Report to Wildlife At Risk, Not For Publication

31 December 2012

SURVEY FOR BATS, QUANG NGAI PROVINCE, VIETNAM, MAY-JUNE 2011 and MARCH 2012

THOMAS J. O'SHEA (U.S. Geological Survey, retired) P.O. Box 65 Glen Haven, Colorado 80532, USA

JEFFERY A. GORE Florida Fish and Wildlife Research Institute Florida Fish and Wildlife Conservation Commission 3911 Highway 2321 Panama City, Florida 32409 USA

NGUYEN TRUONG SON Department of Vertebrate Zoology Institute of Ecology and Biological Resources Vietnam Academy of Sciences and Technology 18 Hoang Quoc Viet Road Hanoi, Vietnam **Abstract.** We conducted a survey for bats in the southeastern Truong Son Mountains, Ba To District, Quang Ngai Province, Vietnam in 2011 and 2012. Our objectives were to determine the bat fauna, assess bat diversity and community similarity in comparison with past surveys elsewhere in Vietnam, and to describe aspects of bat reproduction and echolocation calls. We documented 17 species of insectivorous bats, including six species of *Murina* (tube-nosed bats) with poorly known distributions in Vietnam. Pregnant females of several species of bats were observed in the late dry season but no volant juveniles, whereas in the early wet season most females were lactating or post-lactating and volant juveniles of 10 species were captured. We recorded and analyzed echolocation calls of 16 of the species, and reviewed similarities and discrepancies with call descriptions from the same species elsewhere in Asia. Comparisons of echolocation calls indicate the likely existence of cryptic taxa in some problematic groups. Bat diversity at the study area was high considering the lack of a karst substrate for roosting opportunities. Diversity and abundance indices compared favorably with the literature on bat surveys in three nature reserves elsewhere in Vietnam.

INTRODUCTION

In late May and early June 2011 and again in March 2012, we volunteered to sample bats as part of a first survey of biodiversity in southwestern Quang Ngai Province, in central Vietnam. The overall survey was sponsored by Wildlife At Risk, a non-government conservation organization headquartered in Ho Chi Minh City, and conducted in cooperation with the Quang Ngai Forest Protection Department, Vietnam Ministry of Agriculture and Rural Development. In this preliminary report we provide detailed results of the bat survey. The state of knowledge on the systematics, identification, and ecology of bats in southeast Asia is very incomplete. Future research will build on these findings.

This report provides information on the species we captured, the subset of those captures for which we obtained voucher material, measurements of echolocation calls, observations on bat reproduction, and basic information on the bat fauna. It also includes comparisons with results of bat surveys at two nature reserves in adjacent Gia Lai Province, and comparisons with recently published information on the bat fauna at Kim Hy Nature Reserve in Bac Kan Province in northern Vietnam (Furey et al. 2010), which is to our knowledge the most thorough survey of a bat community in Vietnam.

Past surveys of the bat fauna of Vietnam were reviewed by Hendrichsen et al. (2001), who provide a detailed summary of species records for the entire country. Although records of bats have been documented in many provinces of Vietnam, there have been no surveys for bats in Quang Ngai Province and the review by Hendrichsen et al. (2001) lists no records for bats in Quang Ngai Province.

METHODS AND MATERIALS

Study Area

Our study area was in central Vietnam in the southeastern Truong Son (Annamite) Mountains, Ba To District, southwestern Quang Ngai Province (Figure 1). The area was near the borders with Gia Lai Province, Kon Tum Province, and Binh Dinh Province. We based our work at two campsites, one at about 750 m elevation occupied in late May and early June 2011, and one at about 930 m elevation occupied in March 2012. In 2011 most sampling locations were within about 800 m of our main camp, which was in a cleared grassy area at latitude 14.6602 N and longitude 108.6075 E (Figure 2). The surrounding forest was primarily secondary regrowth after logging activities about 40 years earlier. In March 2012 our study camp was located at 14.6206 N, 108.5865 E, 4.9 km SSW (bearing 207°) of the May-June 2011 camp. The sampling area in March was also secondary regrowth since logging in about 1980, but was more heavily forested and had a greater number of mature, large diameter trees. The March 2012 camp was on the River Lay above the highest waterfall. All nets and traps were set at ground level within 1.7 km of the camp in 2012, with most (> 80%) locations within 800 m of camp. Further details on the study areas are available from Wildlife At Risk and at the Ministry of Forestry in Quang Ngai.

Bat Sampling

The study began at the onset of the wet season in May 2011 (Figure 3). We captured bats using mist nets and harp traps set from ground level. We set nets across trails in forest, over small ponds and streams in forest or near forest edges, and at openings at the edges of forest vegetation. We set harp traps at similar locations and in dry streambeds that could function as travel corridors for bats. We deployed two different harp traps in 2011. One was a 4-bank trap ca. 1.5 x 1.5 m in area (2.25 m²) and the other was a 2-bank trap 0.9 x 1.1 m in area (1.0 m^2). In 2012 we deployed the same size traps and a larger 4-bank trap 2 m x 2 m in area (4 m²). Mist nets ranged from 6.0 to 12.8 m in length, with most nets 2.6 m in height. In 2011 most (90%) sampling locations were within 800m of camp, with a maximum distance of 1.25 km between any of the sites near camp (Figure 2; See Appendix A-1 for coordinates of sampling locations in 2011). Elevations at netting sites in 2011 varied from ca. 712 m to 772 m. Nets and/or traps were set on 11 nights between 28 May and 9 June inclusive at locations near camp. In addition to sampling at the main camp, in 2011 we also hiked to locations at higher elevations (ca. 930-950 m elevation) where we set nets on two additional nights (31 May and 1 June; sites 14 and 15 in Appendix A-1). In March 2012 we set nets and traps on 9 nights, with most (> 80%) locations within 800 km of camp (Appendix A-2). Elevations of 90% of the sampling sites in 2012 were between 880 and 991 m elevation, but on two nights nets were set at 330-650 m elevation (with only one bat captured).

Species Identifications

We relied on two sources for identifications of bats in the field based on external characters: Borissenko and Kruskup (2003) and Francis (2008). We also compared specimens in the field with descriptions of new taxa that appeared in Furey et al. (2009a), Kruskop and Eger (2008), and Kruskop and Tsytsulina (2001). In the laboratory we also compared voucher specimens with descriptions of new species of bats of the genus *Murina* by Csorba et al. (2011, 2007), Csorba and Bates (2005), Eger and Lim (2011), and Francis and Eger (2012). We collected voucher specimens in ~ 95% ethanol for most of our tentatively identified species (unfortunately we were limited in our materials in 2011 and were not prepared to save all specimens or to make study skins). We also took samples of liver or wing tissue in 95% ethanol for future DNA analysis by others. As noted by Csorba et al. (2011) for *Murina*, saving tissues for DNA analysis is now imperative for understanding systematics of many bats. All samples and voucher specimens were placed with collections at the Institute for Ecological and Biological Resources, (IEBR) at the Vietnam Academy of Sciences and Technology, Hanoi. Use of English common names follows Francis (2008) and original publications for species that have been discovered more recently.

Reproduction

We categorized adult females as pregnant, lactating, post-lactating, or non-reproductive following standard field techniques for bats (*e.g.* Racey 2009). In cases where pregnancy was detected in voucher specimens we recorded rump-crown lengths of embryos. Males were categorized as non-reproductive or as with engorged scrota (or analogous sacs). Age was categorized as volant juvenile or adult based on fusion of the phalangeal epiphyses (Brunet-Rossinni and Wilkinson 2009).

Echolocation Recordings

We recorded echolocation sounds of some species, including individuals that were prepared as voucher specimens. Such recordings can allow comparison of results with the literature on echolocation of bats recorded elsewhere in Asia. Such comparisons may be useful aids to species identification, particularly for cryptic taxa that may be members of species complexes that are not yet well understood (Francis 2008). Bats were recorded as they were followed in flight in an enclosure made with mosquito netting (ca. 2 m high x 2 m wide x 3 m long), when hanging freely on the sides of the enclosure, or while they were held in hand. We disregarded call data from hand-held bats if they differed strongly from bats recorded in flight. Recordings of bats in flight in enclosures or in hand are commonly employed for bat surveys (e.g. Kingston et al. 1999, Kingsada et al. 2011, Hughes et al. 2010, 2011) but measurements can be biased and are inferior to recordings of free-flying bats. However, given the low capture success and need for voucher specimens (see Results) we chose not to release bats for recordings in the open.

We used two different recording systems for echolocation calls. In 2012 we sampled echolocation calls as WAV files using an Echometer EM 3 digital ultrasonic recorder (Wildlife Acoustics 2012). The EM3 allows recording at sampling rates of 256 and 384 kHz (providing analysis of calls up to frequencies of about 192 kHz). We analyzed properties of calls recorded in 2012 in Hanning windows using spectrograms, oscilloscope tracings, and power spectra features of Call Viewer software (Skowronski and Fenton 2008). We analyzed time and frequency characteristics for 12 calls per individual, selecting calls that appeared to provide the greatest amount of information. For bats with predominantly constant frequency (CF) calls we calculated the frequency of maximum energy (FMAXE, kHz), the frequency range of the preceding upsweep (FM rise, kHz), the frequency range of the terminal downsweep (FM tail, kHz), and the sound duration (ms). For bats with predominantly frequency modulated (FM) calls we calculated mean ± 1 SD and ranges for start frequency (kHz), end frequency (kHz), FMAXE (kHz), midpoint (kHz) and duration (ms). We did not measure interpulse intervals because of the confined recording context. In 2011 recordings were made with AnaBat II bat detectors with programmable zero-crossing analysis interface modules (AnaBat[™] CF Storage ZCAIM; Titley Electronics, NSW, Australia). We used AnalookW software, version 3.8.13 (http://users.lmi.net/corben/WinAnalook.htm) to view and describe the call recordings made in 2011. This system allows time and frequency measurements , but does not allow thorough acoustic analysis of bat calls (Fenton et al. 2001). The Anabat system also does not allow reliable measurements of the upper ranges of echolocation calls of some species that utilize very high frequencies. In our study areas these were primarily bats of the genera *Murina* and *Kerivoula*. *Murina* produce calls that are faint in intensity, making upper frequencies difficult to record. We provide results from Anabat recordings for those species of *Murina* that were recorded only in 2011 with the caveat that start frequencies are likely underestimates. For comparative purposes we also tabulate these same metrics from the published literature on echolocation calls of the same species we recorded in Quang Ngai but were captured elsewhere in Asia.

Computations and Statistical Analyses

We provide original data and simple descriptive summary statistics: means, standard deviations (SD), ranges, and coefficients of variation (CV; SD/mean). We calculated metrics for bat species diversity and community similarities to compare with the three other bat surveys in Vietnam described above. We also made comparisons between the two sites sampled within our Quang Ngai study area in 2011 and 2012. These computations follow methods given in Kingston (2009) and Furey et al. (2010). We calculated effort based on mist net or harp trap areas times the number of hours nets or traps were set, and tabulated success by dividing numbers of bats and numbers of species captured per unit effort. We provide species richness (S) as the total number of species in a community. We also calculated a species diversity index, a measure of evenness of distribution of individuals among species, predicted species richness, and inventory completeness using program SPADE (Chao and Shen 2010). We calculated the inverse Simpson index of diversity as 1/D where $D = [\Sigma n(n-1)]/[N(N-1)]$, n is the number of individuals in each observed species, and N is the total number of individuals captured (Magurran 1988). Evenness of the distribution of individuals among species is expressed by the formula (1/D)/S, where S is the number of observed species. We followed Furey et al. (2010) and used program SPADE to calculate predicted species richness based on a hypothetical increase in sampling effort that was double the number of bats captured; we used two estimation methods (Solow and Polasky 1999, Shen et al. 2003), and measured inventory completeness as the range in the ratio of observed species richness to predicted species richness x 100% based on the two estimation computations. We also used two indices to compare similarity of communities in pair-wise contrasts. We calculated the simple Jaccard's index as J = C/(A + B - C), where C is the number of species in common between the faunas of two regions, A is the number of species in one region, and B is the number of species in the other region (Magurran 1988; incidence index of Chao and Shen 2010). We used Program Spade to calculate the abundance-based adjusted Jaccard similarity indices and standard error estimates with 500 bootstrap replications (Chao et al. 2006). For comparison we recalculated some of these statistics for the insectivorous bat fauna in the Kim Hy study results based on original data in Furey et al. (2010).

RESULTS AND DISCUSSION

Bats Captured May-June 2011.

5

We set mist nets for 758 square-meter net-hours (m²nh) on two nights (31 May-1 June 2011) at locations above 900 m but caught no bats. We also saw no bats in flight at these sites, although others in our party occasionally saw bats in the mountain area while searching for reptiles and amphibians. Heavy rain fell during most of the first night and intermittently the latter part of the second night. We do not include effort and results at these higher mountain sites in further treatment of our results.

We sampled for bats at 33 georeferenced locations within 1.25 km of camp (Appendix A-1) on 11 nights between 28 May and 9 June 2011 inclusive. Sampling sites ranged between 712 and 772 m in elevation. We captured 50 bats of 13 species (Table 1; Appendix B-1)) at 15 of these locations in 2,845m²h of mist net and 174m²h of harp trap sampling. Four species were captured only in harp traps, three only in nets, and six in both (Table 1). A striking feature of our sampling was an absence of fruit bats (Pteropodidae). At least two species of fruit bats were captured in surveys at Kon Cha Rang and Kon Ka Kinh Nature Reserves in nearby Gia Lai Province (Hendrichsen 2001) and four species of fruit bats were present at Kim Hy Nature Reserve in Bac Kan Province (Furey et al. 2010).

Our results were also notable for the presence of six species of *Murina*. Bats of the genus *Murina* are very poorly known, with several new species named from Vietnam or elsewhere in southeast Asia during the past decade, and likely more to follow (Csorba and Bates 2005; Csorba et al. 2007, 2011; Furey et al. 2009a; Kruskop and Eger 2008; Eger and Lim 2011; Francis and Eger 2012). In addition, some experts suspect that other currently recognized taxa of Asian bats, such as *Hipposideros larvatus*, some species of *Rhinolophus*, and *Kerivoula hardwickii* may consist of complexes of several species (Francis 2008). Zhang et al. (2009) also reported a likelihood of cryptic species of *R. pusillus* in Asia based on geographic differences in echolocation calls. We captured six species of bats in 2011 that were not taken in March 2012: *Glischropus bucephalus, Murina annamitica, Murina cyclotis, Murina eleryi, Murina huttoni, and Myotis ater*.

We collected 24 whole specimens of the 13 tentative species in 95% ethanol, with a separate small vial of liver tissue in 95% ethanol for each of these whole specimens (Appendix C-1). We sampled wing tissue from an additional eight bats of three of the 13 species (Appendix C-1), each of which was released following sampling. These samples are at IEBR and can be made available to researchers for DNA analysis.

Bats Captured March 2012

We sampled bats at 52 georeferenced locations within 1.75 km of camp on 9 nights between 12 and 20 March 2012, inclusive (Appendix A-2). Most of thesampling locations (45 of 52) ranged from 883 m to 991 m in elevation. We captured 69 bats, with 65 bats captured within the 883-991m elevational range (Appendix B-2). We identified 11 species of insectivorous bats but no fruit bats in March 2012, with 9,487.5 m²nh and 770.5 m²nh trapping effort (Table 2). Results were dominated by captures of *Rhinolophus affinis* : 47 of 69 bats (68%) were identified as this species. Four species were taken in March 2012 that were not captured in 2011: *Megaderma lyra, Myotis muricola, Rhinolophus pearsoni, and Scotomanes ornatus* (Table 2).

During 2012 we collected 27 bats as whole specimens in 95% ethanol with liver tissue in separate vials of ethanol (Appendix C-2). We also sampled muscle as well as liver for the three specimens of *Murina* and one specimen of *Kerivoula*. We sampled seven additional bats by wing biopsy

6

in 95% ethanol prior to their release (Appendix C-2). These samples are at IEBR and can be made available to researchers for DNA analysis.

Total Bats for the Quang Ngai Study Area

We captured 119 bats of 17 species (Table 3). We obtained 51 entire specimens with corresponding tissue samples in ethanol for possible DNA analysis, and wing tissue for DNA analysis from another 15 specimens (Appendices C-1, C-2). Individuals of the six species of *Murina* were taken at locations within 630 m of each other, with up to four species of *Murina* taken at the same trap or net site (Appendices B-1, B-2). Within the Quang Ngai study area, the number of species detected and individuals detected per unit effort was higher at the sites sampled in 2011 than at the sites sampled in 2012 (Tables 1 and 2).

Species Accounts

Below we provide brief accounts of sampling by family and species. We include reference to voucher specimens, sex, age class, forearm length, echolocation calls, reproduction, and some capture details and pertinent information from recent literature. See Appendices B-1 and B-2 for capture records and Appendices C-1 and C-2 for a full list of specimen material.

Pteropodidae

We did not capture any fruit bats at the Quang Ngai study area; however, we observed *Cynopterus* sp. in the town of Ba To, 17 km northeast of our camp. Fruit bats are well known to make local and regional movements to exploit temporal and spatial differences in availability of fruit. Pteropodid bats may utilize the Quang Ngai study area at other times of the year if fruit is more abundant than in the dry or in the early wet seasons (when we sampled the bat fauna). Although no fruit bats were seen in the study area in 2011 and 2012, on 21 March 2012 we observed bat-expressed fruit pulp on the ground beneath a fruiting tree at about 825 m elevation.

Megadermatidae

Megaderma lyra. (Greater False Vampire). We captured two *M. lyra* in March 2012, both in mist nets near water along the River Lay at 917-920 m elevation. One (QN066) was a non-reproductive adult male (forearm 65.5 mm, mass 36.5g). The other bat escaped before it was examined and measured. Echolocation calls in this species can vary depending on prey type and orientation behavior (Leippert et al. 2002). We only recorded 6 echolocation calls from one bat (data not included here), but characteristics of calls were consistent with those reported in the literature (*e.g.* Leippert et al. 2002).

Rhinolophidae

Rhinolophus affinis (Intermediate Horseshoe Bat). In 2011 we captured four *R. affinis*. Two were adult females (TJO 419v, 420v—wing tissue), one lactating and one non-reproductive, forearms 49.6,52.2 mm, body mass 14.0, 15.5 g. Two were volant juvenile females (TJO 424v-wing tissue, TJO 425v-wing tissue) , forearms 49.8, 51.0, body mass 11.0, 11.5 g. These bats were captured in the harp trap in the dry streambed near camp on two nights. *R. affinis* were much more abundant throughout the

2012 sampling area, where they accounted for 68% of the bats captured. We captured 47 individuals in 2012: 30 adult females (mean forearm length $50.1 \pm 1.3 \text{ mm}$, n= 25, mean body mass $17.2 \pm 2.6 \text{ g}$, n =19) and 17 adult males (mean forearm length $50.7 \pm 1.1 \text{ mm}$, n = 13, mean body mass $15.4 \pm 0.3 \text{ g}$, n = 4). Adult males captured in 2012 were non-reproductive. Twenty-five of the 30 females captured in March 2012 were pregnant, 4 were not reproductive, and in one case reproductive status was not determined. The pregnant females each contained a single embryo (Appendix C-2). The high proportion of females that were pregnant in March and the presence of lactating females and volant juveniles in early June suggests timing of reproduction to coincide with the advent of the wet season. This seasonal pattern in reproduction is consistent with findings in rhinolophid bats (including *R. affinis*) by Furey et al. (2011) at Kim Hy Nature Reserve in northern Vietnam.

Echolocation calls (*n* = 216) of 18 R. affinis were CF at an average FMAXE of 80.6 kHz, with a beginning rise of about 11 kHz and a descending FM tail of about 19 kHz, total duration averaging 30.6 ms (Table 4). Zhang et al. (2009) reported that even within the same cave individuals identified as *R*. *affinis* had widely separated dominant frequencies, and suggested that this may indicate the presence of cryptic species. FMAXE of *R. affinis* at Quang Ngai were higher than published reports for *R. affinis* from Bac Kan Province (Vietnam), Cambodia, Laos, Malaysia, Thailand, and four regions in China, but similar to records from bats reported as *R. affinis* from Yunnan, China and Kon Tum Province in Vietnam (Table 4). Additional research is needed on geographic variation in echolocation calls and systematics of *R. affinis*.

