
�Volume 7, Number �7 • The Seybold Report • Copyright ©2007 RISI Inc., all rights reserved.

Speaking In Tongues: Sorting Out Variable
Data Printing Languages
By Eliot Harper

As the digital color print market continues to grow, adoption of variable data printing is increasing rapidly.

Personalization has become commonplace. In this overview, we look at the proliferation of digital file formats

devised to cope with the practical side of variable print communication.

V
ariable data printing has long since been
opened out of it’s flat-pack carton and as-
sembled to join the rest of the industry
acronym furniture, along with UCR, GCR,
CtP, JDF, CIP4 and a few forgotten arm-

chairs. Today, VDP accounts for a healthy share of
print volume; 37% of graphic arts firms (printers and
trade shops) produce some sort of VDP jobs in-house,
up from 28% one year ago*. The variety of VDP ap-
plications in use today ranges from simple business
correspondence with name, address and basic infor-
mation changing for each recipient, through to direct
mail applications where graphical and text elements are
switched based on a set of business rules to produce a
unique composition, customized to each recipient.

Furthermore, VDP is no longer limited to print. The
term has been adopted as “variable data publishing” to
include other media channels. A multichannel market-
ing campaign can incorporate personalized content in a
printed piece and offer supporting content and response
channels through Web, e-mail and mobile devices.

Although VDP has been used for over a decade,
personalized digital printing is hardly new. Essential mail
(bills, statements, etc.) has been produced on digital print-
ers ever since Xerox introduced the first 9700 laser print-
er in 1977. These essential documents were printed from
mainframe environments using optimized data stream
languages such as Metacode and LCDS, which are still
widely used in transactional printing environments.

 When digital color printing emerged in the early
1990s, these legacy data stream languages were not suit-
able for personalized color documents, and as a result
many printer and RIP vendors developed their own
variable information (VI) languages.

Today, VDP software products and RIPs support
a host of different VI languages, and selecting an ap-
propriate language can be a somewhat daunting task.
In this article we identify and describe all of the vari-
able information languages so that you can make an
informed decision when you choose an appropriate
language for your VDP work.

Most operating system print drivers create a page
description language, or PDL (typically PostScript), by
processing each page of a document individually. If
such print drivers are used to create a print-ready file
for VDP applications, the resulting files would contain
a separate page (or pages) for each record. This can
result in very large file sizes and might require a consid-
erable amount of time for RIPs or print controllers to
interpret and process the data.

To address this issue, several variable information
languages have been developed specifically to contain
page description information for VDP applications that
overcome the limitations of traditional page descrip-
tion languages. These VI languages enable print files
to be created using various optimization techniques,
including object caching and custom page instructions
that can be interpreted by supported RIPs.

Optimized Portable Document Format (PDF)
Adobe Systems’ portable document format (PDF), de-
veloped in 1993, represents documents within a device-
and display resolution-independent fixed-layout docu-
ment format. Built on a subset of PostScript, PDF files
encapsulate a complete description of all objects within
a document, including text, fonts, graphics and vec-
tor objects. PDF files also include a structured storage
system to bundle all page objects and other content into
a single file, using data compression where appropriate.

The general structure of a PDF file consists of a
header, body, cross-reference (xref) table and trailer.
The trailer contains pointers to the xref
table and to key objects contained in the
trailer dictionary. The xref table contains
pointers to all the objects included in the
PDF file. It identifies how many objects
are in the table, where the object begins
(the offset) and its length in bytes. The
body contains all the object information:
fonts, images, text and other object types.

Since PDF was developed as a fixed-
layout document format, a PDF file

VARIABLE DATA PRINTING

� The Seybold Report • Copyright ©2007 RISI Inc., all rights reserved • September 6, �007

contains separate pages for each page to be printed.
As a result, when used for variable data printing ap-
plications, the PDF file will contain a separate page (or
pages) for each record, which can result in a PDF file
several thousand pages long. However, PDF enables file
optimization through its ability to reuse common ob-
jects in the document — both text and images. This not
only results in a smaller file size, but also enables faster
file processing at the RIP, as reused objects are cached
at the RIP. This type of file optimization is commonly
referred to as “thin” or “optimized” PDF.

