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Abstract. To evaluate Information Retrieval Systems on their effectiveness, evaluation programs 
such as TREC offer a rigorous methodology as well as benchmark collections. Whatever the 
evaluation collection used, effectiveness is generally considered globally, averaging the results over a 
set of information needs. As a result, the variability of system performance is hidden as the 
similarities and differences from one system to another are averaged. Moreover, the topics on which a 
given system succeeds or fails are left unknown. In this paper we propose an approach based on data 
analysis methods (correspondence analysis and clustering) to discover correlations between systems 
and to find trends in topic/system correlations. We show that it is possible to cluster topics and 
systems according to system performance on these topics, some system clusters being better on some 
topics. Finally, we propose a new method to consider complementary systems as based on their 
performances which can be applied for example in the case of repeated queries. We consider the 
system profile based on the similarity of the set of TREC topics on which systems achieve similar 
levels of performance. We show that this method is effective when using the TREC ad hoc collection. 

Keywords: Information retrieval, local analysis of results, dimensionality reduction techniques, 
correspondence analysis, clustering, hierarchical clustering, system/query correlation, query 
clustering, system clustering, meta search. 

1 Introduction 

To evaluate information retrieval (IR) systems on their effectiveness, international evaluation programs 
such as TREC1, CLEF2 or INEX3 offer a rigorous methodology as well as benchmark collections. These 
evaluation programs have contributed enormously to the IR field (Kamps et al., 2009; Robertson, 2009). 
Consider TREC ad hoc for example (Harman, 2000): in TREC 2 and 3, new term weighting functions 
were introduced with Okapi, BM25 (Robertson and Walker, 1994). The same year blind relevance 
feedback was introduced (Evans and Lefferts, 1994) and is now used widely for automatic query 
reformulation; in TREC 3, the merging of system results was introduced (Fox and Shaw, 1994); and in 
TREC 7 multiple uses of passages were considered (Allan et al., 1998). These results can be clearly 
linked to the evaluation program and are now widely used in information retrieval. TREC has gathered 
the responses to a survey on the uses of TREC resources and estimates of the value of TREC resources to 
the participants’ organization (Rowe et al., 2010). Even if evaluation programs do not cover all the 
aspects of IR evaluation, the importance of these international programs is unquestioned by the IR 
community. In addition to having made important contributions in the IR field, these programs and the 

                                                 
1 TREC Text REtrieval Conference – http://trec.nist.gov 
2
 CLEF Cross-Language Evaluation Forum – http://www.iei.pi.cnr.it/DELOS/CLEF  

3
 INEX Initiative – http://inex.is.informatik.uni-duisburg.de/ 
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associated benchmark collections have other advantages for research groups. The first advantage of these 
collections is that the evaluation process is easier, as there is no need to build a new document collection, 
associated queries, and relevance judgments from real users. Building an evaluation collection is time and 
resource demanding for academics who have no access to search engine query logs. The second 
advantage is that results can be directly compared to other published work without requiring re-
implementation of different approaches, because results obtained from different systems also become 
known from various publications. 
 
A benchmark collection from international evaluation programs is usually composed of a set of 
documents, a set of topics (information needs from which a query will be built to be submitted to the 
search engine) and a set of document relevance judgments. In addition to the collection, a framework is 
provided, including a task to achieve, and measures to evaluate the systems that participate in the task. 
One of the characteristics of evaluation programs is that system performance is computed in a global way, 
by averaging measures (e.g. recall, which measures the percentage of relevant documents the system 
retrieves, precision which measures the percentage of retrieved documents that are relevant and derived 
measures) on a set of topics. Although this principle allows system ranking or comparison, detailed 
analysis is not presented in the program reports and any differences in system results that might exist are 
unknown. 
 
For example, Table 1 reports MAP (mean average precision) over the 50 topics for a TREC 7 ad hoc 
search task (see Section 3 for details) for some of the best systems. In addition, the last line indicates the 
best system when considering the measure. These results can be obtained using trec_eval on official 
TREC runs.  

 MAP  AP 
Run All topics  T372 T380 T391 T359 
CLARIT98COMB 0.3702  0.5555 0.3594 0.1870 0.0299 
t7miti1 0.3675  0.8061 0.1264 0.0760 0.0125 
CLARIT98CLUS 0.3525  0.5202 0.2455 0.1962 0.0252 
Ok7ax 0.3033  0.1399 0.3832 0.5261 0.0254 
Brkly26 0.2905  0.2891 0.0700 0.2780 0.0586 
Best system 0.3702  0.8061 0.4845 0.5261 0.1567 
Average AP   0.1991 0.1893 0.1888 0.0157 

Table 1. MAP and AP for some official TREC runs and selected topics. CLARIT98COMB and 
CLARIT98CLUS are two runs submitted by CLARITECH Corporation. Ok7ax is one of the runs 
submitted by Okapi Group (City U./U. of Sheffield/Microsoft) using Okapi system and T7miti1 is one of 
the runs submitted by Management Information Technologies, Inc.. 

 
From Table 1, it can be concluded that CLARIT98COMB and t7miti1 have similar results according to 
MAP and are indeed the best systems according to this measure. This measure is computed considering 
several points in the retrieved document list; precision is computed each time a relevant document is 
retrieved, then the average of the precisions (AP) is calculated; MAP is the mean of APs over topics. 
Table 1 also reports for some topics detailed results for the same runs where only AP (average precision) 
is considered. The line ‘Best AP’ reports the best AP obtained for each selected topic (these can come 
from different systems for the different topics).  
Detailed results clearly show that on average AP is very close for topics T380 and T391 (last row). 
However, CLARIT98COMB, which is the best system on average, fails on T391 and performs relatively 
well on T380 (even if it is relatively far from the best system for this topic). t7miti1 outperforms the other 
systems on topic T372. Regarding T359, the best systems all fail, even if, when looking at the entire set of 
results, one can find several systems that manage to get AP of about 0.15. This is not by chance as those 
systems get MAP between 0.2 and 0.3. CLARIT98COMB and t7miti1 which were very close when 
considering MAP (Table 1) are now quite far apart regarding the results they obtain for the considered 
topics, and the former is closer to CLARI98CLUS in terms of profile. By system profile we mean 
numerical representation. A system representation consists of the list of performance values it obtained 
for each topic (a line vector of the system/topic table – Table 1). 
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From this short example we can see that global results may hide interesting differences on runs that could 
be used to better understand why systems fail or succeed for some topics. Alternatively, this knowledge 
could be used to decide which system would be better to use for each topic. Because evaluation is carried 
out globally, by averaging the results over about fifty topics (if we consider most of the tracks of the 
different international evaluation programs), the added value of the different techniques used, such as 
natural language processing (NLP), stemming, relevance feedback ... to name a few, is not easy to 
demonstrate. In the context of global evaluation, it is not possible to discover correlations between topic 
and system successes or failures. This is the core point of this paper in which we apply data analysis 
techniques to discover these types of correlation and comment on them. This paper however can also be 
viewed as a contribution towards longer term objectives such as: 
 

a) Defining a typology of queries and discovering the processes that should be applied to optimize 
the results on each type of query, 

b) Building a system as an intelligent agent that would automatically decide the process required 
according to the type of query the user submits, including for example, the most appropriate 
query reformulation method or the best ranking on a per topic basis. 

 
These are long term objectives we do not claim to achieve in this paper. The work we present is rather to 
be seen as a first contribution toward the construction of such an intelligent system.  
Immediate objective is to analyze the data that results from evaluation programs and to define a new 
method of combining systems that take into account the findings resulting from the analysis. In 
November 2000, the DENIS-P J104814.7-395606 star was identified while mining the old DENIS 
database (1975, 1986); we think that, like in astronomy, new knowledge can be extracted from past 
results and used in IR. More precisely, in this paper, we consider detailed analysis of the results (we chose 
the TREC ad hoc track) and correlate them with topics. The data analyzed corresponds to traditional 
evaluation measures that result from TREC evaluation and which are available for each topic 
individually, even though not widely used (as we said, effectiveness is usually considered globally, not on 
a per topic or query basis). The objective of the analysis is to have more ideas on how information is 
correlated and structured and to use this knowledge to define new IR techniques. 
 
The specific objectives of the paper are to: 

a) Cluster topics that behave in the same way and comment on these clusters, 

b) Cluster systems that behave in the same way and comment on these clusters, 

c) Analyze topics and systems simultaneously and discuss their correlation, 

d) Define a new method that considers various systems and select them on a per query-basis 
 

The paper is organized as follows: In Section 2 we report related work which includes data fusion, 
variability and past result analysis. Section 3 presents the framework of the study: the IR tasks and test 
collections we chose, some mathematical background. It also describes the method we propose to cluster 
topics and correlate topic clusters with system performance. Section 4 reports the analysis of system 
results when applying the method presented on TREC 7 ad hoc data. Section 5 presents a system 
combination technique based on the findings and discusses the improvements observed. After a 
conclusion (Section 6), an appendix provides some additional details of the results. 

