)

(7) and (8) describe the low energy properties of the NAF state.

The NA CS theory given by (7) and (8) have been studied in detail in Ref. 8. The
quasiparticles ψa (which are called the Wilson lines in Ref. 8) are found to have NA
statistics. In the following we will summarize some special properties associated with the
NA statistics and discuss their relation to the microscopic electron wave function. Let us
put the NAF state on a sphere. The ground state of (7) is found to be non-degenerated
on the sphere. (On genus g Riemann surface the ground states are degenerate.) Now
let us create m quasiparticles and m′ quasiholes using the operators ψai and ψ

†
aj

. If we
have ignored the gauge field aµ (setting aµ = 0), the Hilbert space generated by ψai|mi=1
and ψ

†
aj
|m′
j=1 would be (HR)m × (HR̄)m

′
which has Nm+m′

dimensions. Here HR is the
fundamental representation of the SU(N) and HR̄ is the dual of HR. However after we
include the gauge fluctuations and do the projection za

i = zi, only the gauge invariant
states can survive the projection and appear as the physical states of the original electron
system. In particular all the states that transform non-trivially under the global SU(N)
are project away. Thus the Hilbert space Hmm′ of the physical states is contained in the
SU(N) invariant subspace of (HR)m × (HR̄)m

′
:8 Inv((HR)m × (HR̄)m

′
) In the above we

have only used the global SU(N) gauge symmetry. The local gauge symmetry may further
reduce the dimension of the Hilbert space. Not every (global) SU(N) singlet state can
survive the projection and become a physical state. Thus the dimension of Hmm′ can be
less than that of Inv((HR)m × (HR̄)m

′
).

When m = 1 and m′ = 0, there is no invariant state and the dimension of H10 is zero.
When m = m′ = 1 there is only one invariant state. It is shown that such a state is always
physical and H11 is one dimensional. In this case moving one particle around the other
induces a Berry’s phase exp( i2π(N+1)

N(N+M)). When m = m′ = 2, Inv((HR)2 × (HR̄)2) is two
dimensional. It turns out that H22 is two dimensional if M > 1 and one dimensional if
M = 1.8 As we interchange the two particles created by ψai, i = 1, 2, we obtain a NA
Berry’s phase for M > 1. The 2× 2 matrix describing the NA Berry’s phase is found8 to
have eigenvalues −exp( iπ(−N+1)

N(N+M) ) and exp( iπ(N+1)
N(N+M)). For M = 1 the Hilbert space H22

is one dimensional and the corresponding Berry’s phase is exp(iπ/N). The later result
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is expected because the M = 1 NAF state is just the Laughlin state with filling fraction
1/N . The reproduction of the well known results of the Laughlin states is a non-trivial
self consistency check of our theory.

Some of the above results can be easily understood in terms of the microscopic elec-
tron wave function. First we notice that the mean field state Φmean is a (global) SU(N)
singlet and the NAF wave function can be expressed as 〈0|∏i c(zi)|Φmean〉 = [χM (zi)]N
where c(zi) is given by (2). The quasiparticles discussed above are described by the follow-
ing electron wave function 〈0|∏i c(zi)

∏
I,I ′ ψaIψ

†
bI′
|Φmean〉. Since 〈0|∏i c(zi) is an SU(N)

singlet, it is clear that only the states in Inv((HR)m× (HR̄)m
′
) can survive the projection

and give rise to non-zero electron wave functions. The dimension of the physical Hilbert
space may be smaller than that of the invariant space because the electron wave functions
induced from different mean field singlet states may not be orthogonal to each other. For
m = m′ = 1 the electron wave function can be obtained by the projection of the mean
field state ψ1(Z1)ψ

†
1(Z2)|Φmean〉. The electron wave function is non-zero and is given by

χM (zi; Z1; Z2)[χM (zi)]N−1, where χM (zi; Z1; Z2) has one hole and one particle at Z1 and
Z2. Thus H11 is one dimensional. For m = m′ = 2 the two electron wave functions Φ1,2

can be obtained by the projection of mean field states ψ1(1)ψ1(2)ψ†1(3)ψ†1(4)|Φmean〉 and
ψ1(1)ψ2(2)ψ†1(3)ψ†2(4)|Φmean〉 (which contain the two singlets). Notice that locally the
electron wave function are the same near each quasiparticle no matter the quasiparticle
is created by ψ1 or ψ2. More precisely the physical correlation functions, like the den-
sity correlation, are the same arround each quasiparticle when the quasiparticles are well
separated. This is because ψ1 can be rotated into ψ2 by a global SU(N) transformation
while the density correlation being a SU(N) invariant quantity will not be changed. The
effects of the other quasiparticles can be ingored since the correlation in the NAF states
is short ranged and the other particles are far away. Thus the two electron states Φ1 and
Φ2 should have the same local correlations and hance the same energy. Such a degeracy
is a bulk property just like the degeneracy of the FQH states on a torus.