As a result, the difference in file size between a PDF
with 100 records and the same application with 1,000
records could be fairly minor, as common elements are
stored and reused across multiple pages.

However, an optimized PDF file cannot be cre-
ated by just any PDF driver, since the driver needs to
identify repeating objects in a file and format them as
reused content. One common method for creating an
optimized PDF file is to use Adobe’s PDF driver (in-
stalled with Acrobat) or create an optimized PostScript
file, then create a PDF file from the PostScript file us-
ing Adobe Acrobat Distiller.

Optimized PostScript
Adobe Systems developed PostScript in 1984 for the
desktop publishing market. PostScript and PDF share
many similarities, as both file formats describe text
and graphics. The main difference is that PostScript is
a page description language and also a programming
language that is processed by an interpreter to gener-
ate an image, whereas PDF is a file format and not a
programming language.

As noted earlier, operating system print drivers cre-
ate a PostScript file by writing each page individually,
including all of the objects on every page. Therefore,
creating a VDP application for many records can re-
sult in an extremely large file. This typically occurs
when creating VDP applications using entry-level
data merge utilities, as they rely on the operating sys-
tem driver to create the print file, such as the built-in
data merge functionality in Microsoft Word or Adobe
InDesign. This type of PostScript file is often referred
to as “fat” PostScript.

Similar to the PDF imaging model, PostScript
also supports reusable content (or “form caching”) of
repeating objects by using the PostScript Level 2 form
caching environment. This enables the creation of
“thin” or “optimized” PostScript files, where repeat-
ing objects are only included once in the document.
However, the software or driver used to create the
PostScript file must support form caching to take ad-
vantage of this type of optimization.

Because PostScript is a programming language,
PostScript files can include programmatic commands to
draw page objects from data. For example, pie charts,
line graphs or bar charts can be drawn from included
data. Text content can also be written programmatically

in PostScript so that words or blocks of text can change
depending on defined rules. Since these commands are
instructions in the PostScript file, pages can be com-
posed by the PostScript interpreter (the raster image
processor, or RIP) instead of using VDP software prod-
ucts for file composition.

Output device commands can also be included as
variable instructions in PostScript. This enables the

PostScript interpreter to call supported page tray and
finishing features such as stapling, collating and folding.
A programmed business rule could be defined in the
PostScript file to delineate page tray-pull instructions
for each record based on a value in the data. Letters
for “regular” members might be printed on plain paper
and letters for “premium” members on high-quality pa-
per, for example.

Although many VDP software products offer
“optimized PostScript” output, only a few support
RIP-level composition or “dynamic document com-
position.” Most VDP software products use their own
composition engine or page layout software (Adobe
InDesign or QuarkXPress). This is not necessarily
a disadvantage, as PostScript does not have the same
level of typographic and graphic control as page layout
software. However, RIP-side composition can present
significant performance benefits since documents are
composed and rasterized at the same time instead of a
two-stage process in which documents are composed
(as a PostScript file) on a desktop or server before be-
ing rasterized at the RIP.

Printer Command Language (PCL)
Printer Command Language (PCL) is a printer protocol
originally developed by Hewlett Packard in the 1980s
for early inkjet printers. PCL has been released in vary-
ing levels over the past 20 years and is now supported
across a range of digital printing technologies.

PCL levels 1 through 5e/5c are command-based
languages using control sequences that are processed
and interpreted in the order in which they are re-
ceived. In 1995, HP introduced PCL 6, a language
very different from earlier PCL versions because it
provided a stack-based, object-oriented protocol sim-
ilar to PostScript.

Although PCL is not a variable information lan-
guage, its file structure can store common page ele-
ments, so repeating page objects (such as images) only
need to be stored in the PCL file once. PCL is sup-
ported by a few VDP software products.

