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Abstract 
 
Self-similarity, a concept taken from mathematics, is gradually becoming a keyword in 
musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature 
repetition in a set of relationships, and it is commonly valued as an indication for musical 
‘coherence’ and ‘consistency’. 

This investigation provides a theory of musical meaning formation in the context of 
intersemiosis, that is, the translation of meaning from one cognitive domain to another 
cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this 
perspective, the degree of coherence of a musical system relies on a synecdochic 
intersemiosis: a system of related signs within other comparable and correlated systems. This 
research analyzes the modalities of such correlations, exploring their general and particular 
traits, and their operational bounds. Looking forward in this direction, the notion of analogy 
is used as a rich concept through its two definitions quoted by the Classical literature: 
proportion and paradigm, enormously valuable in establishing measurement, likeness and 
affinity criteria. 

Using quantitative–qualitative methods, evidence is presented to justify a parallel study 
of different modalities of musical self-similarity. For this purpose, original arguments by 
Benoît B. Mandelbrot are revised, alongside a systematic critique of the literature on the 
subject. Furthermore, connecting Charles S. Peirce’s synechism with Mandelbrot’s fractality is 
one of the main developments of the present study. 

This study provides elements for explaining Bolognesi’s (1983) conjecture, that states 
that the most primitive, intuitive and basic musical device is self-reference, extending its 
functions and operations to self-similar surfaces. In this sense, this research suggests that, 
with various modalities of self-similarity, synecdochic intersemiosis acts as ‘system of systems’ 
in coordination with greater or lesser development of structural consistency, and with a 
greater or lesser contextual dependence. 

Keywords 

analogy, autosimilarity, Gestalt, intersemiosis, intersemiotic continuum, invariance, musical 
coherence, proportion, self-dissimilarity, self-reference, self-similarity, similarity, synecdoche, 

translatability. 
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Theoretical – methodological framework  

and basic definitions 



 

 
  



Chapter 1 

Introduction 

1.1. About this study 

This research is, at least in its early development, a continuation of my master’s thesis 
(Pareyon 2004), which addresses the fundamental symbolic relationships between 
music and language. That initial investigation includes examples of synecdoche’s 
structural functions,1 and presents simple cases of intersemiotic translation between 
mathematics (algebra, geometry), verbal language (syntax, semantics), and music 
(metre, rhythm, melody, harmony), along with proposals for graphical 
representation.2 

The current research studies self-similarity in a variety of musical possibilities,3 
particularly through the processes of intersemiotic translation. From this viewpoint, 
this study intends to provide answers to understanding why composers, 
musicologists and music analysts are continuously interested on self-similarity. 
Accordingly, synecdoche is interpreted as a fundamental connection between 
different mental categories,4 and translatability ranges are introduced, from abstract 

                                                 
1 Roughly speaking, by synecdoche is understood a substitution of a part for its whole, or of 

the whole for its part, involving a functional reciprocity between the general and the particular. 
Synecdoche is a pervasive mental operation found in a vastness of instances in language, both 
verbal and nonverbal. The operational definition of synecdoche, used in this study, corresponds 
to what is stated in 3.2. 

2 Intersemiotic translation occurs, for example, by converting a musical sound into a graphical 
representation, or vice versa. The subject requires development, which occupies a separate 
section in 3.8.1. 

3 The lack of a convention in music theory, restricting the use of the term self-similarity, creates a 
conceptual gap that this research attempt to solve from different angles. To this end unusual 
synonyms of self-similarity, such as ‘autosimilarity’ or ‘self-likeness’, are avoided. 

4 The concept ‘mental category’, used widely by authors such as Lakoff (1987), Jackendoff 
(1993), Child (1994), Hofstadter (1995) and Givón (2002), refers in a general way, the different 
groupings of ontologies in the mind/brain, which facilitate the comparison and contrast 
relationships of similarity and difference, considered as basic operations for deduction, memory, 
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to concrete kinds of analogies, in order to explore the transitions from the 
indeterministic paradigms, to the objective, measurable and predictable relations in 
musical, pre-musical and metamusical cases. 

The central hypothesis of this study relies upon the assumption that musical self-
similarity involves functions of coherence and consistency on several symbolic levels; 
in consequence, these functions can only be understood within a framework of 
synecdochic intersemiosis.5 In a first development, this hypothesis stimulates the 
investigation of music as a self-referential phenomenon, and the cultural 
interpretative scrutiny of related concepts. In this context the concept of ‘fractal’ is 
analyzed.6 Such a concept, borrowed from modern mathematics, is increasingly 
employed in music theory (especially after Voss and Clarke 1975, Gardner 1978, 
Bolognesi 1983, and Hsü 1993) but does not necessarily have a clearer or more 
appropriate use in the same proportion.7 Looking for clarity in exploring this 
conceptualization, it is crucial to connect the—apparently new—‘fractal dilemma’ 
with problems of music theory that originate in the Pythagorean tradition. Such 

                                                                                                                              
and aesthetic experience. This concept is exposed from different views on subchapters 1.2.2., 
1.2.3., and 4.4. 

5 i.e. a transversal transformation of sign systems across different sign categories; for instance, 
transmitting and transforming a ‘musical idea’ with the usage of its graphic representation, its 
verbalized ‘explanation’, or its symbolic modification through physical gestures. For a definition 
of ‘intersemiosis’ see subchapter 3.8. 

6  Benoît B. Mandelbrot (1977, 1982) coined the term ‘fractal’ to refer a geometry with 
‘fractured’ dimension, i.e. a geometry that cannot be described with an entire dimension, as a 
straight line with a dimension 1, a square with a dimension 2, or a cube with a dimension 3. 
Instead, it should be described with a fragmented dimension. As a metaphor of a geometry 
closed in itself reproducing similar figures, it is interesting the paronomasia with the ancient 
Greek verb φρακτόσ, from φράσσω (φράζω), “to tighten the one against the other, spear against 
spear, shield against shield” (M. Anatole Bailly, Dictionnaire Grec Français, Librairie Hachette, 
Paris, 1894; p. 609). 

7 The term ‘fractal’, whose use in music theory is generally obscure, often replaces the concept 
of self-similarity. It is possible that this replacement is due to certain fashion of describing 
musical aspects using relatively new notions from physics, often borrowing them from the 
theory of dynamical systems. This fashion is evident, for instance, by noticing the absence of the 
term ‘fractal’ in the Grove’s dictionary 1982 edition, compared to its inclusion in the actual 
electronic edition of Grove Music Online (2010). In this edition there are 12 composers 
associated with the term ‘fractal’ included as a keyword to their musical output (such composers 
are Marco Di Barco, Rolf Enström, Robert Sherlaw Johnson, Adolfo Núñez, Evan Parker, 
Elliot Sharp, Mieko Shiomi, Tomaž Svete, Jean-Claude Risset, Horacio Vaggione, Harri Vuori 
and Charles Wuorinen). By contrast, within the same source there is only one composer 
(Christopher Fox) whom, omitting the word fractal, uses instead ‘self-similarity’. 
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dilemmas characterize the preference of a geometric abstraction over the immediate 
musical practice and its associated tradition. This preference can be interpreted also 
as an opposition between two different classes of precepts: one representing the 
conceptualization of the physical parts of music, and the other representing the sense 
of a musical practice as a social process. This sort of opposition, triggering apparent 
contradictions in the history of music theory, stimulates further discussion on the 
proper use of the concept of musical self-similarity in a variety of adaptations. Within 
this framework, this study aims to facilitate the transition from an engineering 
perspective (the constructivist-structuralist idea of musical self-similarity), to an 
ecological perspective (a post-structuralist, dynamic and holistic idea inspired by 
Peircean synechism, related after this study’s subchapters 3.8. and 3.9., to Peirce’s own 
notion of map of the map); in this context, the latter is invoked using the ecological 
figure of house of the house—or more generally, worlds within worlds.8 

 
1.1.1. General background 

The correspondence between the harmony of the tones and their arithmetic ratios  
—whose discovery in the Western cultures is attributed to Pythagoras—is a subject 
permanently open to debate in modern musicology. The ‘Pythagorean dilemma’, 
antecedent of the fractal dilemma, has been examined from different perspectives by 
such musicologists as Langer (1953), Norton (1984), McClary (1987), Smith Brindle 
(1987), Dahlhaus (1990), and Ockelford (2005), and is by no means a recent subject. 
It suffices to glance over almost any medieval treatise on music, to have an idea of 
how much the Pythagorean paradigm is contextually discussed in music theory. 
From Boëthius’ De institutione musica (ca. 520) to Jacob of Liège’s Speculum Musicae 
(ca.1340), and other subsequent treatises, different interpretations of the 
Pythagorean proportions are presented, with geometric and numerical analysis, and 
studies on the division of the monochord and the tetrachords. Nevertheless, this 
exhaustive work does not achieve the unification of the criteria of harmony, which 
                                                 

8 The term ‘synechism’ (see Peirce 1893) is adapted in this study as the –ism category for 
synecdoche, as defined in 3.2. An introduction on the concept of ‘ecology’ used in this study is 
provided in subchapter 3.7. On the notion ‘worlds within worlds’ see Parsegian (1968:589); this 
notion is connected to Jakob von Uexküll’s (1940, 1957) Umwelt, and to its adaptation into 
musicology made by Mark Reybrouck (see Reybrouck 2001, 2005). 
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are mixed with Aristotelian Metaphysics ideas, crystallized in treatises by authors as 
diverse as Franco of Cologne (1260), Gioseffo Zarlino (1558), Pietro Cerone (1609), 
Robert Fludd (1618), Johannes Kepler (1619), and Athanasius Kircher (1650). 

Discussion about the nature of music, either emotive or rational, can be traced to 
classical sources: De musica, attributed to Plutarch (Pseudo–Plutarch MCr 29), says 
that Aristotle understands two different types of musical meaning: the arithmetic 
type and the harmonic type, a division also related to the difference between ratio-
proportion of sound, and the corporal sensation of perceived music. At the same 
time, Plato, in his dialogues Timaeus (47c7–e2) and Republic (331e, 412e, 461d, 
531a–b, 546a–d), associates different ethical values to different types of musical 
practices, dividing them among those that are socially beneficial and those that are 
harmful. Moreover, Aristotelian dialectic separates concrete from abstract, a 
distinction associable to the separation between body and soul, and to the division 
between individual and social—an issue stressed by Cartesianism—in a wide context 
in which music serves as a model.9 Sensitive to this division, McClary (1987:15) 
claims that 

[F]rom very early times up to and including the present, there has been a strain of Western 
culture that accounts for music in non-social, implicitly metaphysical terms. But parallel 
with that strain (and also from earliest times) is another which regards music as essentially 
a human, socially grounded, socially alterable construct […] Most polemical battles in the 
history of music theory and criticism involve the irreconcilable confrontation of these two 
positions. 

Likewise, criticizing Allen Forte and David Epstein, McClary indicates that the 
modern theoreticians “found similar correspondences between triads and properties 
of physical acoustics, or attempted to validate compositions on the basis of their 
apparently mechanical generation from pitch class sets” (ibid.). Successively McClary 
confesses her “sympathy” with what she calls the “social and human tendency” of 
music, but she never explains why this has an irreconcilable character opposed to the 
Pythagorean conception. Besides, it is curious that for McClary the mathematical 
aspects of music and still the metaphysical ones, are “non-social” terms, when in fact 

                                                 
9  Dialectics in constructive and philosophical systems of music is a subject that appears 

repeatedly throughout this study. In this regard I owe acknowledgement to Alfonso Padilla’s 
work on Dialectics and music (1995). 
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the history and development of mathematics is inconceivable not being “essentially a 
human, socially grounded, socially alterable construct”.10 

Carl Dahlhaus (1990:3–11) characterizes the same dichotomy in the conflict 
between the harmonic models of François-Joseph Fétis (1784–1871) and Hugo 
Riemann (1849–1919), the first one conceived as an arrangement of relations among 
pitches of a scale, as “a result of mankind’s historical and ethnic diversity” (Dahlhaus, 
op. cit.:3), and the second one as a result of a “physicalism” that reveals the basics of 
some “acoustic facts”: 

Riemann took over the thesis that tonality is based on acoustical facts from a tradition of 
“physicalism” (Jacques Handschin) extending back to Rameau. Thus the dominant tends 
toward the tonic because the dominant chord is contained within the harmonic series of 
the tonic chord’s root. But Fétis’s concept of tonality represents the opposite thesis, the 
conviction that it is a mistake to explain musical relationships in terms of mathematics or 
acoustics. (Dahlhaus, 1990:7) 

The idea that the concrete and the abstract notions, the corporal and the spiritual, 
the physical and the social, are irreconcilable oppositions, is—as it is already pointed 
out—a Platonic product refined by Aristotle, achieving its greater expression in the 
Cartesian rationalism and the concept of res extensa and its opposite res cogitans. The 
first one was used to denote the physical world, whereas the second one served to 
denote the thinking being, assuming that body and thought are made of ‘substances’ 
completely different. Yet in modern mathematical thought there is an echo of this 
Cartesian separation, although, as one can notice in the very voice of Benoît B. 
Mandelbrot (1924–2010), a doubt arises about the real separation between ‘the 
nature’ and ‘the nature of mathematics’: “[is] the Mandelbrot set nature or is it 
mathematics?” (see Peitgen, Richter and Saupe 2004:783).11 

As it is synthesized—from very different points of view—by authors like Bateson 
(1972), Bohm (1980), Damásio (1994, 2000), Guerra Lisi and Stefani (1997), and 

                                                 
10 McClary’s attack against Forte and Epstein, and in general against an alleged ‘mathematicist’ 

approach to music seems to have been stimulated by the controversy brought on these terms, 
between Forte and Richard Taruskin (see “Letter to the Editor from Richard Taruskin” & 
“Letter to the Editor in Reply to Richard Taruskin from Allen Forte”, Music Analysis, vol. 5, no. 
2/3, 1986, pp. 313–320, 321–337), in which Taruskin argues for a historicist conception of 
music, in contrast to Forte’s rationalist analysis. 

11 See the complete quote on page 29. 
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Reygadas and Shanker (2007), the proof provided by natural sciences and 
experimental psychology leads to admit that the Cartesian rationalism is wrong: 
mind and brain, idea and body, culture and nature, are not completely different 
‘substances’ and neither are they opposed natures. They reveal, rather, a diversity of 
aspects from the same nature. Upon this assumption the Cartesian individualism is 
also pointless, conceiving a separation between individual and society, making a 
parallel with the supposed separation between soul and body, or between mind and 
brain. Idea and action, intellect and emotion, individual and society, are, instead, 
coordinated aspects of the same integrity.  

Musicology did not completely absorb the change of paradigm between 
Cartesian rationalism and dynamic holism—holomovement or undivided wholeness, 
as David Bohm started to call it around 1955, within the context of quantum 
physycs.12 That is why the musicological domain still confronts positions on a social 
and human ideal of the musical self, in conflict with its abstract representation, 
supposedly ‘non-human’ or ‘non-social’, as McClary states (1987:15). This research 
proposes—analyzing self-similarity in music as a case study—that the Pythagorean 
tendencies and the abstract ideas of music are not in “irreconcilable confrontation” 
regarding cultural and social perspectives. On the contrary, they share fundamental 
features and present complementary aspects in the history of music. 

It is quite obvious that music does not always operate in a manner similar to 
mathematics. If so, music would not have the primary need to articulate sounds. But 
neither does it always operate in a similar manner to verbal language. Music 
elaborates through itself with a greater system of cognition in which music shares 
some aspects with mathematics and language in general. In this way, within the 
thresholds of similarity and analogy, many pivotal aspects of reasoning and emotion 

                                                 
12 A step in this transition is the shift of the transformational paradigm instead the Cartesian 

one in the theory of David Lewin (Generalized Musical Intervals and Transformations, 1987). This 
theory initiated a fruitful debate on new rationalist strategies of musical analysis, beyond 
Chomskyan first generativism (1955, 1957) and its many formal revisions (e.g. Salomaa 1973). 
However, these new perspectives yet do not fully clarify connections with other analytical tools 
of musicology (e.g. Schenker 1932, Salzer 1952), musical semiotics (e.g. Nattiez 1976, Schuller 
1986, Monelle 1992, Tarasti 1994), and aesthetic philosophy (e.g. Ingarden 1962, Foucault 1966, 
Barthes 1984). The present study proposes an initiative for this connection, via self-similarity. 
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unite music with the mathematical abstractions, and with numerous aspects of verbal 
and gestural intercourse. 

The study of similarities as particular systems and relationships in music is an 
almost infinite field, with an endless variety of subjects and situations. Repetition in 
its many singularities, and that of structural correspondences, make up just two 
immense subsets in the universe of attributions within musical similarity. That is why 
this inquiry restricts its analysis to just a few examples in the redundancy of similarity: 
the transition from similarity to self-similarity reveals basic aspects of music as a self-
referential structure and transforming system. Investigation and description of these 
aspects are the central tasks of this exploration. 

This research is intended to contribute, on the one hand, to a critical 
interpretation of the concepts of self-similarity and others related to it, carrying them 
from their use in a mathematical context to use in musical practice and thinking. On 
the other hand, it is desirable to show how self-similarity is inextricably present in the 
perception, structuring and regulation of musical relationships. Necessarily, and in 
order to fulfil this purpose, this inquiry places self-similarity in a cultural context, as 
its fingerprint is evident in the traditions and development of the human sense of the 
world through music, strengthening the relationship between aesthetics, language, 
and ecology.13 

 

                                                 
13 In the middle of the twentieth century, and in the context of musicology, Paul Collaer 

(1958:66) suggested the need for a methodical measurement of similarities, in order to study 
how the relationships between culture and ecological environment do happen: “Comparison 
throws light on the existence of specific types and on the distribution of types common to 
several countries or peoples; it underlines the importance of melodic structures, scales, rhythms 
and polyphonic concepts, of musical instruments which are identical or similar found in 
neighboring or diverse regions; it suggests that certain kinds of music give the impression of 
existing in symbiotic relationship with other characteristics of culture.” 
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1.1.2. Recent investigation on the subject 

Most of available sources—including the electronic ones—oversimplify the notion of 
musical self-similarity, hurriedly associating it with fractals, whilst very basic issues are 
overlooked.14 To this view it must be added the fact that, although there are many 
short articles on the subject, until now there is not any monograph which harmonizes 
the various lines of research, and tries to explain how different forms of musical self-
similarity coexist in different operating layers. 

The idea that tiny parts in music may mirror larger constructions is latent in 
Cooper and Meyer (1960), who suggest that rhythm and form are the same thing, 
and that a small formal unity extends “as an organic process”, to larger sections and 
even to the whole shape of a piece of music.15 This idea is also found in Roman 
Ingarden (1962), especially under the concept of functional relationship to parts 
forming a whole, as the unity of a “musical work” in the wholeness of its Gestalt.16 
However, it was not until 1980 that specialized texts started to address—explicitly—
the issue of self-similarity in music, most of them as a refinement of the experiments 
made by Mandelbrot (1967, 1977), Mandelbrot and Van Ness (1968), and Voss and 
Clark (1975, 1978). 

Participation in the information revolution extended music’s traditional fields. 
Consequently, conceptual gaps were formed in relation to traditional theory and 
practice. As in other areas of the arts and humanities, new resources in music 
exceeded its capacity to assimilate technological contributions in the short term. 
Most specialized bibliographies, among them those of Jones (1981), Bolognesi 
(1983), Prusinkiewicz (1986), Yadegari (1991, 1992), Nelson (1992, 1994), Hsü 

                                                 
14 Self-similar relationships that are fundamental in language (such as multi-layered recursion 

and synecdoche, grammatical iteration, semantic and syntactic self-reference) exhibit structural 
and operational parallel with music. Intersemiotic translation, which involves the same kind of 
relationships in different complexity degrees, is also regarded here as a basic subject for study. 

15  The referred quote states that “As a piece of music unfolds, its rhythmic structure is 
perceived not as a series of discrete independent units strung together in a mechanical, additive 
way like beads, but as an organic process in which smaller rhythmic motifs, while possessing a 
shape and structure of their own, also function as integral parts of a larger rhythmic 
organization.” (Cooper and Meyer 1960:2). 

16 According to Berlin School of experimental psychology, the concept of Gestalt refers to the 
relationship between a perceived form and its meaning as whole shape. Subchapter 3.5. is 
devoted to this issue in relation to music. 



 

 
 9 

(1993), and Beran (2004), comprehend musical self-similarity as a problem of 
engineering.17 In contrast, the investigations that consider its cultural significance 
within a certain historical tradition, are very rare (e.g. Kieran 1996, Yadegari 2004). In 
a brief article published in 1995, Alexander Koblyakov18 throws a first light on this 
matter, making a basic statement about the study of musical self-similarity, noticing 
that [In principle] “there is a problem[atic] situation, which requires a revision of the 
research strategy. It is necessary to include the perception (mentality) factor in a 

considered phenomenon of self-similarity” (op. cit.:297). Unfortunately, most of the 
literature on the subject disregards this sharp observation. 

Furthermore, warnings made by Vieira de Carvalho (1999) on technology and 
hegemony, and his conception of individualist avant-garde versus social identity, are 
unusual topics in the discussion of musical self-similarity. For this author, centred on 
Luigi Nono’s dialectic of object-subject—inspired by Antonio Gramsci and Walter 
Benjamin—, the social dimension is essential to discuss musical self-similarity and 
self-reference. This approach comes into conflict with the conception of music as 
machinery or engineering. 

Of course, the concept of music as engineering is not new: it is already implicit in 
the mechanistic conception of Pythagoreans (see Valavanis et al. 2007); seeing more 
refinement in the treatises of musical instrument construction and comes to a peak 
through the development of automation systems in Leonardo da Vinci’s musical 
inventions, and with the improvement of the wheel fiddle, since the Late Middle 
Ages to the beginning of the Industrial Era (see Leichtentritt 1934, Bowers 1987, 
Haspels 1987). In the Protestant cultures of Europe and North America, the ‘music 
as engineering’ became understood as intermediation between nature and machine, 
and therefore as a mirroring of the human link between two worlds. Richard Kuhns 
(1967:264) assumes that “The engineered is our agency for the rejoining of art to 
nature”, and asserts (op. cit.:261) that the machine, like music, architecture or art, 

                                                 
17 Madden’s case (2007: xiv) is symptomatic, when he talks of an alleged ‘fractal music’: “I am 

not creating mathematics, but rather applying well developed concepts, rather like an engineer 
would do”. 

18 Composer and mathematician, professor of composition at the Moscow State Conservatory. 
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comes to symbolize two aspects of the ultimate sources of all that fills our universe: the 
creative principle and the fact of created things. Aesthetically, they follow nature in 
allowing us to recognize limitless extent and infinite power, where we find sublimity, and 
limitation, order, balance, harmony, rhythm, decorum, where we find beauty. 

By style and content, Kuhns’ words reveal a cultural connection with a mythical and 
religious past—latent in the traditional notions of the infinite power, order or decorum. 
From this point of view, it is all but unclear how music and aesthetics converge with 
engineering as a method to solve problems. Evidently music cannot be fully defined 
as a list of problems to be solved. Analogously, neither language can be reduced to a 
vision of engineering, especially for its ties with intentionality, pragmatics, 
experimentation and expression. Moreover, music and language have strong ties with 
a poetic tradition to which the engineering can provide only a part—the 
measurement of a shape and the systematization of stylistic consistency—within a 
more complex whole (see Adorno, 1956/2002:113–122; 1970/1980:85–89). 

Conversely, it is a fact that engineering, statistics, probability, and other analytical 
resources contribute to understanding aspects of music that would otherwise be 
difficult or impossible to scrutinize. From this view, according to Koblyakov’s 
(1995:298) interpretation, the ‘problems’ of composition and musical analysis should 
not be regarded as engineering or mechanical challenges, but as “intelectual acts” in 
the broadest sense of the term. For Koblyakov intellect and artwork are united by the 

Pythagorean principle of harmony, under contextual relationships that give meaning 
to the discursive sense of music.19 

Because of the reasons exposed here, the boundaries of the notion of musical self-
similarity—systematized or not by a machine—are a recurring theme of this study. 
No particular preference is given to electronic music or a specific repertoire; rather, 
musical self-similarity is considered within a much broader spectrum of possibilities 
that correlate the mechanical, physiological, and pragmatic aspects of music. In this 
way one can say that engineering and musical language are not necessarily in conflict, 
but their different stages of correlation require different approaches. In any case, the 
main difference lies in the invertibility of the relationship solution to a problem or 

                                                 
19  Almost the same words, this was highlighted by José Vasconcelos (1881–1959) in his 

Aesthetic philosophy (1951:20, 52–53). 
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problem for a solution, whose results are completely different. This paper explores both 
kinds of results. 

 
1.1.3. The ideal reader: musicologist or composer? 

Many examples of self-similarity given in this study are more of an analytical or 
explicative character, than of a speculative nature. There are, however, several cases 
discussed from the (pre-)compositional viewpoint, extracted from the work of 
composers, and even some hypothetical examples that do not come from existent 
literature, but are highly probable in a compositional context. Some of these cases are 
essentially investigated by their association with self-similarity, rather than by their 
representation in scores or their actual performance. This is the case of György 
Ligeti’s, L’escalier du diable (1993), studied in subchapter 6.2., or Iannis Xenakis’, 

Pithoprakta (1956), studied at the end of subchapter 6.5. However, other examples 
include the investigation of specific scores, such as in the case of Luigi Nono’s Il canto 
sospeso (1956), analyzed in subchapters 6.3. and 6.6. In short, no special preference is 
given to certain representational means, but to processes and relationships of musical 
self-similarity in general. This is why a specific example of non-Western and non-
composer situation is particularly interesting, in the case of the K’miai song Ña yohap 
mäshuña, ña yohap mäshuña, ña yohap mikewe, studied on pages 383–386. This song 
is part of a whole repertoire that is not written, but memorized by oral tradition. Is 
this sort of case study interesting for composers, or is it more a matter for 
musicologists? Furthermore: Is the phenomenology of musical self-similarity a 
necessary issue of music theory, or should it rather been studied by a philosophy of 
music? 

In many musical traditions, music is not clearly divided between compositional 
theory–practice, and musicological–philosophical studies. This fact includes several 
aspects of modern Western music. For instance, Tuukka Ilomäki (2008:iii) notes that 
“The relations of twelve-tone rows are of theoretical, analytical, and compositional 
interest”. So, there should not be a conflict conceiving that musical self-similarity can 
be investigated from different perspectives, especially when it is evident that self-
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similarity in music is a highly attractive topic for composers, analysts, musicologists 
and aesthetic philosophers. 

Moreover, the ‘reversive’ mechanism of musicological analysis is—somehow—
compositional synthesis. This condition seems to be clear in music, at least in part 
predetermined by culture and biology: musicology can e.g. analyze the features of a 
certain tradition, whilst the compositional work acts as a balance between 
continuation and change of a tradition. As a matter of fact, there is a massive amount 
of musical treatises that reflects a feedback between composition and musicology, 
theory and practice, formalization and expression. For example, Rameau’s Nouveau 
système de musique théorique et pratique (1726) was originally written as a method of 
harmony and composition (“c’est-là le seul moyen de former promptement un bon 
compositeur”, op. cit.:vii), but now is a mandatory document for those musicologists 
studying the structure of tonal harmony. There are, of course, many more cases that 
illustrate this relationship between musicology and compositional–instrumental 
practice in more recent times.20 All these examples result from the output of 
composers with musicological interests, or musicologists with very deep knowledge 
on the discipline of composition. 

The present study obviously requires a theoretical and empirical background in 
its own context. Nevertheless, in order to avoid misunderstandings or non-
understanding, the reader must pay attention to the initial chapters, that introduce 
essential concepts. Along this study, not always is possible repeating or extending on 
particular definitions, which frequently are given just once, and often as footnotes 
when they are not capital definitions. With the aim of contributing to clarity, general 
definitions can also be find with the help of the index of subjects (on pages 534–552). 
Regarding the pertinence of mathematical jargon, it is extremely important not 
ignoring what is stated on sections 1.3.2.–1.3.3. 

 

                                                 
20 Some examples are the works of Pierre Boulez (Penser la musique aujourd’hui, 1963), Iannis 

Xenakis (Musiques formelles, 1963), Trevor Wishart (On Sonic Art, 1996), Clarence Barlow (On 
Musiquantics, 2002), Curtis Roads (Microsound, 2004), David Lidov (Is Language a Music?, 2005), 
Adam Ockelford (Repetition in Music, 2005), and Hebert Vázquez (Theoretical Foundations of Atonal 
Music, 2006). 
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1.1.4. Empirical evidence and concept testing 

As explained in the latter section, this study focuses on specific musical materials (e.g. 
scores, recordings, instruments) and musical experiences (e.g. aural, emotional, 
gestural, and performative cases, such as those mentioned in subchapters 3.5., 4.5.–
4.8., 5.5. and 6.2.). However, the semiotic contents of pre-musical and meta-musical 
elaborations are also emphasized: self-similarity in pitch scales, tone rows, metrical 
templates, interval replication, cyclical organization, harmonic patterns and 
recurrence plots (mainly studied in chapters 5 and 6), are presented as central, 
empirical evidence of the fundamental postulates exposed in chapters 1 to 4. Such 
pre-musical and meta-musical elaborations are not simply judged as abstract objects 
lacking of symbolic and meaningful width. On the contrary, they are conceived as 
forms of entrainment, empathy and gestural expression, that—as solid evidence of 
self-similarity—can be eloquent about cultural, physiological and psychological traits 
of music. Thereafter, they are used for testing the basic concepts of this investigation. 

A post-structuralist perspective on the empirical evidence and a meta-viewpoint 
on the intersemiotic model exposed in subchapter 3.8., is particularly addressed in 
section 1.2.4. (on intuition and experience), and in subchapters 3.5. (a Gestalt notion 
that considers the listener by its idiosyncratic and subsymbolic strata), 3.6. (that 
introduces the concept of poiesis in the context of human practices and experiences), 

3.9. (including a debate on the perturbation of the creative centrism), 4.7. (that 

introduces the concept of grammar-in-action, as a necessary flexibility of the 
[sub]symbolic contents), 4.8. (transcending the Saussurean framework into a theory 
of meta-symbolic and meta-linguistic dynamics), 5.5. (proposing a clear, although 
still flexible notion of musical self-similarity, and claiming a pertinence for statistical 
determinism in music), and 6.6. (providing counterarguments against an absolute or 
unilateral assessment of musical self-similarity). 

Subchapter 3.9., on the perturbation of the creative centrism, must be especially 
kept in mind along this study, as a key concept: musical, pre-musical and meta-
musical intertwinement, and not the ‘artist’ and his/her ‘works’, are here the true case 
study and occupy the centre of the debate. This is essentially different to what usually 
occurs in a conventional methodology in structuralist musicology. 
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1.2. Chief lines of exploration 

1.2.1. The Post-Structuralist view 

Post-structuralism does, after all, perform a significant influence on the 
interpretation of musical self-similarities. This study particularly takes Roland 
Barthes’ postulate into account, exposed in Le bruissement de la langue (1984); and 
Michel Foucault’s in his essays Les mots et les choses (1966) and Ceci n’est pas une pipe 

(1973). Whereas Barthes (e.g. 1984:127) suggests analyzing languages as self-
referential processes operating in cycles made of cycles, Foucault (1966:19–21) 
develops an epistemic study of similarity, analogy, and repetition, intimately involved 
with a variety of issues crucial to music.21 

The work of Gilles Deleuze and Félix Guattari (1971, 1980), has been especially 
useful for the concept of rhizome, a texture made up of textures, metaphor of 
language and thought structures, as a self-similar elaboration that coexist in 
simultaneously hierarchical and non-hierarchical relationships. Studies by Tzvetan 
Todorov (1968) and Paul Ricoeur (2004) were also useful for their contributions to 
the theory of translation, in particular in the field of intersemiotic translation.22 

Jacques Derrida’s books (L’écriture et la différence, 1967; Qu’est-ce qu’une 
traduction ‘relevante’?, 1999), spreading ideas closely related to intersemiosis and self-
reference as matrices of culture, feed Yadegari’s (2002) research on musical self-
similarities and cultural correlation. The development of Yadegari’s thought is one of 
the most significant contributions to literature on musical self-similarity from a post-
structuralist view, bringing the discussion on musical self-similarity to the fields of 
linguistics, philology, and philosophy, under a deconstructionist perspective.23 

                                                 
21  Barthes ideas (1984) mainly feedback section 3.9.1., on ‘Perturbation of the creative 

centrism’. Foucault’s theories (1966, 1973) especially contributed to the development of chapter 
3, as well as to enrich the argumentation of subchapter 5.5. 

22 See especially subchapter 3.8. 
23 Graduated in electrical engineering in 1982, Shahrokh David Yadegari completed his master 

degree with the dissertation “Self-Similar Synthesis: On the Border between Sound and Music” 
(1992). He obtained the doctorate in music philosophy with a dissertation on recursion, self-
reference, and traditional Persian poetry (2004). Among the achievements of his doctoral paper 
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Yadegari implements his approach to musical self-similarity by developing his 
own theoretical (philosophy of science, philosophy of culture, music theory) and 
practical contributions (composition, musical analysis, computer science). He 
explores notions such as tension between play and totality, multi-layered musical space, 
structural replication, recursive synthesis, instrumental register, and cultural hegemony, 
producing a general theory that was of great interest to this study, and which inspired 
a challenging notion of consistency within these ideas. Remarkably, in his dissertation 
Yadegari no longer ignores language and culture as central aspects of musical self-
similarity, but rather incorporates them into a correlated whole: 

Even though musical instruments are governed by physical laws, often it is the non-linear 
idiosyncrasy of an instrument which characterizes the unique features of an instrument, 
and thus, one of the jobs of the performer becomes to use these features in a musical way. 
As a simple example, the sound spectrum of various registers of an instrument differ from 
each other not only in frequency scale, but also in spectral envelope, frequency content, 
and form of progression over time. (Yadegari, 2004:171) 

Yadegari conceives musical self-similarity as a mirroring of a range of trends, more 
primitive than humans, but from which and with which the human being also 
emerge. From this perspective, physical world and culture are no longer dissociated as 
happens in the Cartesian model. This notion constitutes a powerful attraction over 
the current research. Especially the fourth chapter, on ‘The diversity of musical self-
similarity’, as well as the seventh, are imbued with the same spirit of conciliation 
between the material and the imaginary, as a consequence of a notion of harmony 
between finite and infinite self-similarity.24 

The post-structuralist viewpoint in this study is completed—as it can be inferred 
from the previous section—with implementing pre-musical and meta-musical 
elaborations as case studies: empathic and entrainment processes, and gestural, 
emotional and mnesic loci, are treated as case studies, instead of uniquely evaluating 
‘music’ as a mere collection of ‘classical’ objects (e.g. scores, melodies, chords). In this 
context, the theories and concepts proposed by Bateson (1972), Lakoff and Johnson 

                                                                                                                              
is the Radif, “a framework for improvisation, mostly based on a collection of vocal melodies” 
(op. cit.:148). 

24 This topic is especially studied in subchapter 3.3. 
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(1980), Fauconnier (1985, 1997), Lakoff (1987), and Damásio (1994, 2000), and 
especially the Peircean semiotics introduced in subchapter 3.8., constitute a basic 
framework for this investigation. 

 
1.2.2. Mental Spaces in Lakoff and Fauconnier 

A mental space is a “means for conceptualizing and thinking”, that participate in the 
representation of “any fixed or changing state of things” (Lakoff 1987:281–282). 
Mental spaces lack of ontological properties outside their representational operation, 
and are particularly useful for the elaboration of cognitive structures, including the 
musical ones.25 

Fauconnier and Sweetser (1985:ix) argue that the tools of formal logic fail when 
confronted with the whole of phenomena of language. Consequently, Fauconnier 
(1997) implements a cognitive theory based on the capabilities of the human mind 
rather than the capabilities of mathematical systems and their historical 
formalization (e.g. Russell and Whitehead 1913, among many other possible 
examples). Fauconnier formulated a theory in which reference has a real existence, 
capable of being represented by connectors that operate as neural networks, 
following a few general principles. The complexity of these networks depends mainly 
on the interaction between these principles and contextual meta-structures that feed 
interpretation. Their operation resembles the application of a grammar rule, during 
the development of cognitive maps and general mental references. 

The consequences of this perspective on music theory are remarkable: theoretical 
proposals made by Babbitt (1949, 1960, 1961) or Schenker (1932), for instance, 
become clearer as operational generalizations for imaginary representation; not 
anymore as musical relationships by themselves, or as forms of ‘pure translation’ (see 
Benjamin 1923). In this sense, many forms of musical similarity can be compatible, 
and coexist simultaneously in different strata. Each of these strata can thus mirror a 

                                                 
25  See Ockelford 2005:xv, and Ojala 2009:213–220. For a specialized description of the 

embedding of the musical structures in the cognitive ones, see Kaipainen 1994:15. 
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pattern, a path of mental spaces emerging from operations common to the species, 
and through dialogic processes molded by culture.26 

Furthermore, Lakoff and Núñez (2000) find the operational foundations of 
mathematics in the performance of four basic mental processes, metaphorically 
structured and closely related: collection, object construction, use of measuring sticks, and 
motion on a path. Respectively, this simplified—though not simplistic—relationship 
between basic processes of abstraction, helps to clarify the all-encompassing 
operations (collection), geometric build-up axioms (object construction), generalization 

of analogies (use of measuring sticks), and mapping (motion on a path). 
This conceptualization contributes to an understanding of the operational bases 

of a self-similar system. In relation to the construction of reference systems 
participating in the elaboration of meaning and the ‘feeling of what happens’, this 
theory is compatible with Damásio’s description (2000) of cognitive processes 
configuration as coordination of multiple layers of perception and emotion. 

Congruently, the properties of a self-similar complex in various strata of musical 
language can be summarized as a collection of similar objects, one inside the other; 

object construction based on a reference source; use of measuring sticks for sustaining 
selective processes of comparison and repetition, and for estimating aesthetic values;27 
and motion on a path along constructive phases in replacement and differentiation 
processes. Most of the examples in this study correspond to one or more of these 
notions. 

 

                                                 
26 Consider the following example: the Ptolemaic model of the universe is not in use at the 

current celestial mechanics. But this does not mean necessarily that the kind of mental operation 
required to understand the essence of the Ptolemaic model is absent in modern celestial 
mechanics. On the contrary, the history of science, within its theoretical deviations and findings, 
is also the history of a single set of operating principles in the human mind: a history of 
substitution of analogies (for a general introduction on the subject, see Kuhn 1962). 

27 In this area falls, for example, the ‘utility’ of the fractal dimension featuring a set of musical 
relationships. This subject is extended to the end of subchapter 5.5. (pages 300–303). 
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1.2.3. The concept of cognitive domain 

For the cognitive sciences, a domain is a finite collection of operating principles, 
alongside with their operating rules and the entities to which they apply (see Gelman 
and Greeno 1989, and Gallistel 1990). According to Gelman and Brenneman 
(1994:376), the cognitive development of infants is guided by domain-specific 
principles. These authors highlight the importance of distinguishing between 
domain and simple prescription; for example, a set of prescriptions for solving a 
problem do not constitute a domain, which is rather a coherent set of operational 
principles necessary for knowledge generation. In this manner, the operational 
coordination between a grammar, a semantic–syntactic field, and its contextual 
implementation, constitutes a domain. Verbal language, mathematical language, and 
musical language are examples of different cognitive domains. 

Throughout this study, the term musical language refers to the consistent set of 
operating principles, applications, and entities characterizing music. Verbal language 
is a different domain, not necessarily correlated with music. In so far as speech and 
music are structured by temporal sequences of sounds, embedded by metre, prosody 
and rhythm, it is obvious that they have a number of structural and functional 
similarities. But speech and music occupy different neural networks in the brain. 
According to Gelman and Brenneman (1994:376), there is “theoretical and empirical 
evidence from animal work, neuropsychology, and evolutionary theory [suggesting] 
that speech and music are neither subsets of each other nor parts of the same system” 
(see also Patel and Peretz 1997, and Peretz 2002). There is, however, a set of similar 
relationships between these and other domains of knowledge (such as arithmetic and 
geometry), comparable by their coordinative structuring, and by their dependence on 
the same cognitive platform and the same evolutionary context. 

The concept of Universal Grammar developed by Noam Chomsky (1955, 1957) 
refers specifically to the domain of verbal language. This does not imply that there are 
no other innate domains, each with possible analogies and homologies concerning 
the innate domain of speech. The whole of these analogies and homologies in the 
total of the innate domains of the mind/brain, constitute the innate human cognitive 
platform. An aspect correlated with the configuration of this platform is the ubiquity 
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of certain patterns that throughout biological evolution characterize the functional 
structures of cognitive domains. The informative redundancy between context (i.e. 
environment of development) and cognitive platform, and the feedback between 
these systems, portray a complex reciprocity that exhibits self-similar traits. This is 
key to explaining self-similarity between context and knowledge of the context: 

[I]n the constructive view, environments conducive to knowledge acquisition must share 
structural relations with the model-building system. [...] For the law of frequency can be 
replaced by a law of redundancy. Now the argument is that learning is facilitated by the 
presentation of multiple exemplars of inputs that share structural description, some of 
which will overlap with the model-building system. (Gelman and Brenneman 1994:382) 

However, given that under this scheme it is impossible to explain other basic aspects 
of music, subchapters 4.7. and 4.8. discuss how rigid aspects of musical grammar      
—through mechanisms of self-reference and correlation—are related. And how 
‘fixed’ knowledge in memory and culture—with flexible modes of learning, practice, 
and recreation of music—is linked with systems that overlap and associate 
operational characteristics at different scales, with local and global transformations. 

The concept of domain is very useful in this research as it enables the 
convergence of similarities between musical systems within cycles of individual 
expressions, collective aspects of a social context, and inter-cultural exchanges, 
without confusing them with analogous cycles of speech, mathematical language, and 
other domains of knowledge: the structural self-similarity within the whole of several 
domains occurs at different stages and levels, through different possibilities of 
analogy and intersemiotic translation. 

 
Self-similarity in the cognitive domains 

Evans (2006:1) uses a particular metaphor to explain metaphors in general. This self-
definition suggests, nevertheless, a synecdochic structuring of thought rather than a 
metaphorical one: 

Maps are metaphors. Metaphors are building blocks in the construction of knowledge. 
They are the bridges we use to connect novelty or new experience to what we already 
know. We call this connection learning. When we learn, we successfully match (map) 
patterns received through our senses to patterns already stored in our memory. 
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It is important to consider that the process of knowing (to feel, perceive, 
experiment, etc.) consists of an elaboration of maps within maps in the mind/brain 
(see Fauconnier 1997). Assuming that to know is not merely being in contact with 
what is perceived, but also to emotionally associate it with what is latent in memory, 
it is plausible that this mapping process is achieved at various levels and categories, 
corresponding to different levels and categories of coordinative knowledge. The 
mind/brain results then from this coordination of mappings, and this coordination 
itself functions as a map of maps. Congruently, Schroeder (1991:11–12) 
characterizes the typical make-up of the human brain as a physical, self-similar 
structure, moulded by the evolutional necessity of “filling a volume, whilst preserving 
a two-dimensional adjacency”.28 Beside this physiological level, other self-structuring 
levels coexist within synecdochic coordination, according to what is suggested in 
Chapter 4.29 

Among the results of the functioning of the ‘mind/brain’—in the usual terms of 
Chomskyan generativism—is, precisely, the emergence of ‘independent’ maps, 
originated through the mapping of cognition and representation. This is of utmost 
importance for intersemiotic mapping, within the musical representation of a 
spatiotemporal coordination: 

The idea of data mapping as a compositional process is generally associated with a kind of 
literalism of presentation. Since mapping is typically representational, it is assumed that 
[it] directly informs the perceived structure of composition, producing a resulting sound 
with similar characteristics or a similar shape. Data mapping is a process-oriented method 
of composition, in which the data structures that will eventually be transformed into 
sound exist as something independent from the composer’s pre-compositional process. 
(Jensen 2008:243) 

The ‘independence’ of structures to which Jensen refers here, corresponds—at least 
in a considerable proportion—to the nature of the intersemiosis of a fundamental 

                                                 
28 Schroeder thus compares thus the physical structure of the brain with the economy and 

structural consistency of the Hilbert curves. It is not arbitrary, then, to use the representation of 
these curves for the development of a musical grammar, as discussed in subchapters 6.4. and 
6.5., making it part of a process of musical creation that is analogous to the brain’s typical 
processes and forms. 

29 This is not unrelated to what Campbell (1982:262) notes: “It is a very plausible idea that the 
structure of a society, like a language, reflects, at least in part, the structure of the human brain.” 
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message, based on the power laws that “exist as something independent from the 
composer”.30 
 

1.2.4. Other points of reference 

Prusinkiewicz (1986, 1992) suggests for the first time that Lindenmayer systems, 
fractals and the Fibonacci sequences share self-organization features analogous to 
musical grammars.31 Shortly after, Hsü (1993) publishes a concise, key article in 
which he introduces an innovative approach to systematic musicology, implementing 
self-similarity criteria. 

Subsequently, Madden (1999/2007, 2005) carried out research into the alleged 
relationship between fractals and music, but unfortunately he was unable to clarify 
essential subjects (see criticism in Borthwick 2000 and Lanza 2006). Furthermore, 
Madden’s handbook Fractals in Music (1999/2007) does not consider the 
observations made by Devaney (1987, 1992), about a fractal as a set of absolute and 
infinite self-similarity. Devaney uses the term fractal “to mean shapes that are strictly 
self-similar rather than statistically self-similar” (see Oliver 1992:455). Consequently, 
the notion of “fractal music” or “fractals in music” cannot be formulated as it is 
intended in Madden (1999/2007, 2005). In fact, the same objection applies to 
Goertzel (1997), Pérez Ortiz (2000) and Hwakyu Lee (2004), among other authors.32 
Usually, when generalizing this concept, different mental categories are overlapped: 
one cannot say that a segment or a piece of music is a fractal, in the same way as one 
cannot say that an equilateral triangle is the metaphor of a right triangle. This is 
about two objects whose essential differences involve also essential meanings. 
Commonly, when music or a certain quality of music is labelled as ‘fractal’, the only 

                                                 
30 See the definition of power laws in section 3.9.5. 
31 The Lindenmayer systems (also called L-systems) are introduced in subchapter 6.5., devoted 

to self-replacement strings. The topic of Fibonacci sequence is introduced in subchapter 6.3. 
32 In trying to directly apply the fractal concept in music there are too many exceptions and 

contradictions. This issue, directly related to the debate on musical determinism and 
indeterminism, occupies different sections in this study. For a critique on such direct application 
in musical composition, see Cooper (1991) and Vantomme (1995). Equally, Borthwick (2000) 
and Lanza (2006) make a criticism regarding conceptual mistakes and methodological failures in 
Madden’s approach (1999/2007, 2005). 
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intention is to refer to some characteristics of self-similarity in music.33 Another 
failure in Madden’s work (1999/2007, 2005) is associating ‘fractals’ only with 
statistical and probabilistic analysis of music; central aspects of musical composition 
and interpretation are treated just occasionally, and no any issue on symbolic, 
cultural, biologic or environmental self-similarity are ever explored, in connection 
with music. 

Among the composers who have published explanations and analyses of their 
own work with so-called ‘fractal algorithms’ (i.e. processes of self-similar recursion), 
are Charles Dodge, Gary Lee Nelson, and Tom Johnson. Dodge (1988) develops his 
own method for specifying relationships of pitch, rhythm, and dynamics, as well as 
one way to determine the different levels of structuring a composition. Furthermore, 
Nelson (1992, 1994) explores the notions of random walk and dissimilarity, which 
within this study enrich the concepts of antiproportion and self-dissimilarity.34 

Johnson (1996, 2006) develops a much more detailed research on musical self-
similarity, moving forward in four lines: counting (“from 1, 2, 3 to automated 
counting”), transforming (from the transformation of ones and zeros to the analytical 
processing), mapping (of numerical and geometric patterns), and self-replicating (of 
melodies, proportions, and relations). According to David Feldman (1999), the self-
replication argument is particularly interesting because it clarifies the concepts of 
finite and potential infinite as musical practice and grammar. The central chapters of 
the present study consider these criteria, along with other issues addressed by Carey 
and Clampitt (1996), Kononov (e1998), Beran and Mazzola (1999a–b), Bigerelle 
and Iost (2000), and Beran (2004), and provide important material for discussion in 
Chapters 5 and 6. 

The contributions developed by Manuel Rocha Iturbide (1999) and Curtis 
Roads (2004), although mainly focused on granular synthesis of sound, were of great 
help in better defining notions such as acoustic particle, Fourier transform, transition 
matrix, noise patterns and chaos algorithms, and to achieve an updated picture of the 
contrast between musical determinism and indeterminism. Thompson (1917), Weyl 

                                                 
33 This issue is addressed in more detail in section 1.3.4., on the ‘narrow use of the term 

fractal’. 
34 In subchapter 6.6. 
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(1952), Estrada and Gil (1984), and Hofman-Jablan (e2007), were general references 
for research into symmetry—the last two specialized studies of musical symmetry. 

In the field of musical semiotics the research developed by Kalev Tiits (2002) and 
Juha Ojala (2009) was useful to investigate different notions related to musical self-
similarity, and to Charles S. Peirce’s abductive theory.35 Although Tiits and Ojala do 
not develop specific aspects of musical self-similarity, they do include discussions on 
geometry, logic of symmetry, space, and spatiality (Ojala); and self-organization, 
subsymbolic processing, and musical information (Tiits), and about other concepts 
related to the present study. In particular, and at different points of this research, the 
concept of ‘abduction’ is considered as a precursor to the concept of self-similarity, 
given the interest of Peirce in the problem of ‘the map of the map’ (see Peirce 1903a; 
from Peirce CP, 8.122).36 The works of Eco (1968, 1976, 2003), Campbell (1982), 
Padilla (1984, 1995, 1998), Tarasti (1992, 1994, 2000, 2004), Kieran (1996) and 
Lidov (2005), are also related to this issue, giving further support to the exposition on 
grammar and style (subchapters 4.7.–4.8.). 

Whereas discussions on linguistic innatism and generativism derived from 
Chomsky (1955, 1957, 1985) are of general interest to this work—accepting that 
language transformations are often comparable to their musical analogies, and 
generative ‘trees’ are also self-similar abductive models (see Peirce 1903a/1998:162; 
Chomsky 1956:117–118; Lerdahl and Jackendoff 1983:214), the writings of Minsky 
(1968), Doležel (1969, 1998), Fodor (1975, 1983), Sebeok (1977), Jackendoff (1993), 
Pinker (1994), Hayes (1995), Thomason (2001), and Givón (2002) were necessary 
for comparing their postulates with music theory. 

Finally, this summary cannot ignore the seminal work of Benoît B. Mandelbrot 
(1924–2010).37 Although it does not directly involve music, it formalizes many 

                                                 
35 On the Aristotle’s criterion referred to as abductio, Peirce proposes a hypothetical inferential 

method, which operates in a manner different from deductive and inductive methods. 
“Abduction is nothing but guessing”, says Peirce (CP 7:219); thus, for the ‘map of the map’ the 
relationship between the map and the set of maps encompassing the whole is not deductible or 
inducible but ‘conjecturable’: as suggested by Almeida (2002:13) “another word for abduction is 
conjecture.” This concept is connected with music e.g. for the functions of expectation and 
spatiality studied in detail by Ojala (2009). For a detailed definition of abduction see page 459. 

36 Applying Peirce’s semiotic theory to the research of musical self-similarity constitutes a 
method explained in 3.8.3. The problem of the map of the map is exposed in detail in section 3.9.2. 

37 For the associated bibliography, see Mandelbrot 1953, 1956, 1967, 1977, 1981, 1982, 1986. 
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aspects not organized before in general analytical approaches to musical self-
similarity. Mandelbrot started a discussion that continues to be fruitful for an 
astonishing variety of interests in the sciences and arts. Also worthy of attention are 
his courses and lectures which directly stimulated musical research by composers 
such as Dodge, Wuorinen, Nelson, Johnson and Brothers. The refinement of 
Mandelbrot’s seminal ideas made by Peitgen and Richter (1986), Gleick (1988), 
Rasband (1990), and Schroeder (1991), contributed also to Harley (1995), Steinitz 
(1996a–b), Slater (1998), and Roads (1999). Their contributions to the study of 
deterministic chaos, associated with different kinds of noise and generation of 
musical order in different parameters, are reviewed in a discussion of algorithmic 
composition in subchapter 5.5. 

1.3. Methodology 

1.3.1. Methodological summary 

Literature on musical self-similarity can be considered sufficient to draw an outline of 
methodology, noting trends studied, including computational problems, analysis and 
automated generation, and—as a more recent and less abundant corpus—sources 
concerned with aesthetic and discursive issues. In this context, however, many 
fundamental ideas are adapted from Charles S. Peirce (1893, 1903a–1903d), whose 
notions deserve a special section in 3.8.3., with precise methodology therein detailed. 

Concerning methodology related to the actual theory on self-similarity, the 
original texts of Mandelbrot (1953 to 1967), developed in his books of 1977 and 
1982, are particularly valuable. The theories of Claude E. Shannon (1937, 1948) and 
Abraham Moles (1952, 1958) converge also toward this core of sources, followed by 
structuralists pioneering the study of self-similarity in musical codes and messages: 
Babbitt (1949, 1960, 1961), Pinkerton (1956), Coons and Kraehenbuehl (1958), 
Youngblood (1958), and Seeger (1960). However, the revision of fundamental 
concepts for these theories—namely repetition, similarity, symmetry and recursion—by 
authors such as Foucault (1966, 1973), Derrida (1967a, 1967b, 1999), Eco (1968, 
1976, 2003), Todorov (1968), Deleuze and Guattari (1971, 1980), Campbell (1982), 
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Barthes (1984), Luhmann (1990), and Ricoeur (2004), occupies more attention. 
Discussion of these sources contributes to independence of postulates in this 
research, which is found in the concluding paragraphs of each section and each 
subchapter, as the study unfolds. Bridging this corpus are two major sources which 
have a direct impact on the current concept of musical self-similarity: Xenakis 
(1963/1992) who without naming it implies its quiddity,38 particularly within an 
aesthetic conceptualization; and Voss and Clarke (1978), more focused on solving an 
engineering problem: how to use fractional noise as a source of musical information. 
Farther from this core of references, this scheme is gradually extended to discuss a 
wider variety of technical approaches.39 

Even though the idea of self-similarity began to convert into a musicological 
topic at an early stage that ran from 1978 to 1992, during this period there was not 
any debate about a philosophy of musical self-similarity. Nor were there any 
aesthetics, semiotics, or sociology specifically concerned with the subject. At this 
stage the work is restricted to determining whether Mandelbrot’s theories were 
indeed compatible with music theory, and to explain his measurement procedures. In 
1993 Benny Shanon published the first note on “Fractal Patterns in Language”, from 
the view of psychological linguistics. The next year Luděk Hřebíček published the 
first formal investigation on “Fractals in Language”, from the view of statistical 
linguistics, and in 1995 Gal and Irvine started to talk about sociolinguistic recursiveness. 
But nobody connected their findings, then, with musicology. Hsü’s (1993) and 
Koblyakov’s (1995) short papers remained isolated. The also brief discussions 
published by Kieran (1996), D. Feldman (1999), and Vieira de Carvalho (1999), 
barely sow the seeds for a new critical theory. 

                                                 
38 The latest version of Xenakis’s book, published in 1992, includes comments on the concepts 

of Brownian motion, cloud of sound-points, dynamical systems, entropy, fractal, isotropy, logistic function, 
Markov chains, probability, randomicity, random distribution, random walk, repetition, stochastic process, and 
symmetry, all of them linked to the notions of functional and statistical self-similarity (see Preface, 
xii–xiii). 

39 Among these approaches Jones (1981), Bolognesi (1983), Prusinkiewicz (1986), Fagarazzi 
(1988), Dodge (1988), Hsü and Hsü (1991), Yadegari (1991, 1992), Bigerelle and Iost (2000), 
Das and Das (2006), and Su and Wu (2006) are included for the originality of their analytic 
proposals. 
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Research studying musical self-similarity through symbolism and semiotic 
aspects, indicates a gradual shift away from the solution of structural and 
technological problems on which most literature is concentrated, conceived 
primarily from a pragmatic and utilitarian conception of music. Nevertheless, the 
complete view of these investigations may be considered more as a related whole, 
than as a collection of differences. To better understand this complexity, this study 
performs an eccentric spiral of topics, widening its cycles after simple operational 
definitions. Consequently, aesthetic, symbolic, and semiotic topics that have not yet 
been sufficiently investigated are studied herein. The conceptual framework used for 
their introduction includes basic notions of information and communication 
theories, theories of dynamical systems, and aspects of ecology intertwined with the 
study of musical self-similarity. 

It is important to note that this study does not ignore recent developments in the 
pitch-class set theory, about measuring similarities (Ilomäki 2008) and self-similarity 
classification in Klumpenhouwer networks (Murphy e2007); but at the same time 
this study cannot cover them in detail, nor deepen them, since its focus is on self-
similarity as an intersemiotic process, especially in its operations of analogy and 
synecdoche. Examples of these operations are included when considered appropriate 
and illustrative for a possible enrichment of pitch-class set theory.40 

 
1.3.2. Special uses and codes 

The reader will soon notice that this study gives preference to the term synecdoche 
over metonymy. The reasons for this relate to aspects of method and meaning.41 With 
reference to the latter, the prefixal difference is emphasized by συν·εκ-, which implies 
parallelism or correlation, and μετά-, remoteness or change. The former invokes 
conjunction; the second, disjunction. Regarding methodology, synecdoche is also 
preferred for its analytical convenience in many typical relationships of music—many 

                                                 
40 This is valid for subchapters 3.4. (Invariance), 5.4. (Noise in music) and 6.6. (Antiproportion). 
41  Subchapter 3.2. synthesizes the etymology of ‘synecdoche’ based on Bailly’s dictionary 

(1894). Some notions related are also given by Peirce (see footnote 78, page 59, of this study). 
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of these relationships can best be studied as synecdoche or as analogy, rather than as 
metaphor or metonymy.42 

When the contrary is not suggested, the term ‘frequency’ is used in its broadest 
sense, for the repetition of a specific relationship in a system. All acoustic recurrence 
is a frequency or a set of frequencies identified by their repetition or their cycles of 
vibration, unless they are unintelligible sound clusters with no specified frequency, or 
noise.43 The concrete case of frequencies as audible periodical vibrations, will be 
specified as the distinction between ‘tone’ (i.e. a given sound’s harmonic spectrum or 
texture) and pitch (i.e. a specific frequency within a music scale or fixed musical 
space). 

Italics are reserved for the introduction of abstract concepts and neologisms; 
within the bibliography italics are used to refer to titles of monographs. Single 
quotation marks (‘’) denote minimal definitions or condensation. Double quotation 
marks (“”) introduce textual quotations; within the bibliography they are used to 
refer to dissertations, articles and minor works being part of larger ones, such as 
records, encyclopaedias, and other compilations. The diamond shape (◊) indicates 
graphs, followed by a sequential number associated with each subchapter and a 
sequential number for each graph. 

The few expressions in alphabets other than Latin are preserved in their original 
typography, in order to provide a better reference source, particularly useful when 
trying to explain an etymology. For Greek etymologies the sources are H. G. Liddell 
and R. Scott (A Greek-English Lexicon, Oxford University Press, Oxford, 1968);         

P. Chantraine (Dictionnaire étymologique de la langue grecque, Éditions Klincksieck, 
Paris, 1968), and M. A. Bailly (Dictionnaire Grec Français, Librairie Hachette, Paris, 
1894). 

It is important to note that the general bibliography at the end of the text is 
divided into printed materials and electronic references given in a second list. In the 

                                                 
42  This is a subtlety to which Cooke (1959:1) attaches particular relevance: “Comparison 

between one art and another can help [...] when the comparison is not metaphorical, but analogical, 
being concerned with the artist’s intention and technical procedure.” 

43 In more precise terms this means 1/f 0 noise. This concept is defined in subchapter 5.2. 
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main text, the latter are marked with a letter ‘e’ followed by the year of publication. 
Examples: Brothers e2009, Gerlach e2007, Snyders e2008. 

 
1.3.3. Mathematical language 

This study addresses the notion of self-similarity for its relevance to musicology, 
conceiving an audience with interests in aesthetic philosophy and music theory. It is 
therefore necessary to include equations and abstract patterns, not with the intention 
of replacing a comprehensive mathematical treatment, but rather provide an intuitive 
and informal approach to the issues discussed in the context of musicology.44 The 
depth of the mathematical language involved in this approach is actually relevant to 
the current training for music theorists, including composers, analysts and 
musicologists.45 Any reader interested in a mathematical treatment of the topic of 
self-similarity may consult the writings published by Peitgen and Richter (1986), 
Lauwerier (1987), Feder (1988), Gleick (1988), Devaney (1987, 1992), Barnsley 
(1988), Lindstrøm (1990), Schroeder (1991), Prusinkiewicz and Hanan (1992), 
Peitgen, Jürgens and Saupe (2004), and Cabrelli, Heil and Molter (2004), among 
many others. 

In order to avoid undesirable misinterpretation of most sections in this study, the 
reader must be aware of the frequent usage of the term function in the context of 

functional similarity, as explained in subchapter 2.4. The mathematical concept of 

function (commonly denoted by f ) is defined in a proper context, in subchapter 6.2. 
(see especially pages 295–314). Another important remark must be noted for the use 
of the term fractal, as explained below. 

                                                 
44  The term ‘informal’ points out the fact that in this study there is not any formalized 

mathematical development, but only the analysis of theoretical texts and experiments previously 
formalized, involving musical self-similarity. In this way, preference is given to the translation of 
mathematical terms into musical ones; to the empirical proofs and mathematical resources 
implementation for the musical synthesis and analysis. 

45  What is hereby expressed, and which concerns the rest of this research, considers 
Borthwick’s remarks (2000:662): “very little music (if any) that currently exists can be explained 
entirely in terms of mathematics.” In this case no any attempt is made to explain music 
“entirely”, but only to deepen into some of its fundamental characteristics through different 
forms of metalanguages for musical analysis, including mathematics. 
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The systematic transition between intuitions of harmony → similarity → noise is 

also studied as analogy of the transition proportion → self-similarity → chaos (where the 
symbol → denotes tendency). Such a transition is also related to the Peircean 
phenomenological trichotomy, as explained in section 3.8.3. Chapters 5 and 6 pay 
special attention to this topic in the context of aesthetic theory in general, and 
musical composition and analysis in particular. The final part of subchapter 5.2. also 
connects this concept to a meta-theory on musical performance. 

 
1.3.4. Narrow use of the term fractal 

Even though this investigation provides from its beginning operational notions of the 
term fractal,46 this section concentrates on some of them in order to facilitate its use 
—and prevent its misuse—during the development of this study. 

After Mandelbrot’s (1977, 1982) original references, and within a scientific 
context, the employment of the term ‘fractal’ is often confusing and contradictory.47 
Mandelbrot himself contributed to this situation, particularly when he looked for 
musical metaphors that described mathematical aspects of ‘fractals’.48 The following 
demonstrates such an example: 

In the Mandelbrot set, nature (or is it mathematics?) provides us with a powerful visual 
counterpart of the musical idea of ‘theme and variation’: the same shapes are repeated 
everywhere, yet each repetition is somewhat different. [...] Because of its constant novelty, 
this set is not truly fractal by most definitions: we may call it a borderline fractal, a limit 
fractal that contains many fractals. Compared to actual fractals, its structures are more 
numerous, its harmonies are richer, and its unexpectedness is more unexpected. (See 
Peitgen, Richter and Saupe 2004:783) 

                                                 
46 See pages 1–3. In relation to this, particular attention is due to what is stated in subchapter 

3.3., in the section on ‘Finite or infinite self-similarity of an image-object’. 
47 Even a few examples may lead to extreme confusion: Somasundaran (2006:2606) states that 

“not all fractal objects are self-similar”, Foley et al. (1990:1020) argue that “an object that is not 
exactly self-similar may still seem fractal”, and Lung and March (1999:113) claim that “Fractals 
may be considered as ‘regular things which obey the law of self-similarity’”. 

48  In order to confirm this assumption, see Mandelbrot (2002:193), reproduced here in 
subchapter 5.5. (page 305). 
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How does the musical idea of ‘theme and variation’ imply self-similarity? This 
statement is, actually, too vague.49 This ambiguity leaves the difference between 
similarity and self-similarity unclear. It also leaves open to interpretation the 
question, to what extent music—in strict analogy with the Mandelbrot set—is like “a 
limit fractal that contains many fractals”. Rather, at the end of the quotation a basic 
question comes to mind: what does the word ‘fractal’ mean? 

Facing many attempts to define the term ‘fractal’, Oliver (1992:454–455) makes 
an effort at transparency, summarizing the three kinds of requisites needed for a 
shape to be defined ‘fractal’: 1. A shape in which its Hausdorff dimension differs from 
its topological or ordinary dimension (in geometry, a dimension refers to the form in 
which an object or process is filling a space. The Hausdorff dimension is associated 
with the form in which a self-similar object or process fills a space, including irregular 
sets that have noninteger exponents reflecting their dimension);50 2. A shape in which 
its parts, when amplified, reveal a similar amount of detail to the whole of which they 
are a part; and 3. A strictly self-similar shape with fractal dimension (usually its 
Hausdorff dimension), showing exactly the same pattern for every one of its infinite 
scales or recursions. With this third definition—used by mathematicians such as 
Robert Devaney [1987, 1992]—the Mandelbrot set, one of the most popular objects 
in fractal geometry, “is not a fractal” (see Oliver 1992:455).51 Accordingly, the finite 
self-similar curve of the devil’s staircase is neither a fractal (see Peitgen, Jürgens and 
Saupe 2004:212).52 

In practice, the first and third requirements can merge into a rigorous definition 
of ‘fractal’, without regard to any intuitive aspect of self-similarity. This study uses 
this combination of Hausdorff dimension and strict self-similarity as a compact 
definition for ‘fractal set’. In contrast, this study conceives that the objects or 
processes that nearly match the second type defined by Oliver (1992:454–455), are 

                                                 
49  Subchapters 2.5., 3.3. and 5.2. bring elements to explain how the idea of ‘theme and 

variations’ is related to the notion of self-similarity, but not necessarily to the notion of ‘fractal’. 
50 For more information on this topic, related to music, see the section Fractal dimension: An 

issue of pertinence (pages 300–303). 
51 This notion matches with the idea expressed by Mandelbrot in the previous quotation, about 

the Mandelbrot set. 
52 The mathematical concept of devil’s staircase is explained on pages 354–363. 
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relatively self-similar objects or processes that may or may not have a fractal 
dimension. After this operative decision, fractal processes and objects are reduced to 
a generalized deductive and analytical treatment, distinct from processes and objects 
with relative or limited self-similarity. 

A fractal exhibits a self-reference relationship between its extent and its extension 
rules: “The prototypical example for a fractal is the length of a coastline measured 
with different length rulers. The shorter the ruler, the longer the length measured, a 
paradox known as the coastline paradox” (Weisstein e2008). The coastline paradox 
occurs in music during the measurement of complex structures such as those that 
comprise statistical distribution of values in a whole repertoire—a massive amount of 
information—for instance, in a musical style in its entirety (e.g. Bigerelle and Iost 
2000, Das and Das 2006, Su and Wu 2006), or in an acoustic self-similar complex 
such as a timbral frequency spectrum, or a turbulent air flow in a flute’s beveled 
nozzle (see Bader 2005). Hsü (1993) also considers the self-similar shape of a melodic 
and contrapuntal structure of a polyphonic piece of music, compared to its own 
length-reduction on the proportion 1, 1:2, 1:4, 1:8, 1:16…, with an attainable fractal 
dimension (see also Dagdug et al. 2007). In this complexity, to be a fractal the musical 
object or process “need not exhibit exactly the same structure at all scales, but the 
same ‘type’ of structures must appear on all scales” (see Weisstein e2008). In this 
manner the fractal notion is associated with music in the form of two mental 
operations: stereotype, in the case of fractals whose simple scalar repetitions can be 

assimilated by intuition (e.g. Sierpiński’s triangle), and abduction, in the case of the 
infinite potential of the map within the map (the case proposed by Peirce).53 None of 
these operations signifies, however, a direct adaptation, so the deterministic rigor on 
the concept of “musical fractal” or “fractal music” becomes superfluous.54 That of 
musical self-similarity, instead, occupies most of the development of this research. 

