
ISSN 1472-2739 (on-line) 1472-2747 (printed) 1167

Algebraic & Geometric Topology

ATGVolume 3 (2003) 1167–1224
Published: 12 December 2003

On a theorem of Kontsevich

James Conant

Karen Vogtmann

Abstract In [12] and [13], M. Kontsevich introduced graph homology as
a tool to compute the homology of three infinite dimensional Lie algebras,
associated to the three operads “commutative,” “associative” and “Lie.”
We generalize his theorem to all cyclic operads, in the process giving a
more careful treatment of the construction than in Kontsevich’s original
papers. We also give a more explicit treatment of the isomorphisms of
graph homologies with the homology of moduli space and Out(Fr) out-
lined by Kontsevich. In [4] we defined a Lie bracket and cobracket on the
commutative graph complex, which was extended in [3] to the case of all
cyclic operads. These operations form a Lie bi-algebra on a natural sub-
complex. We show that in the associative and Lie cases the subcomplex
on which the bi-algebra structure exists carries all of the homology, and we
explain why the subcomplex in the commutative case does not.
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1 Introduction

In the papers [12] and [13] M. Kontsevich sketched an elegant theory which re-
lates the homology of certain infinite-dimensional Lie algebras to various invari-
ants in low-dimensional topology and group theory. The infinite-dimensional
Lie algebras arise as generalizations of the Lie algebra of polynomial functions
on R2n under the classical Poisson bracket or, equivalently, the Lie algebra of
polynomial vector fields on R2n under the Lie bracket. One thinks of R2n as
a symplectic manifold, and notes that these Lie algebras each contain a copy
of the symplectic Lie algebra sp(2n). The relation with topology and group
theory is established by interpreting the sp(2n)-invariants in the exterior alge-
bra of the Lie algebra in terms of graphs, and then exploiting both new and
established connections between graphs and areas of low-dimensional topology
and group theory. These connections include the construction of 3-manifold
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and knot invariants via data associated to trivalent graphs, the study of auto-
morphism groups of free groups using the space of marked metric graphs (Outer
space), and the use of ribbon graph spaces to study mapping class groups of
punctured surfaces.

This paper is the outcome of a seminar held at Cornell, organized by the second
author, devoted to understanding Kontsevich’s theory. Kontsevich describes
three variations of his theory, in the commutative, associative and Lie “worlds.”
Kontsevich’s papers skip many definitions and details, and, as we discovered,
have a gap in the proof of the main theorem relating symplectic invariants
and graph homology. In this paper we explain Kontsevich’s theorem carefully,
in the more general setting of cyclic operads. In particular, we adapt a fix
that Kontsevich communicated to us for the commutative case to the general
case. We then specialize to the Lie, associative and commutative operads,
which are the three worlds which Kontsevich considered in his original papers.
Using a filtration of Outer space indicated by Kontsevich, we show that the
primitive part of the homology of the Lie graph complex is the direct sum
of the cohomologies of Out(Fr), and the primitive part of the homology of
the associative graph complex is the direct sum of the cohomologies of moduli
spaces (or equivalently mapping class groups) of punctured surfaces. We then
recall the Lie bracket and cobracket which we defined on the commutative graph
complex in [4], and which was extended in [3] to the case of all cyclic operads.
These operations form a bi-algebra structure on a natural subcomplex. We
show that in the associative and Lie cases the subcomplex on which the bi-
algebra structure exists carries all of the homology, and we explain why the
subcomplex in the commutative case does not.

Many people contributed to this project. Participants in the Cornell seminar
included David Brown, Dan Ciobutaru, Ferenc Gerlits, Matt Horak, Swapneel
Mahajan and Fernando Schwarz. We are particularly indebted to Ferenc Ger-
lits and Swapneel Mahajan, who continued to work with us on understanding
these papers after the scheduled seminar was over. Mahajan has written a sep-
arate exposition of some of the material here, with more information about the
relation with classical symplectic geometry, using what he calls reversible oper-
ads, which are closely related to cyclic operads. His treatment of the theorem
relating graphs and Lie algebra invariants uses Kontsevich’s original fix, and
therefore does not work for every cyclic operad. In particular, it cannot handle
the Lie case. A succinct outline of Kontsevich’s theory can be found in the
thesis of Gerlits, which also includes a careful study of the Euler characteristic
using Feynman integrals. We hope that these different expositions, with dif-
ferent emphases, will help to make Kontsevich’s beautiful theory more broadly
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accessible.

The present paper is organized as follows. In Section 2 we develop the theory
for general cyclic operads. After reviewing the definition of cyclic operad we
define a chain complex parameterized by graphs whose vertices are “colored”
by operad elements. This chain complex was introduced in a more general
setting by Getzler and Kapranov in [8], and was studied by Markl in [16]. We
then construct a functor from cyclic operads to symplectic Lie algebras, as the
direct limit of functors indexed by natural numbers. We then show how to
use invariant theory of the symplectic Lie algebra to define a map from the
Chevalley-Eilenberg complex of the Lie algebra to the above chain complex of
graphs which is an isomorphism on homology.

In section 3, we specialize to the Lie operad. By using a filtration of Outer
space indicated by Kontsevich, we prove that the primitive (connected) part of
the graph complex computes the cohomology of the groups Out(Fr) of outer
automorphisms of finitely-generated free groups. We also prove that inclusion
of the subcomplex spanned by 1-particle irreducible graphs (i.e. graphs with no
separating edges) is an isomorphism on homology. This is of interest because,
as was shown in [4, 3] this subcomplex carries a graded Lie bi-algebra structure;
this implies, among other things, that the homology of the groups Out(Fr) is
the primitive part of a differential graded Hopf algebra. In section 4 we note
how the theory applies in the case of the associative operad. In this case, the
primitive part of the graph complex is shown to compute the cohomology of
mapping class groups of punctured surfaces. The proof proceeds by restricting
the filtration of Outer space to the “ribbon graph” subcomplexes, on which
mapping class groups of punctured surfaces act. As in the Lie case, we show
that the subcomplex of 1-particle irreducible graphs carries all of the homology,
so that the direct sum of homologies of mapping class groups is the primitive
part of a differential graded Hopf algebra. Finally, in section 5 we reconsider the
commutative case, which was the focus of our paper [4]. We give a geometric
description of the primitive part of commutative graph homology, as the relative
homology of a completion of Outer space modulo the subcomplex at infinity,
with certain twisted coefficients. This relative homology measures the difference
between the relative quotient of Outer space by Out(Fr) and the quotient by
the subgroup SOut(Fr) of outer automorphisms which map to SL(r,Z) under
the natural map Out(Fr) → GL(r,Z). Using this geometric description of
graph homology, we explain why the one-particle irreducible subcomplex of the
graph complex does not have the same homology as the full complex, unlike
the Lie and associative cases.

Acknowledgments: In addition to the seminar participants mentioned above, we
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would like to thank Martin Markl, Steve Shnider and Jim Stasheff for pointing
out several typos and unclear statements. Finally, the first author was partially
supported by NSF VIGRE grant DMS-9983660, and the second author was
partially supported by NSF grant DMS-0204185.

2 The general case - Cyclic Operads

2.1 Review of cyclic operads

Throughout the paper we will work in the category of real vector spaces. Thus
an operad O is a collection of real vector spaces O[m], m ≥ 1, with

1) a composition law:

γ : O[m]⊗O[i1]⊗ . . .⊗O[im]→ O[i1 + . . .+ im],

2) a right action of the symmetric group Σm on O[m], and

3) a unit 1O ∈ O[1]

satisfying appropriate axioms governing the unit, associativity, and Σm -equiv-
ariance of the composition law (see [17] for a complete list of axioms). Intu-
itively, an element of O[m] is an object with m numbered input slots and an
ouput slot. The symmetric group acts by permuting the numbering of the input
slots. The composition γ(o⊗ o1⊗ . . .⊗ om) plugs the output of oj ∈ O[ij ] into
the j th input slot of o, renumbering the input slots of the result consistently
(see Figure 1). If oi = 1O for i 6= k and ok = o′ , we call the result the kth

Figure 1: Operad composition

composition of o′ with o.

A cyclic operad is an operad where the action of the symmetric group Σm

extends to an action of Σm+1 in a way compatible with the axioms. This
concept was introduced in [7] (see also [17]). The intuitive idea is that in a
cyclic operad, the output slot can also serve as an input slot, and any input slot
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can serve as the output slot. Thus, if we number the output slot as well (say
with 0), then Σm+1 acts by permuting the numbers on all input/output slots.
Modulo the Σm+1 action we can compose two elements using one input/output
slot of each.

(a) Labeled 6-star (b) Superimposing an
operad element and an
m-star

(c) O -spider

Figure 2: “Coloring” an m-star with an element of O to make an O -spider

We can bring the actual situation closer to the intuition as follows. For each
integer m ≥ 2, let ∗m be the m-star, the unrooted tree with one internal vertex
and m leaves λ1, . . . , λm . A labeling of ∗m is, by definition, a bijection from
the set of leaves to the numbers 0, . . . ,m − 1. We represent a labeling L by
placing the number L(λi) on the leaf λi , close to the internal vertex of ∗m .
Figure 2a shows a labeled 6-star.

The symmetric group Σm acts on the set of labelings of ∗m , and we make the
following definition.

Definition 1 Let O be a cyclic operad, m ≥ 2 an integer, and L the set of
labelings of the m-star. The space OS[m] of O-spiders with m legs is defined
to be the space of coinvariants

OS[m] = (
⊕
L
O[m− 1])Σm ,

where (·)L : O[m − 1] →
⊕

LO[m − 1] is the natural inclusion into the L
summand, and Σm acts by σ · (oL) = (σ · o)σ·L .

Every element of OS[m] is an equivalence class [oL] for some o ∈ O[m−1] and
labeling L of ∗m . To see this, note that [(o1)L1 +(o2)L2 ] = [(o1)L1 ]+ [(o2)L2 ] =
[(o1)L1 ] + [(σ · o2)L1 ] = [(o1 + σ · o2)L1 ] for σ ∈ Σm with σ · L2 = L1 . We can
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think of o as sitting on top of ∗m so that the labeling of ∗m corresponds to the
numbering of the input/output slots (Figure 2b).

Modding out by the action of Σm erases the labeling and the distinction be-
tween input and output slots (Figure 2c). The picture explains the arachnoid
terminology for elements of OS[m].

(a) Spiders to be mated using legs λ and µ

(b) Phase one (c) Phase two

(d) Mated spiders

Figure 3: Mating spiders

The composition law in O transforms to a mating law in OS =
⊕

m≥2OS[m],
as follows. Consider two O-spiders, S and T , and any pair of legs λ of S and
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µ of T (Figure 3a).

Choose representatives (o1)L1 for S and (o2)L2 for T such that L1(λ) = 0 (so
that λ corresponds to the output slot of o1 ) and L2(µ) = 1 (so µ corresponds
to the first input slot of o2 ). Connect the λ, µ legs together. Rename the spider
legs (other than λ and µ) so that the remaining legs of S are inserted, in order,
into the ordered set of legs of T , at the slot formerly occupied by µ. (Figure
3b).

Now contract the edge formed by λ and µ to get an underlying m-star, and
compose the two operad elements along the corresponding input/output slots to
obtain γ(o2⊗o1⊗1O⊗· · ·⊗1O)L , where L is the induced labeling (Figure 3c).

The resulting equivalence class under the symmetric group action will be de-
noted by (S, λ) ◦ (µ, T ) (Figure 3d).

2.2 Examples

We describe the three operads we will be focusing on: the commutative, Lie
and associative operads. Figure 4 shows examples of spiders in these operads.
There are many other cyclic operads, for example the endomorphism operad
and the Poisson operad. See [7] or [17]. It is also worthwhile to note at this
point that cyclic operads form a category, and there are obvious morphisms
from the Lie operad to the associative operad, and from the associative to the
commutative operad. See [17].

Figure 4: Three types of spiders. In the Lie case, the picture is modulo IHX and AS
relations.

2.2.1 The commutative operad

In the commutative operad, each O[m] is 1-dimensional, with trivial Σm action.
The composition law is given by the canonical isomorphism (i.e. multiplication)
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R⊗k ∼= R. An O-spider in this case is a copy of ∗m , weighted by a real number.
Mating is done by joining legs λ and µ of two stars to form an edge, then
contracting that edge to form a new star and multiplying the weights.

2.2.2 The associative operad

In the associative operad, each O[m] is spanned by rooted planar trees with one
internal vertex and m numbered leaves. The planar embedding that each such
tree comes with is equivalent to a prescribed left-to-right ordering of the leaves.
The symmetric group acts by permuting the numbers of the leaves. To compose
two trees, we attach the root of the first tree to a leaf of the second tree, then
collapse the internal edge we just created. We order the leaves of the result
so that the leaves of the first tree are inserted, in order, at the position of the
chosen leaf in the second tree. A basis element of the space OS of O-spiders
is a copy of ∗m with a fixed cyclic ordering of the legs. To mate two basic
O-spiders using legs λ and µ, we join λ and µ to form a connected graph with
one internal edge, then contract the internal edge. The cyclic order on the legs
of each spider induces a cyclic ordering of the legs of the spider which results
from mating. Mating is extended linearly to all spiders, i.e. to spiders whose
“body” consists of a linear combination of cyclic orderings.