The difference in file size between a PDF with
�00 records and the same application with �,000

records could be fairly minor, as common elements
are stored and reused across multiple pages.

VARIABLE DATA PRINTING

�Volume 7, Number �7 • The Seybold Report • Copyright ©2007 RISI Inc., all rights reserved.

Variable-data Intelligent PostScript Printware
(VIPP)
Developed by Xerox, VIPP is a PostScript-based lan-
guage designed to take advantage of the powerful pro-
gramming features of PostScript, as well as address the
limitations of PostScript in VDP applications.

With VIPP commands, VDP applications can remain
independent of PostScript, since VIPP can use higher-
level PostScript operators. They provide support for
common VDP application requirements, including data-
driven graphics and text commands for text highlighting
and reflow across multiple frames, including pages.

VIPP can also process native data streams from
legacy (line data) to XML, enabling independent data
production and VDP application design. As a result,
VIPP application resource files can be packaged as
VIPP project container (VPC) files and loaded on the
RIP, where the raw data file can be sent to the RIP to
trigger document composition and production.

Although many VDP software products offer sup-
port for VIPP, only a few products take advantage of
VIPP’s intepreter-level composition model and “just
send the data” workflow. Most variable data printing
software products use their own composition engine
or page layout software to compose the document and
only use a few VIPP commands (such as form object
caching). As indicated earlier, this is not necessarily a dis-
advantage, since page layout software such as InDesign
includes powerful page layout features, drawing tools,
typography control and more. As a result, document
composition using page layout software might be more
suited for design-intensive applications.

Variable Print Specification (VPS)
VPS is a PostScript-based language developed by

Scitex (now Print On-Demand Solutions, a Kodak
company). The VPS imaging model is constructed
of pages, and each page is constructed of elements.
There are two types of elements: reusable and non-
reusable or “inline” elements. In this respect VPS is
similar to other VI languages that use reusable element

models, such as PDF, PostScript, PPML and VIPP.
VPS is supported across a number of Creo/Kodak and
EFI OEMed RIPs.

Personalized Print Markup Language (PPML)
PPML is an XML-based variable information language
defined and developed by the Digital Print Initiative
(PODi), a not-for-profit industry consortium of ven-
dor companies that fosters digital printing growth
through market and standards development activities.
The PPML framework is built on two core methods,
object-level granularity and reusable content.

Object-level granularity describes content objects
on one page instead of individual pages. Reusable
content refers to the ability to temporarily or perma-
nently save page content to the RIP memory and use it
throughout the composition of the VDP document or
other VDP documents.

Reusable content can include fonts, graphics, im-
ages and other digital assets. Similar to VIPP and VPS,
PPML content can reside locally on the RIP or it can be
retrieved from another device by “referencing” remote
resources via URLs, eliminating the need to send all the
resources with the print job.

As PPML is an XML- (text) based language, it can’t
contain binary data. As a result, all internal graphical
content in the PPML file (such as non-referenced con-
tent) has to be encoded. This encoding can result in
significantly larger file sizes than comparable languages
(like VPS or VIPP). As a result, it is good practice to
use referenced content when creating PPML.

Like several other VI languages, PPML can dynam-
ically merge objects (text and images) on a template at
the RIP from the supplied dataset and digital assets.

Due to the large number of elements within
the PPML definition and varying levels of PPML
implementation across vendors, a Graphic Arts
Conformance Specification has been created to de-
fine required PPML elements to ensure interoper-
ability across different VDP software and RIPs. This
specification defines how device-dependent colors are

JPG

DBF

JDT

DBM

VARIABLE DATA PRINTING

� The Seybold Report • Copyright ©2007 RISI Inc., all rights reserved • September 6, �007

handled, which digital asset formats are supported and
other related requirements.

Personalized Print Markup Language/Variable
Data Exchange (PPML/VDX)
The American National Standards Institute (ANSI,
www.ansi.org) approved the PPML/VDX stan-
dard, developed by the Committee for Graphic Arts
Technologies Standards (CGATS), early in 2002.
Formerly known as VDX, PPML/VDX is based on a
subset of the PPML specification.