2   Related work 

In depth analysis of IR systems’ retrieved lists and performance is useful for discovering information that 
could help to understand the influence of different IR components on retrieval performance or to improve 
information retrieval mechanisms. For example, results could be improved if it was possible to decide 
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which parameter setting, system, or system combination would work in a given context. Data fusion, 
variability analysis and past result analysis are work that intends to tackle this challenge. For this reason 
they are described in this section. 

2.1. Data fusion 

Data fusion relies on the fact that different strategies lead to different results and thus merging these 
results into a single result list may improve retrieval performance. Fox and Shaw (1994) were the first to 
show that combining the results from multiple retrieval runs improves retrieval performance over any of 
their individual retrieval methods. Experiments have been carried out using 9 different TREC sub-
collections, combining 5 individual runs in different ways. The same system, but with different topic 
representations (queries) was used. The CombSUM (each document receives a score which is the 
summation of the set of similarity values obtained by this document for the individual runs) was found to 
be the most effective combination. Other methods have been proposed such as the Borda count (Aslam 
and Montague, 2001), user oriented approaches (Elovici et al., 2006) (Hubert et al., 2007), high precision 
oriented approach (Hubert and Mothe, 2007), methods that combine positive and negative feedback 
(Dkaki and Mothe, 2004), or data fusion considering lists retrieved using various document parts (Hubert 
and Mothe, 2009). 
 
Various studies tried to explain data fusion results (Lee, 1997; Beitzel et al. 2003). Ng and Kantor (2000) 
associated the effectiveness of fusing two systems to two predictive variables: similarity of retrieval 
performances and dissimilarity between the retrieval schemes approximated as a dissimilarity between 
their ranked list outputs.  
 
Wu and McClean (2006) have analyzed deeper correlations between the systems to be fused. As opposed 
to previous approaches, the analysis is topic-based and leads to different weights to define the 
contribution of each fused system (according to topics). Correlation in this work is based on the (ranked) 
list of retrieved documents and corresponds to generalization of CombSUM. The results report a slight 
improvement compared to Comb-like methods (CombSUM, CombMNZ and other variants). In the 
context of multimedia information retrieval, Wilkins et al. (2006) also investigated the use of a weighting 
fusion that is topic-dependent.  
 
More recently, learning to rank has been used to automatically learn the best ranking function from 
training data (Trotman, 2005; Cao et al., 2007). In learning to rank, examples to learn in the training 
phase consist of ranked lists of the relevant documents associated with the corresponding topics. The 
testing phase uses the unique learned ranking function but on new topics. 

2.2. Variability, topic difficulty and topic clustering 

Variability in results is one major issue to understand data fusion and system combination. Understanding 
this variability can lead to better fusion strategies. Harman and Buckley (2004; 2009) claims that 
understanding variability in results (system 1 working well on topic 1 but poorly on topic 2 with system 2 
doing the reverse) is difficult because it is due to three types of factor: topic statement, relationship of the 
topic to the documents and system features. The “reliable information access” workshop (Harman and 
Buckley , 2004) focused on the query expansion issue and analyzed both system and topic variability 
factors on TREC collections. Seven systems were used, all using blind relevance feedback. System 
variability was studied through the different systems by tuning different system parameters and query 
variability was studied using different query reformulation strategies (different numbers of added terms 
and documents). Several classes of topic failure were drawn manually, but no indications were given on 
how to automatically assign a topic to a category. 
 
One subfield of variability is topic variability. The case of difficult queries and topics has been 
specifically studied. Mandl and Womser-Hacker (2003) analyzed CLEF topics and the correlation 
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between topic features and system performance. They found a correlation of 0.4 between the number of 
proper nouns and average precision. Cronen-Townsend et al. (2002) introduced the clarity score which is 
a measure to predict query difficulty. This score is based on the relative entropy between the query 
language model and the corresponding collection language model. Mothe and Tanguy (2005) analyzed 
TREC topics according to 13 linguistic features and showed that the average polysemy value of topic 
terms is correlated with recall. Carmel et al. (2006) showed that topic difficulty depends on the distances 
between three topic components: topic description, the set of relevant documents, and the entire document 
collection.  
 
Another issue is to consider topic and query clusters in order to adapt the system to the query type. In (He 
and Ounis, 2003) topic characteristics were used to cluster the topics. The best term-weighting schema in 
terms of precision/recall measures is then associated with each topic cluster. After this training, when a 
new topic is submitted, it is clustered into the existing clusters and the pre-trained system is used to 
process it. Different term weighting schemes are applied depending on topic characteristics. When 
applied to TREC Robust track, this method improves results on poorly-performing topics. Clustering 
queries has also been studied in the web context (Wen et al., 2002), but based on query logs, which is a 
different issue. Mothe and Tanguy (2008) have shown that topics can be clustered according to their 
linguistic features and that these features are correlated with system performances. 

2.3. Past results analysis 

Fine-grain analysis of detailed published results (Systems/Topics/Measures) has also been carried out. 
The study in (Banks et al., 1999) reports different analyses of TREC data. In the analysis which is most 
related to ours, they consider a matrix in which rows and columns represent systems and topics; cells 
correspond to average precision. This matrix is used in order to analyze the clusters that could be 
extracted. To do so, they used hierarchical clustering based on single-linkage. This method combines 
clusters that minimize the distance between closest elements in each. The figures included in the paper 
hide the distances between clusters; in addition the paper neither discusses the obtained tree nor the 
clusters that could have been extracted by cutting the tree at different levels. A more detailed analysis, 
including going back to the raw data might have helped to extract more knowledge from the obtained 
graphs. Our contribution goes a step further. 
A different type of analysis is reported in (Mizzaro and Robertson, 2007). One aim of this work was to 
identify a small number of topics that would be useful to distinguish effective and ineffective systems. 
The paper uses, as we do, effectiveness measures on system-topic pairs. The paper concludes that their 
experiments confirm the hypothesis that “some systems are better than others at distinguishing easy and 
difficult topics”. The paper also concludes that “a really bad system does badly on everything, while even 
a good system may have difficulty with some topics” and “that easiest topics are better at distinguishing 
more or less effective systems”. However, they do not appear to use these findings in further studies. 
 
In this paper we describe an approach based on data analysis methods (correspondence analysis and 
clustering) to discover correlation between systems, between topics and to find trends in topic/system 
correlations. We also use the results of this analysis to promote a new system combination technique that 
makes use of both topic clusters and system clusters and show that MAP is significantly improved.  

3   A method to analyze past runs 

The motivation of our work is that the same unique system cannot handle properly any given query. The 
search for a universal IR method is probably vain; our hypothesis is that there are more benefits to expect 
from specialized IR approaches. In addition, analyzing system variability could help to know which 
queries or which query types a given system treats best. 
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We aim first to analyze in depth the results of various systems, and second, to use the findings from the 
analysis to develop a new system combination technique that would leverage the best of each system. 

3.1   TREC as an experimental test collection 

For the analysis, it is compulsory to consider various systems based on the same collections (information 
needs, documents on which the search is carried out and relevance judgments). International experimental 
environments, such as TREC, accumulate such retrieval results with a large variety in terms of systems, 
tasks, and test collections. Systems themselves are not available, but the results they produced are. 
Choosing a suitable test collection is of utmost importance to the proving of soundness and usefulness of 
an information retrieval system.  
 
An evaluation collection consists of the following: 

- A number of pre-defined documents (e.g. newspaper articles),  

- A set of topics (each topic is transformed into a query that is submitted to a given system), and 

- The list of relevant information items corresponding to each topic (referred to later as qrels).  
 
Both topics and relevant sets are manually defined. Relevance judgments are used to measure system 
performance by comparing relevance judgments and ‘runs’ (lists of documents a particular system 
retrieves for each topic of the test). 
 
As several systems use the same test collection, a set of runs and their corresponding performance are 
available as a result of experimental environments. Our choice goes naturally to this type of resource. 
 
Because it is impossible to analyze all the results collected from international evaluation programs, we 
rely on the conclusions of the SIGIR workshop “the Future of IR Evaluation” to pick-up TREC as a test 
collection. Indeed, one conclusion of this workshop is that the experimental paradigm Cranfield set and 
TREC perpetrates had lead to huge advances in the field and are still useful (Robertson, 2009). We made 
the decision to focus on data from the TREC ad hoc retrieval task. The ad hoc task was introduced at the 
beginning of TREC in 1992. “The ad hoc task investigates the performance of systems that search a static 
set of documents using new questions (called topics in TREC)” (trec.nist.gov). It simulates a traditional 
IR task for which a user queries the system. The system retrieves a ranked list of documents that answer 
this query from a static set of documents. Each TREC participant submits runs to NIST that are evaluated 
against human judgments. Details on the set of documents and topics can be found at trec.nist.gov. 
 