2.2.3 The Lie operad

In the Lie operad, O[m] is the vector space spanned by all rooted planar bi-
nary trees with m numbered leaves, modulo the subspace spanned by all anti-
symmetry and IHX relators. Specifying a planar embedding of a tree is equiva-
lent to giving a cyclic ordering of the edges adjacent to each interior vertex. The
anti-symmetry relation AS says that switching the cyclic order at any vertex
reverses the sign. The IHX (Jacobi) relation is well-known (see Figure 5).

Figure 5: The IHX relator
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The symmetric group Σm acts by permuting the numbering of the leaves. The
composition rule in the operad attaches the root of one tree to a leaf of another
to form an interior edge of a new planar tree, then suitably renumbers the
remaining leaves.

The space of O-spiders, OS , is spanned by planar binary trees with m num-
bered leaves, modulo AS and IHX, but with no particular leaf designated as
the root. Mating is accomplished by gluing two such trees together at a leaf
to form a single planar binary tree, then renumbering the remaining leaves
suitably. Note that mating does not involve an edge collapse, as it did in the
commutative and associative cases.

2.3 Graph homology of a cyclic operad O

In this section we construct a functor

{Cyclic operads}→{Chain complexes},

where the chain complexes are spanned by oriented graphs with an element of
OS attached to each vertex. We begin with a subsection discussing the appro-
priate notion of orientation on graphs. This subsection includes results which
will be needed later when working with specific operads; the reader interested
only in the basic construction can stop at the definition of orientation on first
reading.

2.3.1 Oriented graphs

By a graph we mean a finite 1-dimensional CW complex. The set of edges of a
graph X is denoted E(X), the set of vertices V (X) and the set of half-edges
H(X). Let H(e) denote the set of (two) half-edges contained in an edge e.
There is an involution x 7→ x̄ on H(X), swapping the elements of H(e) for
each e ∈ E(X).

For an n-dimensional vector space V , set det(V ) := ∧nV . An orientation on
V can be thought of as a unit vector in det(V ). For a set Z , we denote by RZ
the real vector space with basis Z.

Definition 2 An orientation on a graph X is a unit vector in

detRV (X) ⊗
⊗

e∈E(X)

detRH(e).
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In other words, an orientation on X is determined by ordering the vertices of
X and orienting each edge of X . Two orientations are the same if they are
obtained from one another by an even number of edge-orientation switches and
vertex-label swaps.

Our definition is different from the definition given in Kontsevich’s papers
[12],[13] but, as we show below, it is equivalent for connected graphs. (Note
that Kontsevich defines his graph homology using only connected graphs.) We
follow ideas of Dylan Thurston [21], and begin by recording a basic observation:

Lemma 1 Let 0 → A → B → C → D → 0 be an exact sequence of finite-
dimensional vector spaces. Then there is a canonical isomorphism

det(A)⊗ det(C)→ det(B)⊗ det(D).

Proof For any short exact sequence 0 → U
f→ V → W → 0 of finite-

dimensional vector spaces, with s : W → V a splitting, the map

det(U)⊗ det(W )→ det(V )

given by u ⊗ w 7→ f(u) ∧ s(w) is an isomorphism, and is independent of the
choice of s. The lemma now follows by splitting 0 → A → B → C → D → 0
into two short exact sequences.

Kontsevich defines an orientation on a graph to be an orientation of the vec-
tor space H1(X;R) ⊕ RE(X). The following proposition shows that this is
equivalent to our definition for connected graphs.

Proposition 1 Let X be a connected graph. Then there is a canonical iso-
morphism

det(RV (X)) ⊗
⊗
e

det(RH(e)) ∼= det(H1(X;R)) ⊗ det(RE(X)).

Proof For any graph X , we have an exact sequence 0→ H1(X;R)→ C1(X)
→ C0(E)→ H0(X;R)→ 0, so Lemma 1 gives a canonical isomorphism

det(H1(X;R)) ⊗ det(C0(X)) ∼= det(C1(X)) ⊗ det(H0(X;R)). (1)

C0(X) has a canonical basis consisting of the vertices of X , so that C0(X) can
be identified with RV (X):

det(C0(X)) ∼= det(RV (X)).
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In order to give a chain in C1(X), on the other hand, you need to prescribe
orientations on all of the edges, so that

det(C1(X)) ∼= det(⊕e detRH(e)) ∼= det(RE(X)) ⊗
⊗
e

det(RH(e)). (2)

The second isomorphism follows since both expressions are determined by or-
dering and orienting all edges.

If X is connected, H0(X;R) ∼= R has a canonical (ordered!) basis. Combining
this observation with isomorphisms (1) and (2) gives

det(H1(X;R)) ⊗ det(RV (X)) ∼= det(RE(X)) ⊗
⊗
e

det(RH(e)). (3)

Now note that RE(X) and RV (X) have canonical unordered bases, which
can be used to identify det(RE(X)) and det(RV (X)) with their duals. Since
V ∗ ⊗ V is canonically isomorphic to R, we can use this fact to “cancel” copies
of det(RE(X)) or det(RV (X)), effectively moving them from one side of a
canonical isomorphism to the other. In particular, from equation (3) we get the
desired canonical isomorphism

det(H1(X;R)) ⊗ det(RE(X)) ∼= det(RV (X)) ⊗
⊗
e

det(RH(e)).

Other equivalent notions of orientation, which we will use for particular types
of graphs, are given in the next proposition and corollaries. First we record an
easy but useful lemma.

Lemma 2 (Partition Lemma) Let N be a finite set, and P = {P1, . . . , Pk}
a partition of N . Then there is a canonical isomorphism

det(RN) ∼= ⊗ det(RPi)⊗ det
( ⊕
|Pi|odd

R
)
,

which is independent of the ordering of the Pi .

Proof For xi in N , the map “regroups” x1 ∧ . . . ∧ x|N | so that all of the xi
which are in P1 come first, etc.

Proposition 2 For X a connected graph, let H(v) denote the set of half-edges
adjacent to a vertex v of X . There is a canonical isomorphism

det(H1(X;R)) ⊗ det(RE(X)) ∼=
⊗

v∈V (X)

det(RH(v)) ⊗ det(
⊕

|H(v)|even
R)
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Proof By Lemma 2, grouping half-edges according to the edges they form
gives an isomorphism ⊗

e∈E(X)

det(RH(e)) ∼= detRH(X);

on the other hand, grouping according to the vertices to which they are adjacent
gives an isomorphism

detRH(X) ∼=
⊗
v

det(RH(v))⊗ det(
⊕

|H(v)|odd
Rv).

Combining these isomorphisms, and substituting into the canonical isomor-
phism of Proposition 1, we get

det(H1(X;R)) ⊗ det(RE(X))
∼= det(RV (X)) ⊗

⊗
v∈V (X)

det(RH(v)) ⊗ det(
⊕

|H(v)|odd
Rv)

∼=
⊗

v∈V (X)

det(RH(v))⊗ det(
⊕

|H(v)|even
Rv)

The last isomorphism follows from the fact that

detRV (X) ∼= det(
⊕

|H(v)|even
Rv)⊗ det(

⊕
|H(v)|odd

Rv)

which, in turn, follows by the partition lemma combined with the observation
that a graph cannot have an odd number of vertices of odd valence and an odd
number of vertices of even valence.

Corollary 1 Let T be a trivalent graph. Then an orientation on T is equiv-
alent to a cyclic ordering of the edges incident to each vertex.

Proof Since T is trivalent, all vertices have odd valence, so the orientation is
determined by ordering the sets H(v), up to cyclic (i.e. even) permutation, at
each vertex v .

This equivalence was mentioned in Kontsevich’s papers [12],[13] and is also an
ingredient in the isomorphism between commutative graph cohomology and the
diagram algebras arising in the study of finite type invariants of three-manifolds
and knots.
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Corollary 2 Let T be a connected binary tree. An orientation on T is equiv-
alent to an ordering of the edges of T , or to a cyclic ordering of the edges
incident to each interior vertex of T .

Proof Since T is a connected binary tree, H1(T ) is zero, and all of the vertices
have odd valence (1 or 3), so that the isomorphism in the statement of of
Proposition 2 reduces to:

det(RE(T )) ∼=
⊗
v

det(RH(v)) (5)

Note that a cyclic ordering of the edges incident to each interior vertex of a tree
can be thought of as an embedding of the tree into the plane.

2.3.2 Chain groups

We can now define the chain groups of the graph complex associated to a cyclic
operad.

Definition 3 A vertex v of a graph is O-colored if the half-edges incident to
v are identified with the legs of an O-spider. An O-graph is an oriented graph
without univalent vertices with an O-spider coloring each vertex.

We represent an O-graph pictorially as in Figure 6.

Figure 6: O -graph

Definition 4 The group of k-chains OGk is a quotient of the vector space
spanned by O-graphs with k vertices:

OGk = R{O-graphs with k vertices}/relations
where the relations are of two kinds:
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(1) (Orientation) (X, or) = −(X,−or)
(2) (Vertex linearity) If a vertex v of X is colored by the element Sv =

aS+bT , where a, b ∈ R and S, T ∈ OS[m], then X = aXS +bXT , where
XS ,XT are formed by coloring v by S and T respectively.

Thus OGk is spanned by O-graphs with k vertices, each colored by a basis
element of OS . We set

OG =
⊕
k≥1

OGk.

We also define the reduced chain groups OGk to be OGk modulo the subspace
of graphs that have at least one vertex colored by 1O . In the commutative, as-
sociative and Lie cases, OGk is spanned by O-graphs without bivalent vertices,
since O[1] is spanned by 1O in these three cases.

2.3.3 Hopf algebra structure

Both OG and OG have a Hopf algebra structure whose product is given by
disjoint union. More precisely, X · Y is defined to be the disjoint union X ∪
Y where the orientation is given by shifting the vertex ordering of Y to lie
after that of X . The coalgebra structure is defined so that connected graphs
are primitive; the comultiplication is then extended multiplicatively to disjoint
unions of graphs. The multiplicative unit is the empty graph, and the counit is
dual to this unit. The antipode reverses the orientation of a graph.

The primitive parts (i.e. the subspaces of OG and OG spanned by connected
graphs) will be denoted POG and POG respectively.

2.3.4 Boundary map

Let X be an O-graph, with underlying oriented graph X , and let e be an edge
of X . We define a new O-graph Xe as follows. If e is a loop, then Xe is
zero. If e has distinct endpoints v and w , then the underlying graph Xe is the
graph obtained from X by collapsing e. The orientation on Xe is determined
by the following rule: choose a representative of the orientation on X so that
v is the first vertex, w is the second vertex, and e is oriented from v to w .
The orientation on Xe is then induced from that of X : the uncollapsed edges
are oriented as they were in X , the new vertex resulting from collapsing e is
first in the vertex ordering, and the other vertices retain their ordering. The
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O-colorings at all the vertices besides v and w stay the same. Let Sv , Sw be
the O-spiders coloring v and w respectively, with legs λ of Sv and µ of Sw
identified with the two half-edges of e. Then the O-spider (Sv, λ) ◦ (µ, Sw)
colors the vertex obtained by collapsing e (Figure 7).

Figure 7: Edge collapse

With this orientation convention, and using the associativity axiom of operads,
the map

∂E(X) =
∑
e∈X

Xe

is a boundary operator. This makes OG into a chain complex, and we have

Definition 5 The O-graph homology of the cyclic operad O is the homology
of OG = ⊕OGk with respect to the boundary operator ∂E .

Note that OG , POG and POG are all chain complexes with respect to ∂E .

We conclude this section with a nice observation, which we won’t actually need,
and whose proof is left to the reader.

Proposition 3 The assignment O 7→ OG respects morphisms, and hence is a
functor from cyclic operads to chain complexes.

2.4 The Lie algebra of a cyclic operad and its homology

In this section we associate a sequence of Lie algebras to any cyclic operad.
We show that each of these Lie algebras contains a symplectic Lie algebra as
a subalgebra, and that under certain finiteness assumptions the Lie algebra
homology may be computed using the subcomplex of symplectic invariants in
the exterior algebra.
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2.4.1 Symplectic Lie algebra of a cyclic operad

For each integer n ≥ 1 we will define a functor {Cyclic Operads}→ {Symplectic
Lie Algebras}, sending O to LOn . We then take a limit as n → ∞ to obtain
an infinite-dimensional Lie algebra LO∞ .

Fix a 2n-dimensional real vector space Vn basis Bn = {p1, . . . , pn, q1, . . . , qn}
corresponding to the standard symplectic form ω . Given a cyclic operad O ,
the idea is to form a Lie algebra by putting elements of Vn on the legs of
O-spiders, and defining the bracket of two such objects by summing over all
possible matings, with coefficients determined by the symplectic form.

Figure 8: Symplecto-spider

Formally, we “put elements of Vn on the legs of an O-spider” via a coinvariant
construction like the one used to define spiders, i.e. we set

LOn =
∞⊕
m=2

(OS[m]⊗ V ⊗mn )Σm ,

where the symmetric group Σm acts simultaneously on OS[m] and on V ⊗mn .
We will refer to elements of LOn of the form [S ⊗ v1 ⊗ . . . ⊗ vm], where S is
an O-spider, as symplecto-spiders (Figure 8).