Summarizing, virtually all musical objects and processes with self-similarity are 
not necessarily considered here as fractal sets; and even though they can be measured 

                                                 
53 Regarding the concept of abduction, formulated by Peirce, see pages 23 and 459. On the 

Sierpiński triangle, a system of equilateral triangles whose space is occupied by identical objects 
in its parts and its whole, see graphic representation in ◊330a (page 65). 

54 See discussion in subchapter 5.5. 
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by a fractal dimension, they are never strictly and absolutely self-similar i.e. they are 
never autoidentical at several points in their many structural layers. As Cooper 
(1991:59) states: “musical self-similarity, like that of most natural objects, is largely 
statistical rather than absolute, and limited to a small number of scales.” Moreover, it 
is noteworthy that the fractal notion, and especially the concept of fractal dimension 
are not always associable with intuitive, aesthetic or idiosyncratic qualities that are 
crucial in music. For instance, Hsü (1993:27) acknowledges that “there is no 
resemblance to fractal geometry” in many pieces of “modern music”. And even when 
fractal dimension can be alleged in a musical piece, this issue may be irrelevant for 
hearing and aesthetic appreciation. Echoing Schoenberg (1967:25), when he talks 
about musical symmetry, one may say that ‘exact self-similarity is not a principle of 
musical construction. Even if many local strata within a set repeat the general features 
of the same set, the structure can only be called pseudo-fractal ’.55 

This notion extends to the critical treatment of the revised literature. For 
instance, it is assumed that the “musical fractals” referred to by authors such as Dodge 
and Bahn (1986:185), Madden (1999/2007, 2005), Hudak (2000), and Hwakyu Lee 
(2004), are actually pseudo-fractals, quasi-fractals, or imaginary representations of a 
fractal set via mental operations such as analogy, stereotype, or abduction, commonly 
crossing cognitive domains as conceptualized by Zbikowski (1997).56 From this 
perspective useful concepts come into play, such as self-affinity, pre-self-similarity, 
statistical and functional similarity, and self-dissimilarity, discussed in due course. 

                                                 
55 Arnold Schoenberg’s referred text appears on page 44 (subchapter 2.3. devoted to musical 

symmetry). 
56 See section 1.2.3. 
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1.4. Content organization 

This study is divided into two major parts: I. Theoretical–Methodological 
Framework and Basic Definitions; and II. Self-similarity in musical information and 
proportion: From Simple Synecdoche to Complex Intersemiosis. This division 
reflects the need to acquaint the reader with aspects of linguistics, semiotics, and 
mathematics, by linking them to specific problems of musicology, and then offer a 
variety of examples to prove the usefulness of the concepts introduced in the field of 
music theory, in the second part. 

A secondary division separates this study into six chapters. The first of them 
corresponds to the Introduction, summarizing the essential issues that are later 
developed, and sketching their lines and ways of working. The second and third 
chapters present basic and special concepts, respectively, in order to connect general 
knowledge with specific definitions, which are central notions for the continuation of 
the study. 

The fourth chapter summarizes the modes of self-similarity in the nature of 
musical codes and messages within their strata corpuscular (atomic conception of 

sound), mechanical and acoustical, biological, phonic-phonological, cultural and 

ecological, in a primary context of correlated self-similarity—a field in which 
intersemiotic translation occurs, necessarily involving music. The final subchapters 
(4.7. and 4.8.) proposes a reinterpretation of the theories that tie music with 
language, suggesting that grammar and idiolect are linked in a dynamical system with 
self-similar features, complementary to the ‘migrations’ between ecolect and context. 
In the midst of these migrations is where musical style emerges and is defined and 
transformed in cycles of spirals that never return to their initial states. In this sense, 
music and language share a general description as partially (pre)determined systems, 
simultaneously with variable features—such as emotion, intention and social 
transformation—highly sensitive to context and, therefore, undetermined. 

The fifth chapter presents Shannon’s information theory (1948) to explain the 
consistency between musical code and musical message; introduces the synecdochic 
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function, and reviews the most common techniques for obtaining information in data 

sets with self-similar features. Using basic methods of measurement such as arc 
diagrams, type intervals, and products and coefficients of similarity, to more sophisticated 

statistical tools such as visual recurrence analysis, examples are given of the different 
forms of self-similarity between sets and subsets in different forms of musical 
structuring. The final subchapter (5.5.) proposes hypotheses on how deterministm 
and indeterministm are coordinated forms of knowledge and intuition, that actually 
cooperate in different strata of intersemiosis. Particularly significant are the debates 
on the fractal dimension as “an issue of pertinence”, and on pure language related to a 
(chimerical) fractal language. This discussion also gives opportunity to detail 
common misconceptions about fractals associated to language and music. 

The sixth chapter explains the concept of proportion as an effect of specific 
relationships of self-reference and intersemiosis between geometry, arithmetic and 
aesthetic intuitions. It also investigates how the main constructive systems of the 
golden ratio are in fact self-similar systems—as well as its symbolic and functional 
conversions into musical self-references, as intersemiotic complexity. Finally, this 
chapter explores the concepts of ‘antiproportion’ and ‘self-dissimilarity’ as necessary 
contrasts to the conventions of symmetry, and as (inter)semiotic functions increasing 
the complexity of musical meaning. 



 

 
  

Chapter 2 

Common notions 

There is no doubt that what is called form 
is the sum total of all moments of logicality or, 

more broadly, consistency of art works.  

Adorno, 1956/2002:203 

2.1. Relation 

“It suffices ‘to perceive something’, for establishing a relationship”. In this sentence 
there is already a set of relations characterizing the same sentence as a whole: such 
relations may be hidden in the sentence syntax, the sequence of phonemes 
represented by its writing, the consonance of its vowels, etc. Just as it happens in this 
example, the primary ideas of thing, object, subject, or fact, are products of a 
relationship between percipient and perceived, or between apparent causes and 
corresponding actions (see Davidson 1963). After this overwhelming generality, 
however, one may notice that there is a tendency to grouping ‘chunks’ (e.g. things, 
objects, ontologies) of what is perceived, in operative categories (see Child 1994:68 et 
ss.; Givón 2002:40–41). 

Due to the fact that the perception of spatiotemporal continuum is contrary to 
the individuation of operative categories, cognition divides (i.e. analyzes) the 
continuum in ‘chunks’, and relates them to ‘what is around’, in order to associate 
objects with context, by means of assimilation and appropriation. This form of 
association leads to existence of chunks, that in the logic of language corresponds to 
an existence of particulars and wholes. In this fashion, wholes (i.e. sets) are assemblies 
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of particulars that may have characteristics equal (i.e. identical) or approximately equal 
(i.e. similar), to enable them to be grouped within a common set (i.e. category). In 
turn, sets can have functions (i.e. operational, multi-relational characteristics) to 
enable them to establishing relationships with other sets. This game of functional 
assemblies contributes to mind’s prospection and causality skills, to achieve systems 
constructing reality (see Bateson 1972, Damásio, 1994, 2000). 

A category of continuous relationship between sets of pulses of perceived 
ontologies—resulting from the allocation of biological endorhythms upon the 
configuration of a physical surface—leads to the sensation of time.57 Another category 
of continuous relationship—attributed to the arrangement of ontologies based upon 
the body’s self-mapping—leads to the feeling of space. Another category of 
continuous relationship—that of sound vibrations, i.e. audible repetitions or 
frequencies—constitutes the basis of musical sound which, for its analysis, is 
segmented by discrete sets: discontinuous assemblies of accounting units. 58 
Nonetheless, even analytical thinking requires an agglutination of parts by specific 
relationships, grouped by families or hierarchies, or by qualities related to categories 
that contribute to establishing systems of comparisons and constrasts. 

                                                 
57 See Augusto Fernández-Guardiola “El concepto del tiempo” [‘The concept of time’] in (J. R. 

de la Fuente and F. J. Álvarez-Leefmans, eds.), Biología de la mente, FCE, Mexico, DF, 1998; p. 
314. The author talks about “the idea of time”. It is doubtful, however, that such an idea can be 
isolated from time itself, which in any way “is a product of our endogenous rhythms”. Strictly 
speaking, more than an ‘idea’, time is an inherent characteristic of cognitive processes in general. 

58  This does not suggest that music, made in time and space, must be perceived as a 
segmentation. It is perceived, rather, by its tendency to continuity. Analytical segmentation is a 
process that follows the perception of music. As Knopoff and Hutchinson (1981:19) consider: 
“A scale for the musical parameters […] other than pitch or pitch differences, is hardly an array 
of discrete values but is instead best described in terms of a continuum of possible values. Thus 
we may imagine that music is, in some significant part, constituted out of a superposition of a 
number of continuous, expressive parameters.” This idea coincides with Cooper and Meyer 
(1960:2) quotation on page 8 (see footnote 15). 
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Establishing relationships to achieve coherence is a priority of musical 
discourse.59 The absence of signs leading to the interpretation of basic relationships 
in a musical structure by reference to a tradition, commonly leads to a feeling of ‘lack 
of coherence’, similar to the incoherence observed in linguistic incomplete 
relationships. The search for relationship in music is described by Stravinsky 
(1942:69–70) as an ‘instinct of coherence’: “by instinct we prefer coherence, with its 
silent power, instead of the restless forces of dispersion; we prefer the domain of order 
instead of the domain of difference”. This study deals with this kind of relationships, 
aimed at the identification of something, or the preference for something through 
intuitive comparison. This implies that the traits of ‘inconsistency’ and ‘difference’ 
are equally important by a fundamental notion of contrast, giving meaning to the 
similarities of a system. 

2.2. Repetition 

Repetition is the frequency of an identity regarding itself. As intuitive relationship, 
repetition is virtually in all semiotic levels of music and most forms of continuity. In 
musical metre, the repetition of a series of pulses determines the identity of the 
measure. In addition, rhythm is characterized by a certain repetition of pulse as 
organized gesture; melody implies interval repetitions within a same scale, and 
harmony is based on pitches distributed in time, including functional relationships 
associated by repetition. The simplest song-form involves repeating a first section 
shaping most of the overall structure; this way of structural rounding is a trend 
reappearing in different vocal and instrumental forms, in different musical contexts. 

In musical traditions as diverse as the vocal-instrumental festive repertoire of the 
Hani and Yi peoples from the Yunan province of China, and the homologous 
repertoire of the Uto-Aztecan family, extended in North and Central America, the 
                                                 

59 See Cruces (e2002). This author conceives four levels of musical coherence: grammatical, 
textual, contextual (pragmatic or interactional) and sociocultural. For the present study textual 
coherence is associated with symmetry, repetition, and other ways of figurative or Gestalt 
consistency; sociocultural coherence is associated with symbolic and representational choices. 
These levels are interrelated and can interact—in co-operation or in difference—within a same 
system, through corresponding layers of self-similarity and self-dissimilarity. 
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sequential repetition of one element following another has a crucial role for musical 
structuration. Accordingly, Hofman-Jablan (e2007:6.2) thinks of repetition as a 
universal aspect of music, connecting a wide variety of perceived phenomena: 

Most natural laws and occurrences, such as the coming and going of waves, the change of 
day and night, the changing of seasons, tides, breathing, heartbeat, pendulum movements, 
etc., are all different manifestations of periodicity in time. Rhythm is the repetition of 
occurrences or states in identical time intervals. 

Based on a wide variety of sources, Ockelford (2005) concluded that repetition is the 
most important kind of relationship in building the sense of music, through memory. 
This includes repertoire composed under ‘no repetition’ axioms, such as integral 
serialism in which a tonal repetition model has been replaced by a gestural repetition. 

A universal feature of music, repetition is decisive in shaping musical style. Voices 
pointing out the importance of repetition in different musical traditions and contexts 
are manifold: “repetition is a feature of all music […] all music contains repetition, 
but in differing amounts and of an enormous variety of types” (Middleton 1990:139); 
“repetition has been the decisive factor in giving shape to music [...] the various 
devices used to integrate form are, again and again, nothing but methods of 
repetition” (Chávez 1961:38,41); “Intelligibility in music seems to be impossible 
without repetition” (Schoenberg 1967:20). Among those who acknowledge 
repetition as a basic element of music, Ruwet (1987:3), at the beginning of his text on 
musical analysis, puts the emphasis not so much on repetition itself, but on the 
meaningful alternation between what is repeated and what is not repeated: 

I shall start from the empirical appreciation of the enormous role played in music, at all 
levels, by repetition, and I shall try to develop an idea proposed by Gilbert Rouget: 
‘...certain fragments are repeated, others are not; it is on repetition—or absence of 
repetition—that our segmentation is based’. 

As Ruwet–Rouget understand it, segmentation is related to a cognitive principle: if 
time and space are a continuum, segmentation corresponds to how mental processes 
are able to establish identities. Without such segmentation the ontologies of language 
and music would be impossible. In addition, it can be said that repetition and non-
repetition are notions analogous to similarity and difference, to be the starting point 
for any form of musical meaning by reference or instance. 
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In any musical structure, the measurement of the recurrences should make 
explicit the relations of continuity and discontinuity, distinguishing them from those 
relations which, although absent, are also relevant in music. Referring to the 
foundations of musical analysis, Dunsby and Whittall (1988:4) note that: 

An analytical plan will probably display certain fundamental features of musical 
organization that tend to occur whatever the period, or style, of a work: repetition, 
variation, contrast, connection, juxtaposition—bearing in mind always that ‘the 
maximum coherence’ implies a unity that embraces diversity, an emphasis on musical 
similarity rather than on musical contrast. 

Among the few treaties dedicated exclusively to the subject of musical repetition, the 
one written by Ockelford (2005) asserts that the creation and cognition of musical 
structures come from imitation, which in turn comes from repetition. Ockelford (op. 
cit.:6–12) claims particular importance to the ideas proposed by David Lewin (1933–
2003), in order to establish a music theory that assumes the question of ‘what is taken 
into account’ as central principle establishing a conceptual domain. This principle 
involves an epistemology of music constituted by its repetitions and similarities; and 
such epistemology strengthens the concept of a ‘neighbourhood’ between two or 
more elements or properties in a given set. Directly, this epistemology affects the 
criteria of space and relationship, and models the overall configuration of musical 
parameters. 

Nonetheless, musical repetition is never purely quantitative. During listening, 
repetition demonstrates its high value by the qualitative recurrence of an element (a 
subject, a gesture, a pitch in a scale) or a relationship (of a specific interval, of a form 
of vibration in an acoustic system), strengthening or weakening the coherence of 
musical discourse and expression. In these terms, according to Stephen Peles 
(2004:58), “regularity and symmetry can contribute to musical coherence, [as] they 
are associated with repetition.” 

The repetition of musical elements can have—as analogously happens in verbal 
language—an expressive and rhetorical profile. In a significant way, this repetition 
serves to fix in mind the symbolic features of a musical identity. As used in speech, 
these symbolic aspects can gain psychological depth when they are omitted in a 
strategic way, so that the lack of repetition, as suspension or withholding of 
expectation, can have a greater effect than the simple repetition. Frequently, this 
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exchange between the mere execution of repetition and its restricted distribution, 
gives depth to musical planes, providing them with more interest as processes of 
tension and figuration. 

Finally, it is essential to consider that musical repetition, like musical symmetry, 
never occurs in an absolute or perfect manner.60 Unlike what may be understood in 
pure mathematics, the ideal accuracy of musical repetition is completely submitted to 
the continuous divergence of its interpretations. This notion is developed especially 
in subchapters 2.3. (on musical symmetry), 3.3. (basic definition of self-similarity) 
and 3.7. (musical recursion), to be taken as operational extensions of what is specified 
here. 

2.3. Symmetry 

In almost all musical treatises and in the music they reflect, there is a plethora of 
relations and functions of symmetry. Consequently, the notion of symmetry in music 
is too broad to be covered at once; besides, the subject has already been addressed by 
many authors.61 Suffice it to summarize, then, general aspects of symmetry directly 
involved with musical self-similarity. 

Symmetry is an intrinsic property of a set of relationships that remain invariant 
under such kinds of spatial transformations as reflection, inversion, recurrence, 
rotation or other abstract operations (see Thompson 1917, Weyl 1952). Under this 
general definition, the concept of identity of an element, at least as a geometric and 
musical entity, is closely linked to a symmetry that characterizes it and makes it 
unique or special in the way of relating to other elements or identities. As noted by 

                                                 
60 Walter Benjamin (1936), Theodor W. Adorno (1955), and Jacques Attali (1977) discuss at 

length the issue of mechanical repetition at the industrial and commercial processes of modern 
music. From a sociological view, they criticize forms of automated replication and reproduction 
as an impoverishment of music. However, from the perspectives of experimental psychology 
and cognitive sciences, neither this form of repetition can be absolute, as for being attested 
music depends on the continuous variations of perception (as suggested in graph ◊450, page 
173). As Toop (1999:201) suggests, for music the absolute exactness of the repetition is of 
secondary interest. This matter is developed in subchapters 5.5. and 6.6. 

61 Among others: Kandinsky 1926; Chávez 1961; Howat 1977, 1983; Lerdahl and Jackendoff 
1983; Estrada and Gil 1984; Mazzola 1990; Hahn 1998; Lerdahl 2001; Madden 2005; Vázquez 
2006; and Hofman-Jablan e2007. 
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Weyl (op. cit.:3), symmetry gathers in a compact way the notions of unity and 
relation: “symmetry is [...] something like well-proportioned, well-balanced, and 
symmetry denotes that sort of concordance of several parts by which they integrate 
into a whole.” In music, symmetry covers most of the operations and functions of a 
constructive element in the mixture with which it interacts. This notion of symmetry 
has a simultaneous realization in musical time and space. 

For the ideal representation of music there is a correspondence between intuition 
and rational justification of symmetry, as in the following example, which suggests a 
repetition of spatial values with a complete feasibility of comparison between them. 
These values also reflect a musical intentionality for the ordering of temporal 
reciprocity, with equal durations, and prosody, with an accentuation equally 
distributed: 

 
◊230. Schematic representation of symmetry as musical repetition and emergence 

of distributive hierarchies (adapted and simplified from: G. Weber 1821/1851, 
I:92–97). For each item repeated there is an axis of symmetry. At the same time, 
for every level of grouping there is an axis defining a) the repetition of the 
original item, b) the repetition of the original system, and c) the repetition of a 
and b, or generalized set. 

 
The reason for this idealized representation is to propose a rigid order, similar to that 
proposed by a grammar rule, in order to implement a general framework of usage, 
and—on the other hand—facilitate a consensus on its interpretation, comparable to 
a flexible order, decisive for the pragmatic orientation and the intentional nuances of 
music, by analogy with what happens in verbal language. From this very simple case 
(◊230) may derive other relations of imperfect or incomplete symmetry, and other 
arrangements of symmetry / asymmetry in varying degrees, as suggested in ◊231. 
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a) 

 

b) 

 

c) 

 

d ) 

 

◊231. Examples of an identical time-span system with symmetric alterations: 
a) bilateral symmetry with prosodic asymmetry (the orthographical difference 

suggests a prosodic shade differentiation); 
b) bilateral symmetry with articulatory asymmetry (the tie represents a change 

of articulation); 
c) radial symmetry with prosodic asymmetry; 
d ) bilateral symmetry with prosodic and articulatory asymmetry (the length of 

both segments is the same, but their prosody and articulation differ). 

Carlos Chávez (1961:47–50) notes that “rhythm and symmetry are the essentials 
for musical construction. Rhythmical and symmetrical repetition operate as the basic 
and universal principle for rudimentary as well as larger structures.” Chávez conceives 
four fundamental types of symmetry in music, from a basic relationship of identity: 
(a) bilateral symmetry, (b) reflection or radial symmetry or mirror, (c) ‘recurrence’ or 
inverted symmetry or cancrizans, and (d ) double inversion symmetry or reversed 
cancrizans: 

 

 
◊232. 
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To facilitate their formalization, Estrada and Gil (1984:31) labeled these typologies 
with the letters dbqp, corresponding to their symmetrical accommodation into a 
musical structure; for example: 

 

 
◊233. 

 
These four typologies are the foundations of a system of similarities established in the 
music of the Western culture since the Middle Ages to the present. The canon, one 
of the most exploited resources after the eighth century, implements “four forms of 
movement […] the initial movement, its inversion, its retrograde, and the inverted 
retrograde” (Hahn 1998:405). Equally, Estrada and Gil (1984:31) note that “The 
recurrence, cancrizans, like the reflection, mirror, are formal procedures of 
counterpoint. In the twelve-tone technique they are the basic operations for the 
series, and in integral serialism, besides pitch structuration, the series orientation 
affect length, timbre, and loudness.” These authors undertake an analysis of the orbits 
of the cube,62 assuming that it consists of a symmetry that “can be useful” in a 
comparative analysis of tonal harmony.63 

                                                 
62 The orbit of a geometric figure is the set of the characteristic relationships between the 

points of the geometric figure that allows us to define it as such. For example, the set of 
relations among the points forming a cube fulfill the orbit of the cube. Correspondingly, the orbit 
of a point x in X is the set of elements of X to which x can be moved by the elements of G, 
where G is a group acting on a set X (in this example, a geometric figure). 

63  To this end, Estrada and Gil (op. cit.:14–15) suggest distributing the intervals of tonal 
harmony within the orbit of the cube, to make them coincide with the cube’s eight vertices 
(analogous to the elements of the octave), twelve edges (intervals of second, third and fifth), 
twelve lines diagonal to the faces (intervals of second, third, fourth, sixth and seventh), and six 
principal planes (intervals of second, third, fourth and sixth). 
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Witnessing a vastness of possibilities for adapting symmetry into music, this 
study focuses on a limited selection of relations. Preference is given, thus, to the scalar 
symmetry in which some typical relations featuring a particular process or object are 
repeated or transformed within a more general structure. In consequence, special 
emphasis is paid on the synecdochic function that operate through the symmetric 
identification of the whole in its parts, or of the part in its whole. 

Regarding the acoustic frequencies integrating a tone, the typical relationship 
between fundamental and first harmonic complete a symmetry that extends to 
smaller intervals into a spectrum which can be analyzed as a Fourier series.64 
Concordant to graph ◊230, in this case the harmonic intervals are also ‘easier’ to be 
perceived and described when they are doubles or halves. As a matter of fact, the best 
known examples in Western tonal music are the intervals of octave (the double of the 
base or fundamental frequency, equivalent to the ratio 2/1), and fifth (the half of the 
base frequency, equivalent to ratio 3/2, whose metrical interpretation, called 
sesquialtera, is a ubiquitous proportion in many different musical traditions).65 

It seems obvious that any set of frequencies represented as integer (pitch, tone, 
note) can be represented equally as a sum of two halves. In successive layers, the total 
of parts building up a set of metric pulses, complete a symmetry by the relationship of 
halves made of halves (see Zuckerkandl 1956:179). This model is useful because       
—perhaps due to an empathy with the human symmetry—it is much easier to 
identify halves or doubles, and pair sets in general, than odd, asymmetric sets. It is 
clear, however, that this is a stereotype and an overall summary of relationships that 
do not really exist, neither in the body symmetry nor in music, but as an idealization. 
This is why Arnold Schoenberg (1967:25) conceives that: “Real symmetry is not a 
principle of musical construction. Even if the consequent in a period repeats the 
antecedent strictly, the structure can only be called quasi-symmetrical”. 

According to Chávez (1961:47), musical symmetry “is an adjective quality 
implying the existence in time or space of two or more equal or identical elements, 
placed at equal intervals or distances”. For this description, the word ‘adjective’ has a 
special significance, as it suggests that symmetry does not mean exactly the same in 

                                                 
64 See subchapters 4.1. and 4.2. 
65 On this particular see also figure ◊310, within the context of analogy. 
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music and in mathematics: for the latter symmetry is ‘substantive’, it is a primary 
category of the mathematical thought. Rather, musical symmetry is a category always 
subordinate to sonority. This is thoroughly confirmed by Hofman-Jablan 
(e2007:5.1.) noting that the mathematical symmetry is not completely equivalent to 
the musical one, but analogous: 

[W]e have translated the terminology of the theory of symmetry to the language of music 
and have established the relationship between analogous rules. Because of the specific 
nature of the laws of symmetry in music, the theory of symmetry laws do not permit their 
direct (mechanical) transposition and application. This is why it is necessary to first define 
all specific properties, in the first place those dealing with local and global symmetry, and 
to create a special system of symmetry laws […] 

In parallel to what is discussed on the Pythagorean dilemma at the beginning of 
the Introduction, this study suggests that the principles of symmetry stimulate a 
confrontation between what is perceived as feasibility of comparison, and what is 
proven mathematically by statistics and geometry. This discussion extends 
throughout the following chapters, going deeper into the concept of musical self-
similarity and its intuitiveness. 

 
Isometry 

In mathematical parlance, the term isometry refers to a relationship of equivalence 
and correspondence between each of the elements of a set, preserving the distances 
along a set transformation (see Mason 1969:381). By this definition, any musical 
invariance is isometric; therefore, musical (self-)similarity—an invariant 
phenomenon—implies a kind of isometry (from Greek ισός , same, and μέτρον, 
measure), including identity, equivalence and proportional sameness. 

The replication of the unity of any musical symmetry operates on a basic relation 
of isometry, which Hodges (2003:98) represents by the equality of two adjacent 
symbols: ●●. Musical isometries can have a variety of analogies, so that any simple 
repetition can be the starting point for a self-referential system.66 For example, the 
simplest musical isometry, which ratio is represented as 1:1, has the analogies of 
unison in a harmonic interval, whole measure in a metric interval, or whole period in a 

                                                 
66 For an operative definition of ‘self-reference’ see subchapter 3.6. 
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phraseological interval. Hodges (ibid.) explains that, in their spatial representation, 
the four basic kinds of musical symmetry (see ◊232) operate under the principle of 
not altering the distance between two points in the plane: “Transformations with this 
property are called isometries because they don’t alter the scale of distances”. For the 
same reason, isometries are often a defining feature of self-similarity in music, holding 
relations of identity and equivalence at different scales.67 

Setting the self-referential foundations of music, the isometries have a key role in 
the construction of musical meaning, as repetitions consolidating the periodic form 
of a recurrent pulse or a harmonic system. In a practical context, a tuning fork or a 
metronome beating at equal intervals, supply the ear with referential isometries for 
the articulation of music. Then, the isometries act as a rigid frame with which 
repetition subordinate recursion, of flexible nature.68 

By repeating patterns uniformly, the instrumental forms and the typical metre of 
a stylistic repertoire make use of isometries as structures for general referentiality (see 
Katzarova 1970:31–32). Resources like the repetition of a measure in a uniform 
metrical scheme, or a uniform figure, or a section completing a larger uniformity, 
work as functional references after an isometry. A similar relationship does happen in 
the functional use of the unison and the doubling of harmonics, as acoustic 
technique in classical instrumentation. Furthermore, conceiving that such isometries 
operate in a very wide variety of layers and parameters, it can be stated that a whole 
repertoire plays a structural role by its repetitions, involving (pre)self-similar 
relationships.69 This outlook becomes more complex when one estimates that 
musical proportions, and not only musical repetitions, operate as analogies of a 
primary isometry, replicating itself at a smaller scale. Accordingly, the musical styles 
conform self-similar structures within which there are varying degrees of 
identification with an original reference, transferred by isometries and isomorphisms 

                                                 
67 For example, in chapter 6, when comparing ◊620Ca with its origin ◊620Aa, the distances 

between specific subsets of points are equivalent. In this example, by duplication of the original 
design, it appears that some distances are divided or multiplied by 2; isometries prevail as basic 
structural relationships. 

68 On recursion and recursiveness, see subchapter 3.7. 
69 See subchapter 3.8. 
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of key importance to the listener’s memory, and to the collective memory of a 
musical tradition.70 

 
Isomorphism and self-similarity in music 

A musical system that preserves sets and relations among elements, is called 
isomorphism (ισός , same, and μορφή, form). Echoing John D. Cuciurean (1997:1), it 
can be stated that ‘the unfolding of a compact set into a larger structure exhibiting an 
isomorphic relationship with the smaller set is the essence of self-similarity’.71 Such a 
set can be constituted either by algebraic or geometric relations, and set in time and 
space, so the basic musical relationships may behave in a tendency to isomorphism  
—or isomorphisms of isomorphisms. If such an isomorphism appears in several scales or 
subsets of a universe, then it is said that there is a self-similar musical relationship. 

Cuciurean (cit.), and later Amiot (2003), Vázquez (2006:273–276), Murphy 
(e2007), and Ilomäki (2008:35–53), interpret the consistency between isomorphisms 
and functional similarity as the basis for musical structuration, since such consistency 
produces “maximal diversity on the surface, whilst maintaining a simple underlying 
structure” (Cuciurean 1997:1). Murphy (e2007) finds also that there are degrees of 
musical consistency ranging from generalized self-similarity to the progression of 
inconsistency in a self-similar model; this relationship is called self-dissimilarity—a 
concept developed here in subchapter 6.6. 

 

                                                 
70 See subchapters 4.5. and 4.6. 
71 Cuciurean (op. cit.) emphasizes this property in group algebra, not in set theory. However, the 

principle of self-similarity still the same. The original text says: “The unfolding of a compact 
algebraic group into a larger structure exhibiting an isomorphic relationship with the smaller 
group is the essence of self-similarity”. 
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Musical automorphisms 

A transformation is a ‘map’ of an object or process, into another, corresponding and 
symmetrically similar object or process. A vast array of musical objects and processes 
are transformed in different operations such as dilation, expansion, reflection, rotation 
or stretch.72 Some of these transformations are characterized by an invariant line and a 
scale factor, and many preserve sets and relations among their elements; therefore it is 
said that they are isomorphic. An isomorphism mapping a group onto itself in a one-
to-one account of elements and relations, is an automorphism (see Morris 1987:167, 
Lewin 1990:86–87). Automorphisms are ‘engines’ of self-similarity, because they 
preserve distances, intervals and functions of identities at different rates of spatial and 
temporal coordination. 

Lewin (1990) suggests that pitch-class transformations commonly correspond to 
isographic networks (Klumpenhouwer networks) related to specific automorphisms. 
Klumpenhouwer (1998:82–83) also hypothesizes that—for a generality of harmonic 
systems—there are commutation, combination, inversion and partition ‘protocols’, 
grammatically enabled as algebraic properties characterizing musical constructions. 
Accordingly, Carey and Clampitt (1989:196) associate scalar automorphism as a pre-
requisite for well-formedness in musical (grammatical) consistency. Nonetheless, 
automorphisms do not only occur in harmonic structures, but also—and at least—in 
a variety of metric, rhythmic, melodic, counterpunctual and textural relationships 
(see Amiot 2008:164–165,171). Because of this condition, Chapter 5 pays special 
attention to a variety of musical self-similarity related to isomorphisms and 
automorphisms (in particular, see 5.4. and 5.5.). 

                                                 
72 In this context, the concept of ‘affine transformation’ is introduced in following subchapters 

2.4.–2.5. It is further developed in 6.2.–6.5. 
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The sovereignty of the sympathy–antipathy pair 
gives rise to all the forms of resemblance. 

Michel Foucault, 1966:40 

2.4. Functional similarity 

The concept of similarity is extended to virtually all uses of language, and permeates 
all forms of human communication based on the invocation of signs of some things 
in others, as relationships of identity, equality, proximity and association. Typically, 
the notion of similarity is latent in the construction of categories and processes of 
perception and comparison, so it is difficult to grasp the same notion for its analysis 
as it involves its own elements for description and definition. It is therefore essential 
to narrow a definition of similarity, at the same time distinct from and connected to 
other concepts to which it is often associated. 

The term functional similarity means the order established between two systems 
of comparable relationships.73 “Order, then, can be identified with similarity, and 
disorder with difference” (Feibleman 1968:3). According to Rips (1989), the decision 
to attach an object to a category depends on the degree of similarity assigned to that 
object, regarding the known members of that category. A category is each class in 
which, by their similarity, elements or relations are grouped in ‘families’. 

To put this in more cognitive terms, if you want to know whether an object is a category 
member, start with a representation of the object and a representation of the potential 
category. Then determine the similarity of the object representation to the category 
representation. If this similarity value is high enough, then the object belongs to the 
category; otherwise, it does not. […] This simple picture of categorizing seems intuitively 
right, especially in the context of pattern recognition. (Rips 1989:21) 

Despite the transparency of this definition, there are criticisms against it. These 
criticisms come from philosophical discussions on similarity, particularly in 

                                                 
73 A special case of functional similarity is the mathematical functional similarity (e.g. in a logistic 

map). In order to avoid confusion along this study, employing this term, the definition of 
mathematical function ( f ) is given in a proper context, in subchapter 6.2. (see especially pages 346–
348). 
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Goodman (1970) and Quine (1969), which have gradually gained ground in 
psychology. Accordingly, Murphy and Medin (1985) point out that similarity is a 
notion too weak to explain categorizations in an appropriate manner, and 
empathizing with Goodman (1970), they concludes that the similarity is highly 
relative and context dependent. Especially because judgments of similarity depend on 
objects, properties, relations and categories learned through experience and 
stereotyped by culture (see Rips 1989:21–22; Lakoff 1987:281–282). 

The functional operation of a particular group of temporal, spatial and causal 
relations in a musical structure, facilitates the investigation of similarity degrees to 
explain—at least partially—such a structure.74 But the extension of the criteria of 
similarity in music as a language has several obstacles. This issue is related to the 
difficulty in distinguishing the so-called universals of musical language (see Padilla 
1998, Mâche 1998). In short, whether such universals do exist, there are also 
relationships between them, knowable as fundamental similarities. Kaipainen 
(1994:50) proposes the same argumentation in logical terms, saying that if music is 
permissible as a special case of cognitive processes in general, then “anything said 
about general cognition can also be said about music”. 

The objections of Goodman (1970) and Quine (1969) address the ‘uniqueness’ 
of the similarities outside their own context. Similar objections can be argued against 
the concept of a ‘universal music’ with fixed values. In any case, the identification of 
similarities in music is limited to the analogy and comparison of knowable practices 
and measurements, typified within a specific tradition and encoding, and subject to a 
cultural orientation, as happens with language. The similarities and differences in 
music “cannot be explained adequately as part of a closed system without reference to 
the structures of the sociocultural system of which the musical system is part, and to 
the biological system to which all music makers belong” (Blacking 1973:30–31). 

In an intuitive manner, Stravinsky (1947:32) observes that “Similarity is hidden; 
it must be sought out, and it is found only after the most exhaustive efforts”. 
Consistently, Rips (1989) and Smith (1989) consider that similarities can be found in 
                                                 

74  Foucault (1966:321) acknowledges that such a similarity is established by affinity and 
sympathy between two things, “the sign of affinity is analogy; the cypher of sympathy lies in 
proportion.” The close relationship between analogy and proportion is studied later in 
subchapter 3.1. 
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a variety of ranges between cognitive surface and cognitive depth. A superficial 
similarity would correspond to the attribution of common properties between two 
sound frequencies emitted by two different physical sources. A deep similarity would 
be, by contrast, that which can be explained as a psychologic link in the use of both 
sound frequencies with different origin, within the context of a convention (a treatise 
of harmony, a specific grammar orientation, a contextualized use, and so on). On the 
other hand, there should be a global similarity associated with the relationships 
between cognitive system networks, for example in the length and pitch classification 
within a chord; and a dimensional similarity between systems of compatible 
parameters, within the relationships linking the abstract systems of a musical content, 
such as modalities, extensions, and intensions. 

Linda B. Smith (1989:173) distinguishes between perceptual similarity and 
similarity in complex concepts. With the first one she refers to a relationship between 
comparable groups, as just described above; with the second one she refers to a degree 
of sympathy in the identification of one thing respect to another, by common, 
measurable or immeasurable values. By following this approach, some examples of 
perceptual similarity would be basic ideas groupable under the types strong, sharp, or 
consonant. By contrast, some examples of similarity in complex concepts would be 
ideas groupable as proportional or stochastic similarity. This very basic separation 
already appears on the intuition with which Mandelbrot (1982:4–5) distinguishes 
two basic types of self-similarity: 

The combination fractal set will be defined rigorously, but the combination natural fractal 
will serve loosely to designate a natural pattern that is usefully representable by a fractal 
set. For example, Brownian curves are fractal sets, and physical Brownian motion is a 

natural fractal.75 

Speech and music share many relations of perceptual similarity. They are also related 
as complex systems.76 But they are also associated in a deferred way that can be 
separated as the musical similar to speech, the musical similar to non-verbal language, and 
the musical similar to itself. This concurs with Charles Seeger’s idea (1960:226), 
depicting music and speech as symbolic functional systems with cases of identity 

                                                 
75 This notion is discussed in subchapter 5.5. 
76 See the beginning of chapter 5, within the section devoted to Zipf’s law. 
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(homology), similarity (analogy), and difference (heterology). This picture is enriched 
when the analysis of the similarities reveal that there are distinct degrees within the 
same category, in which a thing or a relationship ‘is similar’ to another one. 

2.5. Statistical similarity 

For its usefulness in achieving concrete results in the exploration, analysis and 
interpretation of data concerning musical relationships, the concept of statistical 
similarity is much more relevant in this study than the general concept of similarity. 
Statistical similarity is the considerable degree of comparison between values which 
are not identical or equivalent. This notion is commonly used in computer science, 
to identify similar patterns in heterogeneous data bases, which is usually associated 
with grammatical consistency criteria (see Wang, Xu and Zeng 2006). 

A starting point in the exploration of musical similarity statistics can be the 
finding of symmetrical/asymmetrical relations, noting common figures between two 
sets of relationships. Even when it is not explicitly used, or not used with its many 
resources, statistical similarity is an intuitive and common tool for musical analysis: 
Lerdahl and Jackendoff (1983) use it to give support to their theory on grouping 
preference rules. According to these rules, at a basic level, the spanning of time and 
space determines a greater or lesser tendency toward the perceptual grouping. In the 
case of music, the ‘spaces’ are also frequencies—in the broadest sense of the term—
with grouping trends dictated by a perception and a near-term memory (Wertheimer 
1923); “groups are perceived in terms of the proximity and the similarity of the 
elements available to be grouped. In each case, greater disparity in the field produces 
stronger grouping intuitions and greater uniformity throughout the field produces 
weaker intuitions.” (Lerdahl and Jackendoff 1983:41). 

The notion of similarity is also affected by the rate of repetition of the perceived 
values. As a whole, the measurement and possible prediction of musical values by 
repetition, proximity, or functional affinity, constitute the basis of statistical 
similarity in music, and are useful to identify aspects of relation, symmetry, and 
proximity. 
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a) 

 
 

b) 

  

c) 

  

◊250. Simple symmetries with statistical similarity. In the boxes to the left, examples of 
contiguous visual empathy in two dimensions (width and height). To the right, examples 
of musical empathy in typical dimensions {x} = time, and {y} = pitch. It is worth noting 
another level of similarity shared by all these examples as representational models: the 
employment of dots and lines for suggesting structural relations (an aspect studied in 
subchapter 6.1.) The sources for this examples are adapted from (a) Lerdahl and 
Jackendoff 1983:41; and (b)–(c) from Pareyon 2004:15–16. 

The observation and classification of the frequencies (repetition) and their relative 
positions (distribution) is very important in the definition of statistical similarity. In 
◊250, for example, specific frequencies and positions are evident for each case. In (a)-
left there are two sets with two sorts of elements. Clearly, there is an immediate 
relationship between the subsets containing squares, both for their spatial proximity 
and for the affinity between the figures. The same type of relationship can be 
attributed to the subsets containing circles. Both sets grouped in (a)-left are ‘similar 
between them’ because for each case their elements are not the same and they are not 
distributed in the same way—otherwise they would be identical sets—although there 
is a partial identity when considering the relationship element by element. Something 
similar may be pointed regarding (a)-right, where there are not two different 
geometry classes, but two different pitch classes. Here again there is a spatial tendency 
for grouping equal pitches (read distributions) {F-F-F | C-C} and {F-F | C-C-C}. 
The intuited affinity in their distribution occurs by a mechanism comparable to that 
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seen between the elements in (a)-left. Nevertheless, regarding (a)-left it is worth to 
mention that the unit taken for comparison changes in (a)-right from a spatial form, 
to a temporal form (represented by coordinate x), whilst the pitch happens to be 
represented as verticality (musical frequencies in coordinate y). 

The following case in ◊250, (b)-left, shows two elements related by the length of 
their parts (1cm) but not equal in their distribution. It is not therefore the case of 
identical but statistically similar elements in a relationship that can be represented as 
4l ↔ 3l. Between (b)-left and (b)-right there is an analogous spatial distribution 
which, as for the previous example, has come to a coordination of pitch and duration. 
It should be noted that in this case there is a measurement which is not presented in 
the previous example. In this case there is a ‘scalar affinity’, because the measuring 
scales can be compared with the horizontal intervals in the analogy 1cm ~ 1sec. 

The example in (c) shows an analogy of proportional relationship representing a 
finer spatial distribution, with a hierarchical systematization in which a ‘dominant’ 
element coordinates other elements, ‘subordinates’: in (c)-left the dominant element 
is tied with the others through converging lines, whereas in (c)-right the dominant 
element appears as the reference for a group of intervals. In these two cases the 
property of transitivity is remarkable, whereby two unconnected elements show a 

relationship via a third element (in logical terms: if x ∈ A, and y ∈ x, then y ∈ A). 
Theorizing examples like those shown here, it is possible to discern the transitivity in 
transitive classes for the interpretation of functional sets in a musical structure. This 
notion is demonstrated by the examples of transformation in subchapter 2.3., and is 
developed throughout chapters 5 and 6, together with the concept of mapping 
coordinates of length, loudness, pitch, and timbre. 

Obviously, the complexity between statistically similar sets can be much greater 
than that seen in ◊ 250 (see e.g. Lewin 1990, Murphy 2007, Ilomäki 2008). The forms 
of similarity can range from the level of the sets with one or few modes of 
relationship, to systems of sets with functions of gradual similarity and diversified 
group behaviours. Consequently, the variables submitted to the analysis of statistical 
similarity can be very abundant and distinct among them. The following chapter 
gives an introduction to this diversity. 



 

 
  

Chapter 3 

Special notions 

3.1. The two modes of analogy 

In his treatise on the beginnings of Greek mathematics, Árpád Szabó (1978:144–
169) devotes many pages to discussing the classical meaning of the word analogy. In 
this discussion the concepts of musical harmony, geometric proportion, and 
harmonic ratio, are closely related. 

A first etymological approach may produce a very broad definition for this 
concept: the preposition ἀνά means backwards, following the same path, whilst the 

complement λόγος, ratio, derived from λέγειν, means to reason or discern. An analogy 
would be, then, not a reversal of things, going backwards, but rather a recovery of the 
sense of one thing into another that is comparable. The approach made by Szabó 
(cit.:145–146), however, reveals a very specific definition: 

The relation of proportion (or sameness of ratio) was called α̉ναλογία in Greek geometry. 

[…] Modern variants of the word α ̉ναλογία are to be found in all European languages. 
Moreover, they all have roughly the same meaning. ‘Analogy’ means similarity, 
conformity, relationship, or the extension of a rule to similar cases. […] It is less well 
known that this same word was not originally a grammatical or linguistic term, but a 
mathematical one. The root of the word α ̉ναλογία is obviously λόγος, which in 

mathematics meant the ‘ratio’ between two numbers or quantities (a : b). Α̉ναλογία itself 
described a ‘pair of ratios’. Following Cicero, it was translated into Latin by proportio        
(a : b = c : d). The Greek grammarians of Helenistic times undoubtedly borrowed their 

term α ̉ναλογία from the language of mathematics. 

Thus, the concept of analogy can be interpreted as a precursor of self-similarity, 
which typically involves notions of relation, proportion, repetition, and convergence, 
and an “extension of a rule to similar cases” (compare this with the notion of scale in 
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Mandelbrot 1981). For cases of proportional systems in music, this definition of 
analogy also involves the self-reference of a harmonic system, as detailed in Chapter 6. 

Szabó’s conceptualization relating analogy to its meaning of proportion, whilst 
musical and mathematical, is not opposed to the notion of analogy as a paradigm or 
insight through comparison. Rather, it implies some functional coordination. 
Foucault (1966:19–21) examines the relationship of similarity under the episteme of 
pre-Cartesian resemblance in four modalities that are “fundamental for the 
construction of knowledge in the Western cultures”: convenience (convenientia), 

emulation (aemulatio), analogy (proportio), and sympathy (sympathies). For the 
meaning of their etymologies, but also for their modes of operation, convenience and 
emulation are associable with paradigm, whereas analogy and sympathy are associable 
with proportion. Both forms of relationship, such as proportion and paradigm, are 

coordinated, and eventually subordinated one to each other (see Foucault, op. cit.:27–

32) so that it is possible to devise a paradigmatic analogy, or a proportional analogy, 
according to the balance of their functions (i.e. convenience, emulation, analogy, and 
sympathy). 

In explaining the possible functional similarity between music and language, 
Seeger (1960:226) prefers analogy to metaphor (μετά, change; φέρειν, to bring or to 
lead to), whose operation involves changing original meanings. Whereas there are few 
musical relationships that can be explained as a metaphor or as a mere imitation or 
simile, analogy covers almost all structural aspects of music; even for those 
fundamental aspects in which music operates in intersemiosis with other forms of 
expression. As Schoenberg (1967:25) suggests, “The term symmetry has probably 
been applied to music by analogy with the forms of the graphic arts and architecture”. 
This paradigmatic analogy occurs whenever their aspects can be explained by a 
system of comparisons, according to a logical tradition. 

The paradigmatic analogy consists of pairing two systems of comparable 
relations. For instance, Hindemith (1937/1941:57) conceives that “If we think of the 
series of tones grouped around the parent tone C as a planetary system, then C is in 
the sun, surrounded by its descendant tones as the sun is surrounded by its planets”. 
This analogy is firmly entrenched in the theory of tonal music, as can be seen in a 



 

 
 57 

more recent description by Ashton (2001:10): “A natural [acoustic] pattern quickly 
evolves, producing seven discrete nodes (or notes) from the starting tone (or tonic), 

separated by two semitones and five wholetones, like the sun, moon and five planets of 
the ancient world”. According to Vosniadou (1989:416–417), as symbolic pairing, 
the paradigmatic analogy works as follows: 

1. The [cognitive] system retrieves a familiar source example together with an explanation 
of how this source example satisfies some goal. 

2. The system maps the explanation derived from the source onto the target and attempts 
to find out if this explanation is justified by the target example. 

3. If the target used justifies the explanation, the conclusion is that it satisfies the goal. 

This explanation is based on the causality that characterizes the description of a set of 
relations B, by parallelisms with another set of relations A. Whether the causes and 
effects featuring A are comparable to those featuring B, then a paradigmatic analogy 
can be made between the two sets. It must be noted, at this point, that incongruence 
between conceptual domains “is not a defining characteristic of analogical reasoning” 

(Vosniadou op. cit.:417). The defining characteristic of analogical reasoning is, as 
Vosniadou asserts (ibid.), “similarity in underlying structure”; i.e. similarity as a 
system of manifold deep references (psychological, cultural, contextual, etc.). 

 

◊310. Manifold analogy in a simple musical system. In this example at least two parallel 
systems of proportional analogy can be acknowledged: a) additive analogy in comparing 
the number of the grouped elements, equal to the multiplication of the measure 3×2. b) 
subtractive analogy in pitch comparison, equal to the division of the measure 3÷2, 
interpreting the result 1.5 as an ‘octave’ (integer or first harmonic interval) plus a ‘fifth’ 
( first half or second harmonic interval). In this same example, the multiplication 
operates as an analogy of the sum, whilst the division operates as an analogy of the 
subtraction. From the point of view of intersemiosis, a paradigmatic analogy can also be 
noted: the conceptual similarity between the graphic representation (the example’s 
image) and its conversion into sonority, by a symbolic convention. This kind of 
analogy can be summarized as the link between a pipe and its drawing, as suggested by 
René Magritte’s painting La trahison des images (1929), with the inscription “Ceci n’est 
pas une pipe”. 
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Analogy, as a system of comparisons, is conditioned by a tendency to establish 
such comparisons in a given context. The cases in which analogy may be associated 
with a universal comparison are due to an intuitive ability to relate sets of 
relationships, as well as to the identification of their context. Some examples 
associated with the latter are symmetry, proportion, and functional reciprocity 
between systems that can be judged as analogous. 

The relationship between musical metre and harmony can be strictly analogous 
in a broad comparative framework, and in the mathematical framework of ἀναλογία, 
since the comparison between their symmetries can be exact. The interval of fifth can 
be represented by the ratio 3:2, whilst the same ratio may represent an analogous 
metre by the ratio of sesquialtera (see ◊310). This example contains the germ of a 
profound coordination on self-similarity, based on the two classical modes of 
analogy, summarized as proportion and paradigm.77 

From this subchapter it can be concluded that, in musical thought, analogy is 
meaningful to the extent that it contributes to the identification of an entity and its 
modalities, such as frequencies (repetitions) and characteristic combinations. 
According to Bent and Drabkin (1987:5), “By comparison [analysis] determines the 
structural elements and discovers the functions of those elements […] comparison of 
unit with unit, whether within a single work, or between two works, or between the 
work and an abstract ‘model’ […] The central analytical act is thus the test for 
identity”. Thus, the basic tools of analysis are, by opposition or complement, forms of 
analogical comparison. 

                                                 
77 In order to support the operational use of these two concepts in this study, the following 

distinction is proposed: all analogy that is not proportional is paradigmatic. Additionally, 
analogies exist that are proportional and paradigmatic, at the same time (see for example ◊310). 



 

 
 59 

3.2. Synecdoche 

Based on classical texts by Plutarch and Quintilian, among other ancient writers, 
Bailly’s dictionary (1894:1850) defines συνεκδοχή, synecdoche, as “Figure of words 
which consists in using a term in a more comprehensive sense, for example, taking a 
singular collectively for a plural”. 78  Bailly presents other related terms, like 
συνέκκειμαι, which means “to be exposed [together] with”, and συνεκκρούω, “to invert 
with, together, or at the same time”. The same author entered other examples using 
the prefix συν·εκ-, implying simultaneity (temporality) and continuity (spatiality); for 
all these cases, the notions of parallelism and togetherness are generalized.79 

In broad terms, within the study of language, synecdoche (pronounced 

sɪ'nɛkdəki) is a figure in which the part is taken by the whole (pars pro toto) or the 
whole is taken by the part (totum pro parte), for example, taking the genre by the 
species or the species by the genre. When Boris Cyrulnik (2004:4) asserts: “To speak 
is to create a piece of world”,80 he uses a grammatical metaphor in which speech is 
part of language, i.e. the world. The same example also operates as an abstract 
synecdoche, taking the particular speech as a global language, or a ‘piece of the world’ 
[morceau de monde] by reference to the world. In contrast, the lexical metaphor 
commonly corresponds to a concrete synecdoche. An example of this is the sign that 
acts as an index, making a correlation and involving an appearance of A in B (see 
Peirce 1903a/1998:163).81 This also happens in a measurable physical relation, 
asserting that the relation A : B is proportional to the relation B : C. 

                                                 
78 The original text says: “συνεκδοχή. Figure de mots qui consiste à employer un terme en un 

sens plus compréhensif, par example, en prenant un singulier collectivement pour un pluriel”. 
The alternative writing συνεχδοχή, not recognized by Bailly (op. cit.), makes more explicit the 
sense of continuity according to Charles S. Peirce (1893/1998:1): “The word synechism is the 
English form of the Greek συνεχισμός , from συνεχής , continuous.” 

79 For the operative difference between synecdoche and metonymy, see section 1.3.2. 
80 Verbatim: “Parler, c’est créer un morceau de monde”. 
81 A simple case of lexical metaphor–concrete synecdoche is the interpretation of the concept clouds as 

storm in the utterance “the clouds from the West will bring the first storm of the year.” 
Demonstrative pronouns and in general the deictics explained in subchapter 3.6., directly and 
specifically indicating real objects, also fall into this account. A concrete case in music, in this 
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Both forms of synecdoche, concrete and abstract, are common in music, often 
involved in forming and structuring systems of coherence through self-reference. By 
using the notions of point, group, and mass, Karlheinz Stockhausen (1989:33–37) 
employs symbolic systems in which the part is correlated with the whole. Also, the 
synecdochic concepts of timbral, harmonic, and durational configuration are evident 
in theories on musical self-similarity put forward by Fagarazzi (1988), Hsü and Hsü 
(1991), Xenakis (1992:292–293), Hsü (1993), and Yadegari (2004). 

The use of synecdoche in music is common even for the very definition of music 
e.g. under the general criteria of musurgia (Kircher 1650) or natural music (Tiessen 
1953). These criteria in principle fix the notion that a partial definition of music       
—e.g. the basic features of melodic displacement—can extend to a general definition. 
As explained below, according to the theoretical approach of Carey and Clampitt 
(1996), synecdoche also serves as a basic constructive principle in tonal music, 
associating the diatonic and chromatic scales, as explained below. 

Synecdoche, proportion, and well-formedness 

Both sorts of sound distribution, stochastic indeterministic and absolute deterministic, 
may share a general notion of self-similarity, based on the criterion of proportion, 
which is closely related to that of harmony. 

It is said that the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13…) is self-referential 
because each adjacent number of the sequence depends on the sum of the two 
preceding elements, which in turn (from 2) depends on a constant ratio, approximate 
to 1.618033988749894… usually represented by the symbol φ. It also is said that the 
sequence is self-similar because each of its ‘growing’ segments are distributed in the 
same proportion (golden ratio, ~ φ), regardless of the size of the segment or its 
geometric projection.82 

For the tonal music of the Western tradition, the overall relationship between 
the diatonic and the chromatic sets can be considered within a relationship 

                                                                                                                              
sense, is the interpretation of a pitch as (part of) a chord in the context of functional harmony 
(e.g. a C taken as index of C major). 

82 According to Madden (2005:xi) the Fibonacci sequence and the golden mean “are self-
similar members of a discipline called fractal geometry”. 
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analogous to the Fibonacci sequences and the golden mean, since their initial values 
are based on a self-reflection principle that can be described as xn = xn–1 + xn–2 , a 
formula that synthesizes the Fibonacci sequences, whose initial intervals can be 
associated as 0 = perfect unison, 1 = minor second, 1 = Major second, 2 = Major third, 3 = 

perfect fifth, 5 = octave, 8 = minor sixth, 13 = Major sixth; with their inversions 1 = 
Major seventh, 1 = minor seventh, 2 = minor third, 3 = perfect fourth (0, 5, 8 and 13 
generate equivalences), counting the semitones of the chromatic row: 

  , 

or counting the whole tones of the diatonic scale, generating the series  
0 = unison, 1 = Major second, 1 = Major third, 2 = perfect fifth, 3 = octave, 5 = Major 
sixth, 8 = Major seventh ; con las inversiones 1 = minor second, 1 = minor third, 2 = 

perfect fourth, 5 = minor sixth and 8 = minor seventh (0 and 3 generate equivalences): 

  . 

Accordingly, Carey and Clampitt (1996:65) assert that “The diatonic scale is self-
similar in the following respect: the distribution of semitones within any diatonic 
interval is approximately equal to the overall distribution of semitones within the 
octave, namely two in seven” (i.e. 2/7 as the distribution of half steps in diatonic 
intervals compared with half steps per octave). These authors associate this self-
similarity to the quality of well-formedness.83 It is said that a scale is ‘well-formed’ “if its 
generator always spans the same number of step intervals” (Carey and Clampitt 
1996:63). In addition, Lerdahl and Jackendoff (1983:308) consider that “The closest 
analog to linguistic grammaticality in music theory is adherence to well-formedness 
rules.” This notion is developed in Chapter 5, which through Zipf’s law explains the 
relationship between the structural self-similarity in ‘fractional noise’ 1/f—ubiquitous 

                                                 
83 The term well-formedness is borrowed from linguistics originally developed by David Rynin 

(1949:386: “Every meaningful expression is well-formed.”) after a conjecture of Reichenbach 
(1947:25: “The formation rules [...] delimit the domain of meaning; i.e., they determine what 
expressions we wish to consider as having sentence meaning.”). The notion of well-formedness 
does not refer to a grammatical correctness in itself, but to the acceptance of each specific case 
in a given constructive context, according to what the same context allows. 
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distribution of music—and the common grammaticality in language in general, and 
in music in particular. By its typical function, the self-similarity described by Carey 
and Clampitt, and suggested by Lerdahl and Jackendoff (loc. cit.) is comparable to a 
rhetorical or grammatical formula, in which the whole is recognized in the part: 
“Diatonic scale segments thus possess a synechdochic property: the part reflects the 
organization of the whole with a minimal, but inevitable degree of distortion.” (Carey 
and Clampitt 1996:66). 

In contrast, stochastic self-similarity is present in processes of preference and 
vulnerability of grammars, within the dynamics between ecolects and idiolects as a 
creative intercourse.84 This is evident, for instance, at the variable agogic within the 
same musical piece, and in the stylistic variations within the creative processes in 
general. Many other examples from self-organization systems in music, match with 
this description. As Blackwell (e2006) acknowledges, “A self-organising system might 
produce appealing music, not so much by breaking rules, but by allowing new rules to 
spontaneously emerge.” Therefore, vulnerability of grammars is particularly 
meaningful if it corresponds to an elaborating recursiveness.85 

Under this conception not only the parallelism between absolute deterministic 
and stochastic indeterministic self-similarity are distinguishable, but also, a 
parallelism between synecdochic grammatical distribution and undetermined 
stylistic tendency. Prior to the development of the concept of musical self-similarity, 
Schenker’s theory of tonality (1932) approaches this description through its intuitive 
notions of Schichten (strata) and verborgene Wiederholung (hidden repetitions), which 
in this study help to support the notion of ‘sound nesting’, developed in subchapter 
5.4. Summarizing, musical self-similarity can be found as a coordinated process, 
simultaneously in general stable form, and in local unstable behaviour.86 The possible 
alternation of these properties and the embedding of one into the other determine 
the form and function of their nestings. 

                                                 
84 This is discussed in detail in subchapter 4.8. 
85 See the definition of recursion and recursiveness in subchapter 3.7. 
86 Ultimately, the potential effectiveness of Schenkerian analysis and its post-tonal refinements 

(e.g. Dubiel, 1990) lie at the basis of an analytic reductionism processing selections between 
similarities and differences as points of coordination within a musical system. 
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3.3. Self-similarity 

After a preamble containing essential details, an outline of the central concept 
involving this research finally becomes possible: self-similarity indicates the repetition 
at different rates, of the relations featuring an analogous set of symmetries (see 
Mandelbrot 1967, 1977; Peitgen and Richter 1986).87 

Being similar to itself, a broccoli is an example of a self-similar structure assuming 
that a component of its own whole is similar to the whole. Another example of a self-
similar object is the graphical representation of a set of relationships that involve, in 
two or more scales, the reproduction of the same set of relationships—something 
that actually happens in design and the visual arts, with the so-called Droste effect.88 

There are, however, ‘more complex’ structures with endless self-similarity, in 
which each part, however small, implies its whole—something that happens in the 
so-called fractals; and there are others, as seen in large segments of language, in which 
a relative self-similarity does not appear as a kind of ‘scale-bound object within a 
similar object’, but as a statistical feature: distributions, and not shapes, are found in a 
self-similar relationship. 

Although self-similarity is a phenomenon present in a wide variety of musical 
aspects, it was very little studied before Voss and Clarke (1975, 1978) demonstrated 
its cognitive and structural relevance. It was only until recently that it was explored by 
its cultural significance and contextualized interpretation, aspects in which stand the 
pioneering developments of Koblyakov (1995), Kieran (1996), and Yadegari (2004). 
Moreover, its application in recent fields of musicology, including stylometry (see e.g. 
                                                 

87 An example of self-similarity already mentioned in the Introduction is the Peircean ‘map of 
the map’, which has inspired many literary fictions. The drawings by M.C. Escher (1898–1972) 
are also mentioned, with their motifs assembled in various directions pointing to a seeming 
infinity, and which Yadegari (1992:62–66) uses to formulate his own definition of musical self-
similarity. 

88 The name Droste effect is due to writer Nico Scheepmaker (1930–1990), who by 1979 named 
such a relationship of self-similarity shown on the front cover of a box with a commercial 
product (Droste cocoa powder), in which the figure of a nun appears holding a tray with the 
same box, in a way that the same image is repeated several times in smaller scales. As a 
philosophical matter, this question had already been exposed earlier by René Magritte (1898–
1967) in his painting Les deux mystères (1966). 
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Beran and Mazzola 1999a, or Bigerelle and Iost 2000), and pitch-class set theory 
(Murphy e2007) is currently producing its first results. 

Under intuitive, functional, and statistical criteria, the manifold relations of self-
similarity in music are of theoretical, analytical, and compositional interest. Such 
relations are fundamentally connected with the principles of musical self-reference 
and coherence, and they reflect the way music elaborates by following operative rules, 
within successive formulations and transformations. This means that the 
measurement and comparison of self-similar relations can eloquently reveal how the 
internal structure of a certain music is configured. 

 

Finite or infinite self-similarity of an image-object 

If an ‘object’ is defined as a whole that can be identified by given set properties, then 
an object may well be any of the cases of symmetrical self-similarity appearing in 
◊330. Nonetheless, caution is in order, taking into account the words expressed 
about symmetry, in subchapter 2.3, where it is stated that self-similarity and 
symmetry are not equivalent concepts. Too freely, Foote and Cooper (2001:1) say 
that “Music is generally self-similar. […] Structure and repetition is a general feature 
of nearly all music. That is, the coda often resembles the introduction and the second 
chorus sounds like the first”.89 This description contemplates symmetry, not self-
similarity. Whether symmetry is based on relationships of equality, repetition, 
correspondence, or simple similarity, self-similarity demands that these relationships 
occur as a convergence of themselves. Symmetry does not depend on self-similarity 
—the equilateral triangle is not made of equilateral triangles. Rather, self-similarity 
depends on a symmetry of reflexive symmetries—the Sierpiński triangle is made of 
symmetries of identical symmetries. What is interesting in examples of absolute or 
relative self-similarity, is not a main axis of symmetry, but the relationship of that axis 
with subsequent axes, throughout several self-structuring levels. 

                                                 
89 Apparently, “introduction” here means the exposition of a musical theme. The same mistake 

reappears in Cooper and Foote (2003:19). 



 

 
 65 

 

a) 

 

b) 

 

c) 

 

◊330. Three different cases of self-similarity representation: 

(a) Finite stereotype of an infinite fractal: the Sierpiński gasket. 
(b) Finite stereotype of a finite self-similar object: a broccoli with radial symmetry. 
(c) Finite stereotype of a self-similar musical object, potentially infinite. 

The three examples involve intersemiotic translation: (a) requests for a 
mathematical, abstract interpretation, beyond its limited graphical representation; 
(b) requires comparison with completely different objects, the broccoli pieces 
used commonly in a kitchen; (c) requires, also, an interpretation in the world of 
musical sound, different from its graphical representation. Obviously, such a 
world can be contained within another world (e.g. the world of a musical genre or 
style); successive embeddings of musical worlds are further referred to by using the 
figure ‘worlds within worlds’. 

 

Returning to the initial example of this subchapter, it may be said that a broccoli 
is self-similar, because the overall shape seems to keep the same relation to its parts, at 
least at five or six steps or scales. The same kind of relationship can be found in other 
vegetables, and generally in many plants and biological structures, including the 
nervous and vascular systems of animals (see Mandelbrot 1977:150). In all these cases 
the relationship of self-similarity is limited and is becoming less evident throughout 
the step or scale of insight. By contrast, certain geometric objects, like the Sierpiński 
gasket (pictured in ◊330-a), are absolute and infinitely self-similar. It is irrelevant 
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whether their printed representation on paper do not perfectly fulfil their endless self-
similarity; what is relevant is that their structural relations can continue into smaller 
scales, in an unlimited way. This implies that at every level the object has the same 
geometric relationships with respect to itself and its parts. Due to the impossibility of 
representing them materially, these objects are represented by the continuous 
iteration of a function, i.e. as an infinite mapping of themselves. They exist, however, 
only as an abstract mental image, as their infinite self-similarity means that 
charecterizing them would take an infinite time, using the most sophisticated 
automated means (see Lauwerier 1987:33). This imaginary condition is crucial in 
understanding a point of convergence between the aesthetic qualities and the logico-
mathematical propositions extracted from self-similarity: the fact that the infinitude 
of an absolutely self-similar object is understood using a finite model is related to the 
processes of language in general, and with the role of synecdoche in particular. For 
instance, the word ‘tree’ does not refer specifically to a tree, but to its generality, 
potentially infinite (see Wittgenstein 1953, 1968; Rhees 1968). 

The logico-mathematical conceptualization of an object or a whole system of 
absolute self-similarity is based on the context of a set of axioms that allow us to 
assume, without empirical testing, that self-similarity continues into the infinite. 
Analogously, colloquial language does not need to prove that a word or sentence can 
be used in an infinite variety of circumstances. By having a conversation, no one 
explains in detail the implied infinity that constitutes a meta-context in the mind of 
the listener—e.g. a take-for-granted endless polysemy of a single verbal expression. 
Such a meta-context operates like the implication of musical similarities in which an 
object (or a process, e.g. a gesture) can be repeated in different contexts and in a 
potentially infinite plurality of relationships. Roughly, this is how Peircean abduction 
operates within the musical relationships implicating synecdoche and analogy.90 

The understanding and representation of absolutely self-similar objects depend 
on a finite imaginary context and a finite range of experiences and concepts. A 
generalized mode of conceiving textures featured with absolute self-similarity suffices 
to assume that they are infinitely self-similar objects. This issue emerges from a basic 

                                                 
90 The concept of abduction is introduced on pages 23, 31–32. 
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level of geometric representation, for instance, conceiving that two lines converge in a 
corner, assuming that a line is an infinite sequence of segments. Thus the 
convergence of these two lines is infinite, and therefore it is impossible to draw a 
triangle.91 This contradiction illustrates, nevertheless, how in mathematics, as in 
music and language in general, the pragmatic context affects the determination of a 
concept, even—and especially—when it implies infinity.92 

Consequently, it is not impossible to implement infinite self-similar sets as 
grammars for music. The opposition between actual and potential infinity is not 
necessarily absolute, but instead offers chances for negotiation to define analytical 
and constructive strategies in music.93 In this context, David Feldman (1999:80) 
criticizes the opposition between actual and potential infinity, supported by John 
Cage: 

Cage’s [musical] Nature suffers a profound limitation. By dint of his interest in 
meditation and contemplation, Cage privileges the actual and so neglects the potential. 
The laws of mathematics constrain Nature by logically delimiting the possible; 
confronting those laws brings us to Nature unbridled by the chains of history. Beyond the 
challenge of exploring the physical space about us lies the difficulty of charting the vast 
conceptual space that comprises Nature’s mathematical objects which proliferate 
exponentially. 

Coherently, Thomas H. Lee (2003:344–345), when talking about the infinite 
self-similarity of 1/f noise,94 suggests that the apparent paradox comprising an infinite 
phenomenon is solved simply on the coexistence of the actual and the potential: 

A question that often arises in connection with 1/f noise concerns the infinity at DC 
implied by a 1/f functional dependency. [...] The resolution of the apparent paradox thus 

                                                 
91 See Aristotle, De Lineis Insecabilibus, book II. 
92  In Peirce’s words (1904/1998:323), “every endless series must logically have a limit”. 

Operationally this notion is closely related to the theory of Georg Cantor (1845–1918) on 
transfinite sets. 