We chose the TREC 7 collection since it had enough participants (103 runs submitted for the 50 topics - 
topics 351-400) for the analysis to be meaningful. 
The detailed runs a participant submits from previous TREC campaigns are available on the TREC server 
in a login/password protected area (http://trec.nist.gov/results.html). Notice that each run may consider a 
different topic representation for the same topic; the query used by each system is unknown and in this 
study we consider the systems as black boxes. The performance measures obtained for each topic by each 
run can be computed by the official TREC evaluation software known as trec_eval (which includes 135 
individual measures). When evaluating a run, a measure is first computed for each topic and then 
averaged over all topics. Table 1 (see Introduction) provides some examples of run results (average 
results over the set of topics). 
 
In this paper, we considered mainly Average precision (AP) and Mean Average Precision (MAP) to 
evaluate system performance. For AP, the precision is calculated after each relevant document is 
retrieved. These precision values are then averaged together to compute AP. MAP averages AP over 
topics and was first introduced as a measure in TREC 2. It is an interesting measure because it aggregates 
recall/precision curves in a single measure (it combines different measure points). MAP is less dependent 
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on the number of relevant documents than are high precision measures, for example. This measure is used 
for global comparisons of different systems (Voorhees, 2007). 
 
Runs and evaluation of these runs are the inputs of the analysis we report in Section 4. 

3.2   Mathematical background 

We propose to analyze system results using both clustering methods and correspondence analysis. These 
methods have been used in various domains including social sciences (Greenacre and Blasius, 1994), 
textual data mining (Lebart et al., 2006), and genomics (Tekaia et al., 2002). 
 
Both types of techniques can be applied on a matrix of data, for example on a matrix (denoted X) 
composed of n observations or elements that constitute the population to be analyzed and that is described 
along p variables using numerical values. Such a matrix can also be viewed as a set of n vectors in a p 
dimensional space. In our specific case, the matrix we analyze is composed of n TREC topics described 
along p systems using AP (see Table 2, section 5.1). 

Clustering methods 

Clustering methods are used for representing proximities among the elements through subsets or clusters. 
Two major types of clustering have been defined in the literature (Lebart et al., 2006): hierarchical 
clustering which aims at defining a hierarchy of clusters partially nested in one another and partitioning 
methods that lead to partitions of the elements.  
 
A hierarchical clustering (HC) produces a set of partitions, P1, …. Pn-1, Pn, of the initial elements, using 
a bottom-up approach. The hierarchy can be represented as a tree structure or dendrogram. At one 
extreme, Pn (the leaves of the tree) consists of n single elements. At the other extreme, P1 (the root of the 
tree) corresponds to a single group that consists of all n elements. In such a clustering, at each particular 
stage, the two clusters which are closest together are joined to form a new cluster. At the first stage, each 
cluster is composed of a single element. The clustering ends when a single cluster is obtained. 
Hierarchical clustering implies defining the distance between two elements and between two clusters. 
With regard to the former distance, Euclidien distance is usually used. With regard to the latter, 
statisticians often suggest using a method known as the Ward criteria (Ward, 1963), which consists of 
minimizing the within-class variance of the partition.  
 
Considering the n elements (observations) to cluster as points in a Euclidean space according to the p 
variables (dimensions), HC based on the Ward criteria in a Euclidien space is defined by the two 
following formulas: 
 

- once two clusters C and C’ of centers γC and γC’are clustered together as C’’, the coordinates of 
the resulting new center γC’’  is defined as: 
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where cm is the mass of cluster C defined as the cluster cardinality. 

 
We used this method since it has the advantage of being compatible with correspondence analysis that we 
also use for data mining. Notice that a clustering method can be performed indifferently on the rows or on 
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the columns of the initial matrix; we can thus use it to cluster systems or topics or both (Madeira and 
Oliveira, 2004). 
 
HC computes a hierarchical representation of the dataset. However, most of the time, it is desirable to 
define clusters to analyze the results. To achieve this, the resulting hierarchical representation can be cut 
at any level, considering one partition of the elements. The lower the level, the fewer the number of 
objects per cluster and the larger the number of clusters is. An example of a dendrogram resulting from 
HC and a cut at one level is shown in Figure 1. Finding good cuts is not a trivial action. Ferraretti et al. 
(2009) propose an automatic technique for cluster creation in HC based on the fact that resulting clusters 
should be compact, separated and balanced. However, the usual method used to decide the cutting level 
remains manual, by analyzing the distance between the nodes in the dendrogram (see Section 5.1 also). 
Seber (1984) suggests stabilizing the resulting clusters by applying a partitioning method on the clusters 
obtained using hierarchical clustering. K-means (MacQueen, 1967) is a partitioning method that aims at 
partitioning n observations into k clusters, while minimizing the within-cluster sum of squares. The 
general algorithm uses an iterative method: an initial set of k means is first specified randomly, each 
observation is then assigned to the cluster with the closest mean, and finally the new means of the 
observations of the clusters are calculated (centroids). The process is repeated using these new k means. 
The algorithm stops when there is no more modification in element assignments to the clusters. When 
combined with HC, the number of clusters of the partitioning (k) is set by the cut chosen when using 
hierarchical clustering. The k means are then computed considering the elements that are clustered in this 
initial partition. Then, the partitioning method assigns each element to the nearest cluster (using its 
distance to the centroid). The algorithm stops when no element changes between two successive stages. 

 
We use this combination of HC and K-means in the analyses presented in Section 5. 

Correspondence Analysis 

Dimensionality reduction techniques correspond to a set of methods that aim at representing a set of n 
observations initially represented according to p observed variables in terms of q unobserved variables 
(factors).  
 
Principal Components Analysis (PCA) and Correspondence Analysis (CA) (Benzécri, 1973) are similar 
methods; the latter being generally less known than the former. The general goal of these data analysis 
methods is to represent observations, initially in a space of p dimensions (variables), in a space of lower 
dimensionality (Jolliffe, 2002). Both methods are mathematically related to singular value decomposition. 
They reduce the number of data dimensions, retaining the most important, as determined by the greatest 
eigenvalues of a square symmetric matrix resulting from the initial matrix (Murtagh, 2005). In PCA, this 
matrix is often a correlation matrix or the variance/co-variance matrix. In CA, the square matrix is the 
matrix of profiles. The eigenvectors corresponding to the highest eigenvalues are then known to be the 
most useful for visualizing the maximum amount of information. Moreover, the most specific information 
will be displayed first.  
 
To go a step further, in the initial matrix, some variables may be different in value. When considering 
PCA, to enforce homogeneity, the observations are centered. The matrix to be singular value decomposed 
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transformation modifies the origin of the data. The matrix XtX to be diagonalized is the covariance matrix 
(Lebart et al. 2006). Observation homogeneity is also reinforced considering standard deviation (data is 
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Unlike PCA, CA treats rows and columns in an identical manner whereas PCA would give priority to 
either the rows or the columns. In CA, the matrix to be submitted to singular value decomposition is: 
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In CA, if two observations (rows) have identical profiles (e.g. identical or proportional), they can be 
combined without affecting the variables (columns). The same is true for two identical profiles of 
variables. 
 
In this method, after diagonalization, a set of eigenvectors is produced; it is then possible to project the n 
row-points onto the principal factors. The factors correspond to the eigenvalues of the 
variance/covariance matrix. The eigenvalue corresponds to the variance of one factor, that is, the variance 
of the coordinates of the observations according to the corresponding factor. A row-point or a column-
point contributes to the total inertia explained by each factor. Inertia is the generalization of the variance 
to a multidimensional space. Graphical representation of the data is generally based on the factors that 
have the highest variance, the ones that explain the data best. A main advantage of CA compared to PCA 
is the fact that simultaneous representation of row-points and column-points is made possible (Lebart et 
al., 2006). Notice that CA can also be viewed as a 2-mode or biclustering approach, based on 
visualization (Murtagh et al., 2000). Even if the proximity between a given row-point and a column-point 
cannot be interpreted, the relative position of one row-point can be interpreted. Generally, a 2-D 
representation based on the two factors that correspond to the two highest eigenvalues is considered; 
however it can be useful to visualize the next principal factors since it can happen that the first factor 
corresponds to obvious information. Column-points and row-points can be arranged in this 2D-space. 
Reading the graphical representation of a CA according to some of the principal factors is not necessarily 
obvious and some reading keys to interpret will be provided along with the figures in Section 5. One 
important point is that column-points that appear on the periphery of the virtual hyper-sphere indicate 
interesting variables. They depict a vector that can be explained by the observations that contribute the 
most to this vector (i.e. whose projection is maximal relative to this vector). This is illustrated in more 
detail in Section 5.3., when showing the results of our analysis.  
 