The bracket of two symplecto-spiders is defined as follows. Let S1 = [S1⊗ v1⊗
. . .⊗vm] and S2 = [S2⊗w1⊗ . . .⊗wl] be two symplecto-spiders. Let λ be a leg
of S1 and µ a leg of S2 , with associated elements vλ, wµ ∈ Vn . Recalling that
ω is the symplectic form on Vn , define (S1, λ)!(µ,S2) to be ω(vλ, wµ) times the
symplecto-spider obtained by mating S1 and S2 using λ and µ, erasing the
elements vλ and wµ , and retaining the elements of Vn on the remaining legs
(see Figure 9).

Now define the bracket by setting

[S1,S2] =
∑

λ∈S1,µ∈S2

(S1, λ)!(µ,S2);
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Figure 9: (S1, λ)!(µ, S2)

and extending linearly to all of LOn .

Proposition 4 The bracket is antisymmetric and satisfies the Jacobi identity,
for any cyclic operad.

Remark 1 A related construction appears in [11], Theorem 1.7.3, where, for
any operad, a bracket on what might be called the space of rooted spiders is
defined. One sums over all ways of plugging the root (output) of one spider into
an input of another, and then subtracts the results of doing this in the other
order. In the cyclic case there is no specified root, so one would have to sum
over all choices of root; but then subtracting off the other order would be the
same and give you a trivial operation. The needed axiom in this case is that
of an anticyclic operad ([7, 17]), which ensures that the order of “plugging in”
determines a sign. When O is a cyclic operad and V is a symplectic vector
space, the collection O[m] ⊗ V m+1 is an anticyclic operad. Thus the bracket
defined here is a generalization to the anticyclic case of the one defined by
Kapranov and Manin.

Remark 2 This Lie algebra structure on LOn is quite natural. Let T≥2Vn
denote the tensor algebra in degrees ≥ 2. T≥2Vn has a Lie bracket induced
by the symplectic form, and we can give OS an abelian Lie algebra structure.
Give the tensor product of associative algebras OS⊗T≥2Vn the natural bracket
which is a derivation in each variable, and which extends the brackets on each
tensor factor. Then the natural map OS ⊗ T≥2Vn → LOn is a Lie algebra
homomorphism.

In the commutative case the Lie algebra LOn may be identified with the
Lie algebra of polynomials with no constant or linear term in the variables
p1 . . . pn, q1, . . . , qn , under the standard Poisson bracket of functions.
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In the Lie case the Lie algebra LOn is isomorphic to the Lie algebra D∗(Vn)⊗R
that has arisen in the study of the mapping class group (see [14], [18]). Here
Dk(Vn) is defined to be the kernel of the map Vn⊗Lk(Vn)→ Lk+1(Vn) sending
v ⊗ x 7→ [v, x], where L∗(Vn) refers to the free Lie algebra on Vn .

We record the functoriality of our construction without proof.

Proposition 5 For each n ≥ 1, the assignment O 7→ LOn respects mor-
phisms, and hence is a functor from cyclic operads to Lie algebras.

Note that bracketing a symplecto-spider with 2 legs and one with m legs re-
sults in a sum of (at most two) symplecto-spiders, each with m legs. In partic-
ular, the subspace of LOn spanned by symplecto-spiders with two legs forms
a Lie subalgebra of LOn . If we consider only (two-legged) symplecto-spiders
with vertex colored by the identity 1O , we obtain an even smaller subalgebra,
denoted LO0

n . The next proposition identifies LO0
n with the symplectic Lie

algebra sp(2n).

Proposition 6 Let S0 denote the (unique) O-spider colored by the identity
element 1O . The subspace LO0

n of LOn spanned by symplecto-spiders of the
form [S0 ⊗ v ⊗ w] is a Lie subalgebra isomorphic to sp(2n).

Proof The map LO0
n → S2V sending [S⊗v⊗w] to vw is easily checked to be

a Lie algebra isomorphism, where the bracket on S2V is the Poisson bracket.

Recall that sp(2n) is the set of 2n× 2n matrices A satisfying AJ + JAT = 0,

where J =
(

0 I
−I 0

)
. The symmetric algebra S2V can be identified with the

subspace of V ⊗ V spanned by elements of the form v ⊗ w + w ⊗ v . Consider
the composition of isomorphisms

V ⊗ V → V ∗ ⊗ V → Hom(V, V )

where the first map is induced by the isomorphism V → V ∗ given by v 7→
ω(v, ). Tracing through these isomorphisms, we see that

piqj ↔ pi ⊗ qj + qj ⊗ pi 7→
(
−Eji 0

0 Eij

)
pipj ↔ pi ⊗ pj + pj ⊗ pi 7→

(
0 0

Eij + Eji 0

)
qiqj ↔ qi ⊗ qj + qj ⊗ qi 7→

(
0 −Eij − Eji
0 0

)
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where Eij is the n×n matrix with (i, j)-entry equal to 1 and zeroes elsewhere.
It is now straightforward to check that this gives a Lie algebra isomorphism
S2V → sp(2n).

The subalgebra LO0
n
∼= sp(2n) acts on LOn via the bracket (i.e. the adjoint

action). Using the remark following Proposition 4, we see that the sp(2n) action
on (OS[m]⊗ V ⊗mn )Σm is given by ξ · [S ⊗ v1 ⊗ · · · ⊗ vm] =

∑m
i=1[S ⊗ v1 ⊗ · · · ⊗

(ξ · vi)⊗ · · · ⊗ vm], where Vn has the standard sp(2n)-module structure.

The natural inclusion Vn → Vn+1 induces an inclusion LOn → LOn+1 of Lie
algebras, which is compatible with the inclusion sp(2n)→ sp(2(n + 1)).

Definition 6 The infinite dimensional symplectic Lie algebra LO∞ is the
direct limit

LO∞ = lim
n→∞

LOn.

2.4.2 Lie algebra homology

The Lie algebra homology of LOn is computed from the exterior algebra ∧LOn
using the standard Lie boundary operator ∂n : ∧k LOn → ∧k−1LOn defined
by

∂n(S1 ∧ . . . ∧ Sk) =
∑
i<j

(−1)i+j+1[Si,Sj] ∧ S1 ∧ . . . Ŝi ∧ . . . ∧ Ŝj ∧ . . . ∧ Sk.

The map ∧LOn → ∧LOn+1 induced by the natural inclusion is a chain map,
so that

Hk(LO∞;R) = lim
n→∞

Hk(LOn;R).

Proposition 7 Hk(LO∞;R) has the structure of a Hopf algebra.

Proof To define the product H∗(LO∞) ⊗ H∗(LO∞) → H∗(LO∞), consider
maps E : B∞ → B∞ sending pi 7→ p2i (resp. qi 7→ q2i ), and O : B∞ → B∞
sending pi 7→ p2i−1 (resp qi 7→ q2i−1 ). These induce maps E and O on LO∞ .
The product on H∗(LO∞) is induced by the map

LO∞ ⊕ LO∞ → LO∞

which sends x⊕ y to E(x) +O(y).
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The coproduct H∗(LO∞)→ H∗(LO∞)⊗H∗(LO∞) is induced by the diagonal
map LO∞ → LO∞ ⊕ LO∞ . More explicitly, the coproduct is induced by the
map ∧LO∞ → ∧LO∞ ⊗ ∧LO∞ sending

S1 ∧ S2 ∧ · · · ∧ Sk 7→
∑

[k]=I∪J
ε(I, J)SI ⊗ SJ ,

where the sum is over unordered partitions of [k] = {1, . . . , k}, where SI =
Si1 ∧ . . . ∧ Si|I| if I consists of i1 < i2 < . . . < . . . i|I| , and where ε(I, J) is a
sign determined by the equation S1 ∧ . . . ∧ Sk = ε(I, J)SI ∧ SJ .

The unit is 1 ∈ R ∼= ∧0LO∞ , and the counit is dual to this.

2.4.3 The subcomplex of sp(2n)-invariants

In the remainder of this paper, we assume that the vector spaces O[m] are
finite-dimensional. In this section we show that in this case the homology of
LOn is computed by the subcomplex (∧LOn)sp(2n) of sp(2n) invariants (where
an sp(2n) “invariant” is an element which is killed by every element of sp(2n).)

In general, the exterior algebra ∧LOn breaks up into a direct sum of pieces
Λk,m, spanned by wedges of k symplecto-spiders with a total of m legs:

∧LOn =
⊕
k,m

Λk,m

=
⊕
k,m

(
⊕

m1+...+mk=mm+

(OS[m1]⊗ V ⊗m1)Sm1
∧ . . . ∧ (OS[mk]⊗ V ⊗mk)Smk ).

If the vector spaces O[m] are finite-dimensional, then these pieces Λk,m are all
finite-dimensional, as are the following subspaces:

Definition 7 The (k,m)-cycles Zk,m , the (k,m)-boundaries Zk,m and the
(k,m)-homology Hk,m(LOn;R) are defined by

Zk,m = Λk,m∩ker(∂n), Bk,m = Λk,m∩im(∂n), Hk,m(LOn;R) = Zk,m/Bk,m.

With this definition, we have

Hk(LOn;R) =
⊕
m

Hk,m(LOn;R).

Proposition 8 The invariants (∧LOn)sp(2n) form a subcomplex of ∧LOn . If
O[m] is finite dimensional for all m, then the inclusion (∧LOn)sp(2n) → ∧LOn
is an isomorphism on homology.
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Proof The first statement follows since ∂n is an sp(2n)-module morphism.

The proof of the second statement depends on the following remark: every finite
dimensional sp(2n)-module, E , decomposes as a direct sum of sp(2n)-modules
in the following way:

E = Esp(2n) ⊕ sp(2n) · E.

(Proof: sp(2n) is well-known to be reductive, which means that for every fi-
nite dimensional module E , every submodule E′ ⊂ E has a complementary
submodule E′′ with E = E′ ⊕ E′′ . Thus E = Esp(2n) ⊕ E′′ . Now E′′ is a
direct sum of simple modules on which sp(2n) acts nontrivially. Therefore,
sp(2n) · (Esp(2n) ⊕ E′′) = sp(2n) ·E′′ = E′′ , and the proof is complete.)

By hypothesis O[m] is finite-dimensional, so that Λk,m is a finite dimensional
sp(2n)-module. Since sp(2n) is simple, this means that Λk,m decomposes
as a direct sum Λk,m = Λsp(2n)

k,m ⊕ sp(2n) · Λk,m . Since the boundary is an
sp(2n) module morphism, the space of (k,m)-cycles Zk,m and the space of
(k,m)-boundaries Bk,m are both sp(2n) modules. Therefore, they decompose
as Zsp(2n)

k,m ⊕ sp(2n) · Zk,m and B
sp(2n)
k,m ⊕ sp(2n) · Bk,m respectively. Thus the

homology

Hk(LOn) =
⊕
m

Hk,m(LOn)

=
⊕
m

Zk,m/Bk,m

=
⊕
m

Z
sp(2n)
k,m

B
sp(2n)
k,m

⊕ sp(2n) · Zk,m
sp(2n) ·Bk,m

Hence it suffices to show that sp(2n)·Zk,m = sp(2n)·Bk,m . For every ξ ∈ sp(2n)
define ikξ : ∧k−1LOn → ∧kLOn by a 7→ ξ ∧ a. Then one easily checks that for
a ∈ ∧kLOn , ξ ·a = (∂nik+1

ξ + ikξ∂n)(x). Thus, if ξ ∈ sp(2n) and z ∈ Zk,m , then
ξ · z = ∂ni

k+1
ξ (z). Hence sp(2n) · Zk,m ⊂ Bk,m , which implies [sp(2n), sp(2n)] ·

Zk,m ⊂ sp(2n) ·Bk,m . Since sp(2n) is simple, [sp(2n), sp(2n)] = sp(2n) and the
proof is complete.

2.5 Relation between graph homology and Lie algebra homol-
ogy

Now we describe the construction at the heart of Kontsevich’s proof, namely
the identification of sp(2n) invariants with oriented graphs. There are three
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principle players that need to be introduced:

φn : OG → ∧LOn
ψn : ∧ LOn → OG
Mn : OG → OG

2.5.1 The map φn

We need to produce wedges of symplecto-spiders from an O-graph X. Let X be
the underlying oriented graph, and fix an ordering of the vertices and directions
on the edges representing the orientation. A state of X is an assignment of an
element of Bn = {p1, . . . , pn, q1 . . . , qn} to each half-edge of X and a sign ±1
to each edge, subject to the following constraints:

• if one half-edge of e is labeled pi , the other half-edge must be labeled qi ,
and vice versa;

• the sign on an edge is positive if the initial half-edge is labeled pi , and
negative if the initial half-edge is labeled qi .

Given a state s, The sign of s, denoted σ(s), is the product of the signs on all
edges, and we define an element X{s} of ∧LOn as follows. Cut each edge at
its midpoint, thereby separating X into a disjoint union of symplecto-spiders
S1, . . . ,Sk (where the subscript comes from the vertex ordering on X ), and set
X{s} = S1 ∧ . . . ∧ Sk (See Figure 10).

Now define φn(X) by summing over all possible states of X:

φn(X) =
∑
s

σ(s)X{s}.