A PDF-based standard, PPML/VDX uses a subset
of PPML to define the reusable content within the PDF
file. A PPML/VDX file can consist of one or more
files. A collection of one or more files is referred to as
a “PPML/VDX Instance.” In its most basic form, an
instance will always contain a PPML/VDX layout file.

The layout file is a PDF file that functions as a con-
tainer for the VDP template and variable elements (text

and images). Although the layout file is a PDF, it uses
the filename extension .vdx to signify that it is not a
regular PDF file.

The layout file includes PPML information that de-
fines the layout of the document, the structure of pages
and the variable elements (text and images) used in the
VDP document and how elements are joined to pages,
while the PDF pages contain the variable elements.

The layout file can also include job definition for-
mat (JDF) job ticketing instructions. The PPML infor-
mation, variable elements and JDF instructions can
either be contained within the layout file or referenced
from the layout file and organized as individual files
within the instance.

The layout file also contains a content table, or
“checklist,” that can verify that all required elements for
the VDP application have been included in the instance.

FreeForm
Developed by Electronics for Imaging (EFI), FreeForm
was one of the first color VI languages in the industry
and is standard on most of EFI’s Fiery branded RIPs.

The FreeForm imaging model uses two layers. A
master layer (or template file) contains all static data
(static images and PDF pages), while the variable layer
contains all variable data (variable images and text).
The layers, or files, are sent to the RIP separately. The
template file is loaded onto the FreeForm-enabled RIP,

where it is rasterized and assigned a user-defined nu-
meric ID.

Once the template file is loaded on the RIP, the vari-
able data layer (or job) is referenced to the corresponding
template ID and is sent to the RIP. The RIP rasterizes
the variable data job and overlays the rasterized master
data with the rasterized data of the variable data job.

Using this template-based approach to VDP, the
same master template can be reused for different or
versioned VDP documents. In addition, FreeForm
supports image caching, where repeating variable im-
ages are stored in reusable forms within the variable
data layer.

FreeForm is an ideal variable information language
for entry-level VDP documents and applications, but it
offers only basic VI functionality and has limited sup-
port for advanced VI commands such as page picking
(the ability to define individual pages in a document)
and conditionally skipping layouts.

FreeForm �
FreeForm 2, an extension of FreeForm, offers all the
functionality of FreeForm while also providing full
support for page picking and greater flexibility for da-
tabase integration.

In addition, the master “template ID” in FreeForm
2 consists of a user-defined name rather than a num-
ber, which enables easier template management.

Job Layout (JLT)
Developed by Indigo (now HP), the job layout (JLT)
language is a proprietary job description language used
by HP Indigo Digital Presses.

JLT is not just a VI language, it is also a file format
that defines document job structure and includes basic
job ticket information. This proprietary file format en-
ables integration of the print job with the software and
hardware architecture of the HP Indigo press.

A JLT file contains two parts, a “skeleton” consist-
ing of channels and “content packages.” Channels in
the skeleton define the position of the content (page
objects) and settings that define the transformation of

FreeForm �, an extension
of FreeForm, offers all the

functionality of FreeForm while
also providing full support for page

picking and greater flexibility for
database integration.

VARIABLE DATA PRINTING

http://www.ansi.org

�Volume 7, Number �7 • The Seybold Report • Copyright ©2007 RISI Inc., all rights reserved.

each object — for example image scaling and rotation.
For variable data printing documents, these channels
also define the link to variable content.

Content packages include any static content in the
file (text and image page objects, for instance). Variable
content is not included in content packages but is load-
ed on the RIP separately. However, using an optional
“rich mode” setting, variable objects can be included as
a PostScript file.

HP Indigo requires this unique workflow of sepa-
rating the file structure from the content, as all page
objects (static and variable) need to be rasterized to
an internal format (Indigo Compressed Format). The
ICF objects in the document are then assembled at the
RIP according to the JLT structure or database file (for
VDP documents).