There is another reason that leads us to choose CA to analyze the AP matrix. PCA is usually used for a 
matrix that describes observations according to variables using quantities. PCA will show the main 
dispersion. It is not the most appropriate in the case of the data we want to analyze since we aim at 
discovering topic and system profiles. CA is generally applied in the context of contingency tables. A 2-D 
contingency table typically describes a population of individuals according to two variables. The rows of 
the matrix correspond to the modalities of one variable and the columns the modalities of the second 
variable. Modalities are assumed to be independent. The matrix describes the frequencies of the 
modalities in the population, so that the sum of the values of one row (resp. column) is equal to the total 
population. CA is applicable when the sums of the rows and the sums of the columns are meaningful. In 
the case of the matrix we want to analyze, the sum of the values in a row (resp. column) makes sense: it is 
the sum of AP: the higher this value, the easier the topic (resp. the better the system). Row profiles and 
column profiles make sense as well. The matrix we analyze is not a contingency table but contains scores 
between 0 and 1. Avila and Myers show that CA can be used to “for the analysis of data matrices where 
the variables are measures on a ratio-scale” (Avila et Myers, 1991). Those reasons lead us to consider CA 
when analyzing our data.  

3.3. Analyzing TREC results 

The goal of the analysis we propose is to discover the structure of the results of search systems when 
applied to a set of topics for ad hoc searching: are there some systems that behave the same way? Are 
there topics for which systems behave the same way? Can we learn more from the system effectiveness 
results? To answer these questions, we developed a scenario based on the effectiveness matrix (n topics-
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observations as rows, p systems-variables as columns and AP as coordinates). This scenario is composed 
of two steps: clustering and CA: 

- Topics are first clustered according to the results that systems obtained in the TREC runs. More 
precisely, when studying AP, the topic / system AP matrix (Table 2) is analyzed applying HC; 
systems are analyzed the same way. 

- Secondly, the same matrix is analyzed using CA. Two graphical representations are then made: the 
first one represents the variables (systems) in a reduced space. The second one represents the 
observations (topics) in the same reduced space. In addition a color is associated with each topic 
cluster extracted from the previous step. Systems and topics are then analyzed simultaneously. 

 
Lebart et al. (2006) recommend combining CA and clustering methods mainly to enrich the 
representation from a multidimensional point of view: 

- Using clustering corrects the distortions that can occur when using CA because of the projections in 
a reduced space, 

- Even if this is a reduced space, CA considers a continuous space; a continuous space is more 
difficult to describe than a discontinuous space that produces clustering. 

 
To be combined, clustering methods and CA should be using the same metric. Ward’s hierarchical 
clustering and CA are both based on inertia and thus will provide coherent results in our analysis. It 
makes sense to use them together since they provide different visualizations and can lead to 
complementary interpretations as we will see in Section 5. It is also important to remember that HC can 
be applied to cluster either rows or columns and that CA treats rows and columns in an identical manner. 

4   Analyzing topic and system performances 

Clustering is an optimisation task that aims to assign of a set of objects into clusters so that objects in the 
same cluster are similar and objects from different clusters are dissimilar. 
 
Finding what makes some objects belonging to a giving cluster and what kind of properties they share -
beyond the fact that they are similar according to a giving similarity measure- goes beyond clustering 
goals. In the scope of clustering it is enough to find clusters among a set of objects but succeeding in 
effectively interpreting the clusters is undeniably a plus. Unfortunately, interpreting clusters can present 
some difficulties. This is generally the case of unsupervised learning algorithms that tend to produce 
complicated results that may not be interpreted. When interpretation is needed, it is necessary to consider 
supervised learning methods such as rule induction (Liu, 2006). This is not the purpose of our method.  
 
It is also difficult to find sound interpretation for factorial axes (factors) in AC. Indeed, a combination of 
variables does not usually find a straight forward interpretation. 
 
In the following, each time it is possible we will interpret the clusters and factorial axes we extracted or 
display. Otherwise, we will simply stick to the fact that the systems that belong to the same cluster treat 
each query in the same ways, and that the queries belonging to a same cluster raise the same degree of 
difficulty, either absolute or relative, to each system. 

4.1. Topic clustering – TREC 7 ad hoc – AP 

A first analysis consists in clustering the topics using HC. In such an analysis, topics play the role of 
observations and systems the role of variables. The data analyzed is the AP obtained by each system for 
each topic (see Table 2). We use the cluster package (http://cran.r-
project.org/web/packages/cluster/index.html). 
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APL985L APL985LC APL985SC AntHoc01 Brkly24 Brkly25
T351 0,2257 0,2261 0,1655 0,2933 0,2987 0,3137
T352 0,0229 0,0321 0,0594 0,0277 0,0379 0,0097
T353 0,3271 0,3052 0,2852 0,2091 0,374 0,264
T354 0,1119 0,1496 0,0908 0,0139 0,0192 0,1084
T355 0,0973 0,0688 0,0327 0,1365 0,0987 0,183
T356 0,052 0,0593 0,0462 0,0091 0,0128 0,0452
T357 0,1358 0,1803 0,1391 0,0984 0,3284 0,3277
T358 0,0994 0,0988 0,0489 0,1514 0,2078 0,3887
T359 0,0378 0,0337 0,0146 0,0223 0,0319 0,0357
T360 0,39 0,3825 0,4096 0,0404 0,3275 0,036  

Table 2. Extract of the AP matrix from TREC 7 Ad hoc. 

 
 

Figure 1.  Dendrogram resulting from topic clustering using AP on TREC 7 Ad hoc. 
The detailed composition of the clusters is provided in the Appendix 

We applied HC to the data and obtained the dendrogram presented in Figure 1 in which the length of the 
branches indicates the distance between clusters. Considering the matrix we analyzed, two topics are 
considered as close to each other and thus clustered together if, when considering any system, they get a 
similar AP. From this clustering, after applying K-means, a few changes take place. The detail of the 
cluster content is not to be read in the dendrogram itself, the final groups of topics are obtained after K 
means and are presented in the appendix 1. 
 
Cutting the dendrogram at a given level corresponds to defining a partition, each cluster being defined by 
the list of elements it contains. The cutting level is decided considering the distance between nodes. To be 
relevant, a cut should occur where there is a large gap between the distances of two consecutive 
dendrogram nodes. When considering the tree presented in Figure 1, we can choose a 2-cluster partition. 
The next relevant pruning is at 5 clusters (which is marked in Figure 1). 
 
The clustering itself does not label the clusters. In our specific case, labeling can be made going back to 
the initial matrix and having a look at the values. When considering the resulting 5-cluster partition, and 
after reordering for readability purpose, the second cluster on the left side (Figure 1) corresponds to the 
easy topics for the systems: the topics for which the mean AP over the systems is the highest (the first 
cluster on the very left side consists of one topic; this is the easiest topic). This second left-side cluster 
(see Appendix for cluster content after K-means) consists of topics which have the highest AP (after the 
easiest topic T365 that constitutes the first cluster) when averaged over systems (from 0.3370 to 0.4628; 
0.3908 on average). The cluster on the very right side of Figure 1 corresponds to the hardest topics. The 
11 topics from this cluster obtain the poorest AP (averaged over systems), varying from 0.0242 to 0.0981, 

Easy topics 
(cluster 3) 

Hard topics 
(cluster 4) 

Easiest topic 
(cluster 2) 

Hardest 
topics 
(cluster 4) 
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0.0493 on average for the topics from this cluster. Topic clustering results in grouping together topics 
according to their level of difficulty on average.  
 
These topic clusters will be used later on and combined with system analysis. 

4.2. System similarity based on AP for TREC 7 ad hoc 

In the same way as for topics, it is possible to cluster systems. Considering the same data as in Section 
5.1, we clustered the systems using HC. Figure 2 displays the resulting dendrogram. Considering this 
analysis, systems are considered as similar if they obtain similar results for each topic. In that way, two 
systems are close to each other because they both fail or succeed on the same topics. K-means has also 
been applied and the detail of the cluster content is listed in the appendix 2. 

 

Figure 2. Dendrogram resulting from system clustering using AP matrix from TREC 7 Ad hoc. 
Details of the clusters are provided in the Appendix 2. 

 
Figure 2 and cluster contents shows that versions of the same system tend to be very close. For example, 
the three versions of the CLARIT98 system are grouped together in the same cluster (first cluster on the 
left of Figure 2). Notice that CLARIT98 runs are among the best runs and for these runs MAP is between 
0.3351 and 0.3702. The same thing occurs with Okapi versions that are grouped together in cluster 2. The 
fact that different versions of the same system tend to yield similar performance is not that surprising 
since generally, different versions of systems correspond to parameter tuning. This shows that one cannot 
expect high enhancement of IR system performance by just making minor changes. This, in a way, 
supports the conclusion from (Croft, 2000) considering data fusion: fused systems should be independent 
of each other. This is also one of the results that provide motivation for the combination technique we 
develop in Section 6. A closer analysis of the results presented in Figure 2 reveals some other interesting 
insights:  

- Reading the publication associated with the runs CLARITECH has submitted (trec.nist.gov), it 
happens that CLARIT98COMB is a combination of several other runs CLARITECH submitted. The 
results show that it was not a very effective combination (there is no important variation of the 
results). One conclusion could be that for the systems to be fused effectively they should be 
independent from each other. 