93 A good example of this kind of negotiation between finite and infinite is found in a Milton 
Babbitt (1964:92–93) exposition about the written representation of the musical sound: “The 
electronic medium, perforce, provides regulable and measurable control of frequency, length, 
loudness—and therefore, of envelope, spectrum, and mode of succession. This, in an adequate 
notation, would require means of signifying a continuous infinity of values in each of these 
dimensions, but realistic musical needs apparently are satisfied by a discreet, finite collection of 
values. Thus the creation of an adequate and efficient symbolic notation depends upon the 
acquisition of knowledge of aural perception.” 

94 This concept is explained in subchapter 5.3. 
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lies in recognizing that true DC implies an infinitely long observation interval, and that 
humans and the electronic age have been around for only a finite time. For any finite 
observation interval, the infinities simply don’t materialize 

This same kind of resolution can be observed in other physical aspects of music, like 
its harmony, length, loudness, pitch, rhythm, voice leading, and timbral organization. 
It is not absurd then to make analogies between potential and actual terms within 
these parameters, for example, in the tonal system. As a matter of fact, Dubiel 
(1990:243) finds a functional similarity of the actual and the potential matching the 
tonal organization proposed by Schenker (1932), in which the foreground 
(Vordergrund) corresponds to the realization surface, the actual ground, moving itself 
not onto a fundamental structure (Ursatz), but onto the broadest width of the “free 
composition” ( freie Satz), the potential ground.95 The musical structure coordinates, 
in this fashion, the contingencies and dependencies inherent in the generating system 
and the acting conditions. The same can be extended to a variety of cases in which 
the combination between contingencies and dependencies provides the sense of 
music from the determination of the operating system and its operational flexibility. 
Correspondingly, the relevant issues of analysis revolve around interpreting the 
meaning of the actual towards the potential (see Dubiel, loc. cit.). 

It is worth observing in this context that not all self-similar finite sets are 
translatable into sets of relations for musical practice, nor are all self-similar infinite 
sets are useless for this practice, due to fact that they are infinite. The important point 
to grasp here is that for each case of the various types of musical self-similarity an 
adequate conceptual treatment is required. Obviously, the sense of musical self-
similarity is not the same as the one characterizing a mathematical operation, e.g. the 
iterative continuum in a function of infinite self-similarity; but at the same time there 
is a strict analogy between both kinds of self-similarity. Whether or not this analogy is 
associated with the concept of deterministic self-similarity, the concept of stochastic self-
similarity is related to the irregularities of practice, e.g. the variable distribution of 
frequencies in the performance of the ‘same’ musical piece, perceived as causal or 
casual subtleties; or the probabilistic trend for coherence within a given style. 

                                                 
95 On the polysemy of the term Satz and its many possibilities for translation, see page 190 

(footnote 257). 
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Conceptually, the approach is also different: it can be said that a musical 
composition contains itself in infinite turns, at infinite scales, without the necessity of 
being listened to infinitely. Its audible version reaches some stages of self-similarity, 
but its holistic version is ‘unknowable’ as it cannot be experienced.96 Still, whether the 
general relationships of the knowable version are always repeated in an equal manner, 
such infinite composition is in fact knowable because its essential relationships and 
characteristics are knowable.97 

To synthesize, the only two possible operations involving infinite fractals and 
music are the stereotype, in the case of fractal objects of intuited continuity,98 and the 
abduction, in the case of the infiniteness of the ‘map of the map’. Other uses of the 
term fractal in music, like those introduced by Madden (1999/2007), R. S. Johnson 
(2003), Hwakyu Lee (2004), or Pegg et al. (e2008), are vaguely metaphorical and 
need to be revised.99 

For the stereotype, the intuitive ease with which we can memorize the general 
configuration of the object is related to the feasibility of its musical use. Whether it is 
possible to sufficiently represent the general relationships of a fractal set in order to 
intuitively recognize it, the same intuition can be used to make an auditory 
representation of the same set, using intersemiotic translation. In the case of an 
auditory representation of the Sierpiński triangle, equal intervals in groups of three 
segments should be obvious (see Pickover 1990). 

For abduction the conception of a ‘simple’ geometry at different scales is not 
necessary. It is necessary instead to intuit that a relationship is repeated in a similar 
way at different scales. As regards the problem of the ‘map of the map’ (Peirce CP, 
8.122), the very relevant aspect for intuition is the observer perspective, guessing the 
existence of a ‘tunnel’ that binds and penetrates the myriad of self-mapping maps. 

                                                 
96 This subject is treated in more detail in subchapter 5.5. 
97 The possibility of discovering the infinite through the finite depends, according to Samuel 

Taylor Coleridge, on the power of the symbol, which operates “above all by the translucence of 
the Eternal through and in the Temporal” (The Statesman’s Manual, 1816:437–438). 

98  This applies, for instance, to the cases of the Sierpiński triangle, the Cantor set, the 
Pythagoras tree, and other typical fractals, including the proportional successions with exact-
infinite self-reference, mentioned in chapter 6. 

99 On the mistaken use of the term in Madden (1999/2007), Hudak (2000), and Hwakyu Lee 
(2004), see pages 21–22, 32. This theme is developed throughout subchapter 5.5. Concerning its 
metaphorical misuse in Pegg et al. (e2008), see page 202. 
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Self-similarity in a musical process 

A process is a system of joint relations in time and space, which—as often happens in 
the physical processes—may have a tendency towards stability or instability (see 
Thomson 1851; Shannon 1937, 1948; Wiener 1948). 

Carey and Clampitt (1996:62) suggest that a musical process “is one that exhibits 
parallel construction at different levels of scale”. This criterion applies to the classic 
analysis of ‘motifs’ within musical segments, and in general to periods forming larger 
periods. Nonetheless, the same criterion is valid for the psychological processes 
involving the appreciation of musical structures, and for the physical processes that 
can often only be observed using automated synthesis or analysis.100 

A typical process in music is the sequentiation of pitches and lengths in a melodic 
system. If this sequentiation meets the basic description of self-similarity, it can be 
said that there is a ‘self-similar melody’. For instance, Hudak (2000:301) defines a 
self-similar melody as follows: 

Start with a very simple melody of n notes. Now duplicate this melody n times, playing 
each in succession, but first performing the following transformation: the ith melody is 
transposed by an amount proportional to the pitch of the ith note in the original melody, 
and is shifted in tempo by a factor proportional to the duration of the ith note. 

Johnson and Amiot (2006:3) remark that a self-similar melody must coincide with 
itself when its original form is articulated in a slower time.101 This sort of musical 
structure (examples in ◊331) actually has a precedent in the Alberti bass,102 in typical 
binary forms in which the harmonic accompaniment mimics long durations of 

                                                 
100 Chapter 5 specifically deals with this issue. 
101 The original text says: “Une mélodie qui coïncide avec elle même quand on la joue à un 

tempo plus lent”. 
102 The Alberti bass is a kind of instrumental accompaniment, very common in the keyboard 

repertoire—particularly in Mozart. It articulates with triads arpeggiated in four notes (with equal 
durations) succeeding in the order lowest, highest, middle, highest, forming the pattern for the 
harmonic bass (left hand in the keyboard). See G.  Burdette: “A Thorough Harping on Alberti”, 
Music Research Forum, vol. 4, no. 1 (1989); pp. 1–10. 
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melodic structure with short durations. More precisely, though, the Alberti bass 
corresponds to a pre-self-similar structure,103 and according to Johnson and Amiot 
(2006:23) it produces a symmetric and invariant melody that can serve as a self-
similar relationship with a parallel melodic line. This structural form, in which 
melody and harmony are correlated through durations, is also the basis for various 
compositional procedures developed by Milton Babbitt, Morton Feldman, and Tom 
Johnson (see Johnson and Amiot, op. cit.). 

Both examples in ◊331 are elaborated using simple rules: (r1) keep the 
proportion of 1 to 3 (or 1 to 6) along the duration of notes in both melodies; (r2) 
keep the same intervals in parallel motion; (r3) make the pitches coincide for each 
vertical relation; (r4) collect pitches only in sets of one or several paired notes. 
Nevertheless, as Amiot (2003, 2006) and Johnson (1996, 2006) consider, there are 
mathematical conditions for elaborating more complex self-similar melodies and 
rhythmic canons. 

Johnson and Amiot (2006:7) obtain conclusions that can be summarized in three 
points: 104 [1] for a primary relation of self-similarity (relation a) a melody (mk) where 
mk designates the kth periodical note in a period n, is self-similar if for all k, ma×k = mk ; 
[2] the maximal number of notes in a self-similar melody with period n is 3n/4; and 
[3] a melody with relation a and period n is invariant over a relation b, if and only if b 
is a power of a. 

This concept of melodic self-similarity differs from that of scalar self-similarity 
with direct symmetric transformations, either for the type of intervals, discrete in one 
case, dense in the other; or for the metrical relationship, present in one case and 
absent in the other one.105 Such a metrical relationship, fundamental in the concept 

                                                 
103 See a definition of pre-self-similarity on pages 75–78. 
104 It is understood that such a melody is elaborated after a and n, arbitrarily preselected. 
105 Mandelbrot (1981:45) generalizes these differences for all the scalar systems, suggesting a 

distinction between scalebound and scaling object: “I propose the term scalebound to denote any 
object, whether in nature or one made by an engineer or an artist, for which characteristic 
elements of scale, such as length and width, are few in number and each with a clearly distinct 
size. […] A scaling object, by contrast, includes as its defining characteristic the presence of very 
many different elements whose scales are of any imaginable size. There are so many different 
scales, and their harmonics are so interlaced and interact so confusingly that they are not really 
distinct from each other, but merge into a continuum. For practical purposes, a scaling object 
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of ‘autosimilar melody’ used by Johnson and Amiot (2006), is the basis of their own 
idea of ‘autosimilar rhythmic canon’, as that slightly emerging within the rhythmical 
skeleton of the examples in ◊331 (more developed in Amiot 2003). The differences 
between these two modes of ‘melodic’ self-similarity are mediated by a third form e.g. 
in the self-similarity in Conlon Nancarrow’s melodic canons for pianola, which 
although repeating the same melodic pattern in different rates of tempi, do not 
correlate horizontal development with vertical affinity; neither do they work within a 
model of dense intervals. 

At this point, something worth noting is that there is not one, but several forms 
of self-similarity in melodic processes. In addition, and in a way comparable to the 
variety of musical parameters associable to integral serialism, it must be noted that 
there is a wide variety of parameters—not only those which can be related to a 
melody or an interval or intonation period—associated with the different forms of 
self-similarity described in the following chapters.106 

 
A musical process as ‘time series’ 

According to Barenblatt (1996:14): 
A time-developing phenomenon is called self-similar if the spatial distributions of its 
properties at various different moments of time can be obtained from another by a 
similarity transformation. 

This ‘transformation’ implies the symmetric displacement of a first group of 
relations. According to this notion, Oliver (1992:322–323) explains the ‘affine 
transformations’ (shrink, squish, stretch, spin, and skew), comparable to the 
transformative operations mentioned in subchapter 3.4. within the context of pitch 
set invariance. For now, suffice it to take a simple case with the proportional 
segmentation of a straight line. 

                                                                                                                              
does not have a scale that characterizes it. Its scales vary also depending upon the viewing points 
of beholders.” 

106 According to Kieran (1996:44): “there may be patterns of varyingly complex shapes or 
sounds that develop out of and are related back to a fundamental structuring element. That is, 
there is a deep structure of self-similarity: at the simplest level there is symmetry of a kind across 
scale, patterns evolving into patterns, recursions, and so on. Of course, in music, the relations 
get ever more complex and intricate. Still, the adequately sensitive listener may understand a 
piece of music by grasping the deep structuring role of the inter-relations among sounds.” 
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Let a straight segment k1 be analogous to the length of a musical note. Then let k2 

be a parallel straight segment whose length measures a third of the first segment k1 : 
 

 
 
Thereafter, let the relation k2 → k1 be symmetrical and adjacent to a third segment k3: 
 

 
 
By repeating the same relationship (k1→ k2→ k3) in a subsequent scale (k2→ k5→ k6) a 
following level of durations is symmetrically obtained with the same proportion: 

 

If this is repeated endlessly, in subsequent steps, then this procedure gives what in 
mathematics is known as ‘Cantor set’, 107 a set of intervals characterized by infinite 
self-similarity: 
 

           ↓ 
      ∞ 

} Cantor dust 

◊332. 

                                                 
107 The minutest parts going to infinity in a representation of the Cantor set, are called ‘Cantor 

dust’. 
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Based on this example, it can be stated that the consecutive relationships between the 
durations represented as horizontal spaces, work altogether as ‘time series’ (i.e. an 
infinite summatory function). Beran and Mazzola (1999a), Bigerelle and Iost (2000), 
Das and Das (2006), Su and Wu (2006), and Dagdug et al. (2007), among others, use 
this analogy to analyze the stylistic variations in affine sets of musical information. It 
is quite obvious that, for music, the meaningful events nested in time series do not 
occur with the regularity and monotony characterizing the interval grid in the 
Cantor set. The investigation of the deviations in the series is precisely the object of 
analysis to determine how differences occur in music, between the fixed relationships 
(grammar) and the flexible relationships (style).108 
 

Pre-self-similarity  

Barenblatt (1996:xiii–xiv, 200) uses the concept ‘pre-self-similar’ to indicate the first 
stage of construction in an asymptotic self-organizing process. The stages may vary 
depending on the process involved, but the constructive principle is basically the 
same as the primary transition from a simple relation to a self-similar, potentially 
infinite process. The example shown in ◊333 corresponds to the generation of the 
Koch curve from a straight line segment to the absolute self-similarity. In this scale, 
the first ‘order’ of the self-similar construction represents the motif at the stage of pre-
self-similarity. The term motif was introduced in this context by Lauwerier (1987). 
The terms phrase and period are used here as a deliberate analogy with a musical 
structure, an idea put into practice by György Ligeti in his Étude I: Désordre (1986), 
for piano, as a method of intuitive consistency through statistical self-similarity.109 

The notion of pre-self-similarity is useful in the study of musical self-similarity, 
and in the metaphor of language as a natural fractal, i.e. like a quasi-self-similarity or 
approximated self-similarity (Pareyon 2007c), including aspects of “self-affinity”, as 

                                                 
108 Subchapters 4.7. and 4.8. delves deeper into these notions. For more detail on the role of 

the ‘time series’ as method for music analysis, see pages 143–145, 238–241, 288–290, 300–303; 
the latter corresponds to a section devoted to the pertinence of the fractal dimension in music. 

109 In Désordre (1986), Ligeti makes an intersemiotic translation of the first structuring levels of 
the Koch curve (see ◊333). Richard Toop (1999:201) correctly asserts that, for this case, “The 
exactness of the analogy is of secondary interest: what the scientific model offers here is 
inspiration, not legitimation.” 
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defined by Mandelbrot (1982:395; 2002:50, 85).110 Consistently, the present study 
reserves the term ‘affinity’ for the compatibility between set distributions, and to 
express the overall relationships in an affine transformation.111 

 
 

line segment
(length = 1) 

order: 
 0  

pre-self-similarity:
motif

(length = 4/3)  1  
relative self-similarity:

phrase
(length = 16/9)

 
 2  

 period
(length = 64/27)  3  

 absolute self-similarity: 
fractal

(Hausdorff dimension = 
log4/log3)   ∞ 

◊333. Generation of the Koch curve. The ‘order’ 1 represents the stage of pre-self-
similarity or motif, as a first constructive step, typical in fractal algorithms. Lower 
orders are ‘nested’ within higher orders e.g. the figure corresponding to order 2 
can be exactly found in the figure corresponding to order 3. The proportion of 
the nesting is characterized by the ratio written in the leftmost column (the 
length between brackets). The absolute self-similar case (i.e. fractal) at the infinite 
order is approached by proportional analogy (a synecdoche in logico-rhetorical 
terms, and an abduction in terms of Peircean semiotics). 

 

                                                 
110 Madden (1999:4, 21) introduces the term ‘self-affinity’ to refer to this approximate self-

similarity, within a statistical context of musical analysis. 
111 An affine transformation is any geometric transformation preserving collinearity (i.e., all 

points lying on a line initially still lie on a line after transformation) and ratios of distances (e.g., 
the midpoint of a line segment remains the midpoint after transformation). Source: Weisstein 
(e2008). 
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The table in ◊333 presents a progression of an intervallic system as an analogy of 
a musical system, gradually more complex and less intuitive. The stages in this 
example can also be compared with audible frequencies or tones, from the pure to the 
complex tone and the timbral pattern; and with metrical distribution, from the 
ordinary measure to the complex period and the metrical groups in polytempi. This 
scheme signified a proportional and paradigmatic analogy of geometrical self-
similarity in its early stages (from the minimal quantum to the development of 
phrases, periods, or larger systems), regarding the self-similar relationships in the 
typical proportions of musical harmony and rhythm. 

 

◊334. Pre-self-similarity in a harmonic texture for four voices. The bass pattern is 
similar to the beginning of the highest voice (C, D, B, E). Strictly there is no self-
similarity in this example; however, assuming the continuity of the relationship 
between the two extreme voices (i.e. putting a ½ length F below the bass line), a 
continuous ‘imitation’ arises with characteristics of relative self-similarity. The two 
middle voices would then design an intermediary self-similarity between originality 
and imitation. If consecutive layers repeat at scale the middle voices and the same 
relationship between low and upper voices, a self-similar global texture can be 
surmised. This is suggested by the sign ∞, as a potentially infinite extension in the 
parameters of pitch and duration. 

Nelson (1994:3) uses the notion of pre-self-similarity—although without explicit 
mention—to explain the transition between the starting point of a self-similar 
system, and the primary ‘two dimensional outline’ of the same system: 

One of the simplest fractal models is the two dimensional outline of mountain ranges. 
Initially, we draw lines to represent the major peaks and valleys. These lines are subdivided 
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by a recursive process to produce the next level of detail. When we continue subdivision 
through generations of ever shortening lines, an image emerges that reminds us of the 
patterns found in natural landscapes. 

In the asymptotic deterministic processes—i.e. with a known overall behaviour, as 
happens with iterative geometric transformations in many patterns of musical 
invariance,112 the stage of pre-self-similarity is crucial for determining the successive 
patterns. This is why a motif can be very relevant in a schematic prediction for self-
similarity. Nonetheless, it is important to note that in asymptotic stochastic processes 
a constructive stage can be determined by the immediately preceding stage, regardless 
of a stage of pre-self-similarity—something that occurs, for instance, in Brownian 
noise, Markovian structuration, and random walks.113 

3.4. Invariance 

In the present study, the term ‘invariance’ is restricted to the analytical context in two 
modalities: (1) absolute persistency of typical relationships within transformations of 
mechanical/acoustical systems, and their graphic representation; or (2) as specific 
reference to the forms of invariance identified and studied by pitch-class set theory. 
In general literature, as explained below, the concept of invariance may have a parallel 
definition to that of self-similarity.114 

Mandelbrot and Van Ness (1968:423) postulate that “self-similarity’ [is] a form 
of invariance with respect to changes of time scale”; whilst Schroeder (1991:xiii) 
assimilates the whole notion of self-similarity to that of invariance: 

Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of 
nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one 
of the decisive symmetries that shape our universe and our efforts to comprehend it. 

                                                 
112 See following subchapter 3.4., on invariance. 
113 For a general description of Brownian noise, see page 241. For the concepts Markovian 

structuration and Markov chains, see 226–235, 241–242. On random walk, see pages 241, 248–
249, 252–253. 

114 Seeger’s idea of musical invariance (1960), which is exposed at the end of this subchapter, 
can be associated with the latter perspective. 
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Besides the fact that invariance can be found in a diversity of functions in pitch 
sets, pitches themselves can be invariant sets. Fourier’s analysis provides evidence for 
supporting this conceptualization,115 revealing a trend, from sound generation itself, 
to the self-structuring and self-referentiality that characterize music.116 Gerlach 
(e2007) investigates the cause of the pervasive power of Fourier analysis in physics 
from a more general perspective, when he observes that this capacity is due to 
generalized translation invariance: 

Suppose a linear system is invariant under time or space translations. Then that system’s behaviour 
becomes particularly perspicuous, physically and mathematically, when it is described in terms of 
translation eigenfunctions, i.e., in terms of exponentials which oscillate under time or space 
translations. […] In other words, it is the translation invariance in nature which makes Fourier 

analysis possible and profitable.117 

It is obvious that this argumentation cannot be used to assert that musical 
relationships are absolutely predetermined by physical laws.118 But it is true, after all, 
that a substantial part of these relationships depends on the fundamentals of 
mechanics and acoustics. Music emerges within the complexity of several layers that 
are correlated and simultaneous; and these layers are not uniquely or necessarily 
hierarchical and evolutive, as positivism presupposes.119 The need to identify these 
levels—at least the most relevant—determines the organization of Chapter 4 in 
several thematic sections. 

                                                 
115 For a general definition of ‘Fourier analysis’ see pages 143–145. 
116 For an introduction to this notion, see Voss and Clarke (1975, 1978), Hsü and Hsü (1991), 

Bigerelle and Iost (2000), and Su and Wu (2006). This concept is developed in chapter 5. 
117 Gerlach (loc. cit.) adds a remark to this text: “Nota bene: real exponentials are also translation 

eigenfunctions, but they won’t do because they blow up at +∞ or –∞”. 
118 In other words, it is impossible to assert that the physical laws can explain the general and 

the particular concerns of the social sciences (considering that music, remarkably, is also a social 
phenomenon). 

119 The positivist doctrine persists in certain approaches to musical self-similarity. The sentence 
“Progress depends on organized skepticism” is not precisely a motto coined by Auguste Compte 
(1798–1857), but the inaugural epigraph in Madden’s book (2007:1) about “fractals in music” 
(sic). The debate over the idea of progress in music is extensive, linked to the engineering 
approach on music as a collection of problems to be solved. This study’s Introduction presents 
some of the more evident topics of this issue, related to the conceptualization of musical self-
similarity. For a philosophical discussion on the subject see e.g. Dent (1928), Benjamin (1936), 
Adorno (1970/1984:300–303), Ballantine (1984), Kieran (1996) and Vieira de Carvalho (1999). 
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Invariance in pitch-class sets 

A simple example of invariance in the context of arithmetic is the displacement 
between two integers—represented by an arrow—which does not change length 
when the same quantity is added to both ends of the interval; the displacement is 
invariant under translation by addition (this does not occur equally in the 
multiplication of distances; then the interval is not invariant in multiplication). 
Symmetry has other cases of invariance: in the examples shown in ◊331–◊334 the 
fundamental relationships remain the same, regardless of position changes or 
symmetric transformations.120 This kind of invariance is also found in pitch set 
elaborations. 

The implementation of a principle of ‘no repetition’ in musical scales, as found in 
different theories of Chávez (1961), Schoenberg (1922, 1967, 1975) and in many 
cases of musical scores written under the methods of integral serialism,121 involves the 
recurrence of basic relations in a gamut of parameters (i.e. length, loudness, pitch, 
tempi, etc.). Such recurrence commonly leads to self-similar patterns, rather than 
repetitive ones, because it involves the reproduction—in different ways—of the 
relations already comprised in the original scale, or in the set of rules considered as 
the starting point of the constructive process. As a form of statistical self-similarity, 
this sort of recursive patterning is usually studied by classical methods of 
mathematics, like the measurement of the Euclidean distance, or the probabilistic 
classification of neighbours (using the k-nearest neighbours algorithm), depending 
on the scaling rules implemented in the system under investigation.122 

                                                 
120 This principle is the basis for transformation theory. For an introduction to its arithmetical 

aspects, see E. T. Bell (1932). “A New Type of Arithmetical Invariance”, American Journal of 
Mathematics, vol. 54, no. 1; pp. 35–38. For an introduction to its implementation in pitch-class set 
theory, see Vázquez (2006) and Ilomäki (2008). 

121 Under this principle, for a pitch-class set {0,1,2,6} sequences like {1,2,6}→{0,2,1} are 
allowed, but {1,2,6}→{2,1,6} is not allowed. In short, this principle of non-repetition operates 
as an algorithm for the development of partial differences, in a universe of inevitable similarities, 
given the finiteness of the set and the symmetry between its segments. 

122 The k-NN classifiers method is used to estimate the probabilistic density, or the direct 
probability, to know that an element x belongs to class Cj given the information contained in a 
set of prototypes (Fix and Hodges 1951). The exactness of this algorithm is inversely 
proportional to the amount of noise present in the form of irrelevant neighbourhoods. For this 
reason the mode of implementation of correlated algorithms is particularly significant when 
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If a finite set of pitches 123 is implemented to generate many sequences of pitches at 

various levels of organization (e.g. intervals, trichords, hexachords, melodies, or 
harmonic textures) the features of the set will be present in a variety of proportions 
and combinations—depending ontheir different levels of order—in the sequences 
themselves. 

In pitch-class set theory, Babbitt (1949, 1960, 1961), Perle (1977), Lewin (1982), 
Morris (1987), Vázquez (2006), and Ilomäki (2008), among others, employ the 
notion of invariance in the pitch-class space in reference to how a segment of a pitch 
set remains similar, or the same, under inversion, transposition, or retrogradation. In 
a first attempt to adopt the term ‘invariance’, Babbitt (1949:383) notes that Bartók 
uses inversion, retrogression, and free permutation, “essentially” as a traditional 
method “concerned with varying linear characteristics while preserving their relative 
contours. Never does he use inversion, for instance, in its abstract structural role of 
maintaining the harmonic invariance of successive dyads, as is done in twelve-tone 
music.” 

Pitch-class set theory interprets a number of concepts involved with intervallic 
invariance, namely: set classes, pitch rows, aggregates, arrays, partitions, collections and 
networks of collections, among others.124 The term set designates a specific pitch order; 

set class designates the classes of all sets, i.e. all forms of order of pitch classes that can 
be transformed according to classical symmetry operations. A pitch row is any finite 

ordering of n pitch-classes (Babbitt 1960:248); for instance, the twelve-tone row used 

as a constructive paradigm. The rows, as well as the aggregates, can be ‘partitioned’, 
i.e. presented in segments that keep the original intervallic and combinatorial 
relationships. The aggregates are ‘recognizable compounds’ of set segments, with 
some or almost no any resemblance to the set; they can articulate in different time 
scales in which the segments plot generates self-similar relationships. According to 
Dubiel (1990:220): 
                                                                                                                              
optimising the characteristics of scalability, as distinguished from scaling shapes and scalebound (see 
Mandelbrot 1981:45). 

123 Sets of pitches are, for example, the chromatic and the diatonic rows, a chromatic or 
diatonic hexachord, as well as any finite set of fixed pitches with special intonation (i.e. an 
intonation different to the chromatic-diatonic one). 

124 These concepts are widely treated by Babbitt (1960), Mead (1983, 1984), and Dubiel (1990). 
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The unfolding of similar structures at different rates, with members of the faster ones 
figuring in the slower ones and, especially, with the slower ones more narrowly 
constrained by the system, is, moreover, a strikingly ‘Schenkerian’ thing to have achieved 
within the twelve-tone system [of Babbitt]. 

In the music of Babbitt—and in the theoretical corpus he himself contributes to 
building—aggregates operate on a plane of ‘horizontal’ durations and ‘vertical’ 
pitches, sometimes with structural interdependence; some other with relative 
independence. For example, in Three compositions for piano (Babbitt 1948), horizontal 

aggregates are fully ordered, whilst the vertical, or arrays, “in general are not” fully 
ordered (Dubiel 1990:220). According to Mead’s formalization (1984:312) an array 
“consists of two or more strings of sets, from one or more set classes, unfolding 
simultaneously.” A collection is an “unordered bunch of pitch classes”, and a collection 
class is the “class of collections which may be transformed into each other under 
transposition and/ or inversion”.125 

Typically, during the aggregate-formation processes, a proportional relationship 
between the chromatic collection (12 elements) regarding a hexachord (6), and a 
hexachord regarding a trichord (3), is evident not only for the symmetry of its 
partitions, but particularly for the way they interact with the assembled segments, 
and the different layers which, in depth, result in an audible plot. Mead (1984:324) 
believes that the consistent use of aggregates on the audible surface, involving various 
forms of invariance, produces a strong sense of self-reference in the musical structure. 
Therefore the aggregate inversions, transpositions, and retrogradations, powerfully 
contribute to segments (trichords, tetrachords, etc.) mapping themselves, combining 
information redundancy and structural variety—a notorious behaviour in many self-
similar sets.126 

                                                 
125 This implies that there may be two classes of compositions with the same set class, whilst 

having no sets in common. For instance, {0,1,2} is not equivalent to (0,1,2); the first example 
refers to a pitch-class set, the latter to a set of intervals. 

126 This notion of invariant set as ‘self-mapping’ is evident in the analysis by Mead (loc. cit.) of 
Babbitt’s music: “A trichord, by content alone, is sufficient to identify a single set and its 
retrograde, or at most two sets and their retrogrades, in the case of trichords which can be 
mapped into themselves under inversion. With such set classes it is possible to saturate sections 
of a composition with referential details which, while containing considerable internal variety, 
may point to a remarkably circumscribed number of sets.” In this source, the notion of 



 

 
 83 

As noted by Dubiel (1990:246) and Mead (1983:108)—though not exclusively in 
Babbitt’s music—what occurs rapidly on the ‘surface’ does not necessarily owe its 
significance to a reflection of what occurs slowly in the ‘deep layer’, or conversely; it 
may be, rather, that the ‘superficial’ details reflect the underlying array structure of 
the set class. In this sense, Dubiel (1990:247) conceives that the array “is merely one 
of the levels at which the set is influential—not the level of its true manifestation”. 
Moreover, generalized consistency between pitches, regarding a set class, is not 
sufficient to lay out and establish a whole set of significant musical relationships       
—Babbitt (1950:57) says that the mere identification of relations “is trivial”; a 
correlate between different types of functionality is required, and systematic 
coordination between functional similarities and differences. According to Dubiel 
(op. cit.:248): 

The ‘contingencies and dependencies’ of particular pitches are where the set’s ‘influence’ is 
to be observed; it is the development of various kinds of functionality, like these just 
illustrated, and not just the assurance of interval-class correspondence between various 
pitch successions, that makes the set part of a piece. 

Most of the reseach on pitch-class set theory does not devote much attention to 
the shape of the possible combinations between the rows, the aggregates and their 
partitions, and especially to the permutative properties that characterize a system of 
compositional or analytic operations. The numerous possible combinations—that 
can be simplified as successive factors—is nothing more than a collection of potential 
features; what is relevant to musical criteria is rather how categories are established in 
order to reduce set properties in a few apprehensible expressions. Invariance traits 
resulting from these operations are due to a need for self-similarity categorizing a 
whole into a group relatively easy to grasp and manipulate.127 

                                                                                                                              
synecdoche as a functional relationship between ‘part’ (trichord) and ‘whole’ (two sets and their 
retrogrades…) should be noted. 

127 Ilomäki (2008:6) clearly identifies the reduction of the combinatorial factor in the pitch 
rows, as a cognitive process: “These are daunting numbers for a human; there is no way we can 
examine each pair of rows or even each row separately. In coping with this multitude, a typically 
human approach is to place rows and their relations into categories”. 
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Richard Swift (1988:29) conceives the transformation of rows and aggregates as 
expansion of the potential self-reference of a generating set.128 Additionally, he 
contemplates invariance in these processes, not only as exclusive property of pitch-
class sets, but also by its extension to isometric series representing the temporal flow of 
music (time-point rows). This is already suggested by Babbitt (1955, 1962) in the 
context of integral serialism, adapting similar constructive criteria to functional 
relationships between pitches, lengths, and intensities, but also to abstract functional 
relationships such as aggregates and rows. In this way Swift (1988:29) connects pitch 
intervals criteria with tempi and polyphony: “The resultant polyphony of smaller 
pulses (or tempi) serves to clarify the larger pulse and its relation to a series of similar 
pulses, whilst ensuring the saturation of as many aspects of the music as possible by 
the row and its operations.” 

 
Invariance in communication processes according to Seeger 

Charles Seeger (1960), for whom the musical processes are processes of 
communication, provides the basis for a generalized theory of musical self-similarity, 
considering the relationships of invariance as highly significant: 

In presenting the pattern of design qua moods of a logic in a unified, partially closed 
system, I shall not describe them in terms of universal and particular, for they are both; 
nor in terms of affirmation and negation, for they are neither; but in terms of the variance 
and invariance of progression of the four simple functions or resources of the 
compositional process, without whose full participation a sound-signal is not a music-
signal and therefore not a music-message, i.e., music. 

The ‘four functions’ to which Seeger refers are four ‘simple’ communication 
functions (pitch, loudness, tempo and proportion), in contrast to other ‘compound’ 

functions (timbre and accent, combinations of pitch and loudness, and tempo and 
proportion, respectively). Congruently, Seeger (op. cit.:235–237) conceives a variance 

                                                 
128  Among the methods used by Swift (1988) for control and development of this self-

reference as a compositional process, are inversion and transposition of pitch rows with or 
without modular bounding. For example, converting the row {1,5,3,2,4} into {5,1,3,4,2} 
(modulo 6), or transposing the first row as {2,10,6,4,8} by the multiplication of values (× 2, in 
this case). In the present study this subject extends to a section on modular bounding (on pages 
393–395) which in turn is extended to the topic of scales generation (pages 395–398). 
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of direction and a variance of extent, associated with the four simple functions. In this 

fashion he concludes that music operates through four generative branchings: single 
melody, successive combinations of melodies, simultaneous combinations of melodies, and 

successive combinations of simultaneous combinations of melodies (op. cit.:235–237).129 
Noticeably, this picture with systems of relations within systems of relations, 
subjected to common operational rules and principles, anticipates a correlate of self-
similarity in all strata of music.130 This notion motivates Seeger to support a 
theoretical position in which it is not the universal versus the particular that may 
substantiate an analysis of sound codes as musical messages, and neither the 
affirmative or negative, but rather the coordination between similarities and 
differences at different levels of musical communication.131 

3.5. Gestalt 

Gestalt theory provides a psychological approach to explain how the mind-brain 
processes self-similar relations, attributing partial qualities to the whole embracing 
the parts. 

The Gestalt concept, associated with figural theory—mental configuration of 
similarities in the patterns and grouping related categories, was introduced to 
modern philosophy and experimental psychology by Christian Christian von 
Ehrenfels (Über Gestaltqualitäten, 1890), after ideas first put forward by Goethe and 
Kant. Later, Max Wertheimer helped to develop the notion that the operating 
principle of the mind is of a holistic and analogue kind—operating in both senses of 
proportion and paradigm, with a tendency of self-organization. The work of 
Edmund Husserl and Ernst Mach also prepared the foundations for a theory of form 

                                                 
129 Melody consists of rhythmic formulas with a third dimension (pitch). A rhythmic formula 

enters this scheme as two-dimensional layout (length and loudness); the 0-dimensional entity, 
analogous to points in geometry, is the pulse. 

130 Consider the relevance of this formalization regarding ◊331, and in general, for the context 
of the ‘autosimilar melodies’ as defined by Johnson (1996, 2006), Amiot (2003, 2006), and 
Johnson and Amiot (2006). 

131  The structural role of self-dissimilarity in such coordination, is a topic explored in 
subchapter 6.5. 
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and figurality, according to which objects are perceived depending on their 
distribution and accommodation in an intuited whole. This arrangement would 
correspond to an innate perception that determines the order in which objects are 
perceived in relation to the physical context. The reproduction of this order, through 
language, is due in parallel to laws of an innate grammar: what Chomsky (1957) calls 
Universal Grammar, whose empathy with the principles of order in music highlight 
Lerdahl and Jackendoff (1983), and Jackendoff (1993:165–183); and to a process of 
learning and interpretation of the ‘figures’ in a cultural context: what Stephen Peles 
(2004:58) summarizes as “typically complex and idiosyncratic” in a variety of 
subsymbolic aspects crucial to music.132 

The Gestalt, as intuition of coherence and belonging, also has a seminal, poietic 
faculty in the multiplication of structural relations;133 so it works as a basic 
mechanism of musical elaboration, as Schoenberg conceptualizes (1995:297–299): 

[Radial] symmetry is one of the simplest principles: to the right of the axis is the same 
thing as to the left of the axis. In principle the mirror, the retrograde, and the inversion are 
also basically similar. The advantage, in addition to easy comprehensibility, is that [radial 
symmetry] nonetheless offers a new gestalt that in reality contains the same inner 

relationships.134 

In the analysis of tonal music, it is obvious that an adaptation of the Gestalt in the 
notion of Urlinie, conceived by Schenker (1932) as Urgestalt, incorporates it into a 
theory of patterns in which the whole and its parts are correlated. This is an 
important issue in Babbitt’s musical thought (1950:57): “What of the significance of 

                                                 
132 Peles (loc. cit.) refers to ideas on musical organization in Arnold Schoenberg: “the things 

Schoenberg had to say on the subject of symmetry, since his relation to the idea was typically 
complex and idiosyncratic.” For an approach to the theory of subsymbolic strata in music see 
Tiits 2002. 

133 Roughly speaking poiesis means ‘creativity’ or ‘productivity’, usually in a biologic context. 
From the ancient Greek verb ποιέω, ‘to create’. 

134 The original text says: “Symetrie [sic] ist eines der einfachsten Prinzipen: rechts von der 
Achse befindet sich dasselbe (in gleichen Abständen, in gleichen Massen etc.) wie links von der 
Achse. Das Prinzip des Spiegels, des Krebs, und die Umkehrung sind im Grund auch dasselbe. / 
Ihr Vorteil ist, nebst leichter Fasslichkeit, dass sie doch eine neue Gestalt darbieten die in 
Wirklichkeit die gleichen inneren Verhältnisse hat […]”. The concept of Gestalt in Schoenberg 
operates sui generis, and does not always coincide with the standard definition of the term (for 
instance in Husserl or Mach); for this reason, in this specific case, readers are referred to the 
comments of Patricia Carpenter and Severine Neff, in their edition of the texts of Schoenberg 
(edited 1995). 
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the event at precisely its own moment of occurrence, at its own tonal level, and in its 
relation to other such events and to the work as a whole?” 135 

The concept of Gestalt is also of paramount importance in Roman Ingarden 
(1962:55, 107–108), both for the perspective of musical structure, as for the theory of 
perception: 

A particular tone formation might form a whole which is so unified that one does not 
regard it as composed of the individual tones: this is especially true when the whole in 
question is a Gestalt. […] What the listener will hear with special distinctness as the chief 
element is precisely the Gestalt. […] What creates the unity can be nothing else than 
Gestalt, and indeed a Gestalt that unfolds itself in time during the execution of a 
performance.136 

This notion has implications in a variety of analytical approaches, mainly developed 
in the study of melody (Viret 1982), and musical temporality (Tenney and Polansky 
1980, Grisey 1987). According to Ames (1982:46), the efficiency of this approach is 
based on two fundamental criteria: the relative proximity of events or objects in one 
or more dimensions; and the relative similarity in one or more aspects of the figure. 
Both criteria are explored here, especially in Chapters 3 and 4, as aspects of functional 
self-similarity. 

Grisey (1987:269) anticipates an ontology of musical self-similarity, suggesting 
the investigation of musical processes as relationships between objects: “the object 
allows us to understand the process in its Gestalt, and to effect a system of 
combinations”. For Rowell (1983:161–162, 173) these combinations form ‘patterns’ 
with a variety of structural features, which in coordination with other ‘values’, 
generate different levels of gestalt complexity. 

The adaptation of this notion to music theory, rekindling the concept of gatom 
(Gestalt atom) first formulated by Gestalt theorists, facilitates the identification of 
relationships that generate a self-similar system.137 According to Cope (1987:36) a 

                                                 
135 This quotation comes from a context in which Babbitt criticizes the theories of René 

Leibowitz (1913–1972). 
136 Verbatim: “So sehr das betreffende Tongebilde, ein einheitliches Ganzes—insbesondere 

eine „Gestalt“—bildet, das sich aus den einzelnen Tönen gar nicht zusammensetzt […] obwohl 
das, was sich dem Zuhörer als Hauptelement mit besonderer Ausgeprägtheit aufzwingt, eben die 
Gestalt ist” (55). “Dieses Einheitschaffende kann nichts anders sein als eine „Gestalt“, und zwar 
eine Gestalt, die sich im Vollzug einer Ausführung in der Zeit entfaltet.” (107–108). 

137 This concept of ‘atom’ is developed in subchapter 4.1. 
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gatom “represents a class of object instances that has as its variables of values [such as] 
interval, duration, dynamic, and definition”. Based on Tenney and Polansky (1980), 
Ames (1982:47) uses the concept of Gestalt to develop a procedure for post-serial 
composition, in which 

No entity will have structural precedence over any other entity at the same level, since such 
precedence would contradict the hierarchical organization. The process terminates along 
each of its multitudinous paths when it has refined the total aggregate into a description of 
an individual tone. 

This procedure brings together relevant aspects of algorithmic composition with self-
similar objects, for which recursion ensures consistency between gatom and Gestalt, 
between individuality and system (see Leman 1995, 1997), achieving structural 
coherence through synecdoche and analogy in various operational levels. 

Mazzola and Zahorka (1996) introduce into musical Gestalt a useful topology of 
motifs, a set of compositional archetypes formalized in terms of architectural bodies 
(architektonischen Körper), using the analytic theory of Réti and Kopfermann (1982). 
Interestingly, this approach connects a general notion of functional self-similarity and 
recursion with the notions of paradigm and proportion (included within the labels 
Motivische Paradigmatik and Gestaltete Motive), which the present study recognizes as 
‘classical forms of analogy’, based on the research developed by Szabó (1978).138 
Additionally, Mazzola and Zahorka (1996) support their theorization by the intra- 
and inter-Gestalt coordinative relationships under operating conditions than can be 
rigid or flexible (Starre Gestaltabbildung and Elastische Gestaltabbildung), interpreted 
in the present study as negotiations between grammar and style (on foundations 
established by Meyer 1956).139 

                                                 
138 See subchapter 3.1. 
139 See subchapter 4.7. 
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3.6. Self-reference 

A self-reference is an expression ‘saying’ something about itself, by itself.140 This also 
holds in a form or a structure that contains itself, like those self-similar processes in 
which a segment implies all parts of the system to which they belong. In fact, 
Yadegari (1992:69) assumes that “self-similarity should be thought of as a portrait of 
a self-referential entity”. 

In his ‘Introduction to self-reference’, Smullyan (1994) makes this concept 
understandable thanks to the simplicity of the first example he gives: “John is 
reading”. It is an example which comes true if and only if the action is true (if John is 
reading that he reads), because then there is no reference to a second subject, but to 
the same reader who validates the sentence as an ontology (John), as an action (to 
read), and as a knowledge (to read to read)—all at the same time. This example 
reminds us of the self-referential exercise made by writer Salvador Elizondo (1932–
2006) in his poem The Graphographer, in which ontology, action, and epistemology 
(a trichotomy characterized in section 3.8.3.) are intertwined: 

I write. I write that I write. Mentally I see myself write that I write and I can also see myself 
seeing that I write. I remember writing already, and also see myself that I wrote. I see 
myself remembering that I see myself writing and I remember seeing myself remember 
that I wrote and I write seeing myself writing, to begin by rehearsing that I remember 
having seen myself the sighs, the gazes, write that I was seeing myself write the gestures, the 
undulations, that I was remembering having seen that I write.141 

In this kind of reflexive plot, Smullyan (1994) recognizes the weight of the indices in 
the construction of self-references. The indices are symbols or words whose 
denotation depends on the context, as when the pronoun ‘myself’ depends on the 
individual articulating that word; or when the length of a musical tone depends on 
the place where it appears in a composition. Clearly, the example becomes more 
complex in the case “John is reading this sentence”, because the index ‘is’ works as 

                                                 
140 In these terms, a good example of self-reference is the first paragraph of subchapter 2.1. 

Accordingly, this footnote is itself also a system of self-reference and redundancy within this 
study’s framework. 

141 Salvador Elizondo, El Grafógrafo, Joaquín Mortiz, Mexico, DF, 1972. 
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self-referential ‘calling’ or ‘quotation’ (Smullyan op. cit.:2). A paradigmatic analogous 
relation can happen in music with self-referential indices, as explained below. 

Although it is obvious that music never means the same as verbal language, it is 
possible to build systems of musical quotations by means of a symbolization of 
relations that are presupposed in a larger symbolic structure.142 An example of this is 
the music that encompasses, by the use of quotations, its own history—its course as 
temporal listening—simultaneously within the history of references that makes itself 
possible. Whether considered a quotating-articulation that is both audible reference 
and historical referentiality, Luciano Berio’s Sinfonia (1968) has those characteristics 
as a whole made of self-referential segments. Something similar happens in many 
other cases of intertextuality which base their operational and logical identity in a 
system of prior relationships, understood or presupposed within the same identity. 

Berio’s Sinfonia articulates by a finite set of references comprising its own history 
through other histories which in turn contain the piece, or at least contain, 
strategically and operationally, significant segments of it—like seeds containing the 
genetic code of a biological structure.143 The quotations Berio uses operate as 
windows to other historical compositions ‘already containing’ the germ of his 
Sinfonia. In this manner, subsequent compositions following Berio’s Sinfonia, 
making use of its segments, will be, by abduction, an extension of those windows, as 
Charles S. Peirce suggests for the case of the map of the map. 

For Kuhns (1978), but also for Price (1988), Fiske (1990), and Davies (1994), 
music is self-referential in a generalized sense. “Many musical signs or ‘gestures’ refer 
‘congenerically’, that is, to other parts of the musical work or musical style. One 
theme recalls another or ‘refers’ to its own recurrences or treatment.” (Davies 
1994:10). Accordingly, all music inscribed in a tradition and style, operates with 
some degree of functional self-similarity, as surface of its own self-referencing. 

This form of musical self-reference aside, self-reference also exists through the 
complexity of the signs of culture, in the relative instability of ecolects and styles of 

                                                 
142 See footnote 97, page 69, on Coleridge’s idea of the symbol by its synecdochic function. 
143  This, however, cannot be a fully automated relationship. This question stimulates the 

discussion presented in subchapter 5.5., on the negotiations between determinism and 
indeterminism. 
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music; in the musical idiolect, and even in the musical idea immersed in solipsism: 
what Kaipainen (1994:23–24) calls ‘autocommunication’, using the example of an 
individual who listens to a recording in spatial isolation from other individuals. In 
this case—as Kaipainen conceives—music does not seem to be communication, at 
least in the ordinary sense of the term; which does not imply, at all, that music is not a 
language. It is a language that in some respects is comparable to speech, including 
traits of solipsism and isolation, such as in silent reading, in monologue, or in 
soliloquy.144 

Self-reference plays an important role in the relationships between message and 
context, and is commonly associated with the pragmatic use of the indices. In 
rhetoric, a basic typology of self-referential relations includes anaphora, cataphora, 
and endophora, parallel to their musical analogies. Anaphora is the continuous 
repetition of symbols, gestures, or structures, by way of emphasis, parody, or contrast. 
Cataphora is an anticipation of a predictable structure in which the symbolic content 
of an element reappears. Endophora is an intralinguistic reference, a textual vehicle 
within the text itself, such as in the case of the self-referential index in the given 
example “John is reading this sentence.” 

In music many deictic functions—in general those indices structuring possible or 
necessary relationships—are self-referential, and according to Reybrouck (2009), they 
affect several mechanisms for delimitation, comparison and operativeness. Equally, 
the recursion of a rule in a musical system operates as an endophora, preventing the 
results of applying the rule to the ontological principles of the rule itself.145 In 
contrast, exophoric references may be identified in musical styles with a narrative 
development in which, for instance, a chord or a motif is playing a role comparable to 
that of a character in a story—as happens with a musical quotation. 

Deixis can also be a type of exophora. When one says, “not that, but the other”, 
the object referred to is not verbally specified. It is specific rather on the contextual 
use of the expression. Hence the exophoras, such as ‘callings’ or ‘quotations’, act as 
referential instruments of relationships in absentia, which are typical traits of the 
                                                 

144 For shades of analogy that compare music with speech, see pages 51, 56, within the context 
of Charles Seeger conceptualization on the subject (Seeger 1960:226). 

145 This conceptualization is expanded in subchapter 6.5. 
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deictics and remain in the memory of the speakers, but not in the explicit structures 
of language. A musical structure can also make use of relationships between a present 
and an absent element, serving as a reference and creating discursive tension, 
assuming that the element missing in the articulation of speech, may be present in the 
memory of the listener (Tarasti 1994:277). 

 
Self-reference and autopoiesis 

Based on the research of Maturana and Varela (1973, 1980), several authors relate 
self-reference to autopoiesis. The latter refers to the self-organizing processes of living 
organisms, as represented in the growth of Lindenmayer systems, explained in 
subchapter 6.5. Specifically, according to Varela, Maturana and Uribe (1974:188), 

The autopoietic organization is defined as a unity by a network of production of 
components which (i) participate recursively in the same network of productions of 
components which produced these components, and (ii) realize the network of 
productions as a unity in the space in which the components exist. 

The widespread extension of the notion of self-organization into studies on culture 
and societies has been criticized due to its reductionism (see e.g. Roth 1981). Among 
thinkers implicated in this controversy are philosophers such as Ludwig von 
Bertalanffy (1901–1972), author of a theory of ‘social physics’ based on the general 
systems theory; and Heinz von Foerster (1911–2002), author of a hypothesis about 
the “causal circularity and feedback mechanisms in biological and social systems” (see 
Foerster 1949); as well as sociologists such as Niklas Luhmann (1927–1998). 
However, Luhmann acknowledges an overgeneralization of the causal systems of self-
reference (see Luhmann 1990:1), observing that: 

At first sight it seems safe to say that psychic systems and even social ones are living 
systems too. […] However, we immediately get into trouble in precisely defining what the 
‘components’ of psychic and social systems are whose reproduction by the same 
components of the same system recursively defines the autopoietic unity of the system. 

Luhmann (ibid.) believes that organisms are “special types of systems”, and suggests 

that culture and social systems are also sui generis systems, distinct and only in certain 
respects parallel to living systems. In order to clarify this idea, he elaborates a scheme 
of analogies (see upper section in scheme ◊360). 



 

 
 93 

 
◊360. 

 
This scheme, says Luhmann, “must not be understood as a description of an internal 
system of differentiation; it is not a scheme for the operation of systems, but for 
observation”. Consistently, Luhmann (op. cit.:2) explains that his intention is to 
differentiate types of systems or modes of autopoiesis, also according to different 
modes of self-reference. In ◊360 Luhmann’s original box is marked by a key (right, 
top) with his name, whilst the complementary scheme in the bottom (corresponding 
to the key marked G.P.) indicates its adaptation for the present subchapter, 
suggesting a parallel of self-referential systems in music. 

Interestingly, along with this scheme for the conceptualization of self-reference, 
comes a useful interpretation of Tarasti’s inquiry (2004:2), wondering if “music does 
represent, signify, or express […] Where is here the level of content or meaning?”. The 
schematization in ◊360 suggests that music is a complex system within a flexible, and 
usually open convergence of structures of representation, meaning, and expression, 
each of which is characterized by different forms of poiesis, somehow compatible 
among them. The “level of content or meaning” cannot be situated, thus, at a unique 
or specific layer, but at several relatively flexible layers of cognition and knowledge 
intercommunication. 
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3.7. Recursion 

In different disciplines, the term recursion may have different meanings, but usually it 
implies the notions of iteration (in contrast to repetition), and self-generation as a 
potential quality of a function iteration. 

In linguistics recursion is the property of some systems of rules by which the result 
of applying a rule is used again to undergo the same rule or another related rule, 
generating syntax structures. Pinker (1994:481) defines this recursion as “A 
procedure that invokes an instance of itself, and thus can be applied repeatedly to 
create or analyze entities of any size: [for example] A verb phrase can consist of a verb 

followed by a noun phrase followed by a verb phrase.” 
In logic and mathematics there is a similar use of this notion to define systems or 

processes that involve themselves in their own definition, usually formed by the 
iteration (i.e. loop executing) of a function. An example from arithmetic, which can 
also be interpreted in set algebra, is the definition of a natural number: 1 is a natural 
number; each natural number has an integer successor, also being a natural number. 
Another typical example is the Fibonacci sequence defined at the beginning of 
subchapter 6.3. 

In music and in speech, the recursions allow a lack of pre-established limits for 
the combination of the elements of a motif, a phrase, or a larger structure. A 
convention is plausible that allows the articulation of a tone followed by another 
different tone and another, and so on, forming a phrase or a theme. The same system 

can allow a series of tones to complete differently each time, making possible a poiesis 
(creativity) in the symbolic and structural relationships of music. There are abundant 
examples of this kind of operation. In the case of verbal language, names can be 
associated with many adjectives and complements, without rules that may sanction a 
specific number of combinations. In the case of music a relatively small set of tones 
can be articulated through a systematic recursion, a very long—potentially infinite—
string made of analogous strings with their own functional attributions. 
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In a philosophical framework involving aspects of sociolinguistics, Marrades 
Millet (1998:54–55) explains ‘creativity’ (i.e. self-generation), as a typical feature in 
many recursive systems, distinct from mechanic repetition. This definition also 
approaches the notion of musical recursion as creative separation of identity and 
difference: 

Contrary to common belief, following a rule is not to repeat the same in each turn, but in 
a sense it involves doing something different from what was originally shown, in such a 
way that it equals to act in each case under the same rule. [...] Following a rule is to make 
something identical in different ways. 

For Bolognesi (1983:26) the notion of musical recursion is straightforwardly linked 
to the notions of hierarchy and self-similarity: “A self-similar structure is one whose 
parts recursively repeat the whole structure, and this immediately implies a hierarchy 
with an infinite number of levels.” Accordingly, Lerdahl and Jackendoff (1983:14–
16) observe that, as ‘at all levels’ the rules that in a musical pattern relate in a similar 
way some dominant groups to other subordinated groups, “this uniformity from level 
to level [reveals] that grouping structure is recursive; that is, it can be elaborated 
indefinitely by the same rules.” These authors also facilitate the connection of “the 
principle of recursion” with the concept of self-similarity: 

The principle of recursion says that the elements of metrical structure are essentially the 
same whether at the level of the smallest note value or at a hypermeasure level (a level 
larger than the notated measure). [Lerdahl and Jackendoff 1983:20] 

Whether the fundamental relations—not so much the elements between them, 
which can present significant differences—are ‘essentially the same’ at the different 
metrical levels of a music structure, then it can be said that there is a relationship of 
self-similarity intertwining these levels. As seen in Chapter 5, an analogous kind of 
relationship also appears at different levels of harmony, loudness, melody, timbre, and 
durational distributions, linking the macro- with the micro-structures through self-
similar systems. 

As an effect of some functional recursion, self-similarity is also directly linked to 
the appropriation or imitation of discourse ‘in style’ as considered by Haugen (1950), 
Stephan (1979), and Escal (1981). This recursion usually has the appearance of 
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borrowing, variation, pastiche, or collage, or of synthesis of a musical theme on 
another theme. In this sense, recursion is also an aspect of self-reference. 

It is worth clarifying the employment of two terms, recursiveness and recurrence, 
which do not mean exactly the same as recursion. Recursiveness is the contingency of 
recursion in a relationship. It is sometimes seen as synonymous with self-similarity, 
which is incorrect: self-similarity is a relationship defined by itself, repeated in its own 
image (auditory, visual, etc..), whilst recursiveness is the potentiality of a set of rules 
that are organized by themselves throughout their own iteration. Self-similarity is 
also an intuitive aspect of the form, whilst recursiveness is only an operational quality 
within a system that may or may not be self-similar. The cyclic use of a same rule does 
not guarantee similarity across different scales. 

On the other hand, recurrence (or recurrence relation), as described in subchapter 
2.3. on symmetry, does imply the symmetrical inversion of an interval or a set of 
intervals. It could be argued that recurrence results from applying a grammatical 
precept, as indeed happens in classical counterpoint, and even that it is found in an 
unlimited number of cases. However, recurrence is an effect of recursion, not the 
recursion itself. Consequently, both terms cannot be regarded as synonyms. 

 
Recursion and self-organization 

The development of collective websites is a palpable example of the relationship 
between recursion and self-organization. There may be, in this case, a basic set of 
rules to make descriptions and frames for actions, which, without a fully explicit 
agreement, contribute to a functional whole, well organized even in the variety of its 
contents. In this example, explicit rules for elaboration determine the basic models 
for the recursion and its operational symbols; the use of these models, meanwhile, 
ordered by a common need for information, generates a self-organized whole, with a 
flexibility of approaches and interpretations not encompassed by the initial rules. 

Musical traditions are also examples of recursion and self-organization, insofar as 
a set of conventions can serve for a continuous reworking of the musical discourse in 
which a massive input of stylistic variants converges into a consistent repertoire, 
without a necessarily explicit agreement for classification, action, or interpretation. It 



 

 
 97 

is said, then, that there is a coordination between the fixed or rigid parts of music, with 

other flexible parts, typical of negotiations between idiolect (an individual or 
particular form of language) and ecolect (modality of an immediate, collective 
environment). 

The term ‘self-organization’ was introduced to philosophy by Immanuel Kant 
(1724–1804),146 and it was adapted to systems theory, and especially developed by 
cybernetics following the work of Heinz von Foerster (1949), Claude E. Shannon 
(1948), and Norbert Wiener (1948). Because of its common association with the 
concepts of recursion, self-similarity and self-reference, its use was easily extended to 
the investigation of dynamical systems. Similar to what occurs with the concept of 
self-reference, its adaptation and overgeneralization into the social sciences led to 
sharp criticism. The idea of self-organization, however, is still useful in describing a 
variety of relationships in emerging symbolic systems, such as language in general and 
music in particular.147 

According to Josephson and Carpenter (1994,1996) music is a phenomenon 
based on the self-organization of codes, from which messages are constructed in the 
strata of musical traditions and culture. From this radical perspective, “perception of 
music is not ‘mere perception’ but perception allied to the presence of a different, 
more fundamental system” (Josephson and Carpenter 1994:3). In this study, Chapter 
4 does not particularly favour this fundamentalism, rather it suggests that music 
emerges as a complex environment in which various stages and cycles participate 
simultaneously in synecdochic intersemiosis (as suggested e.g. by Bateson 1972).148 

 

                                                 
146 Kritik der Urteilskraft (1790:B292): “In einem solchen Produkte der Natur wird ein jeder Teil, 

so wie er nur durch alle übrigen da ist, auch als um der anderen und des Ganzen willen 
existierend, d. i. als Werkzeug (Organ) gedacht: [...] sondern als ein die anderen Teile (folglich 
jeder den anderen wechselseitig) hervorbringendes Organ, dergleichen kein Werkzeug der 
Kunst, sondern nur der allen Stoff zu Werkzeugen (selbst denen der Kunst) liefernden Natur 
sein kann; und nur dann und darum wird ein solches Produkt als organisiertes und sich selbst 
organisierendes Wesen ein Naturzweck genannt werden können.” 

147 Kalev Tiits (2002:89–108) offers a historical account on the concept of self-organization in 
music, and analyzes its implications for musical information systems. 

148 This is especially related to the section The concept of abduction in Bateson (see page 158). 
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Recursion and ecology 

The notion of recursion is similar to that of recycling, since it embodies an idea of 
cycles among objects, images and concepts through (re)generation of qualities. The 
notion of recycling is commonly used in the urban societies, and postmodern society 
takes this notion in order to reuse melodies and songs, in an operation partially 
controlled by commercial and political interests. However, the essence of this kind of 
operation is already visible in more general processes of language, as borrowing, 
variation, transformation, etc., which are also found in different forms of expression 
and communication in animal communities (see Bateson 1972).149 

One of the main needs in recycling is the ‘knowing what’ is going to be recycled 
and ‘knowing how’. So, the classification of objects, images and concepts, is followed 
by a selection of operations that make recycling possible. For Kaipainen (1994) the 
meaning of the processes of recursion in music is concentrated in the ‘dynamics of 
musical knowledge’, and therefore, its performance in ecomusicology has an explicit 
interest for cognition: knowing what and knowing how in the sonic world, would be 
connected to the way humans interact with their environment, with all cultural and 
biological aspects implicit. Kaipainen, Toiviainen and Louhivuori (1995) deal with 
this kind of knowledge in order to elaborate a map (a model of routines) which 
manages to mimic human behaviour in the recursion ‘in style’ of melodic patterns. 

For Kaipainen (1994) the notion of ‘world’ corresponds with that of οι̉κος (origin 
of the prefix eco–, ‘house’), and his idea of ecomusicology is constricted to the study 
of actions in the ‘world’ through sounds as cognitive processes. Instead, the present 
study focuses, not on the investigation of routines or neural maps reproducing a 
behaviour in the human ‘world’ of sounds, but on the investigation of the 
relationship ‘house within a house’, which is compatible with Parsegian’s (1968:589) 
ecological view on “worlds within worlds”, also related to the concept of Umwelt–
niche, a coupling of ideas first put forward by Jakob von Uexküll (1940, 1957) and 
Thomas A. Sebeok (1977), and Donald L. Hardesty (1972), respectively.150 This is 

                                                 
149 This issue is discussed in a general way in 2.7., and more specifically in subchapters 4.7. and 

4.8. 
150 See subchapter 4.3. and 4.8. 
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precisely the notion of ecology used in this research, particularly developed in 
chapters 2 to 4. 

The ecology of music, studied by a new discipline called ecomusicology (see 
Hambræus 1974, Kaipainen 1994, Trochimczyk 1995, Reybrouck 2001, 2005), is 
concerned with the meaning of music as ‘made’ in context. Previously, Merriam 
(1964:161–162) connected this notion with the concepts of environment and habitat: 

The questions which surround the learning of music are very important ones, for they 
provide us with a knowledge of how music is produced, as well as an understanding of 
techniques, agents, and content of music education in a given society. [First of all,] at 
birth, the human infant enters a man-made environment which acts as a buffer between 
him and the raw habitat. 

This same idea is explicitly defended by Blacking (1973:58) “The origins of music 
that concern me are those which are to be found in the psychology and in the cultural 
and social environment of its creators”; as well as by Reybrouck (2001:600, 626–627) 
“Music deals with man-made environments, that are cultural constructions. … [A] 
central issue [here] is the way how listeners as subjects experience their own 
phenomenal world, and how they can make sense out of their sonic environment.” 
From this viewpoint, the ‘sense’ of music does not preexist, but is created as part of a 
relatively subjective environment—e.g. a Gestaltic sound complex.151 

Habitat, context, environment, Umwelt, niche, all these ideas are captured by the 

same notion of house or οι̉κος, which always is nested within another οι ̉κος (see 
Meystel 1998). Obviously, the concept ‘house of the house’, is directly related to 
both, ecology and biological self-similarity. Chapter 4 is entirely devoted to 
investigate this relationship from a musicological conceptualization. The Peircean 
concept of ‘the map of the map’ (Peirce CP, 8.122), closely related to this issue, is 
introduced in sections 3.8.2.–3.8.3., and developed in section 3.9.2., with significant 
applications in chapters 4, 5 and 6. 

                                                 
151 The notion of Gestalt is explained in subchapter 3.5. 
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3.8. Intersemiosis 

Charles S. Peirce (CP 5.484) writes that “Σημειωσις in Greek of the Roman period, as 
early as Cicero’s time, meant the action of almost any kind of sign; and my definition 
[of semiosis] confers on anything that merits the title of a ‘sign’”. Thus, semiosis is the 
process or processes of signs ‘in action’, assuming that “a sign mediates between the 
interpretant sign and its object” (CP 8.332). As Martinez notes (1997:66), it is 
necessary to observe that Peirce does not limit this approach to speech, but his ideas 
of sign, language, and interpretation are operationally extended, for example, to the 
elaboration of a melodic phrase, or to abstract reasoning in mathematics. 

Dorányi (2004:256) notes that “geometry, as a vehicle of communication, can 
carry different kinds of semantic, aesthetic, affective or functional content”. Similarly, 
different types of musical content with semantic, aesthetic, emotional or functional 
attributes may also include various communicative or expressive aspects of geometry. 
This kind of networking of content in different systems of signs is called intersemiosis. 

Intersemiosis is the operation or—using Peirce’s concepts—the ‘action’ of a sign 
or sign system corresponding to a category, under influence, transformation or 
transduction onto other categories of signs. Jakobson (1959:232) uses the notion of 
intersemiotic fact when referring to the transmission of a system of signs, such as a 
visual system, into another system of signs, for example, a musical sign. 

The concept of semiosis has been consistently used in a variety of applications in 
music theory, 152 whereas that of intersemiosis is less developed in this field, despite a 
relationship as basic as that between a sound and its written representation—that 
might be investigated as an intersemiotic fact. 

Indeed, Cooke (1959:1) conceives of music as a language within an intersemiotic 
context, immersed in intertwining systems of analogies: 

Although all the arts are essentially autonomous, owing to the different materials and 
techniques which they employ, there is clearly a kind of bond between them. We speak of 
the ‘architecture’ of a symphony, and call architecture, in its turn, ‘frozen music’. Again, 

                                                 
152 Some examples of this application are the investigations by Nattiez (1976, 1987), Monelle 

(1992), Tarasti (1994), Martinez (1997), Tagg (e1999), Lidov (2005), Almén (2008), and Ojala 
(2009). 
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we say that certain writing has a ‘sculptural’ quality, and sometimes describe a piece of 
sculpture as a ‘poem in stone’. 

The ‘kind of bond’ which Cooke identifies between different systems of aesthetic 
signs, is nothing else but intersemiosis. 

The concept of multimodal grammaticality is also intimately linked with that of 
intersemiosis. O’Halloran (2008:233) notes that “Semiotic resources are viewed as 
interlocking semantic phenomena in the systemic functional multimodal discourse 
analysis approach, giving rise to the concept of multimodal grammaticality where 
linguistic, visual and symbolic choices function together to construct meaning in 
mathematics discourse”. Something similar can be said about a convergence of 
applications and elections in several semiotic levels, forming meaning in musical 
discourse.153 O’Halloran (op. cit.:234–235) conceives that the mathematical discourse 
has a ‘registerial’ mix of field or content; a mix of idiolect-ecolect negotiations or 
interpersonal relationships or tenor; and a generic mix of genres and structural 
functions of hierarchy “which function to construct mathematical reality.” The same 
relationship applies to multimodal resources in the elaboration of musical discourse 
(see Fauconnier and Turner 1996, Zbikowski 1997). 

O’Halloran (2008) postulates that the intersemiotic systems for the construction 
of experiential meaning include discursive systems (e.g. intersemiotic ideation) and 
grammatical systems (e.g. relationships of transitivity, lexicalization, symbolization, 
and visualization). Simultaneously, she proposes categories of ‘mechanisms’ to 
explain how the trends and elections of visual and symbolic language—hearing 
should be added—are integrated to produce the semantic expansion of mathematical 
discourse in a way analogous to the semantic expansion of musical discourse. Such 
mechanisms formulated by O’Halloran are: semiotic cohesion (multimodal reference), 
semiotic adoption (incorporation of semiotic elections between grammars), semiotic 
mix (structural combination), juxtaposition and spatiality (spatial arrangements, 
concrete analogy, proportion), semiotic transition (explicit change to another semiotic 
resource), and semiotic metaphor (metaphorical expressions, abstract analogy, 
paradigm). All of these ‘mechanisms’ are explored throughout the present study, 
given its relationship to processes of musical self-similarity. O’Halloran devotes 

                                                 
153 See subchapters 4.7.–4.8. 
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special attention to the role of intersemiotic metaphor in a similar way to which this 
research focuses on the functions of intersemiotic synecdoche. 

Intersemiosis and multimodal grammaticality have manifold theoretical and 
practical aspects of interest for music. This study does not intended to thoroughly 
cover both issues, but instead concentrates on the derived concepts of intersemiotic 
translation and synecdochic intersemiosis because of their relevance for the investigation 
of musical self-similarity as a complex phenomenon—i.e. a coordinated wholeness of 
semiotic layers. 