Rhinolophus pearsoni. (Pearson's Horseshoe Bat). We captured one non-reproductive adult male in March 2012 (QN006; forearm 50.4 mm). Echolocation calls of this bat were CF sounds averaging 64 kHz with short preceding FM rises and terminal sweeps, and a duration of 38 ms (Table 4). These recordings were generally consistent with reports from elsewhere (Table 4), although FMAXEmeasurements were higher than those recorded from free-flying bats in Bac Kan Province, Vietnam (Furey et al. 2009b).

Rhinolophus pusillus. (Least Horseshoe Bat). In 2011 we captured ten females: one volant juvenile (forearm 36.4 mm, body mass 5.0 g) and nine adults (three pregnant, six lactating; eight specimens retained: TJO 402v, 405v, 428v, QNO41, QNO43, QNO44, QNO45, QNO48). These bats were captured at 6 separate locations in nets and harp traps, one in an insect sweep net. Bats were captured in forest, in clearings, and in dry streambeds. In March 2012 we captured eight *R. pusillus* (5 adult females, 2 adult males, 1 sex not determined). The 5 adult females were all pregnant, with 4 examined on dissection having 1 embryo each. The two adult males were non-reproductive. The March pregnancies together with the presence of lactating and volant juvenile *R. pusillus* in June suggests wet season timing of reproduction, as in *R. affinis*. Body measurements of adult female *R. pusillus* captured in Quang Ngai were: forearm length $39.4 \pm 1.2 \text{ mm}$ (n = 14), mass $6.9 \pm 0.7 \text{ g}$ (n = 10). Two adult males (specimen QN047 retained) each were 5.0 g body mass and had 38.2 mm forearm lengths. Echolocation calls of eight R. pusillus measured in 2012 averaged 99.7 \pm 0.7 kHz FMAXE, with a beginning rise of about 14.9 kHz and a descending FM tail of about 17.5 kHz, total duration averaging 35.8 ms (Table 4). Zhang et al. (2009) reported a likelihood of cryptic species of *R. pusillus* in Asia based on geographic differences in echolocation calls.Calls we measured were near the range reported for this

species in Bac Kan Province in Vietnam and some locations in China , but were about 10 kHz lower than *R. pusillus* recorded in Guangxi (China), at some locations in Laos, and in Thailand (Table 4). According to Dr. Vu Dinh Thong of IEBR (personal communication, 28 March 2012), *R. pusillus* he has recorded in Vietnam produce echolocation calls with FMAXE at about 108 (range 103-113) kHz. Additional research on echolocation and systematics of *R. pusillus* is needed to clarify these seeming discrepancies.

<u>Hipposideridae</u>

Hipposideros larvatus. (Intermediate Roundleaf Bat). In 2011 we captured three adult males (one reproductive), forearms 64.9, 65.0, and 68.2 mm, body mass 24.0, 24.5, and 29.0 g; and two volant juvenile females, forearms 63.3, 65.5 mm, body mass 20.0, 20.5 g. Four of these bats were captured in a harp trap in the dry streambed near camp, and one was captured in a net on a wide trail through forest. We preserved one voucher specimen plus liver tissue for one bat (TJO 400v), and wing tissue samples from four other bats in 2011 (TJO 409v, 412v, 418v, 426v). In 2012 we captured one *H. larvatus*, a non-reproductive adult female with a forearm length of 64.6 mm (released, but with wing tissue saved in ethanol; QN005).

Echolocation calls of the volant juvenile female specimen (TJO 400v) taken at Quang Ngai in 2011 were nearly identical to those of the bat recorded in 2012 (Table 4). Calls of these two bats averaged 93.2 kHz FMAXE, had no initial FM rise, aterminal downsweep of 14.8 kHz, and were about 5.8 msec duration. FMAXE of calls from both animals were also nearly identical to those recorded from *H. larvatus* from Myanmar, but dissimilar to those recorded in Bac Man Province (Vietnam), Thailand (in part), Malaysia, India (in part), and various regions of China (Table 4). Thabah et al. (2006) have suggested that bats from Myanmar with echolocation frequencies similar to the bats sampled at Quang Ngai are the species *Hipposideros grandis* rather than *H. larvatus*. However, forearm length measurements of *H. larvatus* from Quang Ngai are larger than any reported by Thabah et al. (2006), but are more similar to forearm lengths from bats sampled in Myanmar and India than from those sampled in Malaysia and China (Table 4). *H. larvatus* seems to present another case where additional research on variability in echolocation in relation to systematics is needed.

Hipposideros pomona. (Large-Eared Roundleaf Bat). In 2011 we captured two males (TJO 427v), one non-reproductive adult (forearm 43.4, body mass 7.0 g) and one of unknown age class and reproductive status (escaped), forearm 42.8. Both were captured in nets across small trails in forest at two different sites. In 2012 we captured three adults: two non-reproductive adult males and one pregnant female with a single embryo. Echolocation calls were recorded for the female and one of the males in 2012; no recordings were made in 2011. FMAXE of these two bats averaged 128.6 kHz, with no initial rise in frequency, a terminal downsweep of 10.7 kHz, and a duration of 5.3 ms. These measurements of ultrasound are consistent with published reports from Bac Kan Province, Vietnam and multiple locations in China and Laos, but averaged lower than at some locations in Thailand and Myanmar (Table 4).

Vespertilionidae

Glischropus bucephalus (Indochinese Thick-Thumbed Bat). We captured one lactating adult female, forearm 34.5 mm, body mass 7.0 g. This was the first bat we captured. It was netted and

released over a small pond on 28 May 2011. No other bats of this species were subsequently captured during our field work. Using Borissenko and Kruskup (2003) and Francis (2008) we initially identified the bat as *Glischropus tylopus*. Subsequently we learned that Csorba (2011) presented new evidence that all bats of this genus in southeast Asia north of the Isthmus of Kra (above the Malaysian peninsula) should be referred to under the name of a new taxon, *G. bucephalus*, and that *G. tylopus* should be restricted to bats south of the isthmus. We did not record echolocation calls of this species.

Kerivoula hardwickii (Hardwicke's Woolly Bat). One volant juvenile male (forearm 33.3 mm, body mass 4.3 g; TJO 408v) was taken in 2011 in a harp trap in a dry stream channel at 727 m, and an adult female (forearm 34.8, mass 5.8 g; QN022) was taken on 14 March 2012 in a harp trap at 984 m elevation. The female was pregnant with a single (15 mm) embryo. The bat recorded in 2012 had short duration (1.4 ms \pm 0.56 ms) echolocation calls with high average start (169.5 \pm 19.9 kHz) and end (95.2 \pm 9.1 kHz) frequencies, and peak frequencies averaging 149.3 \pm 26.5 kHz (Table 5).

Hughes et al. (2011) provided data for echolocation calls of *Kerivoula hardwickii* from Thailand (Table5). These calls were very similar to those we recorded (nearly identical start and end frequencies, and overlap with other measures). We are unaware of any other published information about echolocation sounds of *K. hardwickii*. Kingston et al. (1999) report that five species of *Kerivoula* from Malaysia also have very high start frequencies (averaging about 172-178 kHz) and end frequencies (averaging about 50-86 kHz), and short durations, with mean call length ranging from 1.7 to 2.7 ms.

Murina annamitica (Annamite Tube-Nosed Bat). This species was very recently described (Francis and Eger 2012) based on four specimens from Laos with two additional referred specimens from Laos and two from Vietnam (Quang Nam and Binh Phuoc provinces). We captured *M. annamitica* in 2011. We obtained four voucher specimens of this species (TJO 401, TJO404, TJO421, TJO423) and also released one bat tentatively identified as *M. annamitica* (a volant juvenile male captured in a mist net over a small spring on 4 June 2011). The voucher specimens were two females (one lactating adult, forearm length 32.2 mm, body mass 7.0 g; one volant juvenile, forearm length 33.5 mm, body mass 7.0 g) and two males (one non-reproductive adult, forearm length 31.2 mm, body mass 6.0 g; one volant juvenile, forearm length 31.2 mm, body mass 4.5 g). The bats saved as specimens were taken in mist nets in forest over or near a small stream, at the edge of a small rainwater pond at the forest edge, and in a harp trap at the forest edge. The locations in Quang Ngai province are about 315 km northeast and 88 km southeast of the two previously known locations in Vietnam. We are unaware of any published information about echolocation sounds of *M. annamitica*. Echolocation calls of two individuals (TJO404 and TJO421) recorded in 2012 were FM sweeps from about 131 to 71 kHz, 1.1 ms duration (Table 5). However, we believe the start frequencies and midpoint frequencies may have been underestimated.

Murina beelzebub (Beelzebub's Tube-Nosed Bat). *M. beelzebub* is a recently discovered species, described based on three specimens collected in 2007 at Bac Huong Hoa Nature Reserve, Huong Hoa District, Quang Tri Province, Vietnam, elevation 400 m, from disturbed secondary forest (Csorba et al. 2011). Referred specimens are also known from Kon Ka Kinh Nature Reserve in Gia Lai Province (Csorba et al. 2011). Our records add to the known distribution of the species: locations are about 330 km southeast of the type locality and 40-45 km northeast of Kon Ka Kinh Nature Reserve. We captured

one volant juvenile female (forearm length 37.3 mm, body mass 5.5 g) in a harp trap at a small trail entering a strip of forest above camp at 753 m elevation (TJO 407v) on 4 June 2011. We captured a second bat (QN023, non-reproductive adult male, forearm length 34.4 mm, body mass 5.5 g) on 14 March 2012 in a mist net in forest at 967 m elevation. Echolocation calls measured in 2012 averaged 146 kHz in start frequency, 74 kHz in end frequency, were short duration (1.4 ms) and had maximum energy at a mean frequency of 124.5 kHz (Table 5). We are unaware of any published information about echolocation in this species.

Murina cyclotis (Round-Eared Tube-Nosed Bat). This species has a fairly widespread distribution in southeast Asia (Francis and Eger 2012). In 2011 we took five of these bats as voucher specimens (TJO 403, TJO 414, TJO 416, TJO 417, TJO 422) on three nights at two separate locations near the lower elevation camp: three in mist nets at a small rain-water pond in forest habitat on 30 May and 5 June, and two overnight in a harp trap in a dry stream channel at camp on 5 and 7 June. Three were adult females, each with evidence of recent reproduction (two post-lactating, one lactating); one was a volant juvenile female with no evidence of reproduction, and the fifth bat was an adult, nonreproductive male. We also captured one bat that was released but tentatively identified as this species (a volant juvenile female on 7 June) at the same harp trap location. Mean forearm lengths and body masses of females were 33.6 ± 0.8 mm and 6.1 ± 0.9 g; the male forearm length was 30.6 mm and body mass 5.5 g. Echolocation calls of three of these bats were measured. They had short duration (1.9 ms) calls sweeping from about 129 to 62 kHz (Table 5). Kingston et al (1999) report that calls of bats of the genus Murina tend to be similar to one another, of short duration and faint intensity, sweeping a broad range with high frequency start points. They sampled *M. cyclotis* from peninsular Malaysia and noted a lower end point (51.6 kHz; Table 5), but higher start frequencies and longer durations than we measured, likely indicating that the faint higher frequencies may not have been detected in the recording system we used in 2011. However, our measurements of calls of *M. cyclotis* are very similar to those reported for this species by Hughes et al. (2011) in Thailand (Table 5).

Murina eleryi (Elery's Tube-Nosed Bat). This species was recently described based on six specimens taken in 2007 at Kim Hy Nature Reserve in Bac Kan Province, Vietnam (Furey et al. 2009a). Two specimens are also known from Son La Province and Ha Giang Province (Furey et al. 2009a), and five specimens have been reported from Quang Nam province (Eger and Lim 2011). Habitats of the specimens from Bac Kan province are in forested karst landscape, including disturbed areas (Furey et al. 2009a). We documented this species in Quang Ngai with capture of one volant juvenile male, forearm 29.9 mm, body mass 3.5 g (TJO 415v). The single bat was captured in a harp trap in a dry stream channel at camp on 5 June 2011, about 86 km southwest of the southernmost published location in Vietnam (Eger and Lim 2011). Other recently published locations for *Murina eleryi* are in Guangxi and Guizhou provinces, China, and Khammouane and Houphan provinces, Laos (Eger and Lim 2011, Francis and Eger 2012). The bat we recorded had the shortest duration call of any species sampled (0.6 ms). Its frequency range swept from about 128 to 85 kHz (Table 5), but the recordings may have been biased low in frequency. We are unaware of any published information about echolocation sounds of *M. eleryi*.

Murina fionae (Fiona's Tube-Nosed Bat). This species was very recently described based on 2 specimens from Laos, with two additional specimens known from Quang Nam province, Vietnam about 86 km northwest of our study area (Francis and Eger 2012). We captured *M. fionae* at Quang Ngai in 2011 and 2012. We obtained one voucher specimen and captured but released one bat tentatively identified as this species in 2011. One lactating adult female was taken on 3 June 2011 (TJO406, forearm 37.2 mm, body mass12.0 g) at the small rain-water pond at the forest edge where the *M. cyclotis* were captured, and a second lactating adult female was captured but released on 4 June 2011 in the harp trap near camp (forearm length 39.9 mm, body mass 11.0 g). Two non-reproductive adult males were taken on 13 and 19 March 2012 (QN021, forearm length 34.2 mm, mass 8.5 g; QN069, forearm length 35.0 mm). The bats captured in 2012 were taken in a harp trap and a mist net in forest, one at 911 m and one at 381 m elevation. Echolocation calls of the one *M. fionae* measured in 2012 swept from about 153 kHz to 67 kHz with a peak frequency of 112 kHz (Table 5).

Murina huttoni (Hutton's Tube-Nosed Bat). This species was captured in 2011 only. We took three voucher specimens (TJO 410, TJO 411, TJO 413) at the same two locations where the *M. cyclotis* were captured. Two were adult females (lactating, forearm length 32.5 mm, body mass 8.0 g; and post-lactating, forearm length 35.0, body mass 7.0 g), and one was a volant juvenile female (forearm length 39.0 mm, body mass 11.0 g). We also captured but released three bats (two lactating females, one with forearm length 32.6 mm, body mass 5.0 g; one bat escaped prior to determining sex, age or reproduction) that were tentatively identified as this species. These three were taken in mist nets over a small stream in the forest on 8 and 9 June 2011. The nearest records for *M. huttoni* are in Quang Nam province, about 86 km northwest of our study area (Francis and Eger 2012). Echolocation calls of four bats measured in 2011 were FM sweeps from at least 128 to 63 kHz, 1.7 ms in duration. We are unaware of any published information about echolocation sounds of *M. huttoni*.

Myotis ater (Peters's Myotis).We captured six of these bats at two different sites in 2011, both sites over streams in forest. Four adult males (TJO430v, 431v) had forearms of 33.6, 34.8, 35.1, 36.1 mm and body masses of 4.5, 5.0, 5.5, and 5.5 g; one volant juvenile female (TJO 429v wing tissue) 36.6 mm, 5.0 g; and one volant juvenile male 36.9 mm, 6.5 g. These bats appeared most similar to descriptions of *M. ater* based on pelage, relative size of canine and premolars, body size, presence of a narrow calcar, and insertion of the wing at the base of the first digit. Pelage is dense and blackish with sparse light brown tips. Echolocation consisted of FM sweeps spanning about 105 to 53 kHz, 2.3 ms duration (Table 5). Call characteristics are similar to those reported for this species in Bac Kan Province, Vietnam (Furey et al. 2009b).

Myotis muricola (Asian Whiskered Myotis). We captured one adult female (QN055; pregnant, 1 embryo) in a mist net over the River Lay on 16 March 2012. Echolocation calls we recorded from this bat had similar start (115 kHz) and end (50) frequencies as recorded from *M. muricola* in Thailand (Hughes et al. 2011); peak frequencies (FMAXE, 65 kHz) and durations(3.1 ms) were higher and longer, but within one standard deviation of *M. muricola* calls recorded in Thailand. Call characteristics were similar to those reported for this species in Bac Kan Province, Vietnam (Furey et al. 2009b).

Scotomanes ornatus (Harlequin Bat). We captured two of these bats on 16-17 March 2012 (QN054, QN064). Both were non-reproductive adult males and were captured in mist nets set across the River Lay. Echolocation sounds were recorded from one hand-held bat, with an FMAXE of about 64 kHz, start frequency of about 105 kHz, end frequency of about 20 kHz, and a duration of 3.3 ms (Table 5). The start and end frequencies are higher than that reported by Furey et al. (2009) for free-flying bats of this species, most likely because the free-flying individuals emphasized the first harmonic whereas our peak measurements of hand-held bats were all in the second harmonic. Measurements of calls recorded by Liu et al. (2011) had lower start frequencies than we reported, but similar FMAXE and end frequencies (Table 5).

Reproduction

In much of Vietnam there is a predictable rainy season following a winter dry season, with the monthly pattern of precipitation varying by region (Sterling et al. 2006). In many tropical and subtropical regions of the world reproduction of insectivorous bats is timed to coincide with predictable rainy seasons, such that young are born and become independent when community productivity and insect abundance is high (e.g. Racey and Entwistle 2000, Fleming et al. 1972, Bernard and Cumming 1997). Furey et al. (2011) found strong evidence for this pattern in the insectivorous bat fauna in Bac Can province in northern Vietnam and suggested that the pattern may hold for a wider region in southeast Asia. Rainfall in the Quang Ngai study region is lowest in January through March, then increases and remains relatively high from May through November (Figure 3). Our findings on reproduction are consistent with Furey et al.'s (2011)suggestion of rainy season reproduction in the insectivorous bats (Table 6). In March 2012 (prior to the rainy season), most female bats that were taken were pregnant, none were lactating or post-lactating, and no volant juveniles of either sex were captured (Table 6). This differed from late May and June, when most adult females were lactating, a few were pregnant, and volant juveniles of 10 species were captured (Table 6). A single embryo was found in each pregnant female saved as a voucher specimens; the following species and number of individual females (in parentheses) were examined for embryos: Hipposideros larvatus (1), Kerivoula hardwickii (1), Myotis muricola (1), Rhinolophus affinis (4), Rhinolophus pusillus(4). Given the longer period of seasonal rainfall at our study area compared to the Kim Hy Nature Reserve, it is possible that the reproductive season for some species of bats also may be more prolonged than in areas with shorter rainy seasons.

Further Comparisons with Reports of Echolocation from the Scientific Literature on Southeast Asian Bats

Echolocation calls of the two species of *Murina* we recorded in 2012 (Table 5) are concordant with findings reported for other species in this genus. Kingston et al (1999) and Thong et al. (2011) report that calls of species of *Murina* tend to be similar to one another, of short duration and faint intensity, sweeping a broad bandwidth with high frequency starting points, typically about 150 kHz. These characteristics match those we recorded for *M. beelzebub* and *M. fionae*. Calls for the *Murina* we sampled in 2011 also match these characteristics, but our start frequency estimates were generally

limited by the equipment used at that time. For these species the maximum values in the range of the start frequencies are probably most reliable. Midpoint values are also likely biased low. However, our measurements of calls of *M. cyclotis* in 2011 are very similar to those reported for this species by Hughes et al. (2011) in Thailand (Table 5).

Our measurements of echolocation calls of the other species of vespertilionid bats are consistent with the literature. Echolocation sounds from *Scotomanes ornatus* were recorded from a hand-held bat in our study, and the start and end frequencies are higher than that reported by Furey et al. (2009a) for free-flying bats of this species. This is most likely because the free-flying individuals emphasized the first harmonic, whereas our peak energy measurements of the hand-held bat were all in the second harmonic. Measurements of calls of *S. ornatus* recorded by Liu et al. (2011) had lower start frequencies than we reported, but similar FMAXE and end frequencies (Table 5).

Greater discrepancies in echolocation call measurements are seen when comparing rhinolophid and hipposiderid bats recorded at Quang Ngai with calls of the same species recorded elsewhere in Asia (Table 4). It is suspected by some experts that other currently recognized species of these bats in Asia, such as Hipposideros larvatus and some species of Rhinolophus, may consist of complexes of several species of similar morphology (Francis 2008). Additional research will be required to determine the causes of geographic variation in echolocation calls of rhinolophid and hipposiderid bats in relation to their systematic status. Such variation is apparent in comparing FMAXE measurements among locations (Table 4) for Rhinolophus affinis. In R. affinis the coefficient of variation was < 1 % for FMAXE of 216 calls from 18 bats recorded at our study area in Quang Ngai, whereas calls recorded from this species at locations in Vietnam, China, Laos, Myanmar, and Malaysia were outside of the range of minimummaximum values from Quang Ngai (Table 4). Similar discrepancies with bats from Quang Ngai exist among locations for R. pusillus from some parts of China, Thailand, Laos, and Vietnam (Table 4). Dr. Vu Dinh Thong of IEBR (personal communication, 28 March 2012), has recorded R. pusillus elsewhere in Vietnam that produce echolocation calls with FMAXE at about 108 (range 103-113), outside the range measured in Quang Ngai. Considering this variability in echolocation calls, our findings support Zhang et al.'s (2009) suggested likelihood of cryptic species of R. pusillus in Asia based on differences in echolocation calls. Values of FMAXE for R. pearsoni also showed some discrepancies as well as similarities among locations.