Figure 10: State of X and corresponding term of φn(X)

Algebraic & Geometric Topology, Volume 3 (2003)



On a theorem of Kontsevich 1189

2.5.2 The map ψn

We define ψn , too, as a state sum. This time we need to produce O-graphs from
a wedge of symplecto-spiders S1∧S2∧ . . .∧Sk . In this case a state π is a pairing
of the legs of the spiders. We obtain a new O-graph (S1 ∧ · · · ∧ Sk)π by gluing
the spider legs together according to π , and orienting each edge arbitrarily.
Each edge of (S1 ∧ · · · ∧ Sk)π carries an element v1 ∈ Vn on its initial half-edge
and v2 ∈ Vn on its terminal half-edge. We define the weight of this edge to
be ω(v1, v2), and denote the product of the weights of all edges by w(π) (see
Figure 11). With this definition, the product w(π)(S1∧. . .∧Sk)π is independent

Figure 11: A pairing π and the resulting O -graph

of the choice of edge-orientations, and we define

ψn(S1 ∧ S2 ∧ . . . ∧ Sk) =
∑
π

w(π)(S1 ∧ . . . ∧ Sk)π,

where the sum is over all possible pairings π . Note that the vertex-linearity
axiom in the definition of OGk is required here to make ψn linear.

2.5.3 The map Mn

As in the definition of ψn , a pairing π of the half-edges H(X) of a graph X
determines a new graph Xπ , obtained by cutting all edges of X , then re-gluing
the half-edges according to π . The standard pairing σ pairs x with x̄ for all
half-edges x of X ; Xσ is of course just X .

If X is oriented, there is an induced orientation on Xπ , given as follows. A
pairing can be represented by a chord diagram on a set of vertices labeled
by the half-edges of X . The union of the chord diagrams for π and for the
standard pairing σ forms a one-dimensional closed manifold C(π), a union of
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circles. Choose a representative for the orientation of X so that the chords from
the initial half-edge of each edge e to the terminal half-edge of e are oriented
coherently in each of these circles. Now each edge of Xπ inherits a natural
orientation from each pair of half-edges determined by π . The ordering of the
vertices of Xπ is inherited from X . If X is the underlying graph of an O-graph
X, we let Xπ be the induced O-graph based on Xπ (see Figure 12).

Define c(π) to be the number of components of C(π). and define the map
Mn : OG → OG by

Mn(X) =
∑
π

(2n)c(π)Xπ,

where the sum is over all possible pairings π of H(X).

Figure 12: A term in Mn(X)

The map Mn decomposes as a direct sum as follows. Write

OG =
⊕
k,m

OGk,m

where OGk,m is spanned by O-graphs with k vertices and m half-edges (i.e
m/2 edges). The subspaces OGk,m are invariant under Mn , and we denote by
Mk,m
n the restriction of Mn to OGk,m .

Proposition 9 If O[m] is finite-dimensional, then for large enough n, the
restriction

Mk,m
n : OGk,m → OGk,m

of Mn is an isomorphism.

Proof If O[m] is finite-dimensional, then so is OGk,m , and we can think of the
restriction Mk,m

n of Mn to OGk,m , as a matrix. The matrix entries are poly-
nomials in n. The maximum of c(π) occurs when π is the standard pairing
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σ , and is equal to m. Thus the diagonal entries are of the form (2n)m+(lower
degree terms), whereas the off diagonal terms are all of lower degree. There-
fore, for large enough n, the matrix is invertible, i.e. the map Mk,m

n is an
isomorphism.

The three maps are related by the following Proposition.

Proposition 10 ψn ◦ φn = Mn

Proof Applying φn to an O-graph X means that we are assigning elements of
Bn to the endpoints of the chord diagram for the standard pairing σ of H(X),
as on the left of Figure 13. Each chord must connect a pair {pi, qi}, for some

Figure 13: Proof of Proposition 10

i. To then apply ψn , we consider all possible pairings π of H(X), and reglue
to get O-graphs Xπ . The weight w(π) will only be non-zero if every chord for
π also connects a pair {pi, qi} for some i, as on the right of Figure 13. Thus
the label of a vertex in C(π) determines the labels of all the vertices of each
connected component of C(π): they must alternate pi, qi, pi, qi, ... as you travel
around a circuit. There are 2n = |Bn| choices of label for each component,
so there are (2n)c(π) possible pairings π with non-zero weight. Keeping track
of the orientations, we see that each of these terms has weight 1, so that the
composition ψn ◦ φn is exactly equal to Mn .

Recall that ∧LOn =
⊕

Λk,m , where Λk,m is spanned by wedges of k symplecto-
spiders with a total of m legs. Let ψk,m denote the restriction of ψ to Λk,m ,
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and notice that ψk,m(Λk,m) ⊂ OGk,m . Similarly denote the restriction of φn to
Λk,m by φk,m and notice that φk,m(Λk,m) ⊂ OGk,m .

Corollary 3 For n sufficiently large with respect to fixed k and m,

i) the map ψk,m : Λk,m → OGk,m is onto, and

ii) the map φk,m : OGk,m → Λk,m is injective.

2.5.4 Graphs and invariants

The following proposition shows that the map φn gives instructions for con-
structing an sp(2n)-invariant from an O-graph, and that all sp(2n)-invariants
are constructed in this way.

Proposition 11 im(φn) = (∧LOn)sp(2n)

Proof In order to determine the sp(2n)-invariants in ∧LOn , we first lift to
the tensor algebra T (LOn). The quotient map p : T (LOn) → ∧LOn send-
ing S1 ⊗ . . . ⊗ Sk 7→ S1 ∧ . . . ∧ Sk is an sp(2n)-module map, so restricts to
p : (T (LOn))sp(2n) → (∧LOn)sp(2n). To see that p is surjective, note that com-
position

∧LOn
i→ TLOn

p→ ∧LOn,

where the map i is defined by i(S1∧ . . .∧Sk) = 1
k!

∑
σ∈Σm

sgn(σ)Sσ(1)⊗ . . . . . .⊗
Sσ(k) , is the identity. Since i is also an sp(2n)-module homomorphism, we get
restrictions

(∧LOn)sp(2n) i→ (T (LOn))sp(2n) p→ (∧LOn)sp(2n)

whose composition is the identity. In particular the restriction of p is onto.

We next lift even further. Recall that LOn = ⊕∞m=2(OS[m]⊗ V ⊗m)Σm , where
V = Vn . Define L̂On to be ⊕∞m=2(OS[m] ⊗ V ⊗m). The map q : T (L̂On) →
T (LOn) induced by the quotient maps (OS[m]⊗ V ⊗m)→ (OS[m]⊗ V ⊗m)Σm

is an sp(2n) module map, so restricts to q : T (L̂On)sp(2n) → T (LOn)sp(2n) . To
see that this is surjective, consider the composition

T (LOn)
j→ T (L̂On)

q→ T (LOn),

where j is induced by the maps

(OS[m]⊗ V ⊗m)Σm → OS[m]⊗ V ⊗m
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sending x to 1
m!

∑
σ∈Σm

σ · x. These maps are well defined (they send x and
σ ·x to the same element) and the composition q ◦j is the identity. In addition,
j is an sp(2n)-module homomorphism, so the restriction

(T (LOn))sp(2n) j→ (T (L̂On))sp(2n) q→ (T (LOn))sp(2n)

is the identity; in particular, the restriction of q is onto.

We now compute the invariants in T (L̂On). We have

T (L̂On) =
⊕

k≥2,m≥1

T̂k,m,

where

T̂k,m =
⊕

m1+···+mk=m

(OS[m1]⊗ V ⊗m1)⊗ · · · ⊗ (OS[mk]⊗ V ⊗mk)

The action of sp(2n) on each OS[k]⊗V ⊗k affects only the V ⊗k factor, so that

(T̂k,m)sp(2n)

=
⊕

m1+···+mk=m

(
(V ⊗m1 ⊗ · · · ⊗ V ⊗mk)sp(2n) ⊗ (OS[m1]⊗ · · · ⊗ OS[mk])

)
Computation of the invariants (V ⊗N )sp(2n) is a classical result of Weyl [24]. A
convenient way of parameterizing these is by oriented chord diagrams. Consider
a set of N vertices representing the tensor factors of V ⊗N . An oriented chord
diagram is a choice of directed edges that pair up the vertices; such a diagram
gives rise to an invariant as follows. As in the definition of φn , define a state
to be an assignment of pairs {pi, qi} to the vertices joined by each chord. The
invariant is then the sum, over all possible signed states, of the associated
elements of V ⊗N . For example, when N = 4, consider the chord diagram
1 → 3, 4 → 2. One state for this diagram assigns p1 to the first vertex, q1

to the third vertex, q6 to the fourth vertex and p6 to the second vertex. The
corresponding term of V ⊗4 is −p1⊗ p6⊗ q1⊗ q6 . The chord 4→ 2 contributes
a minus sign, since the p6 occurs at the head instead of the tail of the chord.

Having identified the invariants in T (L̂On), we follow the surjective maps

(T (L̂On))sp(2n) → (T (LOn))sp(2n) → (∧LOn)sp(2n)

to identify the invariants in ∧LOn . Let c ⊗ (S1 ⊗ . . . ⊗ Sk) ∈ (V ⊗m1
n ⊗ · · · ⊗

V ⊗mkn )sp(2n) ⊗ (OS[m1]⊗ · · · ⊗ OS[mk]) where c is a chord diagram invariant.
Mapping to

(OS[m1]⊗ V ⊗m1
n )Σm1

⊗ · · · ⊗ (OS[mk]⊗ V ⊗mkn )Σmk
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has the effect of putting the vectors pi, qi in the terms of c on the legs of the
spiders S1, . . . , Sk . The chord diagram c gives instructions for gluing the spider
legs to form an O-graph X, and each state of c induces a state of X. Summing
over all states of c, we obtain the sum over all states of X. Mapping then to
∧LOn explains the antisymmetry of the vertex ordering of X.

The invariant just described is precisely φn(X). Since these invariants span the
space of all invariants, the proposition is proved.

Corollary 4 For large enough n with respect to fixed k,m, the restriction

ψk,m : (Λk,m)sp(2n) → OGk,m

is an isomorphism.

Proof This is immediate from Propositions 9, 10 and 11.

2.5.5 Isomorphism with graph homology

The map φn is not a chain map, so does not induce an isomorphism on homol-
ogy; this was an oversight in Kontsevich’s original papers [12],[13]. We show
instead that ψn is a chain map, and induces an isomorphism on homology after
stabilization with respect to n.

Proposition 12 ψn : ΛLOn → OG is a chain map.

Proof We need to show the following diagram commutes.

∧LOn
ψn−−−−→ OG

∂n

y y∂E
∧LOn

ψn−−−−→ OG
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Let S1 ∧ . . . ∧ Sk ∈ ∧kLOn . Then

ψn∂n(S1 ∧ . . . ∧ Sk)

= ψn

∑
i<j

(−1)i+j+1[Si, Sj ] ∧ S1 ∧ . . . ∧ Ŝi ∧ . . . ∧ Ŝj ∧ . . . ∧ Sk


= ψn

∑
i<j

(−1)i+j+1
∑

λ∈Si,µ∈Sj

(Si, λ)!(µ, Sj) ∧ S1 ∧ . . . ∧ Ŝi ∧ . . . ∧ Ŝj ∧ . . . ∧ Sk


=
∑
i<j

∑
λ∈Si,µ∈Sj∑
π

(−1)i+j+1 w(π)
(

(Si, λ)!(µ, Sj) ∧ S1 ∧ . . . ∧ Ŝi ∧ . . . ∧ Ŝj ∧ . . . ∧ Sk
)π

(*)

where π runs over all pairings of legs of the Si other than λ and µ.

On the other hand

∂Eψn(S1 ∧ . . . ∧ Sk) = ∂E
∑
τ

w(τ)(S1 ∧ . . . ∧ Sk)τ

=
∑
τ

w(τ)
∑

e∈(S1∧...∧Sk)τ

(S1 ∧ . . . ∧ Sk)τe (1)

where τ runs over all pairings of the legs of the Si . Two legs λ and µ form an
edge e of (S1 ∧ . . . ∧ Sk)τ if and only if they are paired by τ , i.e. {λ, µ} ∈ τ .
If λ and µ are in the same Si for some i, then the edge e is a loop, and
(S1 ∧ . . . ∧ Sk)τe = 0. Therefore we can rewrite (1) as

=
∑
τ

w(τ)
∑
{λ,µ}∈τ

(S1 ∧ . . . ∧ Sk)τλ∪µ

=
∑
τ

∑
i<j

∑
λ∈Si,µ∈Sj ,{λ,µ}∈τ

w(τ)(S1 ∧ . . . ∧ Sk)τλ∪µ. (2)

Now set τ ′ = τ − {λ, µ}, i.e. τ ′ is the pairing on the legs other than λ and µ
induced by τ . Then w(τ) = w(τ ′)ω(vλ, vµ), and

w(τ)(S1∧ . . . ∧ Sk)τλ∪µ
= (−1)i+j+1w(τ ′)ω(vλ, vµ)(Si ∧ Sj ∧ S1 ∧ . . . ∧ Ŝi ∧ . . . ∧ Ŝj ∧ . . . ∧ Sk)τλ∪µ

= (−1)i+j+1w(τ ′)((Si, λ)!(µ, Sj) ∧ S1 ∧ . . . ∧ Ŝi ∧ . . . ∧ Ŝj ∧ . . . ∧ Sk)τ
′
.