 
3.8.1. Intersemiotic translation 

Music’s relationship with other arts is dialogical. This means that music can persuade 
other arts, or can be persuaded by other arts to modify its symbolic content and 
meaning. Moreover, the comparison of components of music, with the components 
of other kind of aesthetic forms, strengthen the sense of music and—in general—the 
sense of aesthetics (see Sickles & Hartmann 1942, Ingarden 1962, Monelle 1992, 
Lidov 1999, Tarasti 1993, 1994). 

The ordinary language a musician uses to refer to music operates as a continuous 
intersemiosis: when Walter Piston (1947:13) asserts that “The outline of a melody 
may be perceived by simply looking at the music”, he is searching for a synaesthetic 
method of intersemiotic translation. The functional correspondences at this 
crossroad of semiotic systems are not arbitrary, but reflect the dialogical relationships 
between cognitive domains, essential for inferential reasoning based on comparison 
and analogy, of vital importance for music (see Zbikowski 1997). 

Étienne Souriau’s (1892–1979) treatise on comparative aesthetics, entitled The 
correspondence of the arts (1947), essays to formulate a general theory of intersemiosis 
in the arts. It is based on the assumption, also defended by Ghyka (1938:78), that it is 
perfectly possible to transpose a spatial notion of rhythm, as it is found in design or 
architecture, into a temporal notion of rhythm, as it is found in music. Both authors 
also assume that aspects such as proportion or enumeration, are fully empathic in this 
kind of transposition or intersemiotic translation—as defined below, including aspects 
of harmony, timbre, and texture in their broadest sense. After all, the transposition of 
a spatial notion of rhythm into a temporal notion of rhythm, occurs whenever the 
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written representation of music is interpreted as actual sound: intersemiotic 
translation is a phenomenon clearly and continuously present in a variety of musical 
practices. 

Though there is abundant research on the ‘translation’ of paintings into music,154 
the literature pays less attention to the general processes of intersemiotic translation, 
often overlooked during the musical conversion of self-similar sign systems. With a 
name that may seem far-fetched and not quite conceivable on first contact, Roman 
Jakobson’s definition of intersemiotic translation, is nothing else but describing a 
forest, as in Sibelius’s music, or articulating a narrative through sound, as happens in 
distinct instrumental traditions (see e.g. Rowell 1983, Almén 2008). The terms of 
ekphrasis, transposition, transmutation, and intersemiotic translation are often 
considered as homologous and used interchangeably for similar cases. There are, 
however, convincing reasons to adopt the last of them in the context of the 
relationships of self-similarity and the theory of maps within maps presented by 
Charles S. Peirce.155 

Umberto Eco (2003:110) suggests that “when a verbal text describes a visual 
artwork, the classical tradition speaks of ekphrasis”.156 A good example is the painting 
of Las Meninas (or The Maids of Honour) by Diego Velázquez, described by Foucault 
in the introduction to his literary essay Les mots et les choses (1966). Eco (2003:111) 
also comments the case of ‘hidden ekphrasis’ when the references from the source to 
be translated are not explicit; for instance, when describing a picture—one may use 
the same example of Las Meninas—without using any information about its title and 
author, and omitting details from the painting. The recreation of the scene painted 
                                                 

154 The pioneering essay by Eero Tarasti (1993) figures among the few works published on 
musical intersemiosis. It should also be noted that issue 105 of the magazine Pauta (January-
March 2008), directed by Mario Lavista, is entirely devoted to aspects of ‘interdisciplinarity’ 
between music and other arts. This issue includes the writings of Sotelo and Sánchez Escuer 
itemized in the bibliography of this study. However, none of these precedents analyze musical 
intersemiosis in function of self-similarity, neither do they explore the role of synecdoche in 
intersemiotic translation, or in pre-musical and meta-musical environments. The present study 
seeks to address, precisely, this absence, developing a theoretical framework. 

155 This concept, investigated under the name abduction, is introduced on pages 23, 31–32, and 
then developed in subchapter 3.3., on self-similarity (pages 66–69, 76), as well as in following 
sections and further subchapters (see also ‘abduction’ in the Index of subjects). 

156 From the Greek ε̉κφράζω, to expose in detail; from ε̉κ, out, and φράζω, to explain with signs 
and words. A related term, φράσις means “statement of facts in the prologue to a tragedy” (M. 
A. Bailly, 1894). 
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by Velázquez is achieved, then, by reproducing relationships that allow a 
reconstruction, although partial, of the objects or figures in question. Thus the 
spectator can guess the source of references named by Peirce (CP 7.219) as abduction: 
the mental process which elaborates the assumptions that allow the identification of 
the source. Consistently, in his treatise on music, painting, architecture, and film, 
Ingarden (1962) does not speak of ‘intersemiotic translation’, but of ‘kinship’ 
(Verwandtschaft) [op. cit.:229] and ‘means of reconstruction’ (Rekonstruktionsmittel) 
[ibid.] of specific aspects across different disciplines or aesthetic fields. 

In particular, the concept of ‘transposition’ refers to passing information from 
one symbolic medium to another. Jakobson (1980:90) describes it as follows: 

There are not only translations, but also transpositions into another art. [A] poem could 
be transposed into a painting […] However, something quite different will come out 
because the semiotic structure is different. It will be an intersemiotic fact. Transposition is 
permissible. […] I consider Blake’s illustration of Dante very beautiful; however, it is not 
Dante, but something quite different. On the other hand, [a] poem could also be put into 
music or could be filmed. All these transpositions show that there is a common element in 
all these art forms. Something remains. Most of it is gone, though; I would not say it’s lost, 
but it is altogether transformed.  

Jakobson uses the word ‘transposition’ as a synonym for ‘intersemiotic fact’ and with 
it encompasses the concept of ekphrasis. But with its use a problem arises: the word 
transposition is already employed for very specific cases in linguistics and in music 
theory, having no direct relationship with the idea exposed by Jakobson. In music 
‘transposition’ means to move a system of notes from an instrumental register to 
another; this process is close to the concept of intralinguistic translation, also coined 
by Jakobson (1959). Similarly, in translation theory, transposition “involves replacing 
one word class with another without changing the meaning” (Vinay and Darbelnet 
2004:132). This definition of transposition implies, simply, to say ‘the same’ in other 
words.157 

Jakobson (1959:232–233) defines three types of translation: intralinguistic, which 
corresponds to the interpretation of verbal signs by means of other verbal signs of the 
same language or the same system of symbols; interlinguistic, which corresponds to 
the interpretation of verbal signs by means of other verbal signs of a language other 
                                                 

157 However it is interesting to compare this notion with the concept of recursion (“following a 
rule”) a defined by Marrades Millet (1998:54–55) [see quotation on page 95]. 
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than the language of origin (i.e. standard concept of translation); and intersemiotic, 
which is the transmutation of a system of signs, verbal or nonverbal, into another 
different system of signs. In his approach to these definitions, Eco (2003:110) repeats 
the equivalence originally made by Jakobson: “intersemiotic translation, that is, [the] 
transposition from a given semiotic system to another, as happens when a novel is 
transformed into a movie or a painting is described by a poem.” In this way Eco 
assumes the equivalence of the concepts of ekphrasis, transposition, and 
intersemiotic translation. 

For this study, and in order to achieve an operative use of the term intersemiotic 
translation, its use is restricted to the definition that Jakobson suggests (cit.), as a 
system of signs transmuted into another different system of signs. This definition 
does not only fit Eco’s examples between novel and film, or between painting and 
poem. It can also fit exchanges between many other kind of complex semiotic 
systems, such as the translation of a topography into a map, or a musical score (a 
form of acoustic map) into musical sound. 

The operativeness of exact self-similar systems, such as fractals,158 does not imply 
any internal translation—as they are consistent in themselves. In contrast, the 
operativeness of relative self-similar systems may involve a (quasi-)intralinguistic 
translation process as a system of references displaced within the same system of 
signs: a tree structure can be described by the generic translation of a main structure, 
into main branches similar to the overall system, and a successive self-translation into 
its subsets. This form of translation implies a poietic recomposition of the original 
sign system, that is, the creation of ‘something new’ (“something quite different”) 
nevertheless reflecting consistency between source and recreation (see Jakobson 
1992:102–103). 

 

                                                 
158 See notes on the strict use of the term ‘fractal’, in section 1.3.4. 
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◊381. Self-referential circuit representing the intersemiotic flow of adjacent categories 
forming systems of analogies. The lower part of the chart invokes the Peircean 
category of firstness (explained in section 3.8.3.) as cyclical phenomenon of ‘being’ or 
self-reflection resulting from self-reference. The medium part of the chart points to 
secondness as cyclical referentiality of a knowing process; and the upper part points to 
thirdness as an elaboration of emergent sub-categories. The upper part also 
resembles the structure of Chapter 4, in adjacent categories of self-similarity (e.g. 
corpuscular, mechanical, biological, structural-linguistic, stylistic, and transcultural 
self-similarity). 

Going deeper into this system of recreations, the intersemiotic translation works 
as a link between empathic categories of references in different sign systems. As 
intersemiotic flow, this form of translation plays an essential role in the interpretation 
based on the correlation of categories, in which are established analogies, chiasmi, 
comparisons, metaphors, metonymies, parallels, similes, synaesthesias, synecdoches, 
and systems of polysemy—including body-instrumental gestures and sounds, 
silences, and other symbolic resources common in musical performance. 

In this scheme (see ◊381) the concept ‘map’ indicates a symbolic space for the 
representation of ontologies with specific qualities and relations, related to other 
corresponding ontologies. These ontologies are grouped in categories or domains, 
which in turn may be associable as contiguities. An example of this association is the 
following string of relations: a score for violin is a map of actions and relations in the 
musical space and time; interpretation of that score is realized by a mental map in a 
massive coordination of neural networks; recording of this music on a tape is a map of 
electromagnetic signals, read by an automated system; the conversion of the analogue 
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recording into a digital file involves a binary map which, when expressed by a visual 
editor, generates a new (bit)map. This string can stop in a circuit, or continue 
indefinitely, supposing that such a (bit)map stimulates a reinterpretation of the 
original source (in this case a score), producing a continuous information feedback. 
For each cycle of this circuit there are different operative categories, connected by a 
continuous flow of intersemiotic translation. The sequence of maps composing this 
translation is here described under the label ‘intersemiotic mapping’, and its 
theorization serves to explain the correlation between neighbouring layers of self-
similarity within musical processes in general.159 Such a correlation is illustrated 
throughout Chapter 4, describing the intertwining among six typical categories of 
self-similarity: corpuscular, mechanical, biological, structural (linguistic), stylistic 
endomorphisms, and transcultural self-similarity. At the same time the notion of 
intersemiotic translation provides a theoretical framework for the description of 
Markov chains, Lindenmayer systems, recursion trees, and fractional noises as 
musical sources, as explained in Chapter 5, and for the study of the conversions of 
spatial and visual patterns in general, into music, as suggested in Chapter 6. 

Intersemiotic translation may weave semiotic strings between different sign 
systems.160 For instance, Felguérez’ Steel Equation has characteristics abstracted from 
mathematical thought, materialized into the language of modern sculpture.161 In its 
turn, Steel Equation can be translated into a set of pictures, being recomposed 
through a new set of equations and geometric relations (the mathematical 
representation of the same sculpture), or into a musical complex. 

Another similar case is the collection of sculptures by Eduardo Chillida, 
described by Mauricio Sotelo (2008:15) as “silent Sea of sounds”. Chillida carves 
stone blocks and moulds metal pieces giving them rhythms and motifs borrowed from 

                                                 
159  Useful in the context of semiotics and aesthetic theory, the concept of ‘intersemiotic 

mapping’ is equivalent to cross-domain mapping, employed in cognitive sciences and experimental 
psychology (for its adaptation to music theory see Zbikowski, 1997:200). 

160 However, an intersemiotic translation is not always feasible or does not always consists of 
an explicit negotiation or migration of signs. This notion is suggested above under the concept 
of hidden ekphrasis. 

161 Manuel Felguérez (born 1928) is a sculptor and painter, author of an innovative output 
displayed in international collections. 
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the music of J.S. Bach, or from the sound of the sea.162 Something comparable occurs 
with the architectural spaces created by Luis Barragán,163 transformed into piano 
sonorities in Gabriela Ortiz’ Patios serenos (see Sánchez Escuer, 2008). The specific 
case of Francisco Guerrero also belongs to this tradition in which form, space and 
movement are conceived, not from a mathematical conceptualization—as it is 
commonly asserted for the music of this composer, but rather from a highly cultural 
intuition of the world as an organized system of systems. This difference escapes to 
most of authors suggesting that Guerrero ‘used fractals’ to compose music, as in 
Woolf’s (e2000) review: 

Oleada (1993), for a string orchestra of 50 real parts, is based on ‘the fractal movement of 
a wave’ in micro-polyphony too complex to perceive, superficially like Ligeti’s 
experiments, the parts ‘sliding from one voice to another as in a whirlwind’, [with] every 
detail deduced mathematically and notated with precision. Guerrero saw the form almost 
as a live organism. 

The relevant fact in this idea, is neither “the fractal movement of a wave”—as if such a 
thing could exist beyond engineering schemata—nor the “every detail deduced 
mathematically and notated with precision”—how precisely could a wave be 
humanly notated?! The keyword here is ‘almost’. Then, the relevant question is how 
something musical can be ‘almost’ a living organism, or ‘almost’ mathematics. The 
answer seems to be at the perceptual and cultural mechanisms of intersemiosis, as the 
central chapters of this study suggest. 

All these results can be applied over and over again to other intersemiotic 
translation processes, forming infinite semiotic strings in an intersemiotic continuum. 
For instance, Guerrero’s music can also be described by its fractal dimension,164 and, 
conversely, certain (pseudo)fractal object or process can be described by Guerrero’s 
music. In a bias similar to analogy—expressible as proportion or as paradigm—the 
intersemiotic translation can also have deterministic or indeterministic orientation. 
Accordingly, an analogy may combine aspects of both proportion and paradigm, and 
                                                 

162 Eduardo Chillida (1924–2002) is a sculptor known for his monumental abstract works, 
many of them associated with landscapes and open environments. 

163  Architect Luis Barragán (1902–1988) became the second winner of the Pritzker Prize 
(1980). 

164 The concept fractal dimension is explained in a special section in subchapter 5.5. (see pages 
300–303). 



 

 
 109 

intersemiotic translation may combine aspects of determinism and indeterminism. 
Zbikowski (1997:207–209) identifies this dichotomy as a constructivistic difference 
between atomistic buildings and chains-of-being, with their own systems of hierarchy 

and recursion. Specifically alluding to musical constructivism, Zbikowski (op. 
cit.:210–212) associates atomistic buildings with ‘rationalist organization’ (i.e. musical 
determinism), and chains-of-being with causalities based on tautological or 

metaphysical attributions (i.e. musical indeterminism).165 
An example of determinism in intersemiotic translation is the direct conversion 

of a geometric object into a musical system, e.g. a regular hexagon into a hexatonic 
whole-tone scale, or an abstract two-dimensional map into a system of pitch-lengths 
with absolute correspondence of intervals. So, under explicit rules, Felguérez’ Steel 
Equation can be translated into sonority. Now, examples of indeterminism in 
intersemiotic translation are the recreation of a ‘forest’ in Sibelius music, or the ‘sea’ 
in Debussy’s La mer. In these cases, the resulting musical systems operate by 
paradigmatic analogy, dependant on interpretative variations in their cultural 
context. 

Something to be emphasized is that, as happens in the two classical modes of 
analogy, intersemiotic translation is coordinative: it can at the same time be of 
deterministic or indeterministic character, depending on an interpretative approach. 
The fact that the music of Sibelius or Debussy is based on a metaphor does not mean 
that the same metaphor is not also working as an analogy, with an intuitive usage of 
ratios and proportions, in consistency with what is evident in certain physical 
characteristics in woods or the sea. In any case, the difference between determinism 
and indeterminism in intersemiotic translation lies in the balance of the ordering of 
signs, guided by the rigor of analytic processing and its deterministic grammaticality, 
or by the expressiveness of an indeterministic idiolect. 

 

                                                 
165 In the present study, musical ontologies in both forms of ‘constructivism’ are mirrored by 

the atomist or gestaltic notion, as well as by a continuist or integralist counterpart. 
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3.8.2. Synecdochic intersemiosis 

In both cases, the notions ‘forest’ and ‘sea’ are transmitted by synecdoche: in music  
—including its figurative notion as musical performance and written formation—as 
in other kinds of language, is not mandatory to explicitly present all the physical 
qualities of the referred systems. It suffices transmitting a single aspect, enough 
intuitively and adequate to cultural context, to reproduce, by paradigmatic analogy, 
the images ‘forest’ or ‘sea’. 

In music, however, the synecdochic functions deeply affect the recreation of 
objects and spaces. For example, Fourier analysis (whose theoretical bases are 
explained in subchapter 4.2.) permits interpreting the periodic systems of frequencies 
of sound as complexities resembling the partial layers forming each system. This is 
reflected in a very elementary fashion, by the ordinary nomenclature in a tonal scale: 
when playing a tone of a specific gamut with a violin, one may say that ‘a pitch x from 
the scale X is sounding’ (e.g. a c4 in a C major chord). This clearly constitutes a 
synecdoche. At the same time, there is another, hidden synecdoche: one may say that 
the pitch x has certain qualities, but ‘x’ implicitly means the set of its subharmonic 

components e.g. those which are typical of the violin strings. Summarizing, x 
signifies, in its singularity, the polysemy of its manifold particularities. 

A synecdoche is a generalized relationship structuring meaning and sense. From 
the point of view of psychiatry, experimental psychology and cognitive science, 
“Sense is not in things. It is in the living being who uses things giving them a sense” 
(Cyrulnik 2004:13). Then, a synecdoche is not a property characterizing the universe, 
but a cognitive entrainment that extends—by an abduction of aesthetic character—
the intelligible over the unintelligible; the known over the unknown; and the 
dominated over the indomitable, opening the possibilities for conjecture and 
prediction.166 

                                                 
166 This idea is foreseen by Locke, although from an interpretation restricted to rationalism: 

“General and universal belong not to the real existence of things; but are the inventions and 
creatures of the understanding” (Locke 1690:II, 21). 
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Being considerable part of the human capabilities and biases, music is one of the 
most blatant manifestation of intersemiosis.167 Under this premise, Chapters 2, 3 and 
4 present a selection with examples of synecdochic intersemiosis concerning musical 
self-similarity. These examples provide, within their different contexts, an overview of 
the ‘map of the map’, 168 according to the concept of abduction founded by Peirce: 
the whole spectrum of the partial relationships having implicit the totality to which 
they belong, produces a comprehensive picture of functional similarities within a 
subset of similarities with respect to a bigger set of similarities, or, using terms of 
Guerra Lisi and Stefani (2004, 2008), within a globality of languages that achieve 
coherence and consistency through a self-similar intersemiosis. In harmony with this 
ideas, Cruces (e2002) brings into musicology the figure of ‘worlds within worlds’, 
under the connotation ‘worlds of sense’, in self-similar cycles that—according to 
Cruces—are expressed in four levels: grammar of the sound system, musical text, 
interactive situation, and practical, isomorphic, and synaesthetic schemata of sociocultural 
congruence.169 

 
3.8.3. Applying Peircean semiotics to the IC theory 

The intersemiotic continuum theory (IC theory), introduced in section 3.8.1. (see 
especially chart ◊381), is inspired by two Charles S. Peirce papers (1893, 1903a, with 
some ideas from the latter work developed in Peirce 1903b and 1903d).170 

Peircean semiotics is a widely researched metalinguistic model (for a general 
introduction to the subject see Eco 1976, Lidov 1999), that equally has been widely 
applied to musicology (see Monelle 1992, Tarasti 1994, Martinez 1997, Lidov 2005, 
Ojala 2009, among many others). Since Peirce’s theories are explained elsewhere, this 

                                                 
167 This is why, assuming cultural variation, the concept of music is so difficult to be enclosed 

in a simple, unified definition. 
168 i.e. the ecologic concept of the ‘house of the house’ proposed in this study. 
169  In particular, the association of “practical, isomorphic, and synaesthetic schemes of 

sociocultural congruence” invokes the relationship established in the present study, between 
functional self-similarity and intersemiotic translation. In music these two concepts are 
intertwined. On isomorphism and isometry see subchapters 2.3. and 6.2. On the concept sociocultural 
congruence see subchapters 4.6.–4.8. 

170 Peirce 1893, 1903a–1903d partially correspond to Peirce’s Collected Papers 5.66–81, 88–92, 
5.180–212, 7.565–78, 8.122, and MS 51. See bibliography. 
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section is limited to summarizing what the Peircean concept of firstness, secondness, 
thirdness means, and how it is adapted to the present study. 

Among the classes of signs that Peirce states, his phenomenological trichotomy 
(firstness, secondness, thirdness)—elaborated as a revision of Hegel’s triadic categories 

of being-nothing-becoming, and being-essence-concept—is suitable for systematically 

embracing other Peircean semiotic trichotomies (such as Qualisign, Sinsign and 
Legisign; or icon, index and symbol; or rheme, proposition and argument). Given that 
this model (i.e. the phenomenological trichotomy) is accurately designed for the 
study of signs in general, it is adopted here as a general framework for the 
investigation of musical signs and musical-sign processes. This decision also involves 
the study of self-similarity in pre-musical and meta-musical objects and processes 
(e.g. geometric objects or dynamical processes expressed as music, and vice versa). 

As it can be inferred from Peirce’s writings (cit.), firstness is typically characterized 

as self-reflection, perceptual immediacy, first contact or feeling; secondness as reaction 
or relation; and thirdness as mediation, representation or conceptualization, following 
from the previous relationships. These phenomenological categories also have a 
deictic association, as vagueness or ‘some’ (firstness), specificity or ‘this’ (secondness), 
and generality or ‘all’ (thirdness). These notions are closely related to basic concepts 
explained in Chapter 2; but more importantly, they are used to investigate the 
generalized relationship between source and analogy (usually forming a synecdoche), 
in most of the pre-musical cases studied in Chapter 4, and the meta-musical cases 
studied in chapters 5 and 6. 

The main advantage of adopting this method for investigating analogy and 
synecdoche in music, is that it allows us to explain them in terms familiar to music 
theory, identifying specific, symbolic roles in relationships such as theme to variation, 
or subject to countersubject, or antecedent to consequent. 

Peirce’s phenomenological trichotomy is not limited to establishing causal 
relationships, but remarkably contributes to understanding the association between 
feelings, reactions and representations, even in the more abstract models of music, 
linguistics and mathematics. A very clear example of this is given here in the section 
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Musicological interpretation of the Cantor function, in subchapter 6.2.,171 exploring the 
form in which a ‘simple’ ontology—an abstract firstness, in this case a straight line 
segment—is synecdochically associated with itself, generating a secondness (i.e. a 
geometrical first-order analogy), and then forming a second-order analogy, till 
elaborating successive segmentation or thirdness (a process suggested by chart ◊381). 
Moreover, as subchapter 6.1. explains it, this logic is essential for proportion in 
general. The same schemata can serve to investigate many other series and geometric 
objects associated, by synecdoche and analogy, to music (see e.g. Fripertinger 1999). 
This is why, for instance, charts ◊623 and ◊624 show analogous images of transitions 
harmony → similarity → noise (equivalent to proportion → self-similarity → chaos, arrow 
denoting tendency), suggesting a parallel relationship with firstness, secondness, and 
thirdness, in the Peircean sense of abduction.172 

Peirce establishes an ontological dependence between categories, based on the 
epistemic-empirical association between non-relative quality and first analogy of the 
quality. Therefore, he establishes a consequential context for ‘first-categories’ or ‘first-
ontologies’ from which other subcategories can be ‘abducted’ (see ◊381). Peirce 
(1903d:270) himself explains this as follows: 

It is possible to prescind Firstness from Secondness. We can suppose a being whose whole 
life consists in one unvarying feeling of redness. But it is impossible to prescind 
Secondness from Firstness. For to suppose two things is to suppose two units; and therein 
has Firstness, even if it has nothing recognizable as a quality. Everything must have some 
non-relative element; and this is its Firstness. So likewise it is possible to prescind 
Secondness from Thirdness. But Thirdness without Secondness would be absurd. 

This model is actually useful for any string of semiotic categories in which firstness, 
secondness and thirdness are relative or non-relative states of semiosis, rather than 
‘pure’ ontologies or absolute modalities of understanding. Thus, ennumeration (1, 2, 
3…) is trivial; what really matters here is the synecdochic action of a on b, of b on c, 
and so on, elaborating a semiotic continuum through (partial) transitivity. This can 
serve to study how strings of signs—even infinite strings based on the same principle 

                                                 
171 See pages 360–362. It may require, however, reading previous pages on the Cantor function 

(pages 354–360). 
172 For a definition of abduction, see pages 23 and 459. 
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of extension into subsequent analogies and synecdoches—can have epistemological 
continuation: for example, how numerical series or rhythmic patterns in music can 
proceed from ‘something’, to a specific pattern, and then to conjecturable sub-
patterns.173 This is especially valid in the context of subchapters 5.1. to 5.4., whose 
topics depend on the recursive self-reference of an initial state (i.e. firstness); as well as 
in the context of subchapters 6.3. to 6.6., on the recursive relationship of an initial 
self-reference (idem). 

Connecting Peirce’s synechism with Mandelbrot’s fractality is one of the main 
objectives of the present study.174 Using a precise language, Peirce formulates three 
concepts familiar to self-similarity and fractal theorizing. Namely: (1) the self-
sufficiency, (2) the economy of the Universe, and (3) the map of the map (see Peirce 1893, 
1903a). Respectively, these notions are directly connected to the modern physico-
mathematical concepts of (1) self-reference, (2) power laws, and (3) self-similarity, 
closely related among them, and all of them explained along this Chapter (see 3.3., 
3.6. and 3.9.). 

Finally, the cyclical model for the intersemiotic continuum (IC)—synthesized in 
graphic ◊381—suggests that Peirce’s trichotomy is also compatible with an infinite 
cyclical model of recursiveness, powering semiotic variety based on self-reference and 
recursion, as explained in subchapters 3.6. and 3.7. 

 
 

                                                 
173  Pareyon (2010b:35–36) suggests that this principle actually governs all self-referential 

sequences: “This is not to say—at all—that Peirce was looking for representing Fibonacci series; 
neither this would be relevant for this case. The true relevance in this elaboration is that one can 
find here the same intuition for order and hierarchy through self-reference, starting from very 
few elements and very simple conditions: what Peirce identifies as firstness, secondness, and thirdness, 
for a mental process. The mind of Peirce works here like the mind of a composer or a 
mathematician, in search for the most simple—but still operational—model for the synthesis, its 
extension, and the methodification of self-referentialities.” 

174 Synechism (see Peirce 1893) is the Peircean doctrine of synecdoche, as the source for an 
existential philosophy. For a definition of synecdoche, see subchapter 3.2. 
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3.9. Philosophical implications 

3.9.1. Perturbation of the creative centrism 

Among the consequences of exchanging the author and the spectator, in music, in a 
comparable way to literature, perplexity arises from self-similarity when confusing 
source with interpreter, or referential origin with destination, as J. L. Borges suggests 
(Other Inquisitions, 1952:68–69): 

Why does it make us uneasy to know that the map is within the map and the thousand 
and one nights are within the book of A Thousand and One Nights? Why does it disquiet 
us to know that Don Quixote is a reader of the Quixote, and Hamlet is a spectator of 
Hamlet? I believe I have found the answer: those inversions suggest that if the characters in 
a story can be readers or spectators, then we, their readers or spectators, can be fictitious. 

The same idea is fostered by Lotman (1988/1994:383) when he meditates on the 
problem of the ‘story within the story’, in a text within another: 175 “Specularity exists 
between the two texts, but whatever appears to be a real object turns out to be only 
the deformed reflection of something that was itself a reflection.” Lotman conceives, 
however, “more complicated” cases in the intertwining of self-references, where the 
reflection is completely confused with the ‘real object’, “where the text and its frame 
are interwoven, so that both frame and text are framed.” (ibid.). 

Without entering into conceptual labyrinths of self-reference as Lotman does 
(cit.), Roland Barthes (La mort de l’auteur, 1968) intersperses views on the subject 
with meditations on the author vanishing through their own creative references. The 
same issue concerns Michel Foucault (Qu’est-ce qu’un auteur?, 1969) with certain 
uneasiness: “Who speaks truly, when we conceive the voice of an author?” 176 

                                                 
175 An example of this is the structure of the first volume of Don Quixote (1616), in which a 

narrative structure encompasses others. 
176 In “The Backward State of Metaphysics” (1898), Peirce wonders if there is a distinction 

between the world’s ‘external’ and ‘internal’. Later, in “The Categories Defended” (1903) he 
postulates a self-similar relationship between the categories of thought (quality, reaction, 
representation), in turn with their own branchings of subsequent categories (see Pareyon 2010b). 
In this postulate, Peirce does not use the term ‘self-similarity’, but formulates the equivalent 
concept of ‘map of the map’ or ‘map of itself’: “the map of itself with the map of the map 
within its boundary. Thus there will be within the map a map of the map, and within that a map 
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Analogously, for music makes evident a ‘perturbation’ of the creative centrism, 
assuming that—from the perspective of synecdochic intersemiosis—music has its 
centre everywhere and its limits nowhere.177 This occurs, indeed, when assuming that 
the physical characteristics of certain timbral spectrum or fractional noise are 
‘nestings’ of structural characteristics of music, and of language in its most 
fundamental aspects.178 Following this plot of self-reflections, the notions of author or 

composer are also confused with those of work, interpreter, and spectator, because 
whether the cycles of a musical style are part of a larger complex of trends, equally 
cyclical, and the creative periods of a musician are reflected in periods of their own 
music made of comparable cycles, the overall picture constitutes a correlated whole 
from which neither an ultimate representation can be extracted, nor an initial 
cause.179 

Necessarily, the investigation of these relationships must employ criteria to 
describe holistic patterns instead of producing descriptions that, whereas looking for 
extreme accuracy, lose sight of the most meaningful general relationships. This 
implementation is inspired by the theory of dynamical systems initially developed by 
Henri Poincaré (1854–1912): “To Poincaré, a global understanding of the gross 
behaviour of all solutions of the system was more important than the local behaviour 
of particular, analytically-precise solutions” (Devaney 1987:viii; see also Poincaré 
1886, 1907).180 

                                                                                                                              
of the map of the map and so on ad infinitum.” (Peirce 1903a/1998:161–162). This issue is 
discussed further in the next section. 

177 This figure points out simultaneously the music of the spheres and the infinite sphere in the 
history of Western thought, according to the postulates of Alain de Lille, Nicholas of Cusa, 
Giordano Bruno, and Blaise Pascal, on a sphere with “its centre everywhere and its limits 
nowhere”. The notions of harmony and harmonic expansion accompanying these ideas and 
their relationships with music have roots in Plato (Timaeus, Republic) and, above all, in Aristotle 
(De Caelo B9, 290b12). 

178 On the concept of ‘nesting’, see subchapter 5.4. 
179 i.e. the ‘universal cause’ (ἃίτον) in Aristotelian teleology. 
180 This idea is absorbed in musicology by the thought of Jan P. LaRue (1969:450–451): “once 

we comprehend the wholeness, the parts fall into a proper perspective. The opposite process 
yields less insight, for a study of the parts does not usually help us to sense the whole; in fact, it 
tends to fragment any broader view, obscuring it with a multiplicity of detail. Hence, it becomes 
essential to begin with large overviews.” This notion enriches the discussion on musical style in 
subchapter 4.8. 
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Assuming these considerations, this study focuses more on the investigation of 
global processes, than on the specific work of a composer or a musical style. The peril 
of attempting to cover a too broad field is avoided by limiting this investigation to 
basic concepts such as analogy, intersemiosis, intersemiotic translation, map, musical 
ecolect, musical idiolect, proportion and antiproportion, recursion, self-similarity and self-
dissimilarity, style, and translatability, which give operational consistency to this 
research. 

 
3.9.2. A self-comprehending map 

The notion that something can contain itself, repeating its own form in infinite 
scales, has left evident traces in modern thought. Philosophy, especially in its 
pragmatist trends—permeating poetry, fiction literature, and the graphic arts—
communicates this notion through the varied output of authors like Charles S. 
Peirce, Thomas de Quincey, Octavio Paz, René Magritte, and M.C. Escher. The 
drawings of the latter, especially his tessellations, anticipate aesthetic aspects of 
fractals. Paz’ poetry reaches an analogous effect by the concept that an author can be 
reading and writing of himself: “I too am writing and at this very moment someone 
spells me out” (Brotherhood in Collected Poems, 1987). The case of De Quincey is 
particularly remarkable by his astonishing lucidity revealing the nature of sound as a 
self-similar complex (De Quincey, Autobiographic sketches, 1790–1803; 1862:122): 

Even the articulate or brutal sounds of the globe must be all so many languages and 
ciphers that all have their corresponding keys—have their own grammar and syntax; and 
thus the least things in the universe must be secret mirrors to the greatest. 

The perplexity induced by this idea adopts the image of a ‘map of a map’ in Peirce’s 
thought (Peirce CP, 8.122): 

Imagine that upon the soil of England, there lies somewhere a perfect map of England, 
showing every detail, however small. Upon this map, then, will be shown that very ground 
where the map lies, with the map itself in all its minutest details. There will be a part fully 
representing its whole, just as the idea is supposed to represent the entire life. On that map 
will be shown the map itself, and the map of the map will again show a map of itself, and 
so on endlessly. But each of these successive maps lies well inside the one which it 
immediately represents. Unless, therefore, there is a hole in the map within which no 
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point represents a point otherwise unrepresented, this series of maps must all converge to 
a single point which represents itself throughout all the maps of the series. In the case of 
the idea, that point would be the self-consciousness of the idea. 

In the field of mathematics this idea later bears fruit in the work of Mandelbrot 
(1967, 1977, 1982) who coined the term fractal to express—using the same metaphor 
as Peirce—that the edges of Britain could not be represented by a simple set of 
straight line segments with an Euclidean dimension, but with a ‘fractured’ dimension. 

The concept of ‘idea’ mentioned by Peirce also has relevance to this respect: 
beyond the notion of structural self-similarity in music, a musical idea can also be 
self-similar as it germinates within itself, being part of the idea of the person who 
imagines it and carries it out. From this viewpoint the exemplary work of composers 
such as Stockhausen, Xenakis, Ligeti or Nancarrow should be considered, who, 
shortly after 1950 began to suggest that the relationships characterizing a musical 
piece could be constituted by similar relationships, one inside another. The 
continuity of this scheme produces, with a variety of means, a musical repertoire with 
properties of approximate self-similarity, reinforcing the idea of potentially unlimited 
musical grammar operating by functional cycles within larger cycles—a latent 
conception in the analytical research of Bolognesi (1983) and Fagarazzi (1988). This 
evolving conceptualization, intertwining musical repertoire and analysis, also implies 
the “self-consciousness of the idea” proposed by Peirce. 

 
3.9.3. Stochastic distribution 

Several concepts of stochastic distribution, such as Markov chains and the fractional 
1/f noises (where 1 refers to a spectral energy unit correlated with f, which means the 
frequency of a varying process),181 are of paramount importance in this research, for a 
simple reason: in a dynamical system—be it a piece or fragment of a musical work—
its components can be distributed under the same stochastic pattern at different 
levels. This means that whereas the relationship among these components is not 
intuitively self-similar in the form ‘object inside a similar object’, there may be a 
distributional self-similarity characterizing the system. 
                                                 

181 The definition of 1/f noise, including examples of its typical relationships and applications 
in music, is given in subchapter 5.3. 
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The term stochastic, from the ancient Greek στόχος (something tossed or thrown 
at random) indicates a process whose behaviour cannot be expressed as a simple 
cause–effect relationship, but as the intrinsic probabilities of the process. Shannon 
and Weaver (1949:10, 102–103) suggest that a stochastic process corresponds to the 
probabilities of an initial relationship (called ‘source’) to produce a sequence of 
symbols in a spatial or temporal development.182 

A system which produces a sequence of symbols (which may, of course, be letters or 
musical notes, say, rather than words) according to certain probabilities is called stochastic 
process, and the special case of a stochastic process in which the probabilities depend on 
the previous events, is called a Markoff process or a Markoff chain. (op. cit.:102). 

Often, the initial state of a stochastic process is determined by known conditions, as 
happens with the first iterations of functions invoked to produce some Lindenmayer 
systems, fractals, or Markovian chains. These processes, however, can lead to 
undetermined changes in the short term with growing chaotic behaviour due to the 
initial high sensitivity of the system. 

Observing the behaviour of 1/f noise, Voss and Clarke (1978), and later Hsü and 
Hsü (1991), found that the changes in a sample frequency of tonal repertoire (J.S. 
Bach and W.A. Mozart are among their examples) are statistically self-similar and 
reflect ‘scalar independence’, 183 a property related to the so-called fractal dimension.184 
Jones (1981, 2000) also explores the relationship between Markov chains, the 
Fibonacci sequence, and Lindenmayer systems, highlighting ‘common symmetries’ 
between poetic metre and musical rhythm: “They possess self-similar qualities which 
are related to fractal models […] and can provide a keen insight into some quite 
profound inter-relationships between the arts and sciences” (Jones 2000:1). In 
relation to statistics and information theory, the Chapter 3 provides more detail on 
these aspects, which are discussed further in musical examples in Chapters 4 and 5. 

                                                 
182 This is schematically represented by ◊510. 
183 This ‘scalar independence’ means that the basic relations in a system reappear regardless of 

the scale with which the system is observed. Consistently, Mandelbrot and Van Ness (1968:423), 
state that “self-similarity [is] a form of invariance with respect to changes in time scales.” 

184 On this subject, see the separate section at the end of subchapter 5.5. (pages 300–303). 
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3.9.4. On the concept of chaos 

Feinberg (1985:264) defines chaos as “a type of behavior of physical systems in which 
the evolution of the systems cannot be predicted because of its sensitive dependence 
on minor changes in the properties of the system”. This implies that—like chaotic 
systems found in nature rather than one emulated by computers—even if the system’s 
general conditions may be predicted for an initial period, the diversity of factors 
influencing in the system makes it impossible to predict in the mid to long term. 

Quite commonly, the word ‘chaos’ is used to describe a lack of order, regularity, 
or symmetrical agreement. This employment, however, is vague and inadequate for a 
careful study of changing phenomena, such as music, as ‘lawlessness’ may be due to an 
effect of immediate intuition, but not a deep state of things. A more precise use of the 
word chaos is thus associated with deterministic evolution, predictable at least as an 
initial process, that can result in chaotic dynamics. For instance, as part of a process 
of musical creativity, Kagel (vid. Padilla 1984:121) highlights the relevance of 
‘planning chaos’. This notion of chaos is opposed to that of ‘randomness’ in which it 
is impossible to establish the predictability bases for any state of the observed 
phenomena. It is important, therefore, to bear in mind the close relationship of chaos 
with determinism and predictability, by contrast to the relationship between 
randomness and indeterminism.185 

For a specialized musician, albeit with modest proficiency in mathematics, it is 
easy to perceive the difference between deterministic chaos and indeterministic 
randomness in the following terms: in an orchestral tutti written in a full score with 
all details and possible explanations for maximum control on the predictable effect, 
the musicians play at one time, with full dynamics ( fffff ) in the most powerful 
register of the instruments and with accurate rhythmic figures in fast tempo under 
control. The ultimate effect is similar to a complex deterministic chaos. Conversely, 
assuming that another example of orchestral tutti is suggested in a score with vague 
indications of intensity and speed, in a variation of pitches and lengths without 
further explanations, the result will be similar to random chaos—perhaps with some 

                                                 
185  This is the central topic in Eco’s essay (1962) on openness and indeterminism in the 

aesthetic processes. 
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musicians playing sounds with the greatest discrepancy, and some even playing small 
fragments of the last work studied. This resulting disparity is not trivial in musicology 
because both sorts of processes are present, to some extent, in all forms of music, on 
the grounds that in music it is always possible to identify a notion of control 
(determinism), by opposition to a lack of control (indeterminism), for any of the 
musical parameters.186 

Consistently, the notion of chaos is associated with musical processes that are 
stable at first, becoming unstable as they move apart from the initial relationships of 
their original sources. The emulation of such phenomena is equally of great interest 
in the study of acoustic self-similarity, for example in the forming turbulences whilst 
blowing on a wind instrument embouchure (see Bader, 2005); than for 
compositional synthesis (see Roads, 2004:886–889), and stylistic analysis (Bigerelle 
and Iost 2000, Su and Wu 2006, Dagdug et al. 2007). In this context the concept of 
chaos is closely involved with the generation of stochastic processes, described above, 
as well as with the predictability in correlation of global and local music systems 

Regarding compositional synthesis, the generation of chaos is common from the 
iteration of a function that is clearly determined in its first applications, and that in 
the medium term results in subtle variations leading to chaos. Eventually, these 
results can be juxtaposed with random processes, as happens in some examples of 
Western musical repertoire from the second half of the twentieth century (see 
Bennett 1995, Harley 1995, Little 1993, Steinitz 1996a–b, Maurer e1999, Lochhead 
2001, Salter 2009). 

In principle, due to the recursion of a generative process and to the self-reference 
of its corresponding system, self-similarity is related to a variety of chaotic processes. 
Roads (op. cit.:887) points out a kind of order ‘nesting’ in chaos; a continuous 

                                                 
186 Ironically for a conventional musical approach, chaos may be associated with the notion of 

noise as a system of frequencies in which its inherent relationships are very unstable and even 
highly non-correlated, as in the case of 1/f 0 noise or white noise, which, however, can be 
produced by a deterministic algorithm. Here, the term ‘deterministic algorithm’ implies a 
controlled set of instructions for the generation of noise. On this subject see subchapters 5.2.–
5.3. and 5.5. 
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bifurcation of ordered behaviour that, as with massive process, does not intuitively 
correspond to an image of order or harmony, but to one of chaos or noise.187 

 
3.9.5. Power laws 

With a reasoning that illuminates the generalized relations of self-similarity and its 
significance for music, Carlos Chávez (1961:38) conceives that there are universal 
patterns of symmetry and repetition independent of the scale with which they are 
observed: “We humans are part of the universe, ruled by the same over-all laws 
governing light spectra, acoustical resonance, principles of life, capillarity, osmosis, 
cyclical phenomena, and the like. There is a primeval kinship between them and 
us”.188 This is particularly verifiable in the case of power laws. 

When the probability of measuring a specific value of some quantity varies 
inversely as the power of that value, the quantity is said to follow a power law 
(Newman 2005:323). Many examples of this are observed in the proportional 
relationships between two physical frequencies: a random process acts under a power 
law if a frequency of the origin (of the process) is increased by a higher proportion 
compared to the rest of the frequencies (Schroeder 1991:4–16). In a very rough sense, 
frequencies soon decay insofar as a frequency is established with a rate considerably 
higher than the rest of its group. This applies to physical phenomena, including all 
systems that operate under the same law, for example, in language: according to the 
Zipf’s law described in subchapter 5.1., words that are about twice longer than ‘big 
words’, are four times more rare than those in the verbal repertoire. Assuming that 
this repertoire is a random, endless and countless set of phonetic arrangements from a 
finite (i.e. alphabetical) series, the total of its arrangements is comparable to a Cantor 
set (see schematic representation in ◊332). Therefore, the language in question is 
necessarily self-similar, self-structured—by hierarchies of words, and has a fractal 
dimension. (See Schroeder op. cit.: 37). 

                                                 
187 On the concept of ‘nesting’, see subchapter 5.4. 
188  Chávez (loc. cit.) makes this claim explicitly in the context of musical symmetry and 

repetition. 
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Power laws are observable in a wide variety of physical, chemical, biological and 
social phenomena. Burioni, Cassi and Vezzani (2004:36) consider that “All real 
physical structures (embedded in three-dimensional space) have been found up to 
now to exhibit power law behaviour in the low-frequency density of vibrational 
states”. This principle also holds true in various aspects of psychology. For example, 
Wickelgren (1974) found a power law specific to human memory processes in the 
short and medium term, governing the regular rhythms of forgetfulness under 
statistically normal conditions. 

Much of the current theoretical work linking physics and mathematics is beset 
with the investigation of power laws (see Newman 2005). They are a central issue in 
the study of the connection between structural self-similarity with generalized 
physical laws like the Second law of thermodynamics, which states that the entropy of 
any thermodynamically isolated system tends to increase over time (see Thomson 
1851). This implies that, when a part of a closed system interacts with another part, 
energy tends to divide its power equally, until the system reaches thermal 
equilibrium. Consistently, for a power law, the frequency of an event in a system 
tends to a progressive subdivision, so that the ‘secondary events’ of the system are 
many and the ‘critical events’ are few. 189  This conceptualization serves to 
understanding an idea synthesized by Hsü (1993:24): “Musical notes have been 
compared to elementary particles, and their relationships seem to bear a parallelism 
to the structure of the universe and seem to follow the same laws of thermodynamics 
as crystals, gases or any other measurable substance.” Such an idea stimulates the 
development of subchapters 4.1.–4.2. and 6.1.–6.4., in their turn connected with 
other sections in this study, dealing with concepts on culture, language and 
environment. 

Schroeder (1991:34) conceives that the power laws are, by definition, of a self-
similar character. They are valid at all scales or, rather, are independent of the scale at 
which they manifest themselves. In addition, Weisstein (e2008) states that all self-
                                                 

189 Using the metaphor of the Great Flood for a unique or very rare event, Mandelbrot and 
Wallis (1968:909) call such a phenomenon Noah effect. Later physics, including acoustics, adopted 
the term soliton to describe a single event of unusually large magnitude with respect to the 
periodic behaviour of a system (Aubry, 1979). For an association of this concept to fractional 
noise, see subchapter 5.3. 
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similar objects “are defined by a power law”. Accordingly, power laws involve 
fundamental aspects of music as sound propagation and resonance, intensity, timbre, 
harmonic hierarchy, metrical distribution, figural recursion, agogic and prosody, as 
well as the functional orientation and probabilistic trend in a prescriptive musical 
grammar, as suggested in Chapter 5. 

 
3.9.6. Intersemiosis and power laws 

One of the aspects of the deterministic intersemiotic translation (henceforth DIT) is 
the intentionality of exact analogy between different phenomena of information, 
subject to a specific power law. The maintenance of quantitative relations, for 
example, in the case of alphabetic transliteration into codal units with dots and 
dashes in Morse code, is insufficient to preserve the fundamental message in 
translation, because in this case, the code is just a vehicle for transliteration, and not 
translation itself, with context and meaning (see Eco 2003:9–11). DIT requires 
transmission of a compatible system of analogies.190 Intuitively, Walter Piston 
(1947:13) draws attention to such a compatibility: “We permit ourselves the use of 
the term ‘melodic curve’ to describe this outline, although an accurate graphic 
representation of a melody would show a series of angular movements”. This 
intuition is also valid for the musical DIT of a fractal curve, such as the Hilbert and 
Peano curves (described in subchapter 6.3.), or the devil’s staircase (described in 
subchapter 6.2.). 

A DIT involving abstract relations, for instance, between music and geometry, 
or between painting and music, cannot be supported by a lexical reference or any 
equivalent, indeterministic means. This is an essential difference with intralinguistic 
or interlinguistic forms of verbal translation (as theorized by Jakobson 1959:232–
233). On the other hand, a DIT may use physical references perceived as space, time, 
texture, intensity, or colour, reflecting power laws, which determine basic relations 
such as uniqueness/repetition, symmetry/asymmetry, information/entropy, and self-

                                                 
190 In the given example, using Morse code, dots and dashes are not in analogy with the 

transmitted message, unless the message is self-referent i.e. a Morse code message whose 
semantic content is “dash dot dot / dash dash dash / dash” = DOT, “dash dot dot / dot dash / 
dot dot dot / dot dot dot dot” = DASH, and so on, following sequences of the same kind. 
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similarity/self-dissimilarity, that are crucial to preserving and transmitting a message 
between different semiotic systems in a deterministic environment. 

Whereas the message in intralinguistic or interlinguistic translation may consist 

of a lexical meaning, with a pragmatic or figurative use, the fundamental message in 
the DIT between two systems of analogous self-similarity, may consist of very 
elementary relations between message and code. For example, whilst in any linguistic 
translation (a)symmetry is eventually dispensable as a basic reference of meaning     
—captured by lexicon or intentionality—in a DIT translation any non-lexical 
reference is extremely significant. Hence, it may be that the fundamental message 
within a DIT, is the common symmetry between two elements or two systems, or 
the form in which points are scattered within a swarm. A DIT converts swarms of 
symbols into ‘other’ swarms of symbols, and so, into a ‘new’ symbol embedded in a 
system of invariance, provided that, as Meystel (1998:348) acknowledges, “swarms of 
symbols are also symbols”. Whether this condition is disregarded, then expectations 
in translation may be too high, for example, if the fundamental message is intended to 
be transmitted entirely by a rather limited intersemiotic mapping: 

The problem with much fractal music is that the self-similar deep structure of the 
sequence often does not translate readily to a musically interesting deep structure. The 
structures that are so obvious when looking at a plot of a fractal sequence often go 
unnoticed when the sequence is heard. (Biles e1998). 

However, a point-by-point rendering in an itersemiotic mapping, cannot 
guarantee the transfer of a symbolic reference in its entirety. In any case, there must 
be considered which are the relevant symmetries and repetitions to be transferred, as 
well as their justification under specific power laws. This is clear in the case of Peter 
Gena (e2006), when associating similar systems of probabilities—including symbolic 
complexes as diverse as the I Ching, the genetic code, and music—and implementing 
some generalized structural similarities to justify the intersemiotic mapping: 

By coincidence, DNA and the I Ching are structured in remarkably similar ways. The I 
Ching contains 64 possible hexagrams, and genetic code is likewise made up of 64 codons. 
64 is a power of 2 (26), and both systems make use of it because powers of 2 can be readily 
represented with binary units. Because of the ways in which they are represented, each 
hexagram [in the I Ching] and each codon [in DNA] contains virtually identical 
information content, with a hexagram derived from a space containing 23 × 23 
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possibilities, and a codon derived from a space containing 43 possibilities. […] This 
similarity has nothing to do with the function of either system. The point of comparing 
the two is to illustrate the aptness of comparing the approaches taken in DNA mapping 
with Cage’s systematic composition with chance [i.e. with the I Ching]. (Jensen 
2008:252). 

In Gena (e1999 e2006) and in the revision of his work by Jensen (2008), priorities, 
constraints and scope of the intersemiotic mapping become clear. Quite obviously, 
this mapping is not limited to the symbolic and structural correspondences between 
DNA and I Ching: it can be expanded to a general theory of intersemiotic 
translation, based on the self-similarity/self-dissimilarity relations determined by 
power laws. 



 

 
  

Chapter 4 

Intersemiotic variety in musical self-similarity 

This chapter shows that the relationships of self-similarity in the musical language 
appear in ‘reciprocally related worlds’ and—paraphrasing Parsegian (1968:589)—in 
‘worlds within worlds’, an intuition already explicit in the philosophical doctrine of 
Emanuel Swedenborg (1688–1772).191 Different boundaries of correlation are found, 
thus, for the self-similarity in a sound grain regarding a broader physical system, in 
simple vibratory systems within a more general mechanics, in the tissues within 
organic complexities, in the phonic within the biological, and in the phonological 
within the cultural, forming a vast array of synecdochic intersemiosis. 

The patterns of self-similarity in structures within other structures reveal the 
redundancy that enables a consistent long-term self-organization within the 
emerging systems (see Lewes 1875; Moles 1958, 1963; Maturana and Varela 1973; 
Schelling 1978; Maturana 1980; Reygadas and Shanker 2007). The collective 
behaviour of the parts in such emerging complexity results from a correspondence with 
the whole. In contrast to a set of unrelated or dissociated elements, a self-similar, self-
organized set evolves as a coordinated ensemble, oriented towards unity within 
diversity and to diversity within a range of similarities. 

In communication theory (Shannon 1937, 1948), redundancy is essential for the 
consistency of a message. Moreover, the message’s code implies some form of self-
reference, in order to inscribe the message in a language context. Actually, 
redundancy and repetition are forms of self-reference. A language eluding such 
functional similarities in its repertoire and rules is inconceivable, without sufficient 
redundancy to provide its own structuration (see Moles 1963, Campbell 1982, Tiits 
2002). 

                                                 
191 See Swedenborg’s Principia, Stockholm, 1734. For an introduction to the intuition of self-

similarity in Swedenborg see Baryshev and Teerikorpi (2002:54–65). 
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Although without using the expression ‘self-similarity’, Tzvetan Todorov 
(1968/2004:68) describes language redundancy in terms of elaborations within 
elaborations changing their surface appearance, but remaining invariant through 
different scales: he distinguishes between a monovalent discourse “which does not 
evoke previous ‘ways of speaking’”, and a polyvalent discourse, evoking various ways of 
speaking in a more or less explicit form. The relationship between monovalent and 
polyvalent discourse somehow resembles the link between Peirce’s firstness and 
secondness, explained in subchapter 3.8. According to this viewpoint, redundancy 
seems evolving from singular to plural signification: from identity to similarity 
and/or difference. 

Todorov (1968/2004:47) conceives literature as a sub-system within language; as 
a world within a world sharing functional similarities. He talks about a “figural 
degree” of discourse, conceiving that tropes operate as relationships in absentia, 
admitting a gestaltic theory of the figure: “[figure’s] definition should not be sought 
on the relationship of figure to something other than itself, but in its own existence; a 
figure is that which can be described as a figure” (op. cit.:64–65).192 This sort of 

tautological self-reference is also consistent with Hegel-Peirce’s firstness, and with 

Peirce’s phenomenological trichotomy. Congruently, Todorov (ibid.) appoints a 
specific figural trichotomy: repetition, antithesis, and grading, which can coexist in a 
self-similar discursive pattern, more or less as different categories can coexist in the 
same (inter)semiotic map (see chart ◊381 on page 106). Such figurations and 
categories are found, by analogy, in musical structures. 

Many music theories foreground the issue of similarity between elements, sets, 
and systems, to approach the notions of coherence and functionality in music. Again, 
this scheme falls under the trichotomy suggested by Peirce (1903d), and refined by 
Todorov (1968) as linguistic and symbolic constructivism. This perspective includes 
music analytic theories based on the relationship between singular identity (or 
identity of a same element within its functional context), form (i.e. the structural 
organization between two or more identities, according to a symbolic convention), 
and transformation (both, of simple singularities and complex forms). For example, in 
                                                 

192 This coincides with the definition of self-reference, given in subchapter 3.6. 
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his study On the Similarity of Twelve-tone Rows—based on the concepts of vectorial 
and transformational similarity developed by Forte, Morris, and Lewin—Tuukka 
Ilomäki (2008) notes that formal similarity measures can be used to explain ways of 
‘being similar’, whilst transformational similarity measures can be employed to 
explore the symmetries produced by sets of transformations in themselves. In 
addition, Ockelford (2005) proposes that it is possible to explain the generative 
relations of music as a basic process of symmetry and similarity in which minor 
relationships determine greater relationships. 

The musical relationships studied by Lewin (1987), Ockelford (2005), and 
Ilomäki (2008), among other specialists interested in the functional similarities of 
music, belong only to a selective area of these categories. At the same time, it seems 
obvious that in the immensity of types of similarity, the relationships of self-similarity 
constitute a special group of structures which need a special conceptualization. 

In the following pages a general classification of musical self-similarity by layers is 
proposed, in order to facilitate thematic research on its wider possibilities. Since the 
criteria for ordering these layers lie on a rudimentary notion going from the simple to 
the complex, and from the smaller to the bigger, first a subchapter presents the 
concept of a sonic ‘elementary particle’, with the aim to begin with a revision of the 
‘simplest’ kind of musical self-similarity. Nevertheless, many of the notions assuming 
a sonic quantum are far from obvious; rather they require an explanatory effort before 
a discussion can be opened on self-similarity in fundamental acoustics, in a second 
subchapter. 

4.1. In search of sound’s elementary particle 

Dahlhaus (1990:3–11) notes that where rationalist research seeks to explore musical 
foundations, two types of orientation usually appear: those that attribute music to 
culture, as an effect of history, and those that attribute music to an underlying 
physical order, with universal bases valid in all cases and for all relations. 

The attribution of music to culture as an effect of history (e.g. Fétis 1832) often 
falls short in that it is unable to explain how the biological phenomena are related to 



 

 
 130 

their mechanical and acoustic features. In contrast, the universalist or physicalist 
attribution (e.g. Riemann 1873) exceeds its possibilities to demonstrate a supposed 
‘musical order’ for all things—the foundation of Platonic idealism. It is parallel with 
the Pythagorean dilemma (qua fractal) discussed in the Introduction, which recalls 
the apparent opposition between determinism and indeterminism; between the 
desire for absolute control on the one hand, and a need for flexibility to facilitate the 
control of what happens, on the other. In this context it is useful to review some of 
the key ideas in music theory, dealing with a ‘fundamental particle’ of sound, and 
attempt an argumentation to consider that the concept of elementary particle is not 
necessarily in opposition to the concepts of biology, or to phenomena pertaining to 
history and culture. 

 
The ‘atomic’ notion of sound 

The investigation of the fundamentals of music, which from the rationalistic view 
must be based on universal physical laws, culminates with the concept of the ‘sonic 
atom’—i.e. the maximal reduction of sound as mechanical particle or wave (see 
Backus 1977:33–39). Since the beginning of its formulation, this concept was 
strongly influenced by physical determinism. Attracted by quantum mechanics’ 
prestige in modern science, many composers and theorists ventured, in the twentieth 
century, their own ideas on how an atom should be at the basis of the fundamental 
relations of sound. Hindemith devotes the early chapters of his treatise on 
composition to explain what he calls “the nature of the atomic structure of music” 
(Hindemith 1937/1941:54). Stockhausen (1989:33, 37) explains the influence of this 
idea in his own imagination: 

When I started to compose, after the War, there were many different directions in musical 
research which had been prepared by the great masters [...] It fell to me to synthesize all 
these different trends for the second half of the century, perhaps in a similar way that 
Heisenberg, in the first half of the century, had the role of bringing together the 
discoveries of Planck and Einstein in atomic physics. [...] 
We could speak of the strong influence on musicians during the early fifties, of certain 
books for the general reader by Einstein, or Heisenberg, of biologists like [Carl Friedrich 
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von] Weizsäcker, or Norbert Wiener. There was similar thinking everywhere: reduction 
of the process of forming to the smallest possible element. 

What is disconcerting from this expression is its lack of emphasis on the fact that this 
approach between music and science is metaphorical; it constitutes a figure marked 
by poetic intension. Stockhausen and some other composers of his generation and 
their disciples, using similar arguments, seem to have benefited from this ambiguous 
usage, and by the widespread prestige of the quantum postulates and the new 
scientific language.193 

Rasband (1990) and Schroeder (1991) show points of convergence and 
divergence between a theory of elementary particles of sound and the standard 
quantum theory. They still have presenting remains of metaphorical description, but 
both authors clearly move towards a strict analogy of the tiniest particles of matter 
and respect the tiniest particles of acoustic energy. 

From a perspective oriented to music theory, both Rocha Iturbide (1999) and 
Roads (2004) acknowledge the seminal work of Dennis Gabor (1947) as the 
foundations of the modern method of investigating the ‘basic particles’ of sound. 
Gabor argues—with a special focus on human ear sound perception—that any 
sound, including continuous tones, can be conceived as a succession of phonons or 
elementary particles of acoustic energy, either specifically from the molecular 
vibration, or from the excitement of elementary particles, transmitted to a system of 
molecules. This treatment does not differ from the description of an elementary 
particle by Stockhausen (1989), but draws on the meaningful quality of analogy: 
Gabor does not want to portray an exact parallel between acoustics and quantum 
mechanics; instead, he looks for an elementary ‘grain’ of acoustic energy. 

The Chladni plates visualized as corpuscular patterns, and the Fourier transform 
implemented to analyze an acoustic signal as a set of frequential components, 
contribute to the notion that a fundamental sound system is composed of correlated 
‘grains’ or ‘points’.194 But passing directly from this image to a parallel with quantum 
physics, requires extreme caution. In this context, Roads (2004:27–28) enters into a 

                                                 
193 For a systematic criticism of this trend in the social sciences and the humanities, see Alan 

Sokal, Beyond the Hoax: Science, Philosophy and Culture, Oxford University Press, Oxford, 2008. 
194 On the Chladni figures and the Fourier transform, see subchapter 4.2. 
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philosophical disquisition when asking if the ‘sonic atom’ does or does not exist, 
using a paradigmatic analogy with arithmetic oneness: 

Consider the whole number 5. This quantity may be seen as a sum of subquantities, for 
example 1 + 1 + 1 + 1 + 1, or 2 + 3, or 4 + 1, and so on. If we take away one of the 
subquantities, the sum no longer is 5. Similarly, a continuous tone may be considered as a 
sum of subquantities—as a sequence of overlapping grains. […] This argument can be 
extended to explain the decomposition of a sound into any one of an infinite collection of 
orthogonal functions, such as wavelets with different basis functions. 

In a simple example of sums, Roads—based on the Gabor matrix—envisages a matrix 
of sound production. In this matrix, resembling a grid in which the basic spaces are 
‘basic sound grains’, the elementary particles of computer sound synthesis have their 
place. This explanation is sufficient for Roads because the space he conceives for 
testing his hypothesis is the space for sound representation in the computer, which is 
characterized by a fundamental segmentation of information in a numerical (binary) 
sequence. Wherever a numerical minimum (i.e. a basic operational symbol) does exist, 
then there is also an elementary minimum for sound processed by a computer. From 
the cognitive view, this concept matches with the gatom (Gestalt atom) proposed by 
Cope (1987:36) for music theory.195 

The ultimate answer to the question of whether the existence of the ‘sonic atom’ 
can be objectively analogous to the existence of the standard atom, lies in the 
descriptive nature of both concepts: whereas the standard atom is a basic model of 
the relation matter/energy, the sonic atom is a model for the acoustic energy at the 
level of molecular relations (i.e. intramolecular vibrations). As the study of molecular 
motion and friction, and the measurement and interpretation of pressure changes in 
fluids are linked to classical mechanics, it is clear that such a study involves many 
aspects of empiricism from classical physics (e.g. from Archimedes to Bernoulli), 
unlike quantum mechanics, whose theoretical subtleties are far too empirical. The 
‘sonic atom’ has a more simple characterization: a wave given as the ‘fundamental’ 
frequency between two molecules, or between two sets of molecules statistically 
defined, that corresponds to the ‘basic grain’ of its sonic energy. There are, however, 
some deep implications to consider. 
                                                 

195 On Gestalt theory, see subchapter 3.5. 
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Sound results from the vibration of molecules in a space: if such a space is ‘void’ 
(that is to say, without molecules neighbouring massively), then sound cannot be 
transmitted (Backus 1977:32). However the atoms and the elementary particles also 
vibrate and oscillate in characteristic ways, even if their vibrations are completely 
inaudible. On this premise, it is possible to induce the vibration of tiny particles that, 
massively, can emit frequencies translatable into acoustic vibrations. Indeed, as Roads 
(2004:34) points out, “optical energy sources can induce or interfere with mechanical 
vibrations”. An example of this is the induction of acoustic vibrations on the surface 
of a crystal by two lasers with a minimum gap in their wavelength, producing beats 
measurable in gigahertz (ibid.). In a few words, everything sounds or resonates, either 
by physical induction or by interference, which can eventually be interpreted as 
intersemiosis. Consistently, the sonic atom can operate as a rigorous (i.e. 
proportional) analogy of the physical quantum, in the context of an equally rigorous 
intersemiotic translation. 

For music, the fact that ‘everything resonates’ reveals a deep bond between sound 
as sensation and the physical world, as it is understood and formalized for study. This 
idea is related—by the human capacities of understanding and representing—to the 
notions of finite and infinite. For instance, since Fourier analysis has no operative 
bounds for infra and supersonic frequencies, such analysis may extend to actual and 
potential infinity. Rocha Iturbide (1999) and Roads (2004) explain, with numerous 
examples, the techniques and possible results that can be achieved in music from this 
conceptualization, connecting the analogy of ‘sound particle’ with more general 
physical principles. This correlation has a cultural justification in Western traditions 
at least since the Middle Ages and the Renaissance, stretching to modern times, as 
summarized below. 

 
The need for a transcendent analogy 

The Neo-Pythagorean impetus relating music to science, and specifically to a 
meaningful concept of the ‘fundamental particle’, became enriched over the course of 
the twentieth century, in particular, as noted by Stockhausen (1989:37), under the 
influence of the General theory of relativity. Organicist prospects resulting from this 
model of thinking stimulated the interpretation of biological processes as musical 
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codes, directly extracting information under symbolic attribution—for example a 
genetic code—to adapt semantic-syntactic functions. As a matter of fact, the idea of 
‘organized sound’ posed by Edgar Varèse (1883–1965) and materialized in his Poème 
électronique (1958), prepares the ground for the conceptualization of a self-organized 
music, inspired by sound synthesis in analogy with biochemical synthesis (see 
Tedman 1982).196 More recently, the amount of initiatives employing this analogy 
increased with various forms of intersemiotic translation. Some representatives of 
this trend include Mark Pearson (see Pearson 1996), who uses ‘cellular’ models 
applied to a method of electronic composition; Peter Gena (e1999, e2006), who 
decodes the human genome and constructive codes of bacteria and viruses to create 
sound sequences; and Susan Alexjander (e2007), who takes the atomic frequencies of 
the four DNA nitrogenous bases and the six basic elements of biological structures 
(see table below), and translates them into musical pitches and gamuts.197 
 

element Larmor frequencies equivalence 
approximate 

tone 

Hydrogen 42.5776 × 106 hz 42,577,600 hz E 

Phosphor 17.236 × 106 hz 17,236,000 hz C–C# 

Carbon 10.705 × 106 hz 10,705,000 hz E 

Oxygen 5.772 × 106 hz 5,772,000 hz F–F# 

Sulfur 3.266 × 106 hz 3,266,000 hz G–G# 

Nitrogen 3.076 × 106 hz 3,076,000 hz F–G# 
 

◊410. Simplified scheme with the six elements composing 99% of living organisms on 
Earth, including the magnetic resonance frequencies of their atomic nucleus (called 
Larmor frequencies) and their equivalence in hertz (which, for practical purposes can 
be bounded into a module and a compact pitch set), and their corresponding 
approximation in musical tones. Source: Alexjander e2007. 

                                                 
196 The idea of music as organized sound is very widespread in modern musicology. For instance, 

Blacking (1973:10) asserts that “Music is a product of the behavior of human groups, whether 
formal or informal: it is humanly organized sound.” In addition, Scruton (1999:16) says that 
“Poetry too is organized sound: sound organized thrice over, first by the rules of syntax and 
semantics, secondly by the aesthetic intention of the poet, and thirdly by the reader or listener, 
as he recuperates the images and thoughts and holds them in suspension.”  

197  Alexjander makes a paraphrase of the arrangement of the nitrogenous bases (adenine, 
guanine, thymine and cytosine), from which she develops a systematic harmonic structure by 
analogy with certain ‘fundamental proportions’ (see Alexjander and Deamer 1999; Alexjander 
e2007). This idea has antecedents in Voss (1992, 1993) and Josephson (1995). 
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The search for the association between musical foundations of sound and 
physical and chemical ‘basic’ structures is related to an evolutive history of human 
analytical intuition. According to the configuration of the cognitive processes, for 
human causation and causality all is frequency in the image of its own biological 
makeup. It is conjecturable, then, that the human faculties give meaning to a world of 
recurrences (see Chávez 1961:38–41; Bateson 1972:147, 421), through segmented 
systems of harmonic relations, in successive scales. This trend stands out in 
Alexjander (e2007) when she asserts that “Hydrogen and helium are in the 
relationship of a perfect fifth/fourth, almost exactly. Their tones are: hydrogen E; 
helium B-C. […] It’s a mirror image of the overtone series.” In this fashion, the 
intuition of proportion pervades the generalized conception of music as a system of 
analogies. 

