
488 

ON GALOIS GEOMETRIES 

By BENIAMINO SEGRE 

1. Introduction 

Finite spaces, i.e. finite sets of point-elements on which some geo
metric structure is superimposed, are of importance in many branches of 
applied mathematics, e.g. statistics (Bose[6], Seiden157-1). Quite recently, 
they have been used in various efforts to build up a geometry which 
would be better adapted to the quantistic theories (Järnefelt[23»24], 
Järnefelt and Kustaanheimo[25], Kustaanheimo[27_32]). 

The present exposition will dwell chiefly on the geometric aspects in 
the study of the simplest and more important among finite spaces, the 
so-called Galois spaces, SrtQ9 i.e. the linear spaces—of any dimension r— 
over a GF(q). These spaces can be characterized as those finite graphic 
(or projective) spaces where Fano's postulate (existence of at least three 
distinct points on every line) and Desargues' theorem (on homological 
triangles) hold, the latter condition being a consequence of the former 
if r ^ 3. In every graphic space satisfying these conditions Pappus's 
theorem also holds, which is tantamount to the Maclagan-Wedderburn 
theorem affirming the commutativity of every finite field. Attempts at 
proving this theorem geometrically—by directly showing the validity of 
Pappus's or equivalent theorems in those spaces—have also been made 
(cf., for example, Locher[34]), but up to now without success (cf. Artin[1], 
p. 75). Quite recently I have added a fresh attempt [Segre[54]], with a view 
to a geometric proof of the Maclagan-Wedderburn theorem through a 
study of certain properties of non-linear non-commutative geometry, 
concerning reguli in projective spaces over a skew field and their plane 
sections. 

Many of the ideas and results of algebraic geometry can be adapted 
to Galois spaces without difficulty, paying attention to the fact that the 
ground field GF(q) of a Sr>q has non-zero characteristic p (where q = ph

9 

for some positive integer h), and that the field is not algebraically closed. 
Additional questions and properties arise from the finiteness of the field, 
and some of them are dealt with in § 2. 

In § 3 we briefly indicate how certain algebraic sub varieties ofSrq can 
be characterized by means of very simple properties of a numerical and 
graphical character. 

Finally, §§ 4 and 5 concern the study of k-sets, i.e. sets of k points of 
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SrfQ9 for r = 2 and r ^ 3 respectively; and it has to be noticed that each 
of them can always be considered, in different ways, as the set of points 
of an algebraic variety. The theory has been recently developed for 
certain &-sets of special interest, called k-arcs and k-caps; but very much 
remains to be done in this direction. 

Our exposition—while rather sketchy—will implicitly suggest a 
number of further questions which, however, we shall pass over for 
lack of time. 

2. Some properties of algebraic varieties 

Projective geometry and non-Euelidean geometry of STtQ have many 
interesting group-theoretic aspects, which were substantially known 
a long time ago (Jordan[26], Dickson[10]). However, only recently have 
appropriate geometric terminology and reasoning been employed in 
order to clarify them, particularly for the smallest values of r and q. 
Thus the geometry of STtS has been investigated in detail for r ^ 4 
(Edge111»13]), and used for studying the group of the 27 fines of the general 
cubic surface and its separation into 25 conjugate classes (Edge[16]), as 
well as other group properties in S5Z (Edge[18]). Also the geometry of 
S2>q has been described, especially for g = 5,7,11 (Edge[14'17]), and 
suggestive geometric arguments have been devised for establishing the 
known isomorphism between the linear fractional group LF(4:9 2) and the 
alternating group A8 (Edge[12]), and between LF(29 9) and AQ (Edge[15]). 

