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The simplest three-body problem that attracts physical interest is the one first

studied by Euler. In Euler’s problem, a primary and secondary mass are fixed in
space, a given distance apart, and a test mass is allowed to move unrestricted in
their superimposed gravitational fields. The equations of motion are derived and
solved via a simple numerical procedure. The algorithm is adaptable to a small

programmable calculator and should help to stimulate interest in the classroom.
Several examples of motion are discussed and graphically presented.

I. INTRODUCTION

In the classical mechanics course offered in most un-
dergraduate physics curricula, the problem of a fixed center
of gravitation and a test particle is usually solved analyti-
cally in the standard Newtonian formulation. This analytic
solution is characterized by the constants of the motion and
the orbit is determined from a knowledge of the conic sec-
tion and its associated parameters such as eccentricity,
semimajor axis, and semiminor axis. In polar coordinates,
the orbit is calculated by evaluating

r=ro (1 +e)/(1 + e cost)

for a range of values for @. In the equation e is the eccen-
tricity and rq is a constant that is dependent on the various
constants: angular momentum per unit mass, mass of the
primary, eccentricity, and the Newtonian gravitational
constant.

In his famous lecture series, Feynmann! discusses a re-
freshing approach to the problem by solving the equations
of motion directly using a simple numerical procedure. Such
a technique allows one to observe the evolution of the orbit
from a set of initial conditions by using a small program-
mable pocket calculator. Eisberg? gives several examples
or orbits generated from programs written for the HP-25
and SR-56 calculators.

However, there is usually very little mention of the gen-
eralizations of the two-body problem to cases where there
are three or more masses involved. Except for special cases
where the problem possesses a high degree of symmetry, the
n-body problem cannot be analytically solved for n > 2. For
instance, the famous three-body problem of Lagrange is
exactly soluble because of the inherent symmetry in a ro-
tating coordinate system. (The solution of Lagrange’s
problem indicates that there exists points where a test
particle will remain stable, known as the Lagrangian points,
or Ly and Ls points.)

Owing to the complexities in even the simplest three-body
situation where one particle is assumed to have negligable
mass, discussion of the three-body problem is often left to
specialized courses in celestial mechanics where a more
thorough treatment can be afforded through the use of
perturbation theory. Approximations may still be necessary
to get meaningful results. Examples of approximations
which have been extensively studied are the lunar theories
and the planetary theories. The former concerns itself with
a massive planet orbiting a primary with the test mass in
close orbit about the planet. The latter assumes a planet
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orbiting the primary with a test particle also orbiting the
primary though never getting very close to either
mass.3-3

The simplest three-body problem which retains physical
significance is known as Euler’s problem.6 Here there are
two massive bodies and a test particle, but the massive
bodies are fixed in space for all time and do not influence
one another. The motion of the test particle is uninhibited,
and it is influenced by the gravitational forces from the two
masses. This problem is analytically soluble. However, in
order to plot an actual orbit one must evaluate several el-
liptic integrals—a tedious task.”® For the student, the
mathematical difficulties involved with the numerical or
tabular evaluation of these integrals would detract from the
interesting physics of the problem. One would like to watch
the orbit evolve without getting tangled up with mathe-
matical difficulties.

It is our desire to introduce material which may be quite
stimulating to the curious student. We intend to discuss
Euler’s problem in greater depth by first deriving the
equations of motion, then showing how to implement these
equations on a small programmable calculator. The motion
will be restricted to the plane, and several examples will be
illustrated.

The numerical method is the simplest one known, also
developed by Euler, where for every step forward in time
the velocity is assumed constant. Using this algorithm, we
have coded the planar equations of motion into a program
for the SR-56 calculator (also implementable without
change onto TI-58 and TI-59 calculators). The program is
given in the appendix. Although many more sophisticated
techniques exist, a computer must be used if they are to be
used for our equations. In general Euler’s method gives good
results if the test particle does not approach too close to a
primary and the time increment is small.

II. EQUATIONS OF MOTION

For two fixed centers of gravitation, the total gravita-
tional force acting upon a test mess is, by Newton’s second
law, the sum of the individual forces. In vectorial nota-
tion

F=‘~F]+F2, (1)

the subscripts referring to the force due to the primary and
secondary masses. This is, of course, a relation that is true
in any inertial reference frame.