When M = 1 each kind of partons only fill the first Landau level. The action of
ψ1(1)ψ1(2)ψ†1(3)ψ†1(4) on the first-Landau-level wave function corresponds to multiplica-

tion of a factor A22 =
∑

i1,i2 δ(Z3− zi1)δ(Z4− zi2)
∏

i,j 6=i1,i2
(zi−Z1)(zj−Z2)
(zi−zi1

)(zj−zi2
) and the action

of ψ1(1)ψ†1(3) corresponds to a factor A11 =
∑

i1 δ(Z3−zi1)
∏

i6=i1
zi−Z1
zi−zi1

. After the projec-

tion the two resulting electron wave functions are given by A22(χM )N and (A11)2(χM )N

which describe the same state since A22 ∝ (A11)2. Similar derivations apply to other
values of m and m′ and the physical Hilbert space Hmm′ can be shown to be at most
one dimensional for M = 1. This is just the result of the NA CS theory. More detailed
discussions of the structures of excitations in the NAF state will appear elsewhere.

We would like to remark that although the gauge field mediate no long range inter-
actions between quasiparticles due to the CS term, the quasiparticles ψa are not really
equivalent to the “free” quarks in absence of the gauge field. This is because the quasi-
particles are dressed by NA flux which carries the SU(N) charge. Thus it is conceivable
that when M = 1 the quasiparticles behave like Abelian anyons with no internal degree of
freedom, as has been shown in the above discussion.

Now let us discuss another fascinating property of the NAF state – the gapless edge
excitations15,6 in the NAF state. We will follow the discussions in Ref. 6. First let us
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ignore the constraint (6) and set aµ = 0 in the mean field theory. In this case the edge
excitations are those of the IQH states15 described by

L =
∑
aα

iλaα†(∂0 − v∂x)λaα (9)

where λaα is a fermion field describing the edge excitations of the α-th Landau level of
the a-th kind of the partons. The Hilbert space of (9) can be represented11 as a direct
product of the Hilbert spaces of a U(1) Kac-Moody (KM) algebra,16 a level N SU(M)
KM algebra and a level M SU(N) KM algebra. This decomposition is a generalization
of the spin-charge separation in the 1D Hubbard model. Notice that the total central
charge of the above three KM algebras is 1 + N(M2−1)

M+N + M(N2−1)
N+M = MN which is equal

to the central charge of (9). The above three KM algebra are generated by currents
Jµ = eN−1λaα†∂µλaα (the electric current), jI

µ = tIαβλaα†∂µλaβ , and JI
µ = T I

abλ
aα†∂µλbα,

where tI (T I) are the generators of the SU(M) (SU(N)) Lie algebra. The currents in
the SU(N) KM algebra are just the currents in (6) which couple to the SU(N) gauge
field aµ. To obtain the physical edge excitations in the electron wave function, we need to
do the projection to enforce the constraint (6). Because of the above decomposition, the
projection can be easily done by removing from the Hilbert space of (9) the states associated
with the SU(N) KM algebra.6 The remaining physical edge states are generated by the
U(1) × SU(M) KM algebra. The central charge of the U(1) × SU(M) KM algebra is
given by c = M MN+1

M+N and the specific heat (per unit length) of the edge excitations17 is
C = cπ

6
T
v . The electron creation operator6 on the edge is given by c = λ1α1...λNαN which

has a propagator (x − vt)−N along the edge. We would like to point out that in general
the edge excitations may have several different velocities in contrast to what was implicitly
assumed above.

The above construction can be easily generalized in a number of directions: A) We
may decompose electrons into partons with different electric charge. B) We may choose a
different mean field ground state which break the SU(N) gauge symmetry. Actually A) is
a special case of B).18 The effective CS theory for A) and B) will in general contain several
Abelian and NA gauge fields. In particular the FQH states studied in Ref. 3,6 correspond
to breaking the SU(N) gauge symmetry into [U(1)]N−1 gauge symmetry. One interesting
NAF state in the case A) is the ν = 1

1+ 1
2+ 1

2

= 1
2 state. Its NA statistics is described by the

level 2 SU(2) CS theory. The electrons in such a state lie in the first three Landau levels.
We would like to argue that the NAF states studied in this paper are generic states and

their NA topological orders are robust against small perturbations. A) The NA structures
in the NAF states come from the SU(N) gauge symmetry of the mean field ground state.
To destroy the NA topological orders (and the associated NA statistics) we must break
the SU(N) gauge symmetry through the Higges mechanism. This cannot be achieved
unless we add finite perturbations. B) All excitations in the NAF have finite energy gap
and the interactions between them have finite range. Therefore the NAF states do not
have infrared divergences and it is self consistent to assume the interactions between the
excitations do not destablize the NAF states. Thus we expect the properties studied in
this paper are universal properties of the NAF states which are robust against any small
perturbations. The NAF states are a new type of the infrared fixed points and the NA
topological orders should appear as a general possibility for the ordering in the ground
states of strongly interacting electron systems.
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It is not clear under what condition the NAF states might be realized in nature.
However since the NAF states are generic states, they may appear in experiments under
right conditions, especially when the electron density is low and higher Landau levels are
important. The low density FQH states are largely unexplored in experiments.
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