The number of linear subspaces of SrtQ of a given dimension can be 
easily obtained (Segre[46], n. 159); thus, for instance, the number of 
points of SrfQ is 1 +q + q2+ ... +qr. Similar questions may be asked for 
any algebraic variety of STtQ; but the answer is then usually far less 
simple and not precisely known. Estimates for the number of points 
lying on certain algebraic varieties have been obtained, and in special 
cases reasonably simple exact expressions of this number were given, 
by means of deep and often rather intricate algebraic and analytic 
arguments (Chatelet™, Vandiverf64»6^, Hua and VandiverC19-22^ Weil™, 
Lang and WeilC33], Carlitz[8]). Here we confine ourselves to quoting the 
result (Hua and Vandiver^) N = (q-l)[(q-l)r-1 + (-l)rilq con
cerning the number N of solutions x e GF(q), with xxx2... xr + 0, of the 
equation c1x^1 + c2x^2+... +crx^r = 0, where the c's are given non-zero 
elements of GF(q), the n's are integers satisfying 0 < % < q— 1 such 
that the numbers (ni9 q—1) are relatively prime in pairs, and r > 2. 

Some of the questions of the type indicated above can be conveniently 
treated by means of purely combinatorial and geometric methods. For 
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instance, a well-known algebraic result (Dickson[10]) can be stated by 
saying that every irreducible conic of S%q contains precisely q+1 points, 
and this has also been freshly proved by showing directly that in S2>q 

there are as many irreducible conies as there are conies containing 
exactly q+1 points, both numbers of conies being equal to q5 — q2 

(Segre[53]). Thus the whole theory of quadratic forms over GF(q) can be 
geometrized (Primrose[39]), and partially new results can be obtained 
as follows (Segre[55]). 

If r = 2s is even (s ̂  1), the non-singular quadrics of Sr>q are two by 
two homographie, and every one of them contains a positive number of 
linear subspaces SntQ of Srq, of each dimension n = 0, 1, ...,s — 1, this 
number being 

° n s n 

IKS-*-!) n (<f+i)/iH<r-i+1-i)-
i=0 i=s—n i=0 

If r = 2s— 1 is odd, the non-singular quadrics of Sftq fall into two dif
ferent types, the hyperbolic and the elliptic, those of the same type being 
two by two homographie. Every hyperbolic quadric contains a positive 
number of Snq, of each dimension n = 0, 1,..., s — 1, this number being 

fidr*-!) n1 te*+i)/n(<r-*+1-i) 
i=0 i=s—n—1 i=Q 

(as usual, the spaces of maximum dimension «s— 1 then constitute two 
different systems, and those of lower dimension a single one). Every 
elliptic quadric contains no Ss_1>q and a positive number ofSnq, of each 
dimension n = 0 ,1, . . . , s — 2, this number being 

n s n 

n(<r*-1-i) n (<r+i)/n(<r-i+1-i). 
<i=0 i=8—n i=0 

It has to be noticed that a non-singular quadric / of # n g defines a 
polarity, which is a null system if, and only if, p = 2 (i.e., if q is even). 
In this case, the polarity is non-singular if r is odd, while it has one, and 
only one, singular point 0 if r is even ; the point 0 is called the kernel off, 
does not lie on / and is the point of concurrence of all the tangent primes 
off. This is but an example of the discrepancies which may appear in 
algebraic geometry between the case where the characteristic of the 
ground field has the value p = 2 and the case p + 2; further examples 
have been investigated (Boughon, Nathan and SamuelC7], SegreC50]), and 
deep reasons for the occurrence of such discrepancies have been given 
(Segreti). 

Other special algebraic varieties of a Galois space have been studied, 
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as for instance the rational normal curves ofSrq (Segret49]), and the cubic 
surfaces of S3>q, with odd q. I t has been shown (Rosati[42]) that the 
equation of the 27 lines and the equation of the 45 tritangent planes of 
such a surface are always reducible, and the various kinds of reducibility 
have been classified; moreover, the exact number of points lying on the 
surface has been obtained in several cases (Rosati[41]). Another inter
esting result is the coincidence between the locus of the kernels of the 
conies lying on the Veronesean representing the quadrics of Sr>q9 with 
even q, and the Grassmannian of the lines of # r g (Taluni). 

An upper bound for the number of the points of an algebraic curve 
will be given later (§ 4). 

3. Characterization of certain algebraic varieties 

While every irreducible conic of S2>q consists of a set of q +1 points of 
S2}Q (§2) no three of which are collinear, it has been proved that the 
converse is true if, and only if, q is odd (Segre [47»48]) or ifq = 2,4 (Segre[51]). 
Another similar result is that, if q is odd, any set of q+1 points of $3 q 

no four of which are in a plane consists of the points of a twisted cubic 
curve (Segre[49]). These very simple but rather unexpected results have 
been the starting-point of further investigations, some of which we shall 
now summarize. 