Substituting into the sum (2) gives

=
∑
τ

∑
i<j

∑
λ∈Si,µ∈Sj ,{λ,µ}∈τ

(−1)i+j+1 w(τ ′)((Si, λ)!(µ, Sj)∧S1∧. . .∧Ŝi∧. . .∧Ŝj∧. . .∧Sk)τ
′
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Changing the order of summation now recovers the formula (*) for ψn∂n(S1 ∧
. . . ∧ Sk).

We now want to stabilize by letting n→∞. We need

Proposition 13 The system of maps ψn gives rise to a map ψ∞ : ∧ LO∞ →
OG , i.e. the following diagram commutes:

∧LOn
ψn−−−−→ OGy y=

∧LOn+1
ψn+1−−−−→ OG

Proof Write Vn+1 = Vn ⊕ V1 , where V1 is spanned by pn+1, qn+1 . Commu-
tativity of the diagram follows since the gluing instructions given by ψn+1 are
the same as those of ψn if the symplecto-spiders happen to have legs labeled
only by elements of Vn .

We are now ready to prove the main theorem, identifying the homology of the
infinite-dimensional Lie algebra with O-graph homology.

Theorem 1 The map ψ∞ : ∧LO∞ → OG induces a Hopf algebra isomorphism
on homology H∗(LO∞;R) ∼= H∗(OG).

Proof We have

H∗(∧LO∞;R) = lim
n→∞

H∗(∧LOn;R) =
⊕
k,m

lim
n→∞

Hk,m(∧LOn;R).

By Proposition 8, Hk,m(∧LOn;R) ∼= Hk,m((∧LOn)sp(2n);R). By Corollary 4,
there is an N such that (Λk,m)sp(2n), (Λk+1,m+2)sp(2n), and (Λk−1,m−2)sp(2n) are
isomorphic via ψn to

OGk,m,OGk+1,m−2,OGk−1,m+2

respectively for n > N . The fact that these isomorphisms respect the bound-
ary map (Proposition 12) implies that for n > N (ψn)∗ : Hk,m(∧LOn;R) →
Hk,m(OG) is an isomorphism. Since Hk,m(OG) is independent of n, we have⊕

k,m

lim
n→∞

Hk,m(∧LOn;R) ∼=
⊕
k,m

Hk,m(OG) = H∗(OG),
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showing that ψ∞ induces an isomorphism on homology.

To see that ψ∞ is a Hopf algebra isomorphism, it suffices to show that the
map on the chain level is a Hopf algebra morphism. We first show that it is
compatible with the product structures, i.e. the following diagram commutes.

∧(LO∞)⊗ ∧(LO∞) −−−−→ ∧LO∞yψ∞⊗ψ∞ yψ∞
OG ⊗OG −−−−→ OG

Let x⊗ y ∈ ∧(LO∞)⊗∧(LO∞), where x and y are each wedges of symplecto-
spiders with legs labeled by B∞ = ∪Bn (i.e. the legs are labeled by the basis
vectors {pi, qi}∞i=1 ). The top map sends x ⊗ y to E(x) ∧ O(y). The labels of
E(x) are disjoint from those of O(y), hence gluing up the legs with ψ∞ will act
separately on E(x) and O(y) yielding the disjoint union ψ∞(E(x))∪ψ∞(O(y)).
This says exactly that the diagram commutes.

Now we show it is a coalgebra morphism on the chain level:

∧LO∞ −−−−→ ∧LO∞ ⊗ ∧LO∞yψ∞ yψ∞⊗ψ∞
OG −−−−→ OG ⊗OG

Consider a wedge of B∞ -labeled symplecto-spiders S1 ∧ . . . ∧ Sk . Both routes
around the rectangle involve partitioning the spiders and gluing up the legs. Let
π be a gluing, i.e. a pairing of the legs of the symplecto-spiders. Let P = (I, J)
be a partition of the spiders into two sets. In order for P to give a summand of
∆(S1∧ . . .∧Sk)π , π should only pair legs of symplecto-spiders in the same part
of the partition. In this case we say that π and P are consistent. On the other
hand, a typical term of ∆(S1∧ . . .∧Sk) is ε(I, J)SI ⊗SJ . In order for π to give
a term of (ψ ⊗ ψ)(ε(I, J)SI ⊗ SJ), π and P should be consistent. Therefore,
going both ways around the rectangle, the summands are parameterized by
consistent pairs (P, π).

It remains only to check the coefficients. Given a consistent pair (P, π), we can
subdivide π into two pairings πI and πJ , which pair the legs in the I and J
symplecto-spiders respectively. Now the (P, π) term in ψ∞∆(S1 ∧ . . . ∧ Sk) is
ε(I, J)(SI ⊗ SJ)π = ε(I, J)SπII ⊗ S

πJ
J . The (P, π) term in ∆ψ∞(S1 ∧ . . .∧ Sk) =

ε(I, J)∆ψ∞(SI ∧ SJ) is the P term in ε(I, J)(SI ∧ SJ)π = ε(I, J)SπII ∧ S
πJ
J ,

which is just ε(I, J)SπII ⊗ S
πJ
J .

We illustrate the commutativity of the coalgebra diagram in Figure 14. In the
upper right is a possible gluing, π , of the legs, with numbering of the vertices
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Figure 14: Commutativity of the coalgebra diagram

depicted by the outlined numbers. We have switched the numbers 2 and 3,
resulting in a minus sign. In the lower left is a possible partition, P , of the
symplecto-spiders, which is consistent with the gluing. In the lower right, we
have the result of applying π to the lower left, which is the same as applying
the partition P to the upper right.

Recall that the primitive elements of OG are the connected O-graphs, spanning
the subcomplex POG . If we denote the primitive elements of H∗(LO∞;R) by
Prim (H∗(LO∞;R)), we have

Corollary 5 Prim (H∗(LO∞;R)) ∼= H∗(POG).

2.5.6 The primitive irreducible subcomplex

In this section we consider the subcomplex POG of POG spanned by O-graphs
with no vertices colored by 1O . This subcomplex is important for calculations,
as well as being neccesary to draw the connections to Out(Fr) and moduli space
later on. In this section we prove

Proposition 14 The homology of POG splits as a direct sum of vector spaces

H∗(POG) ∼= H∗(sp(∞)) ⊕H∗(POG)

We first consider the subcomplex B of POG spanned by graphs which only
have vertices colored by 1O (and is hence spanned by k -gons). Then POG ∼=
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B ⊕ POG/B , and Proposition 14 will follow by showing that H∗(POG/B) ∼=
H∗(POG) (Lemma 4) and that H∗(B) ∼= H∗(sp(∞)) (Lemma 5).

The proof of Lemma 4 depends on understanding what happens when trivial
bivalent vertices (i.e. vertices colored with 1O ) are added to an edge of an O
graph. For k ≥ 0, let Ek be the oriented linear graph with k internal bivalent
vertices. Define a chain complex E∗ with one generator in each dimension,
corresponding to Ek , and boundary operator ∂E which sums over all edge
collapses.

Lemma 3 H0(E∗) = R, and Hi(Ei) = 0 for i > 0.

Proof Collapsing any edge of Ek results in a copy of Ek−1 . If we orient Ek
by numbering its edges (see Proposition 2), then collapsing the j th edge gives
(−1)jEk−1 . Thus the boundary operator ∂ : Ej → Ej−1 is 0 for j odd and an
isomorphism for j even, giving the result.

Lemma 4 H∗(POG/B) ∼= H∗(POG).

Proof The quotient complex T := POG/B is spanned by O-graphs with at
least one vertex which is not colored by 1O . We filter T by the number of
vertices not colored by 1O . In the associated spectral sequence we have

E0
p,q = FpTp+q/Fp−1Tp+q.

That is E0
p,q is spanned by graphs with q vertices colored by 1O and p other

vertices. Hence along the p axis of the spectral sequence we have E0
p,0 = POGp .

The differential d0 : E0
p,q → E0

p,q−1 is induced by the boundary operator, and is
therefore given by the map which only contracts edges incident to 1O -colored
vertices. Passing to the E1 term, we claim that only the Ep,0 terms persist,
and that the maps d1 : E1

p,0 → E1
p−1,0 are just the graph boundary operator,

which will conclude the proof.

We break up each vertical complex

· · ·E0
p,q → E0

p,q−1 → E0
p,q−2 → · · ·E0

p,0

into a direct sum of chain complexes EXp , where the sum is over isomorphism
classes of graphs with p vertices. An O-graph is in EXp if removing the (bi-
valent) 1O -colored vertices from the underlying graph results in X . Let Ξ be
the graph X with all vertices and edges distinguished, so that Aut(Ξ) = {id}.
Then EXq = EΞ

q /Aut(X). Since we are in characteristic zero, we can ignore
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the Aut(X) action, i.e. Hq(EX∗ ;R) ∼= Hq(EΞ
∗ ;R). Thus we must show Hq(EΞ

∗ )
vanishes for q > 0.

Since the boundary operator only affects vertices colored by 1O , EΞ
∗ breaks

up as a direct sum of chain complexes EΞ
∗ (S1, S2, . . . , Sp), where the Si are

choices of O-spider for each vertex of Ξ, ranging over a basis for the quotient
of vector spaces OS/ < 1O >. Each of these chain complexes is isomorphic
to
⊗

e∈E(Ξ) E∗ , where E∗ is the chain complex of Lemma 3. By this Lemma
and the Künneth formula the homology of

⊗
e∈E(Ξ) E∗ is zero except in degree

0.

Lemma 5 H∗(B) = Prim(H∗(sp(2∞)))

Proof Direct computation shows that Hk(B) is nonzero iff k ≡ 3 mod 4,
in which case it is one dimensional. This is well known to be the primitive
homology of sp(2∞), but in fact this follows if we consider the operad which is
spanned by the identity in degree 1 and is zero in higher degrees. Then LOn
consists of symplecto-spiders which have 2 legs and whose internal vertex is
labeled by 1O . This is isomorphic to sp(2n) by Proposition 6. Thus Theorem 1
implies that the primitive homology of LO∞ = sp(2∞) is given by connected
1O -colored graphs. This is precisely the complex B .

2.5.7 Brackets, cobrackets, compatibility

As we remarked earlier, the map φn does not establish an isomorphism of ho-
mologies. It is not even a chain map. However, OG has a different boundary
operator for which φn is a chain map. The difference between these two bound-
ary operators was studied in [4] in the commutative case, and in [3] for general
cyclic operads.

Definition 8 Let x and y be half-edges of a graph X , and let πxy denote the
pairing of the half-edges H(X) which differs from the standard pairing only at
x, y, x̄, ȳ , where it pairs {x, y} and {x̄, ȳ}. If X is an O-graph with underlying
graph X , the H-boundary of X is

∂H(X) =
∑

x,y,x 6=ȳ
(Xπxy)x∪y.

The following proposition shows that the Lie boundary map ∂n corresponds in
fact to 2n∂E + ∂H .
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Proposition 15 The following diagram commutes.

OG φn−−−−→ ∧LOn
2n∂E+∂H

y y∂n
OG φn−−−−→ ∧LOn

The notation ∂H is justified by the following Lemma, which shows that ∂H is
a boundary operator in its own right.

Lemma 6 a) ∂2
H = 0

b) ∂H∂E + ∂E∂H = 0

Proof φn is injective for large n, and ∂2
n = 0, implying (2n∂E + ∂H)2 =

(2n)2∂2
E + 2n(∂H∂E + ∂E∂H) + ∂2

H = 0 for infinitely many values of n. Hence
each coefficient of this polynomial in n must be zero.

With respect to the disjoint union product on OG , ∂E is a derivation, but ∂H
is not. The deviation from being a derivation defines a bracket:

Definition 9 For X,Y ∈ OG , the O-bracket [X,Y] is given by

[X,Y] = ∂H(X ·Y)− ∂H(X) ·Y + (−1)|X|X · ∂H(Y) =
∑

x∈X,y∈Y

(X ·Y)xy,

where |X| is the number of vertices of X.

This bracket is a straightforward generalization of the bracket we defined in [4]
for the commutative case, and coincides with the operation φ2 of [3]. In [3],
the following proposition is proven.

Proposition 16 The O-bracket is graded symmetric and satisfies the graded
Jacobi identities.

To obtain a graded anti-symmetric Lie bracket, we simply shift the grading (see
[4]).

The proof of the following proposition can be found in [3].

Proposition 17 The O-bracket vanishes canonically on O-graph homology.
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Corollary 6 O-graph homology H∗(OG), equipped with the differential ∂H ,
is a differential graded algebra (DGA).

Proof By Lemma 6, ∂H descends to the homology level. By Proposition 17,
it is a derivation on the homology level.

The boundary operator ∂E is also a co-derivation, but the boundary operator
∂H is not. Hence we can define

θ(X) = ∆∂H(X)− ∂H∆(X),

where ∂H is extended to OG ⊗ OG as a graded derivation. The map θ was
considered in the commutative case in [4], and coincides with the map θ2 of [3]
when the graph is connected.