We shall derive the equations of motion relative to a
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convenient choice of coordinates so that the equations take
on the simplest form. Since the primary and secondary
masses are fixed for all time, let the primary be situated at
the origin'and let the secondary be situated on the positive
x axis a distance d from the origin. Referring to Fig. 1, let
R represent the distance of the test mass, in the plane z
= 0, from the primary. Similarly, let A be the distance be-
tween the test mass and the secondary.

Let G be Newton’s constant of gravitation, M, the pri-
mary mass, M the secondary mass, and m the mass of the
test mass (m will divide out of the final equations, so it can
be regarded as being very small). Equation (1) becomes

F = (GM m/R3)R — (GMym/A3)A, (2a)
where for Cartesian (x,y) coordinates,
R=ix+jy, R3=(x2+ 23 (2b)

and
A=ix—=d)+]y. A3=[(x—d)?+y2]¥2 (2)

for unit vectors andf. Note that if M| = M, there exists
a point at x = d/2 where, if placed there with zero velocity,
the test particle will remain fixed for all time. For unequal
masses, such points also exist and are determined by F, =
0.

For planar motion there are two components of the force
vector, namely,

Fo = m = —(GMm/R3x — (GMym/A¥(x —d) (3a)

and
F,=mj=—(GMm/R3)y — (GM,m/A3)y. (3b)

The mass of the test particle cancels out. It is assumed that
m is very small or it will have a perturbing influence causing
the problem to become less realistic. Here the double dot
indicates a second time derivative, so X = a,, the x com-
ponent of the acceleration.

The question of units arises. The most intuitive dimen-
sions if we were to explore the dynamics of a solar system
would be those that we are most accustomed to, namely,
astronomical units (AU—the average earth-sun distance),
years, and solar masses. For instance, the earth is one AU
from the sun (the primary) which is in turn one solar mass.
The earth’s velocity around the sun is 2 AU /y.

For our hypothetical solar system, let the mass of the
primary be defined as one solar mass, or symbolically, M,
= M. Let the secondary be expressed as some fraction «
of the primary so that M, = aM | = aMg. If &« = 1, both
masses are identical. Other appropriate choices, for o will
allow us to simulate other bodies of the solar system.

To adopt these units, set

GM, = GMy = 472,

which by Kepler’s third law gives us the dimensions of
AU/y/solar mass.®
Equations (3a) and (3b) take on the form

i= =47 [x/R3+ a(x — d)/A3)], (4a)
j=—4rp(1/R3 + a/A3), (4b)

These are the equations that determine the path for the test
mass once the initial position and velocity are specified. In
Sec. 111 we shall discuss how the system is coded for use on
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Fig. 1. Geometry of the

planar Euler problem.
{M o}

1

our calculator. Notice that although the forces add linearly,
the actual evolution equations are nonlinear and coupled.
These equations can be solved, but only by using coordinate
transformations, and then we still have to evaluate several
very complicated integrals. Further discussion of these so-
lutions can be found in Wintner'9 and W hittaker.”

III. NUMERICAL SOLUTION

The most rapid, and for our purposes, efficient way to
solve the equations of motion (4a) and (4b) would be via a
numerical technique. Many powerful but very complex
numerical codes exist, some of which were developed as a
direct result of the space program. However, these software
packages are not readily available, although many com-
puters have software for systems of differential equations
and can be adapted to our problem. It is our intent to express
Eqgs. (4) as a simple set of finite difference or iteration for-
mulas, and to code these formulas onto a small calcu-
lator.

First we shall rewrite Eqs. (4) as a system of first-order
differential equations. Define

(5a)
y=u, (5b)

where v is the x component of velocity and  the y compo-
nent of the velocity. Consequently, Egs. (4) become

b= —4mw2[x/R3 + a(x — d)/A3),
u=—4w2y[1/R3+ a/A3].