In Srq, where q is odd and r > 3, let us consider any set of k points 
such that every line of $ n a containing three distinct points of the set 
consists entirely of points of the set. It has been proved (Tallini[58>59]) 
that, if l+q+...+qr-1 < k < l+q+ ...+<f, then the set can only be 
the set of all the points of one of the following algebraic varieties : (i) the 
variety consisting of a prime and a SttQ of Sr>q (t = — 1,0,1, ...,r— 1); 
(ii) a non-singular quadric in a space of even dimension, or a quadric 
cone projecting such a quadric from its vertex; (iii) a non-singular hyper
bolic quadric in a space of odd dimension, or a quadric cone projecting 
such a quadric from its vertex. Also the case of q even has been treated 
(I.e.). Moreover, similar characterizations have been obtained for non-
singular elliptic quadrics in spaces of odd dimension and their pro
jecting cones (Tallini[60]), as well as for certain cubic surfaces of S3fQ 

with odd q (Tailing). 
Finally, the Veronese surface of S5>q can be characterized as follows 

(TalliniC62]). In a SrtQ, where r ^ 5 and q is odd, consider any set of 
k ^ q2 + q +1 planes two by two incident, such that no three of these 
have a common point; then r = 5, k = q2 + q + l, and the set consists 
precisely of the tangent planes of a Veronese surface. 
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In the sequel we shall give some results improving those stated at the 
beginning of the present §3. By using them suitably, similar improve
ments of the remaining results of this § 3 could be easily deduced. 

4. On planar &-sets 

With every k-set of S2q we can associate, for any n = 1,2,..., an 
integer Nn given by the maximum number of points of the k-set which 
lie on some algebraic curve of order n. The consideration of Nn is signi
ficant only for the smallest values of n, precisely when \n(n + 3) < k, and 
then we have \n(n + %) < Nn < k. Not much is known about these 
characters Nn\ for instance, it has been proved (Segre[52]) that, if Nx = 2 
and N2 ^ ^q + 2, then N2 = k, i.e. the k-set lies entirely on a conic, with only 
one possible exception for even q, when it can happen that N2 = k— 1, the 
k-set consisting then of k — 1 points of a conic and of the latter's kernel. 

It may be noticed that the character N± can be defined—more gener
ally—for ß-sets belonging to any projective plane of order q, namely to 
a graphic finite plane, Uq say, each line of which contains q+1 points. 
Of very particular importance are the i-sets of Uq having Nx = 2 (i.e. 
containing no triplet of collinear points), which are called simply k-arcs. 
It can be shown (Qvist[40]) that, for no &-arc of Uq may k be greater than 
q+1 or q + 2 according as q is odd or even, these maximum values of k 
being in fact reached by some &-arcs, called ovals (Segre [47>48]). 

The consideration and study of ovals are important also on planes 
n a which are non-Desarguesian, i.e. non-Galoisian (Ostrom[37]), as can 
be anticipated from the fact that, when q is odd, every oval of S2)Q is 
simply a conic (§ 3). When q = 2h is even, we obtain an oval in a Galois 
plane S2q by adding the kernel to the q+1 points of a conic of S2)Q (§ 2) ; 
this is then the only way of obtaining an oval ifh= 1,2,3 (i.e. q = 2,4,8), 
but there are always ovals not obtainable in this manner if h > 3, with a 
single possible exception for h = 6 (Segre[51]). A complete classification 
of ovals in a plane S2q, with q even, remains however to be done. 

The results stated above concerning the maximum value of k, for 
&-arcs of IIa, can be extended as follows (Barlotti[4]) : if, for a k-set of Uq, 
the character N± = n is such that 2 < n < q, then k ^ (n— l)q + n or 
k ^ (n— l)q + n — 2 according as q is or is not divisible by n. 