Let us describe θ in more detail. A pair x, y of half-edges of a graph X is
called separating if x and x̄ (equivalently y and ȳ) lie in different components
of Xπx,y . (Recall πxy is the pairing which pairs x with y and x̄ with ȳ and is
the same as the standard pairing everywhere else.) Given an O-graph X based
on X , and a separating pair x, y of half-edges in X , write Xπxy as a product
of connected O-graphs:

Xπxy = X′ ·X′′ ·X1 ·X2 . . . ·Xm,

with x, y ∈ X′ and x̄, ȳ ∈ X′′ . Suppose (I, J) is an ordered partition of [m].
Define the sign ε1(I, J) to satisfy the equation

X′ ·X′′ ·X1 ·X2 . . . ·Xm = ε1(I, J)XI ·X′ ·XJ ·X′′

and the sign ε2(I, J) to satisfy the equation

X′ ·X′′ ·X1 ·X2 . . . ·Xm = ε2(I, J)XI ·X′′ ·XJ ·X′.

Now we define θ(X)

=
∑

x,y separating

∑
I,J

ε1(I, J)(XI ·X′x∪y)⊗(XJ ·X′′)+ε2(I, J)(XI ·X′′)⊗(XJ ·X′x∪y).

It is straightforward to verify that this agrees with the previous definition of θ .

The following proposition is proven in [3].

Proposition 18 The map θ : OG → OG ⊗ OG restricts to a map POG →
POG ⊗ POG , and is a (graded) cobracket on POG .
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Conjecturally, θ is a cobracket on the entire complex. In [4], we proved this for
the commutative case, and the proof extends to the associative case. However,
it does not extend to the Lie case.

The following was noted without proof in [3] in the connected case.

Proposition 19 The map θ vanishes canonically on the homology level.

Proof Define a map T : OG → OG ⊗OG as

T (X) =
∑

x,y separating

∑
I,J

ε1(I, J)(XI ·X′)⊗ (XJ ·X′′),

where X is written as a product of connected graphs as above. For notational
ease, write T (X) =

∑
x,y separating Txy(X). We claim that θ = ∂ET − T∂E , i.e.

∂ET = T∂E + θ . To see this, consider the term ∂ETxy(X) of ∂ET (X), which
contracts all edges of Txy(X), one at a time. If the edge e is not x ∪ y or
x̄ ∪ ȳ , then we have (Txy(X))e = Txy(Xe). In this way we pick up all terms of
T∂E(X). If the edge is x∪ y or x̄∪ ȳ , then we pick up the two terms in θ(X).

Now suppose that X is a cycle. Then the above claim implies that θ(X) =
∂ET (X), and is hence trivial on the homology level.

Corollary 7 O-graph homology H∗(OG) is a differential graded Hopf algebra,
with differential ∂H .

Corollary 8 The map ∂H is a graded differential on H∗(POG) and H∗(POG).

Proof Since ∂H is a derivation on the homology level, it takes primitives to
primitives, and so induces a differential on PrimH∗(OG) = H∗(POG). This is
not true on the chain level, as there exist connected graphs with disconnected
terms of ∂H .

Also any graph with a vertex colored by 1O will get mapped by ∂H to a sum
of graphs each with a vertex colored by 1O implying that ∂H is a differential
on H∗(POG). If the pair of half-edges being contracted in ∂H is not adjacent
to a 1O -colored vertex, then the 1O vertex survives as claimed. Otherwise,
consider a 1O colored vertex. It has two adjacent half-edges h1, h2 . Given
another half-edge k , we claim that the h1, k term cancels with the h2, k̄ term.
In other words all the summands coming from contracting edges adjacent to 1O
colored vertices cancel! Clearly these two terms give isomorphic graphs, and
checking the orientation one sees that they have opposite sign.
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The following proposition is proven in [4] for the commutative case, and as
remarked in [3], the proof carries over to the general cyclic operad case. It
explains our interest in graphs with no separating edges.

Proposition 20 Bracket and cobracket form a compatible Lie bi-algebra struc-
ture on the subcomplex of connected, 1-particle irreducible graphs (graphs with
no separating edges).

3 The Lie case

3.1 The forested graph complex and the Lie graph complex

We now specialize to the Lie operad. Recall that O[m] is the vector space
spanned by all rooted vertex-oriented binary trees with m numbered leaves,
modulo the subspace spanned by all anti-symmetry and IHX relators. A ver-
tex orientation is a choice of cyclic order at each trivalent vertex of a binary
tree, and is equivalent to specifying a planar embedding up to isotopy. The
composition rule in the operad attaches the root of one tree to a leaf of an-
other, eliminates the resulting bivalent vertex, and then suitably renumbers the
remaining leaves.

The space of O-spiders, OS , is spanned by vertex-oriented binary trees with
m numbered leaves, but with no particular leaf designated as the root. Mating
is defined by gluing two such trees together at a leaf, eliminating the resulting
bivalent vertex, then renumbering the leaves suitably.

Thus a basic O-graph for the Lie operad is a fairly complicated object: an
oriented graph with a vertex-oriented trivalent tree attached at each vertex,
modulo AS and IHX relations. However, the picture can be considerably sim-
plified since the orientations of the trees at the vertices cancel to a large degree
with the orientation of the graph itself. We now describe this simplification.

Let X be a finite graph. A forest in X is a sub-graph which contains no cycles.
The connected components of a forest are trees, where we allow a tree to consist
of a single vertex. An orientation of a forest is given by an ordering of its edges
(if any); interchanging the order of any two edges reverses the orientation of
the forest.

Definition 10 A forested graph is a pair (G,Φ), where G is a finite connected
trivalent graph and Φ is an oriented forest which contains all vertices of G.
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Figure 15: Forested graph

An example of a forested graph with three trees is shown in Figure 15.

We denote by f̂Gk the vector space spanned by all forested graphs whose forest
contains exactly k trees, modulo the relations (G,Φ) = −(G,−Φ).

Let (G,Φ) be a forested graph, and let e be an edge of Φ. Collapsing e produces
a new pair (Ge,Φe), where Ge has one 4-valent vertex. There are exactly two
other forested graphs (which may be isomorphic!), (G

′
,Φ′) and (G

′′
,Φ′′), and

edges e′ ∈ Φ′, e′′ ∈ Φ′′ which produce the same pair (Ge,Φe) (see Figure 16).

Figure 16: Blow-ups of (Ge,Φe)

The vector
(G,Φ) + (G

′
,Φ′) + (G

′′
,Φ′′)

is called the basic IHX relator associated to (G,Φ, e).

Let IHXk be the subspace of f̂Gk spanned by all basic IHX relators, and define
fGk to be the quotient space f̂Gk/IHXk .
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Proposition 21 fGk is naturally isomorphic as a vector space to POGk ,
where O is the Lie operad.

Proof We define a map f̂Gk → POGk as follows. Starting with a forested
graph (G,Φ), collapse each component of Φ to a point to produce a graph X .
For each vertex v of X , let Tv be an ε-neighborhood of the preimage of v in
G, so that Tv is a binary tree whose leaves are identified with the half-edges
H(v) adjacent to v (see Figure 17). To specify an O-graph X = (X, {Tv}), it
remains only to determine the orientations on X and on the trees Tv . In the

Figure 17: Correspondence between forested graphs and Lie graphs

language of section 2.3.1, this information can be described as a unit vector in

det(RV (X)) ⊗
⊗

e∈E(X)

detRH(e)⊗
⊗

v∈V (X)

(⊗u∈V (Tv) detRH(u))

That is, it is specified by a numbering of the vertices of X , an orientation on
each edge of X , and a vertex-orientation on each tree Tv .

Applying Propositions 1 and 2 to the first two tensor factors and applying
Corollary 2 to the third tensor factor, this is canonically isomorphic to

det(
⊕

|H(v)|even
Rv)⊗

⊗
v∈V (X)

detRH(v)⊗
⊗

v∈V (X)

det(RE(Tv)) (1)

In other words, an orientation can be specified by an ordering of the even valence
vertices of X , an ordering of the half-edges incident to each vertex of X , and
an ordering of the edges of each tree.

The forest Φ is the union of the internal edges of all of the Tv . Denote the
internal edges of Tv by Φv , so that Φ = ∪vΦv . Since H(v) is identified with
the leaves of Tv , the Partition lemma implies det(RE(Tv)) ∼= det(RH(v)) ⊗
det(RE(Φv)). (Actually, the Partition lemma tells you to also order the set of
odd subsets of E(Tv), but since the number of leaves and the number of interior
edges have opposite parity, this would be ordering at most one object and that
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is not extra information.) Hence, det(RH(v)) ⊗ det(RE(Tv)) ∼= det(RE(Φv)),
so that expression (1) becomes

det(
⊕

|H(v)|even
Rv)⊗

⊗
v∈V (X)

det(RE(Φv))

= det(
⊕

|E(Φv)|odd
Rv)⊗

⊗
v∈V (X)

det(RE(Φv))

∼= det(
⊕
e∈Φ

Re),

where the last isomorphism is again given by the Partition lemma. Thus the
orientation data on X = (X, {Tv}) is equivalent to an ordering of the edges of
Φ.

This defines the map f̂Gk → POGk . We claim that a basic IHX relator (G,Φ)+
(G′,Φ′)+ (G′′,Φ′′) maps to (X, {Tv})− (X, {T ′v})+ (X, {T ′′v }) = (X, {Tv−T ′v +
T ′′v }) = 0, so the map factors through fGk . This is obvious except for the signs
of the terms. To check these, we need to carefully consider the equivalence of
orientations described above. The essential step is the translation from vertex
orienting a tree to ordering the tree’s edges. We illustrate the argument by
doing the case of a tree with 5 edges, and leave the general case to the reader.
Suppose we have

where {a, b, c, d, e} = {1, 2, 3, 4, 5} (not neccesarily in that order). Then, de-
pending on where we place the tree in the plane, we have

Thus the I−H+X relator of vertex oriented trees gets mapped to an I+H+X
relator of trees with ordered edges.

To see that the map fGk → POGk is an isomorphism, define an inverse
POGk → f̂Gk → fGk as follows: If (X, {Tv}) is a basic O-graph, produce
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a trivalent graph G from this data by replacing each vertex v of X by Tv ,
using the identification of the leaves of Tv with H(v) as gluing instructions
(see Figure 17). The union of the interior edges of the Tv forms a forest Φ
in G, and we have seen that the orientation data on (X, {Tv}) determines an
orientation of Φ.

We have identified the spaces fGk with the chain groups POGk . Under this
identification, it can be checked that the boundary map ∂E is induced by the
map on f̂Gk given by

∂E(G,Φ) =
∑

(G,Φ ∪ e),

where the sum is over all edges e of G−Φ such that Φ∪e is still a forest. (Note
that this only happens if the initial and terminal vertices of e lie in different
components of Φ, so that Φ∪e has k−1 components.) The orientation of Φ∪e
is determined by ordering the edges of Φ with the labels 1, . . . , k consistent with
its orientation, and then labeling the new edge e with k + 1.

Remark 3 As defined above, ∂E is a boundary operator on the chain complex
f̂G∗ of forested graphs. There is also a coboundary map δ : f̂Gk → f̂Gk+1 ,
defined by the formula

δ(G,Φ) =
∑
ei∈Φ

(−1)i(G,Φ − ei),

where the orientation on Φ − ei is induced from the ordering of the edges of
Φ. However, this coboundary does not preserve the IHX-subspaces, so does not
induce a coboundary operator on fG∗ . Of course, we can get a coboundary
operator by dualizing: δ = ∂∗E : fG∗k → fG∗k+1 , but there is no natural basis of
fGk , and hence no natural identification of fGk with fG∗k .

3.1.1 Bracket and cobracket in the forested graph complex

In this section we describe how the bracket and cobracket of section 2.5.7 trans-
late to forested graphs.

Let (G1,Φ1) and (G2,Φ2) be forested graphs, let x be a half-edge in G1 − Φ1

and let y be a half-edge in G2−Φ2 . We form a new trivalent graph (G1 ·G2)πxy ,
and forest it by the image of Φ1 ∪ Φ2 plus the new edge xy . The orientation
is given by shifting the numbering the edges of Φ2 to lie after Φ1 , and letting
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x∪y come after that. The bracket is then defined by summing over all possible
pairs x and y :

[(G1,Φ1), (G2,Φ2)] =
∑
x,y

((G1 ·G2)πxy ,Φ1 ∪ Φ2 ∪ x ∪ y)

The cobracket is defined as follows. Let (G,Φ) be a forested graph, and let x, y
be two half-edges not in Φ and not adjacent to the same tree of Φ. such that
Gπxy has two connected components G1 and G2 , where x ∪ y is in G1 . The
pair of half-edges {x, y} is said to be separating. Let Φi = Φ∩Gi . Add x∪y to
the forest Φ1 ∪ Φ2 , ordered after everything else. Adjust the representative of
the orientation so that the numbering of Φ1 ∪ x∪ y precedes that of Φ2 . Form
the symmetric product (G1,Φ1 ∪x∪ y)� (G2,Φ2), where the numbering of Φ2

is shifted down by the number of edges in Φ1 ∪ x ∪ y . The cobracket is given
by summing over all such pairs {x, y}:

θ(G,Φ) =
∑

{x,y} separating

(G1,Φ1 ∪ x ∪ y)� (G2,Φ2)

3.2 A filtration of Outer Space, and the associated complex

The group Out(Fr) of outer automorphisms of a free group of rank r acts
cocompactly on a contractible simplicial complex Kr , known as the spine of
Outer space. For an introduction to Outer space and its spine, see [23]. Point
stabilizers of this action are finite, so that the quotient Qr = Kr/Out(Fr) has
the same rational cohomology as Out(Fr). In this section we define a filtration
on Kr and use the spectral sequence of this filtration to prove the following
theorem:

Theorem 2 Let fG(r) denote the subcomplex of fG spanned by (connected)
forested graphs of rank r . Then Hk(fG(r)) ∼= H2r−2−k(Out(Fr)).