 
Alexjander Tymoczko 

  

  

◊411. Schematic representation of two models of organicism, as interpretation of the 
analogy biological structure – musical language : 
(a) proportion (Alexjander e2007), as chemical structure of two nitrogenous bases 
(top left) and their respective frequencies of resonance (below left); and 
(b) paradigm (Tymoczko 2006), as organic parallelism in the geometric functions 
between tonal triads in the so-called ‘tonal network’ or Riemann Tonnetz (right 
top), and in families of major and minor chords as chained pitch classes (right 
below). Subchapter 6.4. interprets this network as a self-similar tessellation (see 
pages 406–409). Copyright by The American Association for the Advancement of 
Science. Reprinted with permission. 
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According to Kindermann (e1999), this kind of analogy is justified by the idea of a 
‘fundamental relationship’ that links sound ‘organization’ with the self-organization 
of matter/energy. He puts as an example the self-organization of atoms in the 
configuration of crystals, attributing structural similarities to music: 198 

We are all familiar with crystals, in which the individual atoms are arranged in periodic 
lattices. And we also know amorphous substances, such as ordinary glasses or most 
liquids, in which the atoms are randomly distributed. Until recently, few if any people 
suspected that there could be another state of matter sharing important aspects with both 
crystalline and amorphous substances. Yet, this is precisely what D[aniel] Shechtman 
discovered when they recorded electron diffraction patterns of a special aluminum-
manganese alloy (Al6Mn). The diffraction pattern, i.e., the two-dimensional Fourier 
transform, showed sharp peaks, just like those for a periodic crystal. But the pattern 
showed a five-fold symmetry that periodic crystals simply cannot have. However, as we 
know from the number-theoretic Morse-Thue sequence, sharp spectral peaks and 
aperiodicity are no contradiction, as long as self-similarity prevails.199 

The fact that this justification appears in a musicological-oriented text is remarkable, 
enlisting discoveries made in the field of atomic symmetry to enrich music theory. 
The grounds for this conceptualization are, however, not entirely new. Pythagorism 
and Ptolemaicism are imbued with the same spirit of finding similarities in 
supporting universal harmony. Plato’s criticism against the excessive interest in the 
numerical characteristics of tones (Republic vii: 531a–b) can be extended, in 
consequence, to new perspectives that reduce everything to numbers and geometries. 
This reminds of Aristotle’s judgement that it is a misunderstanding to consider “that 
real things are numbers” or mathematical relationships (Metaphysics 985b32–986a2, 
1090a20–23, 1093a28–b4; De Caelo 290b21–3). Nevertheless, the paradox remains: 
numbers and mathematical relationships may be ‘things’ so ‘real’ as things are ‘real’ 
for Aristotle—for instance the Aristotelian notion of the universe with its symbolic 
interpretations. It is necessary, therefore, to insist on the definition of a cultural 
framework for the concept of ‘fundamental particle’ of sound, in relation to music 
theory. 

                                                 
198 In this regard, it is important to consult subchapter 6.4. 
199 The Thue–Morse sequence is a simple set of binary digits alternately concatenated and 

complementary which begins 0, 1, 10, 1001, 10,010,110, 1001011001101001... This sequence, 
along with other sequences of numbers and geometric progressions, is self-similar and has 
applications in the investigation of music and speech, as discussed in Chapters 3 and 4. On the 
representation of the atomic bonds and the molecular systems in crystallography, in conjunction 
with music theory, it is advisable to observe what is stated in subchapter 6.4., especially on pages 
416–419 (on the same subject, see also pages 123, 133, 148–149, 211–212, 320, 435, 438). 
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The concept of ‘fundamental particle’ in this study 

The symbolic and systematic use of the point in modern music theory is profuse. 
Stockhausen (1989:35), who was originally in favour of a general conceptualization 
of the sonic atom, deemed point’s formalization as the fundamental representation 
of sound, and as the ‘minimum material’ in a constructive basis: 

The description ‘star music’ was used casually by a music critic in Cologne, Herbert 
Eimert, after hearing these piano pieces of Messiaen, because the music sounded like stars 
in the firmament. The term ‘punktuelle Musik’ (‘point music’) was one I was using at the 
time.  

Indeed, in 1952 Stockhausen began to develop his project Punkte for orchestra, based 
on this concept of music as a set of related points. Shortly afterwards, elaborating on 
this idea, he perfected his ideas of mass and whole, which he used in later works (see 
Maconie 1989:38–46). 

This research prefers the term point over atom for a simple connection with 
musical tradition. In this context, it is clearer to refer to a point in a length-pitch 
coordinate, than to an ‘atom’. Historically, the concept of point (from the medieval 
punctum) is related to such a coordinate in its visual representation, in the music staff 
or in other referential systems. This notion of point appears in many treatises on 
aesthetics, proportion and spatial distribution (see Kandinsky 1926; Ghyka 1927, 
1931; Norden 1964, 1972; Howat 1983a–b; Ockelford 2005). In this work, Chapter 
6 on proportion and musical self-similarity continues a similar approach. 
Consistently, and for reasons also observed by Rocha Iturbide (1999) and Roads 
(2004), the implementation of computer programs to produce complex self-similar 
structures through sound generation matrices, demands a systematic use of the point 
and its immediate consequences in classical geometry: the line and the cluster. 

The examples given below, on mechanical self-similarity, use the same model of 
representation, which is also is common in the treatises on acoustics (e.g. Backus 
1977). For all of these considerations, a correspondence is assumed between point, 
line, and cluster, as signs of the same self-similar system.200 

                                                 
200 A graph picturing this correspondence appears in the ‘point made of points’, by Kandinsky, 

in the scheme ◊611, with its translation as sonority in length-pitch coordinates, in turn 
represented graphically. 
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4.2. Mechanical self-similarity 

The mechanical symmetry of an acoustic phenomenon can be explained as a result of 
the homogeneous behaviour of a medium under constant physical conditions, such 
as temperature or air pressure fluctuations. For example, if the material of a vibrating 
string has no irregularities in its length and its vibrational oscillation is periodic, a 
pattern of mechanical symmetry is produced around the direction of the string’s 
vibration: 
 

 

◊420. 

The arc of this string, which represents the length of a stretched string put into 
vibration, corresponds to its lowest natural frequency or fundamental frequency with 
its partial vibrations. In the ideal case, when the string tensors are absolutely fixed, 
intersecting the vibration at right angles, the partial vibrations of the string (called 
harmonics) correspond to multiples of the fundamental. The string then vibrates as 
one over the integers of its aliquot parts: 1/2, 1/3, 1/4  … 1/n of the string length, where n 
is the infinite series of natural numbers. (See Backus 1977, Cook 2007). 

 

◊421. Harmonics of the fundamental C1 (32.7 Hz) with the aliquot divisions of 
a corresponding string, and its equivalent tonal intervals, arranged 
hierarchically (right of the scheme). The eigenvalues 1, 1/2, 1/3,… from this 
series are (pre)self-similar characteristics of music harmony. 
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Harmony in a vibrating string or in an air column can be described as a simple self-
similarity phenomenon, in which the whole or fundamental ‘reproduces’ at smaller 
scales, in the form of its harmonic components. Speaking roughly, one may say that 
the difference between harmony and dissonance equals to the relationship between 
similarity and dissimilarity in the parts of a whole (see ◊422 and ◊423). 
 

a) 

 

b) 

 

◊422. Idealized representation of two modes of vibration of a string. Amplitude 
appears increased for visual clarity: 

a) Convergent similarity of the harmonics in ◊421. 
b) Divergent similarity in a disturbed eighth, changing the relative 

phase of the harmonics (e.g. in a suddenly distempered string). 
 
A vibrating string or an air column are just some of the best known cases of 

vibratory systems with varying degrees of self-similarity and harmony. There are 
many other cases in plates, membranes, bars and rods with special acoustic features, 
as happens with the isospectral manifolds and the Chladni’s figures in emerging 
patterns of similarity and self-similarity, within a variety of harmonic relationships.201 

Chladni’s figures are geometric formations on the surface of vibrating thin plates 
whose nodal areas are made visible by the distribution of powdered material (see 
Chladni 1787, 1830; Tyndall 1867; Rossing 2000; Ashton 2001). The patterns on 

                                                 
201  For an instructive introduction to the symmetry of acoustic patterns, especially as 

intersemiosis between mechanic phenomena and their graphic representation, see Antony 
Ashton’s breviary, Harmonograph: A Visual Guide to the Mathematics of Music (2001). 
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these surfaces reflect the relationship between amplitude and frequency, and respect 
the vibrating area and the tensed material quality. Some of these patterns show 
relations of symmetry at two or more structural levels. A trend to a similar kind of 
sediment distribution in different scales is observable in several examples, producing 
forms of statistical (pre-)self-similarity.202 

 
a) 

 
b) 

 
c) 

 

◊423. Waveforms in (a) perfect and (b–c) imperfect consonances. 
a) Full similarity (motif’s repetition) in the vibrations of a fundamental 

tone with its first eighth (perfect octave). 
b) Similarities displacement in an eighth slightly out of tune. 
c) Similarities displacement in an fifth slightly out of tune. 

Examples b and c show pre-self-similar patterns; a more complete self-
similarity can be traced in a full-harmonic array. 

 

In addition to simple cases of consonances slightly out of phasing (see ◊ 423), 
another manifestation of simple mechanical (pre-)self-similarity in acoustic systems 
are the isospectral manifolds: physical configurations related to the problem of 
constructing two drums with very different shape that share the same harmonic 
spectrum or eigenfrequency spectrum. Since two drums built with the same material 
but with different symmetries and perimeters usually produce different frequential 

                                                 
202 In short, the parametric functions of the plates’ modal frequencies, in Chladni’s figures, 

reflect the same kind of consistency in different frequential scales (see Rossing 2000:89–92). 
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gamuts, Kac (1966) queried whether it was possible to build two drums with 
different shapes but with the same eigenfrequency spectrum (i.e. two drums of 
distinct physical appearance producing the same sound). The affirmative answer by 
Gordon et al. (1992) led to the identification of seven polyaboloes which produce 
isospectral manifolds with nodal areas of statistical self-similarity.203 The result is that 
different drum varieties may produce, with the same number of polyaboloes, the 
same set of frequencies. This type of configuration of plates and membranes is 
particularly related to the topology—i.e. the forms of spatial extension of different 
geometries—of a vibrating system, independent of the scale of the system.204 

Spectral self-similarity 

In a combination of objective and subjective components, the colour of sound is the 
quality that makes distinguishable a sound of another (see Erickson 1975:4–5).205 
This includes the timbral differentiation of voices, and the qualitative distinction 
between two equal pitches in the same instrument produced with two different 
fingerings; for example an E4 produced in the third string, or in the fourth string of a 
violin. 

The spectral identity associable to a self-similar pattern is not unique to certain 
sound objects or certain musical instruments. Each acoustic phenomena with 
periodic motion—including the relatively periodic oscillations and waves—is 
characterized by a distinctive timbre. Precisely, what makes the sound of a verbal 
language unique within the community of speakers in that language (and the 
individual within a speech community), is the special collection that integrates every 
acoustic cluster of self-similarity in these wholes. As Boomsliter and Creel (1961:10) 
observe, “A vocal tone may contain as many as thirty partials, with the energy well 

                                                 
203  This subject is addressed again in subchapter 6.4., apropos of tilings in the harmonic 

spectrum. See especially pages 420–421, which include a graphical representation of the basic 
polyaboloes. 

204 In other words, two drums with the same area and the same set of polyaboloes share a 
common frequential identity, regardless of the built size. The affinity between two or more 
polyaboloes is invariant across physical scales. 

205 Erickson (ibid.) explains that “timbre depends primarily upon the spectrum of the stimulus, 
but it also depends upon the waveform, the sound pressure, the frequency location of the 
spectrum, and the temporal characteristics of the stimulus.” 
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distributed among them, frequently with the fundamental very weak and the greatest 
amount of energy in high partials such as the 12th or 16th.” 

According to Fagarazzi (1988), harmonic spectra analysis and its synthesis in the 
form of hierarchies, relates timbre or sound colour with a harmonic power that can 
be used as a compositional grammar. The very point of this idea is that, whether a 
sound can be identified by its timbre as spectral configuration, the same 
configuration may establish the rules for the use of harmony in the same sound 
source, i.e. self-similarly associating timbre and harmony (see also Grisey 1987, and 
Waschka and Kurepa 1989). Furthermore, the same rules establishing the 
relationships of vertical intervals can also be used to determine metrical and 
rhythmic relationships (see Cowell 1930, Xenakis 1963/1992), which means that a 
single sound is enough to generate a complete grammar with its own context of use. 
This idea had been foreseen by Varèse (1936:26), directly addressing the distinction 
between paradigmatic analogy and proportional analogy—in this case a distinction 
between metaphor and synecdoche, respectively—under the scheme of a sonic map: 

The role of color or timbre would be completely changed from being incidental, 
anecdotal, sensual or picturesque; it would become an agent of delineation like the 
different colors on a map separating different areas, and an integral part of form. 

From this conception of timbre—particularly for its importance in the design of the 
forms and masses of sound theorized by Varèse (op. cit.)—the traditional levels of 
musical structuring (e.g. melody, harmony, rhythm and intensity) are framed in a 
broader picture of congruence between partial and global layers of structure-
meaning. Hence the ‘minimal’ details of sound, like the tiniest aspects of noise, 
register, or timbre, come to be considered as essential components of the musical 
form as a whole. The ‘map’ mentioned by Varèse in the quotation above corresponds 
consequently to the map of the map of a self-similar musical structure.206 
 

                                                 
206 The development of this intuition in Varèse’s musical thought is dealt with extensively by 

Erickson (1975), especially in his chapter ‘Some territory between timbre and pitch’ (op. cit., 
pages 18–57). 
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Fourier analysis 

Fourier analysis consists of the study and identification of the parts of a vibratory 
system in homogeneous sets that give coherence to the same acoustic system.207 
Fourier analysis is named after Jean-Baptiste Joseph Fourier (1768–1830), a 
mathematician and physicist originally interested in the study of heat propagation in 
solids. Fourier found that heat flow behaves like a wave, and concluded that heat 
waves are periodic waves consisting of the same pattern repeated over and over again. 
This finding, congruent with the study of waves in mechanics and acoustics, 
culminates with the postulate that says that “No matter how complicated it is, a wave 
that is periodic—with a pattern that repeats itself—consists of the sum of many 
simple waves” (Gleason 1995:11). Fourier postulated that developing a function by a 

 

◊424. Fourier analysis of the first 12 partial components of a complex tone with 
its fundamental at 100 cycles. The long-term shape trend is the same as the 
one of the fundamental, composing a self-similar texture. Schematic view 
after Boomsliter and Creel (1961:11). 

                                                 
207 As shown here, Fourier analysis is of great relevance for the study of self-similarity in 

sound, especially considering that it can be employed in a wide variability of time and frequency 
domains and functions (discrete, continuous, periodic, aperiodic, finite, infinite). Several authors 
quoted in this study, including Gabor, Barlow, Beran, and Roads, assigned an important role to 
it in their own research. However, it may not be clear for the reader how to get a first approach 
to Fourier series and analysis. In this case it is highly recommended to consult the text Who is 
Fourier? (see Gleason 1995), an instructive general introduction to the subject which then departs 
into more specialized areas. 
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trigonometric series—afterwards known as a Fourier series—simplifies the 
mathematical representation of the whole process. The figure ◊424 illustrates this 
postulate with a typical analysis of a fundamental (wave segment showing two crests) 

and its partial components (added as arithmetic progression n + 2, keeping the same 
amplitude). The result is a wave succession reflecting the self-similarity of the series. 

The sum of Fourier series corresponds to the formula for synthesizing a periodic 
signal, just as a self-similar set can be reconstructed by the predictability of its 
relations in a first set of self-similarity. Fourier theory states that the function of such 
a signal = x(t), of a period T, can be represented by a sum of infinite series, as a sum of 
sinusoidal functions harmonically related to the frequency ωn = nω = 2πn/T: 
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In this equation, C0 is the ‘hinge’ that pulls the waveform up or down. The first 

sinusoidal component C1 is the fundamental frequency (represented by 2π as the 
whole basic, single waveform), and coincides with period T (i.e. ω = 2π/T). The 

numeric variables Cn and φn give the magnitude and phase of each component (see 
Gleason 1995:360–368, 426; Roads 2004:244–245). 

The Fourier series does not predict, however, how coefficients Cn and φn are 
grouped in an arbitrary sound input. For this the Fourier transform is required as a 

method to find the size of each complex frequency, in order to synthesize—i.e. 
rebuild—an original signal (Roads, ibid.). As Miramontes (1999:8) observes, this 
method also has a special significance for sound analysis: “As the prism is the 
material device that allows us to split light into its elementary components, the 
Fourier transform is the ‘mathematical prism’ with which any sound can be 
decomposed allowing us to represent a spectrum in a time series”. Implementing the 
functional duality that characterizes Fourier analysis, its inverse operation can, 
instead of decomposing the source signal, recompose it by synthesis. Consistently, 
when Xenakis (1992:293) explores what he calls the microscopic construction of 
sound, extending its principles to a larger scale, he observes that there is only a 
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structural step in using the Fourier transform dualism from the self-similar analysis 
of sound, to the self-similar sound synthesis: 

This approach to sound synthesis represents a non-linear dynamic stochastic evolution 
which bypasses the habitual analysis and harmonic synthesis of Fourier since it is applied 
to the f (t) part on the left of the equal sign of Fourier’s transformation. This approach 
can be compared to current research on dynamic systems, deterministic chaoses or 
fractals. Therefore, we can say that it bears the seed of future exploration. 

This approach, which promotes the use of Fourier analysis for the investigation of 
musical self-similarity, is also relevant, as suggested below, in the study of aperiodic 
textures, noises and complex timbres, connecting them to more general criteria of 
harmony. 
 
Turbulence patterns 

Among the more sophisticated forms of mechanical self-similarity in music (i.e. in its 
acoustical implications) there is a wide variety in patterns of turbulence. These 
patterns can be described roughly as the relationship between the constant instability 
and consistency of irregularities of a system of frequencies in an acoustic flow, at 
various scales. 

Madden (2007:107–109) suggests that self-similar behaviour in turbulences may 
occur in a variety of phenomena of resonance, among which is the production of 
sound clusters (also called multiphonics or multiple sonorities) on various wind 
instruments (wood and brass with simple or composed embouchure) or bowed 
strings. Nonetheless, the researches of Karplus and Strong (1983), Roy (e1992), 
Cook (1997), and Bader (2006) explain that various forms of turbulence also occur 
in the initial moments of the attack of different percussive systems and plucked or 
strummed strings, most of which produce self-similar patterns. 

Bader (2005) analyzes the sound production in flute-like musical instruments 
with beveled embouchures, in which the coupling between the performer’s mouth 
and the embouchure is also a space for turbulence flow: “Here the flute tubes 
eigenfrequencies forces the self-sustained oscillation of the generator region at the 
blowing hole into the tubes resonance frequencies.” (op. cit.:109). This brief 
description suffices to illuminate—at least at a first approach—the general 
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hypothetical frame for this kind of self-similarity: the turbulence in question has self-
similar properties because of the form in which breath is projected to the 
embouchure, as ‘self-sustained oscillation’ by a system that is mechanically 
redundant and self-referential with respect to the cycles and components of its 
wavelets. 

Bader demonstrates that only a small amount of the blowing wind actually 
enters into the tube, projecting the rest to the outer space of the instrument, where 
patterns of turbulence are produced. Finally he shows that changes in pressure, 
related to directional changes in the flow of air over the embouchure, affect the 
generation of turbulence complexes in the studied system. Wolfe et al. (e2001) 
explore in detail this kind of behaviour in transverse flutes from different epochs and 
with different tunings, concluding that the turbulent flow is a defining characteristic 
of the timbral qualities of these flutes. 

 

◊425. Harmonic spectrum (excluding the fundamental) of C5 (~525 Hz) in a transverse 
bass flute. A turbulence pattern matches shortly before and after the first harmonic 
(1055Hz), a characteristic of acoustic behaviour in flute-like instruments. The C marked 
in the staff represents real notation with the approximate location of the first harmonic 
(i.e. when reading the staff, the performer should produce the fundamental tone an 
octave below the written C, since the writing of bass flute is transposed into a high 
octave). 
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Mathieu and Scott (2000:183–184, 300–305) identify modes of statistical self-
similarity among deferred velocities in a turbulent system (e.g. in jets and wakes),208 
in which they observe a correlation between scale and velocity: “typical turbulent 
flows have apparently random velocity fluctuations with a wide range of different 
length and time scales […] The size of the large scales of turbulence increase with 
time, while the velocity of fluctuations decay”. Among these modes of self-similarity 
are isotropic turbulence, which involves statistical self-similarity in velocity gradients, 

and intermittency, a related concept which is explained in subchapter 6.2.209 

 

◊426. First measures of the score ’Na ’bäfi xi ñudi ga tuhu (Within a nesting of songs) 
[2002], by Gabriel Pareyon, for instrumental ensemble. The sample shows the flute 
(one octave higher) and oboe parts. The horizontal line above the notes, with the 
word ‘turbulence’, graphically represents an unstable emission of sound, controlled as 
an amount of diffuse air in the flute embouchure, and a special fingering combined 
with gentle pressure in the oboe’s double reed mouthpiece. The mechanical principle 
of sound instability in both instruments is completely different, as well as the 
obtained result: both instruments are related by a reciprocal imitation, into a bound 
between intrasemiotic and intersemiotic translation (i.e. between idiomatic affinity 
and symbolic approximation). Copyright by Jurgenson Editor, Moscow, 2003. 

Bru (1996) isolates the radius of a first turbulent system in the mouthpiece of the 
flute, which, with a filter implemented, allows the precise measurement of the source 
spectrum distinguishing nodal bipolar regions involved in the turbulence formation. 

                                                 
208 These authors (op. cit.:301) make the following observation: “by statistically self-similar we 

mean that velocity and length scales can be found, which are solely functions of time, and that, if 
the scaled velocity is regarded as a function of the scaled position, then its statistical properties 
do not evolve with time.” 

209 See page 352–353. 
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A practical use of turbulences can consider such relationships in electronic sound 
synthesis (Bru, cit.; Polotti and Evangelista 2001; Bader 2005), or just be suggested in 
traditional musical notation, specifying the mode of production (see example in 
◊426). 

Arneodo (1995) suggests ‘fractal’ nesting at different power rates and 
simultaneous acoustic substructures (multifractals), which are proven by Bigerelle 
and Iost (2000) and Su and Wu (2006) for a variety of musical examples.210 This is 
obviously connected to Xenakis (1992:293) and his idea, already alluded to, on the 
sound components multiscaling in different parameters. Congruently, Vaggione 
(1996) suggests that the analysis of subharmonics is one of the keys to access 
turbulence modelling and to develop multiple self-similarity analysis or multifractal 
analysis, to use Schroeder (1991) and Arneodo’s (1995) terminology. According to 
Vaggione (1996:35) “The somewhat artificial attempts made to date, to relate chaos 
theory to algorithmic music production can find here a significant bridge between 
different levels of description of time-varying sonic structures.” 

 
The quantum analogy of sound and its gestalt contents 

By analogy with the periodic vibration of the undulatory light particles, or photons, 
the nodes of vibrating and pulsating energy between molecules are called phonons 
(see Schroeder 1992:43). To what extent phonons can be understood not as 
microwaves—of electromagnetic character—but as ultrasound, is a question of 
approach, depending on the analytical purpose. What is a fact is that the concept of 
phonon is generalized and common in Fourier analysis, to express vibration ranges in 
superconduction processes and temperature transitions in solid bodies, both in ‘very 
low’ temperatures to ‘very high’ ones (i.e. molecular cohesion thresholds). 

According to Robert Erickson (1975:49), “Varèse’s favorite image for musical 
organization was crystal structure”. This has profound implications. After the 
analysis of structural symmetries in crystallography (Bravais 1848, Bernal 1926, 
Hilbert and Cohn-Vossen 1932/1952:52–53), it is possible to identify a typical 

                                                 
210 The concept of ‘nesting’ is further developed in subchapter 5.4. 
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relationship between atomic grouping, molecular symmetry, and a configuration of 
phonons on the energy state of crystals. Schroeder (1991:43–44) observes that many 
of these configurations tend to form self-similar complexes—in a deterministic and 
statistical sense—for example, in the massive vibration of thousands or millions of 
molecules associated within the same system. Schroeder (ibid.) calls fractons this type 
of phonons, and believes that they are “of growing importance in our understanding 
of vibratory nature”, given that they can be studied for their mediation between the 
subatomic and the molecular—even audible—worlds.211 

Since optical energy sources can induce mechanical vibrations (Roads 2004:34), 
and Fourier analysis has no operational implicit bounds—a periodic wave can always 
be analyzed in smaller formants—then there are similar arguments to describe 
acoustic and mechanical phenomena in all their vastness, with the same generalized 
representations and basically with the same symbolization and abductive operations. 
This is nicely summarized in Livio’s (2002:149): 

Kepler’s model had something in common with today’s fundamental theory of the 
universe: Both theories are by their very nature reductionistic—they attempt to explain 
many phenomena in terms of a few fundamental laws. For example, Kepler’s model 
deduced both the number of planets and the properties of their orbits from the Platonic 
solids. Similarly, modern theories known as string theories use basic entities (strings) 
which are extremely tiny to deduce the properties of all the elementary particles. Like a 
violin string, the strings can vibrate and produce a variety of ‘tones’, and all the known 
elementary particles simply represent these different [harmonic] tones. 

In this description is evident the role of intersemiotic translation as a method to link 
a known domain (mechanical acoustics) with another, probably knowable (quantum 
mechanics). The picture of a vibrating string is the centre of a system of analogies, 
extending from the scope of elementary particles to wider relationships in the 
cosmos. Valid or not in its operational sense, it is clear that this physical description 
introduces, through abduction, a general understanding of fundamental self-
similarity. Much remains to be explained about the meaning of this type of 
hypothesis, but a first step in this direction is the scrutiny of its comparative 
                                                 

211 The focus on self-similarity in the field of crystallography, as an analogous description in 
different types of musical information structuring is exposed at several points in this work: see 
pages 123, 133, 136, 211–212, 320, 416–419, 435, 458. 
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processes and the instruments of an implicated intersemiotic translation. In this 
context, Lehar (2002:159) remarks the Gestalt of physical processes such as the 
vibration of plates and membranes, with formal and structural consistency in their 
modes of representation, perception and intersemiotic translation. For example, a 
Chladni figure obtained by a vibrating plate can be represented by the recording of 
the vibrating plate; in turn this recording can be used to make a similar plate vibrate, 
producing the same Chladni figure. In consequence, 

[t]he audio tone can therefore be considered as an abstracted representation, or reduced-
dimensionality encoding, of the spatial pattern on the plate. Thus, matching the tone 
generated by a vibrating plate to a tone stored in memory corresponds to a recognition of 
that spatial pattern, just as the activation of a cell body in a receptive field model 
represents a recognition of the spatial pattern present in its input field. The item in the 
resonance model corresponding to the cell body in the receptive model can be envisaged 
as some kind of tuned resonator, perhaps a cell with a natural tendency to spike a 
characteristic frequency. 

From this perspective, Lehar (loc. cit.) draws attention to the Gestalt consistency 
among different physical and biological strata, involved in their own processes of 
representation as self-referential systems with self-similarity surfaces. 

4.3. Biological self-similarity 

Self-similarity in biological structures also occur in various strata: in the chemical 
bases of cellular processes, the genetic makeup of the cell nucleus, the organization 
and coordination of cellular tissues, the circulatory system and the nervous system 
distribution in both ventral and dorsal networks, cooperating as performative and 
cognitive systems preconditioning language (see Mandelbrot 1982:150). Internal 
symbolic communication or endosemiosis connecting the systems of an organism 
operates in synecdochic intersemiosis (see Sebeok 1977:1061). 

Hess and Markus (1987) find that, in biochemistry, dynamic processes, electrical 
oscillations and functional periods tend to self-similar chaos, especially in typical 
behaviours of bifurcation. West (1990) focuses on this specific topic. Such an organic 
self-similarity, related to power laws that affect the fundamental organic structures, is 
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reflected in a systematic coherence along biological relationships and functions, 
pointing to some general principles of structural economy and self-organization, 
which also involve basic aspects of music. 

Hoffmeyer (1998) and Brier (2001, 2004) acknowledge that the nervous system 
and subordinate systems such as the immune and hormonal ones, keep an 
electrochemical communication that stimulates states of volition, affect, perception 
and inference. According to these authors, such communication is a subsymbolic 
precedent of language, being influenced by endosymbiotic systems with their typical 
rhythms and hierarchies. Josephson (1995:280) shares this view of language, 
connecting it with his own concept of music: 

Previous papers [Josephson 1992, 1994] have criticised certain conventional views of 
music, such as the idea that music is intrinsic to a musical culture and therefore has no 
intrinsic meaning of its own, and argued instead that music constitutes a general symbol 
system, analogous in many ways to DNA […] but in view of the existence of significant 
differences in detail between the characteristics of the two kinds of symbol system, 
especially in that music (like natural language) is processed by a mind that in some sense 
understands it, whereas DNA expresses its potential by a more passive process, a slightly 
different mode of attack is appropriate.  

From the standpoint of the present study, there is no need for the opposition 
between ‘passive’ and ‘active’—typical of structural rationalism—that Josephson 
privileges. The need is, rather, to understand the meaning of local and global 
tendencies in their long-term coordination as suggested by Prusinkiewicz (1990, 
1992) and Meinhardt (1998). As in the case of a binary system of information, what is 
meaningful is not the relationship 0 = passive ↔ 1 = active, but how these symbols are 
organized in the long term, as messaging systems of systems in a richer context of 
information (see Eco 1962, 1968, Campbell 1982, Jensen 2008).212 

                                                 
212 There is blatant evidence supporting this hypothesis: this sort of long-term organization 

happens actually in internet, with the constant transformation of content based on initial 
conditions of information and distribution. 
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◊430a. Left: Cardiac pulsation represented as wave in an electrocardiogram. The waveform of a 
normal pulse is never perfectly regular, analogous to the perfect eighth represented by ◊423a, 
but similar to a wave ‘slightly out of tune’ and adaptable to a variety of amplitudes according to 
the metabolic and functional needs of the body. 

Right: Taxonomy of five cardiac systems characterized as self-similar relationships in terms of 
an evolving network. This example suggests that combining the different pulse shapes in a large 
enough sample of heart rates, it is possible to describe the sample as a whole group made of 
smaller groups of individual cases with an invariant trend of frequency, i.e. an example of self-
similar distribution. To continue this example it would be necessary to group the five groups of 
the scheme into a group inside another group functionally connected with other sub-groups. 
The latter is represented by the Verhulst diagram below (◊430b), in which the sub-groups 
from the global scheme encompasses other groups of extensions, in successive bifurcations. 

 

◊430b. 

Acoustic systems in biology involve relationships between a certain physical level 
to other, more dense levels with autonomous categories based on physical properties: 
in a first physical level there is a chain of sequences, binary codes producing patterns of 
activation–inhibition, as happens in the vibrations of a string or a membrane. These 
patterns already present, however, self-similar chaos, as can be noticed in cardiac 
pulsation in individuals, groups of individuals, and taxonomies, as suggested in ◊ 430. 
The codes shaping these patterns cannot be explained as a linear physical interaction. 
Even at the level of the nitrogenous bases of organic chemistry, ‘something new’ 
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occurs: series of operations succeed in forming emerging patterns, self-organizing and 
self-organized structures with a tendency for a codal sophistication and a continuous 
reconfiguration—replication, adaptation, translation, recreation—of messages. A 
relatively simple case of this is the heart’s skill to adapt to different rhythms according 
to changes in metabolic rate and body performance (Weibel 1984:171–172, West 
1990:67–76).213 

 

Coherence between physics and biology 

M. Garavaglia214, supported by laboratory experiments, confirms the conjecture made 
by Voss and Clarke (1975), suggesting that self-similar patterns occur in the eardrum 
vibrating surface, comparable to 1/f noise (an issue developed in Chapter 5). This 
relationship reveals a deep connection between resonance surfaces in organisms and 
their perception of sound—assuming that not only the eardrum, but all the parts of 
the outer, middle and inner ear, as well as bone and dermal resonators and the 
vibration of body fluids, together constitute a complex system of acoustic systems—it 
is conjectured that such systems are configured in affinity with harmonic patterns 
linking the physical properties of the vibrating body with its own anatomical and 
perceptual characteristics.215 This implies a certain coherence between the systems of 
acoustic perception, the systems of language articulation, and the form of each 
communicative organism.216 From this supposition, the mechanist approaches on the 
phonetic– phonological principles remain open to explore the sense that some 

                                                 
213 Weibel (op. cit.:172) notes that “Cardiac output and heart beat frequency are proportional to 

the aerobic capacity of the body: heart frequency and cardiac output per unit body mass are 
proportional to Mb

–0.25 in mammals of varying size.” 
214 Mario Garavaglia (1937), researcher and professor emeritus at the Department of Physics, 

National University of La Plata, Argentina. Personal communication during the Third 
International Congress of Form and Symmetry ISIS-SEMA, Buenos Aires, 2007. 

215 Akiyama et al. (1996) remark, as a method of diagnosis and analysis, the study of the 
relationships between acoustic self-similarity and the characteristic consistency of biological 
tissues: “Acoustical characteristics of biological tissue is dependent on pathological states of the 
tissue. [...] Since the tissue structure itself has a self-similarity characteristics, it is important to 
show how the echographic image of the tissue has the self-similarity characteristics and how it 
could be extracted from the image.” 

216 Liberman et al. (1957), and Liberman and Mattingly (1985) present antecedents to this idea.  
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semiotists and linguists attribute to the membrane as the ‘first instrument’ of 
language (see Guerra Lisi and Stefani 2004:81). 

Nelson and Cox (2000:3), introducing their Principles of biochemistry, make clear 
that “Living organisms are composed of lifeless molecules”. This assumption, which 
has antecedents in Lamarck (1809),217 suggests that the structural relationships of 
organic chemistry and the general physical principles are transmitted—becoming 
more intricate and selective—to the living organisms. Regarding the acoustic systems 
found in living organisms, such systems depend not only on a particular biological 
structure, but obviously, on general acoustic principles. The examples in the previous 
subchapter may provide support to explain this principle: the eardrum acts like a 
vibrating membrane subjected to general physical laws, like all the acoustic systems of 
an organism oriented by power laws. 218 

 
Coherence between biology and language 

Josephson (1995) notes that, at the intracellular level, the functional relationship 
mitochondria – cell nucleus has a certain syntactic parallelism with the relationship 

verb – subject: one provides power, the other determines the meaning of the action. 
At the semantic level there is another parallelism: that of the compatibility and 
selectivity mechanisms in a limited number of terms, whose operation is comparable 
between the bases of the cell nucleus (DNA) and the lexicon integration. In this sense 
morphemes present some functional analogy with proteins. Furthermore, molecular 
biology often refers to the decoding of protein chains using the analogy of a 
grammatical process, alluding to an ‘electrochemical grammar’ to determine their 
association. 

Niels Kaj Jerne (1984), in his speech “The generative grammar of the immune 
system”, makes parallels between the generative description of language according to 

                                                 
217 Jean-Baptiste Lamarck (1744–1829), Philosophie Zoologique, ou exposition des considérations relatives 

à l’histoire naturelle des Animaux; à la diversité de leur organisation et des facultés qu’ils en obtiennent; aux 
causes physiques qui maintiennent en eux la vie et donnent lieu aux mouvemens qu’ils exécutent; enfin, à celles 
qui produisent, les unes le sentiment, et les autres l’intelligence de ceux qui en sont doués, Dentu, et l’Auteur, 
Paris, 1809. 

218 This notion has been introduced in section 3.9.5. 
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Chomsky (1957), and the mechanisms of recognition and association between 
antigens and antibodies. The latter would use semantic-syntactic relations, whose 
bonds “are similar to the functional bonds in the components of a sentence” 
(Lassagne 2004:147). This analogy can be extended to the observation of morphemes 
from their self-assembly after some functional principles, comparable to the self-
assembly of proteins involved in genetic structuring. As Marcus (1974:85) suggests 
“Amino acids are like terminal symbols of a virtual genetic grammar”. Marcus (op. 
cit.:85–88) even speaks of morphological meaning, synonymy, homonymy and well-
formedness rules, as basic qualities for the stability and continuity of the genetic code, 
in a theorization that is clearly sympathetic to its parallel in generative music theory: 
the study of Lerdahl and Jackendoff (1983). At present the concepts of semantics and 
syntax in biological processes are refined in a variety of theories and applications (e.g. 
Sebeok 1977, Guerra Lisi and Stefani 1997, Jablonka 2002, Seddon 2002, Reygadas 
and Shanker 2007, and El-Hani et al. 2009, among many others), some of which 
begin to have adaptations in a new generation of naturalist postulates in music theory 

(e.g. Mâche 1983, Josephson and Carpenter 1994, 1996, Josephson 1995, Kaipainen 
1995, Reybrouck 2001, Ockelford 2005, Martinelli 2002, 2007, Jensen 2008, Ojala 
2009). 

Music—which is akin to the functionality of biological forms and the 
distribution and consistency of genetic information in redundancy—uses precepts of 
use and meaning that define its basic grammars. Amozurrutia (1997:4–5) believes, in 
consequence, that 

On the trail of the musical idea, the composer gathers a bunch of cells and structures to 
build an ‘organism’ with a well-defined form. [...] Many musical creations are based on a 
fragment of life, so they are subjected to very specific forms and structures, guided by 
intuition or by a certainty from the unconsciousness. 

There is, thus, a consistency between the tissues of the musical discourse, governed by 
codes and messages that are consolidated and renewed in an Umwelt. For the 
tradition of naturalist semiotics founded by Jakob von Uexküll (1864–1944) and 
Thomas A. Sebeok (1920–2001), the Umwelt is the ‘world around’ of a living 
organism, in which sign systems are produced characterizing each biological 
community. Accordingly, the biological tissues constituting the animals and their 
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ways of perception and communication, are directly associated with their Umwelt 
(see Kaspar 1983). Music—resulting from specific Umwelten—is also connected, in 
this fashion, with biological signs and relationships on a ‘small’ scale, with Umwelt–
niche relationships on a larger scale. 

According to Donald L. Hardesty (1972, 1975), a niche is a node of symbiotic 
relationships in an ecosystem. The present study suggests that both concepts, the 
former (Umwelt) borrowed from semiotics, and the latter (niche) from ecology, are 
complementary, and by no means they can be conceived as rigid ontologies, but 
rather as flexible, self-creating spaces where dynamic relationships are in interplay, 
including perceptual, motile and subjective features. As Reybrouck (2001:604) notes, 
“Listening to music is highly related to Umwelt-research. Music is not to be 
considered as an acoustic niche, but as a subjective environment.” Thus, although 
sound acts in an acoustic space, music lives in a relatively subjective world. 

 
Tension between musical analysis and biological description 

A third ‘organicist interpretation’ of music, with different methods and goals, avoids 
direct descriptions from biology to explain musical relationships through geometric 
abstractions. This is the case for much of the statistical analysis of Forte (1973), 
Morris (1987), Huovinen (2002), and Tymoczko (2006), to name a few authors. 
Other analysts reconcile this model with theories adapted from linguistics, as with 
the Schenkerian analysis, which develops the concepts of chord grammar and chord 
significance (see Salzer 1952:10–11); the work of Lidov (2005), Lewin (2006) and 
Almén (2008), about the relationship between music, text and language; and the 
work of Lerdahl (2001), which puts an organic metaphor to the service of linguistic 
generativism. 

The very different analytical tendencies observing music as a constructive process 
have, however, something in common: all of them reflect the weight of a tradition in 
a specific Umwelt–niche, within which the relationships of discourse and expression 
are operational processes sympathetic to organic development. Pitch-class set theory 
effectively neutralises the tradition that regards certain rows or scales, or certain 
pitch-class sets, as ‘natural’. But this discrimination does not imply the abandonment 
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of the organic-functional model. On the contrary: the logical positivism and 
structuralism in the foundations of pitch-class set theory (Babbitt, Forte, Lewin, 
Morris) provides an analytical framework comparable to the scientific positivism that 
have explored the broader fields of biology and organic chemistry since the late 
nineteenth century. 

Whether the rationalist-structuralist model has practical advantages of 
systematization over an intuitionism—limited to an emulation of observable 
causes—it is undeniable that the analysis of the similarities between patterns of 
preference and performance of the listener, and between patterns of biological 
relationships inherent in the same listener, provides clues to discern the typologies 
and universals of music and language. 

Since energy and matter, relating electromagnetic and molecular vibration, are 
identified by frequencies and recurrence modes assimilated by analysis as part of an 
experience (i.e. the analytic process and conclusions), everything perceived can be 
translated as time series or as collections of intervals which can be implemented for 
musical analysis and composition, under different proportions and paradigms (see 
Coons and Kraehenbuehl 1958; Kraehenbuehl and Coons 1959). The levels of 
biological self-similarity and the levels of musical structure, in any case, are useful for 
detecting correlation between inner and external, between the endo- and exosemiosis 
that Sebeok (1977:1060–1061) notes: 

Clearly, man’s semiotic systems are characterized by a definite bipolarity between the 
molecular code at the lower end of the scale and the verbal code at the upper. Amid these 
two uniquely powerful mechanisms there exists a whole array of others, ranging from 
those located in the interior of organisms (von Uexküll’s Innenwelt) to those linking them 
to the external ‘physical world’ (his Umwelt), which of course includes biologically and/or 
sociologically ‘interesting’ other organisms. 

The role of music as a mediator between levels of biological similarity, taking into 
account the healing traditions, provides a space for seeking a balance between sound, 
symbol and body. This was noted by Plato, for whom harmony and rhythm “can heal 
a broken spirit” (Timaeus 47c7–e2). Tarasti (2004)—alert to this tradition on sound 

as a dialogue between interior and exterior—conceives that a fundamental aspect of 
music is supporting the transition from the organic to the metaphysical: from the 
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inner to the external world and then to another world in which the prior is contained. 
Tarasti refers particularly to a transition from the ‘intraceptive’ or endogenous to the 
‘exteroceptive’ or exogenous in the transformation of the narrative modes of music in 
an organic way migrating to a metaphysical way; in a step between what the 
existentialist Jean Wahl conceives as ‘trans-ascendence’ and ‘trans-descendence’ (see 
Tarasti 2004:11). Moreover, as Reybrouck (2001:599, 626) states, 

Knowledge as an instrument of adaptation is not concerned with the representation of a 
‘real world’ but is a tool in the pursuit of equilibrium and to steer clear of external 
perturbations and internal contradictions. […] What really matters is not the 
representation of an ontological musical reality, but the generation of music knowledge as 
a tool for adaptation to the sonic world. 

Musical knowledge—including memories, experiences, emotions and imaginations 
of music—is then, not a mere collection of objects and fixed ideas about the ‘world’, 
but rather a constant reorganization and invention of the Umwelt as environment. 
 
The concept of abduction in Bateson 

The concept of abduction coined by Ch. S. Peirce (1903a), which refers to the 
conjectural process for a hypothesis formulation, is refined in Bateson (1972), who 
uses it to describe the consistency of an organic process by comparisons between 
correlations and by a characteristic symmetry or asymmetry. This concept, applying 
its own methodology beside inductive and deductive methods, is fundamental to the 
holistic-qualitative traits with which Bateson explains biological relationships. 

For Bateson ‘small differences’ in a whole of structural similarities are crucial to 
understand the major transformations in evolutionary processes, and to explain 
much of the creative thought processes. This notion is developed in subsequent 
chapters which consider musical creativity (composition, improvisation, 
interpretation, and appropriation by analysis, synthesis, paraphrase or recursion) 
performed by systems of self-similarity, sensitive to initial conditions and open to 
gradual processes of local differentiation. Systematic and significant accumulation of 
antisymmetries in music, resulting from the quasi-periodic organization of ‘small 
differences’, is also a central issue in the final subchapter, 6.6. 
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Another important point in Bateson (op. cit.) is his emphasis conceiving the mind 
as not appart from the matter. Opening a line of investigation further developed by 
Damásio (1994, 2000), Guerra Lisi and Stefani (1997), Reybrouck (2001, 2005), and 
Reygadas and Shanker (2007), Bateson claims the fact that any observation and 
hypothesis on the physical world, necessarily involves the observing mind—and 
culture as product of the mind-body, in interplay within an Umwelt. A mind 
therefore creating the world. In consequence, music can be thought as a physical and 
biological form reifying the physical and biological world.219 

4.4. Structural universalism: the linguistic model 

General aspects of music and speech can be compared despite their functional and 
structural differences.220 The feasibility of comparison is so realistic, that individuals 
with vascular damage in the brain’s left hemisphere, which handles tasks involving 
syntax and words articulation, can recover some verbal skills using the brain’s right 
hemisphere, ‘singing’ words rather than talking.221 

Aiello (1994) lists a wide variety of similarities between music and speech. She 
remarks, for example, similarities in learning processes between children and teachers, 
as well as typical forms of intuition and practice in society. In this direction, Lidov 
(2005) acknowledges basic similarities of articulation, inflection, reference, 
segmentation, discourse and ideology. Bernstein (1976) conceives, besides, that the 
recurrent behaviour which characterizes the harmonic components of sound both in 
speech and in music, offers powerful evidence to recognize fundamental physical 
patterns as determinant for musical and verbal structuring. In any case, all these forms 
of analogy have a common feature: for all of them there are instances of recursion and 
self-similarity. 

                                                 
219 This is why the concept of self-reference, explained in subchapter 3.6., is so relevant in the 

study of music, and in the investigation of languages as self-similar forms. 
220 This requires reading the subchapter 1.2.3. on cognitive domains. 
221 This treatment, known as Melodic Intonation Therapy, is widely used in actual neuroscience, 

and is based on the fact that patients who have suffered an injury in the brain’s left hemisphere 
are unable to utter words, but they can sing words (see Schlaug, Marchina and Norton 2008). 
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Since the general aspects of acoustic and mechanical self-similarity are discussed 
in subchapter 4.2., this subchapter focuses mainly on phonological and syntactic 
recursions typical of human language, along with their musical analogies. Other 
important forms of language recursion—pragmatic and contextual—are discussed in 
more detail in subchapters 2.5. and 2.6. 

Various phenomena of phonological and syntactic recursion may be described as 
processes of homeomorphism (ὄμοιος, similar, and μορφή, form), in which a pattern 
reappears in one or more correlated layers. Many phonological structures have 
homeomorphisms in the functional cycles of a morpheme within a word; a word 
within a sentence; a sentence within a discursive construction, or a discursive 
construction within a rhetorical style. Typical cycles of sound patterns can be found 
at all these levels, forming part of a phonetic repertoire, of cycles of implication and 
subordination, and of more complex hierarchical relationships. Linguist Rush Rhees 
(1954/1971:69) suggests another kind of ‘linkage of scales’, depending on form and 
contextual use: {name→rule→correct→incorrect→concept→intention→understanding→ 
communication→language·institution→social·life}. Ballantine (1984:5) believes that 
these strings are consolidated into musical relationships as a self-similar process: 
“Social structures crystallize in musical structures [...] in various ways and with 
various degrees of critical awareness, the musical microcosm replicates the social 
macrocosm”. Again, these forms of concatenation are presented as cycles made of 
cycles.222 

Homeomorphism levels in language hierarchies are many, but according to 
linguistic functionalism, they often follow the same pattern of subordination. 
Functionalism specialists, including Tesnière, Chomsky, Dik, Jackendoff, and Givón, 
agree that this scheme can be represented as a continuous chunking in successive 
hierarchies, as suggested in ◊440. This type of hierarchical chunking, originated in a 
first single notion or singularity, owes to a priority for establishing frames of reference 
based on a central axis which is characteristic of the cognitive centrality of the 
individual, as Givón explains (2002:40–41): 

                                                 
222 This idea is developed in subchapter 4.8., under the concept spiral of styles. 
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The most urgent adaptive pressure toward automated processing is the need to draw rapid 
conclusions about—and responses to—category membership, based on a relatively quick 
scan of few observable features. In a nut shell, stereotyping. The more prototypical 
members of a category, its bulk, tend to be processed automatically—fast and relatively 
error-free. 

This practical function of the stereotype is also verified in the harmonic categories 
and the strata of musical metre, summarizing frequencies which are too long or too 
short, and adhering them to segments that can be identified more easily and quickly, 
as intervals of everyday use in speech or music listening. Using the name phonemic 
restoration, Aiello (1994:44) refers to a mental process, analogous to music and 
language, which permits the completion of sound structures under a categorical 
membership, strengthened by memory and contextualized use. 

Josephson (1995:282) believes that the processes of musical generalization 
involve grammar structuring: “[In music], correspondingly in the case of language, 
rules and generalization procedures appear to relate to grammatical categorizations 

subordination 
level 

hierarchical representation 
according to linguistic 

functionalism 

representation as self-structuring 
symmetry 

0 (20 = 1)   

1 (21 = 2)   

2 (22 = 4) 
  

3 (23 = 8) 
. . 
.   

◊440. Comparison between subordination levels and dyadic implication in 
linguistic structures within a self-similar continuum. In the left column, the 
number 2 between brackets-left represents an element implicating another 
element or subordinate, followed by an exponent (indicating the level of 
subordination) and an equivalent (indicating the number of subordinates 
at the lowest level). 
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rather than to semantic ones”. 223  The cognitive strategies for generalization, 
stereotype and automated reconstruction, comparable across different aspects of 
music and language, ordinarily enable a typing of functional recursions to attribute 
sense to perceived relations in a system of signs, based on the intuition that such a 
system operates regularly within a categorical membership. 

 
Language’s self-organization 

Recursion, defined in 3.7., provides functional openness for the combination of the 
parts of a motif or a phrase. This applies similarly to music and to language. For 
instance, in verbal language there are precise directions for the conjugation of the 
verb ‘walk’ in the third-person in singular simple present; but there is no specific limit 
to use the verb preceded by a proper name. The expression ‘x walks’, thus, can just as 
easily be expressed as ‘x1 walks’, ‘x2 walks’, ‘x3 walks’, and so on, indefinitely. Also 
indefinitely these expressions can be followed by a complement, so that it is possible 
obtaining any grammatically permissible combination between verb, subject and 
object. No matter the realistic sense of the resulting expression. The point here is that 
the pragmatic and expressive use of language indefinitely allows a wide range of 
elaborations—as happens in poetic language, in humoristic ecolects, and in everyday 
speech—ensuring a potentially infinite richness by recursion. Gal and Irvine 
(1995:974) identify this feature as recursiveness, and associate to it self-similar 
structuring in subcategories and supercategories within ‘creative’ relations: 

Recursiveness involves the projection of an opposition, salient at some level of relationship, 
onto some other level. For example, intragroup oppositions might be projected outward 
onto intergroup relations, or vice versa. Thus, the dichotomizing and partitioning process 
that was involved in some understood opposition (between groups or between linguistic 
varieties) recurs at other levels, either creating subcategories on each side of a contrast or 
creating supercategories that include both sides but oppose them to something else. 
Reminiscent of fractals in geometry, and of the structures of segmentary kinship systems 
(as well as other phenomena involving segmentation), the myriad oppositions that can 

                                                 
223 Studying this tendency to stereotype as ‘generalization procedures’ in typical structures of 

tonal music, Lerdahl and Jackendoff (1983) explains how such a tendency leads to a widespread 
use of preference, formedness and correction rules. 
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create identity may be reproduced repeatedly, either within each side of a dichotomy or 
outside it. 

Recursion, whether grammatical or pragmatic in its orientation (subjected to 
variables ‘unforeseen’ by the initial rule), is actually a property of self-similar 
structures of language in general. The stress that Gal and Irvine make on a quasi-
fractal analogy regarding language seems also justifiable, thus, to define musical 
recursiveness.224 

Lerdahl and Jackendoff (1983:214), based on the Chomskyan (1955, 1957) 
model of linguistic generativism, explain the logic of musical recursion as follows, 
referring to the tree presented in ◊441-d: 

An event ei is a ‘direct elaboration’ of another event ej if ei’s branch terminates on ej’s 
branch. An event ei is a ‘recursive elaboration’ of another event ej if it is a direct elaboration 
of ej or if its branch leads upward through a sequence of direct elaborations to ej’s branch. 

In this scheme (see ◊441-d) there are at least three levels of self-similarity: the lower 
bifurcations (from e1 to e6); the recursion’s second level {e3, e4} within a third one{e1, 
e2}; and the group {e1, e2, e3, e4} within another group X. This sort of structure is 
infinite, given that X is a subset of U, where U {Xn} 1=

∞
n . This form of self-similarity is 

analogous to the cases of absolute self-similarity mentioned in subchapter 3.3., for the 
actual iterations happening in the recursive networks—i.e. not only for their potential 
features, related to limited self-similarity. 

In tonal music grammar recursiveness is easily verifiable. For example, there are 
specific rules to form the triad of the E♭ chord, and to relate it to its degrees IV and V, 
to its inversions and to related tonalities. But there is not any rule, invariable or 
generalized, to sanction its exact length, nor an absolute rule that dictates the number 
of omissions or repetitions of its relations with other chords. So the preceptive 
rigidity to configure the E♭ chord with its main harmonic functions, combined with 
flexibility to use it in context, permits the use of that chord within a potentially 
infinite variety of tonal relations: with hierarchical functionality (such as the E♭ 
chord within its own tonality), with relative functionality (in sympathetic tonalities), 
or in a function completely subordinated to another chord (E♭ as subsidiary chord). 

                                                 
224  In order to clarify the subtle differences between ‘recursion’ and ‘recursiveness’, it is 

advisable to consider what is stated in subchapter 3.7. 
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a) 

 

 b) 

 

c) 

 

 d ) 

 

 

◊441. Derivative organization arising from language structures as self-referential 
processes: 

a) ‘Self-development’ model of mental categories proposed by Charles S. Peirce 
(1903a); adapted and refined as self-referential structure in Pareyon (2010b). 
The horizontal lines indicate stages of recursion, using the Fibonacci sequence 
as a constructive indicator (not in Peirce’s original text). 

b) Development of the previous case (a) following the same constructive 
principle (from Pareyon 2010b). 

c) Grammatical system for a sentence structuring, according to Chomsky’s 
(1956:116–118) linguistic model. 

d) Development of the previous case (c) adapted by Lerdahl and Jackendoff 
(1983:214) as a model for the analysis of musical hierarchy. This case presents 
five recursions derived from an initial recursion, labeled e6. Dotted lines 
indicate stages of recursive self-similarity. In (d) the symbol (0) denotes the pre-
self-similarity level. 
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Recursiveness is not unique to tonal music. It can be found in any system within a 
context of creativity, through a certain pragmatic self-similarity in which the infinite 
levels of subordination from a precise rule, depend on the election of an ‘appropriate’ 

function f regarding other {x1, x2, x3…} associated functions. That is: f{xn} ∞

=1n . An 
example of this may be a serial music row in which pitch repetition is determined by a 
rule of permutation, in combination with a flexible rule, which, for example, may 
affect length, loudness, or timbral association. In this sense, the richness of the serial 
repertoire is limited to the same principle of balance between flexibility and rigidity 
found in parallel contexts of creativity, as in psychological recursions or in the most 
general biological endorhythms. This is why integral serialism could not totally 
abandon its open criteria for selection, in combination with closed criteria. Absolute 
determinism exhausts the contingency of pragmatic self-similarity and fatigues 
musical discourse. 

In an example using two simple instances, (1) a fixed rule f (axiom) and (2) a 

‘flexible’ variation of the frequency (recurrence) of an element x (e.g. a point), is easy 
to observe how a series of complexities is produced: let f correspond to a sound grain 

and x correspond to its undetermined recursion in a series of time (length), 

representable as x1, x2, x3… in successive iterations of the function f (xn) ∞

=1n . A 
random segment of the series, horizontally represented, would be as follows: 

∞ ← → ∞ 

◊442a. 

where each point represents a fixed sound grain, succeeding in variable clusters or 
horizontal segments representing durations. After this case an infinite number of 
combinatorial operations can be computed: given that this sample is part of an 
infinite series, then the series contains infinite identities (i.e. points) xa, xb, xc … where 
subindices represent different consecutive lengths. Then, the ordered set of these 
lengths can be partially represented by the following subset (note that the leftmost 
column is made of ‘consecutive lengths’ represented as natural numbers 1,2,3,4,5… 
where each unit takes the place of a point):  
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∞ 
 

∞  
 

 ∞ 

 
∞ 

◊442b. Aggregate pattern segment as ordered set (◊442a represents a random 
unordered segment). The symbol ∞ represents infinite continuity of the 
pattern moving downwards and rightwards, and suggests an equally infinite 
symmetric reflection leftwards and upwards. 

Because of its self-similar characteristics, its schematic construction and easiness to 
form complex designs with combinations and transformations of itself, this pattern is 
reintroduced in Chapter 6 (see graph ◊620, page 338). Within this section, it serves 
to illustrate the discussion started in the Introduction and continued in subchapters 
3.3. and 4.4.–4.8., on language and its representation as actual infinity. 

 

Language: an insight into its self-similar vastness 

The question ‘what kind of self-similar object is language’ cannot be answered in a 
compact and unique form, because its self-similarities result within and between 
relationships in different layers, from basic coding sequences, to the elaboration, 
preserving, transmission and transformation of messages in cultural diversity. There 
is not a single form or a unique family of language self-similarities, but many. 
Moreover, there are language relationships which are analogous to examples of a 
deterministic fractal, as happens in language’s infinite recursiveness; and stochastic 
fractal, as happens in the structural self-similarities between syllable, sentence, 
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discourse and style.225 Language, in its turn resulting from a self-similar biological 
structure (the nervous system and the vascular arborescences), is a self-similar system 
branching from another self-similar system.226 

There cannot be, however, a totally closed-in-itself conception of language just 
like a deterministic fractal, but through abduction (compare with Peirce 1903a). The 
opposed argument, implicating pre-programming language within all its details once 
it is known at all in its elements and functions, is a fallacy. This sort of positivist 
argument had been challenged before the advent of the fractal conceptualization, by 
Gödel’s Second Incompleteness Theorem (1931), which states that “the consistency 
of a formal system cannot be proved within that system”. This does not mean that it 
is impossible to create and develop artificial languages like those used in computing; 
rather it means that it is impossible to create a model representing all relations of 
language, because such a model would be much more complex than the language 
itself. 

Notwithstanding anything stated in the previous paragraph, it seems obvious that 
the study of language through its self-similarities may help to understand some 
language relationships that could not be analyzed using traditional tools of 
linguistics. Contrary to the Saussurean description of language, the notion of 
language as self-similar complexity suggests that there are no arbitrary features of 
language, since even its accidents and irregularities come from deep structural 
relations (especially within a musicological context, see Monelle 2000:12, 66, 148). In 
contrast to a neo-positivistic ‘fractalism’, this concept of consistency or non-

                                                 
225 However, this kind of relationship, according to what is expressed in section 1.3.4., is not 

properly a fractal, but a ‘cuasifractal’ system with statistical self-similarity. 
226 “A virtue of the fractal approach to anatomy is that it shows the above requirements to be 

perfectly compatible. A spatial variant of the Osgood construction described in the section 
before last fulfills all the requirements we impose upon the design of a vascular system.” 
(Mandelbrot 1977:150). After Studdert-Kennedy et al. (1970), A. M. Liberman and Mattingly 
(1985), Studdert-Kennedy and Goldstein (2003), and other reviewers of the Motor Speech Theory, it 
is quite obvious that language cannot be reduced to an anatomical analysis. But the functional 
coherence between sensorimotor structure and language structuring cannot be disregarded. As 
E. Newton (1950) and Hall-Craggs (1969:368) realize, “Biologists will not disagree [that] function 
creates form”. Thus, if there is adequate evidence on a correspondence between the evolution of 
anatomy and the development of language functions, the virtue proclaimed by Mandelbrot also 
has relevance to language. 
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arbitrariness between sign and form, and between code and message, promote the 
transition of a closed theory to an open one, in that symbolism is attached to the 
aesthetic and emotional loading of language. Within a so complex intertwining, such 
a load is preserved regardless of the scale in which language phenomena are observed. 

 
Hřebíček’s perspective 

Luděk Hřebíček proposed, in the nineties, an update for theoretical linguistics, 
assuming scientific knowledge that could impel a recontextualization for the study of 
language in the light of new concepts of dynamical systems. Hřebíček (1994, 1997) 
pays special attention to the issue of linguistic self-similarity. Yet assuming the 
validity of the notion natural fractal, coined by Mandelbrot (1982), Hřebíček 
published his article “Fractals in Language” (1994) as an attempt to explain the 
Menzerath-Altmann law, with relevance to the theory of phrases extension or theory 
of sentence aggregates. This law applies to the discrete probability distribution in the 
frequency of data which can be syllables, words or phrases in a text. 

An aggregate denotes a group of sentences in a text containing a word or lexical 
unit (Hřebíček 1997:104).227 The Menzerath-Altmann law states that “The longer an 
aggregate (in the number of sentences) the shorter its sentences (in the number of 
words)”;228 this implies a tendency to concentrate the references structure of a text, 
towards a compact group of units. This law holds in the phrasing level and in the 
parameters for the length dependencies of sentences counted in words and syllables, 
contained in turn by the phrasing length counted in sentences. This theory has been 
applied to samples with different verbal languages in a variety of styles at different 
structural levels, “so that it can be accepted as a well-tested theory” (Hřebíček, loc. 
cit.).229 Hřebíček (1995, 1997) suggests that the fact that the Menzerath-Altmann law 
is verified jointly in levels of syllables, words, sentences and text phrasing, permits 

                                                 
227 This definition of ‘aggregate’ is operatively affine to its homonym used in pitch-class set 

theory, as defined in subchapter 3.4. (see pages 81–82). 
228 See Altmann 1980; Altmann and Schwibbe 1989; Köhler 1986; abridged and reformulated 

in Hřebíček 1997. 
229 Later Kulacka (2008) found that this law is not verified in all texts, but this non-fulfillment 

may be attributable to a too segmented sampling of texts with recursive features, without giving 
special preference to ordinary verbal samples. 
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conceptualizing language through specific distribution features tending to self-
similarity.230 At the conclusions of his 1995 article, Hřebíček acknowledges that 
language can be a self-similar system, or an affine conglomerate whose self-similarity 
would be a simple consequence of the statistical approach to measuring the lengths of 
the constituents of language; results obtained by Kulacka (2008) point to this second 
direction. 

In his 1997 article, which revises and expands some of his previous ideas about 
linguistic self-similarity, Hřebíček also takes into account another meaningful aspect: 
it is likely that each compound of aggregates does function following the scheme of 
initial axiom and application of rules; then language constituents and their levels of 
organization could be explained as emergent systems sensitive to initial conditions. 
As in dynamical systems with these characteristics, generation and phrasing extension 
would depend on stable initial conditions turning into chaotic behaviour. 

Very probably, a corresponding version of the Menzerath-Altmann law is 
fulfilled in the sequentiation of musical motifs and phrases: the longer a string is 
obtained by a system of rules, there will also be a greater tendency to segmentation, by 
common rules of agglutination which are reflected by the statistical analysis. 
Therefore, syntax segmentation in music would be analogous to verbal language 
segmentation, following a common tendency to compact subsets of significant 
elements into larger sets, oriented by the same organizing pattern.231 

                                                 
230 According to Hřebíček (1997:103) “The so-called Menzerath-Altmann law represents an 

application of the power law of the type y = Axb, where x is the construct, y the respective mean 
constituent and A and b are parameters.” 

231 This has been explained from the generativist perspective by Lerdahl and Jackendoff (1983) 
and Lerdahl (2001), under the concept of well-formedness rules (see subchapter 3.2.). 



 

 
 170 

4.5. Stylistic endomorphisms 

A musical endomorphism (ἔνδον, inside or within, and μορφή, form) implies a 
nestedness of objects within objects or processes within processes, as usually happens 
in a musical style, made of sets of sets.232 There are many examples of such a 
nestedness within different musical traditions. As Meyer (1987:24) observes, “within 
the dialects of the Baroque and Classic styles, subdialects may be distinguished.” Of 
course, this is not unique of the European tradition. Nettl (1954:46) identifies the 
same kind of nestedness in the autochthonous music of the Americas: “Musical areas 
[in the North American continent] could be identified at various degrees of 
homogeneity; [...] even each sub-style within a tribal style, could be considered 
equivalent to a musical area”. 

An example of musical self-similarity at this level is the statistical record of a 
specific tone within a scale; a scale within its traditional use in a specific repertoire; or 
a gesture repeated and expanded within a musical piece and perhaps within a large set 
of musical pieces within the same style. Musical endomorphisms are also found in 
many other aspects of musical recursion. It can therefore be made an account of the 
pizzicati in the violin technique after Tartini, as an stylistic trait from idiolectal 
origin. Other features can then be added, historically overlapped or transformed by 
Paganini, Sarasate, White, and other virtuosi from the nineteenth-century. A 
subsequent layer in this account can add the pizzicato Bartók as a modification of the 
original technique. At the end, an image of overlapping tendencies or 
endomorphisms will be obtained, defining a style on the violin, and within this style, 
other styles formed at the bases of other styles. Something similar can be stated on 
any other instrumental technique indicated in a score or suggested by practice, in 
relation to a historical antecedent; its respective consequents will produce structural 
layers gradually becoming dense in a context of relationships emerging in the musical 
discourse.233 

                                                 
232 A detailed definition of style is discussed along subchapter 4.7. 
233 Under this conceptualization, Segond-Genovesi (2009:247–260) proposes a “legitimation” 

of the statistical deviation (légitimation de la déviance) into two large semiotic bodies considering (1) 
the polysemies of the principle of repetition, and (2) musical syntax and paratexts. 
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Roughly speaking, musical endomorphisms behave like the alluvium of the bed 
of a river does, gradually or radically modifying its patterns depending on the fluid 
dynamics and sedimenting processes. In this paradigmatic analogy, the ‘river’ is the 
metaphorical representation of the ‘style’. 

Adapting the Saussurean structuralism, musical endomorphisms can obviously 
be analyzed as processes of language in synchronicity (e.g. the use of a tone in a 
specific harmonic function) and diachronicity (e.g. the use of an instrumental 
technique along the history of a style). In any case, they emerge with other kinds of 
self-similarity, as described above, of a mechanical, biological and ecological type, as 
precondition of music as a cultural phenomenon. There is, moreover, an analogy 
between a music endomorphism and the acoustic self-similarity of a resonance: any 
consequent may be associated with the resonance of its antecedent, so—for 
instance—the structural function of a chord is also a ‘resonance’ of prior referential 
chords-layers within a score, a repertoire, a tradition, a culture. 

 
Parallels with spoken language 

From the level of articulation, the self-similar features of language are more intuitive. 
For example, an endomorphism perceived as self-similarity between phonetic-
prosodic relations of an idiom—its timbral unique features—involving the formation 
of styles within a certain verbal language. 

Spoken language works as a self-similar network shaping the rhythms, 
intonations and cadences of speech. From specific recurrences of phonemes and 
accents, there is a corresponding sound ‘image’ of speech, not only by the sequence of 
lexical items with basic meaning (the typical semantic function of morphemes-
phonemes), but particularly by the suprasegmental sound elements that do not have 
lexical meaning but are essential to meaning (see Hjelmslev 1928).234 One may add to 

                                                 
234 In this context, after Hjelmslev (cit.), lexicology states that the sound x may lack a specific or 

isolated meaning. However, eliminating x from the verbal repertoire (also called dictionary) 
directly affects the meaning of many words. This occurs similarly in many cases of music, when 
asserting that an isolated element x does not mean or denote anything (Umberto Eco [1976:88] 
says that “The problem is ‘what’ the note C denotes, and ‘whether’ it denotes at all”); 
nonetheless, whether the same element is extracted from a contextualized system, the musical 
meaning may completely change. 
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this perspective, that the particular emission of a phoneme x in each speaker 
contributes to identifying the individual way of speaking of each individual (i.e. 
idiolect). In the long term, the sound image of speech reveals a consistent pattern of 
phonetics. At a second level there is a convergence of phonemes related within a 
vernacular style (i.e. ecolect), in which the individual speaker is in contact with a group 
of speakers. The phonetic traits of the individual are not identical to the local 
group—something that would eliminate basic aspects of originality and identity—
but overall they share sufficient characteristics to integrate a certain phonic 
consistency. A following self-similar system emerges with the integration of regional 
dialects, articulated not necessarily by semantic values but by phonetic traits in 
common. One may add to this the successive cycles between local and global, as 
sound levels are distinguished in layers forming a social niche. 