- IRIT labs sent three runs using the Mercure system; two belong to the same cluster (third cluster 
from the left side), but one belongs to the last cluster. This suggests that the versions of the system 
lead to significant modifications, which was the case indeed. Statistical tests applied to the results 
show this as well.  

Best systems 
(cluster 1) 

Poorest systems 
(cluster 4) 
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Given the way the clustering is done, mathematically, the clusters are not necessarily reflecting the 
average performance over topics. Rather, the clusters reflect homogeneity on performance they get for 
individual topics. However, a closer look at the initial matrix and data shows that: 

- The first cluster on the left (Figure 2) contains the best system with regard to MAP 
(CLARITY98COMB, 0.4548). On average, the systems from this cluster obtain 0.3451 for MAP, 
compared to 0.1992 when considering all the systems. This cluster consists of 7 systems. The data 
also shows that this cluster contains the best ranked systems (ranks 1 to 6 and 8 when considering 
MAP). The system ranked the 7th is ok7ax which belongs to another cluster. 

- The systems that have the lowest performance are grouped together in the 4th cluster from the left in 
Figure 2. These 11 systems obtain the lowest MAP which is on average 0.0451. They correspond to 
the systems ranked from 93 to 103 when considering MAP. 

 
These two elements show that the most effective systems tend to behave the same way, as do the systems 
that achieve poor results. Note that behave means perform relatively better/worse/equal on the same 
topics. Considering the other clusters, MAP is not uniformly distributed and thus cannot be used to label 
the clusters. In the Appendix 3, we show the systems ordered by increasing MAP and the clusters they 
belong to. 
 
These observations go in favor of the development of techniques that would be topic dependent and that 
would consider types of systems. Indeed, we found that some systems (that we grouped together) tend to 
behave the same for the same topics: either succeeding or failing; but that other groups of systems do not 
behave the same on the same topics. These observations are the starting point of the method developed in 
section 5. 

4.3. Further analysis of topic-system correlation – TREC 7 ad hoc – AP  

Another way to analyze how systems (and topics) behave, compared to each other, is to consider CA. The 
visualizations associated with CA display the distances among topics and among systems (see section 
3.2.). We used the R ade4 package (http://pbil.univ-lyon1.fr/ade4/). 
 
Figure 3 displays the two first principal factors that correspond to 31.3% of the total inertia; only systems 
are represented. Factor 1 corresponds to 20.5% of the total inertia: this means that the systems are first 
distinguished considering this factor. The two first factors explain about 1/3 of the information. There are 
25 factorial axes (factors) and each vertical bar shows the amount of information carried by the 
corresponding factor (see Proportion% on the left side). The dashed curve expresses the cumulative 
proportion of inertia accounted for by the factorial axes and shows that –for example– exploring the five 
first factors will give an overview of about half the total information (see Cumulative proportion on the 
right side). 
 
In Figure 3, the arrangement of column-points (systems) according to the two factors can be read as 
follows: the higher their values, the higher their contribution to the factor (either positively or negatively). 
When analyzing a factor, one should consider the coordinates (the contribution) of the point to the factor. 
In the case of Figure 3, displayed points correspond to systems. Systems on the right of the graph 
contribute positively to factor 1.  
 
For example CLARIT98XX, itt98ma1, t7miti1, and umwt7aXX are the systems that contribute most 
positively to factor 1. These systems are among the best when considering MAP. On the contrary, 
systems that are on the left of factor 1 are systems that contribute negatively to factor 1 (e.g. jalbse013 
and KD7XX systems). They are opposite to the previous systems considering this factor. Indeed, going 
back to the initial matrix, these systems are among the ones that achieve the poorest MAP (ranks 99, 100, 
and 102). Factor 1 can be labeled as Poorest systems on the left side and Best systems on the right side. 
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Figure 3. The 2 first factors of the CA using the AP matrix on TREC 7 Ad hoc. Systems are displayed on 
the 2D space induced by the two first factors which correspond to 20.5 % and 10.8 % of the total inertia. 

Some elements are hidden by others due to the fact they are too close each other. 
 

 
It is important to note that not surprisingly Figure 3 is overlapping in content with Figure 2. For example, 
the three versions of the CLARIT98XX systems are close to each other (right side of factor 1). They are 
also close to t7miti1 and uwmt7a2. CLARIT98XX, itt98ma1, t7miti1, and umwt7aXX belong to the same 
cluster (see Figure 2 or Appendix 2). Additionally, when applying PCA on the same data (data are first 
centered on observations), results remains coherent. For example, CLARIT98XX and umwt7aXX close to 
each other and KD7XX systems in a different region of the space. However, PCA does not allow one to 
explain, in a simple way, relationships between variables and observations. For this reason, we display 
CA results only.  
 
It is interesting to note the specific arrangement of ok7ax (near the centre of Figure 3). This system 
obtains rank 7 (over 103) considering MAP; that means it is among the best performing systems. HC did 
not cluster it with the other best systems (e.g. CLARIT98XX systems). The results we obtain with CA are 
consistent since ok7ax and CLARIT98XX are distant when considering factor 1. Since both are good 
systems (considering their performance in terms of MAP), one can conclude that they are not good for the 
same reasons (not the same topics). 
 
These two observations (ok7ax and -let us choose- CLARIT98COMB are among the best systems with 
regard to MAP and the two systems do not behave the same way since they are not clustered together) 
would suggest that these two systems could be combined in some way, for example on a per topic basis. 
This is another motivation of the method we propose Section 5. 
 
Considering factor 2, the systems that contribute the most in a positive way are: jalbse013, iit98au2, 
APL9858C, LIAXX, LNaTit7 … On the other hand, ic98san4, Ianl981, umd98a2, iit98au1 are among the 
systems that contribute the most oppositely. Ic98san4 (out of screen shot in Figure 3) is on the negative 
part of factor 2; it is placed among the poorest systems according to MAP (86th rank). Factor 2 can be 
labeled Poor systems on the bottom part and Good systems on the top. Both HC and CA show that they 

System that contributes positively 
considering the 1st factor 

Best systems 

Best systems 

Poorest systems 

Poorest systems 
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do not fail because of the same topics. They do not belong to the same clusters in the HC and they do not 
contribute the same way to the main principal factors. For example, KD7XX contribute negatively to 
factor 1 whereas Ianl981 contribute negatively to factor 2. 
 
When analyzing the other factors, some other systems appear as having a specific behavior. For example, 
Factor 3 (see Appendix 4) clearly shows the cluster that contains ok7XX systems (cluster number 2 in the 
Appendix and second cluster from the left in Figure 2). 
 
An interesting feature of CA is that we can simultaneously visualize the column and the row points 
(systems and topics in our case). As row and column projections are related by a barycentric relationship 
(Murtagh, 2005), it is possible to define distances in Euclidean space and display both observations and 
variables in the same graphical representation. Since there are many points, we prefer to show two 
figures. First, Figure 4 displays topics only. It is important to understand that Figure 3 and Figure 4 use 
the same two first principal factors. Then, Figure 5 displays the centroid of each system cluster (the 6 
clusters that are displayed in Figure 2), rather than displaying the 103 systems, in addition to the 50 
topics. 
 
Figure 4 presents the results of the CA based on the AP matrix, displaying row-points/topics only. It is 
displayed according to the previous factors 1 and 2; remember they correspond to more than 30% of the 
total inertia and have been labeled according to the MAP system obtained. Topics that contribute the most 
to the principal factor 1 are the ones that obtained the highest coordinates on this factor. Either 
considering Figures 4 and 6 together or considering Figure 5, we can explain the fact that systems in the 
right top corner perform specifically well on the topics that are in the same direction.  

 
CA shows that T389 (out of the screen Figure 4, very right part, see Figure 5 too), T383, T397, and at a 
lower level T356, T376, T393, T372, and T394 for example are typical of the systems that contribute 
positively to factor 1. T379, T383 and at a lower level T397, T393, T386 are associated with systems that 
contribute positively to factor 2. Since these systems correspond to systems that perform well, those 
topics are “easy” for systems that are in the top right corner. Indeed, going back to the AP matrix, 
iit98ma1 is the best for T389 (same direction when considering Figures 4 and 7); this is a hard topic 
(average over systems is 0.0250, iit98ma1 gets 0.4906. If one draws a vector from the origin of factors 1 
and 2 to iit98ma1, we would see that T389 is in the same direction. T397 is also a hard topic (average AP 
over systems is 0.0980), and CLARIT08RANK performed best on it (0.6089). This is thus an atypical 
topic since on average systems perform poorly on it but a few systems succeeded. T383 is also a hard 
topic (average is 0.0593); the best systems do well on this topic as well. On the contrary, T376 is an easy 
topic (average 0.5179); LNaTitDesc7 is the system that performed the best on this topic, followed by 
most of the best systems. The same occurs for topic T372, the systems that rank the best for this topic are 
among the best systems. Still, considering factor 1 but on the opposite side (negative coordinates), T357 
for example, is opposite to systems that perform well. This topic is not that hard (0.1468), but the first 
system from the best system cluster appears at rank 15 and the second ranks 41! Best systems fail on this 
topic. 
 