Among hipposiderids, we found overlap with our range of estimates of FMAXE for *H. pomona* in Quang Ngai and published reports from elsewhere, including China, Laos, Myanmar and Thailand (Table 4). In contrast, great variation is seen in FMAXE of bats referred to as *Hipposideros larvatus* across Asia, with results reported from Myanmar more consistent with those of bats we recorded in Quang Ngai than from many other locations (Table 4). Thabah et al. (2006) suggested that bats from Myanmar with echolocation frequencies similar to the bats we sampled at Quang Ngai may be a species other than *H. larvatus*. *H. larvatus* seems to present another case where additional research on variability in echolocation and systematics is needed. There is a possibility that some of the discrepancies that we highlight among various published studies could be an artifact of improper identification of bats, circumstances of recording (*e.g.* free-flying vs. in-hand), or variability in equipment. Nonetheless the number of differences suggests a real biological basis for this variation and the need for further study.

Bat Community Comparisons with the other Bat Faunal Surveys in Vietnam

Prior bat surveys were undertaken nearby in adjacentGia Lai province at Kon Cha Rang Nature Reserve (14.567°N, 108.567°E) and Kon Ka Kinh Nature Reserve (14.333°N, 108.367°E). These surveys were conducted for two-three weeks in each reserve during March and April 1999, as part of biodiversity surveys sponsored by BirdLife International (Hendrichsen et al. 2001). Centers of the reserves are about 42 km (Kon Ka Kinh) and 10 km (Kon Cha Rang) from our study area. These surveys revealed the presence of 15 species of insectivorous bats at Kon Cha Rang and 13 species of insectivorous bats at Kon Ka Kinh. (Two species of pteropids also were found at Kon Cha Rang and two at Kon Ka Kinh). Measures of effort and relative abundance are not available in the published summary (Hendrichsen et al. 2001). For the insectivorous bat fauna, Jaccard's indices of similarity between Quang Ngai and these two reserves are fairly low (J = 0.30 with Kon Ka Kinh and J = 0.28 with Kon Cha Rang). In addition to a greater number of species of insectivorous bats at Quang Ngai, only seven species were found in common with either survey in Gia Lai. Six species were unique to the survey at Quang Ngai: G. bucephalus, Rhinolophus pusillus, and four recently described species of Murina (M. annamitica, M. beelzebub, M. eleryi, M. fionae). Only M. eleryi was taken exclusively in a harp trap at Quang Ngai, suggesting that differences in sampling techniques alone does not explain the higher species richness at Quang Ngai.

The excellent study by Furey et al. (2010) at Kim Hy Nature Reserve in Bac Kan Province, northern Vietnam, was much more thorough than our preliminary sampling effort at Quang Ngai, and emphasized comparisons among the bat faunas of three habitat types: undisturbed forest (elevations 660-750 m), secondary forest (elevations 720-790 m), and agriculture/degraded forest (elevations 440-582 m). Effort within each of these habitats was roughly comparable to effort at our study area in Quang Ngai (Table 7), but sampling occurred throughout the year at Kim Hy. The study at Kim Hy also took place in an area of karst substrate, providing roosting opportunities for many species of bats. Our study area had no obvious karst features. Our list of tentative species of insectivorous bats totaled 17. Overall, Kim Hy had 32 species of insectivorous bats (including *Megaderma lyra*), with 27 species in primary forest, 21 species in secondary forest, and 23 in agricultural/degraded areas. Exclusive of bats in the genus *Murina*, there were 6 species at Quang Ngai that were also present at Kim Hy (out of 28 non-*Murina* present; Furey et al. 2010). Only *Glischropus bucephalus* was present at Quang Ngai but not at Kim Hy.

The bat fauna at Quang Ngai had fewer species of insectivorous bats than any of the three habitats at Kim Hy (Table 7). Abundance of bats per unit of mist-netting effort was roughly twice as high at Kim Hy, and results per unit trapping were roughly similar. Species detected per unit of mist-netting was roughly similar, but species detected per unit trapping was higher at Quang Ngai overall (Table 7). Interestingly, within the Quang Ngai study area the number of species detected and individuals detected per unit effort was higher at the 2011 sites than at the sites sampled in 2012 (Table 7). They were also comparable to or higher than the Kim Hy sites overall, and than at two of the three forest types at Kim Hy (Table 7). The sites sampled in 2011 were mostly at lower elevation than those sampled in 2012. The adjusted Jaccard abundance-based estimate of community similarity between the 2011 and 2012 study areas in Quang Ngai was 0.67 ± 0.13 SE (basic Jaccard incidence index = 0.41). This was the same as the level of similarity between the full survey results in Quang Ngai, compared to full survey results for insectivorous bats at Kim Hy, where the adjusted abundance-based Jaccard index was 0.69 ± 0.10 SE

(basic Jaccard Index = 0.46). The greatest similarity between Quang Ngai and forest types at Kim Hy was with agricultural/degraded forest (adjusted abundance based Jaccard index of 0.75 ± 0.16 SE, basic Jaccard incidence index 0.34). The most dissimilar comparison was the Quang Ngai insectivorous bat fauna with that of the primary forest at Kim Hy (adjusted abundance based Jaccard index of 0.49 ± 0.12 SE, basic Jaccard incidence index 0.29).

Inventory completeness at Quang Ngai was estimated to be 83-89 %, with a predicted 19-20 species likely to be detected with a doubling in numbers of bats captured (Table 8). As with species richness, Simpson's Inverse Index of Diversity was higher at the karst study areas at Kim Hy than at Quang Ngai, and evenness was lower (Table 8). Lower evenness and diversity was especially pronounced at the higher elevation sites sampled in 2012; diversity comparisons are more similar among the lower elevation sites sampled in 2011 and the sites at Kim Hy. Two ecological factors may contribute to the differences in diversity between the lower and higher elevation sampling areas in Quang Ngai province. The diversity of bats along elevational gradients in tropical and subtropical latitudes has been shown to decline with increasing elevation in some regions of the world (*e.g.* Graham 1983, Patterson et al. 1998). Additionally, some of the differences could be due to differences in seasonal timing of the surveys at the two areas in Quang Ngai province. Furey et al's (2010) study sampled the bat fauna at Kim Hy year round and found that some species of bats may be unique to each season. Only about half of the species they documented were found in both dry and wet seasons (40-52%, depending on habitat type), and fewer species were recorded in each habitat type during the wet season than during the dry season (Furey et al. 2010).

The community similarity and diversity comparisons suggest that the bat fauna of the Truong Son Mountains in southwestern Quang Ngai Province is diverse for a region that does not have a large karst geological substrate (karst provides many potential roosting sites). Greater species richness may occur here than in two designated Nature Reserves in nearby Gia Lai Province, and bat community metrics of the lower elevation zones at Quang Ngai compared with those of the karst-dominated Kim Hy reserve suggest a good diversity of insectivorous bats. Our findings also suggest a declining diversity of bats in secondary forest at Quang Ngai with increasing elevation. Our surveys also revealed a surprising diversity of tube-nosed bats within a very limited region. Tube-nosed bats also seemed to be more diverse at the lower elevation survey region.

CONSERVATION IMPLICATIONS

This study revealed significant biodiversity in the bats of the southeastern Truong Son Mountains in Quang Ngai Province, Vietnam. Additional surveys at lower elevations or at different times of the year might find still other species. Also, closer study may show that some currently identified species inhabiting Quang Ngai may actually represent two separate species. Conservation and protection planning for the forests within this area will be critical for maintaining the diversity of bats and other wildlife of the region in the future. The number bat species inhabiting the Truong Son Mountains likely will remain relatively high if forests are protected or are logged selectively in a manner that can be sustained. The bat fauna will likely become more depauperate if forests are intensively logged or cleared for agriculture.

ACKNOWLEDGMENTS

We thank Nguyen Vu Khoi and staff of Wildlife At Risk for sponsoring and guiding the survey at Quang Ngai, and for companionship in the field. V. D. Thong of IEBR in Hanoi advised on the identification of *R.pusillus*. We also thank the many other biologists who participated in the overall biodiversity survey, including Ab Abercrombie, Randy Babb, Huu Manh Bui, Chien, Le Van Cuong, Chris Hope, Thien Huynh, Paul Moler, Nguyễn Quang Thai, Tho, Tuan, Wayne Van Devender, and many additional people from the Forest Protection Department and Wildlife At Risk, and other organizations.. We especially thank Tran Anh Vu for his expertise in setting up nets and traps and capturing bats; we would have captured fewer bats without his help. Precipitation data were obtained from the NASA Langley Research Center POWER Project funded through the NASA Earth Science Directorate Applied Science Program.

REFERENCES

Bernard, R.T.F., and G.S. Cumming. 1997. African bats: evolution of reproductive patterns and delays. Quarterly Review of Biology 72:253–274.

Borissenko, A.V., and S. V. Kruskop. 2003. Bats of Vietnam and adjacent territories, an identification manual. Russian Vietnamese Science and Technological Tropical Centre, Hanoi, Vietnam and the Zoological Museum of Moscow, M.V. Lomonosov State University. 211 pp.

Brunet-Rossinni, A. K., and G. S. Wilkinson. 2009. Methods for age estimation and the study of senescence in bats. Pages 315–325 *in* T.H. Kunz and S. Parsons, editors, Ecological and behavioral methods for thestudy of bats. 2nd edition. Johns Hopkins University Press, Baltimore, MD

Chao, A., and T.-J. Shen. 2010. User's Guide for Program SPADE (Species Prediction And Diversity Estimation). Available at <u>http://chao.stat.nthu.edu.tw/softwarece.html</u>.

Chao, A., R. L. Chazdon, R. K. Colwell, and T.-J. Shen. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62: 361–371. Csorba, G.2011. A new species of *Glischropus* from the Indochinese Subregion (Mammalia: Chiroptera: Vespertilionidae). Zootaxa2925: 41-48.

Csorba, G., and P. J. J. Bates. 2005. Description of a new species of *Murina* from Cambodia (Chiroptera: Vespertilionidae: Murininae). Acta Chiropterologica 7:1–7.

Csorba, G., V. D. Thong, P. J. J. Bates, and N. M. Furey. 2007. Description of a new species of *Murina*from Vietnam (Chiroptera: Vespertilionidae: Murininae). Occasional Papers, Museum of Texas Tech University 268: 1–12.

Csorba, G., N. T. Son, I. Saveng, and N. M. Furey. 2011. Revealing cryptic bat diversity: three new *Murina* and redescription of *M. tubinaris* from Southeast Asia. Journal of Mammalogy 92: 891-904.

Douangboubpha, B., Bumrungsri, S., Soisook, P., Satasook, C., Thomas, N. M., and Bates, P. J. J. 2010. A taxonomic review of the Hipposideros bicolor species complex and H. pomona (Chiroptera: Hipposideridae) in Thailand. Acta Chiropterologica 12: 415-438.

Eger, J. L., and Lim, B. K. 2011. Three new species of *Murina* from southern China (Chiroptera: Vespertilionidae). Acta Chiropterologica 13: 227-243.

Fenton, M. B., Bouchard, S., Vonhof, M. J., and Zigouris, J. 2001. Time-expansion and zero-crossing period meter systems present significantly different views of echolocation calls of bats. Journal of Mammalogy 82:721-727.

Fleming, T.H., E.T. Hooper, and D.E. Wilson. 1972. Three Central American bat communities: structure, reproductive cycles, and movement patterns. Ecology 53:555–569.

Francis, C. M. (2008). A guide to the mammals of southeast Asia. Princeton University Press, Princeton and Oxford. 392 pp.

Francis, C. M., and Eger, J. L. 2012. A review of tube-Nosed bats (*Murina*) from Laos with a description of two new species. Acta Chiropterologica 14: 15-38.

Francis, C. M., and J. Habersetzer. 1998. Interspecificand intraspecific variation in theecholocation call frequency and morphologyof horseshoe bats, *Rhinolophus* and *Hipposideros*.Pp. 169–179, *in* Bat biology and conservation(T. H. Kunz and P. A. Racey, eds.).Smithsonian Institution Press, Washington D.C., 365 pp.

Furey, N. M., V. D. Thong, P. J. J. Bates, and G. Csorba. 2009a. Description of a new species belonging to the *Murina*"suilla-group" (Chiroptera: Vespertilionidae: Murininae) from northern Vietnam. Acta Chiropterologica 11:225–236.

Furey, N. M., I. J. Mackie, and P.A. Racey. 2009b. The role of bat detectors in improving inventory and monitoring surveys in Vietnamese karst bat assemblages. Current Zoology 55: 327-341.

Furey, N. M., I. J. Mackie, and P.A. Racey. 2010. Bat diversity in Vietnamese limestone karst areas and the implications of forest degradation. Biodiversity and Conservation 19: 1821–1838.

Furey, N. M., I. J. Mackie, and P.A. Racey. 2011. Reproductive phenology of bat assemblages in Vietnamese karst and its conservation implications. Acta Chiropterologica 13: 341-354.

Graham, G. L. 1983. Changes in bat species diversity along an elevational gradient up the Peruvian Andes. Journal of Mammalogy 64:559-571.

Hendrichsen D. K., P. J. J. Bates, B. D. Hayes, and J. L. Walston, (2001) Recent records of bats (Mammalia: Chiroptera) from Vietnam with seven species new to the country. Myotis 39:35–122.

Hughes, A. C., C. Satasook, P. J. J. Bates, P. Soisook, T. Sritongchuay, G. Jones, and S. Bumrungsri. 2011. Using echolocation calls to identify Thai bat species: Vespertilionidae, Emballonuridae, Nycteridae and Megadermatidae. Acta Chiropterologica 13:447-455.

Hughes, A. C., C. Satasook, P. J. J. Bates, P. Soisook, T. Sritongchuay, G. Jones, and S. Bumrungsri. 2010. Echolocation call analysis and presence-only modelling as conservation monitoring tools for rhinolophoid bats in Thailand. Acta Chiropterologica 12: 311-327.

Kingsada, P., B. Douangboubpha, I. Saveng, N. Furey, P. Sisook, S. Bumrungsri, C. Satasook, V. D. Thong, G. Csorba, D. Harrison, M. Pearch, P. Bates, and N. Thomas. 2011. A checklist of bats from Cambodia, including the first record of the intermediate horseshoe bat *Rhinolophus affinis* (Chiroptera: Rhinolophidae), with additional information from Thailand and Vietnam. Cambodian Journal of Natural History 2011: 49-59.

Kingston, T. 2009. Analysis of species diversity of bat assemblages. Pages 195–215 *in* T.H. Kunz and S. Parsons, editors, Ecological and behavioral methods for the study of bats. 2nd edition. Johns Hopkins University Press, Baltimore, MD.

Kingston, T., G. Jones, Z. Akbar, and T. H. Kunz . 1999. Echolocation signal design in Kerivoulinae and Murininae (Chiroptera: Vespertilionidae) from Malaysia. J. Zool. (London)249: 359-374

Kingston, T., G. Jones, A. Zubaid, and T. H. Kunz . 2000. Resource partitioning in rhinolophoid bats revisited. Oecologia 124: 332-342.

Kruskop, S. V., and J. L. Eger. 2008. A new species of tube-nosed bat *Murina*(Vespertilionidae, Chiroptera) from Vietnam. Acta Chiropterologica 10:213–220.

Kruskop, S. V. and Tsytsulina, K. A. 2001. A new big-footed mouse-eared bat *Myotis annamiticus* sp. nov. (Vespertilionidae, Chiroptera) from Vietnam. *Mammalia* 65: 63-72.

Leippert, D., E. Frank, P. Gabriel, S.Kutter, K. D. Scheidemann, N. von Stillfried, and F. Weller. 2002. Prey-correlated spectral changes in echolocation sounds of the Indian false vampire *Megaderma lyra*. Ethology 108:139-156.

Liu, H., Shi,H.-y.,Fan, Q.-P.,Chen,W.-y.,and Li, B.-b. 2011. Echolocation Calls of *Scotomanes ornatus*. Journal of Mianyang Normal University 2; 69-71, 76.(in Chinese with English abstract).

Magurran, A.E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, NJ.

NASA. 2012. NASA Climatology Resources. <u>http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/agro.cgi?email=agroclim@larc.nasa.gov</u>)

Patterson, B. D., Stotz, D. F., Solari, S., Fitzpatrick, J. W., and Pacheco, V. 1998. Contrasting patterns of elevational zonation for birds and mammals in the Andes of southeastern Peru. Journal of Biogeography 25: 593-607.

Racey, P. A. 2009. Reproductive assessment of bats. Pages 249–264*in* T.H. Kunz and S. Parsons, editors, Ecological and behavioral methods for thestudy of bats. 2nd edition. Johns Hopkins University Press, Baltimore, Maryland, USA.

Racey, P. A., and A. C. Entwistle. 2000. Life-history and reproductivestrategies of bats. Pp. 363–414, *in* Reproductive biology of bats (E. G. Crichton and P. H. Krutzsch, eds.). Academic Press, San Diego, California, USA. 510 pp.

Robinson, M.F. 1996. A relationship between echolocation calls and noseleaf widths in bats of the genera *Rhinolophus* and *Hipposideros*. Journal of Zoology (London)239: 389–393.

Shen, T.-J., Chao, A. and Lin, J.-F. (2003). Predicting the number of new species in further taxonomic sampling. Ecology 84: 798-804.

Skowronski, M. D., and M. B. Fenton. 2008. Model-based automated detection of echolocation calls using the link detector. Journal of the Acoustical Society of America 124: 328–336.

Solow, A. R. and Polasky, S. 1999. A quick estimator for taxonomic surveys. Ecology 80: 2799-2803.

Sterling, E. J., M. M. Hurley, and L. D. Minh. 2006. Vietnam: A Natural History. Yale University Press, New Haven, Connecticut, USA.

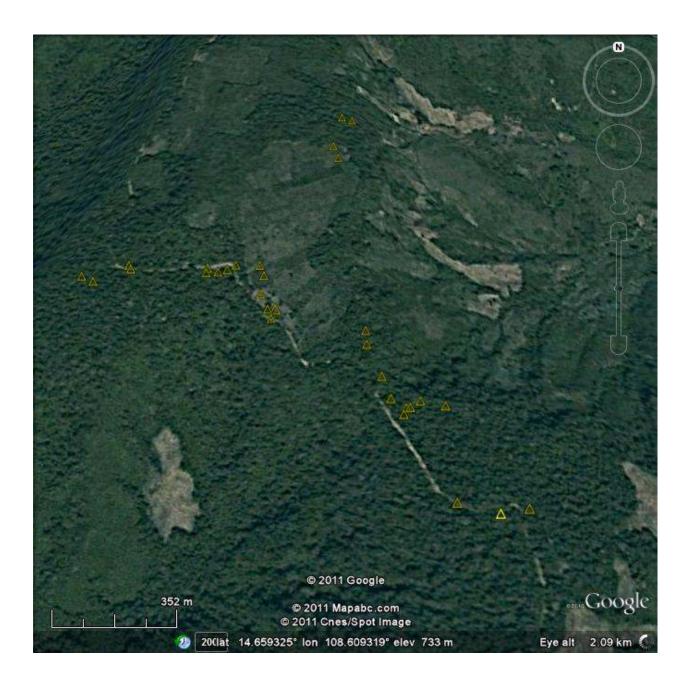
Struebig, M. J., S. J. Rossiter, P. J. J. Bates, T. Kingston, S. S. L. Oo, A. A. New, M. M. Aung, S. S. Win, and K. M. Mya. 2005. Results of a recent bat survey in Upper Myanmar including new records from the Kachin forests. Acta Chiropterologica 7: 147-163.

Thabah, A., S. J. Rossiter, T. Kingston, S. Zhang, S. Parsons, K. M. Mya, A. Zubaid, and G. Jones. 2006. Genetic divergence and echolocation call frequency in cryptic species of *Hipposideros larvatus s.l.* (Chiroptera: Hipposideridae) from the Indo-Malayan region. Biological Journal of the Linnean Society 88: 119–130.