The whole these phonetic relationships make, constitutes a self-similar complex. 
Complexes alike, observing them from the surface of the dialect or the global 
language, to the depths of the individual expression, can be described as sets of 
frequencies defined by phonic endomorphisms: internal forms of individual 
soundings—idiolectal phonetics—weaving the ‘phonic cell’ of the verbal tissue as a 
whole. 

By analogy, musical discourse also presents this kind of self-similarity, which in 
the long-term determines stylistic contour. The idiolect-ecolect-idiom string also 
happens in music as transmission and expansion of emotions and conceptualizing 
through sound-in-culture, with the ability to express, symbolize and represent within 
cyclical negotiations—that simultaneously are closed by rules, and open to chaos in 
their practice.235 

 

                                                 
235  Luhmann (1990:12) acknowledges that “The problem, then, becomes to see how 

autopoietic closure is possible in open systems. The new insight postulates closure as a condition 
of openness, and in this sense the theory formulates limiting conditions for the possibility of 
components of the system.” From a linguistic (statistical) view, Hřebíček (1997:105–106) also 
considers a productive exchange between rule and variation, or between order and chaos, in the 
open elaboration of sentences based on a closed grammar. 
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Recursiveness and interpretation at the basis of musical creativity 

For language in general and for music in particular, the notion of repetition is akin to 
that of absolute determinism, as it involves a purist idealization of temporal cycles 
and spatial forms, which can be replicated, for example, in an equilateral triangle or a 
circle, retaining their intrinsic abstract properties. Hence the idea of repetition is 
familiar to that of a perfect closed cycle, by contrast to the image of recursion, which, 
as Marrades Millet (1998:54–55) observes: “implies doing every time something 
different from what was originally shown, but in such a way that the result equals to 
act in each case under the same rule.” 

  

◊450. Idealized scheme describing the difference between repetition, visualized as a 
perfect cycle, and recursion, which, through interpretation, ‘produces something 
new’ from its self-reference. In this case the phenomenon of self-generation or 
autopoiesis is represented as asymmetric deviation or irregularity bounded by 
the cycle’s regularity (i.e. the recursion, properly). 

For there to be interpretation there must be recursion. In other words, for there to be 
music as ‘living expression’, music must express the fact that it occurs through the 
unstable capabilities of the individual and the conditions of context, unstable too. 
Recorded or completely automated music—as any fixed language—can inform, but 
is unable to express the unstable interactions and the emotional, pragmatic and 
intentional traits which characterize the richness of living language.236 ‘Living 
language’ also means, in this case, recursiveness: an open system which is changing 
from an agreed, relatively closed and stable grammatical model. 

                                                 
236 This idea implies the opposition between variation and repetition. Lidov (2004:40) notes, in 

this context, that this opposition plays an important structural and creative role in music. 
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◊451. Five versions of the traditional Chinese song “Wu-a-hei-hei”, 
performed by five different native singers. The subtle differences in the 
melodic-lyric gestures are typical examples of recursiveness as 
interpretative variation. The measurement of the slight, continuous 
differences, reminds the calculation of metric space in fractal geometry 
(see e.g. Hřebíček 1994, 1997). Original manuscript by Frank 
Kouwenhoven (2005:148). Copyright by the Journal of the Department of 
Ethnomusicology, Otto-Friedrich University of Bamberg. Reprinted with 
permission. 

Paradoxically, deterministic self-similarity in a symbolic system—usually a sign of 
structural consistency—may inhibit information richness and communication.237 For 
the projection of intentions and emotions of individual language (i.e. idiolect), the 
links of similarity in a musical structure must be ‘not absolutely exact’. If a musical 
expression results identical to another, the boundaries for comparison, analogy and 
resemblance diminishes, giving up their places to monotony (i.e. low level of 
information).238 By contrast, limited self-similarity allows the interplay of reference, 

                                                 
237 This notion is developed in subchapter 6.6., in the context of concepts such as asymmetry, 

antisymmetry and self-dissimilarity; and in subchapter 5.1., in the context of musical 
information. 

238 The successive copy of identical models is a procedure that impoverishes the representation 
of the ‘real world’ because real world pattern’s irregularity is more complex than the exact copy. 
For each copy of an original pattern, the ‘real world’ inserts some type of interference which 
alters the exactness of the reproduction. This process creates, by a symmetric transformation, 
relationships of affinity and similarity, rather than sequences of equalities. 
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difference and comparison, enriching the discourse without losing it into the 
unlimited diversity. 

Recursion of individual elements within a formal or prescriptive grammar is also 
related to the concept of ‘authenticity’ of language: an idiolect is authenticated not 
only by obedience to conventional rules, but especially with the contribution of the 
individual’s own characteristics. This universal requisite of language is also evident in 
musical performance and creativity. The example in ◊451 shows a traditional 
Chinese song in five different versions by five singers, compiled and transcribed by 
Frank Kouwenhoven (2005:148). Despite the cultural specificity of this example, this 
sort of variety within similarity is common to any musical performance in any 
cultural context. This reveals musical self-similarity in two essential aspects: (1) direct 
relationship with recursion, which, adding features in style by the use of a musical 
code, uprises the codal information with the richness of the idiolectal message, and 
(2) consolidation of musical sense in that, adding unique features, each version 
produces a set of elements sharing statistical distribution of frequencies, lengths and 
loudnesses at different rates. 

 
The perspective of Beran and Mazzola (1999a) 

After computing the statistical analysis of scores of European composers from 
different eras, and comparing their results with an associated selection of recordings 
by various performers, Mazzola and Beran (1999a) claim that musical performance is 
a particularly complex process, inter alia, because of the abundance of ambiguous 
information contained in a musical score (including terms for change in tempo like 
ritardando or accelerando, or dynamic marks like ppp or pp, etc.), and because of 
‘hidden information’ that is generally not explicitly included in the score, but still 
closely related to the articulation of figures, metre, accentuation, and the irregular 
‘details’ variating in each performance, which are stylistically meaningful. 

Beran and Mazzola, aware of the analytical difficulties for a general definition of 
style in Western classical music, restrict their research to the statistical analysis of 
metrical, melodic and harmonic values in the score, in order to determine these 
values’ influence on musical performance, especially by their correlation with tempo 
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curves or deviations (Agogik) which characterize an essential aspect of authenticity for 
each performance.239 Overall, their analytical approach aims to identify the specific 
set of symbols that make up each score chosen, separating them in functional 
categories, for obtaining, in place of the score, three correlated sets with metric, 
melodic and harmonic values. Finally, Mazzola and Beran allot specific ‘weights’ for 
each of the different profiles and levels considered as performance values. 

This analysis, like other methods used to assess the interpretation of Western 
classical music, is based on hierarchical criteria: a note in the score is statistically 
significant if it is part of a local metrical subordination; a tone is melodically 
significant if it is part of motifs or phrases in a comparable way as in (many) other 
parts of the same piece; and a harmonic relation is especially significant if it 
coordinates or subordinates other harmonic relationships, in the sense of a 
prescriptive grammar (e.g. Rameau 1722, 1726; Riemann 1873; Schoenberg 1911; 
Hindemith 1949). However, the most original aspect of Beran and Mazzola’s 
investigation is their proposal to examine how the distributions of ‘weights’ are 
correlated in the metrical, melodic and harmonic structures, regarding the tempo 
deviations of each performance. Interestingly, their results confirm the hypothesis of 
variability in music performance, as recursiveness of an open system providing solid 
empirical evidence for the correlation between self-similarity and musical 
consistency: 

A musical piece (and hence its performance) is musically ‘coherent’, if each or most of its 
parts are similar (or ‘self- similar’) in some sense to other parts, possibly on another time 
scale. In particular, what happens now should be related somewhat to the entire past (and 
future) at various levels of ‘resolution’. The fractional differencing parameter d is directly 
related to the so-called self-similarity parameter of self-similar stochastic processes. The 
value of d is a measure for the type of self-similarity and can therefore also be interpreted 
musically. (Beran and Mazzola 1999b:226; brackets in the original text). 

                                                 
239 This conceptualization of ‘curve’ or ‘deviation’ needs to be understood here as the affinity 

between two or more behaviours tending to self-similarity. Actually, the definition of ‘fractal’ 
proposed by C.A. Pickover (1988:181) approaches intuitively to this notion: “fractals [are] 
intricate curves that exhibit increasing detail with increasing magnification”. Several examples of 
self-similar curves in music are provided along chapters 5 and 6. 
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These results can hardly be considered unique and exclusive to Western classical 
music—as discussed in the previous section with Kouwenhoven’s (2005) study on 
recursiveness in traditional Chinese songs. Accordingly, it is hypothesized that every 
time a performer displays her/his own recursiveness traits, an ‘autopoietic exercise’ 
completes a cycle of minor irregularities within the major regularities characterizing a 
repertoire in style, ensuring through practice the creative richness of musical tradition 
in the long term. Such an autopoietic exercise consists of the performance fitness, 
acting ‘freely’—even chaotically—and creating meaning within a much more stable 
environment for grammar and stylistic orthodoxy, equal to previously created—even 
formalized—meaning. 

4.6. Transcultural self-similarity 

The recursiveness of cultural typologies appearing in Umwelt–niches imply certain 
relations of self-similarity.240 For music, the semiotic modes of this self-similarity are 
related to the music universals in the context of generalized universals of language.241 
Within this framework self-similarities emerge for reasons related to those at 
biological, phonological, and pragmatic levels; and, as suggested in 4.4., they gain 
density through the phase communication→ language institution→ social life (see Rhees 
1954/1971:69; Osgood 1964). 

Haugen (1950), Weinreich (1953), Paradis and LaCharité (1997), Thomason 
(2001), and Good (2008), among other linguists specializing in the investigation of 
phonological borrowing, provide elements to consider that music and verbal 
language share, if not the same types of borrowing, indeed the same trends for 
borrowing in various strata, particularly visible on the pragmatic surfaces. The most 
prominent differences between musical and linguistic borrowing are found—as in 
other similar analogies—within relationships of meaning and use ‘in social life’, 
according to Rhees terminology (Rhees 1954/1971:69). These differences are already 

                                                 
240 For a definition of the coupling Umwelt–niche, see subchapter 4.3. 
241 On music universals, see Merriam 1964, Nattiez 1987, Padilla 1998, and Tagg e1999. On the 

universals of language see Trager 1958, 1961, Sebeok 1977, Diller 1981, and Martinelli 2007. 
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defined by several lines of research.242 For purposes of this section it is sufficient to 
note that music shares with language a transfer of uses, symbols and styles in patterns 
that recur at different social levels and at different times and idiosyncratic 
circumstances. 

 
Musical borrowing 

In the case of music there are structures which reappear as ‘self-borrowing’; this is 
fairly obvious for many scores of Vivaldi, Haendel, Haydn, and W.A. Mozart (see 
Stephan 1979, Escal 1981, Brown 1992). Other structures are repeated within the 
same tradition, from one context to another, for instance in the transition of folk 
songs and dances to the concert repertoire, as happened with the parts of the Baroque 
suite which originally were not intended for chamber music. Some cases of this are 
the gigue, the courante, the contra-dance, and the passacaglia. Some other musical 
structures move from one culture to another, as happened with the chaconne, a 
Mexican dance which around 1598 became a street dance in Seville and Naples, and 
later became a court dance in Rome and Florence, and ended up as part of the 
baroque instrumental suite in Germany and Denmark.243 

Musical borrowing occurs in a variety of degrees and forms, ranging from direct 
copying to the transformation of the original. Burkholder (1985, 1994) identifies six 
functional variables of musical borrowing: 1. Context (genre, texture [monophonic, 
polyphonic], cultural source), 2. Relationship level (rhythm, harmony, melody, 
instrumentation, texture), 3. Relationship mode (between the borrowing and the 
new produce), 4. Alteration mode (complete, incomplete, minimal, 
recontextualized), 5. Musical function (basic structure, theme, phrase, motif, 
gesture), 6. Motivation (imitation, representation, symbolizing, association, 

                                                 
242 Among these lines of research the present study considers the following: Haugen 1950, 

Seeger 1960, Escal 1981, Lerdahl and Jackendoff 1983, Price 1988, Fiske 1990, Nattiez and 
Abbate 1990, Monelle 1992, Tarasti 1992, 1994, Aiello 1994, Burkholder 1994, Davies 1994, 
Lidov 2005, and Almén 2008. They all have antecedents and consequences that would be 
impossible to summarize here. 

243 Musical documentation on this subject is abundant. For a general approach, see Richard 
Hudson, The Folía, the Saraband, the Passacaglia, and the Chaconne (vol. IV. The Chaconne), 
Musicological Studies and Documents, no. 35, American Institute of Musicology, Hänssler-
Verlag, Stuttgart, 1982. 
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comparison, variation, paraphrasis, metonymy). In short, when the same musical 
structure partially or fully returns across different contexts and traditions, it can be 
said that it occurs in various degrees of self-similarity in one or simultaneously in 
several of the typologies identified by Burkholder, for each of their six main variables. 
This connects directly with what is stated in subchapter 3.9., complementing the 
notion of the intrinsic self-referentiality of music. 

 
Codal exchange between species (interspecies borrowing) 

For bioacoustical codes partly shared by different animal species there is also a 
borrowing diversity under any of the variables identified by Burkholder. Evidence of 
this is the imitation of a rhythmic or melodic pattern made in a human cultural 
niche, from a bird’s vocalization. In return, it also occurs that a bird (Amazona aestiva 

or Psittacus erithacus, just to cite two common examples) may attain to imitate a 
rhythmic or melodic pattern produced in a human cultural niche.244 

Despite the anthropocentric tendency to adjudge music only to humans, at least 
since the fourteenth century several composers and music theorists have accepted    
—adding qualifiers—that some birds are able to create and perform music. This 
corresponds to the description of such music as musica avicularis (Schröder 1639), 
musurgia (Kircher 1650), natural music (Tiessen 1953), protomusic (Hartshorne 

1973) or micromusic (Szöke, Gunn and Filip 1969; Messiaen 1994). 
Josephson (1995) suggests that at least some subsymbolic aspects of human 

music are part of a ‘pre-existing’ system, so that an individual would have acquired the 
system from other individuals and other societies, with multiple sources in 
nonhuman sound codes—Josephson mentions the participation of domesticated 
animals in the modern societies’ environment. Accordingly, an amount of the music 
universals would have been ‘discovered’ rather than created by humans—something 
already hinted by Hsü (1993) in the context of musical self-similarity. Asking the 

                                                 
244  According to Gelman and Brenneman (1994:374), this exchange of musical patterns 

between birds and humans is possible, primarily by the functional similarities in the dynamics of 
the interplay between an innate cognitive platform and common processes of cultural learning. 
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question, how do humans acquire these codes, Josephson (1995:283) answers that 
this should happen 

by the same means as those by which human beings acquire language from each other, or 
to take a more asymmetrical case, pets from human beings (this process also involving 
shared meaning, shared utterances, and processes for acquiring some comprehension of 
symbol systems).  

The renderings of musical codes can occur, thus, in transcultural relationships, 
strictly speaking, providing or modifying rhythms, pitch intervals or sound gestures 
across different species. Recovering a notion formulated by Abraham Moles (1963), 
this type of transmission of bioacoustical codes can be unilateral (without feedback 

information system) or bilateral (with feedback information system). 
Modern biologists conceives the musical culture of birds as a relevant issue to 

explain the processes of teaching, acquisition, variation and preservation of idiolectal 
and ecolectal identity in communities of different species. Catchpole and Slater 
(2008:49–84, 265–270), in their treatise on bird vocalizations, devote an entire 
chapter to aspects of mimicry, song learning and variation, and a special subchapter 
on what they recognize as “cultural change”, based on statistical information gathered 
and processed by themselves and by other ornithologists such as Eens et al. (1991a–
b), Seddon (2002), and Seddon and Tobias (2003, 2006), among others. 
Conclusions derived from this analysis suggest that musical culture and its modes of 
transmission are not uniquely human attributes. This issue is not just a curiosity for 
musicology, since—as Szöke, Gunn and Filip (1969), and Hsü (1993) 
acknowledge—it raises many questions about very basic concepts of music, aesthetics 
and ecology, which have not previously been satisfactorily answered: 

The mere fact that such highly structured human-like avian music exists as a biological (and 
at the same time physical, neurophysiological and audiopsychological) phenomenon 
outside art and aesthetics, raises cardinal problems concerning theory and specialized 
science to zoologists as well as neurophysiologists, to animal psychologists as well as 
theoreticians of human musicology and music as a ‘world phenomenon’ in general. 
(Szöke, Gunn and Filip 1969:432) 
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It is clear that this concern deserves a long-term and specialized study. For now what 
is most remarkable is to note that the transmission of musical patterns from one 
culture to another is possible with the participation of at least two distinct animal 
sources, taking for example the contact between birds and humans. 

The symbiotic relationship between birds and humans is ancient. Many 
prehistoric representations carved in stone or drawn allude to bird hunting scenes or 
magic scenes showing birds in a first perspective. The beginnings of ideographic 
writing also reflect this relationship. René Guy Busnel (1963:88), impressed by these 
testimonies, in his compendium of bioacoustics includes a scene of the Egyptian 
tomb of Menna, dating from around 1200 BC, showing a young hunter holding a 
bird in his hands to attract his prey using bird vocalization. 

Notwithstanding, the musical exchange between humans and other species is not 
just an old scenario. Guatemalan composer and musicologist Jesús Castillo (1877–
1946) transcribed, around 1929, the vocalization of a tzentzontli (Mimus polyglottos) 
collected in the wild, in Huatal, department of Nariño, Colombia, which sang a 
melody “in the natural diatonic scale” (in A). This melody was very similar to that of 
the zubak, a Mayan tune to accompany the traditional dance of La conquista, which 
Castillo had collected in two versions, from Chicalahá, and from Almolonga, 
department of Quetzaltenango, Guatemala, about 1,300 miles to the Northwest of 
Huatal (see Mayer-Serra 1947:212, and Vela e1971:5).245 Although Castillo was 
inclined to suppose that the local people took from the same bird (i.e. the same 
specimen) the constructive elements of their music, it is not inconceivable that the 
process had been inverted: that is, that the tzentzontli (i.e. several individuals from 
the same species), due to its imitative skills, had reproduced similar melodies in 
several places of the same area, after listening to human tunes—even the specific 
melody of the zubak. If this is true—or at least statistically plausible—along with the 
growing custom of incorporating singing birds to domestic life, the tzentzontli free 
or in captivity may had played a role as an information conduit from pre-Columbian 

                                                 
245  Vela (loc. cit.) reports that zubak is not only the name of the traditional tune but, 

interestingly, that is also a traditional Mayan flute to be performed with the homonymous dance: 
a bone small four-holed recorder which could be an ideal means to imitate a bird song. 
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times, modifying its repertoire as the human cultural trends had been changing in a 
common ecological context. 

The acoustic contact between birds and humans also reveals self-similar 
recursion in ‘unilateral transmission’ (i.e. without feedback information system): 
Brandily (1982) documents a close relationship among four species of birds and the 
culture of the Teda people, in northern Chad. The researcher found that the Teda, 
precluded to develop systematic agriculture and livestock due to extremely poor soil, 
created a vocal communication system with birds, distinguishing four edible species 
(Columba livia targia, Streptopelia turtur, Quelea quelea and Pterocles lichstensteini 
targius). Crediting each species with a local name and a repertoire of songs and 
symbolic concepts, the Teda created thus a complex of cultural values permeating 
their musical tradition and poetic texts. Brandily (1982:373) notes that “Word-by-
word translation of such texts cannot convey directly their meaning to anyone unable 
to place them in the same experiential context”, and examines the functional 
relationship between the symbolic and phonetic elements of these materials, noting 
that in some cases there is a recreation of the onomatopoeic sound of the birds, but in 
others there is a stylization of their musical pitches and rhythms.246 In short, this 
embraces the two typical operations of musical borrowing: copy and transformation 
(theme and variation in a melodic context; repetition and recursion in an informative 
one), which are fundamental for music as language. According to Class (1963:138), 
the whistled languages of many peoples of herds and hunters dispersed in the world, 
are “the informative skeletons of language [...] and constitute a remarkable 
intermediary between the signal systems such as suggested in the study of animal 
species, and the normal human languages.” 

                                                 
246  In this context, it is impossible to ignore what Gérard Genette (1976:165, 177) says: 

“L’onomatopée est donc un mot forgé par imitation d’un bruit extérieur (y compris les cris 
d’animaux), le mimologisme, un mot forgé par imitation d’un cri, ou plus généralement d’un      
« bruit vocal » humain.”; “Le principe d’analogie par transposition, qui fonde la métaphore, est 
donc « l’element facultatif de la création des langues », tout comme le principe d’onomatopée est 
son élément organique et mecanique.” 
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◊460. A common blackbird vocalization (Turdus merula) compared with two 
different kinds of European music. Every sample has been written in the same 
octave and same key in C (see text for an explanation). Source: J. Hall-Craggs 
1969:377. 

Hall-Craggs (1969:376) further suggests that the transcultural acoustic self-
similarities shared by humans and birds can also occur in a convergent mode. Thus, 
she compares the vocalization register of a common blackbird (Turdus merula), with 

the opening phrase of the Gigue from J.S. Bach’s Suite no. 3 in D, and then with an 

entire sea shanty, from J.J. Terry’s The Shanty Book (London 1921). In order to 

facilitate this comparison (see table ◊460) Hall-Craggs puts all the examples into the 
same octave (C4 – C5) and the same key signature (in C). Every example is divided 
into two sections, as the material is compressed in two sub-phrases in Bach and the 
bird song, appearing decompressed in the shanty. By this comparison Hall-Craggs 
identifies the following similarities: equality of proportions in sections 1 and 2; 
change of tonal and temporal patterning in section 2 (much more pronounced in 
Bach); section 1 ends at a point of anticipation whilst section 2 ends at a point of 
finality; melodic outlines are similar and incorporate a “suggestion of pentatonicism” 
(sections 1: C' E G A [Bach omits the E]. Sections 2: C" G E C' [the bird omits the 

final C]); and the climatic points are the same (sections 1: the single A high. Sections 
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2: the single C high) [see Hall-Craggs 1969:375–376]. It must be emphasized that 
this is not to suggest a direct borrowing from one source to another, but just to open 
the possibility of universals of tonal language—‘tonal’ in the phonetic-phonological 

sense—by specific forms of organizing information, codal redundancy, and gesture 
expression, demonstrating the role of transversal synecdoche in these types of 
relationship. 247 

Scholes (1938), Armstrong (1969), Hall-Craggs (1969), Brandily (1982), and 
Head (1997), from different viewpoints, agree that bird vocalizations adapted by 
human communities, are a basic traditional source for the latter. Moreover, Thorpe 
(1963:191) conceives that “The fundamental intervals of human and bird song are 
the same”, and makes the following suggestion (ibid.): “Since man always has bird 

song all around, impinging on his ears, is it not reasonable to suppose that he 
developed a musical signal system by imitating the birds?” Hsü (1993) contributes to 
an answer, pointing out that the same kind of systematic recursiveness and resulting 
self-similarity are due to partially homologous relationships, commonly present in 
both human music and bird’s music. 248 

In conclusion, there may be, in terms of adaptation, an exaptation of songs being 

transmitted from a species to another, modifying its usage modalities, its character 
and its causal attribution.249 Such ‘exaptation’ would be an evidence that during  

                                                 
247 This is partially confirmed by Hsü (1993:36): “A symphony of two varieties of blackbirds, 

accompanied by cuckoos or great tits, can have enough combination of tones to make a music 
of [quasi-]fractal geometry” (prefix in brackets introduced by the author of the present study). 

248 Hsü (1993), in continuity with Voss and Clarke (1975, 1978) and Voss (1987), attempted to 
prove that the self-similar spectrum 1/f  is a general property of music, including some bird 
vocalizations. His experiment found, however, major obstacles: (1) the amount of samples 
analyzed is insufficient to compute conclusive results concerning a species in particular; (2) the 
variety of samples is equally scarce to draw conclusions, defining or generalizing features to all 
species of singing birds, (3) the samples analyzed correspond to transcriptions to the diatonic 
scale, not to high fidelity recordings made in situ: this problem is greater, considering that many 
singing birds produce multi-frequential tones, rich in timbre, and with a speed that usually 
surpasses the transcription resources. On the one hand, the notion of timbre as self-similar 
pattern is neglected by Hsü; on the other hand, melodic transcription already provides a 
considerable amount of noise, as defined at the beginning of subchapter 5.4. 

249 The term ‘exaptation’, common in revisions to Darwinian evolutionism, refers to the use 
and development of a cellular, physiological or anatomical function, other than the performance 
by the same capacity in which it originated (see Gould and Vrba 1982). 



 

 
 185 

 

 (a) 

 
(b) 

 
(c) 

 
(d) 

 

(e) 

 

◊461. Examples of human imitation of ornitho-acoustic behaviour: 

(a) Hoopoe (Upupa epops) vocalization according to Aristophanes (from Ornithes, 237 ff., 
414 BC; in Greek characters). The music notation corresponds to a free transcription 
based on a recorded vocalization of the same bird species. 

(b) Rooster (Gallus gallus) vocalization according to Athanasius Kircher (Musurgia 
universalis 1650). 

(c) Theme of the traditional ‘son’ El perico [The parrot] (Veracruz, Mexico, ca. 1750–1770). 

(d) Fragment of the habanera dance for piano Los pollos tepiqueños [Chicks from Tepic] 
(1874) by Clemente Aguirre (source: Pareyon 1998). 

(e) Fragment of the first page of IV. Chants d’oiseaux (Livre d’orgue 1952) by Olivier 
Messiaen, with a stylized version of a common blackbird (Turdus merula) vocalization. 
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thousand of years musical patterns transmitted from birds to humans have gone 
through a continuous process of evolution, comparable to the transversal synechism 
found in other instances of ecological, symbolic systems.250 Subchapter 4.8. extends 
this issue to the synecdoche of the house of the house, connecting it to the 
conceptualization of ecology, as conceived by Parsegian (1968:589).251 Accordingly, 
the definition of music as a “world phenomenon in general”, proposed by Szöke, 
Gunn and Filip (1969:432), is an issue that also extends to the following chapters. 

4.7. Tension between grammar and style 

Leonard B. Meyer (1989:3), basing his ideas on criteria established by Jan P. LaRue 
(1969) and Charles E. Osgood (1964), defines style as “a replication of patterning, 
whether in human behaviour or in the artefacts produced by human behaviour, that 
results from a series of choices made within some set of constraints.” In this definition 
the concept of choice results from the negotiations between individual and group, 
whilst the concept of constraint corresponds to the need for consistency through a 

law or grammar associated with a tradition.252 
Despite its rigidity, grammar usually leaves ‘gaps’ in the regulation of language, as 

open margins to fertilize language through creativity and style practicing. The 
prescriptive character of grammar, in tension with the styles—of flexible nature—, is 
modified over the periods of a language, by a continuous negotiation between rigid 
correctness and flexible creativity.253 This is the core of Meyer’s idea about coordination 
between choice and constraint. 

                                                 
250 The concept of intersemiotic continuum is introduced in sections 3.8.1.—3.8.3. 
251  “a vast complex of living worlds within worlds, levels below levels, life beneath life” 

(Parsegian, loc. cit.). 
252  Aarts (2006:113) offers a broad overview on the plural definitions of grammar, as a 

constructive or constrictive system of rules in a language, mentioning aspects of syntax and 
morphology, among many others. 

253 Classical thought is eloquent on this particular topic. Horace (Ars, 70–71) notes: “Multa 
renascentur quae iam cecidere, cadentque quae nunc sunt in honore vocabula, si volet usus” 
(Many words which are now obsolete will be reborn and those now honoured will fall, if usage 
so decrees). This concept brings associated images of looping, spiral, recursion and self-reference, 
related to the notion of language self-similarity. 
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Jan P. LaRue (1969) conceives style as a phenomenon of recurrence in several 
layers that he calls “dimensions”. Within these dimensions musical objects and 
processes are grouped in structures, being both contained by and containing other 
structures.254 LaRue (op. cit.:449) acknowledges, then, the typical processes of musical 
self-reference (“one can hardly discuss sources of [musical] movement without citing 
some musical element in a specific function”), and identifies the difference between 
repetition and recursion, associating with the latter the functions of “interrelations, 
interactions, and interdependencies of the music itself”.255 Congruently (op. cit.:450–
451), he makes explicit the analytical-descriptive processes of music, as synecdochic 
processes: “once we comprehend the wholeness, the parts fall into a proper 
perspective.” 

According to Werner Winter (1960:3), style is characterized as a pattern of 
recursive selections from an inventory of ‘optional’ features of a language: “Various 
types of selection can be found: complete exclusion of an optional element, 
obligatory inclusion of a feature optional elsewhere, varying degrees of inclusion of a 
specific variant without complete elimination of competing features.” This idea 
includes the notions of fixed and optional in language, and rigidity and flexibility of its 
recursions. Meyer (1956:202) conceives that the planned deviation from the rigid, as 
negotiation with the rule, opens the necessary margin for creativity: 

The unlimited resources for vocal and instrumental expression lie in artistic deviation 
from the pure, the true, the exact, the perfect, the rigid, the even, and the precise. This 
deviation from the exact is, on the whole, the medium for the creation […] 

The sense of music emerges, largely, thanks to a proper tension between 
grammar and style, or—using the terms of Meyer—between exactness and planned 

                                                 
254 LaRue’s (op. cit.) semiotic perspective is clearly akin to Ch. S. Peirce (CP 8.122) model of the 

map of the map. It is also familiar to Peirce regarding the concept of abduction and the idea of the 
analytic-deductive processes as self-correcting processes: “the process is actually self-correcting: 
any redundancy that crops up in the observational phases will automatically disappear in the 
course of selecting the most significant characteristics for final evaluation” (LaRue 1969:449). 

255  In the source: “The general classifications and subdivisions inevitably produce some 
overlapping. For example, one can hardly discuss sources of Movement without citing some 
musical element in a specific function. Interconnections such as these, however, do not in any 
way produce a wasteful repetition or duplication: quite the contrary, they accurately reflect the 
interrelations, interactions, and interdependencies of the music itself.” 
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deviation. Schuller (1986:157–158) offers a case in point for understanding this 
relationship: he presents a musical fragment written in two modes, one (a) as a 
parody of a grammar badly assimilated in its representation of rhythm, and another 
one (b) with the same substance as the previous one, although showing a more clear 
style, rigorously fitted to a traditional grammar. Both cases are correctly written, but 
only the latter results from a necessary negotiation between what is desired to be 
represented through proper musical notation, and what is representable as part of a 
traditional, yet relatively flexible style. Ultimately, this example (the conflict between 
a and b) resembles the ambiguous usage of many cases of written representation of 
speech. However, Schuller (ibid.) is not concerned only with music orthography; 
rather, he highlights a problem of style and idiomatic symbolizing of music in ‘new’ 
repertoire: 

Whereas a few years ago composers were still legitimately involved in exploring new 
rhythmic possibilities, I doubt that any further reasonable rhythmic figures can be 
discovered, and it seems to me that composers today should concentrate on finding those 
complex or “irrational” rhythms that can be incorporated into a practical repertoire. 

The example Schuller suggests is a hypothetical instance of a piece written in a ‘free’ 
atonal style, comparable to many fragments that can be drawn from musical 
literature in the last third of the twentieth century. In this example Schuller believes 
that the case (a) exceeds the margins of stylistic freedom, breaking the musical 
grammar associated with it. In contrast, the case (b) of the same example, having the 
same pitches and same gestures as the former, and a similar distribution of pulses, 
achieves a more consistent language and a greater attachment to grammatical 
tradition, without sacrificing the essence of the style in which it is written. In the 
second case, a slightly more relaxed articulation coincides with a greater clarity in the 
figures distributed within the measure; even with a more realistic result for the 
nuances of intensity. 

Like Schuller (1986), Schoenberg (1967, 1975) is also interested in clarifying the 
relationship between conventional rule and freedom of style. Even for seemingly 
simple details such as the notation of the appoggiature, Schoenberg (1975:309) seeks a 
satisfactory explanation for the links between grammatical correctness and creativity. 
His case study—again, like in the text written by Schuller—represents not only a 
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problem of writing, but rather relationships involving a complex of subjective values, 
often hidden in the roots of the idiolect, and in the dynamics between idiolect, 
ecolect and musical grammar. As Schuller (1986:278) notes, “The character and 
mood of a piece of music often cannot be fully expressed by notation alone. It needs 
some descriptive clues, and an acoustical realization.” 

As Ockelford (2005) suggests, the ‘descriptive clues’ that help us understand the 
relationship between style and grammar, between usage and musical language 
context, are found in the modes of repetition and similarity—with their 
corresponding suspension and difference—in a universe of musical samples. The 
methodical search for these samples has a variety of possibilities. Ockelford (op. 
cit.:38–41) concurs with the basic idea of Doležel (1969), about ‘style as a 
probabilistic phenomenon’. Thus he formulates his own notions of intraopus 
imitation and interoperative organization to describe similar relations and functions 
within a set of structures sharing statistical trends. Ockelford (2005) conceives these 
relationships as part of a probabilistic continuum in which style is intertwined in a 
margin of prototypical operations. Monro (1995), Beran and Mazzola (1999a–b), 
and Yadegari (1992, 2004), establish the grounds for evolving from the identification 
of statistical biases of resemblance, to the investigation of intraopus and interoperative 
self-similarities. Adopting Ockelford’s (2005) terminology, such self-similarities can 
be seen as systems of consistency in the transmission of the musical message, through 
stylistic continuity. In other words, in the investigation of musical style, the criteria of 
similarity measure and dissimilarity measure (see Ilomäki 2008:35) have passed, as 
generalized qualitative referents, to the criteria of self-similarity measure and self-
dissimilarity measure, as referents of style.256 

Doležel’s (1969:13–16) study brings to light significant aspects of musical style 
research: indices of random fluctuations in the samples; fluctuation vectors from a 
fixed initial model; context independence in a sequence of rules based on an axiom 
operating on a string of symbols; and idiolectal and ecolectal sensitivity respect to 
rule context. All these aspects establish the criteria for the study of generalized 
pragmatics. The corresponding study of an analogous pragmatics for music is 

                                                 
256 See subchapter 6.6. 
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developed by Lerdahl and Jackendoff (1983:309–311), and revised from a historicist 
approach by Meyer (1989). Ockelford (2005) contributes to this view, combining 
Ruwet’s (1972) poetics with new methodologies for representing and classifying 
repetitions in music. Beran and Mazzola (1999a–b) and Beran (2004) pay more 
attention, in contrast, to stochastic aspects of music performance as the main subject 
in the study of probability in music styles. 

Ruwet’s (1972) poetic theory is particularly significant for the structural study of 
musical style, since, consistent with the general principles of Schenker (1932), of 
Ursatz and Vordergrund, it also matches Chomsky’s (1972:62–119) notion of 
language as deep structure and surface structure. Thus, the metaphor of style as surface 
and grammar as profundity, allows us to describe music also as a flow in which some 
structures functionally ‘slide’ over others. Languages, at the surface, change with the 
societies practicing them: What is meant by the notion attributed to Hockett 
(1954:106), “Languages differ not so much as to what can be said in them, but rather 
as to what is relatively easy to say in them”, is that, although some basic principles 
prevail in language, styles—like individuals—present the surface of a characterizing 
physiognomy that allows them to express and represent in their own, unique way, 
things common to ‘other’ langues (in Saussurean terms). 

According to Tarasti (2000:126), “style can be conceived as a set of rules that 
function as a mechanism for producing new texts, in the same way as grammar 
generates language”. Adler (1911:10) already proposed that musical style (Stil) “is 
equivalent” to the functional ordering of the ‘phrase’ or the ‘part’ (Satz).257 Obviously 
it is impossible to put style and grammar in the same plane. In order to develop a 
coordinative sense, style and grammar need to keep appropriate distance and tension. 

                                                 
257 The source says, in its original context: “Indem die künstlerische Haltung des Ganzen in der 

technischen Ausführung übereinstimmend bewahrt wird, entstehe der Stil. In der Tat findet man 
für den Begriff des Stils oft schlankweg den des »Satzes« unterschoben. Man spricht vom 
schlichten, überladenen, reinen, fehlerhaften Satz, vom polyphonen, homophonen Satz—also 
eine vollkommene Gleichstellung von »Satz« und »Stil«”. Adler includes the equation »Satz« = 
»Stil« in his table of contents (op. cit., page v). The use of the term Satz in music theory is 
particularly rich. It can alternatively be translated as phrase, subject, comes (counterpoint, fugue), set 
or nest (rhythm, harmony), movement (section of a musical piece), or composition (musical work). 
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Grammar provides basic functional regulation, whilst style ‘moves’ in a plane 
adjacent to such regulation (see Sperber and Wilson 1986).258 

At the relatively flexible surface of grammars is where the dynamics of style take 
place, playing a game between homogeneity (things common to a culture) and 
heterogeneity (relationships perceived in different ways, around things common to a 
culture). Echoing Hockett (1954:106), a musical repertoire in style is distinguished 
not so much for what its corresponding grammar can dictate, but rather by what is 
easier to associate with the flexibility of its grammar. In Doležel’s theory this notion 
translates into ‘what is more probable’, assuming individual (i.e. idiolectic) and 
contextual (i.e. ecolectic) variances (see Doležel 1969). 

Including a significant collection of musical examples from different traditions, it 
is clear that none of those examples constitute a grammar, strictly, but rather a 
grammar-in-action, i.e. a dynamic adaptation made by individuals and groups of 
individuals within a certain Umwelt-niche.259 This form of flexible adaptation on the 
collective and the individual, reproduces—to a greater or lesser extent—symbolic and 
operational variations for continuity of style. As a matter of fact, Mauricio Kagel (see 
Padilla 1984:123) believes that the composer, through driving his idiolect, needs to 
sacrifice grammar and rigid notions of order to eventually ensure the successful 
renovation of grammar itself.260 Similarly, other individuals make their own idiolectal 
contributions in shaping distinctive styles, with which they can be recognized, and 
with which they participate in developing ecolectal complexes, and finally to the 
enrichment and transforming of grammars, in a cyclical movement.261 

                                                 
258 According to Sperber and Wilson (1986:83–117) an input is relevant in a cognitive system, 

only if it overlaps to an antecedent, so that the input information can be associated and anchored 
to that antecedent; and if the input adds ‘new’ information from context. The alternation 
between input and addition functions is analogous to the coordination between grammar and 
style, in a musical system. 

259 See subchapter 4.3., for a definition of the Umwelt–niche coupling. 
260 In the source: “My role [as composer] is to influence cultural forms to reach a greater 

flexibility, a greater liberality. [...] My métier is a legacy of the nineteenth-century bourgeois 
culture. What can I do with it? I try breaking it slowly [since] they are actually very, very tight 
forms.” 

261 Inasmuch as the grammatical tradition to which they belong has not been extinguished, as 
languages and traditional practices in community often go extinct, for a variety of reasons (see 
Thomason 2001). 
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Any culture’s validation follows ‘seasonal’ rules, 
varying between periods of a few years 

to centuries or even millennia.  

Xenakis, 1992:xiv 

4.8. Dynamics between idiolect, ecolect and grammar 

A musical idiolect is the set of peculiarities that characterize an individual as musical. 
By extension, it is the way each individual experiences aspects of a musical tradition, 
and—also—the individual modes of musical creativity and expression. It is a 
particular way of musically ‘speaking’; a fingerprint that can be identified with a 
specific psychological, cultural and ecological coordination. Since there are not two 
identical individuals, either there are two identical idiolects. 

According to Reygadas and Shanker (2007), the idiolect emerges as expression of 
the centralized ego, in different stages and modalities: pre-symbolic, relational, 
volitional, pre-verbal, creative and communicative. From a structuralist perspective, its 
features are also due to interperceptual complexities during transmission, selection 
and assimilation of shared messages (see De Saussure 1916). This implies two types of 
idiolectal flow: from a self-perceptive source and from an interperceptive source, by 
analogy with the two reflective modes of translation according to Jakobson (1959): 
intralinguistic and interlinguistic. A link between two or more interperceptive idiolects 

constitutes a new complexity, a plot on a different level, which corresponds to ecolect, 
by analogy with the different levels involving intersemiosis.262 

The ecolect is the way that codes and messages are shared in a common symbolic 
space: niche according to sociology (Hardesty 1972), or Umwelt according to 
semiotics (von Uexküll 1940, 1957; Sebeok 1977). Domínguez Ruiz (2007:17) 
conceives the ecolectal means within a social environment and, under the concept of 
a ‘resonance’, identifies it as a self-referential dynamics: 263 

                                                 
262 This paragraph requires reading of subchapters 3.6. and 3.8. 
263 According to the hypothesis of B.F. Skinner (1957), the connection between idiolect and 

ecolect can also be defined as a series of ‘echoic behaviours’ in each individual. Such behaviours 
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Sounding environment is a social resonance and, in consequence, a changing 
environment. [...] Changing sounds are translatable in different scenarios that, however, 
do not lose their systemic character since sound always refers to the social context from 
which it emanates. 

Ecolect is characterized by a common set of rules, on the one hand, and by a 
variability of its typical traits, on the other. It is the mediation between idiolect, as 
externalized interiority of individuals, and the Saussurean langue, as coordination of a 
coordinated community. In fact, Schleiermacher (1813/2002:46) conceives the 
relationship between langue and idiolect, not as contradiction, but rather as 
complementarity: “all people […] play their part in shaping their language.” This leads 
to acknowledge a difference between the structuralistic view of language as a system 
of messages transmitted in society, and the post-structuralistic notion of meta-
linguistic dynamics, in which a continuous movement of emerging symbols—and 
not the message per se—corresponds to the essential image of any language. 

It is noteworthy, however, that the flows of idiolects forming ecolects and, 
subsequently, ecolects of ecolects (dialects and langues), introduces to what Gottlob 
Frege had noticed as paradox of impossibility of communication (see Frege, 1952).264 
Under this notion, an idiolect is a collection of individualistic preferences constantly 
changing; therefore the transmission of messages should be inconsistent and 
communication impossible. Exploring this problem, Mufwene (2002) suggests that 
language is based on a relationship analogous to how genetic cooperation takes place 
within the biological tissues, with the direct participation of subordinates (or 
apprentices), that provide correspondence, selectivity and modification of content for 
their coordinative processes (or learning).265 

                                                                                                                              
become evident in simulated attitudes, repetitions, fixations, and in ways of expressing and 
solving a problem. In this case the ecolect is of great importance during learning process, since it 
constitutes the margin for transactions between individual preferences and needs, and the 
symbols and symbolic protocols established by a community. 

264 The links between the Frege’s paradox and the (pseudo)problem of idiolect are explored by Carlo 
Penco in “Idiolect and Context” (R.E.Auxier and L.E. Hahn, eds.), The Philosophy of Michael 
Dummett – Library of Living Philosophers, vol. 31, Open Court Publishing Company, Chicago, 2007; 
pp. 567–590. 

265  Genetics also speaks of replication and translation of codes, using limited and specific 
molecular bases, as an alphabet (see Jerne 1955, 1984). On the parallels between genetic 
encoding and generative linguistics, see subchapter 4.3. 
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Mufwene’s hypothesis—in which the individual of a species (comparable to 

language as a whole) is constituted by organisms (comparable to idiolects as 
particularities)—implies a metaphor for explaining evolutionary endosymbiosis: 
according to this concept, the history of the bodily organs corresponds to an 
association of individualisms coordinated by a central organ (nucleus in cells, brains 
in animals). This metaphor fits the image of idiolects grouped into systems 
(ecolects), coordinated in a larger system (language) with the prescriptive assistance 
of grammar as a general system of codes. Then an image of self-similarity and 
consistency of endosymbiotic structures converges at different levels, in its many 
transitions and operational steps within an environment. Moreover, from this 
perspective, the classical nature-culture opposition is replaced by an interactive 
reciprocity between individual and groups of individuals, and between individuals 
and their environment (an idea developed in Ingold 1992:31–32, and Reybrouck 
2001:601). 

As Lidov (2004:21) notes for the specific case of music, “Dialect and idiolect may 
reinforce each other or may resist each other”.266 Assuming that this image does not 
imply a break, but coordinative continuity, this time the concept of self-similarity    
—as gradual connection of systems of consistency-discrepancy, or information-
entropy—contributes to understanding the dyadic feature of language recreation.267 
In this context, the apprentice’s learning processes is a bond between idiolect and 
ecolect, strongly supporting the role of authenticity in the transmission of 
grammatical correctness and style (see Beebe et al. 1997, Fogel 2000, and Guerra Lisi 
and Stefani 1997, 2004, 2006, 2008). 

Tarasti (2000:126) notes that certain schools of musical interpretation owe their 
existence to the authenticity of contents transmitted from teacher to student. The 
same notion can be extended to the teaching of composition, in which tradition 
highlights the patterns of authenticity and originality of the musical language, as 

                                                 
266  When Lidov (loc. cit.) refers to an ecolect, he uses the word ‘dialect’. This subchapter 

explains why this equivalence should be avoided. 
267 The dyadic feature refers here to the close relationship between teachers and learners in 

language continuity and creativity, through recursiveness. On the latter concept, see subchapter 
3.7. 
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conceptualized by Milton Babbitt (1970:12): “the technical traditions—even though 
the sources and traditions may be of recent origin—provide not only a point of entry 
but, eventually, the bases for determining the depth, extent, and genuineness of the 
[musical] work’s originality”. This form of linkage between individual and 
tradition—between idiolect and ecolect; between use and grammar—is evident in the 
processes of education in various forms of traditional music, including many aspects 
of musical performance. It is also noticeable in the teaching processes of other animal 
species, such as in the transmission of code ‘singing’ in blue whales, dolphins and 
numerous species of birds (see Payne and Payne 1985, Catchpole 1973, 1980, Eens et 
al. 1991a–b). It is clear, thus, that the relationship between message learning and 
message renewal is a key to self-organization in systems of expression and 
communication; however, from a post-structuralist vision, it is also evident that the 
continuous dynamics between symbolic emergences—a concept explained in 
subchapter 3.8. as intersemiotic continuum—is the most relevant feature of self-
organization in meta- and subsymbolic contexts: here the nature of the replacement 
and survival of the original features, is the fundamental relationship between the 
different and the similar. 

Gelman and Brenneman (1994:382) suggest that the lack of an identical model 
between apprentice and teacher ensures learning, both as content redundancy and 
transformation of knowledge gained through creativity. This perspective is based on 
the fact that, whether the redundancy law extends to learning, this makes it easier for 
learner and teacher not to share exactly the same interpretation of the contents, but 
the essential qualities of what is already known and what must be learned. This form 
of redundancy appears condensed in scheme ◊450 (see page 173), which 
distinguishes between repetition (a mere copy in learning) and recursion (with the 
possibility of correct interpretation, in turn flexible to other, new interpretation). 
Under this principle of redundancy and recursion—obviously not a simple 
repetition—the concept of authenticity in musical styles makes sense. 
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According to Eco’s (1968:117–118) perspective on language dynamics, and its 
adaptation to musical language made by Lidov (2004:21), the ‘forces’ at play within 
ecolects can be characterized as attraction and repulsion between idiolects. Attraction 
influences the individual to selectively absorb elements from the context, whilst 
repulsion serves as an identity preserver, facing the vastness the ecolectal resources. 
Thus, the relationship grammar-idiolect-ecolect-style forms a functional cycle between 

simplicity and complexity; between structure (i.e. musical form and content) and 
meta-structure (i.e. multi-layer self-referentiality and meta-symbolic organization of 
musical dynamics). Musical precept and interpretation, structure and meta-structure, 
cooperate as bonds between order and discrepancy (or similarity and difference). 
According to Campbell (1982:264) this is clear for information theory, since 
“Structure and freedom, like entropy and redundancy, are not warring opposites but 
complementary forces”. An analogous form of cooperation is found throughout the 
arrangements between cognitive platform and cultural transformation, as Gelman 
and Brenneman (1994:371) observe: “innateness and cultural creativity are not 
opposites and indeed work together to guide the acquisition of human knowledge”.268 

Grammatical correctness is indispensable for communication. Basic aspects of 
information and the message are lost in its absence. Grammatical correctness is 
passed from one generation to another, and constitutes the rigid basis of language 
through its different cognitive domains.269 However, grammar cannot constitute 
alone the full extent and complexity of language. As Meyer (1956:202) notes, the 
features of musical sense in recreation and recursion, “lie in the deviation from the 
exact”. Congruently, Papadopoulos and Wiggins (1999:2) acknowledge that musical 
grammars present “some important problems” of structuration, namely: contextual 
inadaptability, semantic weakness, and intolerance of ambiguity, needed for symbolic 
and pragmatic nuances. Thus, in order to propel the spirals of language (see graphics 
◊480 and ◊481 in following pages), grammar requires its own infringement through 
idiolectal preferences. This characterization of the global language—embracing the 
musical languages—obviously differs from the merely mechanical metaphor, since it 
                                                 

268 Gelman and Brenneman (op. cit.) make this note in the context of learning elementary 
numerical and musical relations, within its social acquisition and transformation. 

269 Understanding this subchapter requires to consider what was stated in subchapter 1.2.3. 
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rather highlights the need for vulnerability of the systems of symbols, instead of fixing 
them as rigid models. This is what Campbell (1982:264) defines as ‘freedom’, and 
Meyer (1956:71, 197–202) identifies as ‘deviation’, i.e. the ability to transform a 

prescriptive or descriptive grammar, into a grammar-in-action. 

 

◊480. Schematic view of the grammatical cycles, characterized as looping of 
stages of an open system of symbolic recursion and creativity. The picture 
summarizes the typical functional relationships of systems of musical 
elaboration (including compositional and performance styles). The arc crossing 
the figure, with the label U, denotes larger cycles of influences from the 
Umwelten-niches level, described in subchapter 4.3. 
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Individual and group, beyond the Saussurean model 

Lidov (2004) proposes to develop Ruwet’s (1972) combination of deep structure and 
surface structure.270 To this end, he connects the concept of grammar with dialect, and 

design with idiolect, in a schematic adaptation that is reminiscent of the Saussurean 
structuralism (see Lidov op. cit.:41–58). Within this frame, Lidov’s (op. cit.:19) usage 

of the term dialect is excessively general: “Dialect, then, is simply a shared language”.271 
Even from a conservative viewpoint, De Saussure (1916:294) notes that “It is difficult 
to say what the difference is between a language and a dialect. Often a dialect is called 
a language because it has literature.” It is unclear, therefore, how such a concept can 
be directly transferred into music: how a net difference between musical language and 
musical dialect could be definitely established by a written tradition? At least in 
linguistics, this separation contributes to segregation and a lack of understanding of 
languages that are marginalized by a dominant culture, losing all orientation between 
idiolect and ecolect, and between autochthonous and allochthonous forms of 
minority—that, in their musical analogies, enrich a vast plurality of cultures. 

De Saussure (1916:112) distinguishes linguistic structure (langue) and speech 
( parole) as two basic traits of language in which the former is “the whole set of 
linguistic habits which enables the speaker to understand and to make himself 
understood”; whilst the latter is the totality of what is said through individual 
combinations depending on a massive usage of speakers (the connection with idiolect 
and ecolect, in this order, is obvious). Then, De Saussure adds a temporal vector to 
show the relationship of language in its diachronic and synchronic axes, using the 

                                                 
270  Such a conceptualization is based on the Chomskyan principles of generativism (see 

Chomsky 1972:62–119). For more details see pages 20–23, 155 and 190 of the present study. 
271 Lidov (2004) does not make clear either why grammar-dialect constitutes a polarity opposed 

to idiolect-design. Why does he not associate grammar with design, too? Such a duality of dualities 
is not very effective in binding design, basically a concept of spatial perception, with the three 
other traditional concepts of linguistics. Lidov (op. cit.:18) seeks how to justify this descriptive 
terminology, but he is dissatisfied with his own motivation: “For someone with my pretensions 
to announce general principles for comparative semiotics, it was most disconcerting not to have 
portable terminology!” He (ibid.) even acknowledges his inconsistent usage of the term design 
associated with pattern. It is noteworthy that, conversely, Seeger (1960:226–228) proposes the 
basis for investigating the relationship between musical design and musical grammar, not in 
terms of opposition or polarity, but in terms of “music-order as design and as logic”. 
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Cartesian model with rectilinear relations and structural rigidity. In contrast, in order 
to explain the dynamics of linguistic processes, Eco (1976:121–125) introduces 
systems of ‘attractors’ and ‘repulsors’ in functional contiguity. These systems are 
cyclically placed in ◊480 and are defined as grammatical correctness, idiolectal 
preference, ecolectal correctness and stylistic preference. According to this picture, the 

production of dynamic structures of language (the Saussurean langue) moves 
between rigid and flexible states, combining correctnesses with preferences from one 
point to another. Such a movement does not need to be described as a circle 
completing a closed program—since its orientations are opposite and 
complementary at a time—but as an open sequence, according to migrations from 
one step to another, in recursive loopings. This scheme is fully compatible with a 
dynamic theory of musical styles, and helps to understand how “musical traditions 
may change with time”, and music “will perhaps not remain unaltered” (Kurkela 
1986:35). 

The movement between ‘correctness’ and ‘preference’—an oscillation in the 
grammar cycles—is analogous to the movement between stages of an epistemic 
system (Pareyon 2009). Accordingly, in his theory of revolutions, Thomas S. Kuhn 
(1962) identifies this cyclical movement in the history of ideas, as a periodic 
oscillation of the knowledge systems, between accumulation ( paradigm) and rupture 

(revolution). Kuhn conceives these fluctuations in the long term, but also explains 
that the major transformations of thought occur after numerous oscillations on a 
smaller scale, consistent with the pattern of cycles represented in ◊481. These cycles 
are far from being unique, stable and bidirectional relationships—as suggested by the 
Saussurean structuralism. Rather they are multiple and unstable features reflecting 
human behaviour in the margin between individual expresiveness and the collective 
flows of culture. 
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◊481. Self-similar pattern representing the spirals that emerge within the 
negotiations between idiolect, ecolect, stylistic preference and grammatical 
correctness. The scheme suggests that the cycle shown in ◊480 does not occur in 
a straightforward manner, given that the spirals are not free of interferences 
from the behaviour of other cycles occurring at different strata. This scheme is 
also related to figure ◊381 and to the intersemiotic continuum (IC) theorized in 
subchapter 3.8. The regularity of the figure is idealized; the cycles can occur, of 
course, in a variety of irregularities. 

Style tends to soften the language structures through an intentional and 
expressive deviation: its character is a moving-to. Grammar operates, in contrast, at a 
relatively fixed structure that provides orientation: its character is a staying-at. 
Grammar-structural modifications are the result of a large number of small changes 
in a certain direction, over a long period of time. Eventually, semantics can operate as 
a moving-to, both in its referential level (e.g. as means of synthesis or comparison), and 
with the cycles of invention and renewal of lexicon. There are also figures and tropes 
with both characters of moving-to and staying-at, such as chiasmus and synecdoche. In 
practice—and from a general perspective—music corresponds with this formula. 
Like other language domains, music ‘stays-at a set of axioms and rules’, and ‘moves-to a 
significant creativity’. Thus, musical practice depends not only on a predetermined 
program or analytical determinism, but depends, in particular, on a degree of 
interpretative flexibility. The musician, based on a method, stays-at principles and 
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protocols in a limited range of structural functionalism. But transformations occur 
since the first exchange between idiolect and ecolect, and lead to systematic 
deviations through the emergence of styles. Structural changes in the history of music 
would then be similar to the revolutions studied by Kuhn (1962), in which a 
symbolic cycle gradually gives way to a self-organized meta-symbolism.272 

It is also possible to study the changes of musical style in a manner similar to the 
changes in language style. So, it is possible to study how music(s) in contact influence 
each other in a way comparable to how the interactions of languages in contact are 
studied. For Weinreich (1953) languages are not isolated systems, but varying worlds 
of relationships that, in contact with different idiolects, ecolects and sociolects, 
perform biases to negotiation, imposition, adoption and selection, depending on the 
role played by each participant or groups of participants, within intersemiotic cycles. 
In addition, Thomason (2001) notes some typical stages of these biases, identifying 
them as “mechanisms of interference”, and classifying them by the mode of 
operations involved, in symbolic generation, mutual influence, unilateral influence, 
passive familiarity, fatigue, and “linguistic death” by attrition (i.e. reduction of semiotic 

effectiveness), grammar replacement and endogamy. Parallels with musical language 
can be identified in a variety of possibilities. 

Other specialists in sociolinguistics and ecolinguistics, including Stewart (1965) 
and Nelde (2002), recognize not only ‘contact languages’ but also contact layers 
separated by tendencies of practice. Nelde identifies autochthonous and allochthonous 
varieties, whilst Stewart suggests a gradation between acrolects and basilects—‘high’ 
and ‘low’ languages according to social strata with different usages and practices. 
Social class, workplace, educational level, gender and ethnicity involved in different 
modes of speech, also determine musical emotions, practices and preferences.273 
Overall, the distinct forms of musical practice, and their pragmatic and intentional 

                                                 
272 In music, this relationship is also clear with the functional, diachronic connection of the 

synthesis and analysis of musical ideas and concepts (e.g. in the ‘symbiosis’ between composition 
and musicology). 

273 See Blacking (1973), Ballantine (1984), Tagg (e1999), Kieran (1996), Vieira de Carvahlo 
(1999). 
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strata, constitute self-similar systems, somehow approximated to what Pegg et al. 
(e2008) suggest: 

In a fractal landscape of potentially infinite regress, global forces produce ‘micromusics’, 
that is, endlessly varied local and localizing particularities. The term ‘culture’, unhitched 
from its national moorings, assumes different forms. Culture is, in this context, 
provisional, reflexive and mediated. It is no longer the semi-invisible ground of being and 
belonging, but a site of manipulable and malleable self-fashioning, in which the 
boundaries of this self are constantly open to question and negotiation. Hybridity and 
creolism are crucial aspects of global cultural consciousness, not in the sense that their 
origins are ‘no longer’ pure (since no culture’s origins are or can be), but in the sense that 
they engender new forms of relativizing self-consciousness, of being neither here nor there, 
‘us’ or ‘them’, but being in-between, in a ‘third space’. 

According to what is explained in the present study, the introduction of the 
fractal notion in this quote involves risks of inaccuracy and creates expectations that 
cannot be satisfied.274 Suffice it to replace such a notion by the concept of self-
similarity, to gain clarity and analytical-deductive precision, especially if combined 
with the concepts of intersemiosis and synecdochic function. This observation aside, the 
quote above interestingly reflects a paradigm shift in the way of conceiving the links 
between individual and community through their musical expressions: the very idea 
of ‘third space’, inspired by Bhabha (1994), is the one advocated in this investigation, 
as ‘mediating text’, typical in the processes of intersemiosis that permeate the 
symbolic negotiations of music.275 This notion fits with the idea of Ballantine 
(1984:5) in that “in various ways and with various degrees of critical awareness, the 
musical microcosm replicates the social macrocosm.” It is evident that, reciprocally, 
the social macrocosm also ‘replicates’ the musical microcosm. 

                                                 
274 See subchapter 5.5. 
275 On the concept of ‘mediating text’ in a semiotic and hermeneutic context, see Ricoeur 

(2004:13–14): “phènoménes d’intertextualité dissimulés dans la frappe même du mot. […] les 
deux textes de départ et d’arrivée devraient, dans une bonne traduction, être mesurés par un 
troisième texte inexistant”. 



 

 
  

Part II 

Self-similarity in musical information and proportion: 

From Simple Synecdoche to Complex Intersemiosis 



 

 
  



 

 
  

Chapter 5 

Self-similarity as information 

Structural economy is a powerful connection between musical constructivism and 
self-organizing processes in general. Such economy, however, contradicts other 
fundamental aspects of music as repetition. How, then, can two basic and divergent 
aspects of music cooperate since one seems to discard the other? 

This chapter offers a variety of examples to explain how the structural 
oppositions of music, such as economy vs. repetition, simplicity vs. complexity, and 

similarity vs. variation, are coordinative relationships rather than only additive-
subtractive forms. This idea appears, in germinal state, in José Vasconcelos’ (1951:20, 
52–53, 56–57, 137–138) aesthetic philosophy:276 

Aesthetics is the philosophy of quality, of the undivided universe; its truth must be sought 
through coordinative thinking. […] Coordinate is to harmonize. […] Full harmony is not 
additive but heterogeneous and coherent. […] Modern mathematics, which now is far 
from Pythagorean arithmetic, expands and enriches the original intuition of rhythm, 
number and harmony. In reality, the relationship of music and mathematics aims to bring 
philosophy to the criterion of harmony. 

The search for harmony among its discrepancies, and its coordinative congruency, 
sublimate in the concept of proportion, discussed in Chapter 6. This chapter 
assumes, more generally, that the coordinative relations of music are complementary 
and multi-layered (see Koblyakov 1995:299). This means that such relations can be 
cooperating in parallel or in disjunction, at different semiotic levels simultaneously, 
without necessarily interfering, or with selective interference. Beran (2004:83) 
simplifies this relationship as reciprocity between information and uncertainty: “the 
term ‘information’ can be used synonymously for ‘uncertainty’: the information 
obtained from a random experiment diminishes uncertainty by the same amount.” 

                                                 
276 For an introduction to Vasconcelos’ philosophical and musical thought, see Pareyon (2005). 
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The basis of this criterion are settled upon the foundations of information theory: 
Shannon (1937, 1948), Shannon and Weaver (1949), Wiener (1948), Moles (1952, 
1958, 1963, 1964), and Cherry (1957). 

The use of information theory in music goes back to the origins of that theory 
itself. A minimal account of this relationship should include the studies of Pinkerton 
(1956), which reconstruct ‘melodic probabilities’ after classifying samples of 
traditional repertoire from diverse sources; Youngblood (1958), who analyzes 
structural trends in samples of Gregorian chants and melodies of Mendelssohn, 
Schubert and Schumann; Hiller and Isaacson (1959) and Hiller (1981), who use 
information theory to develop compositional sequences by generating a random code 
with high content of information and low redundancy; Knopoff and Hutchinson 
(1981), who introduce a ‘dissonance factor’ to classify tonal subsets, proposing 
models of entropy to reflect the diversity of a ‘musical alphabet’ (in probabilistic 
terms); and Harley (1995), who enriches the concept of ‘music as information’, 
bringing it to the notion of “music as non-linear process”, and to “mapping processes 
to translate the generative numerical data into musical data in ways which take into 
account the particular characteristics of each musical parameter or procedure” 
(Harley, op. cit.:223). 

This chapter is limited to an overview of this selection of approaches, keeping the 
focus on the main subject of this study. There is also a summary of Shannon’s theory 
(1937, 1948) and an exposition on some ideas of Moles (1958, 1963, 1964) and 
Cherry (1957), paying attention to their concepts of redundancy, consistency and 
uncertainty, involving the notion of self-similarity as musical information. This 
exposition critically analyzes the thesis of mechanistic structuralism, and studies 
some typical problems of open systems and the dynamics of message in order to 
continue the discussion on the relationship between determinism and indeterminism 
in the context of musical self-similarity. The main guides for this inquiry are Eco 
(1962, 1968), Campbell (1982), and Hayles (1990), which although not 
musicological texts, connect aspects of information theory to aesthetics and to 
related subjects such as narrativity and expectation, code design, and the efficiency of 
message transmission. The articles of Youngblood (1958) and Knopoff and 
Hutchinson (1981), and the books of Tiits (2002) and Beran (2005) are, in addition, 
technical guides linking music to information theory from different perspectives. 
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5.1. On the concept of musical information 

For information theory, ‘information’ means possibility of deviation in the sequence 
of a probabilistic tree (see ◊510). Many authors, including Youngblood (1958:25) and 
Eco (1968:25) put this possibility in parlance terms as ‘freedom of choice’, for 
instance in the series of preferences of a listener to respond to a melody, or in the 
preferences of a performer to improvise on a given theme. In this scheme, ‘low 
information’ means high predictability and, conversely, high predictability means 
‘low information’. 

 

◊510. Probabilistic decision tree. The solid circle represents the starting point 
of decision-making; the filled box (bottom right) represents a provisional 
point of arrival. Squares represent closed decisions or invariable states; circles 
represent an alternative for each level. Fractions indicate the likelihood of 
each object to be elected at each step, and the number in brackets, below, 
indicates the overall probability to move from the starting point to the 
destination. The ellipsis points represent vertical continuity. 

This description can be complemented by what Eco (op. cit.:25) states: “information 
means the value of probabilistic equality between several elements combined, which 
is higher as the selection of possibilities increase”. This is akin to Beran’s (2005:82) 
notion of a vocabulary (V) consisting of only one element n = 0, where information 
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content equals zero, “because we know which element of V will be contained in the 
message even before receiving it”. In other words, the greater a bound for the code 
choice in message elaboration, also the greater the chances for a meaningful message 
in an enriched source. At the same time, the probabilities of decoding the message 
depend on the precondition of knowing its statistical properties, starting from a 
‘source’. In statistical terms, to know the code’s behaviour equals to decipher it. 
 
Need for the ordering function of the code 

The problem of using a code which is ‘too’ rich is that whilst this may form a very 
detailed message with a huge amount of information, the energy and time needed to 
decipher the message also become huge and, therefore, impractical. The next 
example illustrates this difficulty: 

Let 4/4 be a measure in which the register of a monodic instrument can be 
inscribed in its hypothetical extension of three octaves, ranging from C3 to C6. 
Assuming that this instrument can only play the pitches of the chromatic scale, and 
the measure only supports wholes, halves, quarters and eighth notes (including pauses 
with equivalent values), then the ‘potential measure’ containing all combinations of 
these elements will consist of 36 pitches raised to the power of 4 (symbols available to 
represent the durations of the tones) + 4 (same amount of symbols for silences), this 
means: 368 – 34 (i.e. deducting the amount of void or silent measures) which equals 
to 2821109907422. If this result is combined with a potential (discrete) variety of 
loudness and colouration, the number of possible combinations is extremely high, 
even for this example with a rather rudimentary instrument. As Eco (1968:26–27) 
acknowledges: 

The information from the source, as freedom of election, is very rich, but the possibilities 
to transmit it individuating a whole message result too difficult. […] At this point, there 
comes into play the ordering function of the code. The code represents a system of 
probability superimposed on the equiprobability of the source in order to ensure 
communication. It is not ‘information’ as statistical measure that requires this element of 
order, but its transmissibility. Thus the very numerous messages considered as possibility, 
are reduced to the lesser number of messages allowed by the code. In a situation of equal 
probabilities from the source, a system of probabilities is introduced: some combinations 
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are possible, some others are not. Therefore, the information from the source decreases 
and the possibility of transmitting messages increases. 

What musical traditions have been doing for centuries, and apart from an 
information theory (similarly to what has happened outside the formalization of 
verbal language) is to limit messages to grammatical conventions in order to bind the 
source information and increase the communicative efficiency. Most historical 
criticism, adverse to new forms of music or language, spends its forces against what is 
considered an attack on the ordering function of the code, which is present in 
collective usage. This opposition is often given an ethical character, analogous to the 
aesthetic requirements that dictate what to do and what to avoid in the continuity of 
a stylistic tendency.277 It can be hypothesized that such empathy between ethical and 
aesthetic canons are due—at least in a considerable proportion—to a strong intuition 
on such an ordering function, typical of communicative societies, and of biological 
codes in general, characterized by operational economy and a search for efficiency in 
message transmission. Music could, in this fashion, be a realization of complex 
aspects of this intuition, as Josephson and Carpenter (1994:3) suggest: 

By virtue of the fact that music can be considered as information, it follows that 
information plays a significant role in the functioning of [an] aesthetic subsystem. In 
listening, information fed in determines the state of the aesthetic subsystem. Conversely, 
in composition the aesthetic subsystem generates information. The importance of 
information is one of a number of aspects in which aesthetic processes parallel life, where 
information (e.g. DNA) plays a similarly important role.  