Topics that are close to the origin of the representation of factors are the ones that are typical (as opposed 
to atypical) meaning that they behave as other do. They cannot distinguish systems on the right side of 
factor 1 (which happen to be good systems) from systems that are on the left side of factor 1 (poor 
systems). Such topics are for example T351, T390, and T374. For these topics, some good systems fail, 
some bad systems succeed. For T390 for example (average AP over systems 0.0959), the system that 
performed the best is CLARIT98RANK (rank 1 for this topic), a system that belongs to the best system 
cluster (cluster 1 in Figure 2). The next system that belongs to this cluster gets rank 13 for this topic. We 
can conclude that systems from the best system cluster lack a specific behavior for T390: this topic cannot 
distinguish this cluster from others.  
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Factor 3 (see Appendix 4) allows one to distinguish cluster 2 of systems. When displaying topics at the 
same time, it is possible to see that T352, T390, T385, T376, and T357 are the topics that contribute the 
most in the same direction as systems from cluster 2 as opposed to T363 that contributes oppositely. 
 
Figure 4 displays the combination of the results from CA and HC (see Section 4.2. for the reason behind 
combining both). In Figure 4, a color (for digital version) and a specific plot shape have been associated 
with each cluster of topics detected in the first phase. For example the topics belonging to the cluster that 
appears laston the dendrogram in Figure 1 are plotted in brown and crosses (×) in Figure 4 (“hardest” 
topics). In yellow and “+” are drawn the easy topics (third cluster). This makes it easy to observe that 
hard topics are mainly on the right side of factor 1 while easy topics are mainly on the left side. 
 
We did the same type of analysis considering other measures. Baccini  et al. (2011) show that P5 for 
example, even if it is correlated to MAP do not behave the same way. The clustering we obtained using 
P5 as well as the factorial analysis results show that system clusters can be observed in the same way as 
when MAP is used (even if the clusters differ of course in content). 

4.4. Discussion 

From the analysis we provided in the previous sections, we can conclude that some systems are better for 
processing some topic clusters, but we cannot conclude that they are better for processing all the topics of 
these clusters. We do notice that the hard topics are on the right side of factor 1, as are the best systems. 
This observation shows that the best systems are better for processing difficult topics (that could be a 
reason why they are considered as the best systems but not the only one since results are averaged over 
topics). Easy topics are on the opposite side of factor 1. The best systems are not necessarily the best 
systems to treat those topics. 

 

 
Figure 4. 2 first factors of the CA using AP matrix from TREC 7 Ad hoc, topics only.  
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Figure 5. 2 first factors of the CA using AP matrix from TREC 7 Ad hoc. Both topics and system 

centroids are displayed. 
 

Analyzing the two Figures 4 and 6 simultaneously, we would be inclined to conclude that some specific 
topics should be treated by one selected system: T389 by iit98ma for example. Going a step further, we 
could develop a new system combination technique that learns which system or type of systems to use 
according to a given topic. This would be useful when queries are repeated in real systems: learning once 
for all the future occurrences of the same query. It could be somehow costly to do, but worth doing 
anyway if the repeated queries were frequent enough. It might be too costly if this has to be done on each 
query that occurs. Therefore, it would be useful to predict which queries have the highest probability of 
being repeated and concentrate the effort on these queries. 
 
A motivation of defining a method that would learn the system to use for a given query is based on the 
fact that in real systems queries are repeated over time. Various studies validate this hypothesis showing a 
significant proportion of repeated queries: 15% (Smyth et al., 2004), 17% Tyler and Teevan (2010), 33% 
(Teevan et al., 2007) and a little over 50% (Sanderson and Dumais, 2007). In addition, Zhang and Lu 
(2009) provided features that help in predicting which query is the most likely to be repeated. 
 
From these studies, it seems reasonable to promote an approach that would learn which method or system 
or group of systems would be the best to process a given query, given the fact that the cost would be for 
some of the queries only, the ones that are predicted to be repeated. Our method aims at proposing such a 
method that learns which system is the best. 
 
In the next section, we present a new method to combine systems. This method takes advantage of the 
analysis made in Section 5 and is based on system selection on a per topic basis. 

Best systems 

Best systems 

Poorest systems 

Poorest  
systems 
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5.   Fusing systems according to our findings 

The analysis like the one we reported in the previous section leads us to propose a new type of 
combination method. We considered the following hypothesis: systems should be selected on the basis of 
their non-correlation. More precisely, our hypothesis is that considering complementary systems in terms 
of dependency as defined by clustering should be more effective than combining similar systems (systems 
that belong to the same cluster). In our approach, we consider two systems as complementary if they are 
not effective for the same topics, that is, if they do not belong to the same cluster as detected by the 
analysis. This perspective differs from other related works that rather concentrate on overlapping of the 
retrieved document lists (Beitzel et al., 2003), (Croft, 2000). 

5.1. Methods 

We propose several variants of the same approach. For all of them, the idea is to combine systems not by 
aggregating the retrieved document lists, but rather by selecting one of the retrieved document lists. 
 
The first variant is the most natural: with each topic is associated a single system. We call this method 
OneT2OneS: it is supposed to generate the best results in terms of effectiveness since it optimizes the 
performance measure of each individual topic. Using this method, a non-desired effect could be that a 
system succeeds by chance on a topic; it will be hazardous to propose a meta system that can exploit this 
in a general case. To eliminate this effect, we consider the OneT2ClusterS. In this variant, with each 
topic, the method associates the system cluster that should process it. From a cluster one representative 
system is chosen. This method is expected to perform less well than OneT2OneS but to be more robust. 
Another reason to introduce this variant is that it reduces the number of systems to use. Once clustered 
and a representative chosen, there is a limited number of systems involved. The last variant is the 
ClusterT2ClusterS. It aims at studying the behavior of the approach when topic clusters are considered. 

5.1.1. OneT2OneS (One Topic to One System) 

The main goal of the method OneT2OneS is to associate with each topic the system that should be used to 
process it (one topic, one system). Our method differs from learning to rank methods (Liu et al., 2010) in 
which the best ranking method is not topic dependent. On the contrary, we propose an approach that 
selects the system according to the topic. 
 
More precisely, for each topic, we select the system that maximizes the performance measure that we 
consider (e.g. AP). To evaluate the method, we consider the full set of topics. We learn the best system to 
use for each topic on a training document set and evaluate the results on the same topics, but on a test 
document set that differs from the training set. 

5.1.2. OneT2ClusterS (One Topic to One System Cluster) 

Rather than considering the best system for each topic, we calculate the best system cluster for each topic. 
For this, we first cluster the systems (see Section 4, hierarchical clustering using the Ward criterium + K-
means). We define the representative system for each cluster as the system that obtains the best value of 
the measure for this cluster (say max(AP) for example). When two clusters “win”, the ultimate winner is 
the system that gets the best value of the measure over the topics. Compared to OneT2OneS, this method 
aims at eliminating some systems that may have very unusual behavior, namely, being very bad on all 
topics except one or a few. 
 
Again, to evaluate the method, we learn first on the training document set and test on the test document 
set, all the topics are considered both for training and testing. 
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5.1.3. ClusterT2ClusterS (One Topic Cluster to One System Cluster) 

In the ClusterT2ClusterS method, we analyze if the results are topic cluster dependent. For example, we 
want to know if the method performs better on hard topics or better on easy topics, or if there is no 
evidence that topic difficulty has an impact on the effectiveness of the method. 

5.2. Evaluation 

As noted in the previous section, a learning phase is needed to evaluate our method.  
Our method is topic dependent. For this reason, the same topics have to be used in the training and the 
testing phase. On the other hand, documents on which the topics are processed should differ. In that way 
we will demonstrate that it is possible to learn our method on a subset of documents and that the function 
learned can be applied successfully on other sets of documents. The document collection is thus split into 
two partitions: a training document set and a testing document set. 
 
To evaluate our method we applied 10-fold cross validation.  
 
For this, we consider the TREC ad hoc collection and make a partition: all the topics are used in the 
training phase, but the documents which are involved are partitioned according to a learning part (2/3 of 
the total) and a testing part (1/3). Rather than considering each document as independent, we group them 
together according to the beginning of their identifiers (e.g. all the documents that begin with 
FR940105 will be either part of the training or of the testing set). In TREC 7, 2/3 of these document 
groups belong to the training, the remaining 1/3 to the testing set. Runs and qrels are processed in order to 
take into account this split. More precisely, each run is split into training and testing runs: each document 
from the current run goes to the training run part if the document belongs to the training document set; to 
the testing run otherwise. The qrels files are treated the same way. A single partitioning of the data in this 
way, however, is not enough to make solid conclusions since there is still an element of chance. For that 
reason, we performed 10 different partitions of the collection. For each partition, documents fall into 
training or testing sets following a uniform random function. We learn the best system or best system 
cluster to use on each training document set. The learning consists in maximizing the MAP (considering 
the retrieved document list and qrels). After the training phase, we use the learned system or system 
cluster on the corresponding training document set. Therefore there are 10 experiments –labeled exp1, …, 
exp10- and corresponding results. We then averaged the results over the 10 experiments. 
 