Variable Data File (VDF)
Originally developed by Agfa for ChromaPress, the
variable data file format was intended for the Agfa
IntelliStream (now Xeikon) digital front end.

Variable data file is a PostScript-based language and
the VDF workflow uses a document template that is
saved as a PostScript file. Variable page objects are then
saved as individual variable data files and a separate
VDF file is created for each variable object. In addition,
setup (STP) files can be created that contain informa-
tion about each variable object, with a separate STP file
created for each object. When STP files are available,
the IntelliStream DFE can use its IntelliCache feature
to cache variable objects.

Xeikon replaced the IntelliStream DFE (digital
front end) in 2004 with a newer DFE architecture, the
X-800, to support the current models of Xeikon print
engines. In its new DFE, Xeikon has moved away from
VDF support to PPML and PPML/VDX.

Intelligent Printer Data Streams (IPDS)
Developed by IBM for mainframe printing environ-
ments, intelligent printer data stream (IPDS) is part of
IBM’s advanced function presentation (AFP) architec-
ture. The IPDS language contains the information nec-
essary to identify, monitor and control the functions
of certain kinds of printers that are used in mainframe
environments. This information includes the charac-
teristics of the printer, its resolution, what resources
it has, whether it has sufficient memory and whether it
can receive and print a job.

The IPDS architecture enables both spooled data
(such as fonts, text, images) and print job management
controls (like resolution, paper tray handling, media

jams) to flow bidirectionally between both the print serv-
er (or print driver) and the printer controller. IPDS data
streams are only used to carry print instructions and data
from the print server to the printer in structured fields.
The print controller processes IPDS commands, then re-
turns an acknowledgment back to the print server.

IPDS also provides support for media finishing us-
ing printer-attached devices or preprocessing and post-
processing devices. In addition to traditional printer-con-
trolled finishing, constructs are also provided to enable
IPDS data streams to be used within universal printer
pre- and post-processing interface (UP3I) environments.

Inkjet Printer Data Stream (IJPDS)
Developed by Scitex, IJPDS is a proprietary file format
for Scitex (now Kodak) Versamark printers built on a
simple binary file format consisting of block-formatted
page components.

IJPDS was developed primarily for printing variable
text. Fonts are defined in the header file as bitmaps and
page layout is based on lines of text. IJPDS support
for images is limited and only images that are placed in
line with text are supported. Furthermore, images have
to be defined as a bitmap font glyph. For full-color im-
ages, four separate bitmap images are required (C, M, Y,
K), which are placed over one another.

One of the core differences in IJPDS compared
to other VI languages is its support for built-in paral-
lel processing of a single file. For example, the IJPDS
file could include instructions to process records across
eight interpreters (or CPUs). These instructions are
defined in the IJPDS file by a job control record that

One of the core differences in IJPDS
compared to other VI languages
is its support for built-in parallel

processing of a single file.

VARIABLE DATA PRINTING

6 The Seybold Report • Copyright ©2007 RISI Inc., all rights reserved • September 6, �007

indicates which interpreter the following records will
refer to. The disadvantage of this parallel-processing
approach is that the file becomes RIP-dependent, so
it isn’t possible to send a IJPDS file created for eight
interpreters to a different RIP with two interpreters.

Line Conditioned Data Stream (LCDS)
Xerox developed LCDS to allow simple line data to
take advantage of Xerox’s 9700 and 4000 series print-
ers. LCDS is a set of printing system commands that
defines printer properties such as the appearance, out-
put destination and paper feed source of a print job.

LCDS allowed easy migration from earlier impact-based
printers by enabling page composition to be performed on
the printer controller, where enabled forms, fonts and im-
ages were stored directly on the printer controller.

Printing system commands are entered together
in a job source library (JSL) file. The JSL file is then
compiled as an object file called a job descriptor library
(JDL) file that the printing system can read. The print-
ing system then responds to the commands contained
in the JDL file and prints the job as it is defined to ap-
pear. LCDS does not support color printing.