Whether the economy of the code and the gradual sophistication of the message are 
biological characteristics in general, then the ordering function of the code could be a 
powerful reason to explain why—as shown throughout the previous chapter—self-
similarity relations are found in a vast range of diversities. Self-similarity can be 

                                                 
277 José Vasconcelos (1882–1959), who was attending the premiere of Stravinsky’s Le Sacre du 

Printemps (1913) at the Nouveau Théâtre des Champs-Élysées of Paris, mentions details about 
the scandalous reception of this work by the public, and speaks of the “moral defense” made of 
it by some French nationalists in favour of the strategic alliance with Russia, in the political 
situation of that time (see Vasconcelos, La tormenta [The Storm], Botas, Mexico, DF, 1934:41). 
Apparently, the scandal was stimulated by the use of dissonances and rhythmic and metrical 
contrasts, unacceptable as a musical code by some part of the public. With the passing of the 
twentieth century, Stravinsky’s work was accepted as a new structural paradigm when its own 
principles of ordering function were understood. 
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understood, then, as a mechanism preserving information at low cost—structural 
and energetic.278 
 
The always-rich source 

The source marked as a solid point in the probabilistic tree ◊510 represents a positive 
initial state from which two or more choices can be taken in a finite set, in their turn 
leading to one, two, or more subsequent elections. This source represents an absolute 
starting point with specific values and possibilities for well defined relations and 
functions. However, the source in a musical system is never an absolute starting 
point, but a complex continuity of physical, biological, aesthetic, psychological and 
idiosyncratic tendencies, as summarized in Chapter 4. According to cultural context, 
this continuity is justified under different symbols and invocations. For instance, 
Toshio Hosokawa (1955– ), following an idea of Tōru Takemitsu (1930–1996), 
justifies the first sound of a musical piece as “fruit of silence [...] Any initial sound 
comes from silence”.279 This silence is far from being void or emptiness; it is, rather, a 
seed. On the other hand, imitation and learning processes are fundamental to the 
‘authentication’ of musical traditions (see Tarasti 2000:126); so in the style of 
composition, improvisation or musical performance, the probabilistic source is 
always situated ‘somewhere’ within a cultural corpus.280 

Yadegari (2004:48–50) investigates the problem of measuring music from a 
deconstructionist approach. He sees the conflict between scientific structuralism and 
use of language as a relationship between culture and nature, and concludes that the 
interpretation of ‘information at source’ is inadequate to describe the dynamic 
relations of music and language. It is, then, necessary to rethink the “question of 
origins”—in its probabilistic sense and within its cultural implications—assuming 
self-referentiality as a characteristic of discourse: 

                                                 
278 This is explained in section 3.9.5., in terms of power laws. 
279 This notion was transmitted verbally (Malaga, Spain, 2001). Hosokawa, himself a music 

theorist and composer, acknowledges that this idea originates in a traditional conception of 
sound ‘within’ silence, in a manner similar to a flower within a specific space, according to the 
Japanese tradition of ikebana. 

280 As John Blacking (1973:x) notes, “music cannot be transmitted or have meaning without 
associations between people”. 
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In the same way that linear mathematics was a basis for traditional epistemology, one can 
argue that non-linear dynamics, in which self-referentiality plays a structural role, can be a 
defining basis for a different form of reasoning, scholarship, and paradigm of thought. 
Similar to a deconstructive model, within a model that accepts self-referentiality as an 
innate quality of discourse, the question of “origins” transforms. (Yadegari, op. cit.:49) 

This refreshes the idea to assimilate music data using information theory: it is no 
longer sufficient to obtain pure units, ratios, coefficients or products, nor to pursuit 
the automatic application of formulae. There is a need, rather, to transform the 
overview of the message as a vehicle serving a fixed notion of information, into a 
coordinative conceptualization harmonizing code, message and culture. The ‘seed’, 
‘vanishing point’ or ‘generating entity’ of a musical system or process can no longer be 
read unilaterally or unidirectionally. The structuralist issue of origins and 
generativisms applies—mutatis mutandis—to the investigation of the dynamics 
between global and local defining the same system or process. 
 
Balance between economy and operational expense 

The relationship of equilibrium between structural economy and energy expense is 
present on a variety of levels, from fundamental physical interactions and general 
biological principles, to the use and transformation of grammars.281 This topic is too 
broad, but there may be some examples which open a more specific discussion in the 
field of musicology and music aesthetics. 

In crystallography, for instance, conservation laws define the consistency of 
molecular relationships in magma at high temperatures and high pressure, by the 
rhythm of temperature and pressure variations.282 The atoms of minerals fail to 
organize in an accelerated process of cooling and depressurization of magma, forming 
igneous rocks and pumice at the earth’s surface. However, if cooling is slower and 
takes place inside the earth’s crust, then the atoms may develop ordered structures in 
form of crystals. This means that the same atoms—even the same molecules—may 

                                                 
281 An operative notion of ‘grammar’ is introduced in subchapters 4.5.–4.8. 
282 The subject of crystallography, for its affinity with the classification of symmetrical patterns 

of music, is introduced in section 3.9.5. On the analogy between crystallography and musical 
information self-structuring, see also pages 133, 136, 148–149, 320, 435, 438. Within the context 
of self-similar tessellations, the issue is developed in subchapter 6.4. (see pages 416–419). 
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form different types of structures with varying degrees of consistency, depending on 
the rate of their generalized correlations (Gleick 1988:iv–vii; see general introduction 
in Barenblatt, Entov and Ryzhik 1990). Quan and Song (2002:8247) consider that 
such consistency determines the relationship between symmetry and flow properties 
“at all scales” in a mechanical process. 

Prusinkiewicz and Lindenmayer (1990), Prusinkiewicz and Hanan (1992), and 
Meinhardt (1998) explain that, for all plants and animals, the relationship between 
their fundamental processes configured as stimulus–inhibition, or action–inaction 
sequences, also constitutes a balance between structural economy and operational 
expense, linked to the processes of growth and regulation through the operation of 
simple mechanical and chemical processes. In cardiovascular systems, for example, 
duct bifurcations are determined by the relationship between body mass and 
metabolic rate; something known as allometric relationship (see Weibel 1984:172, and 
McNeill-Alexander 1999:26–33). Vascular mechanics postulates that the shape of a 
vessel network is determined by the relationship between the properties of the 
substance that composes it, and the performance of energy required to sustain its 
metabolism (McNeill-Alexander, ibid.). 

In perceptual systems of animals the Weber-Fechner law states that the smallest 
discernible change in the magnitude of a stimulus is proportional to the magnitude of 
the stimulus (see Moles 1954).283 This means that there is a coordination between 
‘economy of reception’ and ‘expense of reaction’. This law is also related to Zipf’s law 
or law of least effort in the processes of language, which requires a separate explanation 
for its meaning in music.284 

The study of information in cognitive processes in music also provides means for 
exploring the coordination between quantity and operability: Chai (2005) wonders 
how the human mind retains and withdraws large amounts of musical information, 
based on little evidence of stimuli that trigger information networks. His general 

                                                 
283 Moles (1954:241), in his descriptive reduction of the concept of music, believes that the 

perception of ‘musical sound’ is due, necessarily, the Weber-Fechner law: “A musical sound is a 
quasi-periodic phenomenon, best expressed by a three-dimensional representation in terms of 
level, pitch, and duration; its perception follows the Weber-Fechner law.” 

284 See following section. 
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hypothesis suggests that information systems, including the operating model of the 
mind/brain, require not so much data masses, but rather segments that are useful for 
the reconstruction of ‘tracks’ using general references. This function allows people to 
reconstruct musical patterns in memory and, hence, also allows music 
interpretation.285 Chai (ibid.) emphasizes that self-similarity plays a fundamental role 
in this process, since it reflects the way in which the tracks or referential stimuli are 
related to segmental reconstruction in the recursive cycles of musical grammars.286 

The examples given, among many others akin to them, support an idea of 
‘organicist music’, in which characteristic information reflects a coordination 
between economy and operative expense. In this manner it may be understood how a 
simple relationship in music can branch into clusters of complex relations, through 
self-reference and self-organization processes coordinating the spending and 
performance of its recursions. The open nature of musical systems developing from a 
relationship or a group of simple relations explains how self-similarity emerges in the 
generation of symbolic and operational complexity, beginning with the use of a few 
elements, as schematically suggested in the tree in ◊510. 

The organicist notion of music can be widely documented through the intuition 
of the relationship between economy and structural expense. It may suffice to note 
some classical references from the existing literature: Edward C. Bairstow, in his book 
The evolution of musical form (1943:44), claims that instrumental forms “are born and 

develop.” Felix Salzer devotes the a whole chapter of his Structural Hearing (1952, 
part II, Chapter 2) to a ‘demonstration’ of the organic functioning of music, using 
comparisons with anatomy and describing musical movement as a biological process. 
Sanders (1975) and Sanders and Lefferts (2001) consider that the use of ‘organised’ 
patterns in the Ars Nova supported a change in formal settings: 

[B]y means of numerical coordination of heterogeneous, hierarchically ordered durational 
components, in which melodic considerations are of no structural importance, to the 

                                                 
285 So, for example, giving a cue for a song, melody or chord progression, a wide range of 

associative chances is displayed into a repertoire constricted by style. This model of connectivity 
helps to explain the processes of segmentation, stereotype and continuity, typical of music in 
many aspects of perception, improvisation, analysis and composition. 

286 Givón (2002) develops a similar notion for a general cognitive framework. See 4.4. on 
structural universalism, especially pages 160–161. 
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creation of a musically and textually homogeneous contrapuntal fabric from one 
congenial set of melodic cells. 

The idea of development after a minimal group of germinal relationships is also a 
central notion of the Viennese classicism. Haydn and W.A. Mozart consistently 
employ a technique with which they reuse melodic cells from other compositions, of 
their own and of others, to elaborate musical combinations gradually more stylized. 
By this technique Mozart reconstructs his Mass in C minor K247/417b into the 
oratorio Davidde penitente K469 (1785), and transforms several of his serenades into 
symphonies and vice versa (see Stephan 1979, Escal 1981, Brown 1992; authors who 
deliberately use the concept of ‘melodic cell’ in an organicist context). The 
harmonic-melodic constructivism from the nineteenth century extended to the 
twentieth, also using procedures developed from simple elements that ‘flourish’ in 
large instrumental forms. Many scores of Beethoven, including the fifth and seventh 
symphonies, and string quartets, employ these procedures with rigor and 
imagination. In fact, much of the musical form theories of the nineteenth-century   
—usually in adaptations of the naturalistic concepts of Hegel and Goethe—are based 
on comparisons with organic tissues. Moreover, Adolph Bernhard Marx (1795–
1866) theories suggest that the derivative relationships of the sonata form are 
‘derivative cellular processes’, rather than merely additive processes (see Burnham 
1989:253–254). 

Schoenberg (1967, 1975) conceives Grundgestalten or ‘basic-figures’ as an organic 

principle for compositional processes,287 and Anton Webern, in Der Weg zur neuen 
Musik (1960) repeatedly refers to Goethe’s organic metaphors.288 However, this 
notion is not absent in other contemporary styles and constructive techniques. For 
instance, Hepokoski (1993, summarized in 2001) believes that the symphonic music 
of Sibelius concentrates the “germination and metamorphosis of motivic cells […] 
within the almost imperceptible mechanisms of tempo change and texture change, 
and the uncanny interrelatedness of the themes.” This concept of cell is explicitly 
organic and comes back in texts that investigate the transformations of rhythmic and 

                                                 
287 See Gestalt definition in subchapter 3.5. 
288 These metaphors are treated in detail at subchapter 6.5. 
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harmonic-melodic materials in the modern atonal and post-tonal repertoire. Kooij 
(2004) talks explicitly in these terms, in the context of polytonality, presenting as a 
case study the music of Willem Pijper (1894–1947), who implemented a technique 
of plant modelling to create music. The work of Charles Wuorinen—adhering to the 
integral serialism of Schoenberg and Webern—is also remarkable in the sense that, as 
Carey (2005:38) notes: “Influenced by Mandelbrot and fractal theory, his formal 
designs emphasize organic self-similarity, relating the largest aspects of a musical 
composition to its smallest gestures.” 

Nevertheless, the notion of organicity as information is not limited to the study 
of Western music. It is also found, for instance, in investigations about the traditional 
music of Uto-Aztecan groups and other native peoples from the North American 
continent: e.g. Tomlinson (2007:68) notes that bodily symbolism and 
psychophysiological processes give shape to the Cantares Mexicanos compiled by 
Bernardino de Sahagún between 1530 and 1580. Such a notion of organicity takes 
into account operative cycles in semantic, syntactic and instrumental constructive 
layers, combining aspects of a fixed grammar with a relatively flexible 
implementation. Similarly, Lewis Rowell (1983:191), refers to “skin, flesh, and bones” 
as essential symbols for the organic-metaphorical structuring of music in the Nō 
theatre of Japan; and William J. Jackson (1993) conceives an empathic approach 
exploring self-similar properties of the song repertoire in the Bhakti tradition, 
widespread in different regions of India, taking as case study the work of the Hindu 
Brahmin and composer Tyāgarāja (1767–1847), whose songs with traditional 
Sanskrit texts and “colloquial” texts of classical authors (Annamacharya, Kanakadasa, 
Purandaradasa, Ramadasa), “reiterate basic Bhakti themes in similar word patterns 
and sometimes [with] the same ragas” (Jackson 1993:71). All these traditions 
depend—at least partially—on an informational context based on a certain notion of 
‘organicity’. 

It is possible, therefore, that each culture finds its way to observe, emulate and 
transform its own notions of ‘organicity’, ‘nature’ or ‘life’—the symbolic viariation of 
these concepts is evidence of the same refinement—reflecting itself through its own 
interpretation of a musical repertoire maintained by tradition. Edward Sapir’s thesis 
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(1921) can be revised from this perspective, inasmuch as language affects the culture 
of societies, and the societies influence language through preferences by selection of 
information. So, Merriam (1964:145) believes that music can be conceived “as the 
end result of a dynamic process”—i.e. information exchange and transformation—as 
culture is “carried by individuals and groups of individuals” (op. cit.:27). 

 
Zipf’s law 

Zipf’s law is an empirical law employed in probability and statistics, which reflects an 
approach to a probability distribution applicable to a variety of samples in many 
different fields of physics, biology and social sciences. The law, originally proposed by 
linguist George K. Zipf (1902–1950), states that in a generalized sample of verbal 
expressions, the most frequent word will occur approximately twice as often as the 
second most frequent word, which occurs twice as often as the fourth most frequent 
word, and so on (see Zipf 1935, 1949). In the end only a few words are used very 
frequently, whilst most of the words are little used. This principle is summarized in 
the formula 

Pi ~ P1 / i , 

where Pi is the probability of selecting an object i, and P1 is the probability which a 
first term of a series has to appear in a repertoire of objects. Given that the successive 
probabilities are positive and ordered (p1 ≥ p2 ≥ ….), and for all i, pi ≤ 1/i, it is 
suggested that a second term occurs approximately 1/2 as often as the first term does, 
whilst the third term occurs approximately 1/3 as often as the first, and so on. From 
this law it is also conjectured that the most common words tend to be shorter, and 
that when they tend to be too short, then they are replaced by longer words 
(Sommerfelt 1961:27). 

Diederich et al. (2003) assume that under Zipf’s law, the number of elements 
α( f ) in a text, occurring exactly f –times, is determined by α( f ) = f γ, where γ ~ 2. In 
this equation γ depends on a “cultural index”, determined by experience and language 
competence, which makes possible to isolate related sets of elements to a greater or 
lesser approximation to γ ~ 2. The statistical meaning of this conjecture is so 
important for stylometry, that, according to Diederich et al. (op. cit.:110), permits an 
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objective calculation that can answer a question such as “How many new words 
would Shakespeare use if he were to write another play?” 

Wheeler (1929) and Tolman (1932)—experimental psychologists quoted in the 
investigations by Thorpe (1966:311) and Hall-Craggs (1969:373)—anticipated the 
Zipf’s law (or Principle of least effort in Zipf 1949), linking statistical experiments with 
pattern codification of animal behaviour. Accordingly, an animal tends to minimize 
the effort required to achieve a goal, following a principle of hyperbolic distribution 
and entropy loss. Hall-Craggs (1969:373) connects this principle to music theory: 

These laws failed to come up to expectations as instruments for exact prediction. 
However, in music, whether it is considered as an art or as a long range communication 
system, it is the rhythm which may be held to account for the curiously predictable nature 
of the phenomenon and which led [Ethel Dench] Puffer (1905) to define music as ‘the art 
of auditory implications’. 

Further analysis in continuity with this idea demonstrates that not only rhythm, but 
the constructive aspects of music in general can be measured with Zipf’s law 
applications (see Daugherty et al. e2003) inasmuch as the same power laws and 
generalized well-formedness rules govern most of the functional and structural 
relationships of music (see Lerdahl and Jackendoff 1983, Carey and Clampitt 1996, 
Carey 2007). 

Regarding the absolute satisfaction of the “generated expectations” which Hall-
Craggs (1969:373) points out, it must be considered that Zipf’s law is a conjectural, 
untested principle under empirical bases, and without mathematical proof. As other 
distributive principles of verbal language and well-formedness rules in musical 
language—as happens with the conventions for employing harmonic proportions—
Zipf’s law reflects a probabilistic trend rather than an absolute physical reality. 

J.R. Pierce’s (1961:238–249) description of Zipf’s law, focused on the idea of 
efficiency in terms of an ability to “emphasize some choices at the expense of others”, 
has a special significance for music, assuming that many musical strategies for 
consistency are based on a same kind of efficiency. As a matter of fact, the structuring 
form of Zipf’s equation, as the series 

1 ~ 1, 2 ~ 1/2 , 3 ~ 1/3 , 4 ~ 1/4 , 5 ~ 1/5  … 
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constitutes a self-referential sequence, comparable to the aliquot division of an 
acoustic system, with a fundamental frequency and its natural harmonics, as shown in 
◊421. Such a self-referentiality can also be interpreted as a convergent sequence with 
statistical self-similarity, akin to a self-structuring Lindenmayer system, for example: 

 

◊511. Self-similar system developed as a projection of Zipf’s probability 
sequence: to an initial straight line segment or source = 1, two additional 
segments are coupled with the length 1/2 of the source. For each of these two 
added segments, three more segments are coupled with the length 1/3 of the 
source, and so on. Starting from the origin, which represents a fundamental 
hierarchy, the subsequent segments move by 45° and are coupled in a ‘T’ 
shape at their midpoints, with random distribution. 

Whether this sort of series occurs in a profusion of cases following consecutive 
sequences of natural numbers, it is not less interesting to music that in both kinds of 
examples (represented by ◊421 and ◊511) there is a hierarchical trend suggested by 
the series itself: 1 ~ 1 refers to a correlative influence over the other terms; 2 ~ 1/2 
refers to a subsequent range; 3 ~ 1/3 to a following subsequent range, etc. 

Zipf’s law seems to be fulfilled in terms of the more general requirements, 
including functional harmony, in which ‘a few’ basic relations prevail throughout a 
tonal system, whilst ‘some’ secondary relations prevail only in certain cases, and most 
of the other possible relations are practically eliminated or are very infrequent. This 
relationship is also found in the configuration of scales in the harmonic-melodic 
systems in which there is a tendency to form functional structures with two types of 
steps between the elements of the scale; with three types of steps—less frequently; 
and with four kinds of steps—even less frequently. Carey (2007:97) concludes, 
consistently, that “for cognitive reasons, but also for structural ones, we are not likely 
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to find musically useful scales with four or more step sizes”.289 This conceptualization 
is also found in Beran (2004:64), for the specific case of the twelve-tone rows: “In 
music that is based on scales, pitch (modulo 12) is usually not equally distributed. 
Notes that belong to the main scale are more likely to occur, and within these, there 
are certain prefered notes as well.” Lerdahl and Jackendoff (1983:308) distinguish, 
however, trends and preferences as regulatory processes under the concepts of well-
formedness and preference rules, respectively. In particular, the principle of well-
formedness,290 closely related to the functions of a generative grammar, develops 
consistency rules in which recurrent employment produces self-similar structures in 
language and music. 

Another example, among many others, with a main structure typically oriented 
by Zipf’s law, is in the music for the Zande dance-song kpóníngbó, traditional of 
Central Africa, which is played with a drum, two cowbells and a xylophone that 
follows the vocal pattern.291 According to Arom (1991:630–631), the ensemble 
articulation follows the proportion 2:1 (vocals and xylophone), 4:1 (drum), and 8:1 
(cowbells). The ubiquity of this kind of proportional hierarchization leads to 
hypothesize that Zipf’s law is a universal feature in music and language. 

Zipf’s equation is also used for music synthesis. Hiller (1981:12–14), for example, 
proposes its structural implementation in a ‘flow chart’ with algorithms which create 
musical sequences. This notion comes from Voss and Clarke (1975), who proposed 
to correlate the subjective sensation of music, generalized as a psychoacoustic system, 
with the typical distribution of fractional 1/f noise.292 They find that fluctuations in 

pitch and amplitude in music also tend to a statistical Zipf distribution (~1/ f ). 

                                                 
289 This subject is developed in subchapter 5.4., with a variety of examples. The topic is also 

connected to the discussion on the devil’s staircase, in subchapter 6.2. (see pages 354–363). 
290 As stated in subchapter 3.4., a musical system is well-formed “if its generator always spans the 

same number of step intervals” (Carey and Clampitt 1996:63). For a detailed description of the 
concepts well-formedness and well-formedness rules, see Lerdahl and Jackendoff (1983:36–39, 55–62, 
312–314). 

291  Another typical case in this context is the gamelan metre in the traditional music of 
Indonesia. On this particular subject see subchapter 6.3. (page 382). 

292 Subchapter 5.3. provides a detailed definition of 1/f noise, together with examples of its 
typical patterns and applications in music analysis and synthesis. 
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Using this distribution as a computational principle, they produced a repertoire of 
pieces which have ‘musical qualities’.293 Voss and Clarke (1975:258) conclude that 

the sophistication of this ‘1/f  music’ (which was ‘just right’) extends far beyond what one 

might expect from such a simple algorithm, suggesting that a ‘1/f  noise’ (perhaps that in 
nerve membranes?) may have an essential role in the creative process [of music]. 

Taking these results into account, Daugherty et al. (e2003), and Manaris et al. 
(e2003), find a group of musical relations measurable by Zipf’s distribution, 
including criteria of pitch, amplitude, duration of notes, melodic intervals, and 
harmonic and timbral patterns. These investigations confirm the relationship 
suggested by Voss and Clarke (1975, 1978), between a self-similar configuration of 
sound (~1/ f ) and the subjective sound sensation considered also by its function in 
preferential bias. Note, as well, that the consistency of what Voss and Clarke (quote 
above) suspect as the role of ‘nerve membranes’ coincides with what Garavaglia 
identifies as “self-similar patterns in the vibrating surface of the eardrum”.294 

5.2. Structure and randomness 

All processes of control and choice in musical creativity—in its broadest sense—are 
bound to a necessary exchange between precision and uncertainty. This exchange is 
closely related to the constructive role played by a fixed (or exact) grammatical rule 
and its flexible (or uncertain) interpretation. In this context, the concepts of 
randomness and entropy are required for the scaling and statistical projection of 
process with relative uncertainty. Obviously, randomness does not refer to a mere 
subjective impression of chance, but to the rational estimation of an unknown 
behaviour based on the observation of a known state. Mandelbrot (1956:190) 
conceives that “Randomness is introduced by following the modern statistical theory 
of the estimation of non-directly observable intensive variables of state”. 

Theoretically, probability trees under the same general conditions tend to 
infinite self-similarity because for each level of probability there is the same pattern of 
                                                 

293 The aesthetic and idiomatic issues arisen from such procedures are discussed in a general 
framework, in subchapters 4.7. and 4.8. 

294 See ‘Coherence between physics and biology’ in subchapter 4.3. 
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possible deviations, and probabilities decrease by the same proportion. 
Correspondingly, information increases. In a random experiment, however, the 
conditions of probability systems vary, so the local conditions, not the global, 
determine the subsequent state of relations at some point of the deviations. It is 
possible that the overall behaviour of this experiment tends towards chaos or 
generalised disorder, which can be measured as entropy. 

 
The concept of entropy 

Eco (1968:25–26), using words and descriptions that he also uses to explain the 
concept of information, tries to explain the concept of entropy. Actually both concepts 
can be characterized as ‘two sides of the same coin’, a relationship that can be 
summarized as the reciprocity between information and uncertainty: 

Information gives the measure of a condition of equal probabilities, from a statistical 
distribution existing at the origin. Information theorists call this statistical entropy, by 
analogy with thermodynamics (Wiener 1948, Shannon 1948, Cherry 1957). The entropy 
of a system is the state of equiprobability to which the parts of the system tend. Entropy is 
identified with a state of disorder in the sense that an order is a system of probabilities 
introduced into the system to predict its evolution. 

Shannon and Weaver (1949:20) introduce the term ‘quantity of entropy’ (H ), 
relating the value of H  to the ‘quantity of information’. As Whittaker (1949:78) 
observes, “Every pound of matter has a definite quantity of entropy, depending only 
on the state of the matter; and the entropy of a compound system is equal to the sum 
of the entropies of its constituent parts.” 

According to Shannon (1948:389–390) entropy can be calculated by multiplying 
the logarithm of each state’s probability by the same probability, summing the results 
consecutively. This statement can be expressed mathematically as: 

H = – ( p1 log p1 + p2 log p2 + . . . + pn log pn), or: 

∑−= ii ppH log , 

where pi represents each of the consecutive probabilities. As probabilities correspond 

always to numbers less than 1 (i.e. this is to say they represent a fraction of the unit, 
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which represents absolute certainty), their logarithms shall always be negative, hence 
Shannon and Weaver (1949) introduce the negative sign to yield a positive result. 
The result obtained by comparing the entropy of a random origin with that which it 
would be if all the choices were equal is known as ‘relative entropy’ (Hr) and is used 
to know the potential degree of disorder in a chaotic process. 

Because the niche from which the composers select their materials determines 
general features of the compositions elaborated with typical relations from a certain 
probabilistic origin, Knopoff and Hutchinson (1981:20–24) consider that the 
measurement of entropy in each piece of music reflects the characteristic entropy of a 
musical style. So the relative entropies reflect individual choices from more general 
preferences. 

The notion of entropy has been devised to provide a measure of the diversity of possible 
messages that can be formed out of a random but biased alphabet of characters. The bias 
arises because of cultural and individual practices. […] A description of entropy is 
therefore pertinent to the discrimination of stylistic differences among composers, since 
we may hope to detect differences in usage from among the symbols available to the 
composer  

Although these authors emphasize the measurement of entropy as a resource for 
classifying different modes of written music, calculation of entropy in all parameters 
of music—for example, using a recording to classify the style of an interpreter, or 
using a set of recordings to classify more general interpretational biases from the same 
piece of music—can be very useful for musical stylometry (see Beran and Mazzola 
1999a) and for the classification of self-similarities revealing a stylistic process (see 
Bigerelle and Iost 2000). 
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Stylometry 

Leonard B. Meyer (1989:3) defines style as “imitation of patterns” in a process of 
restriction and election.295 Preceding this definition, Ingarden (1962:11–12) believes 
that style is a distinctive aspect of musical performance, under the guise of a self-
similar sequence: 

Each separate performance of a musical work is, as an individual object, completely 
univocally determined in every respect possible for that object and is so determined 
ultimately by qualities that admit of no further differentiation. […] While the separate 
parts of a performance follow one another in reality, in definite phases, the parts of the 
musical composition itself exist simultaneously as soon as it has been completed [in 

time].296 

This notion of interpretation can be extended, however, to composition and musical 
analysis, assuming that in any case it involves a phenomenon of interpretation of style 
as “imitation of patterns” within a tradition. Therefore, under the Ingardean (cit.) 
argument, self-similar relationships in music are not unique to instrumental 
performance, but can be found in virtually all aspects of music based on imitation 
and recursion, being measurable as a time series (see Bigerelle and Iost 2000, Su and 
Wu 2006, Das and Das 2006, and Dagdug et. al. 2007). 

Doležel (1969:10) conceptualization on frequencies counting within a language 
style can equally apply to music: “The foundations of the statistical theory of style can 
be summarized in a simple statement: style is a probabilistic concept”. In fact, Pinkerton 
(1956) and Youngblood (1958) conceive the same idea as part of their adaptation of 

                                                 
295 This definition is discussed and developed in 4.7., in the context of the overall relationships 

between grammar and style. It is advisable to consider what is stated there, for an accurate 
explanation of style as coordination between constraint and choice in a musical system. 

296 In the original text [op. cit.:11]: “Jede einzelne Ausführung eines Musikwerkes ist, als ein 
individueller Gegenstand, in jeder für den betreffenden Gegenstand möglichen Hinsicht 
vollkommen eindeutig bestimmt, und zwar letzten Endes durch Qualitäten, die sich nicht weiter 
differenzieren lassen.” (in situ Ingarden announces that this notion is developed in his work Der 
Streit um die Existenz der Welt, Max Niemeyer, Tübingen, 1964; vol. II, Ch. 9). He then continues 
[1962:11–12]: “Während die einzelnen Teile einer Ausführung in ganz bestimmten Zeitphasen 
realiter aufeinanderfolgen, existieren alle Teile des Musikwerkes selbst, sobald es natürlich fertig 
ist, zugelich.” It is clear that Ingarden does not use the term “self-similar”, but his description is 
fully compatible with the concept defined here (see subchapter 3.3.) 
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information theory to musicology. 297  Doležel (1969:10) specifies that the 
probabilistic concept of style has two fundamental features: 

1. Probability Distribution. In a probabilistic ‘world’, the occurrence of phenomenon A is 
not unequivocally predetermined by the existence of condition X. Under condition X, the 
phenomenon A will occur with a certain probability only–Px(A); with a probability 
Px(B), phenomenon B can occur; with a probability Px(C), phenomenon C, and so on. 
Even if the probability of A under condition X is high–that is, when Px(A) approximates 
1–the possibility of non-occurrence of A, or the possibility of occurrence of B, C... cannot 
be excluded. The expectancy of each phenomenon of the set A, B, C... under the condition 
X is given by the probability distribution Px(A), Px(B), Px(C). 

2. Frequency Distribution. The probability distribution describes the expectancy of 
phenomena A, B, C... in a complete or ideal ensemble of occurrences–in the so-called 
population. Empirically, however, phenomena A, B, C... occurr or can be observed in 
rather limited and not-ideal ensembles, in the so-called samples.In samples, values of the 
probability distribution are liable to random fluctuations. In other words, one cannot 
expect that the values Px(A), Px(B), Px(C)... will be stable (identical) in various samples; 
rather, probability distribution is reflected in sample frequency distributions: p(1) x (A), 
p(1) x (B), p(1) x (C)...; p(2) x (A), p(2) x (B), p(2) x (C)... where the index numbers 1, 2... 
symbolize various samples. The values of the frequencies– p(i) x (A)... fluctuate in a certain 
admissible (statistically insignificant) interval around the values of probabilities px (A). 

Doležel (ibid.) emphasizes the fact that language, or at least the samples that can be 
extracted thereof from a variety of texts, presents “strong evidence that style 
properties of texts display both features of probability distribution and frequency 
distribution.” The stylistic features of music also provide evidence to be considered as 
characteristics of probability and frequency distribution. Waugh (1996), Bigerelle 
and Iost (2000), Beran (2004), Ockelford (2005), and Ilomäki (2008), among other 
sources, explicitly target this evidence with a wide variety of approaches. Ilomäki 
(2008:35), for example, points out structural difference and similarity trends as a 
process that defines musical form and style: 

                                                 
297 The original idea of Pinkerton (1956) and Youngblood (1958), of measuring the entropy of 

a melodic contour in order to identify a musical style, is developed by Beran and Mazzola 
(1999a–b) and Beran (2004:93–105), expanded to spectral entropy analysis, and to the ‘weights’ 
of metre, melody, and harmony as related functions. 
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Similarity and dissimilarity are seen here as two sides of the same coin, only the focus is 
different: a similarity measure evaluates the number and significance of the shared features 
between two musical objects, and a dissimilarity measure evaluates the number and 
significance of the differentiating features. Nevertheless, they both represent the same 
continuum: at the one end is similarity and at the other end is dissimilarity. 

Doležel’s original proposal does not put aside grammatical functionalism to favour a 
theory of style as probability. Conversely, he conceives that grammatical competence 
“is a necessary background for any theory of style” (Doležel op. cit.:12), and he stresses 
the relevance of clarifying the definitions of grammaticality, ambiguity, and similarity 
to measure a stylistic trend. On the ground of these concepts and with their dynamic 
relations in pragmatics and context, some frequency vectors can be charted in order to 
identify a musical style, by comparison with other statistical samplings. 

The statistical analysis of style, or stylometry, is based on the notion that each 
idiolectal source (author) has an authenticity or ‘identity footprint’ that consists of a 
unique convergence of relationships. This trace of identity is as a typical pattern in 
the idiolectal output and has representative value for each sample in a detailed 
statistical analysis of music (see Beran 2004:92–93). 

Since “style is a probabilistic concept”, the classification of an identity footprint 
within an array of idiolectal samples can be characterized as a categorization concern. 
Diederich et al. (2003) acknowledge that an obstacle in this concern is that it is not 
entirely clear which features within a sample are to be taken into account to classify 
the so-called identity footprint (in a recorded conversation, a text, a piece of music); 
thus, they look into a variety of methods for obtaining satisfactory results linking the 
analyzed samples with their sources of identity. Diederich et al. devote their work to 
identify the author of a text, focusing on aspects of intellectual property, but also 
delve into issues that involve the study of style in a broader perspective, including the 
adaptation of Zipf’s equation (vid. supra). 

The operational domain of a semantic-syntactic function may change 
significantly from one paradigm to another within the same culture; it also may 
change within the same idiolectal source (i.e. in the same author), as the difference 

between two samples from the same text—e.g. between two identical operations that 

have different meaning depending on contextual usage. For this reason Diederich et 
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al. remark that the traditional methods of stylometry yield data that can be 

considered only partially. On the other hand, however, Diederich et al. reach a more 
thorough description of the statistical features that determine an idiolect, matching a 
larger number of samples in data processing, than in previous research. 

A detailed insight into the work of Diederich et al. is a goal that falls outside the 
scope of this research. However it is noteworthy that some relevant issues of musical 
stylometry have been developed by Pinkerton (1956), Youngblood (1958), Knopoff 
and Hutchinson (1981), Harley (1995), Beran and Mazzola (1999a–b), Bigerelle and 
Iost (2000), Beran (2004), and Su and Wu (2006), mentioned at different points in 
this study.298 

 
Markov chains as degrees of entropy 

Markov chains are named after mathematician Andrei Andreyevich Markov (1856–
1922), who first defined them in 1906 in a paper dealing with the law of large 
numbers, and with the purpose of studying the transition probability of the original 

text of Eugene Onegin, a novel in verse by Alexander Pushkin (1799–1837). This 
novel is almost wholly written in verses of iambic tetrameter with the unusual rhyme 
scheme aBaBccDDeFFeGG where the lowercase letters represent feminine rhymes 
(i.e. rhymed on the penultimate syllable) and the uppercase represent masculine 
rhymes (on the final syllable). It is worth noting that this limited scheme reduces the 
probabilities of a well-structured composition, so its study had both functional-
linguistic and statistical interest in the times of Markov. He calculated the transition 
probability by counting consecutive pairs of letters in the Cyrillic alphabet; he then 
divided these counts into two groups based on initial letters (e.g. a group of counts 
for pairs of letters starting with A, another for pairs starting with B, etc.; placing each 
of these groups in series within a transition matrix); and finally he ‘normalized’ the 
transition probabilities by dividing each individual count by the total number of 
counts of the same group. Markov then noted that his method was statistical, rather 

                                                 
298  In particular, see subchapters 4.5. (stylistic endomorphisms), 5.5. (pertinence of fractal 

dimension), and 6.2. (noise and isotropy, chaotic functions). 
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than probabilistic, producing only a partial description of a non-random behaviour, 
rather than the general prediction he had first wanted. 

Shannon’s theory (1937, 1948) adapted Markov’s experiment by attributing a 
probabilistic state to each symbol used within a code, in message transmission. Under 
this scheme, when ‘information content’ is high, the probabilistic transition will be 
close to 1/n, where n is the size of the ‘alphabet’ used in the transition matrix. So 
when redundancy is high, transitions are strongly oriented toward certain patterns of 
recurrence. With this method, Shannon managed to decode messages by filtering a 
set of samples perturbed by noise (see Campbell 1982:67–73). 

In short, a Markov chain is a simple model of probabilities in which the state of 
an event is determined only by its immediate antecedent (see Jones 1981:46, Roads 
1999:878, Beran 2004:169). In this context, Youngblood’s (1958:27) clarifies the 
relationship between part (moment, event) and whole (final effect, entire sequence of 
partial states): 

One type of stochastic process, the Markov chain, is a sequence of events in time in which 
each event has a calculable probability. Furthermore, this probability is the result not only 
of the frequency of the event in the set of events under consideration but also of the effect 
of those events which immediately preceded it on the event of the moment. 

To give an idea of how this series of processes approaches the probabilistic states of a 
code forming a text, Shannon (1948:I,3) provides an example assuming a 27-symbol 
“alphabet” (26 letters and a space) in six levels of structural ordering: in the first one, 
called zero-order approximation, symbols are independent and equiprobable, forming 
a line with a general result that reflects a highly random process; in the second level, 
called first-order approximation, symbols still in an independent arrangement but 
with frequencies vaguely representative of an English text chosen by Shannon; in the 
third level or second-order approximation, a ‘digram structure’ (i.e. with clusters of 
letters in long and short groups) appears more closely to English; in the fourth level 
or third-order approximation a ‘trigram structure’ (i.e. with clusters of letters in long, 
medium and short groups) appears to apporximate even more closely to English. In a 
fifth level, called by Shannon as first-order word approximation, rather than continuing 

with a tetragram… n-gram structures, “it is easier and better to jump at this point to 
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word units.” Here words are chosen independently but with more appropriate 
frequencies. In the sixth level or second-order word approximation, “the word 
transition probabilities are correct but no further structure is included.” At this level 
the resemblance of the words to common English is very clear, or at least, as Shannon 
notes, “have reasonably good structure out to about twice the range that is taken into 
account in their construction.” 

Shannon (ibid.) mentions the empirical method from which he developed his 
analysis of order/disorder in a data set: for instance, the first two samples were 
constructed by the use of a book of random numbers in conjunction with a table of 
letter frequencies. In the levels which follows he opens a book at random and selects a 
letter at random on a page. This letter is recorded. The book is then open to another 
page and he reads until this letter is encountered. The succeeding letter is then 
recorded. Turning to another page this second letter is searched for and the 
succeeding letter recorded, etc. A similar process was used for the following levels. 
Shannon then formalises his method. It is obvious that a similar procedure can be 
performed with a collection of scores or musical recordings, to analyse various aspects 
of redundancy and consistency of structural information. 

Currently, the vast majority of software used for information reconstruction, for 
interlinguistic translation, and for a wide variety of word processing and searching on 
the web, uses algorithms based on Shannon’s (1948) formalization. This application 
also involves various aspects related to music, from developing melodies using 
computer software, to the investigation of the borrowing, change and transformation 
of codes studied by stylometry, as mentioned in the previous section, after Pinkerton 
(1956), Coons and Kraehenbuehl (1958), and Youngblood (1958). It is used also in 
structural planning and synthesis for composition, as explained by Ames (1989).  

By strict analogy with Shannon’s probabilistic model, the same levels of order    
—or disorder if one conceives the reversible case—can be laid out for a musical motif, 
phrase, or section; it can be even used with a complete musical piece—which may 
require too much work, whilst not implemented as computer algorithm. This 
procedure (analytical or synthetic) can be applied to any sample of music 
independently of style and tradition, keeping the gradation of stochastic relations 
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from an original chain. Especially with long chains, extending the levels of 
order/disorder is possible, so Shannon’s six levels is not necessarily a definite limit. 

 

  

◊520. Example of degradation of the chromatic scale (n0) by seven levels of 
entropy (n1–n7). In the left column (a) there are three degrees (n1–n3) as 
a process of symmetric inversion, starting with the series endings. From 
n4, the process forms an increasingly segmented series with a lower 
contiguity degree, breaking the original symmetry. 

Barlow (2002, final section) suggests that the order/disorder scale in Markov chains, 
usually with six or seven levels, can have intermediate levels, which he uses to 
elaborate sequences of musical structuring in a wide range of variation between order 
and disorder. Beyond the meaning of this task on information theory, it is quite clear 
that this extension of consecutive rulers for measuring a code is compatible with what 
Wacław Sierpiński (1934) proposed in his chapter on “Applications to the 
relationships between category and measure”, which Mandelbrot (1967) confirms by 
demonstrating that the magnitude of a measurement depends on the used scale. 
Thus, levels of order/disorder in Markov chains can be variated, depending on the 
needs for measurement and the characteristics of the measured object. In ◊520, for 
example, eight levels of order are established as structural degradation of the 
chromatic scale, with twelve elements. In this case the transition probability is 
confined to the consecutive permutation of the row parts, seeking a higher degree of 
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the original series decomposition: in n1 the probabilities of repeating the first element 

(0) are necessarily minimum, so it moves to the series ending; in n2 the probabilities 
of repeating the second element (1) are necessarily minimum, so it moves to the series 
ending; and so on. It is obvious that following this displacement without return to a 
previous state, at some point (represented here in n7) the original contiguity between 
any element in the series, is reduced to a minimum. The levels of order/disorder in 
this example are of theoretical and compositional interest (analytical and synthetic), 
as they contribute to investigation of the properties of the series. 
 
Synecdochic function 

The ‘synecdochic function’, a term commonly used in linguistics and literary studies 
(see Freedman 1971) to explain the correlation of synecdoche in a system of 
structural and symbolic transitions of language, can be implemented in any system of 
musical relations having analogous conditions to a symbolic structuring—admitting, 
for instance, that the systematic correlation duration/intonation can constitute or 
produce an operational set of musical symbols. 

In the context of information theory applied to music, synecdochic function (σ) 
shows the degree of self-similarity across structuring levels as information increases 
and redundancy decreases. For instance, ◊521 suggests that, starting from an initial 
state of maximum redundancy (Ω) comparable to 1/f 0 noise,299 the relations of 
similarity are null within a bound that narrows towards a generalized probabilistic 
transition point: what Shannon (1948) conceives as first-order word approximation, 
i.e. the limit where the relations of similarity emerge, getting closer to a potential self-

similarity in the threshold of second-order word approximation. At this point the 
relations of self-similarity are likely to bifurcate into consecutive levels. In this 
example, proliferation of σ is attributable to a development of the system consistency 
(i.e. grammatical recursiveness), as specified in subchapter 3.7. 

                                                 
299 See the definition of 1/f 0 noise on pages 241. 
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◊521. Schematic view of levels of order/disorder in a musical process with parameters of 
length (horizontal) and pitch (vertical). The leftmost column displays the levels of 
entropy suggested by Shannon (1948). The far right column associates fractional 
noises (see Mandelbrot and Van Ness 1968), whilst the next column suggests a 
grammatical interpretation of music as recursiveness with self-similar trend. Whereas 
the symbol Ω on the top represents the highest level of disorder or chaos, the symbol 
σ represents the synecdochic function that allows logical and structural association 
between the parts and their total, statistically self-organized under the power laws, 
involving different modes of self-similarity. The continuum connecting Ω with σ is 
semiotically related to Peirce’s synechism and to the intersemiotic theory (IC) detailed 
in subchapters 3.8. and 3.9. 

In the context of information theory applied to music, synecdochic function (σ) 
shows the degree of self-similarity across structuring levels as information increases 
and redundancy decreases. For instance, ◊521 suggests that, starting from an initial 
state of maximum redundancy (Ω) comparable to 1/f 0 noise, the relations of 
similarity are null within a bound that narrows towards a generalized probabilistic 
transition point: what Shannon (1948) conceives as first-order word approximation, 

i.e. the limit where the relations of similarity emerge, getting closer to a potential self-
similarity in the threshold of second-order word approximation. At this point the 
relations of self-similarity are likely to bifurcate into consecutive levels. In this 
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example, proliferation of σ is attributable to a development of the system consistency 
(i.e. grammatical recursiveness), as specified in subchapter 3.7. 

In a process of musical information, the synecdochic function is the fundamental 
relationship with which the message prescinds from the code’s completeness, to 
nevertheless be able to guess the total amount of information by the interpretation of 
its parts (abduction in Peirce 1903a/1998:162). This relationship, basic to any form of 
musical interpretation, may be unaware (e.g. listening to a signal whose frequency 
spectrum is completed by the auditory cortex);300 partially conscious (e.g. in the 
musical performance of a score), or conscious (e.g. music analysis). 

This theorizing also may contribute to better understand the concept of motif, as 
explained in 3.3. (see in particular scheme ◊333), and its constructive role as seed for 
development and pre-contingency of musical structuring.301 

 
Random constructionism 

Markov chains are among the most popular tools used in algorithmic composition in 
the last sixty years,302 due to their intuitive handling and adaptability to a variety of 
gradients controlling different parameters of music. The probabilistic properties of a 
Markov chain can be represented by a grid or matrix reflecting a transitional state 
from an initial relationship (see Roads 1999:878–880). A matrix for the elaboration 
of a pitch sequence is presented in ◊522. The letters in the left column represent 
output tones, whilst the letters of the top line represent incoming tones. In this example 

                                                 
300  Because of this, the synecdochic function operates in the construction of numerous 

psychological effects giving sense to music by auto-completing (i.g. conjecturing) the missing 
parts in a code. An example is a ‘complete’ perception of a compressed code—such as MP3 
format—whilst listening to any recording. The synecdochic function extends, however, to a 
great number of forms of psychological sound processing, including normal conversation. 

301 In fact the conceptualization of the synecdochic function in music, regarding the structural 
notion of ‘motif’, satisfies what William Freedman (1971:129) intends as such in literary theory: 
“Since the symbolic motif is basically microcosmic, since it is a part of a literary work that may 
often stand for the whole, it performs, I think, a synecdochic function.” This idea, which 
enriches the research of music as intersemiosis and analogy with the discursive language, is here 
developed in subchapters 4.4. to 4.8. 

302 Around 1950 Markov chains were included as a significant issue in educational programs 
for composers, in countries of Northern Europe. Karlheinz Stockhausen (1989:50) recalls that 
“Professor Meyer-Eppler, a teacher who had come from physics and phonetics, […] would give 
us exercises demonstrating the principle of the Markoff series.” 
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the constructive process begins with the upper cell of the leftmost column (bold C), 
which initially has two options for succession: C# or E. Numbers in each box 
represent the probabilities of a pitch to be related to another pitch, in order to start 
the development of a sequence. Henceforth, the first relationship has two options 
with 1/2 probabilities each to be chosen. The second relationship can be originated in 
C# or E read as outcomes. For both cases pitches C, D, and F have 1/3 probabilities 
each. The next step repeats a similar operation, depending on the chosen outcome, 
and so on. The row in ◊522b shows a sequence of 12 pitches produced with the 
matrix. Obviously, this sequence is just one of many possible, since for each step 
towards the income pitches, each election draws one of several possible 
continuations. Another more complex option is the production of other sequences 
with the same matrix or other matrices, in order to develop multiple pitch-rows with 
simultaneous relationships, something useful in a composition plan that elaborates 
polyphonic and/or multi-textural lines (see Xenakis 1992:87–88, Steinitz 1996a:19). 
 

 C C# D E F 

C 0 1/2 0 1/2 0 

C# 1/3 0 1/3 0 1/3 

D 0 1/4 1/4 1/4 1/4 

E 1/3 0 1/3 0 1/3 

F 0 1/2 0 1/2 0 

◊522a. Matrix for production of pitch sequences. 

 
◊522b. 12-tone row produced by the matrix in the upper scheme. This sequence is just one 

of many possible, since for each step towards the incoming symbols, each election draws 
one of several possible ways. 

 
◊522c. A second option of a 12-tone row produced by the same matrix. 
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The same procedure, using a similar matrix, can be used to produce sequences of 
lengths. By using this second option in combination with the previous one then one 
can get a third kind of sequences with variable lengths and pitches altogether (as 
suggested in ◊522c). A 1/4 rest is included in ◊523a, which can get a punctuation mark 
function, useful for gestural phrasing or motivic elaboration such as those shown in 
◊523c. It is obvious that such values can be adapted into an almost unlimited variety 
of compositional requirements. Pitch and length values can also be recombined again 
by matrices representing other values within a specific scale, as well as by matrices 
representing sets with other sort of items or instructions.303 
 

      

 0 1/2 0 1/2 0 

 
1/3 0 1/3 0 1/3 

 0 1/4 1/4 1/4 1/4 

 
1/3 0 1/3 0 1/3 

 0 1/2 0 1/2 0 

◊523a. Matrix for production of note sequences, analogous to the previous 522a. The 
generative process is the same, although in this example the general output determines 
musical lengths. 

 
◊523b. 12-durations sequence produced by the matrix in ◊522a. 

 
◊523c. Musical sequence obtained as a combination of ◊522a and ◊523b. 

                                                 
303 For a detailed description of a systematic use of Markov chains in algorithmic composition, 

see Jones 1981. 
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The use of Markov chains as shown in the two previous examples (◊522, ◊523) 
corresponds to a stochastic generation in which, in the long run, the structures 
produced tend to a self-similar distribution since the generator matrix consists of a 
set of elements whose replication is limited in each recursion, to the same number of 
possibilities. At the same time, the use of a finite matrix such as the one used for these 
examples, is a case of self-reference since its transitions are derived from rules 
contained by the same matrix.304 It can be argued, consistently with this relationship, 
that the greater the variety of generative relations (i.e. implementing a larger and 
more complex matrix), the more complex the (sub)products of a self-similar set in 
the long-term. In this case the synecdochic function progressively extends between 
the initial point of similarity to the point σ (see ◊ 521). 

 
Music microvariation and chaos 

Many musical styles are based on the continuous variation of a figure given by 
tradition or suggested by practice. This commonly happens in improvisation as 
found in a wide variety of forms, as well as in the gloss or figural variations of a musical 
segment using grammatical rules. In general terms, musical borrowing, imitation, 
change, variation and transformation follow relatively open rules within a more or 
less flexible limit, although almost always with a fixed grammatical part providing 
basic organization. These musical relationships operate through ‘macrovariations’ in 
which most of the (re)creative process occurs in transitions among orthodoxy, effect, 
and election, using Doležel (1969) terminology for his theory of style; and among 
grammaticality, ambiguity, and similarity, according to Fodor and Garret (1966) 
terminology on syntactic competence. 

In contrast, one finds arrangements of ‘microvariations’ in which the (re)creative 
process occurs through semi-hidden or hidden operations. An example of this are the 
vocal glissandi in ◊451, in which the gross pitch-length relations are established, but 
the timbral qualities and the loudness and intonational subtleties remain hidden or 
vaguely suggested. This sort of microvariation seems to be a universal trait linked to 

                                                 
304 Cabrelli, Heil and Molter (2004:vi) define a self-similar matrix as “an n × n expansive matrix 

that maps a full-rank lattice into itself.” 
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the diffuse nature of the thresholds of musical practices, sometimes denoted by 
culture (e.g. a musical tradition may stimulate the recognition of some intervals that 
other traditions do not recognize), sometimes fixed by the physiological limits of 
perception. Microvariation operates near to these thresholds. 

 

   

   

   

◊524. Schematic representation of the chromatic pitch-space and its microtonal 
divisions by halves. Ordered from top to bottom and from left to right, the 
sequence represents the tendency to chaos in the micro-intervallic human (i.e. non-
automated) articulation of sound, in a continuum from an attractor at the diagonal 
axis. The symmetrical arrangement in the first three boxes (i.e. semitones, quarter-
tones, and eighths of tone) reflects a preservation of relative equidistances. After 
the fourth box (middle left) a progressive imbalance is noted affecting 
homogeneous distribution towards increasing entropy. This scheme is analogous 
to the diagonalization of musical durations by halves of time units. It is important 
referring to subchapter 5.4., for further explanation. 
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Graph ◊524 presents a scattering pattern which begins (left box, top) with the 
diagonal representation of the chromatic row as equal consecutive intervals. The 
equidistance between points (representing pitches) indicates equal intervals between 
semitones (the example is based on this equivalence; thus it does not consider a 
Pythagorean coma between semitones). The top-centre box shows the diagonal with 
a ‘correct’ articulated symmetry between quarter-tones. The box that follows to the 
right shows a lower exactness for the eighth-tones distribution, reflected in a slightly 
asymmetrical plot. Following this development, the subsequent boxes show a 
growing trend to disorder in which symmetry blurring intends to mean a gradual 
weakening with respect to the initial references. 

In an empirical testing of the same process, one can say that a continuous, too 
fast articulation of voice or of a musical instrument, tends to monotony (i.e. Gestaltic 
or perceived monotony). The correlation between these two examples—the former 
focused on pitch location; the latter on durations—shows a same bias to disorder at 
the threshold of microvariations, and a tendency to organization from 
indeterministic chaos at the basis of musical performance. 

Chapter 6 examines in detail the generalized transition observed in many 
dynamical systems in the form proportion → self-similarity → chaos (arrow denotes 
tendency).305 Suffice it to say, for now, that in Western tradition, the same transition 
may appear intuitively in the form harmony → similarity → noise, as suggested e.g. in 
◊624, conceiving a specific tonal scale—like the natural diatonic scale—as a 
structural antecedent of the chromatic scale. In other words, this transition reflects a 
shift from a general scaling measure to another, less generalized scale. The latter will 
need, thus, a more detailed regulation in order to adjust its subsidiary rules to the 
general rules of the pitch system. In consequence, one may assume that a musical 
grammar may perform the transition repetition → recursion → elaboration on the 
recursion, as an expression of the synecdochic function. Carey and Clampitt 

(1996:65) associate this relationship with the concept of well-formedness (introduced 
here on pages 60–62), with its essential role in conceiving structural rules in music as 
well-structured grammars. 

                                                 
305 This conceptualization require reading the section 3.8.3. 
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La varietà dei rumori è infinita.  
Luigi Russolo, 1913:c.7 

5.3. Music in noise 

From its beginning this chapter emphasizes the equiprobability between information 
and uncertainty. As a result of this relationship, this study assumes that all music has 
noise and all noise has music. Voss and Clarke (1975, 1978) find that 1/f noise is 
ubiquitous in speech and music: this has a marked influence in musical acoustics and 
in the investigation of its functional relationships, as explained below. 

The concept of noise as a total complex of tiny events is more significant than 
that of a set of isolated events in large scale. Mandelbrot and Wallis (1968:909) use 
the term Noah effect to refer to events of great magnitude, extremely rare in a quasi-
periodic system. According to the statistical observation of these systems, a massive 
set of tiny events contains much more information than a single large isolated event. 
On the other hand, to find a set whose small parts are completely unrelated is 
difficult in practice and contradictory in logic, as its dissociation would be opposed 
to the notion of set. Indeed, the richness of 1/f noise as a set is significant in that all its 
parts are correlated by the same kind of energy distribution (see Mandelbrot and Van 
Ness 1968). 

1/f noise has a power spectrum in which each time its frequency doubles its 
density decays 3dB. In other words, the probability of a specific frequency decreases 
in the same proportion as the frequency increases. In musical terms, in 1/f noise each 
octave carries an equal amount of noise power, inasmuch as what happens in the 
lower frequencies also happens proportionally in the higher frequencies, with an 
amplitude exponentially lower. 1/f noise wavelets and signals, in scalar invariance, are 
related by their generalized self-similarity.306 This becomes evident when applying the 
logarithmic subdivision of its frequency axis: comparing the segments that make up 
the frequency spectrum with the signal as a whole, one finds the same energy 

                                                 
306 For a general introduction to the concept of ‘invariance’, see subchapter 3.4. 
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distribution. Mandelbrot (1982, 2002), Hsü and Hsü (1990, 1991), and Polotti and 
Evangelista (2001:28), among many others, acknowledge these features as ‘fractal 
properties’ of 1/f noise.307 

Many energy fluctuations studied by Fourier analysis in solid media and in fluids, 
are called ‘fractional noises’ and represented in the form 1/f k, as their spectral density 

in a sample takes the form λ1–2 H, with λ as frequency ( f ), and ½ < H < 1, being H a 
parameter that generally tends towards 1. Under this definition 1/f 0, 1/f 1, 1/f 2 noises 
and other using a similar representation are considered ‘fractional noises’ (see 
Mandelbrot and Van Ness 1968:422).308 

According to Voss and Clarke (1975, 1978), the power spectrum of 1/f noise is 
similar to the average spectrum accumulated in the resonance of a tonal harmonic 
repertoire, and the outline of its typical sonogram is analogous to that of a piece of 
music or a chain of verbal utterances.309 In fact its distribution is equivalent to Zipf’s 
distribution described in subchapter 5.1. as a general property of speech. Roads 
(1999:881) explains, however, that whereas in the latter sense f refers to a ‘mode of 
change’ of a system—this is to say the mode in which its elements or substructures 
are repeated—in 1/f noise parameter f refers to acoustic frequency. In any case f 
represents a mode of information distribution that in 1/f tends towards self-
similarity. 

                                                 
307 1/f noise is also called ‘pink noise’ because its power spectrum density and frequency 

distribution are typically characterized as intermediating the general features of ‘white noise’ or 
Johnson noise (1/f 0), and the so-called ‘red’ or ‘brown noise’ (1/f 2). Since spectroscopy 
considers that pink is an intermediate color between white and red, in a metaphorical way this 
description takes the same meaning for the acoustic signals. Unfortunately this metaphor leads 
to several misunderstandings. In fact, white noise takes its name from white light in which the 
power spectral density is distributed over the visible band in such a way that the human eye’s 
three color receptors (cones) are approximately equally stimulated. In its turn, ‘brown’ or 
Brownian noise is named after scientist Robert Brown (1773–1858), who was the first to 
describe the chaotic behaviour of the so-called Brownian motion, similar to the characteristic 
pattern of 1/f 2 noise. Instead of following this metaphorical usage (using adjectives such as 
white, pink or brown), this study prefers the proportional analogies 1/f 0, 1/f and 1/f 2. 

308 In this formalization H means Hurst exponent, which Beran (2004:92–93) defines in a 
context of statistical analysis of music. Mandelbrot and Van Ness (1968:422) consider that the 
term ‘fractional noises’ is more correct than ‘1/f ’ noises, since the latter strictly corresponds to 
the specific noise having such a spectral relationship. 

309 As examples see sonograms in ◊560 h, k (pages 292, 294). 
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Like music, one may consider 1/f noise substantially as a temporal 
phenomenon—without necessarily ignoring its aspects of simultaneous complexity. 
When Dodge (1988:11) says that 1/f noise has “memory”, he conceives 1/f noise as 
time series. Consistently, Roads (1999:881) notes that 1/f noise properties are 
logarithmically correlated to their past: “Thus the averaged activity of the last ten 
events has much influence on the current value as the last hundred events, and the 
last thousand (using logarithms of ten).” Therefore one may say that 1/f noise has 
long-term memory inasmuch as its events recur the same configuration for each 
period of time. This periodic behaviour also suggests an analogy with music, 
especially with a repertoire made after a hierarchical organization in which specific 
relationships return in time, giving a structural sense to the whole (see Bartlett 1979). 

 
a) 1/f 0 noise (or white noise) 

 
b) 1/f  noise (or pink noise) 

 
c) 1/f 2 (or Brownian noise). 

◊530. Typical waveforms of 1/f 0, 1/f, and 1/f 2 noises. Power spectral density 
is pictured by the boxes left to the sonograms with usual intensity (vertical) 
and length (horizontal) representation. Summarized from Voss (1993:9). 
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1/f 0 noise, a phenomenon significantly different from 1/f noise, has a flat power 

spectral density (see ◊530-a, left box). Nominally it contains ‘all’ frequencies, and all 
of them have the same power in a characteristic random distribution without any 
specific trend to self-similarity. It is known as white noise because, by paradigmatic 
analogy with white light, does not show a greater liking to any frequency or colour in 
particular. In this context the simile employed by Miramontes (1999:6) is quite 
descriptive: “In music white noise should be achieved if all the instruments of an 
orchestra would play different notes [i.e. tones] at once without any coherence or 
coordination.” 

A third kind of noise is Brownian noise which power spectral density is directly 
proportional to 1/f 2, which implies that density decays 6dB by each frequency 
duplication. Its sonogram tends to be analogous to Brownian motion observed in the 
physical trajectory of some particles suspended in viscous fluids, for example of a 
pollen grain suspended in a water drop (see Brown 1828). Brownian motion has in 
common with other stochastic processes—like Markov chains—the fact that any of 
its events in a moment z is determined by its immediate antecedent in a moment y. 

This corresponds to a random walk pattern in which each point ‘moves’ in a random 
Gaussian distribution with respect to the previous point. Gaussian distribution 
implies a bounding distributive probability, so that points become more or less 
contiguous in their erratic movement, as shown in the downward and upward 
movements in the Brownian series shown in ◊530-c. Mandelbrot (1984:5) conceives 
that “Brownian motion is a natural fractal”, suggesting that like 1/f noise, 1/f 2 noise 
also reflects a self-similar behaviour—although in its own random way.310 

                                                 
310 The auditory sensation produced by 1/f 2 noise on the human ear approaches that of 1/f 0 

noise, but at a lower apparent frequency (see Gardner 1978). Some examples that can be 
intuitively associated with it are the constant sound of raindrops hitting the floor in a storm; the 
sound of breaking waves on shore and on reefs, or the sound of tree tops swaying in the wind. 
These comparisons may be analogous, in the strict sense of proportion (ἀναλογία) as explained 
in 3.1. On the accuracy of such analogies as synthesis or analysis, see subchapter 5.5. 
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Noise’s musical scaling 

A relatively recent method of classifying music is by comparing its patterns of 
recurrence with fractional noise models, particularly 1/f 0, 1/f, and 1/f 2 noises. This 
method favours a description of intrinsic acoustic relationships in a musical system: 
for instance, the pattern 1/f 0 contains monotony with high and low information 
redundancy, comparable to granulated timbres and pulse sequences without a 
specific trend of order. The pattern 1/f, in contrast, can be conceived as an image of 
self-similar structures with harmonic hierarchies, softened timbres, and organized 
phrases comparable to those of verbal language. The pattern 1/f 2 can be musically 
interpreted as a collection of structures made by contiguous relations in which only 
the immediate past determines the actual state of a musical event. It can also be 
associated with less harsh or less diffuse timbres than in 1/f 0, but less smooth than in 
1/f. Interestingly many descriptive combinations can be made after these notions, 
scaling some of them to serve as further reference as suggested in ◊ 531. 

Analogue adaptation in ◊531 shows that pattern 1/f 2 differs from 1/f, 
elaborating ‘gestures’ more differentiated between continuity and discontinuity, with 
fewer skips per period and an apparent middle-term seesaw behaviour, and a lower 
musical affinity in the sense that contours and spaces become less attractive inasmuch 
as they reduce their expectancy degree—although this depends largely on the way of 
approaching to the pattern. The combination of these textures or ‘colours’—timbral, 
rhythmic, harmonic, and durational at the same time—as part of a synthetic or 
analytic strategy, suggests also an application of several and diferred indices of musical 
self-similarity. 

Whereas ◊531 pursues an intuitive, direct emulation, ◊532 shows a procedure for 
abstracting the different patterns of noise analogized as ‘grammaticalities’. Example 
◊531 is limited to a subjective imitation of the three different contours of noise, 
whilst in ◊532 there is a functional specificity in which, with the systematic use of a 
matrix, more musical parameters are constrained as in a generative matrix using 
Markovian constructionism. The musical result in ◊532-b conveys, therefore, some 

of the most inherent properties of the source: whether 1/f 0 has a ‘musical surface’, a 
dispersion of gestures and a lack of overall cohesion is evident, too. Rather, it  



 

 
 243 

 

a) 

 

 

Analogue emulation of 1/f 0 noise.  

b) 

 

 

Analogue emulation of 1/f noise. 

c) 

 

 

Analogue emulation of 1/f 2 noise. 

◊531. Segments of analogue emulations of fractional noises corresponding to the 
previous table, as an adaptation to a one-voice keyboard in a measure of 24 pulses. 
In all three cases the tonal range is bounded to the index C3 – C7, with durations 
limited to 1/2, 1/4, 1/8 by random choice. 
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1/f 0 

 

1/f  

 

1/f 2 

 

◊532a. Typical spectrograms of 1/f 0, 1/f, and 1/f 2 noises. Each spectrogram is 
associated with a matrix (right) symbolizing a random micro-segment of each 
sample. Verticality represents pitches of the chromatic row (elements equally 
spaced in alphanumeric code ordered from the bottom to the top, representing 
sounds from low to high). Horizontality represents a variable loudnes scale (from 
pp to ff) as well as durations divided by halves, after the unit (1); the symbol x 
indicates repetitions of notes. The following chart presents a possible 
interpretation of these patterns as musical grammars. 
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1/f 0 

 

1/f  

 

1/f 2 

 
 

◊532b. Musical implementation of the previous scheme as a grammatical analogy 
adapted to the idiom of classical contrabass. Pitch space is bounded to an eighth 
(based on low E) and phrasing is adapted to the bow of the instrument. Tempo 
and common time (4/4) are stereotyped to facilitate the example. 

*NB: For the tonal scale, the 0 in the matrix corresponds to the pitch E (so F = 
1, F# = 2, and so on). In all three examples, accidentals affect all equal pitches 
within a bar (by convention, the accidental extends its value to the following 
measure only when a tie connects it to an immediate, same pitch). 
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seems that the pitches and their distributions are determined completely at 
random—as typically occurs in 1/f 0 noise—and that the musical aspect depends on 

the musical parameters and identities to be associated. The result with 1/f (also ◊532-
b) is much more satisfactory for the simple fact that the internal symmetries are 
related to a higher periodic symmetry, which is a characteristic of this type of noise, as 
well as of Zipf’s distribution. Furthermore, one can assume that the sample consists 
of a ground generator, an intermediate exposition, and a closure. Very probably in an 
example with two instruments the sequence word → dialogue or discussion → resolution 

could be suggested. In contrast, for the case with 1/f 2 the notions of motif, phrase 
and period—if any—are unintelligible. Neither seems to exist a clear connection 
between beginning and end, but hesitation follows a state of rest, and then another 
pace of relative rest, without obvious consistency—a feature that is generally 
perceived in Brownian motion. 
 
The method of Voss and Clarke 

Voss and Clarke (1978), after having analyzed the amplitude of electrical impulses of 
noise (especially 1/f noise) as time series, developed an original methodology to 
interpret such impulses as intervals of musical information. 

In short, the method of Voss and Clarke characterizes time fluctuations in two 
acoustic parameters: audio power, related to music loudness, and zero crossing rate, 
related to the distribution of sound in time. Using this deterministic coordinate and 
analyzing a large set of samples with music from different styles, Voss and Clarke 
found that the set spectrum corresponds to the proportion of 1/f in a fixed range at 
very low frequencies. This reflects a general stochastic trend toward 1/f, rather than 

overall dispersion in a 1/f 0 spectrum. 
Voss and Clarke’s theoretical frame and implementation is also based on crossing 

relations of voltage, amplitude and harmonic spectrum within a signal. The inclusion 
of voltage—an uncommon parameter in music theory—is not unjustified in this 
frame as this comparison of 1/f noise with music was done as a statistical projection 
of music radio broadcast in combination with generalized analysis of recorded 
musical performances. Using the random fluctuation of voltage in an electronic 
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synthesis experiment, Voss—himself not being a composer—created his own music 
in which pitch scales and time span totally depended on an oscillator governed by 
voltage.311 

 
Bolognesi’s adaptation 

Bolognesi’s work (1983) is particularly relevant because, as Roads (1999:885) noted, 
converts Voss and Clarke’s (1978) deterministic generator into a logical system of 
stochastic selection.312 Bolognesi understood the significance of restraining a rigid 
grammar through flexible implementation. This proposal demands, since the first 
stage of research on musical self-similarity, to complement the arguments of music 
engineering with the notion of music recursiveness as a problem of language. 