Thong, V.D. 2011.Systematics and echolocation of rhinolophoid bats(Mammalia: Chiroptera) in Vietnam. PhD thesis. University ofTübingen, Tübingen, Germany.

Thong, V.D., Dietz, C., Denzinger, A., Bates, P.J.J., Furey, N.M., Csorba, G., Hoye, G., Thuy, L.D., Schnitzler, H.-U. 2011. Further records of *Murina tiensa* from Vietnam with first information on its echolocation calls. Hystrix Italian Journal of Mammalogy 22:129-138.

Wei, L., Y. Gan, Z. Li, Z. Lin, T. Hong, and L. Zhang. 2011. Comparisons of echolocation calls and wing morphology among six sympatric bat species. Acta Theriologica Sinica 31:155-163.


Wildlife Acoustics. 2012. http://www.wildlifeacoustics.com/products/ultrasonic-monitoring/em3.

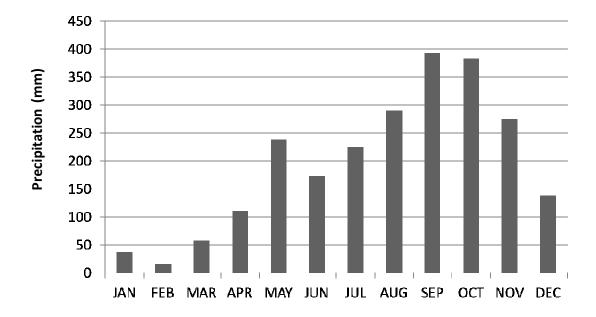

Zhang, L., G. Jones, J. Zhang, G. Zhu, S. Parsons, S. J. Rossiter, and S. Zhang. 2009. Recent surveys of bats (Mammalia: Chiroptera) from China. I. Rhinolophidae and Hipposideridae. Acta Chiropterologica, 11:71-88.

Figure 1. Study area locations in relation to neighboring provinces.

Figure 2. Preliminary map of bat sampling locations (triangles) in Quang Ngai Province, Vietnam, May-June 2011. Higher elevation sites sampled on 31 May and 1 June are not shown. No map is available for March 2012 locations.

Average Monthly Rainfall

Figure 3. Average monthly rainfall in the region of the study area in the southeastern Truong Son Mountains, Ba To District, Quang Ngai Province, Vietnam, 1997-2009. (Data courtesy of NASA Langley Research Center POWER Project, NASA 2012.)

Table 1. Sampling effort and bats captured by mist nets and harp traps at the Quang Ngai study area in southwestern Quang Ngai Province, Vietnam, May-June 2011. Netting effort on two rainy nights at elevations above 900 m is not included. $m^2nh =$ square-meter net-hour; $m^2hth =$ square-meter trap-hour

	Mist Nets	Harp Traps	Total
Effort	2,845 m ² nh	174 m ² th	
Nights Sampled	10	10	11
Hours Sampled	114	102	
Individuals Captured by Species			
Glischropus bucephalus	1	0	1
Hipposideros larvatus	1	4	5
Hipposideros pomona	2	0	2
Kerivoula hardwickii	0	1	1
Murina annamitica	4	1	5
Murina beezelbub	0	1	1
Murina cyclotis	3	3	6
Murina eleryi	0	1	1
Murina fionae	1	1	2
Murina huttoni	5	1	6
Myotis ater	6	0	6
Rhinolophus affinis	0	4	4
Rhinolophus pusillus	5	5	10
Total Bats Captured	28	22	50
N Species	9	10	13
N Unique Species	3	4	
Bats per night	2.8	2.2	4.5
Bats per hour	0.25	0.22	
Bats per m ² nh or m ² th	0.010	0.126	

Table 2. Sampling effort and bats captured by mist nets and harp traps at the Quang Ngai study area in southwestern Quang Ngai Province, Vietnam, March 2012. Species identifications are tentative (see Methods and species accounts). Abbreviations: $m^2nh = square-meter net-hour; m^2hth = square-meter trap-hour$

	Mist Nets	Harp Traps	Total
Effort	9,487.5m ² nh	770.5 m ² th	
Nights Sampled	9	8	9
Hours Sampled	378.5	322	
Individuals Captured by Species			
Hipposideros larvatus	1	0	1
Hipposideros pomona	2	1	3
Kerivoula hardwickii	0	1	1
Megaderma lyra	2	0	2
Murina fionae	1	1	2
Murina beezelbub	1	0	1
Myotis muricola	1	0	1
Rhinolophus affinis	37	10	47
Rhinolophus pearsoni	1	0	1
Rhinolophus pusillus	3	5	8
Scotomanes ornatus	2	0	2
Total Bats Captured	51	18	69
N Species	10	5	11
N Unique Species	6	1	
Bats per night	5.7	2.25	7.7
Bats per hour	0.135	0.056	
Bats per m ² nh or m ² th	0.005	0.023	

Table 3. Sampling effort and bats captured by mist nets and harp traps at the Quang Ngai study area in southwestern Quang Ngai Province, Vietnam, May-June 2011 and March 2012 combined. N unique species is the number captured only in harp traps or only in mist nets. Abbreviations: $m^2nh = square-meter$ net-hour; $m^2hth = square-meter$ trap-hour

	Mist Nets	Harp Traps	Total
Effort	12,332.5 m ² nh	944.5 m ² hth	
Nights Sampled	19	18	20
Hours Sampled	492.5	424	
Individuals Captured by Putative Species			
Glischropus bucephalus	1	0	1
Hipposideros larvatus	2	4	6
Hipposideros pomona	4	1	5
Kerivoula hardwickii	0	2	2
Megaderma lyra	2	0	2
Murina annamitica	4	1	5
Murina beelzebub	1	1	2
Murina eleryi	0	1	1
Murina cyclotis	3	3	6
Murina huttoni	5	1	6
Murina fionae	2	2	4
Myotis ater	6	0	6
Myotis muricola	1	0	1
Rhinolophus affinis	37	14	51
Rhinolophus pearsoni	1	0	1
Rhinolophus pusillus	8	10	18
Scotomanes ornatus	2	0	2
Total Bats Captured	79	40	119
N Species	15	11	17
N Unique Species	5	2	17
Bats per night	4.2	2.2	6.0
Bats per hour	0.039	0.094	
Bats per m ² nh or m ² th	0.006	0.042	

Table 4. Characteristics of echolocation calls of bats with predominantly constant frequency (CF-FM and FM-CF-FM) calls sampled at the Quang Ngai study area, in southwestern Quang Ngai Province, Vietnam. Values are means +/- 1 SD and ranges in parentheses. NR = not reported. (~) = value estimated from single published sonagram. Catalog numbers are those of bats recorded and prepared as voucher specimens or tissue samples. Boldface indicates echolocation information obtained in this study.

Tentative species identification	Specimen Field Catalog Numbers/Referenc e	N bats	N calls	CF component FMAXE (kHz)	FM rise (kHz)	FM tail (kHz)	Duration (ms)
<i>Rhinolophus affinis</i> : Quang Ngai, Vietnam	TJO419v, 420v, QN001, 002, 004, 007, 010, 012, 013, 020, 024, 025, 041, 049, 051, 052, 053.	18	216	80.6 ± 0.77 (79.3-82.5)	11.0 ± 6.1 (0-58.9)	19.2 ± 4.9 (2.2-59.9)	30.6 ± 7.0 (13.9-52)
<i>Rhinolophus affinis:</i> Kon Tum Province, Vietnam	Thong 2011 cited in Kingsada et al. 2011	1	NR	84.5	NR	NR	NR
<i>Rhinolophus affinis</i> : Bac Kan Province, Vietnam	Furey et al. 2009b	18 (1 call each bat)	18	71.1 ± 0.9	ca. 14.2	ca. 14.5	43.2 ± 10.4 (17.6-55.4)
Rhinolophus affinis: Hainan, Guangdong, Guangxi (China)	Zhang et al. 2009	NR	NR	(70-74.3)	NR	NR	NR
Rhinolophus affinis: Peninsular Malaysia	Kingston et al. 2000	4	24	77.6	NR	~10	~25
Rhinolophus affinis: Cambodia	Kingsada et al. 2011	8	≥ 40	(76.1-79.9)			
Rhinolophus affinis: Thailand	Robinson 1996	6		(75-80)	NR	NR	NR
<i>Rhinolophus affinis</i> : Laos	Francis 2008	NR	NR	(73-78)			
<i>Rhinolophus affinis</i> : Yunnan, China	Zhang et al. 2009	NR	NR	(82.6-83.7)	NR	NR	NR
Rhinolophus affinis: Laos	Francis and Habersetzer 1998	NR	NR	73	NR	NR	NR

Rhinolophus affinis: Myanmar	Francis and Habersetzer 1998	NR	NR	78.4	NR	NR	NR
<i>Rhinolophus affinis</i> : Jiangxi, China	Zhang et al. 2009	NR	NR	(88.1-88.5)	NR	NR	NR
<i>Rhinolophus affinis</i> : Fujian, China	Zhang et al. 2009	10	NR	(71.9-86.1)	NR	NR	NR
<i>Rhinolophus pearsoni:</i> Quang Ngai, Vietnam, 2012	QN006	1	12	64.0 ± 0.3 (63.7-64.4)	11.1 ± 1.9 (8.4-13.6)	13.2 ± 4.2 (6.9-18.4)	38.3 ± 2.9 (33.9-43.1)
Rhinolophus pearsoni: Thailand	Robinson 1996	9	NR	65	NR	NR	NR
Rhinolophus pearsoni: Thailand	Hughes et al. 2010	12 (1 call each bat)	12	60.0	NR	NR	ca. 40
<i>Rhinolophus pearsoni</i> : Bac Kan Province, Vietnam	Furey et al. 2009b	18 (1 call each bat)	18	53.0 ± 1.5 (51.1-55.4)	ca. 10.1	ca. 12.1	41.5 ± 9.7 (26.7-59.7)
<i>Rhinolophus pearsoni</i> : multiple locations, China	Zhang et al. 2009		89	57.6-70	NR	NR	NR
<i>Rhinolophus pusillus</i> : Quang Ngai, Vietnam, 2012	QN07, QN41, QN42, QN43, QN44, QN45, QN47, QN50	8	96	99.7 ± 0.7 (97.9-101)	14.9 ± 4.8 (2-22.5)	17.5 ± 4.8 (5-26.7)	35.8 ± 9.8 (13.5-52.3)
<i>Rhinolophus pusillus</i> : Bac Kan Province, Vietnam	Furey et al. 2009b	10 (1 call each bat)	10	105.0 ± 1.2 (102.3-106.1)	ca. 14.8	ca. 18.2	31.6 ± 8.9 (20.5-47.6)
Rhinolophus pusillus: China	Zhang et al. 2009	NR	NR	(100.3-111.2)	~15	~15	NR
<i>Rhinolophus pusillus:</i> Guangxi, China	Zhang et al. 2009	NR	NR	111.2	NR	NR	NR
Rhinolophus pusillus: Thailand	Hughes et al. 2010	174 (1 call each bat)	174	112.5 (ca. 107-127)	NR	NR	NR
Rhinolophus pusillus: Thailand	Robinson 1996	9	NR	(90-95)	NR	NR	NR

Rhinolophus pusillus: Laos	Francis and Habersetzer 1998	NR	NR	100	NR	NR	NR
Rhinolophus pusillus: Laos	Francis 2008	NR	NR	(108-110)	NR	NR	NR
<i>Hipposideros larvatus</i> : Quang Ngai, Vietnam	See above	2	24	93.2 ± 0.3 (92.6-93.8)	0.0	14.8 ± 4.0 (9.4-21.7)	5.8 ± 1.8 (3.5-13.0)
<i>Hipposideros larvatus</i> : Bac Kan Province, Vietnam	Furey et al. 2009b	32 (1 call each bat)	32	86.5 ± 1.8 (83.8-89.3)	ca. 0.2	ca. 11.3	7.8 ± 1.4 (5.2-11.2)
Hipposideros larvatus: Hainan, Guangdong, Guangxi (China)	Zhang et al. 2009			(83.2-88)	0.0	~12	~11
<i>Hipposideros larvatus</i> : Thailand	Robinson 1996	5	NR	85	NR	NR	NR
<i>Hipposideros larvatus</i> : Thailand	Hughes et al. 2010	NR (many)	NR (many)	94.7 (ca. 87-100)	0.0	~12	~10
<i>Hipposideros larvatus</i> : Yunnan, China	Zhang et al. 2009			(79.2-84)	0.0	~12	~11
Hipposideros larvatus: Peninsular Malaysia	Kingston et al. 2000	5	30	100.0	NR	~14	~10
<i>Hipposideros larvatus</i> : Myanmar ¹	Thabah et al. 2006	30 ♂♂ 21 ♀♀	30 21	92.6 ± 1.5 (♂♂) 93.0 ± 1.0 (♀♀)	NR	NR	NR
<i>Hipposideros larvatus</i> : Myanmar ¹	Struebig et al. 2005	51 bats (1 call each bat)	51	92.7 ± 1.4 (89.2-95.2)	NR	NR	NR
<i>Hipposideros larvatus</i> : Malaysia ¹	Thabah et al. 2006	12 ♂♂ 7 ♀♀	12 7	100.6 ± 0.8 (්්්) 100.6 ± 0.6 (♀♀)	NR	NR	NR
<i>Hipposideros larvatus</i> : Myanmar ¹	Francis and Habersetzer 1998	NR	NR	97.7	NR	NR	NR
Hipposideros larvatus: India (Phonic group 1) ¹	Thabah et al. 2006	12 ♂♂ 10 ♀♀	12 10	83.7 ± 1.8 (♂♂) 85.1 ± 0.7 (♀♀)	NR	NR	NR
Hipposideros larvatus: India (Phonic group 2) ¹	Thabah et al. 2006	22 ♂♂ 15 ♀♀	22 15	96.7 ± 2 (♂♂) 98.0 ± 2 (♀♀)	NR	NR	NR

Hipposideros larvatus:	Wei et al. (2011)	NR	NR	85.2 ± 0.5	NR	NR	7.8 ± 0.9
Guangxi, China							
Hipposideros larvatus:	Francis (2008)	NR	NR	(97-100)	NR	NR	NR
Peninsular Malaysia							
Hipposideros larvatus large	Francis (2008)	NR	NR	(93-97)	NR	NR	NR
form: Laos							
Hipposideros larvatusmedium	Francis (2008)	NR	NR	(86-89)	NR	NR	NR
form:Laos							
Hipposideros larvatussmall form:Laos	Francis (2008)	NR	NR	(99-102)	NR	NR	NR
Hipposideros pomona: Quang		2	24	128.6 ± 4.2	0.0	10.7 ± 4.1	5.3 ± 1.0
Ngai, 2012				(124.3-134.1)		(5.3-18.4)	(3.1-6.7)
Hipposideros pomona: Bac	Furey et al. 2009b	7 bats (1	7	125.1 ± 2.3	ca. 0.1 kHz	ca. 21 kHz	7.0 ± 2.3
Man Province, Vietnam		call each		(122-127.7)			(3.7-9.3)
		bat)					
Hipposideros pomona:	Zhang et al. 2009	NR	NR	120.8 –125.6	NR	NR	NR
Yunnan, China							
Hipposideros pomona:	Zhang et al. 2009	NR	NR	125–129	NR	NR	NR
Guangdong, China							
Hipposideros pomona: Hainan,	Zhang et al. 2009	NR	NR	121	NR	NR	NR
China							
Hipposideros pomona: Hong	Shek and Lau (2006)	NR	NR	129.6	NR	NR	NR
Kong, China				(125.7–132.5)			
Hipposideros pomona: Laos	Francis and	NR	NR	125	NR	NR	NR
	Haberstetzer (1998)						
Hipposideros pomona: Laos	Francis (2008)	NR	NR	120-126	NR	NR	NR
Hipposideros pomona: central	S. Puechmaille <i>in</i>	NR	NR	125.6-128.2	NR	NR	NR

Thailand	Douangboubpha et al. (2010)						
Hipposideros pomona:	Struebig et al.	22 bats	22	134.9 ± 1.4	NR	NR	NR
Myanmar	(2005)	(1 call each bat)		(132.1-137.2)			
Hipposideros pomona:	S. Puechmaille in	NR	NR	131.8-135.4	NR	NR	NR
Myanmar	Douangboubpha et al. (2010)						
Hipposideros pomona:	Douangboubpha et	23 ්්	230	133.3 ± 3.9	NR	NR	NR
Thailand	al. (2010)			(127.3-139.3)			
		15 ♀♀	150	139.3 ± 3.7			
				(127.7-140.2)			

Table 5. Echolocation call characteristic of vespertilionid bats with frequency modulated (FM) calls sampled at the Quang Ngai study area, in southwestern Quang Ngai Province, Vietnam. Values are means +/- 1 SD and ranges in parentheses. NR = not reported, NA = measurement not applicable. Catalog numbers are those of bats recorded and prepared as voucher specimens or tissue samples. Boldface indicates echolocation information obtained in this study.

Tentative species identification	Specimen Field Catalog Numbers/ Reference	N bats	N calls	Start	End	Duration (ms)	FMAXE	Midpoint Frequency
<i>Kerivoula hardwickii</i> : Quang Ngai, Vietnam. In flight.	QN022	1	12	169.5 ± 19.9 (147-192)	95.2 ± 9.1 (90-124)	1.4 ± 0.56 (0.8-2.2)	149.3 ± 26.5 (126-190)	132.3 ± 12.4 (119-158)
<i>Kerivoula hardwickii:</i> Thailand	Hughes et al. (2011)	88 (1 call per bat)	88	169.6 ± 28.8	90.7 ± 8.1	3.1 ± 2.7	118.3 ± 11.9	NR
*Murina annamitica: Quang Ngai, Vietnam	TJO 404v, TJO421v	2	24	>130.6 ± 6.5 (122.1- 148.1)	71.5 ± 18.2 (46.2-113.5)	1.1 ± 0.3 (0.5-1.7)	NA	101.1 ± 9.5 (84.6-125.1)
*Murina beelzebub: Quang Ngai, Vietnam		1	12	146.0 ± 8.3 (127.0- 156.5)	74.3 ± 7.1 (66.3-86.0)	1.4 ± 0.7 (0.9-3.1)	124.5 ± 8.4 (102.4-131.9)	110.1 ± 5.0 (102.8-118.9)
* <i>Murina</i> eleryi: Quang Ngai, Vietnam	TJO415v	1	12	127.9 ± 6.6 (121.2- 141.6)	84.7 ± 6.3 (75.5-94.2)	0.6 ± 0.1 (0.4-0.8)	NA	106.3 ± 5.1 (99.3-114.3)
* <i>Murina cyclotis</i> : Quang Ngai, Vietnam	TJO416, TJO417, TJO414	3	36	128.8 ± 7.5 (118.5- 152.4)	62.2 ± 13.9 (35.0-111.9)	1.9 ± 0.5 (1.0-3.1)	NA	95.5 ±8.0 (82-121)
<i>Murina cyclotis</i> : Thailand	Hughes et al. 2011	28 (1 call per bat)	28	121.4 ± 44.6	57.4 ± 25.9	1.8 ± 1.2	93.8 ± 7.6	NR
<i>Murina cyclotis</i> : Peninsular Malaysia	Kingston et al. 1999	22	131	165.2 ± 7.4	51.6 ± 7.0	2.0 ± 0.6 (1.2-4.1)	77.2. ± 13.45 (54.4±136.8)	135.1 ± 12.7 (89.6-166.4)
<i>Murina huttoni</i> : Quang Ngai, Vietnam	TJO 413	1	12	> 126.6 ± 3.3 (119.4- 130.1)	52.1 ± 6.5 (40.2-61.3)	2.6 ± 0.6 (1.2-3.4)	NA	> 89.4 ± 4.1 (84.1-95.0)

Murina fionae: Quang	QN021	1	12	152.8 ± 7.8	66.8 ± 7.5	1.05 ± 0.2	112 ± 21.3	109.8 ± 6.9
Ngai, Vietnam				(135.8-	(51.6-76.1)	(0.9-1.6)	(72.0-133.4)	(93.7-116.7)
				163.1)				
Murina annamitica:	TJO 404v,	2	24	>130.6 ± 6.5	71.5 ± 18.2	1.1 ± 0.3	NA	101.1 ± 9.5
Quang Ngai, Vietnam	TJO421v			(122.1-	(46.2-113.5)	(0.5-1.7)		(84.6-125.1)
				148.1)				
Myotis ater: Quang	TJO 430v	2	24	105.0 ± 7.0	53.4 ± 4.9	2.3 ± 0.7	NA	79.2 ± 4.2
Ngai, Vietnam				(95.8-117.7)	(44.8-60.4)	(1.4-3.9)		(73.4-87.3)
Myotis ater: Bac Kan,	Furey et al.	2	4	104.7	57.5	1.4	66.7	62.5
Vietnam	2009b			(95.4-110)	(53.7-60.1)	(1.0-1.7)	(64.3-71.3)	(60.4-64.1)
Myotis muricola: Quang	QN055	1	12	115.5 ± 7.3	49.9 ± 2.2	3.1 ± 0.9	65.4 ± 2.8	82.7 ± 3.5 (76.8-
Ngai, Vietnam.				(102.4-	(45.7-53.1)	(102.4-	(59.9-69)	88.6)
				127.2)		127.2)	, , , , , , , , , , , , , , , , , , ,	,
Myotis muricola: Bac	Furey et al.	2	4	97.8	54.5	1.9	66.2	59.7
Kan, Vietnam	2009b			(75.3-114.1)	(51.5-59.2)	(1.0-2.4)	(62.0-73.6)	(57.0-63.6)
Myotis muricola:	Hughes et al.	49 (1 call	49	118.0 ± 17.1	55.6 ± 10.1	5.2 ± 2.5	82.3 ± 16.6	NR
Thailand	2011	per bat)						
Scotomanes ornatus:	This study	1	12	104.6 ± 6.3	20.1 ± 0.7	3.3 ± 0.9	63.8 ± 3.0	62.4 ± 3.2
Quang Ngai, Vietnam,				(98-122.6)	(19.2-21.4)	(2-4.8)	(56.2-67.1)	59.1-71.3
2012							(,	
Scotomanes ornatus:Bac	Furey et al.	6	6	54.1 ± 7.0	21.0 ± 1.9	3.4 ± 0.8	31.7 ± 2.5	28.8 ± 1.8
Kan, Vietnam	2009b			(43-62)	(18.6-23.1)	(2.2-4.4)	(29.7-35.9)	(26.6-31.3)
Scotomanes ornatus:	Liu et al 2011	NA	NA	73.9 ± 11.5	22.9 ± 2.6	NA	57.9 ± 1.4	NA
Mianyang, China								

Table 6. Sex, age, and reproductive condition of bats captured at the study area in Ba To District, Quang Ngai Province, Vietnam during the early wet season in late May-June 2011 and near the end of the dry season in March 2012. Abbreviations: Ad= adult;L = lactating; ND = not determined; NR = non-reproductive; P = pregnant; PL= post-lactating; VJ = volant juveniles.