It may be noticed that, if a k-set of S2q lies on an algebraic curve of 
order n < q free from rectilinear components, then the k-set has Nt < n. 
The last result can in this case be refined, by proving (Segre[55]) that: 

The number k of points of S2tq lying on an algebraic curve of order 
n < q of S2fQ satisfies the limitation k < nq+1, where the equality sign 
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occurs if, and only if, the curve consists of n distinct lines of a pencil. 
Moreover, if the curve does not break up into n lines, then 

k^(q+l)(n-l)-[M+l, 

where the equality sign, may occur only if n is even or if the curve has some 
rectilinear component. 

We shall now confine ourselves to the study of the i-arcs of Uq or, 
in particular, of S2q. Such a ß-arc, K, is said to be incomplete or complete 
according as there is or there is not a (k+ l)-arc containing it (for in
stance, every oval is manifestly complete); moreover, a line of the plane 
is said to be external to K or a tangent, or a secant of K according as it 
has 0, or 1, or 2 distinct points in common with K. Clearly, every point 
of K lies on k — 1 secant lines and so on 

t = q-Jc + 2 

distinct tangents (each of which is said to touch K at the point). To any 
point of the plane not lying on K we can attach an integer i, called the 
index of the point and satisfying the limitations 

0 < i ^ [ p ] , 

given by the number of distinct secants of K containing it. Denoting 
by ci the number ( ^ 0) of points of the plane not lying on K and 
having index i, K is obviously complete if, and only if, c0 = 0; more 
generally, if c0 = cx = ... = ca_1 = 0, but ca =j= 0, K is said to be complete 
of index a. 

The projective characters cx, as well as other integers attached in a 
similar way to K, are connected by a system of Diophantine equations; 
and a simple discussion of this system gives necessary conditions in 
order that K be complete, possibly of a given index (Segre[55], SceC44'45]). 
The question of obtaining sufficient conditions is much more,difficult, 
and has been studied only on Galois planes and in special cases. 

For instance, it has been shown (Segre[49], TaUini[61]) that no g-arc 
of S2tQ can be complete; on the contrary (Lombardo-Radice[35]), if 
q = 3 (mod 4), there certainly exist some complete f((? + 5)-arcsin a n y 
S2tQ. Moreover (Segre[55]), while the necessary arithmetical conditions 
for completeness are, e.g. satisfied for q = 13, k = 7, there exists no 
complete 7-arc in S213; finally (Segre [51»55]), for the first non-trivial 
values of q : n 0 rt 

* q = 7, q = 8, q = 9, 

the exact values of k, such that there exists some complete i-arc in 

#2,* are £ = 6,8, k = 6,10, £ = 6,7,8,10 
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respectively. The known complete &-arcs which are not ovals have been 
obtained by different methods (see also Scafati[43]), one of which (Lunelli 
and Sce[36])has required the use of an electronic calculating machine; and 
many of those &-ares are endowed with remarkable groupai properties. 

Other results on completeness have been deduced from the following 
theorem (Segre[55]), established in its turn by meaiis of certain consider
ations of algebraic geometry having a much wider applicability. 

Theorem. If K denotes any k-arc of S2>q for which (putting as above 
t = q — k + 2) t > 0, then it is possible to associate with K an algebraic 
envelope of lines of S2tQ, T say, containing no pencil of lines with the centre 
on K as a component, and such that-. 

ifqis even, T has class t, and the t lines of Y issuing from any point of K 
coincide with the t distinct tangents of K at the same point', 

if q is odd, T has class 2t, without being an envelope of class t counted 
twice, and the 2t lines of V issuing from any point of K coincide with the 
t distinct tangents of K at the same point, each counted twice. 

In the first of the two cases considered in the theorem, the envelope 
T has therefore class t and contains as elements each of the 

kt = t(q-t + 2) 

tangents of K. From the dual of a previous result we see that, if q is 
sufficiently large with respect to t, the envelope T must contain some 
pencil of Unes as a component; the centre of such a pencil does not lie 
on K and, by aggregating it to K, we obtain a (k+ l)-arc containing K, 
so that K is certainly incomplete. The argument now sketched, suitably 
completed, shows for instance that: 

If q is even and t = 1,2,3,4, there exists no complete (q — t + 2)-arc in 
S2q, save for just one exception, given by the complete 6-arcs of S28. 