X=uv,

(5¢)
(5d)

Our numerical method, known as Euler’s method, ap-
proximates the derivative with a simple finite difference
scheme. For example, if we know the solution at x = x(1),

then at x = x(r + 6t), for a small time increment 0z, we
have by Taylor’s theorem

x(t+ 61) = x(1) + 6tx(2) + O(01?),

where O(6t2) represents terms of higher order in 6¢. Since
x = v, we have for Euler’s approximation

x(t + 6t) = x(t) + vét,

and higher-order terms are neglected. For small values of
6t, this approximation is reasonable. The numerical error
attributed to this method is of order 6z.!!

Defining the following notation, for n a non-negative
integer,

X, (1) = x(nbt), (6)

our finite difference formulas take on the general form
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Fig. 2. Path of a test mass
released at xo = 1, yg = 0, vg
=0, and up = 2x. The pri-
mary and secondary (not
shown) are both one solar
mass, the secondary being
situated at 4 = 2.1 AU from

the origin.
Xpt1 = Xn + 0,01, (7a)
Y+l = ¥Yn + uy0t. (7b)

. Applying the Taylor series expansions to the velocities, Egs.
(5c) and (5d), yield

o(t+ 01) = v(t) + 6(1)dt + 0(vidt?)
o p(t) — 4720t [x/R3 + a(x — d)/A3],
and therefore

Untt = Up — 47201 [ Xy 1/Rosy + axpe1 — d)/A341],
(7¢)

Unt1 = Up — 4T200p i [1/R34 + a/A3L]. (7d)

The reason why we use x,+ and y,+ to determine v,,+, and
Un+1, rather than x, and y,, is that it is convenient from the
programming point of view (less memory is required and
fewer program steps), and further, we have observed that
the accuracy increases when we integrate numerically in
this manner.

For the calculator program, several variables must be
initialized. The distance d (in AU) between the primary and
secondary must be specified, as well as the mass of the
secondary as some fraction « of a solar mass. Further, the
initial coordinates of the test particle, as well as the initial
values for the velocity components must be set. The initial
position is (xg,V0), and the initial velocity is (vg,ug). The
latter are expressed in units of AU/y.

Once the program is initialized, it may be wise to check
that the program has been keyed in without error. This can
be readily done by checking the asymptotic limits of the
problem. For instance, by choosing 4 to be very large and
setting the initial conditions for an earth orbit, which is
nearly circular with radius 1 AU, where

Vo = 0.0,

we should get a circle since the perturbations due to the
secondary are very small (if « is also small or zero). For
convenience we choose the motion to begin on the x axis so
that v can be set to zero. If we were to begin at some other
point, we must set x¢, yo, Vo, and 1o such that (x3 + y3)1/2
=1 AU, and (v} + ud)!/2 = 2 AU/y. A suitable choice for
0t is 0.01 or 0.005, so 100 or 200 iterations are required for
one revolution about the primary, respectively. For the

X0 = 1.0, y0=0.0, Up = 271',
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SR-56, with 6t = 0.01 y, the calculator will require
(100 iterations)(5 sec/iteration) = 500 sec

for 1 y of evolution, or about 8 min. After this time, the test
particle should be near its starting point.

Another test has the secondary at d = 2, and oo = 1. Then
by setting xo = 1, yo = 0, vg = 0, up = 27, and 6t = 0.01,
we can observe the test particle bobbing up and down
midway between the masses. We need not use the above
choice for ug, though did so to simulate the earth’s motion
under these circumstances. This is an unstable situation
since if we set d = 2 + € for some small ¢, the test particle
will quickly move toward the primary. We shall have more
to say about this later on.

Euler’s method works quite well if the test mass does not
get too close to the masses and evolution times are not ex-
cessive. Experimentation of the method with varying 6t will
enable the student to get an intuitive feeling for the method
and its limitations. It should be mentioned that for close
approaches one of the outstanding problems in numerical
celestial mechanics is to find ways of reducing numerical
error to a minimum. One way to do this is by invoking a
procedure known as regularization, which entails per-
forming a coordinate transformation on the equations of
motion. This procedure can become very complicated for
cases where there are more than two bodies involved and
is the subject of intense research. Further discussion of this
theory is presented in Szebehely,® and a computer program
is given in Leuhrmann!! for the case of a test particle
subjected to a solar wind.