Species	May-June		March	
	Males	Females	Males	Females
Megaderma lyra	0	0	1 Ad-NR	
Rhinolophus affinis	0	1 Ad-L, 2 VJ, 1 Ad- NR	17 Ad-NR	25 Ad-P, 1 Ad-ND, 4 Ad- NR
Rhinolophus pearsoni	1 Ad-NR	0	0	0
Rhinolophus pusillus	0	7 Ad-L, 3 Ad-P, 1 VJ,	2 Ad-NR	5 Ad-P
Hipposideros Iarvatus	2 Ad-NR, 1 Ad- R	2 VJ	0	1 Ad-NR
Hipposideros pomona	1 Ad-NR, 1 Ad- ND	0	2 Ad-NR	1 Ad-P
Glischropus bucephalus	0	1 Ad-L	0	0
Kerivoula hardwickii	1 VJ	0	0	1 Ad-P
Murina annamitica	2 VJ, 1 Ad-NR	1 Ad-L, 1 VJ	0	0
Murina beelzebub	1 VJ	0	1 Ad-NR	0
Murina cyclotis	1 Ad-NR	1 Ad-L, 2 Ad-PL, 2 VJ	0	0
Murina eleryi	1 VJ	0	0	0
Murina fionae	0	2 Ad-L	2 Ad-NR	0
Murina huttoni	0	3 Ad-L, 1 Ad-PL, 1 VJ	0	0
Myotis ater	4 Ad-NR, 1 VJ	1 VJ		
Myotis muricola	0	0	0	1 Ad-P
Scotomanes ornatus	2 Ad-NR	0	0	0

Table 7. Number of bat species and individuals captured, and capture method and effort in surveys at the Quang Ngai study area in Quang Ngai Province compared to surveys at Kim Hy Nature Reserve in Bac Kan Province, Vietnam (Furey et al. 2010), all species of bats. S = number of species; N = number of individuals; m^2nh = square-meter net-hour; m^2hth = square-meter trap-hour.

Study Area			Ground	mist nets		Harp Traps				
	S	N	m²nh	S/m²nh	Bats/m ² nh	S	N	m²th	S/m²th	Bats/m ² th
Quang Ngai Total	15	79	12,332.5	0.001	0.006	11	40	944.5	0.012	0.042
Quang Ngai May-June 2011	9	28	2,845.5	0.003	0.010	10	22	174	0.057	0.126
Quang Ngai March 2012	10	51	9,487.5	0.001	0.005	5	18	770.5	0.006	0.023
Kim Hy Primary Forest	22	313	11,871	0.002	0.026	18	88	1,380	0.013	0.064
Kim Hy Disturbed Forest	18	71	11,928	0.002	0.006	14	73	1,392	0.010	0.052
Kim Hy Agriculture/ Disturbed Forest	21	114	12,030	0.002	0.009	11	35	1,393	0.008	0.025
Kim Hy All Sites	30	498	35,829	0.0008	0.0139	25	196	4,165	0.006	0.047

Table 8. Comparison of bat community diversity statistics for insectivorous bats among samples from the Quang Ngai survey site and three habitats surveyed by Furey et al. (2010)at Kim Hy Nature Reserve in Bac Kan Province, Vietnam. In the analyses sampling effort (numbers of individuals captured) was doubled, and estimated species richness calculated with a cut-off point of 3 individuals usingProgram Spade (Chao and Shen 2010). Estimates are ± 1 SE.

	Quang	Quang	Quang	Kim Hy	Kim Hy	Kim Hy	Kim Hy
	Ngai	Ngai	Ngai	All	primary	disturbed	agricultural/degraded
	0.	0.	0.	sites	forest	forest	forest
	All sites	2011	2012				
		sites	sites				
Number of	17	13	11	32	27	22	22
	1/	13	11	52	27	22	22
species							
observed							
Estimated							
Species							
Richness	19 ± 2.1	16.5 ±	14.8 ±	35.8 ±	30.6 ±	36.5 ±	29.2 ± 4.7
		3.3	3.4	3.4	3.3	7.7	
Solow and	20.5.	47.4.	45.0.1	25.0.	24.4	22.4	
Polasky (1999)	20.5 ±	17.4 ±	15.3 ±	35.0 ±	31.1 ±	32.4 ±	30.6 ± 4.2
	2.4	3.2	2.9	1.8	2.3	5.9	
Shen et al.							
(2003)							
Inventory	83-89 %	75-79%	72-74 %	89-91	87-88 %	60-68 %	72-75 %
Completeness				%			
Simpson's	4.49 ±	8.7 ±	2.07 ±	10.91 ±	7.78 ±	7.62 ±	8.20 ± 0.24
Diversity Index	0.20	1.7	0.42	0.18	0.21	0.26	
(1/D)							
Evenness (E _{1/D})	0.264	0.669	0.191	0.341	0.295	0.346	0.403

Site Number	Northing (Decimal Degrees, WG 84)	Easting (Decimal Degrees, WG 84)	approx elevation (m) field	elev (m) via Google Earth	Capture Equipment and Site Description	Dates and Times Deployed (2011)	Species (N individuals) Captured
1	14.66016	108.60753	752	731	12 m net at ground level parallel to drainage at main camp	28 May (1800- 0000)	None
2	14.66017	108.60734	727	732	Harp trap at camp in wash	28 May (Gore trap; 1800-0000); 4 June (Khoi trap 1800- dawn); 5 June (Khoi trap 1800-dawn); 6 June (Khoi trap 1800-dawn); 7 June (1800-dawn); 8 June (1800-dawn)	Hipposideros larvatus (4), Rhinolophus pusillus (3), Rhinolophus affinis (4), Kerivoula hardwickii (1), Murina cyclotis (3), Murina eleryi (1), Murina fionae (1), Murina huttoni (1)
3	14.66055	108.60715	750	739	9.1 m (30') net at ground level across old logging road N of spreading tree below camp	28 May (1800- 0000)	Rhinolophus pusillus (1)
4	14.66114	108.60629	746	755	12.8 m (42') net at ground level across round pond on logging road N of camp	28 May (1800- 0000), 4 June (1800-2210)	Glischropus bucephalus (1)
5	14.66104	108.60577	736	759	harp trap at "alcove" in vegetation wall near site 4 pond	28 May (Khoi trap; 1800-2100)	Murina annamitica (1)
6	14.66111	108.60387	763	766	12.8 m (42') net at ground level across logging road N of camp, near where trail branches into forest	29 May (1800- 2145), 2 June (1800-2100)	Rhinolophus pusillus (2)

Appendix A-1. Location, description, and productivity of bat sampling sites, Quang Ngai study area, Vietnam May-June 2011.

opendix	A-1 continu	ied					
7	14.66121	108.60381	770	766	6.1 m (20') net at ground level across trail where it enters forest off logging road N of camp	29 May (1800- 2145)	Rhinolophus pusillus (1)
8	14.66081	108.60293	768	758	Harp Trap (Gore) across trail through forest off logging road N of camp	29 May (1800- 2145), 2 June (1800-2100)	Rhinolophus pusillus (2)
9	14.66096	108.60261	772	756	5.5 m (18') net at ground level across trail through forest off logging road N of camp	29 May (1800- 2145)	Hipposideros pomona (1)
10	14.65549	108.61334	749	750	9.1 m (30') net at ground level across trail S of camp	30 May (1800- 2100)	None
11	14.65539	108.61271	738	745	Gore harp trap across logging trail S of camp	30 May (1800- 2100)	None
12	14.65562	108.61179	745	737	6.1 m (20') net suspended 2m high across logging trail S of camp, plus lower 5.5 m (18') net at ground level	30 May (1800- 2100)	None
13	14.65758	108.61069	723	721	12.8 m (42') net at ground level parallel to edge of very shallow "pond" at edge of forest, "Dead Frog Pond"	30 May (1800- 2100), 3 June (1800-2220), 5 June (1800-2220), 7 June 2011 (1830-2200)	Murina annamitica(1),Murina cyclotis (3), Murina fionae (1), Murina huttoni (2)
					9.1 m (30') net at ground level across small clearing at upstream mountain campsite, plus 5.5 m (18') net at ground level across creek at	31 May (all night), 1 June (5.5 m only,	
14	14.6258	108.6138	953	947	same place	2200-dawn)	None

39

Г

Appendix 15	A-1 continu 14.6205	ied 108.6131	926	931	Mountain marsh area: 12.8 m (42') net at ground level across opening parallel to edge of logging trail at edge of marsh; one 5.5 m (18') net at ground level across logging trail about 50 m S of marsh; one 5.5 m (18') net at ground level across logging trail N of marsh; one 6.1 m (20') net at ground level across stream draining marsh in "tunnel" through vegetation	1 June (1800-2100)	None
16	14.65778	108.61169	726	723	9.1 m (30') net at ground level across stream and trail in forest on trail behind "Dead Frog Pond" ("site 1" on capture sheet for 3 June); 6 m net over stream added on 7 June	3 June (1800-2220); 7 June (1830-2200)	Myotis ater (3), Murina annamitica (2)
17	14.6579	108.6111	716	720	Harp trap (Gore) across trail through forest behind "Dead Frog Pond" ("site 2" on capture sheet for 3 June)	3 June (1800-2220)	
18	14.65773	108.61076	712	722	6.1 m (20') net at ground level across trail through forest behind "Dead Frog Pond" ("site 3" on capture sheet for 3 June)	3 June (1800-2220)	
19	14.65774	108.61085	726	724	9 m net at ground level across logging trail S of camp ("site 4" on capture sheet of 3 June)	3 June (1800-2220)	
20	14.65797	108.6104	728	714	6.1 m (20') net at ground level across trail into forest off logging road S of camp ("site 5" on capture sheet of 3 June)	3 June (1800-2220)	
21	14.66102	108.60722	751	746	9.1 m (30') net at ground level across edge of forest strip near "shower tree" at camp	4 June (1800-2210)	

Г

Appendix	A-1 continu	ied					
22	14.66129	108.6071	753	750	Harp trail (Gore) at trail into forest strip near "shower tree" at camp	4 June (1800-dawn)	Murina beelzebub (1)
23	14.66127	108.6065	744	755	12.8 m (42') net at ground level across berm parallel to long pond at drinking water spring near camp	4 June (1800-2210)	
24	14.66107	108.60606	745	756	12.8 m (42') net across logging trail near ponds N of camp	4 June (1800-2210)	
25	14.66116	108.6058	744	762	9 m net at ground level across logging trail S of camp near spring sometimes used for laundry and bathing water	4 June (1800-2210)	Murina annamitica (1)
26	14.65926	108.60983	730	732	6.1 m (20') net at ground level across side trail off logging road S of camp	5 June (1800-2220)	None
27	14.65961	108.60981	739	758	Harp trap (Gore) across side trail leading from logging road S of camp	5 June (1800-2220)	None
28	14.65849	108.61019	733	722	6.1 m (20') net at ground level in "V" configuration across logging trail S of camp	5 June (1800-2220)	Hipposideros larvatus (1)
29	14.65994	108.60743	728	728	Harp trap (Gore) across camp flyway about 25 m S of site 2; coordinates from Google Earth	6 June (1800-dawn)	None
30	14.66462	108.6091	741	739	9 m net at ground level across trail at edge of forest patch E of camp towards village	8 June (1830-2200)	None
31	14.66501	108.60896	739	739	9 m net at ground level across trail a short distance inside forest patch E of camp towards village	8 June (1830-2200)	Rhinolophus pusillus (1), Hipposideros pomona (1)

Appendix	A-1 continu	led					1
32	14.666	108.6092	738	738	9 m net at ground level across stream within forest patch E of camp towards village	8 June (1830-2200), 9 June (1800-2015)	Murina huttoni (3), Myotis ater (3)
33	14.66598	108.60949	738	729	6 m net at ground level across stream within forest patch E of camp towards village, 30 m down from site 32; coordinates from Google Earth	8 June (1830-2200), 9 June (1800-2015)	

	Dates	Start	End	Northing	Easting	Elev	Elev	Capture Equipment and Site	Species (N individuals)
Net or	Deployed	Time	Time	(Decimal	(Decimal	Google	GPS	Description	Captured
Trap	(2012)			Degrees,	Degrees,	Earth	(m)		
Number				WG 84)	WG 84)	(m)			
		18:00	6:00	,	,			CSU Harp 2 m, upslope from	None
Harp 1	12 March			14.62168	108.58884	940	944	camp mature forest	
		18:00	6:00					JG Harp 1m upslope from	None
Harp 2	12 March			14.62138	108.58813	928	941	camp mature forest	
		18:00	6:00					Son Harp 2.25 m primary	None
Harp A	12 March			14.623056	108.58333	834	980	forest	
		18:00	6:00					Son Harp 2.25 m primary	None
Harp B	12 March			14.623056	108.58333	834	980	forest	
		18:00	22:00					6 m net, upslope from camp	None
Net 1	12 March			14.62166	108.58875	937	946	mature forest	
		18:00	22:00					12 m net upslope from camp	R. affinis (1)
Net 2	12 March			14.62180	108.58892	937	951	mature forest	
								6 m net upslope from camp	None
		18:00	22:00					mature forest, net 2 and 3 are	
Net 3	12 March			14.62180	108.58892	937	951	adjacent	
		18:00	22:00					6 m net upslope from camp	None
Net 4	12 March			14.62193	108.58920	943	954	mature forest	
		17:50	6:00					12 m net primary forest; along	Total of 17 bats in these
Net S1	12 March			14.620556	108.58417	912	987	trail to camp	nets. <i>R. affinis</i> (12), <i>R.</i>
									pearsoni (1), R. pusillus (1),
		18:00	6:00					12 m net primary forest; along	H. pomona (2), H. larvatus
Net S2	12 March			14.620556	108.58417	912	987	trail to camp	(1)
								JG Harp 1m, upslope from	None
		18:00	6:00					camp (same location as 12	
Harp 2	13 March		ļ	14.62138	108.58813	928	941	March)	
								CSU Harp 2 m, across trail in	None
								mature forest, about 30 m east	
		18:00	6:00					of Net 5 and upslope about 5	
Harp 3	13 March			14.62064	108.58423	912		m elev	
	42.45	18:00	6:00		100 50015			Son Harp 2.25 m, very close to	None
Harp A	13 March			14.62059	108.58647	923	930	camp, used camp location	

Appendix A-2. Location, description, and productivity of bat sampling sites, Quang Ngai study area, Vietnam, March 2012, ordered by date.

		18:00	6:00					Son Harp 2.25 m, very close to	None
Harp B	13 March			14.62059	108.58647	923	930	camp, used camp location	
								13 m net across trail in mature	R. affinis (1)
		18:00	22:00					forest (other side of creek	M. fionae (1)
Net 5	13 March			14.62064	108.58443	913	911	from camp)	
								6 m net across trail in mature	None
		18:00	22:00					forest (other side of creek	
Net 6	13 March			14.61996	108.58448	922	920	from camp)	
								6 m net across trail in mature	R. affinis (1)
		18:00	22:00					forest (other side of creek	
Net 7	13 March			14.61953	108.58465	922	920	from camp)	
		18:00	6:00					12 m net very close to camp,	None
Net S3	13 March			14.62059	108.58647	923	930	used camp location	
		18:00	6:00					CSU Harp 2 m across trail,	R. affinis (6)
Harp 5	14 March			14.61928	108.58474	922	919	mature forest	
		18:00	6:00					JG Harp 1m across trail,	None
Harp 6	14 March			14.61909	108.58485	923	914	mature forest	
								Son Harp 2.25 m primary	K. hardwickii (1)
								forest, big trees; near small	
		18:00	6:00					bamboo area mix with small	
Harp A	14 March			14.621944	108.595556	984	991	tree s	
		18:00	6:00					Son Harp 2.25 m primary	None
Harp B	14 March			14.621667	108.597222	988	979	forest, big tree	
		18:00	6:00					12 m net primary forest, big	None
Net S4	14 March			14.621667	108.597222	978	979	tree	
		18:00	22:00					6 m net parallel to trail, across	None
Net 10	14 March			14.61905	108.58514	922	914	side trail	
		18:00	22:00						None
Net 11	14 March			14.61901	108.58537	922	920	9 m net over stream	
								6 m net across trail, mature	R. affinis (1)
		18:00	22:00					forest (other side of creek	
Net 7	14 March			14.61953	108.58465	922	920	from camp)	
		18:00	22:00					13 m net across old camp by	None
Net 8	14 March			14.61868	108.58508	925	920	small stream	
		18:00	22:00					9 m net parallel to trail, across	R. affinis (1)
Net 9	14 March			14.61894	108.58514	923	920	side trail	

								6 m net primary forest, big	M. beelzebub (1)
								tree. primary forest, many big	R. affinis (1)
		18:00	6:00					tree. Net set up across a trail	
Net S5	14 March	10.00	0.00	14.6225	108.598056	974	967	through forest	
		18:00	6:00					3 m net primary forest, big	None
Net S6	14 March			14.6225	108.598056	994	967	tree and small tree	
		18:00	6:00					CSU Harp 2 m across trail,	None
Harp 5	15 March			14.61928	108.58474	922	919	mature forest	
								JG Harp 1m across small rocky	None
		18:00	6:00					stream ca. 1 m wide, few cm	
Harp 7	15 March			14.61838	108.58472	929	915	deep	
		18:00	6:00					Son Harp 2.25 m primary	Eight bats in these two traps:
Harp A	15 March			14.621944	108.59556	984	964	forest, big tree	H. pomona (1)
		18:00	6:00					Son Harp 2.25 m primary	R. affinis (3)
Harp B	15 March			14.621944	108.59556	984	964	forest, big tree	R. pusillus (4)
		18:00	21:00					6 m net parallel to trail, across	None
Net 10	15 March			14.61905	108.58514	922	920	side trail	
								6 m net across stream and	None
		18:00	21:00					trail, about 20 m upstream of	
Net 12	15 March			14.61836	108.58463	930	915	Harp 7	
		18:00	21:00					6 m net across trail and dry	None
Net 13	15 March			14.61825	108.58420	933	920	streambed in forest	
								13 m net primary forest, big	Nine bats in these nets:
								trees, placed along the trail	R. affinis (7)
								where two adjoining slopes.	R. pusillus (2)
		18:00	6:00					Many forest trees with large	
Net S7	15 March			14.621944	108.59556	984	964	diameter.	
								6 m net primary forest, big	
								trees, placed along the trail	
								where two adjoining slopes.	
		18:00	6:00					Many forest trees with large	
Net S8	15 March			14.621944	108.59556	984	964	diameter	
								3 m net primary forest, big	
								trees, placed along the trail	
								where two adjoining slopes.	
		18:00	6:00					Many forest trees with large	
Net S9	15 March			14.621944	108.59556	984	964	diameter	