Metacode
Developed by Xerox, Metacode is a machine code vari-
ant of LCDS used to describe text and graphics. Like
LCDS, it was developed as a low-level control language
for Xerox 9700 and 4000 series printers. It provides
greater flexibility than LCDS through its own propri-
etary metalanguage.

The Metacode language uses hexidecimal character
codes to describe the position of data (text and graph-
ics) on a page. This code can also be used for page
orientation control and font selection and can enable
highlight color support.

Summary
To a large extent, your production environment will
govern your choice of variable information languages.
Your RIP will determine which VI languages you can
support and your data environment will likely dictate
which languages you can use (particularly in legacy
LCDS, IPDS or Metacode data-stream environments).
Whenever you do have a choice, the vast assortment
of VI languages available today can make selecting an
appropriate language a difficult task.

VI language support varies across different VDP
software and RIPs. In creating a VI file, the supported
features and composition performance of one VDP
software product might be different from another
VDP software product. For example, a VIPP project
created from XMPie uDirect software will differ from
one created by Lytrod Designer software. XMPie uDi-
rect uses InDesign for document design and composi-
tion, whereas Lytrod Designer uses its own design en-
vironment and packages the application resource files
together, and the document is composed at the RIP.

This RIP-side composition can offer significant per-
formance benefits over desktop or server-side compo-
sition, as the document is composed and interpreted
simultaneously. Text, images and data-driven graphics
such as pie chart or line graphs are composed by the

PostScript interpreter. Desktop or server-side compo-
sition software needs to first generate an output file
(using page layout software such as InDesign or their
own composition engine) before it can be interpreted
by the RIP.

Furthermore, VI performance will vary across
different RIPs. For example the processing time of a
PPML file for one RIP could differ considerably when
processed on a RIP by a different vendor, even if the
RIPs are running on similar hardware. Different ven-
dors use different approaches to interpreting and ren-
dering variable information, and like with performance-
enhancement drugs, “results may vary.”

When possible, you should run some benchmark
tests on your RIP using selected VDP software prod-
ucts (trial versions are available for most of them) to
gauge performance differences among different soft-
ware, VI languages and application types.

When selecting a VI language, base your choice on
your own research and experience and not on market
direction or opinions. One popular objection to ven-
dor file formats is that they are regarded as proprietary
technologies, not open standards. The open standards
discussion does not really have merit in VDP; if a pro-
prietary file format can offer greater performance and
VI feature support than a standards-based format, is
the standards-based format better?

Another consideration is performance, but this
does not need to be the deciding factor. Certain VI for-
mats can be interpreted by RIPs at a rate of several
thousands of pages per minute, but can your printer
print at thousands of pages per minute? The key to
performance is ensuring that you can run your print
engine at rated-speed.

Choosing a VI language is a little like buying a new
pair of shoes; there are many varieties, each with its
own style and benefits, and one size does not fit all. You
need to find the pair that fits you. TSR

* source: “Variable Data Printing 2006: Growth and
Changes in the Marketplace” TrendWatch Report

Eliot Harper is workflow marketing manager at Fuji Xerox Australia. He

can be contacted at eliot.harper@aus.fujixerox.com.

The open standards discussion does not really have
merit in VDP; if a proprietary file format can offer
greater performance and VI feature support than
a standards-based format, is the standards-based

format better?

VARIABLE DATA PRINTING

mailto:eliot.harper@aus.fujixerox.com

7Volume 7, Number �7 • The Seybold Report • Copyright ©2007 RISI Inc., all rights reserved.

Online subscription (PDF): $499
Print and PDF subscription: $599

Call +1 (866) 271 8525 or +32 (2) 536 748

www.risiinfo.com/seybold

Seybold article reprints (and e-prints) are available upon request.
Contact Mary Anne Cauthen (mcauthen@risiinfo.com) for information.

For daily news updates, log on to The Seybold Bulletin
at: www.risiinfo.com

Not a Bulletin subscriber? Sign up for free, at:
www.risiinfo.com/sb