In the following tables, the value of MAP for our method resulting from the system combination method 
is followed by a “*” when the difference compared to the best system is statistically significant. 
Following the recommendations of Smucker et al. (2007) and Hull (1993), we test the statistical 
significance of the difference in average between two approaches using the Student’s paired t-test. The 
difference is computed between paired values corresponding system scores for all the topics and the 
difference between the tested samples is said to be statistically significant when p<0.05. Although this 
test theoretically requires a normal data distribution it is robust to violations of this condition (Hull, 
1993). 

 

5.2.1. OneT2OneS 

Training and testing phases on MAP. 
 
In Table 3, we present the detailed results using the 10-fold training collections.  
 
The baseline corresponds to the best system without considering any training; this is the best system that 
officially participates in TREC 7 (second row). It is not surprising that OneT2OneS (third row) 
outperforms the best system on training data, since the principle of the training is to select the best system 
for each topic (the best system on average is not necessarily the best for all the topics). 
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Experiment Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp10 Avg 
Best system 0.381 0.3691 0.381 0.392 0.378 0.381 0.383 0.375 0.387 0.384 0.381 
OneT2OneS  0.544* 0.533* 0.557* 0.565* 0.540* 0.544* 0.555* 0.540* 0.541* 0.597* 0.552 

(+44%) 
Table 3: MAP when using OneT2OneS on the training phase on TREC 7 ad hoc. * indicates a 

significant difference (p<0.05 applying the Student’s paired t-test). 
 

When considering the testing collections (Table 4), OneT2OneS still very much outperforms the best 
system.  

 
Experiment Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8  Exp 9 Exp10 Average 
Best system 0.387 0.416 0.391 0.393 0.417 0.397 0.379 0.405 0.414 0.384 0.398< 
OneT2OneS  0.468* 0.521* 0.464 0.443 0.505* 0.495* 0.474* 0.489* 0.504* 0.445 0.481 

(+21%) 
Table 4: MAP when using OneT2OneS on the testing phase on TREC 7 ad hoc (training on MAP) 

 
Learning the best system to use for a topic improves MAP by about 21% on average.  

5.2.2. OneT2ClusterS 

Training and testing phases on MAP. 
 
In Table 5, we present the detailed results we obtained using the 10-fold testing collections (training is not 
presented here). In the second row, we indicate MAP of the best system that participates in TREC 7. The 
third row (OneT2ClusterS_30) corresponds to the resulted obtained for our system when the number of 
system clusters is set to 30 whatever the sub-collection (1/3 of the total number of systems).  In the fourth 
row (OneT2ClusterS_*), the number of system clusters is not set beforehand. We consider rather the 
distance in between the system clusters in the training phase and stop when it drops drastically. The 
number of system clusters resulting from this process is between 9 and 15, depending on the collections. 
The fifth row indicates this number of system clusters that have been defined in the training phase 
following the process we just explained. 

 
Experiment Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8  Exp 9 Exp 10 Average 

Best system 0.387 0.416 0.391 0.393 0.417 0.397 0.379 0.405 0.414 0.384 0.398 

OneT2ClusterS_30 
 

0.460 0.513 0.474 0.445 0.469 0.491* 0.486* 0.498* 0.501* 0.448 0.478 
(+20%) 

OneT2ClusterS_* 0.454 0.503* 0.463 0.436 0.479 0.458 0.455* 0.470 0.446 0.445 0.461 
(+15%) 

Number of clusters  11 14 10 11 9 11 12 12 13 15  

Table 5: MAP when using OneT2ClusterS on testing phase on TREC 7 Ad hoc. 
 
On average, OneT2ClusterS improves MAP, either considering a relatively large number of clusters or 
considering a smaller number of clusters that depends more on the structure of the hierarchical clustering. 
In the former case, MAP is improved by 20% over the best system and by 15% in the latter case. Despite 
the relative importance of the improvement, the difference is not statistically significant (p>0.05 applying 
the Student’s paired t-test) for all the sub collections. However, it is important to note that in all the cases 
the method improves MAP.  
 
We then consider the ClusterT2ClusterS method in order to have a deeper examination of the topic 
clusters. 

5.2.3. ClusterT2ClusterS 

In this section, we reconsider the results from the OneT2ClusterS method and express them with regard to 
the topic clusters. As a rough clustering, we consider in this section a 3 cluster partitioning of topics 
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where they can be viewed as easy, hard, and average topics. We made this choice because the ideal 
number of topic clusters may differ from one collection to another. 
 
For example, given the distance between topic clusters as presented in Figure 6, a first relevant cutting 
level would lead to 3 clusters, then the next relevant pruning would be at 4 clusters; then the distance 
becomes smaller until a cutting that would lead to 7 clusters. Choosing 3 clusters makes sense, as does 4. 
Indeed, for any of the 10 collections, 3 or 4 clusters make sense with regard to the distance between 
clusters. 

 
Figure 6: An example of the distance between topic clusters.  
 

Table 6 indicates the results, with each topic cluster presented separately. In each group of two rows, the 
first one corresponds to the best system that participates in TREC 7, considering the topics from the 
studied topic cluster. The second row corresponds to the results we obtained using our method on the 
same selected topics. The best improvements are not obtained on hard or easy topics. MAP improves 
most on the topics in-between (+24%, statistically significant). 

 
Experiment Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8  Exp 

9 
Exp 
10 

Avg 

Best on hardest topics  0.349 0.378 0.297 0.315 0.324 0.333 0.303 0.348 0.337 0.320 0.330 

ClusterT2ClusterS on 
hardest topics  

0.364 0.429* 0.364* 0.329 0.349 0.312 0.386* 0.390 0.353 0.323 0.360 
(+9%) 

            

Best on easiest topics  0.592 0.578 0.618 0.511 0.740 0.560 0.631 0.779 0.697 0.571 0.628 
(+11%
) 

ClusterT2ClusterS on 
easiest topics  

0.686 0.668 0.679 0.664
* 

0.844 0.644 0.599 0.800 0.712 0.676* 0.695 

            

Best on Average  0.370 0.403 0.470 0.469 0.445 0.397 0.400 0.428 0.439 0.376 0.420 

ClusterT2ClusterS on 
average topics 

0.487* 0.526* 0.551* 0.522 0.540* 0.524* 0.501* 0.559* 0.497 0.479* 0.519 
(+24%
) 

Table 6: MAP when using ClusterT2ClusterS on testing phase on TREC 7 ad hoc. * indicates 
statistically significant differences. % of improvement is calculated as compared to the best result 
considering the same group of topic difficulty (e.g. 24% is the improvement from 0.420 to 0.519). 

5.3. Further discussions 

Our results are difficult to compare to published results specifically in the fields of data fusion and 
learning to rank methods. 
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- CombMNZ-like functions consider two different document lists that they fuse before evaluating the 
resulting fused lists. The functions we named the CombMNZ-like functions basically differ in the 
way the documents are fused (considering document ranks or document scores, giving more weight 
to documents that are retrieved in the two lists, etc.). Fusing techniques can be applied to more than 
two lists, even to the full set of ranked lists that are available. We thus could have compared our meta 
system to the CombMNZ of the systems. However, a major difference with our approach is that no 
training phase is used for CombMNZ. A training phase could be useful if one aims at learning which 
systems to fuse. To our knowledge there is no publication that reports such method and results. 
However to give an idea, if we fuse any two runs from TREC 7 using CombMNZ, and keep only the 
best fused pair, MAP is 0.49 (best single system 0.37). Notice that this can be seen as a training 
phase as it implies knowing which systems to fuse to obtain the best result. The meta system 
presented in this paper obtains 0.55 in the training phase (and 0.48 in the testing phase). 

- In learning to rank (Cao et al., 2007), like in our approach, there is a training phase and a testing 
phase. However, in learning to rank, the task is to learn the ranking function, given details on topics 
and ideal ranked document lists. The ranking function is designed to be the same whatever the topic 
is. Our hypothesis is different since we design a method that is topic -dependent. 

6.   Conclusions 

The long-term objective of our work is to build a system that would be based on several IR techniques in 
the various stages of an IR process and would choose the appropriate ones according to the query it 
receives. Question-answering systems have used the idea: depending on the type of query (who, what, 
etc.) the system receives; the method used to extract the answer (or the type of objects the system 
retrieves) differs. However, generalizing this principle to any type of query is not trivial. 
 