		18:00	6:00					CSU Harp 2 m on shore where	None
Harp 8	16 March			14.61908	108.58533	922	907	trail enters river, high on bank	
·		18:00	6:00					JG Harp 1m at entry into small	None
Harp 9	16 March			14.61809	108.58647	922	911	"wetland alcove" off trail	
•								Son Harp 2.25 m primary	R. pusillus (1)
								forest, big tree. Set at the	
								border between the top of	
								mountain and trail down	
		18:00	6:00					village, distance 500m from	
Harp A	16 March			14.624444	108.58278	826	883	camp area.	
		18:00	6:00					Son Harp 2.25 m primary	R. affinis (1)
Harp B	16 March			14.625556	108.58389	797	780	forest, big tree	
		18:00	22:00					9 m net across and parallel to	R. affinis (1)
Net 14	16 March			14.61861	108.58574	924	905	trail-"L" shape	
								9 m net across edge of frog	None
		18:00	22:00					pond in grassy sandbank along	
Net 15	16 March			14.61862	108.58618	922	917	river	
								13 m net across river,	S. ornatus (1)
		18:00	22:00					vegetation arching and	M. muricola (1)
Net 16	16 March			14.61814	108.58644	922	916	overhanging stream	
								13 m net primary forest, big	R. affinis (2)
								trees, placed along the trail,	
								where two adjoining slopes.	
		18:00	6:00					Many forest trees with large	
Net S10	16 March			14.625556	108.58444	772	780	diameter.	
								6 m net close the big stream,	None
								small trees, placed along the	
								trail, where two adjoining	
		18:00	6:00					slopes. Many forest trees with	
Net S11	16 March			14.624444	108.58278	826	883	large diameter.	
		18:00	6:00					CSU Harp 2 m In stream	None
Harp 10	17 March			14.61827	108.58632	922	919	adjacent to net 19	
		18:00	6:00					JG Harp 1m at entry into small	None
Harp 9	17 March			14.61809	108.58647	922	911	"wetland alcove" off trail	
		18:00	22:00					9 m net across and parallel to	None
Net 14	17 March			14.61861	108.58574	924	905	trail-"L" shape	

								9 m net across edge of frog	None
		18:00	22:00					pond in grassy sandbank along	
Net 15	17 March			14.61862	108.58618	922	917	river	
								13 m net across river,	S. ornatus (1)
		18:00	22:00					vegetation arching	
Net 16	17 March			14.61814	108.58644	922	916	overhanging stream	
		18:00	22:00					6 m net across stream in	None
Net 17	17 March			14.61756	108.58686	923	922	mature forest	
								6 m net across mouth of old or	None
								intermittent side channel of	
		18:00	22:00					stream; parallel to main	
Net 18	17 March			14.61892	108.58579	922	912	channel	
		18:00	22:00					9 m net across part of stream,	None
Net 19	17 March			14.61827	108.58632	922	919	angled to side of CSU harp trap	
		17:45	6:00					12 m net close the big stream,	None
Net S12	17 March			14.621667	108.58583	843	898	small tree	
		17:50	6:00					18 m net close the big stream,	None
Net S13	17 March			14.619722	108.58528	922	905	small tree	
		17:50	6:00					12 m net close the big stream,	Seven bats taken in these
Net S14	17 March			14.619167	108.58528	922	908	small tree	two nets:
		17:50	6:00					12 m net close the big stream,	R. affinis (7)
Net S15	17 March			14.619167	108.58528	922	908	small tree	
		18:00	6:00					CSU Harp 2 m In stream	None
Harp 10	18 March			14.61827	108.58632	922	919	adjacent to net 19	
		18:00	6:00					JG Harp 1m at entry into small	None
Harp 9	18 March			14.61809	108.58647	922	911	"wetland alcove" off trail	
								9 m net across edge of frog	<i>M. lyra</i> (escaped)
		18:00	21:30					pond in grassy sandbank along	
Net 15	18 March			14.61862	108.58618	922	917	river	
								13 m net across river,	None
		18:00	21:30					vegetation arching	
Net 16	18 March			14.61814	108.58644	922	916	overhanging stream	
		18:00	21:30					6 m net across stream in	None
Net 17	18 March			14.61756	108.58686	923	922	mature forest	
								6 m net across mouth of old or	None
		18:00	21:30					intermittent side channel of	
Net 18	18 March			14.61892	108.58579	922	912	stream; parallel to main	

					I	<u> </u>		-hammal	
								channel	
		18:00	21:30					9 m net across part of stream,	None
Net 19	18 March			14.61827	108.58632	922	919	angled to side of CSU harp trap	
								9 m net across sandy-grassy	None
		18:00	21:30					shoreline perpendicular to	
Net 20	18 March			14.61762	108.58674	923	920	stream and net 21	
								12 m net across sandy-grassy	None
		18:00	21:30					shoreline perpendicular to	
Net 21	18 March			14.61762	108.58674	923	920	stream and net 20	
		18:00	21:30					6 m net along trail parallel to	None
Net 22	18 March			14.61797	108.58666	923	920	river and trail	
		17:50	6:00						None
Net S16	18 March			14.628056	108.58556	637	648	18 m net	
		17:55	6:00						None
Net S17	18 March			14.628889	108.58500	590	602	12 m net	
		18:00	6:00					CSU Harp 2 m In stream	None
Harp 10	19 March			14.61827	108.58632	922	919	adjacent to net 19	
								JG Harp 1m in small stream	None
		18:00	6:00					feeding into main stream	
Harp 11	19 March			14.61969	108.58697	929	885	under overhanging vegetation	
		17:50	6:00					Son Harp 2.25 m in banana	M. fionae (1)
Harp A	19 March			14.631944	108.581111	382	402	forest missing small tree	, , , , , , , , , , , , , , , , , , ,
		17:50	6:00					Son Harp 2.25 m in the road go	None
Harp B	19 March			14.63333	108.58028	332	340	down village	
								9 m net across edge of frog	None
		18:00	21:30					pond in grassy sandbank along	
Net 15	19 March			14.61862	108.58618	922	917	river	
								13 m net across river,	None
		18:00	21:30					vegetation arching	
Net 16	19 March			14.61814	108.58644	922	916	overhanging stream	
		18:00	21:30				_	6 m net Across stream in	None
Net 17	19 March			14.61756	108.58686	923	922	mature forest	
								6 m net across mouth of old or	None
								intermittent side channel of	
		18:00	21:30					stream; parallel to main	
Net 18	19 March	_2.00		14.61892	108.58579	922	912	channel	
							,	-	1

		18:00	21:30					9 m net across part of stream,	None
Net 19	19 March			14.61827	108.58632	922	919	angled to side of CSU harp trap	
								9 m net across sandy-grassy	None
		18:00	21:30					shoreline perpendicular to	
Net 20	19 March			14.61762	108.58674	923	920	stream and net 21	
								12 m net across sandy-grassy	None
		18:00	21:30					shoreline perpendicular to	
Net 21	19 March			14.61762	108.58674	923	920	stream and net 20	
		18:00	21:30					6 m net at eastern edge of frog	None
Net 23	19 March			14.61859	108.58621	922	917	pond very near net 15	
								6 m net over edge of small	None
		18:00	21:30					"frog pond" on same overwash	
Net 24	19 March			14.61856	108.58607	923	896	and sandbar as net 15 & 23	
								6 m net over main stream,	None
		18:00	21:30					under over-arching trees, near	
Net 25	19 March			14.61882	108.58608	922	897	frog ponds	
								18 m net lower elev, nearer to	None
		17:50	6:00					village. Primary forest and	
Net S18	19 March			14.633611	108.579444	312	332	banana	
		17:40	6:00					12 m net over stream, lower	None
Net S19	19 March			14.631944	108.581111	382	381	elev, nearer village	
								9 m net across edge of frog	None
		18:00	21:00					pond in grassy sandbank along	
Net 15	20 March			14.61862	108.58618	922	917	river	
								13 m net across river,	None
		18:00	21:00					vegetation arching	
Net 16	20 March			14.61814	108.58644	922	916	overhanging stream	
								9 m net across sandy-grassy	M. lyra (1)
		18:00	21:00					shoreline perpendicular to	
Net 20	20 March			14.61762	108.58674	923	920	stream and net 21	
								12 m net across sandy-grassy	None
		18:00	21:00					shoreline perpendicular to	
Net 21	20 March			14.61762	108.58674	923	920	stream and net 20	
		18:00	21:00					6 m net Edge of frog pond very	None
Net 23	20 March			14.61859	108.58621	922	917	near net 15	
		18:00	21:00					6 m net over edge of small	None
Net 24	20 March			14.61856	108.58607	923	896	"frog pond" on same overwash	

								and sandbar as net 15 & 23	
								6 m net over main stream,	None
		18:00	21:00					under over-arching trees, near	
Net 25	20 March			14.61882	108.58608	922	897	frog ponds	
								9 m net parallel to main trail	R. affinis (2)
		18:00	21:00					above net 5 on ridgeline above	
Net 26	20 March			14.62073	108.58450	912	923	valley	
								13 m net across trail in mature	None
		18:00	21:00					forest (other side of creek	
Net 5	20 March			14.62064	108.58443	913	911	from camp)	
								6 m net across trail in mature	None
		18:00	21:00					forest (other side of creek	
Net 6	20 March			14.61946	108.58448	922	920	from camp)	

Appendix B-1. Records of all bats captured at Quang Ngai study area, Vietnam, May-June 2011. Abbreviations: A= Adult; VJ = volant juvenile; P=pregnant; L= lactating; PL=post-lactating; NR=non-reproductive; UNK = unknown. Location coordinates are decimal degrees north latitude and east longitude. Species identifications are tentative.

Rec-					Fore-		Capture				
ord					arm	Mass	Date	Capture	Location	Elev GPS	Elev Google
ID #	Species	Age	Sex	Repro	(mm)	(g)	(2011)	Time	Coordinates	(m)	Earth (m)
									14.66114N		
1	Glischropus bucephalus	А	F	L	34.5	7.0	28-May	1919	108.60629E	746	755
									14.66104N		
2	Murina annamitica	VJ	F	NR	33.5	7.0	28-May	2000	108.60577E	736	759
									14.66055N		
3	Rhinolophus pusillus	А	F	Р	39.4	7.0	28-May	1915	108.60715E	750	739
									14.66017N		
4	Hipposideros larvatus	VJ	F	NR	65.5	20.5	28-May	2100	108.60734E	727	732
									14.66111N		
5	Rhinolophus pusillus	А	F	Р	39.2	8.5	29-May	1850	108.60387E	763	766
									14.66081N		
6	Rhinolophus pusillus	VJ	F	NR	36.4	5.0	29-May	1900	108.60293E	768	758
									14.66121N		
7	Rhinolophus pusillus	А	F	L	40	7.0	29-May	1910	108.60381E	770	766
									14.66096N		
8	Hipposideros pomona	Unk	М	Unk	42.8	Unk	29-May	1900	108.60261E	772	756
									14.65758N		
9	Murina annamitica	VJ	М	NR	31.2	4.5	30-May	< 2000	108.61069E	723	721
									14.65758N		
10	Murina cyclotis	А	М	NR	30.6	5.5	30-May	< 2000	108.61069E	723	721
									14.66081N		
11	Rhinolophus pusillus	А	F	L	40.5	7.5	2-Jun	1850	108.60293E	768	758
									14.66111N		
12	Rhinolophus pusillus	А	F	Р	38.8	6.5	2-Jun	1920	108.60387E	763	766
									14.65758N		
13	Murina fionae	А	F	L	37.5	12.0	3-Jun	19:30	108.61069E	723	721

									1	1	
14	Myotis ater	А	м	NR	36.1	5.5	3-Jun	19:15	14.65778N 108.61169E	726	723
15	Myotis ater	А	м	NR	34.8	5.5	3-Jun	19:30	14.65778N 108.61169E	726	723
16	Myotis ater	VJ	м	NR	36.9	6.5	3-Jun	19:05	14.65778N 108.61169E	726	723
17	Murina annamitica	VJ	м	NR	30	5.0	4-Jun	20:30	14.66116N 108.6058E	744	762
18	Rhinolophus pusillus	A	F	L	37.8	0.0	4-Jun	18:50	14.66017N 108.60734E	727	732
19	Rhinolophus pusillus	A	F	L	38.4		4-Jun	Over night	14.66017N 108.60734E	727	732
20	Rhinolophus pusillus	A	F	L	39.6		4-Jun	Over night	14.66017N 108.60734E	727	732
21	Murina beelzebub	LV I	F	NR	37.3	5.5	4-Jun	Over night	14.66129N 108.60710E	753	750
21	Kerivoula hardwickii	VJ	м	NR	33.3	4.3	4-Jun	mgnt	14.66017N 108.60734E	727	732
								Over	14.66017N		
23	Murina fionae	A	F	L	39.9	11.0	4-Jun	night	108.60734E 14.65849N	727	732
24	Hipposideros larvatus	VJ	F	NR	63.3	20.0	5-Jun	1915	108.61019E 14.65758N	733	722
25	Murina huttoni	А	F	L	32.5	8.0	5-Jun	1930	108.61069E	723	721
26	Murina cyclotis	А	F	PL	32.8	7.0	5-Jun	2030	14.65758N 108.61069E	723	721
27	Murinahuttoni	А	F	PL	34.6	7.0	5-Jun	2045	14.65758N 108.61069E	723	721
28	Murina cyclotis	А	F	PL	34.4	8.0	5-Jun	2051	14.65758N 108.61069E	723	721
29	Rhinolophus affinis	А	F	L	52.2	15.5	5-Jun	Over night	14.66017N 108.60734E	727	732
30	Rhinolophus affinis	А	F	NR	49.6	14.0	5-Jun	Over night	14.66017N 108.60734E	727	732

[-			
31	Murina eleryi	VJ	м	NR	29.9	3.5	5-Jun	Over night	14.66017N 108.60734E	727	732
					20.0	5.5	5 5411	Over	14.66017N	, _ ,	,52
32	Murina cyclotis	VJ	F	NR	33.0	5.0	5-Jun	night	108.60734E	727	732
									14.66017N		
33	Hipposideros larvatus	А	М	NR	64.9	24.0	5-Jun	2000	108.60734E	727	732
								Over	14.66017N		
34	Murina huttoni	VJ	F	NR	38.2	7.5	5-Jun	night	108.60734E	727	732
									14.66017N		
35	Hipposideros larvatus	А	М	NR	65	29.0	6-Jun	21:20	108.60734E	727	732
26				ND	24.2	6.0	- .	20.02	14.65778N	726	722
36	Murina annamitica	А	M	NR	31.2	6.0	7-Jun	20:02	108.61169E	726	723
37	Murina annamitica	А	F	L	32.2	7.0	7-Jun	20:35	14.65778N 108.61169E	726	723
57		A	Г	L	52.2	7.0	7-Juli	20.33	14.66017N	720	725
38	Murina cyclotis	VJ	F	NR	35	7.0	7-Jun	22:15	108.60734E	727	732
						,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Over	14.66017N		
39	Murina cyclotis	А	F	L	34	6.0	7-Jun	night	108.60734E	727	732
									14.66501N		
40	Rhinolophus pusillus	А	F	L	40.5	6.0	8-Jun	19:08	108.60896E	739	739
									14.66501N		
41	Hipposideros pomona	А	М	NR	43.4	7.0	8-Jun	21:07	108.60896E	739	739
									14.66017N		
42	Rhinolophus affinis	VJ	F	NR	49.8	11.5	8-Jun	<22:40	108.60734E	727	732
12	Murina huttani		F		226	го	Q lum	20.02	14.666N 108.6092E	220	720
43	Murina huttoni	A	F	L	32.6	5.0	8-Jun	20:02		738	738
44	Rhinolophus affinis	IJ	F	NR	51	11.0	8-Jun	Over night	14.66017N 108.60734E	727	732
		• 5			51	11.0	0 3011		14.666N	121	, 52
45	Myotis ater	А	М	NR	33.6	4.5	8-Jun		108.6092E	738	738
				Scrotu							
				m							
10				Engorg	CO D	24.5	0.1	Over	14.66017N	707	700
46	Hipposideros larvatus	А	Μ	ed	68.2	24.5	8-Jun	night ?	108.60734E	727	732

47	Myotis ater	А	М	NR	35.1	5.0	8-Jun	14.666N 108.6092E	738	738
48	Myotis ater	VJ	F	NR	36.6	5.0	8-Jun	14.666N 108.6092E	738	738
49	Murina huttoni	А	F	L			8-Jun	14.666N 108.6092E	738	738
50	Murina huttoni	Unk	Un k	Unk			9-Jun	14.666N 108.6092E	738	738

Appendix B-1 continued: supplemental information.

Record ID				
#	Location Description	Voucher	Trap or Net	Comments
1	small pond N of camp	None	Net-water	42 ft net over pond
	harp trap in "alcove" in vegetation edge, N of			
2	camp near small pond	TJO401v	Khoi Trap	401v is M. annamitica
	sweep net at 30 ft net stretched across logging			
3	trail near spreading tree N of camp	None	Sweep net	Escaped while handling, id tentative
4	Harp trap at camp in wash	TJO 400v	Gore Trap	
	12.8 m (42') net at ground level across logging			
	road N of camp, near where trail branches into			
5	forest	None	Net-water	echolocation at ca. 120kHz on JAG Peterson
	Harp Trap (Gore) across trail through forest off			
6	logging road N of camp	None	Gore Trap	echolocation at ca. 120kHz on JAG Peterson
	6.1 m (20') net at ground level across trail			
	where it enters forest off logging road N of			bot fly larvae on wing joints. 9 total; forearm
7	camp	TJO402v	Net-land	msmt from carcass
	5.5 m (18') net at ground level across trail			
8	through forest off logging road N of camp	None	Net-land	escaped prior to completion of examination

	12.8 m (42') net at ground level parallel to edge			
	of very shallow "pond" at edge of forest, "Dead	710 404		
9	Frog Pond"	TJO404v	Net-water	404v is M. annamitica
	12.8 m (42') net at ground level parallel to edge of very shallow "pond" at edge of forest, "Dead			
10	Frog Pond"	TJO403v	Net-water	403v is M. cyclotis
10		1304037	Net-Water	
11	Harp Trap (Gore) across trail through forest off logging road N of camp	None	Gore Trap	Released
	12.8 m (42') net at ground level across logging	None		i le le aseu
	road N of camp, near where trail branches into			
12	forest	TJO405v	Net-land	Forearm 39.5 on carcass
	12.8 m (42') net at ground level parallel to edge			
	of very shallow "pond" at edge of forest, "Dead			Forearm 38.0 on live, 37.5 on carcass. 406v is
13	Frog Pond"	TJO406V	Net-water	Murina fionae
	9.1 m (30') net at ground level across stream			
	and trail in forest on trail behind "Dead Frog			Narrow keel on calcar; tooth row appears > 5
14	Pond" ("site 1" on capture sheet for 3 June);	None	Net-water	mm
	9.1 m (30') net at ground level across stream and trail in forest on trail behind "Dead Frog			Narrow keel on calcar; tooth row appears > 5
15	Pond" ("site 1" on capture sheet for 3 June);	None	Net-water	mm
	9.1 m (30') net at ground level across stream	None		
	and trail in forest on trail behind "Dead Frog			Narrow keel on calcar; tooth row appears > 5
16	Pond" ("site 1" on capture sheet for 3 June);	None	Net-water	mm
	9 m net at ground level across logging trail N of			
	camp near spring sometimes used for laundry			
17	and bathing water	None	Net-water	
18	Harp trap at camp in wash	None	Khoi Trap	
				parasites that appeared to be bot fly larvae on
10			<i>vi</i> : -	wings (3-L, 5-R). All 8 located along 5th digit
19	Harp trap at camp in wash	None	Khoi Trap	phalanges. 1.8-3.2 mm long
20	Harp trap at camp in wash	None	Khoi Trap	
	Harp trail (Gore) at trail into forest strip near			407v is Murina beelzebub. Dark black-brown
21	"shower tree" at camp	TJO407v	Gore Trap	pelage; skull excised and dentition examined