IV. EXAMPLES

It is now possible, with the aid of calculator, and graph
paper, to observe interesting phenomena. For instance, one
can ask how the earth’s motion would be affected by the
presence of another star. Although this problem is artificial
in that the two masses are fixed, Szebehely? suggests several
physical analogies. Nevertheless, the variety of orbits that
can be observed in our “universe” makes it interesting in
its own right. By placing o = 1 and d = 100 we can plot the
subsequent motion of the earth (using the above initial
conditions) and we obtain a circle. For this case the per-
turbations from the secondary are very small. By placing
d = 10 the motion deviates slightly from a circle. For suc-
cessively smaller values of d, these deviations grow signif-
icantly. In Fig. 2 we set d = 2.1, and the earth crosses the
x axis on the near side of the sun. One gets.the feeling that
if a star approached the earth, that the earth would not be
a safe place to live.

According to Wintner,'® most orbits will be space filling
curves, and are not periodic in the true sense. If the evolution
were observed for a bound orbit for an extended period of
time, the particle may return to an arbitrarily close neigh-
borhood of its initial conditions, but never exactly to its
origin.

The next example has the secondaryatd = 0.2 and a =
1.0. The initial conditions are xg = 1, yo = 0, v9 = 0, and g
= 2. Notice how (in Fig. 3) the test mass precesses around
the double mass, due to the changing gradient of the fields.
This motion is similar to the case when a solar wind is
present.!! A similar effect occurs if the secondary is placed
far from the primary, for instance, at d = 10. For this case
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Fig. 3. Motion of a test mass with
x0=1,y0=0,00=0,and ug = 2.
Here « = I and d = 0.2.

we set 6r = 0.001 and the subsequent evolution requires
about

(1000 iterations/y)(2 y of evolution)(5 sec/iteration)
~ 2.7h.

In Fig. 4 we show what happens when the particle is re-
leased a very small distance from the equilibrium point,
mentioned earlier. Here xo = 1, yo = 0,00 = 0, ug = 2, &
= [,and d = 2 + €. For € = 0, the particle endlessly bobs up
and down. The solid line in Fig: 4 has € = 0.01, and the
dashed line depicts the motion for € = 0.001. Notice how
the particle moves toward the primary almost immedi-
ately.

It can be speculated that the number of axis crossings,
denoted by n(e), before the perihelion point is reached,
satifies the condition

lim n(e) = o,
e—0

though it is seen from our example, that even for small €,
n(€) =~ 1. This statement seems to be intuitively obvious,
however, we have not attempted a rigourous proof.

For our last example, we have attempted to illustrate the
famous figure “8” orbit. The interested reader may desire
to experiment with different initial conditions in order to
find a truly periodic figure “8” (see Fig. 5).

In order to check the accuracy of the method as the ev-
olution is observed, especially if a larger calculator such as
the TI-58 or T1-59 is being used, one can calculate the en-
ergy of the test mass continuously within the program. The
total energy is a constant of the motion and is the sum of the
kinetic energy and the potential energy components:

E=(@2+u?)2 —47%(R-T+ AN, (8)

If this quantity begins to deviate significantly from the value
calculated at ¢ = 0, then the numerical accuracy is decaying
so the motion may not represent reality. It may be necessary
to experiment with varying time increments 6¢, and perhaps
changing 67 suitably, depending on how close the particle
is to either of the masses. It is our experience that if 67 is
changed during the course of a program, numerical error
increases. Further, if E is negative the particle is bound to
the system, whereas if £ = 0, the particle will escape to
infinity.

It should be noted that Euler’s numerical integration
scheme is one of the simplest methods, and therefore also
prone to greater numerical errors than more sophisticated
techniques. This method is ideal for problems where the
following two conditions are satisfied: (a) there are no very
close encounters between the test mass and primary or
secondary, and, (b) the time evolution is not excessive. That
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Fig. 4. Motion for which x¢ = 1, yo
=1,06=0,u9=2,and @ = 1. The
solid line has d = 2.01, whereas the
dashed line has d = 2.001. The
upswing in the motion after the origin
is passed in the former case is a result
of computational error.

is, short paths are best unless more sophisticated procedures
are used. For long paths the error becomes increasingly
greater with time until the solution is no longer represen-
tative of real events.