This paper discusses some new directions towards this end. To do this, our first goal was to analyze 
system results on the same users’ needs in new ways so that we could show that some new paths could be 
explored when considering system adaptation and/or system combination. We therefore carried out an in-
depth analysis of some results obtained in the TREC environment. 
 
When analyzing systems,  

- We show that systems can be clustered according to the way they behave on topics, and topics can 
be clustered according to the way systems perform: systems that perform similarly on the same topics 
will be clustered together and vice versa. We observed that the best systems cluster together and that 
the poor systems cluster together too. The same occurs for topics: the easier topics cluster together 
and the hardest topic cluster together. Other system clusters are less related to system effectiveness 
whereas topic clusters are. 

- We confirm the hypothesis that the most closely correlated systems are different versions of the 
same system. The variability in their performance according to topics is small compared to the 
variability between different systems. Indeed, generally speaking, TREC participants submit several 
runs (same task, same year), and those runs do not differ strongly. This could suggest that rather than 
trying to tune some parameters, we should consider radically different techniques to treat some types 
of topics. 

- Using CA, we show that some topics are highly correlated with the best systems meaning that the 
systems behave differently for those topics than the other systems. Again considering the principal 
factors, we show that some successful systems are orthogonal in a way: they do not succeed for the 
same reason; that is to say not because of the same topics. 

 
Based on these findings, we propose a new way of combining systems, in a topic-based way. 

- According to literature in the domain of data fusion (Croft, 2000; Wu and McClean, 2006), we 
made an assumption that systems to be combined should be independent. However, contrary to the 
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usual fusion techniques, independence is not based on the lists of ranked documents, nor on the 
overlapping of relevant and non-relevant documents, but on the fact that they perform differently on 
a subset of topics (system A is good for topic 1 and bad for topic 2 and system B gets opposite 
results). We promote a way to combine complementary systems, depending on their profiles based on 
their effectiveness on topics on a training document set. 

- We present three versions of the same method. The three methods can be seen as a single method 
with different parameters. The method makes use of system clustering (hierarchical clustering + K-
means on these clusters). For each system cluster, the representative system which will process the 
topics that fall into its scope is calculated. For each topic, we learn what the best system cluster is and 
thus what system will be used to process it. In turn, topics are clustered (hierarchical clustering + K-
means); we can then see how much the method improves the results on each topic cluster. In the 
OneT2OneS method, we consider as many system clusters as systems (one system per cluster) and a 
single topic cluster. In the OneT2ClusterS method, there are less system clusters than systems and 
there is a single topic cluster. Finally, in the ClusterT2ClusterS method, there are fewer system 
clusters than systems (as in the OneT2ClusterS) but more than one topic per cluster. 

 
Evaluation shows that: 

- MAP can be improved by 20% after a training phase, 
Method MAP  
Best system 0.398 
OneT2OneS (test) 0.481 (+21%) 

OneT2ClusterS (test) – 30 clusters 0.478 (+20%) 
OneT2ClusterS (test) – 12 clusters (avg) 0.461 (+15%) 

Table 7: Summarization of the results obtained by the three methods we described (testing phase). 

- Considering a smaller number of system clusters does not dramatically decrease performance, 

- Improvement is better on topics of average difficulty, neither the hardest (as one would have 
intuitively thought), nor the easiest. 

Though this method is only applicable for now to queries that are known in advance, nevertheless it is 
worth using it when queries are repeated. Several studies (Smyth et al., 2004; Sanderson and Dumais, 
2007; Teevan et al., 2007; Tyler and Teevan, 2010) demonstrate that repetition occurs frequently in real 
applications. In addition, some studies have shown that repetition in some cases is predictable (Zhang and 
Lu, 2009). For these reasons, the fact that the queries on which learning should be applied is not a 
limitation of the work. In addition, in our experimental framework, we considered relevance judgment in 
the learning phase; in real world applications, it is possible to consider users’ actions to induce a relevant 
document set.  
 
Future work will be conducted work on the systems that should be used in the method. Indeed, the 
analysis presented in section 4 shows that at least considering TREC runs, variants of a same system lead 
to comparable effectiveness and that the method should pick up different systems. In future work, we will 
consider system characteristics (indexing method used, query reformulation method, ranking function 
used, system parameters, etc.). Then we will analyze in depth the documents specific parameters setting 
retrieves in order to know if we can extract patterns in the way systems perform and correlate this with 
system clusters and methods or models used in systems. Complementarily, we will investigate query 
formulation in depth. Considering TREC for example, most participants consider two parts of the topic 
description (the title and the description of the information need) in order to create the queries to be sent 
to their systems. These queries have different characteristics, for example their syntactic features (Mothe 
and Tanguy, 2005). To what extent the topic features are correlated with system performance is one of the 
new perspectives we are studying.  
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Appendix 
Appendix 1: AP for TREC 7  ad hoc considering topic clusters. The easiest and most 

difficult topics are preceded by their rank in terms of difficulty (1 being the easiest topic 
1-T365 and 50 the most difficult topic, 50- T386). 

 
Easiest 
topics 
cluster 1 
Blue 

Easy topic 
cluster 2 
Green 
 

Topic 
cluster 3 
Yellow 

Hard 
Topics 
cluster 4 
Violet 

Hardest 
topics 
cluster 5 
Brown 

MAP O.628 MAP 0.358 MAP: 0.231 MAP 0.153 MAP 0.046 
1-T365 4- T351 T353 T352 44- T356 
 6- T361 T357 T354 45- T359 
 3- T364 T358 T355 41- T363 
 2- T368 T360 T362 47- T371 
 5- T382 T366 T367 48- T378 
 8- T396 T369 T370 46- T381 
 7- T400 T373 T372 42- T383 
  T374 T376 50- T386 
  T375 T379 49- T389 
  T377 T380 43- T394 
  T385 T384 40- T397 
  T392 T387  
   T388  
   T390  
   T391  
   T393  
   T395  
   T398  
   T399  
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Appendix 2 : AP for TREC 7 ad hoc considering system clusters 
Sys_Orange 
7 syst. 

Sys_Rose 
21 syst. 

Sys_Violet 
23 syst. 

Sys_Dark_Bleu 
11 syst. 

Sys_Green 
15 syst. 

 Sys_Blue 
26 syst. 

CLARIT98CLUS Cor7A1clt Brkly25 KD70000 AntHoc01  APL985L 
CLARIT98COMB LNaTit7 Brkly26 KD71010q fub98a  APL985LC 
CLARIT98RANK LNaTitDesc7 Cor7A2rrd KD71010s fub98b  APL985SC 
iit98ma1 LNmanual7 Cor7A3rrf ScaiTREC 7 gersh1  Brkly24 
t7miti1 acsys7al FLab7ad dsir07a01 Ic98san3  ETHAB0 
uwmt7a1 att98atc INQ501 dsir07a02 Ic98san4  ETHAC0 
uwmt7a2 att98atdc INQ502 jalbse013 jalbse011  ETHAR0 
 att98atde INQ503 kslsV1 jalbse012  FLab7at 
 bbn1 MerAdRbtnd lanl981 nectitech  FLab7atE 
 mds98t MerTetAdtnd nthu3 nsasgrp3  LIAClass 
 mds98t2 acsys7mi umd98a2 nsasgrp4  LIArel2 
 mds98td fsclt7m  nthu1  LIAshort2 
 ok7am harris1  umd98a1  MerAdRbtd 
 ok7as ibms98a  unc7aal1  acsys7as 
 ok7ax ibms98b  unc7aal2  fsclt7a 
 pirc8Aa2 ibms98c    gersh2 
 pirc8Ad iit98au1    gersh3 
 pirc8At iowacuhk1    ibmg98a 
 tno7exp1 iowacuhk2    ibmg98b 
 uoftimgr Nectitechall    ibmg98c 
 uoftimgu nectitechdes    iit98au2 
  tno7cbm25    nthu2 
  tno7tw4    nttdata7Al0 
      nttdata7Al2 
      nttdata7At1 
      uwmt7a0 
Avg MAP 0.345 Avg MAP 0.262 Avg MAP 0.238 Avg MAP 0.045 Avg MAP 0.144  Avg MAP 0.170 

 
Appendix 3: In the panel below, systems have been ordered according to increasing MAP (averaged 

over topics). Then their names have been replaced by a number and a color that represents the cluster they 
belong to. On the extremes (clusters numbered 1 and 4), clusters and system effectiveness are highly 
correlated; for the other clusters, this correlation is weaker, even if cluster numbered 2 tends to be poorer 
than the one numbered 1; this latter tending to be lower than the cluster numbered 3 which in turn tends to 
be lower than the cluster numbered 5. 
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Appendix 4:  Factors 2 and 3 of the CA using AP onTREC 7 ad hoc. The two factors 
correspond to 10.8 % and 8.3 % of total inertia. 

Systems are displayed in the top figure and topics on the bottom figure.  
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