22	Harp trap at camp in wash	TJO408v	Khoi Trap	
				mass of bat recorded after full night in harp
23	Harp trap at camp in wash	None	Khoi Trap	trap.
	6.1 m (20') net at ground level in "V"			
24	configuration across logging trail S of camp	TJO409V	Net-land	
	12.8 m (42') net at ground level parallel to edge			
	of very shallow "pond" at edge of forest, "Dead			
25	Frog Pond"	TJ0411v	Net-water	
	12.8 m (42') net at ground level parallel to edge			
	of very shallow "pond" at edge of forest, "Dead			
26	Frog Pond"	TJO414v	Net-water	
	12.8 m (42') net at ground level parallel to edge			
27	of very shallow "pond" at edge of forest, "Dead	710440	Networks	
27	Frog Pond" 12.8 m (42') net at ground level parallel to edge	TJO410v	Net-water	
	of very shallow "pond" at edge of forest, "Dead			Head orange; no dark belly. This bat was paler
28	Frog Pond"	TJO416v	Net-water	than others we considered as M. huttoni
20		1304100		
29	Harp trap at camp in wash	TJO420v	Khoi Trap	
29		1304200	КПОГНАр	
30	Harp trap at camp in wash	TJO419v	Khoi Trap	Tail 45 5 Far 10 0 Foot 8 0
50	Harp trap at camp in wash	1304190	кногтар	Tail 45.5, Ear 10.9, Foot 8.0
24	Users there at some in work	710 44 5		
31	Harp trap at camp in wash	TJO415v	Khoi Trap	415v is Murina eleryi
22		710 447	141 · T	seems paler than other huttoni417v is Murina
32	Harp trap at camp in wash	TJO417v	Khoi Trap	cyclotis
33	Harp trap at camp in wash	None	Khoi Trap	
34	Harp trap at camp in wash	TJO413v	Khoi Trap	413v is M. huttoni
		TJO412v-wing		
35	Harp trap at camp in wash	tissue	Khoi Trap	
	One 9.1 m (30') and one 6 m net at ground level			
_	across stream and trail in forest on trail behind			
36	"Dead Frog Pond"	TJO421v	Net-water	421v is M. annamitica

	One 9.1 m (30') and one 6 m net at ground level across stream and trail in forest on trail behind			
37	"Dead Frog Pond"	TJO423v	Net-water	423v is M. annamitica
38	Harp trap at camp in wash	None	Khoi Trap	
39	Harp trap at camp in wash	TJO422v	Khoi Trap	422v is Murina cyclotis
	9 m net at ground level across trail a short			
	distance inside forest patch E of camp towards			
40	village	TJO428v	Net-land	428v is R. pusillus
	9 m net at ground level across trail a short			
41	distance inside forest patch E of camp towards	TIO 427.4	National	hat flu vieht all avu
41	village	TJO427v	Net-land	bot fly right elbow
10		TJO425v-wing		
42	Harp trap at camp in wash	tissue	Khoi Trap	
	9 m net at ground level across stream within			
43	forest patch E of camp towards village	None	Net-water	
		TJO424v-wing		
44	Harp trap at camp in wash	tissue	Khoi Trap	
	9 m net at ground level across stream within			
45	forest patch E of camp towards village	TJO430v	Net-water	
		TJO426v-wing		
46	Harp trap at camp in wash	tissue	Khoi Trap	
	9 m net at ground level across stream within			
47	forest patch E of camp towards village	TJO431v	Net-water	
	9 m net at ground level across stream within	TJO429v-wing		
48	forest patch E of camp towards village	tissue	Net-water	
	9 m net at ground level across stream within			
49	forest patch E of camp towards village	None	Net-water	Escaped
	9 m net at ground level across stream within			
50	forest patch E of camp towards village	None	Net-water	Escaped

Appendix B-2. Records of all bats captured at Quang Ngai study area, Vietnam, March 2012. Abbreviations: A= Adult; VJ = Volant juvenile; P=pregnant (with number of embryos, rump-crown length); L= lactating; PL=post-lactating; NR=non-reproductive; UNK = unknown. Location coordinates are decimal degrees north latitude and east longitude. Measurements (mm) under comments are total length-tail length-ear length from notch (en)-hind foot length.

Rec-					Fore-						
ord ID					arm	Mass	Date		Location		Elev Google
#	Species	Age	Sex	Repro	(mm)	(g)	(2012)	Time	Coordinates	Elev GPS (m)	Earth (m)
QN001									14.6218N	951	937
	Rhinolophus affinis	А	F	NR	47.3	13.0	12 Mar	1803	108.58892E		
									14.62056N10	930	912
QN002	Rhinolophus affinis	А	Μ	NR	51.9	Unk	12 Mar		8.58417E		
						Unk			14.62056N10	930	912
QN003	Rhinolophus affinis	А	Μ	NR	50.2		12 Mar		8.58417E		
				NR		Unk			14.62056N10	930	912
QN004	Rhinolophus affinis	А	Μ		50.6		12 Mar		8.58417E		
				NR		Unk			14.62056N10	930	912
QN005	Hipposideros larvatus	А	F		64.6		12 Mar		8.58417E		
						Unk			14.62056N10	930	912
QN006	Rhinolophus pearsoni	А	Μ	NR	50.4		12 Mar		8.58417E		
						Unk			14.62056N10	930	912
QN007	Rhinolophus pusillus	Unk	Unk	Unk	Unk		12 Mar		8.58417E		
				P, 1 emb x		Unk			14.62056N10	930	912
QN008	Rhinolophus affinis	А	F	19 mm	48.2		12 Mar		8.58417E		
						Unk			14.62056N10	930	912
QN009	Rhinolophus affinis	А	Μ	NR	52.5		12 Mar		8.58417E		

				NR		Unk			14.62056N10	930	912
QN010	Rhinolophus affinis	A	F		52.4		12 Mar		8.58417E		
				NR		Unk			14.62056N10	930	912
QN011	Hipposideros pomona	A	М		42.5		12 Mar		8.58417E		
				P, 1 emb x		Unk			14.62056N10	930	912
QN012	Rhinolophus affinis	A	F	21 mm	51.2		12 Mar		8.58417E		
				P, 1 emb x		Unk			14.62056N10	930	912
QN013	Rhinolophus affinis	A	F	20 mm	51.2		12 Mar		8.58417E		
						Unk			14.62056N10	930	912
QN014	Hipposideros pomona	A	М	NR	43.5		12 Mar		8.58417E		
						Unk			14.62056N10	930	912
QN015	Rhinolophus affinis	A	F	Р	51.5		12 Mar		8.58417E		
				NR		Unk			14.62056N10	930	912
QN016	Rhinolophus affinis	A	М		50.5		12 Mar		8.58417E		
				NR		Unk			14.62056N10	930	912
QN017	Rhinolophus affinis	A	М		48.6		12 Mar		8.58417E		
									14.62064N	911	913
QN018	Rhinolophus affinis	A	F	Р	52.0	20.5	13 Mar	1830	108.58443E		
									14.62056N	930	912
QN019	Rhinolophus affinis	A	F	NR	48.2	Unk	12 Mar		108.58417E		
									14.61953N	919	922
QN020	Rhinolophus affinis	A	F	Р	49.0	15.0	13 Mar	1830	108.58465E		
									14.62064N	911	913
QN021	Murina fionae -cyclotis	A	М	NR	34.2	8.5	13 Mar	2100	108.58443E		

QN022	Kerivoula hardwickii	А	F	P, 1 emb x 15 mm	34.8	5.8	14 Mar		14.621944N 108.595556E	991	984
QN023	Murina beezelbub	А	м	NR	34.4	5.5	14 Mar		14.6225N 108.598056E	967	974
QN024	Rhinolophus affinis	А	F	Р	50.7	Unk	14 Mar		14.6225N 108.598056E	967	974
QN025	Rhinolophus affinis	А	м	NR	49.6	Unk	14 Mar	A.M.	14.61928N 108.58474E	919	922
QN026	Rhinolophus affinis	А	м	NR	49.0	14.3	14 Mar	1830	14.61953N 108.58465E	919	922
QN027	Rhinolophus affinis	А	F	Р	50.5	19.1	14 Mar	1830	14.61905N 108.58514E	914	922
QN028	Rhinolophus affinis	А	F	Р	51.0	20.5	14 Mar	1800- 1820	14.61928N 108.58474E	919	922
QN029	Rhinolophus affinis	А	F	Р	Unk	19.5	14 Mar	1800- 1820	14.61928N 108.58474E	919	922
QN030	Rhinolophus affinis	А	F	NR	50.0	16.0	14 Mar	1800- 1820	14.61928N 108.58474E	919	922
QN031	Rhinolophus affinis	А	F	Р	48.0	18.5	14 Mar	1800- 1820	14.61928N10 8.58474E	919	922
QN032	Rhinolophus affinis	А	F	Р	49.0	18.3	14 Mar	1800- 1820	14.61928N10 8.58474E	919	922
QN033	Rhinolophus affinis	А	м	NR	51.8	Unk	15 Mar		14.621944N 108.595556	964	978

				NR		Unk		14.621944N	964	978
QN034	Rhinolophus affinis	A	М		Unk		15 Mar	108.595556		
				NR	Unk	Unk		14.621944N	964	978
QN035	Rhinolophus affinis	А	М				15 Mar	108.595556		
				NR	Unk	Unk		14.621944N	964	978
QN036	Rhinolophus affinis	А	М				15 Mar	108.595556		
					Unk	Unk		14.621944N	964	978
QN037	Rhinolophus affinis	А	F	Р			15 Mar	108.595556		
					Unk	Unk		14.621944N	964	978
QN038	Rhinolophus affinis	А	F	Р			15 Mar	108.595556		
					Unk	Unk		14.621944N	964	978
QN039	Rhinolophus affinis	А	М	NR			15 Mar	108.595556		
					Unk	Unk		14.621944N	964	978
QN040	Rhinolophus affinis	А	F	Р			15 Mar	108.595556		
				P, 1 emb x				14.621944N	964	978
QN041	Rhinolophus pusillus	А	F	14 mm	40.0	7.1	15 Mar	108.595556		
								14.621944N	964	978
QN042	Rhinolophus pusillus	А	F	Р	36.9	Unk	15 Mar	108.595556		
				P, 1 emb x				14.621944N	964	984
QN043	Rhinolophus pusillus	А	F	11 mm	39.2	6.2	15 Mar	108.59556E		
				P, 1 emb x				14.621944N1	964	984
QN044	Rhinolophus pusillus	А	F	14.5 mm	41.9	7.0	15 Mar	08.59556E		
				P, 1emb x				14.621944N1	964	984
QN045	Rhinolophus pusillus	А	F	12.5 mm	39.3	6.5	15 Mar	08.59556E		
			1				1		l	1

				P, 1 emb x					14.621944N1	964	984
QN046	Hipposideros pomona	A	F	13.5 mm	42.8	7.8	15 Mar		08.59556E		
									14.621944N1	964	984
QN047	Rhinolophus pusillus	A	М	NR	38.2	5.0	15 Mar		08.59556E		
									14.621944N1	964	984
QN048	Rhinolophus affinis	A	F	Unk	51.2	12.2	15 Mar		08.59556E		
				P, 1 emb x					14.621944N1	964	984
QN049	Rhinolophus affinis	А	F	19 mm	50.6	17.2	15 Mar		08.59556E		
									14.62444N	883	826
QN050	Rhinolophus pusillus	А	М	NR	38.2	5.0	16 Mar	1930	108.582778E		
									14.62556N	786	772
QN051	Rhinolophus affinis	А	М	NR	50.6	15.0	16 Mar	1930	108.58389E		
									14.62556N10	786	772
QN052	Rhinolophus affinis	А	F	Р	49.9	19.0	16 Mar	1930	8.58444E		
									14.62556N10	786	772
QN053	Rhinolophus affinis	А	F	Р	49.8	15.5	16 Mar	1930	8.58444E		
						24.5			14.61814N	916	922
						(27.5			108.58644E		
						at					
QN054	Scotomanas ornatus	^	54	NR	55.3	captur	16 Mar	1830			
QN054	Scotomanes ornatus	A	Μ	INK	55.5	e)		1830			
				P, 1 emb x					14.61814N	916	922
QN055	Myotis muricola	A	F	3 mm	34.1	5.0	16 Mar	2000	108.58644E		
									14.61861N	905	924
QN056	Rhinolophus affinis	А	Μ	NR	51.0	15.5	16 Mar	1815	108.58574E		

QN057	Rhinolophus affinis	А	F	Р	49.2	17.7	17 Mar		14.619167N 108.58528E	908	922
QN058	Rhinolophus affinis	А	F	Р	50.7	16.8	17 Mar		14.619167N1 08.58528E	908	922
QN059	Rhinolophus affinis	А	м	NR	51.0	15.5	17 Mar		14.619167N1 08.58528E	908	922
QN060	Rhinolophus affinis	А	F	Р	50.2	12.0	17 Mar		14.619167N1 08.58528E	908	922
QN061	Rhinolophus affinis	А	F	Р	51.4	18.3	17 Mar		14.619167N1 08.58528E	908	922
QN062	Rhinolophus affinis	А	м	NR	51.3	15.5	17 Mar		14.619167N1 08.58528E	908	922
QN063	Rhinolophus affinis	А	F	Р	50.1	17.5	17 Mar		14.619167N1 08.58528E	908	922
QN064	Scotomanes ornatus	A	м	NR	53.3	22.2 at captur e	17 Mar	1940- 2000	14.61814N 108.58644E	916	922
QN065	Megaderma lyra	Unk	Unk	Unk	Unk	Unk	18 Mar	1835	14.61862N 108.58618E	917	917
QN066	Megaderma lyra	А	м	NR	65.5	36.5	20 Mar	2020	14.61762N 108.58674E	920	923
QN067	Rhinolophus affinis	А	F	Р	50.8	19.3	20 Mar	1814	14.62073N 108.58450E	923	912

QN068	Rhinolophus affinis	А	F	Ρ	Unk	Unk	20 Mar	1815	14.62073N 108.58450E	923	912
QN069	Murinafionae	А	М	NR	35.0	6.8	19 Mar		14.631944N 108.58111E	381	382

Appendix B-2 continued: supplemental information.

Record			Trap or	
ID #	Location Description	Voucher	Net	Comments and measurements
QN001	Net 2; Upslope from camp ca. 150 m	Release	Net	1803; lots of parasites.Photos JG2532-2539
QN002	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	79-24-18en-12
QN003	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	76-24-19en-11
QN004	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	73-23-17en-10
QN005	mix some big tree and small trip. Net set a long the road go up camp	Release; wing in etoh	Net	
QN006	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	75-17-23en-10
QN007	mix some big tree and small trip. Net set a long the road go up camp	Escaped	Net	Originally thought to be lepidus.
QN008	mix some big tree and small trip. Net set a long	Specimen; liver	Net	Broken wing. 78-18-18en-9

	the road go up camp	in etoh		
QN009	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	75-19-18en-8
QN010	mix some big tree and small trip. Net set a long the road go up camp	Release; wing in etoh	Net	
QN011	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	73-25-20en-8
QN012	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	73-25-19en-12
QN013	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	79-20-20en-12
QN014	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	Dead in bag. 72-29-18en-8
QN015	mix some big tree and small trip. Net set a long the road go up camp	Release	Net	
QN016	mix some big tree and small trip. Net set a long the road go up camp	Release	Net	
QN017	mix some big tree and small trip. Net set a long the road go up camp	Release	Net	
QN018	mix some big tree and small trip. Net set a long the road go up camp	Release	Net	caught ca. 1830; 11 bat flies, many wing scars. Photos JG2547-51
QN019	mix some big tree and small trip. Net set a long the road go up camp	Specimen; liver in etoh	Net	77-21-17en-10

at base.
ail
 1 t

				Photos JG2602-2607
QN030	Large harp trap (site 5); across trail, mature forest	Release	Trap	winged flies. None
QN031	Large harp trap (site 5); across trail, mature forest	Release	Trap	wingless fly. Photos JG2609-2611
QN032	Large harp trap (site 5); across trail, mature forest	Release	Trap	no visible ectos. None
QN033	nets placed along the trail in the woods, where two adjoining slopes. Many forest trees with large diameter and average	Release	net	
QN034	nets placed along the trail in the woods, where two adjoining slopes. Many forest trees with large diameter and average	Release	net	
QN035	nets placed along the trail in the woods, where two adjoining slopes. Many forest trees with large diameter and average	Release	net	
QN036	nets placed along the trail in the woods, where two adjoining slopes. Many forest trees with large diameter and average	Release	net	
QN037	nets placed along the trail in the woods, where two adjoining slopes. Many forest trees with large diameter and average	Release	net	
QN038	nets placed along the trail in the woods, where two adjoining slopes. Many forest trees with	Release	net	

	large diameter and average			
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with			
QN039	large diameter and average	Release	net	
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with			
QN040	large diameter and average	Release	harp	
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with	Specimen; liver		
QN041	large diameter and average	in etoh	net	66-20-16en-7
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with			
QN042	large diameter and average	Release	net	Originally thought to be lepidus
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with	Specimen; liver		
QN043	large diameter and average	in etoh	harp	Originally thought to be lepidus. 61-17-15en-7
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with	Specimen; liver		
QN044	large diameter and average	in etoh	harp	Originally thought to be lepidus. 65-22-16en-7
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with	Specimen; liver		
QN045	large diameter and average	in etoh	harp	Originally thought to be lepidus. 61-19-16en-8
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with	Specimen; liver		
QN046	large diameter and average	in etoh	harp	73-28-18en-8

	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with	Specimen; liver		
QN047	large diameter and average	in etoh	harp	Originally thought to be lepidus. 57-16-15en-7
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with	Specimen; liver		
QN048	large diameter and average	in etoh	harp	Dead in bag. 82-26-18en-9
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with	Specimen; liver		
QN049	large diameter and average	in etoh	harp	81-23-21en-10
	Harp trap A set up at the region border			
	between the top of mountain and go down			
	village, distance 500m from camp area, stip			
QN050	area.	Release	Trap	Originally thought to be lepidus
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with			
QN051	large diameter and average	Release	Trap	Son harp trap
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with			
QN052	large diameter and average	Release	Trap	
	nets placed along the trail in the woods, where			
	two adjoining slopes. Many forest trees with			
QN053	large diameter and average	Release	Trap	
	Net 16; Across river, vegetation arching and	Specimen; liver		
QN054	overhanging stream	in etoh	Net	Photos JG2691-2703. 130-52-16en-12
	Net 16; Across river, vegetation arching and	Specimen; liver		
QN055	overhanging stream	in etoh	Net	Photos JG2711-2717. 75-29-12en-6
			1	

QN056	Across and parallel to trail in L-shape	Release	Net	Photos JG2706-2709
QN057	close the big stream, small tree	Release	Net	Caught by Son on 3/17 < 2000
QN058	close the big stream, small tree	Release	Net	Caught by Son on 3/17 < 2000
QN059	close the big stream, small tree	Release	Net	Caught by Son on 3/17 < 2000
		Release; wing in		
QN060	close the big stream, small tree	etoh	Net	Caught by Son on 3/17 < 2000
				1/3 of ventral body hairless. Caught by Son on 3/17 <
QN061	close the big stream, small tree	Release	Net	2000
		Release; wing in		
QN062	close the big stream, small tree	etoh	Net	Caught by Son on 3/17 < 2000
		Release; wing in		
QN063	close the big stream, small tree	etoh	Net	Caught by Son on 3/17 < 2000
	Net 16; Across river, vegetation arching and	Specimen; liver		High in net over water below overhanging vegetation.
QN064	overhanging stream	in etoh	Net	120-50-19en-13
	Net 15; Across edge of frog pond in grassy			
QN065	sandbank along river	Escape	Net	In lower tier of net, escaped while TJO donning gloves
	Net 20; across sandy-grassy shoreline	Specimen; liver		
QN066	perpendicular to stream and net 21	in etoh	Net	95-29-37en-18
	Net 26; parallel to main trail above net 5 on			
QN067	ridgeline above valley	Release	Net	Caught 3/20 at 1814 net 26.
	Net 26; parallel to main trail above net 5 on			
QN068	ridgeline above valley	Release	Net	Caught 3/20 at 1814 net 26.