For our examples we have used a fairly small time in-
crement so that we could proceed for fairly long time
histories. The accuracy of our examples was checked in two
ways. First, we performed the example by using a given time
increment; then we repeated the example by using a sub-
stantially smaller increment. When the two paths converged
(to within a reasonable error) we considered the final result
to be accurate. Second, we wrote a Runge-Kutta computer
program and repeated the examples. The Runge-Kutta
method is very powerful and can generally be trusted to
yield good results. The key to understanding the Euler
method is to experiment with it by exploring different
scenarios with a different choice for time increment each
time. In this way the student can build up an intuition for
what’s going on and can distinguish between accurate and
erroneous results.

V. CONCLUSION

It is our hope that this article will be of use to students
in the undergraduate mathematics and physics curricula
who desire to explore beyond the simple two-body problem
in Newtonian dynamics. We have attempted to show how
the complex equations for a specific three-body problem can
be solved on a small calculator, and that interesting prob-
lems can be solved. Our technique can be adapted to the
general three-body problem if one is willing to use a larger
calculator such as the TI-58 or TI-59, or even a small
computer, Further, after experimenting with the procedure
given here, one may wish to code the equations using a more
powerful method such as the Runge-Kutta method. If one
has access to a plotter, it becomes possible to watch the body
as it moves. With the availability of home computers, one
application would be to write a program whereby the motion
of the bodies in, say, a solar system can be observed directly
on the cathode ray tube.

We have treated the two-dimensional problem in this
article without mentioning the more intriguing three-
dimensional case. It is our intention to do this in a future
paper; however, it is not difficult to imagine some of the
phenomena which occurs. For instance, in the plane per-
pendicular to the line joining the masses and equidistant

Fig. 5. Figure “8” type motion with & = 1, d = 3, and initial conditions
xo= 1.5,y =0, vo = tto = 3, and 6t = 0.001.
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between them, a test particle will execute a closed path if
given an initial velocity within this plane. What is the shape
of this path? Further, what are the orbits like when the
particle moves around the entire system, analogous to the
figure “8” case. Indeed, this is a simple yet interesting
universe to ponder.
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APPENDIX: CALCULATOR PROGRAM

Below is a copy of the calculator program. It was origi-
nally written for the SR-56 100-step programmable, how-
ever, it can be entered into the TI-58 and TI-59 calculators
without modification. The program has the following fea-
tures:

(i) The mass of the secondary can be adjusted by speci-
fying o, which represents the fraction of a solar mass desired
(e can be greater than one).

(ii) The secondary mass can be placed anywhere along
the x axis by specifying d, the distance in AU (astronomical
units) from the origin.

(iii) The units are Mg, AU, years.

(iv) The calculator program can be conveniently halted
at a specified time (in years of evolution) by placing that
time in the test (¢) register.

The following program performs the iterations shown in
Egs. (7a)-(7d).

Register assignments

0—ot S—uq
I—xq 6-—used
2—vg 7T—a«
3—time (¢) 8—used
4*-)10 9—d

Notice that only registers 0, 1, 2, 4, 5,7, and 9 need to be
filled prior to starting the program. Register 3 keeps tract
of the time elapsed. The  register contains the time when
the program stops running.

301 Am. J. Phys., Vol. 48, No. 4, April 1980

Program

00—RCL  20—0 40—RCL  60—1 80—x%2
5 = 8 X +
X STO = RCL RCL
RCL 8 X 8 4
0 RCL RCL = X2
= 1 4 SUM =
SUM - = 2 X
4 RCL SUM RCL Vv
RCL 9 5 0 =
2 = RCL SUM 1/%

10—X 30—SUBR  50—1 70—3 90—+/—
RCL 8 ~ RCL X
0 0 RCL 3 4
= X 9 PAUSE X
SUM RCL = X =1 s
1 7 X 7 X2
RCL = RCL 8 X
1 STO 6 RST RCL
SUBR 6 + R/S 0
8 + RCL RST RTN
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