Recall that vertices of Kr are pairs (g,X), where X is a connected graph with
all vertices at least trivalent, and g is a homotopy equivalence from a standard
rose (wedge of circles) Rr to X ; thus g gives an identification of π1(X) with
the group Fr = π1(Rr). The k -simplices of Kr , for k ≥ 1, can be identified
with chains

∅ = Φ0 ⊂ Φ1 ⊂ . . . ⊂ Φk

of forests in a marked graph (g,X); the ith vertex of the k -simplex is obtained
from (g,X) by collapsing each edge of Φi to a point. Out(Fr) acts by chang-
ing the marking g , and the stabilizer of (g,X) is isomorphic to the group of
automorphisms of the graph X .
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We define a filtration on Kr as follows:

• F0Kr consists of all vertices (g,X) with X a (connected) trivalent graph.
Note that a trivalent graph X with fundamental group isomorphic to Fr
has 2r − 2 vertices.

• FiKr is the sucomplex of Kr spanned by Fi−1Kr together with all ver-
tices (g,X) such that X has 2r − 2− i vertices.

We have F0Kr ⊂ F1Kr ⊂ . . . ⊂ F2r−3Kr = Kr , where the ith subcomplex
FiKr has dimension i. Since the action of Out(Fr) simply changes the markings
g , it preserves the filtration, and so induces a filtration F0Qr ⊂ F1Qr ⊂ . . . ⊂
F2r−3Qr = Qr on the quotient Qr . The cohomology spectral sequence of this
filtration has

Ep,q1 = Hp+q(FpQr,Fp−1Qr)

and converges to the cohomology of Qr . In particular, if we take trivial real coef-
ficients, this spectral sequence converges to the rational cohomology of Out(Fr).
All cohomology groups will be assumed to have trivial rational coefficients un-
less otherwise specified.

Proposition 22 Hp+q(FpQr,Fp−1Qr) = 0 for q 6= 0

Proof Marked graphs in FpKr which are not in Fp−1Kr are those where∑
v(|v| − 3) is exactly p, where |v| is the valence of the vertex v . The link in

Fp−1Kr of such a marked graph (g,X) is the join of the blow-up complexes of
the vertices of X of valence > 3.

A simplicial complex is called i-spherical if it is i-dimensional and homotopy
equivalent to a wedge of i-spheres. The blow-up complex of a vertex of valence
k is (k − 4)-spherical (see, e.g. [22], Theorem 2.4). Therefore the link of
(g,X) in Fp−1Kr is (p− 1)-spherical. Since graphs in FpKr−Fp−1Kr are not
connected by edges, the entire complex FpKr/Fp−1Kr is p-spherical. Therefore
Hp+q(FpKr,Fp−1Kr) = 0 for q 6= 0.

Since Out(Fr) preserves the filtration, the homology of FpQr/Fp−1Qr is the
homology of FpKr/Fp−1Kr modulo the action of Out(Fr). The stabilizer
of each graph in FpKr is finite, so the (reduced) homology of the quotient
FpQr/Fp−1Qr vanishes in dimensions other than p, as was to be shown.

Proof of Theorem By Proposition 22, the spectral sequence of the filtration
F∗Qr of Qr collapses to the cochain complex

0→ H0(F0Qr)→ H1(F1Qr,F0Qr)→H2(F2Qr,F1Qr)→
. . .→ H2r−3(F2r−3Qr,F2r−4Qr)→ 0,
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which computes the cohomology of Out(Fr).

To identify the terms Hp(FpQr,Fp−1Qr) it is helpful to recall the description
of Kr as a cubical complex (see [9]). The simplices of Kr organize themselves
naturally into cubes (g,X,Φ), one for each forest Φ in a marked graph (g,X)
(see Figure 18). An ordering on the edges of Φ determines an orientation of
the cube.

Figure 18: The cube (G,Φ) for Φ = {e, f}

The stabilizer of a cube (g,X,Φ) consists of automorphisms of X which pre-
serve Φ (see [20]). The quotient of a cube by its stabilizer is a cone on a rational
homology sphere, or on a rational homology disk if there is an automorphism
of (X,Φ) which reverses orientation.

Now Hp(FpQr,Fp−1Qr)

= Cp(FpQr,Fp−1Qr)/im(δ : Cp−1(FpQr,Fp−1Qr)→ Cp(FpQr,Fp−1Qr)).

Note that Fp−1Qr is (p − 1)-dimensional, and FpQr has one p-dimensional
cube quotient for every pair (G,Φ) such that G is trivalent and Φ has p edges.
Therefore

Cp(FpQr,Fp−1Qr) = Cp(FpQr) = (R{(G,Φ)}/AS)∗,

where AS is the subspace generated by the antisymmetry relations (G,Φ) =
−(G,−Φ).
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Each p-cube (g,G,Φ) in FpKr has 2p codimension one faces of the form
(g,G,Φ − e), which are in Fp−1Kr . Opposite each is a codimension one face
(g,G,Φ− e)op = (ge, Ge,Φe). The relative cochain group Cp−1(FpKr,Fp−1Kr)
consists of functions on the (p−1)-cubes of FpKr which vanish on Fp−1Kr , i.e.
Cp−1(FpKr,Fp−1Kr) has as a basis the characteristic functions of the (p− 1)-
cubes (ge, Ge,Φe) of the second type. Each such (p−1)-cube is a face of exactly
three p-cubes, (g,G,Φ), (g′, G′,Φ′) and (g′′, G′′,Φ′′), with Ge = G′e′ = G′′e′′ ,
so that δ(ge, Ge,Φe) = (g,G,Φ) + (g′, G′,Φ′) + (g′′, G′′,Φ′′). Passing to the
quotient modulo Out(Fr), we get the IHX relator

δ(Ge,Φe) = (G,Φ) + (G′,Φ′) + (G′′,Φ′′),

showing that in the quotient, im(δ) is spanned by the (characteristic functions
of) the IHX relators IHX(G,Φ, e).

Thus Hp(FpQr,Fp−1Qr)

= Cp(FpQr,Fp−1Qr)/im(δ) = (R{(G,Φ)}/AS)∗/IHX∗ = fG2r−2−p

The last isomorphism follows since R{(G,Φ)}/AS and IHX are canonically
isomorphic to their duals, even though the quotient is not. This identifies the
cochain groups Ep,01 above with the chain groups of the forested graph complex.
The d1 map in the spectral sequence is induced by the coboundary map

Hp−1(Fp−1Qr,Fp−2Qr)→ Hp(FpQr,Fp−1Qr)

which maps
(G,Φ) 7→

∑
(G,Φ ∪ e),

where the sum is over all edges e in G such that Φ ∪ e is a forest; this is the
∂E map in the forested graph complex.

3.3 The subcomplex of connected one-particle irreducible graphs

A graph X is called one-particle irreducible if removing an edge does not
change the number of connected components, i.e. if X has no separating edges.
We have

Proposition 23 The subcomplex IKr of Kr spanned by (connected) one-
particle irreducible graphs is an equivariant deformation retract of Kr .

Proof The deformation retraction acts by uniformly shrinking all separating
edges to points in all graphs representing vertices of Kr . (see [6]).
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Thus we may compute the rational cohomology of Out(Fr) using IKr instead
of Kr . The filtration F∗Kr restricts to a filtration on IKr , and of the quotient
IQr of IKr by the action of Out(Fr), giving a spectral sequence

Ep,q1 = Hp+q(FpIQr,Fp−1IQr)

The fact that this sequence degenerates to a chain complex computing the
homology of Out(Fr) is guaranteed by the following proposition

Proposition 24 Hp+q(FpIQr,Fp−1IQr) = 0 for q 6= 0

Proof As in the proof of Proposition 22, what is needed is to prove that the
link of a vertex in FpIKr−Fp−1IKr intersects Fp−1IKr in a (p− 1)-spherical
subcomplex. This link is called K>(g,G) in [22], and Corollary 3.2 of Theorem
3.1 of that paper proves that it is (p− 1)-spherical.

Now let O be the Lie operad, and consider the complex PIOG(r) of POG(r)

which is the quotient of POG(r) by graphs with separating edges, which may
be internal to vertices. Proposition 20 implies that the bracket and cobracket
form a compatible bi-algebra structure on this complex. (One must check that
the bracket takes graphs with internal separating edges to graphs with internal
separating edges, and check a similar statement for the cobracket.) The proof
of Proposition 21 restricts to give an isomorphism of the subspace IfGk of fGk
spanned by 1-particle irreducible forested graphs with PIOGk . The proof of
Theorem 2 also restricts, and the combination gives

Theorem 3 Hk(PIOG
(r)) ∼= Hk(IfG(r)) ∼= H2r−2−k(Out(Fr)).

This theorem, together with Proposition 20, shows there is a chain complex
that computes H∗(Out(Fr);R) which carries a highly non-trivial Lie bialgebra
structure. This bialgebra structure vanishes at the level of homology, so that
⊕rH∗(Out(Fr);R) is the primitive part of a differential graded Hopf algebra.

4 The associative case

4.1 The associative graph complex and the forested ribbon
graph complex

We now make a few remarks concerning the associative case, i.e when the operad
O is the associative operad. In this case O[m] is m!-dimensional, with a basis
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consisting of of rooted planar trees with one interior vertex and m numbered
leaves. An equivalent description, closer to the description of the Lie operad, is
that O[m] is spanned by rooted planar binary trees with m numbered leaves,
modulo anti-symmetry and associativity (or “IH”) relations.

O-spiders in this case are planar spiders with one vertex and m numbered legs.
Planarity of the spider can be thought of as a cyclic ordering on the legs, so
that an O-graph can be characterized as an oriented graph X together with a
cyclic ordering of the edges incident to each vertex. Such objects are known as
a “ribbon graphs,” and have been studied in conjunction with mapping class
groups of punctured surfaces (see, e.g., [19]).

For S an oriented compact surface with boundary, we denote by Γ(S) the
mapping class group of isotopy classes of homeomorphisms of S which preserve
the orientation. Homeomorphisms and isotopies need not be the identity on
the boundary, and in particular homeomorphisms may permute the boundary
components.

4.1.1 Surface subcomplexes of POG

Given a (connected) ribbon graph in POG , one can “fatten” it to a unique
compact, connected, oriented surface in such a way that the cyclic orientation
at each vertex is induced from the orientation of the surface. Contracting
an edge will not change the oriented surface. Thus the connected, reduced
associative graph complex breaks up into a direct sum over surfaces S :

POG =
⊕
S

(
POG

)
S
.

One can think of a ribbon graph as an equivalence class of embeddings of a graph
into a surface S which induce an isomorphism on π1 ; here two embeddings are
considered equivalent if they differ by a homeomorphism of the surface.

4.1.2 Forested ribbon graphs

A forested ribbon graph, (G,Φ) is a connected trivalent ribbon graph G and an
oriented forest Φ ⊂ G that contains all the vertices. Let f̂ rG denote the vector
space spanned by forested ribbon graphs, modulo the anti-symmetry relation
(G,Φ) = −(G,−Φ) . Let f̂ rGS denote the subcomplex of f̂ rG spanned by
forested graphs (G,Φ) where G thickens to the surface S .
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Recall that an IHX relation comes from blowing up a 4-valent vertex in all
possible ways. Similarly, in the case of a ribbon graph, we can define an “IH”
relation which is the sum of blowing up a 4-valent vertex in the two possible
ways consistent with the ribbon structure. Now define frG to be the quotient
of f̂ rG by IH relations, and frGS to be the subcomplex which thickens to S .

Proposition 25 frGS is naturally isomorphic to
(
POG

)
S

.

Proof We use the description of the associative operad as a quotient of binary
trees by IH relations. Define a map frGS →

(
POG

)
S

as in the Lie case by
collapsing the forest, and coloring the resulting vertices by ε-neighborhoods
of preimages. As in the Lie case, the orientation of the forest translates to a
vertex-orientation of the tree at each vertex plus an orientation in the usual
sense of the underlying graph. Each tree is already canonically vertex-oriented
by the ribbon structure, so that we can compare the induced vertex-orientation
with the canonical one, incurring a plus or minus sign.

One must check that IH relations get sent to IH relations and that this trans-
lation is a chain map, the only issue in both cases being the sign.

4.2 Ribbon subcomplexes of Outer Space

Fix an oriented surface S with non-empty boundary, and consider the set of all
isotopy classes of embeddings of ribbon graphs (X, {orv})→ S , where the em-
bedding respects the cyclic orientations at vertices, and induces an isomorphism
on the fundamental group. The set of all such isotopy classes of embeddings
forms a simplicial complex LS , where an edge corresponds to collapsing a forest
in X . In fact, if we forget the orientations orv , this is just a subcomplex of the
spine Kr of Outer space. To see, this, we identify π1(S) with the fundamental
group of a rose Rr which is a deformation retract of S ; then the marking g on
X is a homotopy inverse to the embedding followed by the retraction.