The argument can be further developed, and also suitably modified 
so as to adapt to the second case of the theorem (q odd) ; thus new results 
can be established, whose qualitative content is expressed by the 
following theorem. 

If a denotes any non-negative constant and k ^ q — a, where q is sufficiently 
large with respect to a, then every k-arc of S2q is contained in one and only 
one oval (i.e. a conic, if q is odd), and is therefore incomplete if it is not 
an oval. 

5. On spatial &-sets 

The notion of &-arc can be extended to higher spaces, by considering 
in STtQ sets of k points any s +1 distinct of which are linearly independent 
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(2 ^ s ^ r); such a set will be denoted by k?rq, and the maximum of k 
for given r, q, s will be indicated by ms

r%q. Of particular importance are 
the cases when s = r or s = 2 < r: then the k-set will be called a k-arc 
or a k-cap of Srq respectively. 

If c is an integer satisfying 1 < c < r — 2, c < k, then the projection 
of any k — c points of a &-arc of STtq, from the Sc_lq joining the remaining 
c points, onto a $ r_ c g skew to Sc_lfq, is clearly a (k — c)-arc of Sr_c>q. 
By applying the last theorem of § 4 and this remark, we obtain (Segre[55]) 
that: 

If q is odd and sufficiently large with respect to r, then mr
rq = q+1, the 

k-arcs with maximum k ( = q+1) being the rational normal curves of Srq. 
If, moreover, q is sufficiently large with respect to q — k, then every k-arc of 
Sr>q is contained in a rational normal curve of Srq. 

The characters m of the &-caps have a special significance in statistics. 
For them, the following results have been proved: 

m | a = g 2 +l 

q2+l ^ml>q^q2 + q + 2 

m2
t2 = 2r 

m| 4 = 17 

i=0 

if q is odd, Ì 

if q is even, V (Bose[6]). 

for any r ^ 2,J 

(Seiden^, Barlotti^) 

if q is odd and r ^ 4 (Barlotti[5]) 

m\q > 2q2 + 2(q +1) [lq\ - 6g - 2 (Segre™). 

Moreover, it has been established (Barlotti[2]) that: 
/ / q is odd, the k-caps of S3q having maximum k ( — q2 +1) coincide 

with the sets of points of an elliptic quadric of S3q. 
If g > 17, this property is a particular case of the following (given by 

Segre[55], and also including another result by Barlotti[3]): 
If $ is °dd and k ^ q2 — q+19, every k-cap of S3tq lies in an elliptic 

quadric of S3q. 
Stronger improvements can be derived from the last theorems of § 4. 

Thus, for instance (SegreE55]), 
If a denotes any positive constant, and q is odd and sufficiently large with 

respect to a, then any k-cap of S3q for which k > q2 — aq is contained in an 
elliptic quadric of S3>q; moreover, under the same conditions for q and if 
r ^ 4, for every k-cap of STtQ we have k < qr~x — axf~2. 

Also the case when q is even has been studied further, even if not so 



496 BENIAMINO SEGRE 

extensively as the case when q is odd. First of all, one of the results by 
Bose previously quoted has been completed by proving (Barlotti[2]) 
that, ifq>2is even, then m\q = q2 +1. Moreover, it has been shown that, 
for even q (e.g. for q = 8), there exist (q2 + l)-caps of S3q which are not 
quadrics; however, any such (q2+l)-cap defines a null polarity, exactly 
in the same way as in the case of a quadric (cf. Segre[56]). 

We conclude by remarking that the sets k?rq, considered above, are 
in their turn generalized by the &-sets of SrtQ such that, if they contain 
any (s+1)-subset of linearly dependent points, then the space joining 
such a subset wholly consists of points of the k-set. Every k-set of this 
type defines a non-negative index 8, and can therefore be indicated by 
ks

r>
8

q, 8 being the maximum dimension of the subspaces of SrtQ lying 
entirely in the k-set (clearly, the kpqs thus coincide with the ks

rq's). 
Up to now, only the &2;f s (or &-caps of index 8) have been studied 
(TalliniC59]); and we have already given some of the results concerning 
them. 
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