		Specimen; muscle, liver in		
QN069	Over stream in harp trap	etoh	Trap	Body mass 2 days after capture. 88-34-14en-9.

Collector's Catalog Number	Entire Specimen in ethanol	Tissue Sample in Ethanol (small vials, for genetics)	Tentative Identification	General Location	Capture Location Coordinates (Decimal Degrees, WG84)	Approximate Elevation (m)	Date of Collection	Sex	Age
TJO 400v	Yes	Liver	Hipposideros larvatus	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	28 May 2011	F	Volant juvenile
TJO 401v	Yes	Liver	Murina annamitica	Quang Ngai Province, Ba To District, Vietnam	14.66104N 108.60577E	736	28 May 2011	F	Volant juvenile
TJO 402v	Yes	Liver	Rhinolophus pusillus	Quang Ngai Province, Ba To District, Vietnam	14.66121N 108.60381E	770	29 May 2011	F	Adult
TJO 403v	Yes	Liver	Murina cyclotis	Quang Ngai Province, Ba To District, Vietnam	14.65758N 108.61069E	723	30 May 2011	м	Adult
							, , , , , , , , , , , , , , , , , , ,		
TJO 404v	Yes	Liver	Murina annamitica	Quang Ngai Province, Ba To District, Vietnam	14.65758N 108.61069E	723	30 May 2011	м	Volant juvenile

Appendix C	-1 Continue	d			· · · · · · · · · · · · · · · · · · ·			- 1	-
TJO 405v	Yes	Liver	Rhinolophus pusillus	Quang Ngai Province, Ba To District, Vietnam	14.66111N 108.60387	763	2 June 2011	F	Adult
TJO 406v	Yes	Liver	Murina fionae	Quang Ngai Province, Ba To District, Vietnam	14.65758N 108.61069E	723	3 June 2011	F	Adult
TJO 407v	Yes	Liver	Murinabeelzebub	Quang Ngai Province, Ba To District, Vietnam	14.66129N 108.60710E	753	4 June 2011	F	Volant juvenile
TJO 408v	Yes	Liver	Kerivoula hardwickii	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	4 June 2011	М	Volant juvenile
TJO 409v	No	Wing	Hipposideros larvatus	Quang Ngai Province, Ba To District, Vietnam	14.65849N 108.61018	733	5 June 2011	F	Volant juvenile
TJO 410v	Yes	Liver	Murina huttoni	Quang Ngai Province, Ba To District, Vietnam	14.65758N 108.61069E	723	5 June 2011	F	Adult
TJO 411v	Yes	Liver	Murina huttoni	Quang Ngai Province, Ba To District, Vietnam	14.65758N 108.61069E	723	5 June 2011	F	Adult
TJO 412v	No	Wing	Hipposideros larvatus	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	6 June 2011	М	Adult

Appendix C	-1 Continue	d	Γ	Ι			1		
TJO 413v	Yes	Liver	Murina huttoni	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	5 June 2011	F	Volant juvenile
TJO 414v	Yes	Liver	Murina cyclotis	Quang Ngai Province, Ba To District, Vietnam	14.65758N 108.61069E	723	5 June 2011	F	Adult
TJO 415v	Yes	Liver	Murina eleryi	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	5 June 2011	М	Volant juvenile
TJO 416v	Yes	Liver	Murina cyclotis	Quang Ngai Province, Ba To District, Vietnam	14.65758N 108.61069E	723	5 June 2011	F	Adult
TJO 417v	Yes	Liver	Murina cyclotis	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	5 June 2011	F	Volant juvenile
TJO 418v	No	Wing	Hipposideros larvatus	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	6 June 2011	м	Adult
TJO 419v	Yes	Liver	Rhinolophus affinis	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	5 June 2011	F	Adult
TJO 420v	No	Wing	Rhinolophus affinis	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	5 June 2011	F	Adult
TJO 421v	Yes	Liver	Murina annamitica	Quang Ngai Province, Ba To District, Vietnam	14.65778N 108.61169E	726	7 June 2011	M	Adult

Appendix C	-1 Continu	ed							
TJO 422v	Yes	Liver	Murina cyclotis	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	7 June 2011	F	Adult
TJO 423v	Yes	Liver	Murina annamitica	Quang Ngai Province, Ba To District, Vietnam	14.65778N 108.61169E	726	7 June 2011	F	Adult
TJO 424v	No	Wing	Rhinolophus affinis	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	8 June 2011	F	Volant juvenile
TJO 425v	No	Wing	Rhinolophus affinis	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	8 June 2011	F	Volant juvenile
TJO 426v	No	Wing	Hipposideros larvatus	Quang Ngai Province, Ba To District, Vietnam	14.66017N 108.60734E	727	8 June 2011	м	Adult
TJO 427v	Yes	Liver	Hipposideros pomona	Quang Ngai Province, Ba To District, Vietnam	14.66501N 108.60896E	739	8 June 2011	М	Adult
TJO 428v	Yes	Liver	Rhinolophus pusillus	Quang Ngai Province, Ba To District, Vietnam	14.66501N 108.60896E	739	8 June 2011	F	Adult
				Quang Ngai Province, Pa					Volant
TJO 429v	No	Wing	Myotis ater	Quang Ngai Province, Ba To District, Vietnam	14.6660N 108.6092	738	8 June 2011	F	juvenile

Г

Appendix C-	1 Continued	-	-	-					-
TJO 430v	Yes	Liver	Myotis ater	Quang Ngai Province, Ba To District, Vietnam	14.6660N 108.6092	738	8 June 2011	м	Adult
TJO 431v	Yes	Liver	Myotis ater	Quang Ngai Province, Ba To District, Vietnam	14.6660N 108.6092	738	8 June 2011	М	Adult

Appendix C-1 Con	tinued: supplemental i	nformation						
Collector's Catalog Number	Reproduction Condition	Body Mass (g)	Forearm Length (mm)	Total Length	Tail Length	Ear Length (from notch)	Foot Length	Comments
TJO 400v	Not Reproductive	20.5	65.5	107	33.5	20	12	Experts suggest this taxon may include several cryptic species (see text in report)
TJO 401v	Not Reproductive	7.0	33.5	78	29.5	14	8	Skull excised and dentition examined:M. annamitica
710 402		7.0	40		10			Bot fly larvae on wing bones; experts suggest this taxon may include several cryptic species (see text in report); reproduction corrected from thought to be pregnant at capture to lactating when specimen
TJO 402v	Lactating	7.0	40	56	18	14	7.5	prepared
TJO 403v	Not Reproductive	5.5	30.6	108	30	14.5	8	Skull excised and dentition examined:M. cyclotis

		6						
Appendix C-1	Continued: supplemental ir	formation						
TJO 404v	Not Reproductive	4.5	31.2	72	27	15	16	Skull excised and dentition examined:M. annamitica
TJO 405v	Pregnant	6.5	39.5	51	17	13	6	Experts suggest this taxon may include several cryptic species (see text in report)
								Skull excised and dentition examined: Murina fionae;
TJO 406v	Lactating	12.0	37.5	93	36	16	9	location corrected on 9 July (after file was already sent to W.A.R.)
								· · · · · · · · · · · · · · · · · · ·
								Dark black-brown pelage; skull excised and dentition
TJO 407v	Not Reproductive	5.5	37.3	82	33	14	8	examined:Murina beelzebub
								Experts suggest this taxon may include several cryptic
TJO 408v	Not Reproductive	4.3	33.3	88	45	11	8	species (see text in report)
TJO 409v	Not Reproductive	20.0	63.3					Experts suggest this taxon may include several cryptic species (see text in report)
130 4031		20.0	05.5					
TJO 410v	Post-lactating	7.0	34.6	83	35	15	7	Skull excised and dentition examined:Murina huttoni
TJO 411v	Lactating	8.0	32.5	79	33	13	8	Skull excised and dentition examined: Murina huttoni

77

Г

Appendix C-1	Continued: supplemental ir	nformation						
TJO 412v	Not Reproductive	29.0	65					Experts suggest this taxon may include several cryptic species (see text in report)
TJO 413v	Not Reproductive	11.0	40	89	35	14	10	Skull excised and dentition examined: Murina huttoni
TJO 414v	Post-lactating	7.0	32.8	83	33	12	7	Skull excised and dentition examined: Murina cyclotis
TJO 415v	Not Reproductive	3.5	29.9	69	25	10	7	Skull excised and dentition examined: Murina eleryi
TJO 416v	Lactating	8.0	34.4	82	31	15	8	Skull excised and dentition examined: Murina cyclotis
TJO 417v	Not Reproductive	5.0	33	73	25	13.5	7	Skull excised and dentition examined: Murina cyclotis
TJO 418v	Not Reproductive	29.0	65					Experts suggest this taxon may include several cryptic species (see text in report)
TJO 419v	Not Reproductive	14.0	49.6	74	20	20	9	Experts suggest this taxon may include several cryptic species (see text in report)
TJO 420v	Lactating	15.5	52.2					Experts suggest this taxon may include several cryptic species (see text in report)

Appendix C-1	Continued: supplemental in	formation						
TJO 421v	Not Reproductive	6.0	31.2	78	30	12	8	Skull excised and dentition examined: Murina annamitica
TJO 422v	Lactating	6.0	34	81	28	14	8	Skull excised and dentition examined: Murina cyclotis
TJO 423v	Lactating	7.0	32.2	78	28	13	8	Skull excised and dentition examined: Murina annamitica
TJO 424v	Not Reproductive	11.0	51					Experts suggest this taxon may include several cryptic species (see text in report)
TJO 425v	Not Reproductive	11.5	49.8					Experts suggest this taxon may include several cryptic species (see text in report)
TJO 426v	Scrotum Engorged	24.5	68.2					Experts suggest this taxon may include several cryptic species (see text in report)
TJO 427v	Not Reproductive	7.0	43.4	77	34	22	8	Experts suggest this taxon may include several cryptic species (see text in report)
TJO 428v	Lactating	6.0	40.5	54	19	15	7	Experts suggest this taxon may include several cryptic species (see text in report)
TJO 429v	Not Reproductive	5.0	36.1					Skull should be excised and dentition examined; location corrected on 9 July (after file was already sent to W.A.R.); forearm 36.6 on capture.

Appendix C-1 Co	ontinued: supplemental ir	nformation						
TJO 430v	Not Reproductive	4.5	33.6	77	33	12	5	Skull should be excised and dentition examined
TJO 431v	Not Reproductive	5.0	35.1	81	33	12	5	Skull should be excised and dentition examined

Appendix C-2. Catalog of 34 bat specimens from Quang Ngai bat survey, Vietnam, March 2012.

Collector's Catalog Number	Entire Specimen in ethanol	Tissue Sample in Ethanol (small vials, for genetics)	Tentative Identification	General Location	Capture Location Coordinates (Decimal Degrees, WG84) 14.62056N 108.58417E	Approx- imate Elevation (m; GPS)	Date of Collection	Sex	Age
QN002	Yes	liver	Rhinolophus affinis	Ba To District, Quang Ngai Province, Vietnam	14.020501 100.564171	930	12-Mar-2012	М	Adult
					14.62056N 108.58417E				
QN003	Yes	liver	Rhinolophus affinis	Ba To District, Quang Ngai Province, Vietnam		930	12-Mar-2012	М	Adult
QN004	Yes	liver	Rhinolophus affinis	Ba To District, Quang Ngai Province, Vietnam	14.62056N 108.58417E	930	12-Mar-2012	м	Adult
					14.62056N 108.58417E				
QN005	No	wing	Hipposideros larvatus	Ba To District, Quang Ngai Province, Vietnam		930	12-Mar-2012	F	Adult
QN006	Yes	liver	Rhinolophus pearsoni	Ba To District, Quang Ngai Province, Vietnam	14.62056N 108.58417E	930	12-Mar-2012	М	Adult

				Ba To District, Quang	14.62056N 108.58417E				
QN008	Yes	liver	Rhinolophus affinis	Ngai Province, Vietnam		930	12-Mar-2012	F	Adult
				Ba To District, Quang	14.62056N 108.58417E				
QN009	Yes	liver	Rhinolophus affinis	Ngai Province, Vietnam		930	12-Mar-2012	М	Adult
				Ba To District, Quang	14.62056N 108.58417E				
QN010	No	wing	Rhinolophus affinis	Ngai Province, Vietnam		930	12-Mar-2012	F	Adult
			Hipposideros	Ba To District, Quang	14.62056N 108.58417E				
QN011	Yes	liver	pomona	Ngai Province, Vietnam		930	12-Mar-2012	м	Adult
				Ba To District, Quang	14.62056N 108.58417E				
QN012	Yes	liver	Rhinolophus affinis	Ngai Province, Vietnam		930	12-Mar-2012	F	Adult
				Ba To District, Quang	14.62056N 108.58417E				
QN013	Yes	liver	Rhinolophus affinis	Ngai Province, Vietnam		930	12-Mar-2012	F	Adult
-			Hipposideros	Ba To District, Quang	14.62056N 108.58417E				
QN014	Yes	liver	pomona	Ngai Province, Vietnam		930	12-Mar-2012	М	Adult
				Ba To District, Quang	14.62056N 108.58417E				
QN019	Yes	liver	Rhinolophus affinis	Ngai Province, Vietnam		930	12-Mar-2012	F	Adult
				Ba To District, Quang	14.61953N 108.58465E				
QN020	No	wing	Rhinolophus affinis	Ngai Province, Vietnam		919	13-Mar-2012	F	Adult
		muscle,		Ba To District, Quang	14.62064N 108.58443E				
QN021	Yes	liver	Murina fionae	Ngai Province, Vietnam		911	13-Mar-2012	М	Adult

QN022	Yes	muscle, liver	Kerivoula hardwickii	Ba To District, Quang Ngai Province, Vietnam	14.621944N 108.595556E	991	14-Mar-2012	F	Adult
QN023	Yes	muscle, liver	Murina beezelbub	Ba To District, Quang Ngai Province, Vietnam	14.6225N 108.598056E	967	14-Mar-2012	м	Adult
QN024	No	wing	Rhinolophus affinis	Ba To District, Quang Ngai Province, Vietnam	14.6225N 108.598056E	967	14-Mar-2012	F	Adult
QN041	Yes	liver	Rhinolophus pusillus	Ba To District, Quang Ngai Province, Vietnam	14.621944N 108.595556	964	15-Mar-2012	F	Adult
QN043	Yes	liver	Rhinolophus pusillus	Ba To District, Quang Ngai Province, Vietnam	14.621944N 108.59556E	964	15-Mar-2012	F	Adult
QN044	Yes	liver	Rhinolophus pusillus	Ba To District, Quang Ngai Province, Vietnam	14.621944N 108.59556E	964	15-Mar-2012	F	Adult
QN045	Yes	liver	Rhinolophus pusillus	Ba To District, Quang Ngai Province, Vietnam	14.621944N 108.59556E	964	15-Mar-2012	F	Adult
QN046	Yes	liver	Hipposideros pomona	Ba To District, Quang Ngai Province, Vietnam	14.621944N 108.59556E	964	15-Mar-2012	F	Adult
QN047	Yes	liver	Rhinolophus pusillus	Ba To District, Quang Ngai Province, Vietnam	14.621944N 108.59556E	964	15-Mar-2012	м	Adult
QN048	Yes	liver	Rhinolophus affinis	Ba To District, Quang Ngai Province, Vietnam	14.621944N 108.59556E	964	15-Mar-2012	F	Adult

				Ba To District, Quang	14.621944N 108.59556E				
QN049	Yes	liver	Rhinolophus affinis	Ngai Province, Vietnam		964	15-Mar-2012	F	Adult
					14.61814N 108.58644E				
QN054	Yes	liver	Scotomanes ornatus	Ba To District, Quang Ngai Province, Vietnam		916	16-Mar-2012	М	Adult
					14.61814N 108.58644E				
QN055	Yes	liver	Myotis muricola	Ba To District, Quang Ngai Province, Vietnam		916	16-Mar-2012	F	Adult
					14.619167N 108.58528E				
QN060	No	wing	Rhinolophus affinis	Ba To District, Quang Ngai Province, Vietnam		908	17-Mar-2012	F	Adult
					14.619167N 108.58528E				
QN062	No	wing	Rhinolophus affinis	Ba To District, Quang Ngai Province, Vietnam		908	17-Mar-2012	м	Adult
					14.619167N 108.58528E				
QN063	No	wing	Rhinolophus affinis	Ba To District, Quang Ngai Province, Vietnam		908	17-Mar-2012	F	Adult
-					14.61814N 108.58644E				
QN064	Yes	liver	Scotomanes ornatus	Ba To District, Quang Ngai Province, Vietnam		916	17-Mar-2012	м	Adult
					14.61762N 108.58674E				
QN066	Yes	liver	Megaderma lyra	Ba To District, Quang Ngai Province, Vietnam		920	20-Mar-2012	м	Adult
		muscle,			14.631944N 108.58111E				
QN069	Yes	liver	Murina fionae	Ba To District, Quang Ngai Province, Vietnam		381	19-Mar-2012	м	Adult

						Ear		
Collector's			Forearm			Length		
Catalog	Reproduction	Body Mass	Length	Total	Tail	(from	Foot	
Number	Condition	(g)	(mm)	Length	Length	notch)	Length	Comments
QN002	Non-reprod	ND	51.9	79	24	18	12	
QN003	Non-reprod	ND	50.2	76	24	19	11	
QN004	Non-reprod	ND	50.6	73	23	17	10	
QN005	Non-reprod	ND	64.6	ND	ND	ND	ND	
QN006	Non-reprod	ND	50.4	75	17	23	10	
QN008	Preg, 1 emb x 19	ND	48.2	78	18	18	9	
QN009	Non-reprod	ND	52.5	75	19	18	8	

QN010 Non-reprod ND 52.4 ND ND ND ND QN011 Non-reprod ND 42.5 73 25 20 8	
ON011 Non-reprod ND 42.5 73 25 20 9	
ON011 Non-reprod ND 42.5 73 25 20 8	
QN012 Preg, 1 emb x 21 ND 51.2 73 25 19 12	
QN013 Preg, 1 emb x 20 ND 51.2 79 20 20 12	
QN014 Non-reprod ND 43.5 72 29 18 8	
QN019 Non-reprod ND 48.2 77 21 17 10	
QN020 Pregnant 15.0 g 49.0 ND ND ND	
PHOTOS JG2540-46	
QN021 Non-reproductive 8.5 g 34.2 85 31 13 7	
PHOTOS JG2552-59	
QN022 Preg, 1 emb x 15 5.8 g 34.8 92 41 13 7	
QN023 Non-reprod 5.5 g 34.4 82 33 13 8	

QN024	Pregnant	ND	50.7	ND	ND	ND	ND	
QN031	Pregnant	18.5 g	48.0	ND	ND	ND	ND	
								PHOTOS JG2609-2611
QN032	Pregnant	18.3 g	49.0	ND	ND	ND	ND	
								None
QN033	Non-reprod	?	51.8	ND	ND	ND	ND	
QN034	Non-reprod	?	?	ND	ND	ND	ND	
QN035	Non-reprod	?	?	ND	ND	ND	ND	
QN036	Non-reprod	?	?	ND	ND	ND	ND	
QN041	Preg, 1 emb x 14	7.1 g	40.0	66	20	16	7	
QN043	Preg, 1 emb x 11	6.2 g	39.2	61	17	15	7	
QN044	Preg, 1 emb x 14.5	7.0 g	41.9	65	22	16	7	

QN045	Preg, 1emb x 12.5	6.5 g	39.3	61	19	16	8	
QN046	Preg, 1 emb x 13.5	7.8 g	42.8	73	28	18	8	
QN047	Non-reprod	5.0 g	38.2	57	16	15	7	
QN048	Not Determined	12.2 g	51.2	82	26	18	9	
QN049	Preg, 1 emb x 19	17.2 g	50.6	81	23	21	10	
QN054	Non-reproductive	24.5 g (27.5	55.3	130	52	16	12	
		g on capture)						PHOTOS JG2691-2703
QN055	Preg, 1 emb x 3 mm	5.0 g	34.1	75	29	12	6	PHOTOS JG2711-2717
QN060	Pregnant	12.0 g	50.2	ND	ND	ND	ND	
QN062	Non-reprod	15.5 g	51.3	ND	ND	ND	ND	
QN063	Pregnant	17.5 g	50.1	ND	ND	ND	ND	

QN064	Non-reproductive	22.2 g at capture	53.3	120	50	19	13	
QN066	Non-reproductive	36.5 g	65.5	95	00	37	18	
QN069	Non-reprod	6.8 g	35.0	88	34	14	9	