This subcomplex of Kr is contractible. This can be seen directly from the proof
that Outer space is contractible (for details, see [10]), or via the identification
of this complex with a deformation retract of the Teichmüller space of the
punctured surface ([19]). The mapping class group Γ(S) of S is naturally a
subgroup of Out(Fr), namely, Γ(S) is the stabilizer, in Out(Fr), of the set of
cyclic words represented by small loops around the punctures (see [25]). The
action of Out(Fr) on Kr restricts to an action of Γ(S) on LS , so the quotient of
LS by this action, denoted QS is a rational K(Γ(S), 1). The filtration of Kr by
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the number of vertices in the graph restricts to a filtration FpLS of LS which
is invariant under the action of Γ(S), so the cohomology spectral sequence of
the quotient filtration converges to the cohomology of Γ(S). We have

Ep,q1 = Hp+q(FpQS ,Fp−1QS)

As before, we need the analog of Proposition 22:

Proposition 26 Hp+q(FpQS ,Fp−1QS) = 0 for q 6= 0

Proof In this case, the link of a vertex in FpLS−Fp−1LS intersects Fp−1LS in
a single sphere, of dimension (p−1). This is basically a consequence of the fact
that the “IHX” relation is just an “IH” relation when the graph is restricted
to lie on a surface, i.e. when it is necessary to preserve the cyclic orderings at
vertices.

Theorem 4 Let S be a surface with fundamental group Fr . Then

H2r−2−k(Γ(S);R) ∼= Hk(frGS) ∼= Hk((POG)S)

Proof By the above remarks H∗(Γ(S);R) is computed by the chain complex

. . .→ Hp(FpQS,Fp−1QS)→ Hp+1(Fp+1QS,FpQS)→ . . .

As in the case of Out(Fr), this can be described as a quotient of the vector
space spanned by forested ribbon graphs

(R{(G,Φ)}/AS)∗/IH∗ ∼= frGS.

The deformation retraction of Kr onto the subcomplex spanned by 1-particle
irreducible graphs restricts to a deformation retraction of LS . This sets up
an isomorphism with IPOGS , which is the quotient complex of POGS by
graphs with separating edges (internal or external). As in the Out(Fr) case,
this implies there is a chain complex that computes H∗(Γ(S);R) which carries
a Lie bialgebra structure. This bialgebra structure vanishes at the level of
homology, so that ⊕SH∗(Γ(S);R) is the primitive part of a differential graded
Hopf algebra.
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5 The commutative case, revisited

5.1 Kontsevich’s graph complex

When O is the commutative operad, each vector space O[m] is one-dimensional,
with a canonical basis element consisting of a rooted tree (not planar!) with
m numbered leaves. OS[m] has a basis consisting of ∗m . Thus an O-graph
for the commutative operad is simply an oriented graph, with no additional
structure attached to the vertices. In the graph complex associated to the
commutative operad, the k -chains OGk have as basis oriented graphs with k
vertices, and the boundary operator ∂E acts by collapsing edges. Note that
we may assume that a commutative graph has no edges which are loops, since
a graph automorphism which reverses the orientation on such an edge also
reverses the orientation on the graph, making that graph zero in the chain
group. This chain complex of oriented graphs was the one studied in [4]. It was
noted there that the subcomplex of one-particle irreducible graphs, on which the
bracket and cobracket are compatible, does not have the same homology as the
full complex, unlike the associative and Lie cases. We revisit the commutative
case here to give a geometric interpretation of the complex and explain the fact
that the subcomplex is not quasi-isometric to the full complex. We recently
discovered a proof that commutative graph homology without separating edges
or separating vertices does compute the commutative graph homology. This is
explained in [5].

5.2 The simplicial closure of Outer space

Full Outer space Ur , as opposed to the spine Kr , can be described as a union
of open simplices, one for each vertex of Kr . Recall that a vertex of Kr is a
marked graph (g,X) with k + 1 edges; points of the corresponding open k -
simplex are given by assigning non-zero lengths to the edges of X , subject to
the constraint that the sum of the lengths must equal 1. Gluing instructions
are given by adjacency relations in Kr : an open face is attached when an edge
is allowed to degenerate to length 0, changing the topological type of the graph
but not its fundamental group.

This union of open simplices is not a simplicial complex, since each simplex
is missing certain faces. Specifically, the missing faces correspond to proper
subgraphs which contain cycles; when the edges in such a subgraph are collapsed
to points, the fundamental group of the graph changes and the marked graph
is no longer in Ur . We can complete Ur to a simplicial complex Ûr by formally
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adding in these missing faces. The action of Out(Fr) extends, and the union
Ar of the added simplices forms an invariant subcomplex of Ûr . We denote by
C∗(Xr, Ar) the corresponding relative simplicial chain complex.

There are two actions of Out(Fr) on R, the trivial action and the action via the
composition Out(Fr) → Out(Zr) = Gl(r,Z) → R given by α 7→ ᾱ 7→ det(ᾱ).
We denote by R̃ the reals with the non-trivial action. We claim that the
commutative graph complex can be identified with C∗(Ûr, Ar) ⊗Out(Fr) R̃, so
that Kontsevich’s graph homology is isomorphic to the equivariant homology
H
Out(Fr)
∗ (Ûr, A; R̃) (see [2]).

Kontsevich’s graph complex OG is a direct sum of complexes OG(r) , where
OG(r)

k has as basis connected, oriented graphs with k vertices and Euler char-
acteristic 1− r .

Proposition 27 The equivariant homology H
Out(Fr)
p (Ûr, Ar; R̃) is isomorphic

to graph homology Hp+1−r(OG(r)).

Proof The relative chains Cp(Ûr, Ar) = Cp(Ûr)/Cp(Ar) have one basis ele-
ment for each p-simplex in Ûr which is not entirely contained in Ar . Such a
p-simplex is given by a marked graph (g,X) with p+ 1 edges. The vertices of
this p-simplex correspond to the edges e of X (they are obtained by collapsing
all edges other than e), so that ordering the edges of X determines an orien-
tation of the corresponding p-simplex. We write (g,X, e0, . . . , ep) to represent
the oriented simplex.

An element α ∈ Out(Fr) acts on (g,X, e0, . . . , ep) by changing the marking.
Specifically, represent α by a homotopy equivalence fα : Rr → Rr of the stan-
dard rose Rr ; then (g,X, e0, . . . , ep) · α = (g ◦ fα,X, e0, . . . , ep). This action
is transitive on markings: to send (g,X, e0, . . . , ep) to (g′,X.e0, . . . , ep), choose
any homotopy inverse g−1 to g and take fα = g−1 ◦ g′ .

The marking g induces an isomorphism g∗ : H1(Rr) ∼= Rn → H1(X), thus de-
termining an orientation on H1(X). Recall that one of the equivalent definitions
of an orientation on a connected graph X is a an orientation of RE(X)⊕H1(X)
(Proposition 1). Thus we have a map

Cp(Ûr, Ar)⊗Out(Fr) R̃→ OGp+1−r

sending (g,X, e0, . . . , ep)⊗1 7→ (X, or), where or is the orientation of RE(X)⊕
H1(X) given by the ordering e0, . . . , ep of E(X) together with the orientation
of H1(X) induced by g .
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To see that this map is well-defined, note that the action of α changes orien-
tation iff det(ᾱ) = −1. Since the map is also surjective, and since the vector
spaces in question are of the same (finite) dimension, it is an isomorphism.
Under this isomorphism, the boundary map

∂ ⊗ 1: Cp(Ûr, Ar)⊗Out(Fr) R̃→ Cp−1(Ûr, Ar)⊗Out(Fr) R̃

is identified with the graph homology boundary map ∂E : OG(r)
p+1−r → OG

(r)
p−r .

Note that the twisted coefficients account for the H1(X) part of a graph’s
orientation. With trivial coefficients, HOut(Fr)

∗ (Ûr, Ar;R) is isomorphic to a
version of graph homology where the orientation is given by ordering the edges
only. This homology is considered in a preprint of Bar-Natan and McKay[1].

The twisted equivariant homology groups H
Out(Fr)
∗ (Ûr, Ar; R̃) can be inter-

preted in terms of certain untwisted relative homology groups as follows. Let
SOutr denote the kernel of the non-trivial action on R, i.e. SOutr is the preim-
age of SL(r,Z) under the natural map Out(Fr)→ GL(r,Z).

Theorem 5 There is a long exact sequence

· · · → HOut(Fr)
p (Ûr, Ar; R̃)→ Hp(Ûr/SOutr, Ar/SOutr)→

→ Hp(Ûr/Out(Fr), Ar/Out(Fr))→ H
Out(Fr)
p−1 (Ûr, Ar; R̃)→ . . . .

Corollary 9 Let O be the commutative operad. Then the shifted O-graph
complex POG∗+1−r fits into a long exact sequence

· · · → Hp(POG∗+1−r)→ Hp(Ûr/SOutr, Ar/SOutr)→
→ Hp(Ûr/Out(Fr), Ar/Out(Fr))→ Hp−1(POG∗+1−r)→ . . . .

In other words, graph homology measures the difference between the homologies
of the relative quotients of (Û , A) by SOut and by Out.

Proof of Theorem 5 We will suppress the subscripts r to streamline the
notation.

Let τ ∈ Out be an automorphism with det(τ̄) = −1 (e.g. τ : x1 ↔ x2 ).

We have Cp(Û/SOut,A/SOut) ∼= C+
p ⊕ C−p , where C+

p and C−p are the +1
and −1 eigenspaces of the involution induced by τ . The short exact sequence

1→ C−p → Cp(Û/SOut,A/SOut)→ C+
p → 0
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gives rise to a long exact homology sequence

· · · → Hp(C−∗ )→ Hp((Û/SOut,A/SOut)→ Hp(C+
∗ )→ Hp−1(C−∗ )→ . . .

Now note that Cp(Û/SOut,A/SOut)⊗〈τ〉 R ∼= C−p , implying

Hp(C∗(Û , A)⊗Out R̃) ∼= Hp(C−∗ ).

Furthermore, the map Cp(Û/Out,A/Out) → Cp(Û/SOut,A/SOut) given by
σ 7→ 1

2(σ + τσ) is an isomorphism onto C+
p . Therefore the above long exact

sequence becomes

· · · → HOut
p (Û , A; R̃)→ Hp(Û/SOut,A/SOut)→

→ Hp(Û/Out,A/Out)→ HOut
p−1(Û , A; R̃)→ . . . .

5.3 Homology of the one-particle irreducible subcomplex ver-
sus graph homology

The fact that the subcomplex of one-particle irreducible graphs has the same
homology as the full complex for the associative and Lie operads followed be-
cause the O graph homology in these cases can be identified with the homology
of a space of graphs, which deformation retracts onto the subspace of one-
particle irreducible graphs by uniformly shrinking all separating edges. If the
deformation retraction of Outer space Ur extended equivariantly to (Ûr, Ar),
then our geometric interpretation would show that graph homology, too, could
be computed using the subcomplex of one-particle irreducible graphs (see [2],
Proposition 7.3). However, there is not even a continuous extension of this
deformation retraction to all of Ûr . The reason is that Ar contains simplices
which are obtained by shrinking all non-separating edges in a graph to points,
leaving a tree. If one then tries to shrink all of the (separating) edges in the
tree to points, one is left with a single vertex, which does not correspond to a
point in Ûr .

Let IUr denote the subspace of Ur corresponding to 1-particle irreducible
graphs. Then the homology of the subcomplex of the graph complex spanned
by 1-particle irreducible graphs can be identified with the equivariant homology
H
Out(Fr)
∗ (ÎU r, Ar ∩ ÎU r); R̃), as in the proof of Proposition 27, measuring the

difference between the relative quotients of (ÎU r, A∩ ÎUr) modulo Out(Fr) and
modulo SOut(Fr). Although H

Out(Fr)
∗ (ÎU r, Ar∩ÎU r; R̃) ∼= H

Out(Fr)
∗ (Ûr, Ar; R̃)

for small values of r , this is accidental, as the geometry suggests; for larger val-
ues of r the homologies differ. We illustrate the difference between Û and ÎU
for r = 2, where one can easily draw a picture, below.
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For r = 2, IU2 can be identified with the familiar picture of the hyperbolic
plane, tiled by ideal triangles (Figure 19). Full Outer space U2 has one addi-

Figure 19: The space ÎU2

tional open triangle (a “fin”) adjacent to each edge in the ideal triangulation.
(Figure 20). The simplicial closure ÎU2 is obtained by adding the vertices of

Figure 20: Outer space in rank 2

the ideal triangles; the closure of Û2 contains also the additional vertex and
two missing edges of each fin.

We conclude by using this example to illustrate Corollary 9. The quotient of
Û2 by the action of SOut2 is a “pillow” (perhaps more familiar as the quotient
of the hyperbolic plane by the action of SL(2,Z) ∼= SOut2 ) with half of a fin
attached (Figure 21); the image of A2 is a (closed) edge of this fin. Therefore the
relative homology H∗(Û2/SOut2, A2/SOut2) has one generator in dimension 2
and is zero elsewhere. In the quotient by the full outer automorphism group
Out(F2), the pillow is flattened to a triangle; again the image of A2 is an edge
of the attached fin, so that the relative homology vanishes. Therefore the only
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Figure 21: Quotient of Û2 modulo SOut2

non-zero terms in the long exact sequence are

· · · 0→ H
Out(F2)
2 (Û2, A2)→ R→ 0→ · · · .

Proposition 27 then tells us that H2(OG(2)) ∼= R. In terms of oriented graphs,
the graph homology generator is the theta graph, with two vertices connected
by three edges.
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