Bolognesi’s adaptation focous on the production of stochastic self-similar 
sequences, starting from a random binary sound output. Henceforth, such sequences 
can be divided into other sequences, by analogy with what happens in a language 
consisting of units, structures and aggregates following Zipf’s distribution. Another 
adjustment implemented by Bolognesi, according to Roads (1999:886), was the 
substitution of Voss and Clarke’ generator, using several hierarchical generators 
coordinating different production algorithms. This adjustment follows the general 
criteria of consistency, according to an initial plan included within the algorithms 
themselves. Like authors reporting self-structuring behaviour in generative grammar 
(see subchapter 4.4.), Bolognesi (1983:26) emphasizes the hierarchical relationships: 
“the stochastic melodies generated by Voss and Clarke’s algorithm and by variants of 
it [introduced by Bolognesi and Fagarazzi] show what may probably be considered 
the most primitive form of hierarchy: self-similarity.” 

                                                 
311 Madden (1999/2007:116–141) summarizes Voss and Clarke’s technique mentioning also 

other approaches to noise as a source for music. His study is completed with the analysis of a 
selection of musical pieces, displaying an approach towards specific noise patterns using 
statistical data and scattering plots. This selection includes music by Xenakis, Schubert, Dodge, 
Ian Stewart, Babbit, Webern, J.S. Bach, Chopin, Pärt, Schoenberg, and Ligeti, and excerpts of 
Gregorian chant and two traditional tunes in English. 

312 1/f noise can be generated by iterations of a fractal equation, and has specific applications in 
the production of sound patterns and musical scales (for a summary see Voss and Clarke 1978, 
Dodge 1988, Nelson 1992, 1994, Madden 1999/2007, Yadegari 2004). The aesthetic 
implications of this topic are discussed in Chapter 5. 
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Quasi-periodic 1/f noise 

Polotti and Evangelista (2001:27–30) report “experimental evidence” which reveals 
quasi-periodic behaviour of approximately 1/f noise in the harmonic spectrum of 
sidebands in music repertoire including voices.313 This not only confirms Voss and 
Clarke’s (1975, 1978) suggestions, but also draws a more complete description of the 
acoustic patterns of the human voice in connection with the use of musical 
instruments. 

Polotti and Evangelista (2001), after developing a rigorous definition of quasi-
periodic (they call it ‘pseudo-periodic’) 1/f noise, explore self-similarity properties in 
1/f wavelets and signals to implement them for additive synthesis techniques. The 
term ‘additive’ here refers to a separate treatment of each wavelet, before it is added to 
a carrier signal. Unlike other common techniques for electronic sound synthesis, in 
this case not only are sinusoidal components added to the signal, but noise 
components are also inserted with the purpose of “maintaining a real-life ‘color’ in 
sounds” (ibid.:36). 

 
Random walk and compositional methods 

A typical form of Brownian motion is the random walk, i.e. the movement of a point 
in a space, whose position at any moment depends on its position in a previous 
moment, and on some random variable which determines its direction and span, 
since the ‘walk’ tends to have the form of continuous lengths with discrete nodes. A 
special form of random walk is the Lévy flight, described as a noise pattern in the 
following section. 

Xenakis (1963/1992:289) suggests that, whereas the square waveform is the 
“most economical” plane wave to cover a 1/f 0 noise spectrum, the most economical 
waveform able to represent “melodies, symphonies, and natural sounds” is that which 
offers certain intelligibility by its temporal periodicity and symmetry of the curves: 
                                                 

313 In an electroacoustic signal a sideband is a band of frequencies higher or lower than the 
carrier frequency, containing power as a result of the modulation process. The sidebands consist 
of all the Fourier components of the modulated signal except the carrier. All forms of 
modulation produce sidebands. A single frequency in a sideband is a side frequency. (From 
Encyclopaedia of Information Technology, Atlantic, New Delhi, 2007:449). 
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An attempt at musical synthesis according to this orientation is to begin from a 
probabilistic wave form (random walk or Brownian movement) constructed from varied 
distributions in the two dimensions, amplitude and time, all while injecting periodicities 
in time and symmetries in amplitude. If the symmetries and periodicities are weak or 
infrequent, we will obtain something close to white noise. On the other hand, the more 
numerous and complex (rich) the symmetries and periodicities are, the closer the 
resulting music will resemble a simple held note. Following these principles, the whole 
gamut of music past and to come can be approached. Furthermore, the relationship 
between the macroscopic or microscopic levels of these injections plays a fundamental 
role. 

In short, what Xenakis means by these words, is that music can be conceived as 
‘inherently significant’ inasmuch as its probabilistic wave moves from a random walk 
(e.g. 1/f 2 noise), into a consistent and relatively self-similar waveform (1/f noise); and 
‘less significant’ as its probabilistic wave tends to aperiodicity and to continuous self-
dissimilarity (e.g. 1/f 0 noise).314 Xenakis (op. cit.:290–293) also proposes a strategy 
which puts into practice what he discussed in theory, and which begins by 
implementing a stochastic pitch distribution in relation to a time abscissa. In parallel 
with the axis of amplitude, he assigns specific values for each boundary, until they 
form a polygon inscribed in a sine wave, or a rectangular waveform, or a waveform 
produced by a stochastic function such as Gaussian, Cauchy, logistic, or other 
multifractal functions.315 Xenakis correlates ‘microscopic’ audio segments produced 
by this method, with ‘macroscopic’ sets of self-affine generalized features, creating a 
complex consistency between the whole and the part. 

Nelson (1992) also uses a method based on Brownian motion, to generate the 
displacement of a middle point in a coordinate of amplitude and duration. This goal 
is achieved by taking the midpoint of a straight line segment, then moving it up or 
down at midpoints forming subsequent segments, and continuing this movement by 
the same method in an iterative process. By repeating this segmentation over and over 
again, the result obtained is a highly irregular shape comparable to that of Brownian 

                                                 
314 Murphy (e2007) introduces the concept of self-dissimilarity into music theory, but restricted 

to the relationship between network and hyper-network in the context of musical recursion. 
315 The concept ‘multi-fractal’ is introduced in subchapter 4.2. (pages 147–148). The notion of 

mathematical function is explained on pages 346–348. 
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motion, and which produces a structured, continuous subdivision of time, pitch and 
amplitude. 

Nelson’s final purpose is to generate an electronic accompaniment using a fractal 
algorithm, on which he improvises a melody. His first work created with this 
method, Fractal Mountains (1989), employs MIDI horn and computer. This title 
reflects the analogy the composer makes between the musical result obtained and the 
form of a mountain range that characterizes the two-dimensional representation of 
Brownian motion (see for instance ◊531-c, or ◊532-a bottom). 

 
Other timbres of noise 

If all noise models were restricted to the examples mentioned above, musical analysis 
and synthesis by these means would be rather poor. Evidence suggests something very 
different: noise is widely varied as its actual and potential sources and transformations 
are.316 

Schroeder (1991) defines ‘black noise’ as 1/f β, where β > 2. Kuo (1996), for his 

part, refers to ‘gray noise’ as an intermediate between 1/f 2 and 1/f β noises. The 

inversion of the 1/f 2 noise power spectrum, increasing its energy as its frequency 
grows up proportionally is either labeled ‘blue noise’ (Wang 2008) or ‘purple noise’ 
(Zhang and Schwartz 1996). In this case each time the frequency doubles, its power 
spectrum density increases by 6dB, which means that the energy is proportional to f 2: 
the higher the frequency the greater the energy. 

In his article “El color del ruido” [The Colour of Noise], Miramontes (1999:5) 
suggests that: “If light can be represented in a spectral graph, why not sounds? Indeed, 
also the sound features can be perceived in a spectral density.” Although light 
frequencies cannot be directly converted into sound because the particular 
characteristics of their waves are different,317 it is a fact that all spectral densities and 

                                                 
316 Hence the relevance of the epigraph (Russolo 1913) heading this subchapter (see page 238). 
317 Otherwise the human eye could see the sound and light could be perceived by the ear. The 

structural differences between these perception organs also reflect a difference in the nature of 
the perceived phenomena. Whereas sound results primarily from air—or other fluids’—pressure 
fluctuations, light is primarily an effect of electromagnetic radiation, not after contact between 
molecules, like sound, but after elementary particles (photons) behaviour. In the case of 
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ratios between power and frequency can be objectively measured and compared by 
proportional analogy. Moreover, any frequency spectrum can be interpreted as forms 
of noise, including patterns of climate change, statistics, economics, and financial 
charts, the cycles of solar activity, the rhythms of floods in hydrological systems, 
cardiovascular pulsations, the tides and the rhythm of the waves, earthquakes, the 
Larmor frequencies (i.e. the magnetic resonance frequencies of the atomic nuclei), 
the global dynamics of cities... all or almost all periodic or quasi-periodic cyclical 
phenomena can have an analogous interpretation within a modular bounding for 
sound production (see Miramontes op. cit.).318 The general basis of this concept in 
relation to music is discussed at other subchapters in this study, so here there is no 
need to repeat information.319 Instead, a selection of noises having self-similar 
properties is explained below, which can be useful for music analysis and synthesis, as 
happens in the cases of 1/f 0, 1/f , 1/f 2, 1/f β and their inversions: 

After Van der Ziel (1950) flicker noise is commonly classified as a 1/f noise 
characterizing electronic circuits. Grebennikov (2007:196) notes also that its power 
spectrum density is proportional to f −γ, where γ = 1.0 ± 0.1 “in a wide range of 
frequencies”. Motchenbacher and Flitchen (1973:172) explain that this noise appears 
in carbon resistors, during the continuous forming and extinction of carbon particles’ 
micro-arcs randomly distributed in space. This is confirmed by T.H. Lee (2003:345), 
who reports that resistors made with semiconducting carbon thin film—very 
different from the previous ones—produce less noise than the latter. Flicker noise 
surplus then depends on the material source with which it is produced and 
propagated. This notion contributes to the conjecture stated in 2.3., suggesting that 
the organic carbon-based tissues involving bioacoustical systems contain the same 
self-similar ‘footprint’ that characterizes music and language, correlated by power 
laws.320 

                                                                                                                              
psychological associations between color and sound frequency, one may refer to two types of 
experiences, known as induced (or weak) synaesthesia, and true (or strong) synaesthesia. 

318 The concept of modular bounding is explained on pages 393–395. 
319 See pages 55–58 (analogy); 102–109 (intersemiotic translation); 123–124, 134–135, 150–153, 

171, 192–193, 360 (resonance as metaphor); 366, 437 (resonance as Gestalt). 
320 Grebennikov (2007) also notes the participation of silicon in electronic devices, related to a 

hypothetical source of flicker 1/f noise. It is worth to mention that organosilicon (i.e. organic 
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Another aspect of flicker noise is its association with the phenomenon of attack, 
or residual cluster at the beginning of sound production with energy ‘excess’ in an 
acoustic system; for example the attack on a plucked string, or on the beveled 
mouthpiece of a flute.321 This ‘attack noise’ is treated by analogy as flicker noise in a 
process of electronic synthesis, as proposed by Karplus and Strong (1983), Roy 
(e1992), and Polotti and Evangelista (2001). 

Burst noise or popcorn noise, also known as bistable noise or random telegraph signals, 
has a general behaviour similar to 1/f  but its waveform fluctuates, in short and 
unpredictable cycles, to the square shape. It is the sudden noise found in electrical 
semiconductors in the form of short random step transitions between two or more 
discrete voltages. T. H. Lee (2003:347) notes that “it is understood even more poorly 
than 1/f noise, and it shares with 1/f noise a sensitivity to contamination (from other 
noises) […] is characterized by its multimodal—most often bimodal—and hence 
non-Gaussian amplitude distribution.” 

Bursting patterns (or contact noise) are used as an effect of distortion in electric 
and electronic music, and are associated with techniques of sound granulation (see 
Clarke et al. 1996, Rocha Iturbide 1999, Roads 2004). For analytical and synthetic 
purposes, its irregular spectrum can also be compared with a random percussion 
repertoire, or with some percussive aspects of string and wind instruments, especially 
in the case of peaks in constant noise or sound leaps in unpredictable periods. 

Lévy flight. This is not properly a noise, but rather a form of random walk or 
Brownian motion with statistical self-similarity and other features comparable to 
1/f 2, that can be interpreted as noise. Its frequency spectrum is distributed in the 

form y = x–α , where 1 < α < 3. After a very large number of steps, the distance from 
the origin of the random walk tends towards a stable distribution with scale 
invariance.322 Unlike typical Brownian motion, Lévy flight commonly intersperses 
very long steps with clusters of hierarchical nestings. It is useful for music as its 
behaviour can be described as a Markovian process in which the statistical values and 

                                                                                                                              
compounds containing carbon silicon bonds) also plays a basic role in some essential aspects of 
biological self-structuring. 

321 See pages 145–146. 
322 See subchapter 3.4., on invariance. 
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nestings can be adapted to any type of musical parameters (e.g. duration, rhythm, 
timbre, loudness, and pitch distribution by clusters and sequences). 

Bolognesi (1983:31–36) characterizes Lévy flight as an infinite sequence of 
isotropic and statistically independent jumps performed by a mobile point, satisfying 
the distribution 

x −D   if  x > 1 (D > 0, real) , 
Pr (x)  ≡  Prob (r > x) = { 1     if  0 ≤ x ≤ 1 , 

where r is the random variable representing the length of the jump, and the exponent 

D corresponds to the fractal dimension of the space in which is found the mobile 
point, determining its distribution. Provided the scalar independence of the whole 
process, the control of parameter D leads to controlling the whole distribution: “If we 
apply a Lévy flight to music generation, we may control the degree of clustering of 
our hierarchical structures by means of a single parameter D” (Bolognesi, ibid.:31). 

Fagarazzi (1988) uses Lévy flight to associate the harmonic spectrum of sound 
with a prescriptive harmony, virtually creating a self-generating musical grammar. 
Moore (1990) uses it to generate random sequences of arbitrary length whose 
spectrum approximates to 1/f n ≥ 0. Conversely, Beran (2004:93) employs fractal 
dimension, Hurst exponent and other parameters related to the Lévy flight, for 
analytical purposes in music samples with stochastic distribution. 

Weierstrass function. This mathematical function has the property of being 

continuous on ℝ but not differentiable at any point of ℝ (‘not differentiable’ means 
that the function curves are so irregular that no tangent line could fit into them 
without being intersected).323 This property is related to the self-similarity of the 
function, which amplified in a segment reflects the whole of its typical relations. Its 
formalization is due to Karl Weierstrass (1815–1897), who refuted the 
misconception that every continuous function must be differentiable except on a set 
of isolated points (see Weierstrass, 1870). There are applications of Weierstrass 
function in electronic music, based on its scale invariance property. For instance, 
Schroeder (1991:97) mentions that 

                                                 
323 For a detailed explanation of these concepts see subchapter 6.2. (especially pages 354–363). 
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An example of a musical chord patterned after a Weierstrass function can have the 
following weird property. If recorded on magnetic tape and replayed at ‘twice’ the 
recording speed, the chord will not sound an octave higher in pitch, as every well-behaved 
recorded sound would, but a semitone lower. 

Miramontes (1999:10) uses Schroeder’s mathematical argumentation to express that 
“if music loudness increases twice (1/b = 1/1/2 = 2), music still sounds the same”. 
Beyond this curious effect, Weierstrass function can be used in musical synthesis and 
sound modelling. Monro (1995:89) characterizes it as an ideal model for ‘fractal 
interpolation’: “Fractal interpolation is a method of generating functions that pass 
through given points”, and notes that this is useful “to generate melodic material and 
to control the large-scale structure of a piece” (ibid.:91). 

Numerical generators. There is an immense variety of methods for generating 
stochastic and random sequences of numbers.324 This includes infinite sequences of 
digits in irrational numbers like √2, φ, e, and π, in which number distribution has a 
random outlook that usually increases with the size of the sample. This behaviour can 
be exploited in the development of matrices for 1/f 0 noise generation. Nonetheless, 
instead of using a massive-sampling divergent methodology to remark randomness, 
the numerical sources can also be used in convergence methods with small samples 
suggesting a local stochastic behaviour, intuitively more similar to 1/f 2 than to 1/f 0. 
This is the case of Pareyon’s (2001) proposal to use π for a quasi-harmonic modelling 
of tones, rhythm, and phrasing, using the first one thousand digits of the decimal 
sequence and musically noting the repetitions of dyads, triads, tetrads… until they 
form a soundscape consisting of a careful intersemiotic translation of the numerical 
sample. Hence, for example, the Feynman point (a sequence of six 9s that begins at 
the 762nd decimal place of the decimal representation of π) become noticeable in an 
analogous way that a major summit could be noticeable in a landscape of lower ridges 
(i.e. repetitions of two and three digits within the same sample).325 

                                                 
324 For instance, Roads (1999:881–889) and Kindermann (e1999) invoke the use of pseudo-

random number generators with a uniform outcoming signal for noise synthesis; and Tiits 
(2002:156) and Salter (2009:40) emphasize the use of similar generators shaping the ‘weight-
vector’ components mapping a partially random function. On the same topic, see Fripertinger 
(1999). 

325 A first intuitive approach suggests a self-similar surface in a ‘big’ sample (e.g. the first billion 
digits) of π, in the sense that groups of five, six, seven... adjacent digits have a similar (i.e. 
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There is also a wide variety of numerical methods which, obtained from a cyclical 
self-reference, tend to a self-similar surface. This is the case for sequences of numbers 
in Pascal’s triangle, Farey trees, and the Thue-Morse sequence, all of them linked to 
the irrational number φ and the golden mean, which are dealt within subchapter 6.3. 

In the analytical context infinite sequences with irrational numbers, as in the 
specific case of π, have also general interest as they reflect the typical transitions (e.g. 
harmony → similarity → noise) between states of musical structures acting as dynamical 
systems. This can also be interpreted as a transition between σ and Ω in an 
information process (according to ◊521). 

Fractal generators. Many authors (see for example Al-Akaidi 2004:96, 115–123; 

Lowen and Teich 2005:115) associate 1/f noise with the concept ‘fractal noise’. 
However, endlessly self-similar pure 1/f noise—a theoretical elaboration—is not the 
only noise with absolute self-similarity. Actually ‘all’ infinite functions which are 
continuous everywhere but differentiable nowhere—as in the above mentioned 
Weierstrass function—also happen to be ‘fractal noises’, at least as a mathematical 
analogy.326 

Direct generation of noise from a fractal algorithm can be done using different 
approaches. One of them is to convert the fractal’s overall symmetries into an affine 
time-frequency contractive mapping. Obviously this is a technicality to express an 
intersemiotic translation by strict analogy. Using the same method, other fractals, 
like the triadic Cantor set produce a similar result in which the tiniest parts—Cantor 
dust—are recursively distributed towards infinity, whilst self-similar relationships are 
destroyed in the n-th iteration. Cole and Schieve (1993) confirm this transition to 

1/f 0 noise in the Koch curve and Cantor triadic set contracted into one dimension, 
where each “interval merges or collapses with its neighbour” (ibid.:315). 

As can be expected from the differences among their structural features, neither 
do all (pseudo)fractals produce the same kind of noise at their first iterations. For 

                                                                                                                              
comparable but not identical) distribution in smaller groups (made of two, three, four... adjacent 
digits). In the long term, however, the numerical plot should trend to 1/f 0, as π is conjectured to 
be a normal number (a sequence of numbers is statistically normal if all strings of equal length 
occur with equal asymptotic frequency). 

326 On the special use of the word ‘fractal’ in this study, see section 1.3.4. 



 

 
 256 

instance, whereas Koch’s curve, with its typical distribution to 4/3, generates a 
pseudo-harmonic pattern with noise growing up in its smaller intervals. The H-
fractal or Mandelbrot tree also produces a pseudo-harmonic pattern, although with a 
widespread distribution completely different, performing a mechanical rhythm that 
matches its visual and auditory representations. 

5.4. Noise in music 

One way to interpret musical self-similarity is to consider disorder nesting within 
order at different scales and proportions. In mathematics and music theory the 
concept of ‘nesting’ can have different interpretations and applications, but in general 
they all share the notion of holding sets of objects, or groups of relations, within sets 
or groups of larger sets or groups, whose basic references are comparable to the 
relationships of their smaller parts.327 

Fitzsimmons et al. (1994:595) and Xiao (2004:277–278) give examples of a type 
of finite branching in self-similar objects, with scalar invariance and symmetric 
connectivity, under the label affine nested fractals. In addition, Xiao (op. cit.:278) 
demands, for a nested fractal, the condition that all similarities involved with a self-
similar system have the same proportion of contraction. By analogy, this concept is 
useful to explore the notion ‘noise in music’, related to those of proportion and 
contrast of a proportion,328 and opposed to the rationalist dogma that oversimplifies 
noise as ‘error’ or ‘equivocation’ (e.g. Shannon 1948, Weisstein e2008).329 

In this study, the concept of noise is interpreted as interference and reciprocity 
with respect to a certain sound, or as information and code perturbation, assuming 
that such perturbation can be nested within a musical structure: for example, within a 

                                                 
327  This notion falls into the third definition of the verb ‘nest’ in the Oxford English 

Dictionary (2009): “nest. [...] 3. a set of similar objects of graduated sizes, made so that each 
smaller one fits into the next in size.” 

328 See subchapter 6.6. 
329 The definition of ‘noise’ in Weisstein (e2008) is symptomatic in this sense, especially by his 

concept of logical opposition to ‘true’: “Noise. An error which is superimposed on top of a true 
signal.” This concept is valid as operative principle in Shannon’s (1937, 1948) theory, but is 
insufficient in a broader framework in which noise has aesthetic interpretation and serves as a 
complex code enriching message (see Attali 1977, Hegarty 2007). 
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rigid organizing framework—an invariant group of constructive relationships—
holding a flexible condition inherent in the organization itself. This perspective on 
the concept of nesting is developed in a separate section below.330 

Simultaneously, in music theory there are special notions of the concept nesting. 
For instance, in pitch class sets analysis the term ‘nesting’ appears after Lewin 
(1962:99) as potential for symmetric structuring within a pitch class segment. This 
concept is described in a later section.331 A reason for avoiding it as a referential point 
from the beginning of this subchapter, is the many ways and possibilities of nesting in 
music, requiring different approaches. Lewin (1987), in his general theory of intervals 
and transformations, observes a dichotomy between the Cartesian schematization of 
music, and what he characterizes as “transformational approach”; this dichotomy is 
related—in a much broader sense than the one assumed by Lewin—to the nesting of 
a flexible condition within a rigid scheme.332 From this open perspective, the 
dichotomy between Cartesian scheme and transformational attitude may be 
associated with a broader analytical-constructive dialectics, such as musical axiologies 
between the Pythagorean and the discursive, or between the symbolic and the pragmatic. 
Finally this subchapter wants to make evident that these ‘oppositions’ are not 
absolute, but operate in coordinated modalities. 

A chief purpose of this subchapter is to develop the concept of ‘noise in music’ 
analyzing the inherent monotony within isometry and music measurement rules in 
general: 333 fixed rules and rigid derivative vectors are ‘in interference’ with music      
—which yet make music possible owing to an operative game between measurement 
rule and interpretation. Measurements introduce fuzzy edges into musical relations; 
rational sequences—and rationalisms—aggregate noise into pure signal sounds. This 
phenomenology can be connected with what Reybrouck (2001:621–622; based on 
Meystel 1998:349) identifies as ‘infinite nestedness of swarms’, in a musical context: 

[The] construction of infinite nestedness of swarms within swarms is primarily object-
oriented and has the advantages that come with multiple granularities and nestedness. It 

                                                 
330 See ‘Broad sense of the concept of nesting’, page 284. 
331 See ‘The concept of nesting in Lewin’, pages 281. 
332  Subchapters 4.7. and 4.8. explain, in a correlated context, how the rigid framework 

comparable to a grammar, requires for its own functional continuity, a pragmatic flexibility 
comparable to an idiolectal trait. 

333 An independent section, on pages 45–47, introduces the concept of isometry. 
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has an enormous power of interpretation, but at the cost of high resolution knowledge: 
the more generalized the knowledge is, the more details seem to disappear within 
generalized entities. 

Adopting the notion aliquid metitur pro aliquo,334 any music has implicit its own 
noise, and any noise—being measured—has implicit its own music. Extending the 
information theory postulate on reciprocity between information and entropy, it is 
clear that this correspondence operates as synecdoche, which is essential for building 
typical relationships of music.335 

The scheme shown in ◊540 is a first example of noise produced by music rulers 
interfering with music itself. This example—in which the representation of musical 
temporality and spatiality directly affects the time and space of music in its cognitive, 
aesthetic and cultural domains—recalls other comparable cases in the history of 
Western musical thought, such as Alphonse Allais’ (1854–1905) Marche funèbre 
composée pour les funérailles d’un grand homme sourd (1897); or John Cage’s (1912–
1992) three-movement composition 4’33” (1952), “for any instrument or 
combination of instruments”, in which the performer(s) stay ‘silently’ with their 
instruments during a period of four minutes and thirty-three seconds. The example 
in ◊540, however, highlights noise’s implication, not over silence that denotes the 
absence of something—musical symbols in this case—but in the contingency of 
sound in the physical world as cultural, human environment; an aspect that, without 
being explicit, is latent in the examples of Allais and Cage. 

                                                 
334 The classical Latin sentence, Aliquid stat pro aliquo, attributed to St. Augustine (De doctrina 

christiana, II:1), has been taken as a fundamental motto in semiotics after Charles S. Peirce [1898] 
(CP 2:257); it means “something stands for something else” [to be interpreted]. Hereby I allow 
myself to replace stat by metitur, for the sake of sense in this chapter, assuming that “something 
stands measuring for something else”; in other words, something stands for something else, by 
analogy. 

335  This idea is developed in subchapters 5.5. and 6.6., in their respective contexts. The 
examples given throughout this subchapter are combined with specific cases showing this 
reciprocity. 
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◊540. Example of noise in music with two cases of analogy under the same symbolic 
representation (although with different semiotic domains): 
(a) staff design in interference with blank space; 

(b) interference from the analytical-cultural preconception of space/time, 
regarding the potential organization of music. Furthermore, the relationship 
a → b, as well as b → a, is of an intersemiotic kind. 
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Another form of ruler interference—or of a regulatory system that introduces 
complexity into a relationship which is simple at its origin—is the link of one element 
with another and with each one of the elements of the set that contains them. This 
relationship, by measurements and fixed proportions in successive iterations, creates 
a map of the mathematical properties of the measured whole. All possible 
transformations in such a set correspond to the operational map of the whole. From 
this point of view, basic structural functions such as the Cartesian set in a musical 
system, hold a potential tendency toward (pre)self-similarity,336 inasmuch as they are 
recursive engines of self-reference. As a matter of fact, the following section shows 
that a simple set (after it contains three elements, and conceiving that the parts of the 
set are related to its properties), tends towards self-organization in simple (pre)self-
similar forms. 
 

Nestings within series 

Within some set, such as the pitch-class sets of the previous section, there may exist 
various subsets which are particularly important to our understanding. We may speak 
of these subsets as nesting within the larger set. A useful nesting of this kind, within a 
series of pitches, for example, implies that these pitches are related in some way, such 
as their harmonic or modal relationships. To illustrate this, we consider the pairs of 
pitches that break down the harmonic relationships of a chord in a useful way. Such 
useful pairings may appear in succession, simultaneously, or overlapping in a piece of 
music, in accordance with the forms of distribution implied by the given set (i.e. the 
chord). Thus we are led to adopt the Cartesian product of a set with itself as the 
natural self-relation for nestings of this kind. 

A Cartesian product of two sets is the set of all ordered pairs of elements, (a,b), 

where a is taken from the first set and b is taken from the second. A Cartesian 
product of a set with itself is therefore possible if we take the second set to be a copy 
of the first. The size of a set is just the total number of its elements so, for instance, 
the Cartesian product of a set of size n with itself has a size, n×n. The number of 
times the elements of a set can relate to each other (i.e. be paired together), is just the 
                                                 

336 The concept of pre-self-similarity is defined on pages 75–78. 
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size of the Cartesian product of the set with itself minus the number of pairs of the 
form (a,a). For example, for the word ‘four’ this number is 6 as the following figure 
makes clear: 

 

If we denote this number by Cp, then, by observing that it is just the number of ways 
2 items can be selected from n different elements, we can obtain the following 
formula from the binomial coefficient: 

Cp  =  n · 2
1−n

, 

This information can be used to determine the potential relationship of an alphabet, 
using letters, or the potential relationship of phonetics in a language, using 
phonemes. It can also be used in a musical context, for instance, to characterize the 
number of combinations of a certain pitch with the pitches of the chord to which it 
belongs or with the system of melodic lines and chords of an entire composition. For 
example, a triad’s Cp is 3, represented by three arcs in this scheme: 

 

Accordingly, Cp in the diatonic scale (7 elements) is 21. Cp in the chromatic set (12 
elements) is 66, and in a quarter-tone scale (12 × 2) is 276. 
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A Cp-relation (i.e. a subset of the Cartesian Product) associated with a group of 
intervals (e.g. the arcs drawn in the previous examples) reflects the possible 
combinations of ordered pairs formed with the elements of a set, but it may also show 
a similarity trend in pitch or pitch-class recursion. The example ◊541 displays, for 
instance, a degradation of similarities in pitch starting from the shorter interval 
between the lowest level and the next closest. Thus, a useful Cp-relation may serve to 
capture the various notions of self-similarity in a piece of music. 

Source (generating chord): 

 

Useful subset of the Cartesian Product: 

 
Transformation of similarities  

 
◊541. Example of an intervallic series in the form of ordered pairs 

extracted as Cp from a generating chord. 
 

Pair combinatorics is relevant in music insofar as it is concerned with pitch 
intervals, but metrical, dynamic, and gestural references are better elaborated from 
simple binary relations, such as the Cp-relations discussed above. For instance, Forte’s 
(1973) similarity relation (called Rp) is a binary relation on the set of set classes; in 
other words, a relationship of invariance between sets within sets, since ‘class’ is 
another word for a set. 

In Lewin’s theory (1987), the abstract algebraic idea of a group is used to great 

effect. A group is not simply a set of objects, but a set of objects combined with a law 
of composition representing in this case the musical relations operating through the 
pitch-family. This law predicts what happens when “multiplying” an element of the 
set by another, thereby capturing the particular relationship of interest between these 
two elements. Lewin (1987:6–14) defines this law as binary composition based on Cp-
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functions (see also Satyendra 2004:105), where a function is just a special type of 
Cartesian-Product-subset. 

In this context, Ilomäki (2008:33) remarks that “[the so-]called similarity 
relations are typically not relations on a set, but are functions from the Cartesian 
product of the set of set classes to some range of values.”—i.e. a binary operation. 
With respect to an analogous relationship in binary musical gestures, Mazzola and 
Andreatta (2007:37) postulate that the classical twelve-elements pitch-class groups 
can be expressed as a Cartesian product of a topological space: the gestural space of 
the classical twelve-tone music. 

Consistently, Cp-relations reflect the self-referential structuring of the elements 
of a set, and of groups of relations in a functional distribution. Peles (2004:83), in his 
analysis of Schoenberg’s serial music, characterizes this quality in the pitch-class 
aggregates: 

[A]n aggregate in pitch-class space is perfectly balanced and complete. Its set of 
relationships between pairs of elements is precisely the Cartesian product of the aggregate 
with itself, and each element stands in exactly the same relation to every other: one each of 
each of the twelve intervals (and thus transpositions) and one each of each of the twelve 
inversional indices. 

The significance of these functions in the context of this subchapter, does not 
proceed from the calculation of relations or the estimation of probabilities in a 
musical system. Clearly, Cp-relations in music do not always happen in an integral or 
a consecutive manner; their direct occurrence is rather uncommon. Significance 
proceeds, then, from the fact that a variety of self-referential bonds are implicit in pre-
musical bases, as seeds of self-organization; in other words, as forms of nested self-
similarity.337 Part of this variety is explored below. 

 

                                                 
337 In this sense ‘pre-self-similarity’ and ‘nested self-similarity’ are equivalent expressions. In a 

specific analytical context, the second one deals with a higher theoretical development, as 
suggested at the beginning of this subchapter. 
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Self-similarity implicit in musical rulers 

The analysis of harmonic intervals as exemplified in ◊541 is not restricted to dyads. 
The identification of groups of relationships between more than two pitches is 
obviously possible, and indeed combinations of three elements are useful. Without 
inversion, a triad (e.g. 0,1,2) has only one form of combination with its own elements; 
a scale of four pitches (e.g. 0,1,2,3) can form four triad-combinations without 
repetition; one of five (0,1,2,3,4) can have ten triad-combinations without repetition, 
and so on (see ◊542). Again, the binomial coefficient (henceforth Bc) is used to 

enumerate the triad-combinations from a set of n pitches by substituting k = 3 : 
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where ! indicates the factorial of each term. For example, the number of similar 
subsets of triads (i.e. 3 elements) from a hexatonic scale (i.e. 6 elements) is 6!/(3!(6 – 
3)!) = 720/ 36 = 20, which is the number of combinations of the six pitches clustered 
in triads. Following the same procedure it can be established that the diatonic scale (7 
elements) has a Bc of 35 triads, and the chromatic scale (12 elements) has a Bc of 220 
triads. 

Figure ◊542 illustrates the usefulness of this by forming groupings of triads from 
scales of three, four, five and six pitches, with respect to some arbitrary musical ruler. 
These triad-combinations are labeled (1×3), (3×3), (6×3), (10×3). They comprise 
the elements of a set which we call U (see ◊543a). This means that for each scale 
there is a limited number of triads that reflects the Universe of possibility in terms of 
what can be played together. 

Obviously, if the triads of each subset are interpreted as ordered intervals, it 
cannot be understood that the triadic configurations are repeated in additive 
segments. To understand this configuration it is necessary to stop thinking of a 
specific tonality and to abandon the notion of relative values between pitches.338 
What matters here is the abstract shape of the triads with respect to the musical ruler. 

                                                 
338 Later (on pages 280–282) the notion of nesting of similarities is introduced within the frame of 

self-similarity in pitch-class set theory. 
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For this reason the examples in ◊542 and ◊543a lack clef and tonal index: the actual 
spacing of adjacent pitches is unimportant in our analysis, so that we might choose to 
define a purely abstract sense of distance between our elements, dist(x, y) = |y – x|, 

where x and y are given by their natural number in the scale (i.e. 0,1,2,3...). 

 
◊542. Binomial coefficients (in brackets) of triad-combinations from 3, 4, 5, 

and 6 elements. Arrows indicates abstract structural recursion, and 
horizontal thick lines indicate segmental repetitions. 

The classification of Bc-triads forming the scale of six tones by unordered intervals 
(i.e. taking into account only this abstract distance between pitches), shows that the 
first segment is a subset of abstract intervals that “span” the whole—provided we take 
note of only their shape and spacing with respect to the ruler—and may therefore be 
thought of as the “Universe” U (see ◊542). 
 

 
◊543a 
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For example, ◊543a shows an equal six-tone scale with a Bc for triad selections of 20. 
However, the elements composing U are not 20, but 10. The three additive segments 
(6×3), (3×3), and (1×3), contain triads like (0,1,2) = |0,1,2|, already existing in U. 
Furthermore, these segments do not simply repeat all the triads already included in U 
—for instance (6×3) does not contain |0,4,5|. Rather they sample from the full set 
triads whilst combinations from the initial segment appear gradually less frequently. 
One can classify, then, the hierarchical frequencies (i.e. repetitions) which constitute 
the whole system (see ◊543b). 
 

 
◊543b 

 
Graphic ◊543b shows how the elements in the set do not appear with the same 
frequency. The first shape is more frequent than the second, and the second is more 
frequent than the third. This hierarchical series is not consecutive, however, and in 
order to see this a natural number is assigned to each shape in the series—the lowest 
number (0) representing the highest hierarchy. Consequently, the highest number 
(9) will represent the lowest and ‘less relevant’ frequency. Thus the numbers placed 
on top of each element reflect its ‘weight’ within the series. This ordering follows two 
criteria: (1) the number of times the shape is found within the groupings, and (2) the 
ordinality in the series elements. In consequence, the fourth shape occupies a higher 
hierarchy than the seventh, and in turn the seventh has a higher hierarchy than the 
last. 
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◊544a 

 
According to ◊543a, the distributive properties of the 20 triad combinations are not 
unique to this scale; rather, they are general patterns of the groupingss obtained from 
associations of the scales. In this case, for a scale with 7 elements in which the Bc-
triads number 35, the set U is composed of fifteen shapes that are hierarchically 
grouped as follows: 
 

 
◊544b 

 
Comparing ◊543b with ◊544b, presents a relationship of similarity in which, from 
four collections of contiguous shapes the set has increased to five. This similarity 
generalizes to larger Bc-triad selections when the number of elements in the scales 
increase. Furthermore, ◊544b represents a relationship of self-similarity, typical of U 
in Bc-triad of 7 elements. But one cannot say that this relationship is unique to U in 
Bc-triad of 7 elements. It is, again, a typical relationship of groupings derived from 
associations of the series, including uneven tone series. 

The hierarchies of groupings are thus splitting, forming new spaces between 
them, occupied by new relations of subordination as one moves forward in the series 
of elements. These spaces, continually depending on the original association rules, are 
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potentially associated with the process determining the relative self-similarity of a 
set.339 This notion corresponds with the theoretical foundations of David Hartley’s 
(1705–1757) ‘hyperchord’ or ‘chord of chords’, originally conceived as a generalized 
harmonic system (“Hyperchord [...] a harmony that contains all possible harmonies 
within itself”, Allen 1999:386), as well as with Moritz Hauptmann’s (1792–1868) 
concept of ‘triad of triads’ (see Hauptmann 1853), which has recently been developed 
by Engebretsen (2008) in the context of a reinterpretation of Hugo Riemann’s 
(1849–1919) theories. The metrical analogy of the same principle also motivated 
E.T. Cone’s theory (see Cone 1968) on pulse strata successively contained by larger 
strata.340 

 

 
 

 

◊545. Music metre subdivision as dense self-similar set, in which between each of its parts 
there is always a fractional part of the whole. The length of each segment is divided into 
two equal halves. The parts of the scheme are limited to the sequence of single note (1), 
half-note (1/2), crotchet (1/4), quaver (1/8), semiquaver (1/16), demisemiquaver (1/32), 
and hemidemisemiquaver (1/64). However, following the same relationship one can add 
larger segments (above the single note) or shorter (under the sixty-fourth note), 
endlessly. The width of bars is trivial, since it is determined by the space allocated for 
this example. 

                                                 
339 Examples in ◊541–◊544 are a precedent of what is discussed in chapter 6.4. on brocades 

and tessellations. They represent only a layer of rigid organization of musical space, comparable 
to other spaces of grammatical rigidity on which flexible structures move. 

340 See also pages 332, 350–351. 
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Self-similarity implicit in metrical subdivision 

The binary system of musical metre subdivision constitutes an absolutely self-similar 
set, since the distribution of its parts correspond to the same proportion (1:2) at all 
levels of an infinite set. This system is a self-similar dense set of dimension 1. It is 
‘dense’ because no matter what the level of its subdivisions, there is always a smaller 
part between two segments. Example ◊545, analogous to this definition, does not 
continuously cover the horizontal line in the complete sense of the arithmetic 
continuum, however, it is a system which for all practical purposes will suffice to cover 
the metrical possibilities as closely as we could ever require, just as the rationals 
approximate the reals. 

Metrical binary subdivision is equivalent to binary notation for the rationals 
where, in contrast to the decimal notation, the unit fractions used take the form 
1/(2)k. As is customary in analysis, if we admit the limits—i.e. the convergent series—
then we can ‘complete’ the system and handle the so-called irrational quantities 
confidently. Of particular importance to music is the measure, or unit, which we are 
subdividing. In analogy with the limit of the series 1/2 + 1/4 + 1/8, 1/16 + … = 1, it 
follows that, in absolute terms, such a subdivision completely fills the whole measure 
and is, in some sense, equal to the unit itself: 

 

◊546. Binary prolatio embedded into musical measure as a normal 
sequence, convergent to 1. 

The metrical subdivision’s ternary system follows the same principle of convergence, 
although with a 1(1/3) proportion at all levels. Unlike the Cantor set (see ◊332), 
which is a fractal, the continuous metrical subdivision, binary or ternary, is not a 
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fractal; the projection of its infinitesimal parts is analogous to the infinite sequence of 
points forming a straight line. 

Note also that the relationship between binary and ternary metrical subdivisions 
corresponds to the ratio 3:2, otherwise denoted by the fraction 3/2. It follows, 
therefore, that the sesquialtera (i.e. 3/2, or 1 + 0.5) relationship, generalized for musical 
metre and harmony, appears as a basic self-reference which (pre)determines 
fundamental aspects of recursion and order in music systems.341 

The fact that the wholeness of music metre can be characterized as a quasi-fractal 
set, requires a counterbalancing with the needs of metrical contrast and rhythmic 
change and the non-repetition principles of composition (see Chávez 1961, 
Schoenberg 1967, Ruwet 1987), in equilibrium with grammatical recursiveness. 
Monotony of pure metre is contrary to the rich meaning of musical self-reference. 
From this perspective, the nestings of metric contrast stimulate musical coherence via 
the stratification of metre, so that hierarchical arrangements of metre and rhythm 
provide varying structural levels which enrich the monotony of pure metre.342 

 

                                                 
341  This issue, including the mention of sesquialtera, is discussed in subchapter 2.3., on 

symmetry. Here the self-reference of the series 0/2, 1/2, 2/2, 3/2, 4/2… (equals to 0, 0.5, 1, 1.5, 
2…) is assumed as related to the naturals’ self-reference: 1, 1+1, 1+1+1, 1+1+1+1… (equals to 
1, 2, 3, 4…). 

342 Metre’s contrast and hierarchization criteria are based on an intuition of metre’s pulse 
distribution, studied as a verbal phenomenon by Lotz (1960), Liberman and Prince (1977), Halle 
and Vergnaud (1990), and Hayes (1995); as a gestural phenomenon by Stokoe (1972), Brentari 
and Crossley (2002), and Mazzola and Andreatta (2007), and as a musical phenomenon by 
Yeston (1976), Lerdahl and Jackendoff (1983), and Barlow (2001). There is no consensus on a 
general regulation, because each of these authors adapted a general model to explain different 
particulars, some of which are not analogous in verbal language and in music. However, there is 
a broad acceptance of some basic principles of metrical structuring, corresponding to specific 
traditions and styles. 
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Metrical recursion 
Metre operates as an explicit system of recursion, consisting of a stereotype of space-
time in which typical repetitions of pre-established forms are nested. However, 
metrical recursion does not occur as mere repetition of pulse sequences, but as a 
symbolization of a ‘fixed space’ on which varying relations move cyclically. Such a 
recursion consists, in turn, of layers of subsequent fixed spaces, nesting successive 
displacement variables. Herein lies the theoretical relevance of the hypermeasure, a 
concept proposed by Edward T. Cone (1968:79) together with its conceptual 
derivations hypermeter, hyperbeat, and hyperdownbeat, refined by Kramer’s (1988:86–
93) analytic method, as well as implemented for the study of grammatical functions 
in Lerdahl and Jackendoff’s (1983:20) generativism.343 

The functional relationship between symbolic space and displacement variables 
is characterized by the complementarity between metre and prosody. Whereas metre 
is the schematic part of a body-movement analogy, prosody is the actual part of the 
scheme’s interpretation, converted into a space for negotiation between idiolect and 
grammar.344 

In metre, as in other processes involving statistical and functional self-similarity, 
the latter emerges from the interaction between rigid and flexible parts,345 which can 
also be interpreted as an interaction between actual and potential—where by potential 
we might mean the musical score and the metre signature written in it, and by actual, 
its interpretation by a player.346  A typical proof of this relationship is the 
characterization of metre as dance scheme, affected by a need to differentiate 
hierarchies of pulses; or as a template to regulate and orient the cyclical movement of 
a verse-reading, affected by breathing. This characterization extends to singing and 
instrumental performance. 

 
                                                 

343 This issue is discussed in subchapters 3.7. and 4.4. 
344 See subchapter 4.8. 
345 Swift (1998:28), for example, identifies criteria of metric and agogic flexibility common to 

the music of Arnold Schoenberg and the poetry of William Carlos Williams. 
346 Also in the context of musical metre, Volk (2007) proposes an interpretation of the tension 

between rigid and flexible, that is compatible with this perspective: he suggests that metre is a 
structural frame in which “poles of permanence and change” interact determining statistical 
relations at local and global layers, in a piece of music. 
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Melodic span 
The measurement of type intervals is of great significance in melodic analysis. In a 
similar way, measuring metric relations is important in order to know how they 
determine the shape of periods and sections within larger structures. This measuring 
is also a usual method in the compositional process, determining as it does the 
relationships between musical events and objects. 

The example in ◊547 suggests a group of basic relations among uneven (i.e. non-

monotonic) pitches, which can be considered as constructive typologies within a 
melodic context.347 This scheme follows from the assumtion that every melodic 
interval can be described as a sequence of relationships between just two elements, (a 
→ b), where brackets denote the interval, arrow denotes relation (i.e. ‘higher’ or ‘lower 

in pitch than’), and letters a and b denote two different pitches in a melodic segment. 
The generalization of this principle permits associating these prototypical relations 
with a wide variety of cases as every melody is composed of steps or jumps in a scale 
—in Copland’s (1939:51) words, “all melodies exist within the limits of some scale 
system.” Hindemith (1937/1941:57) goes beyond this description, observing that the 
motion itself generates ‘melodic tension’ with respect to harmony: “The motion from 
one tone to another produces melodic tension, and the bridging of a gap in space by 
the simultaneous juxtaposition of two tones produces harmony”. 

                                                 
347 The term constructive typology refers to a group of functional relationships between elements in 

a musical grammar. The representation of these typologies, as points and lines according to 
example ◊547, is based on the formalization of “symbolic spaces” proposed by Lewin (1987). 



 

 
 273 

 

◊547. Chart including the basic step typologies between two pitches (figures 1 and 2) 
and three pitches (figures 3, 4, 5 and 6), starting from an origin (level 0). The left-
hand column suggests traditional notation. The right-hand column represents more 
abstract figures that are used as an absolute notation in the following diagrams 
(◊548–◊551), characterizing motivic-melodic movement. Points symbolize 
‘elements’, i.e. pitches from a pitch-set class, and lines symbolize the ‘type interval’, i.e. 
melodic orientation or relationship between two pitches. This scheme simplifies 
Edward T. Cone’s (1968:26–27) description of musical movement as an analogy of 
an ‘object’ (●) ‘moving’ upwards or downwards (/, \). 

From this schematization, one can perform a variety of combinations thereby 
building up an emergent sequence (e.g. a melody), where we may chose from all 
possible combinations ad infinitum.348 Under the scheme ◊510, the relationships 

                                                 
348 Chapter 6 explores in more detail this self-structuring sequentiation, in the specific context 

of L-systems and the Thue-Morse sequence. 
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between these sets can be represented as election probabilities in a system with 
known origin and distribution rules. The potential organization of these typologies as 
emergent patterns, gains structural density in a way analogous to the continuous self-
structuring of verbal intonation, following a rough approach to ‘high’ or ‘low’, 
starting from the initial range [a, b]. 

 

◊548. Symmetrical pattern of twelve steps as a system of probabilities in an abstract 
melodic context. Primary figures (1 and 2 according to the previous chart) have all 
probabilities of occurrence in each step (0.0833... × 12 = 1); thus they occur twelve 
times in this example. Figures 3 and 4 are half probable in respect to the primary ones 
(0.04166), and figures 5 and 6 are half probable (0.02) in respect to the latter. The 
whole pattern matches Zipf’s distribution and summarizes typical relationships of 
melody as a succession of steps. 

The recursive functions implied by a finite initial set of melodic steps is directly 
relevant to the self-structuring of melodic typologies, such as, for example, in the 
composing process of J.S. Bach’s Prelude, from his Suite no. 1 for cello, wherein a 
compact system sets the self-referential context for the whole piece. In this example, 
the generating motif evolves along with the Prelude. Nonetheless, within the piece as 
a whole, the motif’s original orientation prevails; each measure reflects, together with 
local variations, the overall structural identity. This is observable even in the Prelude’s 
final motif, which operates symmetrically with respect to the generating motif (see 
◊549b). 

These examples, despite their reductionism, cogently summarize the coherence 
and self-structuring tendencies of melodic movement—in terms of a small set of 
simple initial relationships between a few elements. These tendencies appear within 
both in tonal and atonal modern repertoire, by a same need for consistency across 
intrastructural similarities. Taking as an example the measures 52 and 53 of Edison 
Denisov’s (1929–1996) Fifth Study (1983) for bassoon (see ◊550), one observes the 
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same tendency to reuse and consolidate typologies that are present from the 
beginning of the piece, in a form of discursive statement. In fact, the structural 
(rhythmic and melodic) basis of the entire piece relies on typologies 1 and 2, 
transformed in upward movements that determine the global surface of this work. 
This typical behaviour can be extended to a wide variety of repertoire that—as in the 
specific case of instrumental studies—performs a consistent recursion of its 
constructive relationships. 

 
◊549a. The first measure and generating motif of J.S. Bach’s Prelude, Suite no. 1 for cello. 

The sequence below the musical staff represents the articulation of typologies 
according to chart ◊547. The numbers correspond to the ‘weight’ of different step 
typologies (from 1 to 6). For instance, the number 0 represents the source, common to 
every step, and the numbers in brackets indicate the secondary figures completing the 
system. The rows of numbers do not reflect the quality of tonal intervals—something 
that can be done with conventional analysis—but stereotype the steps in the sequence, 
showing the skeleton of the melodic movement. 

 

 

 

◊549b. Left: conclusive bar of the Prelude, with its melodic typologies. Right: 
condensation of the similarity of the melodic intervals at the beginning (measures 1–4) 
and the end (measures 39–41) of the piece. The structure repeats exactly at the 
indicated measures; the derivative measures which make the rest of the piece result 
from this simple gestural similarity. 
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Obviously, intrastructural features of similarity cannot be of the same type in all 
pieces of music. However, it is noteworthy that in a vast array of melodic repertoire 
from different eras and traditions, melodic typologies indicate recursion formulae 
that, on the basis of simple relations, trend to a higher organization.349 In this fashion, 
the part within the whole reflects the whole in the part, whilst the most complex 
polyphonies are made of the simplest melodic typologies. 

 

◊550. Measures 52–53 of Edison Denisov Fifth Study for bassoon (1983). Copyright 
by Deutscher Verlag für Musik, Leipzig. Fragment reprinted with the kind 
permission of the publisher. The step sequence below stereotypes the whole 
sequentiation of the study. The symbol P has been included to indicate ‘pause’, 
which also follows Zipf’s distribution in a massive collection of similar pieces of 
music. 

This description of melodic intervals as sequences of basic steps or linkage 
typologies, bolsters the hypothesis of a close relationship with Zipf’s law: primary 
figures 1 and 2 (according to ◊547) are absolutely repeated in all melodic patterns 
(i.e. in all sequences of non-monotonic pitches); figures 3 to 6 are less often (with 
lower probabilities, although still very common in a very large collection of samples); 
a set of secondary derivates (direct ascents or descents by four steps in any scale) 
becomes less likely; and a set of tertiary derivates, becomes even less likely. This 
                                                 

349 This notion is confirmed by statistical evidence provided by Beran and Mazzola (1999a–b), 
Bigerelle and Iost (2000), Foote and Cooper (2001), and Paulus and Klapuri (2006), that reflects 
a systematic use, in music, of principles of symmetry and repetition, and coordination between 
similarities and differences, as a means of structural and discursive sense. 
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means that, following this principle, there should be very scarce examples of tunes 
consisting of continuous ascent or descent segments with ‘many’ steps (i.e. 7, 8, 9 or 
more) within the same basic scale. 

 

◊551. Hyper-melodic pattern with an abstract sample of overlapping type-intervals 
compiled from a collection of monophonic pieces. In this example, one can see that 
short steps are more common than medium steps, and the latter are more common 
than larger steps, which reminds Zipf’s distribution as described in subchapter 5.1. 

Due to its symmetry, example ◊549 provides a description of the development of 
melodic consistency with the use of the same basic set of typologies. However, this 
consistency does not only depend on the basic relations of symmetry (see ◊232, 
◊233), but also—more generally—on the bulk of distributive relations following a 
similar pattern of simple steps in the short term, which are combined in a multitude 
of possibilities in the long term.350 The boundaries of this form of organization tends 
to approximate self-similarity. Accordingly, Liu (2008:99) concludes that in a 
maximum of asymmetrical relations sharing the same basic behaviour, these relations 
tend to self-similarity: “Maximal non-symmetric entropy leads naturally to Zipf’s law 
[…] Equally, if we add other auxiliar parameters, we will obtain other distribution 
laws.” Consistent with this idea, Brothers (2007) finds that Zipf’s distribution 
governs, for instance, the Bourrée – first part of J.S. Bach cello Suite no. 3. 

The extension of this constructive principle in a broader range of musical cases 
reveals a common behaviour behind the development of musical consistency. Beran 
(2004:93) suggests, however, that no special importance should be given to self-
similarity patterns in musical sequences in general. The significance of these patterns 
should be judged rather by their meaning in the context of convergent self-similarity, 

                                                 
350  This invokes the coordination between contingency and dependence, referred to in 

subchapters 3.3. and 3.4. (see pages 68 and 83). 
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by the systematic functions of consistency in a whole. Therefore, according to Beran, 
such consistency would be attributable to the self-similarity of a system, only if the 
same kind of self-similarity is present at different levels of the musical structure. 

When combined with other analytical techniques, the analysis of basic typologies 
of a melodic sequence can provide a richer comprehension of the processes of self-
similarity of melodies in simultaneity with harmony and metre. In this direction, 
Brinkman and Mesiti (1991) emphasize the comparison of local and global measures 
by overlapping two-dimensional maps—in this case representing pitch and duration. 
Stephenson (1988) also proposes the use of lines and angles in four types of 
‘coordinates’: pitch-duration, scale-duration, tonal cycles-duration, and pitch-metre; 
whilst Beran (2004:59–61) devises the notion of ‘melodic weight’, looking at the 
correlation between tempo and loudness. 

 
Rhythm as rules of recursiveness 

In contrast to duration and intonation as typical parameters of melody, the structural 
‘axes’ of rhythm are duration and stress (see Yeston 1976:4, Lidov 2005:154). The 
primary figures of rhythm operate similarly to primary figures in the scheme ◊547, as 
they consist, in principle, of simple relations between two basic elements—this time 
of a pulsing and prosodic character. 

Pulse and tone are quite distinct entities in music theory, but their basic 
organization still follows common rules of reflection and reciprocity. That is, we can 
classify rhythmic acts into those which are equivalent in terms of both duration and 
stress. Such equivalence defines a relation between rhythmic elements that is reflexive 

(i.e. self-related), symmetric (if x is equivalent to y then y is equivalent to x) and 

transitive (if x is equivalent to y and y is equivalent to z then x is equivalent to z): 

• Reflexivity: x~x 

• Symmetry: x~y fl y~x 

• Transitivity: x~y ⁄ y~z fl x~z 

which serves as a starting point for a self-structuring recursiveness, and which can be 
structurally connected with the properties of symmetry as explained in 2.3. 
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Just as the analysis of a genetic code is not enough to understanding all the 
peculiar traits of individual behaviour, the analysis of a rhythmic-intonational code in 
music—as a result of an alternation of elements—does not lead automatically to an 
understanding of the deepest aspects of musical style and the context in which it 
develops (see Tiits 2002:28–33). This is why Koblyakov (1995:299) emphasizes that 
“In a musical model the system of coordinates is not set but created”. This means that 
for each recursion cycle, the musical system is open to functional and structural 
changes, and—by analogy with speech—the simplest recursion in musical structuring 
can be fully meaningful as a ‘making sense’ information process. 

Yeston (1976:4) suggests that there are two kinds of ‘functional statements’ in 
rhythmic recursions: those that proceed from pitch to rhythm and those that proceed 

from rhythm to pitch. Each of one requires a specific grammar with its own rules of 
recursiveness. This dichotomy seems to be nested itself within human physiology and 
evolution. As in lyrical drama, the relationship pitch to rhythm assimilates the 
subordination of body movement to the voice’s movement. In some instrumental 
genres the relationship rhythm to pitch is reminiscent of the voice subordinate to 
body; as happens in dance music, or as happens when moving the body in ordinary 
actions. As Chávez (1961:39) notes, “Dancing seems at first to have been nothing but 
a form of walking. […] the arts of rhythm—poetry, music, and dance—were born the 
day man first walked rhythmically.” 

The relationship between pitch and rhythm can be represented, therefore, by a 
functional reciprocity. Starting from an original point, intonation and rhythm follow 
the same operating principle, not based on a mere duality, but rather in a sequence of 
simple elements that make up a complex code in a medium to long term: pitch subject 
to rhythm and rhythm subject to pitch are relations that can operate in a single musical 
expression in a similar way to how—simultaneously and without conflict—certain 
functions of prosody and intonation operate in language. 

Based on Peitgen and Richter (1986), Koblyakov (1995:297–299) synthesizes 
this concept in the formula xn+1 = xn

2 + C , and which is directly related to rhythm as 
proportion and self-structuration, as analyzed in Chapter 6. In this context, the 
mechanisms of rhythm as proportion and self-structuration operate as an ordering 
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function of the code,351 and—according to Koblyakov (op. cit.: 297)—constitute a 
principle of self-similarity for rhythmic, melodic, and harmonic structures, and in 
general for all musical complexities formed with a constructive relationship between 
syntagma and paradigm. 

 
 Lewin’s transformational model (1987) 

Much of the analytical work of David Lewin (e.g. 1982, 1987) is based on 
observations on music functional recursiveness, classifying its symmetries, repetitions 
and intersections. Heinrich Schenker (1868–1935) had already attempted to explain 
general and particular relations of music by the way some segments comprise and 
intersect others, considered as subordinates. In his analytic–generativist theory 
Schenker (1932) conceives that every tonal structure is elaborated as an Ursatz 
complex (see Salzer 1952, Pankhurst 2008). The effects of this complex are thus 
embedded in the intrinsic properties of the fundamental relations of the Ursatz 

(which is a basic musical idea) and in its prescriptive orientations. Extending 
Schenker’s theory, Salzer (1952:32–36) emphasizes the study of two sorts of 
categories: the music strata (Schichten), and the prolongation and functional movement 
of music. His global vision of a musical structure tends to identify hierarchies, always 
observing the nesting of one structure within another, which the first determines. 
Therefore, he uses the image of “chord within the chord” (see Salzer, op. cit.:37), 
consistently extended to a system of strata. 

Whereas Salzer devotes special attention to the study of fundamental chords 
with respect to higher hierarchies and their subordinates, Lewin (1987) looks for an 
explanation of these relations in a kind of germ latent in tonal structures (extensible 
to post-tonal), starting from a basic hierarchy with a typical symmetry. Firstly, Lewin 
conceives a universe of ‘objects’ (pitches, chords, scales) and ‘relations’ (inversions, 
transpositions, transformations) between such objects; consequently, he uses the 
concepts of space, referring to objects and their sets, and group, referring to actions 
and relationships between objects. In short, as Satyendra (2004:101) suggests, “It is 

                                                 
351 See pages 208–210. 
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useful to liken the difference between space–elements and group–elements to the 
difference between nouns and verbs.” Under this consideration, transformational 
theory deals with the contingency of relations and functions between groups and 
tonal space, rather than—in contrast to Salzer, for instance—establishing 
relationships between objects, functions and context. According to Lewin 
(1987:159), the transformational attitude “does not ask for some observed measure of 
extension between reified ‘points’; rather it asks: ‘If I am at [a space] s and wish to get 
to [a transformation] t, what characteristic gesture should I perform in order to arrive 
there?” This criterion is substantially different from the criteria used in examples 
◊541–◊544, insofar as the objects ordered from certain rules of measurement are not 
the ones to be found in a relation of similarity or (pre)self-similarity. The 
transformational perspective opens the possibility of observing such relations as 
variable functions of groups and spaces.352 In consequence, the image of “self-
contained” object (Salzer 1952:112) gets enriched with the possibilities of “space 
within space”, “group within group” or “transformation within transformation”. As a 
matter of fact, the formal definition of transformation is based on the principle of 
recursion, a potential motor of self-similarity in musical systems (that is, sets of objects 
and groups of relations interacting): “A transformation is formally defined as a 
mapping from a set to itself.” (Satyendra 2004:104; see also Lewin 1987: xxx, 88, 124–
127, 152). 

 
The concept of nesting in Lewin (1962) 

Lewin (1962:99–100) uses the concept of ‘nesting’ in an intuitive way, to classify 
unordered overlapped segments, common between pitch rows from the same 
chromatic whole. This notion emphasizes the interval content shared by two rows, so 
that it is possible to extract segments by permutation and inversion operations. 
Equally it is possible to extract the interval content shared by two segments, in 
consecutive layers. From this idea, Ilomäki (2008:196–222) proposes measurements 
                                                 

352 This change in perspective is stated from the very definition of musical self-similarity, at the 
beginning of subchapter 3.3.: “there are structures […] in which a relative self-similarity does not 
appear as a kind of ‘scale-bound object within a similar object’, but as a statistical feature: 
distributions, and not shapes are found in a self-similar relationship.” 
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of functional similarity, based on features of nested subsets and their combinations. 
So far Lewin’s (1962) notion of ‘nesting’ is consistent with the concept of ‘pre-self-
similarity’353—since it presents an original set from which subsidiary relations are 
extracted, with the possibility of iterating recursions in successive layers—in Ilomäki 
(2008) this notion extends to a relative self-similarity, assuming segmental deviations 
in a much larger number of layers. Actually a finer point is worth pursuing: that this 
self-similarity does not appear simply in the repetition of common elements along 
deviations, but in the iteration of operations with which segments are obtained. This 
sort of relationships of functional similarity among pitch segments—eventually 
instances of self-similarity—is closely related to Klumpenhouwer nets in their self-
similarity cases, as explained below.354 
 
Recursion of networks and hyper-networks 

In pitch-class set theory, Klumpenhouwer networks allow visualization of links 
between pitch-class sets as similarity systems and as modes of identical representation 
or isographies at different functional relationships. A Klumpenhouwer network is any 
chord network using transposition or inversion operations to interpret relationships 
between pitch-class sets (Lewin 1990:84).355 In other words, Klumpenhouwer 
networks characterize the form with which some simple functions of transposition 
and inversion, ‘orbit’ around the same object (for example, a triad). Under this 
analysis, different pitch-class sets can be represented by networks that have the same 
appearance, but at the same time present different groups of relations, alternating 
forms of transposition and inversion. In this context, and evaluating the relations of 
self-similarity in transformational terms, Buchler (e2007) postulates that there are 
cases of structural recursion in which “networks of networks” emerge. Such emerging 

                                                 
353 This notion is defined in subchapter 3.3. 
354 According to its initial statement, this subchapter is restricted to the operational interference 

of ‘rigid’ schemata with respect to the ‘flexible’ relations of music. It would be impossible here 
to give an analytical summary of the theories of Lewin (1962, 1990) and their development in 
Murphy (e2007) and Ilomäki (2008), among other authors who propose methods for the study 
of similarities in the context of pitch-class set theory, which eventually could lead to a specific 
theorization of musical self-similarity from this perspective. 

355 See subchapter 3.4., directly related to this topic. 
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structures correspond to Klumpenhouwer networks intertwined so that changes in 
them become similar to the transformations of a network group. In addition, 
Murphy (e2007) suggests using the “term self-similar for the situation in which a 
hyper-network matches, to some degree, one of its constituent networks, and the 
term self-dissimilar for matches that are not self-similar.” However, the notion of self-
dissimilarity, related to self-similarity in a manifold way, requires a separate treatment 
in subchapter 6.6. 

It is worth to mention, as a complement to what is stated above, that the idea of 
harmonic nesting in networks and hyper-networks is compatible with the dynamic 
concept of fractal nesting suggested by Koblyakov (1995:299): since “the spectrum of 
similar passages stipulated by [a functional] similar conjunction at different scale-
hierarchical levels, [one may say that] a system of ‘inserted fractals’ occurs with 
smoothly changing dimensions in real time”.356 Koblyakov (ibid.) claims this 

transdimensional continuum “gives birth to time or, to be exact, to the sense of time as 
a correlation of different processes in different metrics and scales”.357 

 

                                                 
356 In this conceptualization, the notion of ‘fractal’ is attached to what is defined in section 

1.3.4. It is obvious that what Koblyakov intends by ‘inserted fractals’ actually means ‘nested 
fractals’. 

357 Several years before I became aware of Koblyakov’s (1995) notes, I attempted to express 
this idea in a draft on the genealogy of musical time in a transdimensional continuum, mixing 
concepts from Georg Cantor (1845–1918) to Julian Barbour (1937– ), with Peircean synechism. 
Unfortunately, the text was published with many typographical errors and obvious conceptual 
infelicities (G. Pareyon, “Transfinitud y forma: reflexiones en torno a la música contemporánea” 
in [Hebert Vázquez, coord.] proceedings of the Primer encuentro transdisciplinario en torno a la música, 
Universidad de San Nicolás de Hidalgo, Morelia, 2000). I would like to put forward a thorough 
reelaboration of this writing, nevertheless, as further research. 
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Broad sense of the concept of nesting 

The term ‘nesting’—restricted until this point to Lewin’s (1962) theory in its 
Cartesian and transformational perspectives—can also be understood in a broad 
sense, encompassing any kind of self-similar process branching in finite layers.358 

Introduced by Lindstrøm (1990) in the study of Brownian motion, this ‘broad 
sense’ refers to the structural relationship between potential and actual features in the 
states of a dynamic process and to all its objects.359 Within the same context, Xenakis 
(1992:289–293) calls ‘nesting’ the samples of noise in stochastic functions producing 
1/f 0 and 1/f 2 noises, with special interest in the (a)symmetries and (a)periodicities of 
sound synthesis.360 By contrast, Kramer (1995) associates this term to the power of 
structural durations nested in ratios, proportions, and series in a spectral sound 
sample. 

Congruence between segment and self-similar whole can be detected within an 
overall evaluation of nested sets within larger sets with more recursions. As explained 
below, the analytical arcs system proposed by Wattenberg (2002) is a useful option 
for representing the same kind of self-similarity in one or two functional layers, but at 
the same time introducing fuzziness between detail and generality. On the other 
hand, Visual Recurrence Analysis (Bourke e1998, Kononov e1998) is able to 
penetrate in both directions, with sufficient transparency and statistical products 
which may also be useful, as explained below. 

 

                                                 
358  In support for this use, see Fitzsimmons et al. 1994:595, Kigami 2001:70, and Xiao 

2004:277–278. 
359 As part of a compositional technique, I have employed such a broad or intuitive sense of 

nesting (see Pareyon 2003), referring to a simultaneous multi-layered self-similar music from a 
basic set of rules defined for each instrument (minimum measurements of texture, duration, 
tempo, and local-absolute loudness), developing similar relations on a larger scale (metre, 
harmony, melody, and global-relative dynamics and agogic). 

360  Interestingly, Xenakis (1992:183) also introduces the word ‘nesting’ for a synecdochic 
conception of music, although he does not provide a larger development of it: “[T]he Greeks 
used in their music a hierarchic structure whose complexity proceeded by successive ‘nesting’, 
[…] by inclusions and intersections from the particular to the general”. This matches with the 
concepts developed here, in subchapters 4.4. to 4.6. 
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Holistic sound visualization: 1. Arc plots 

The study of acoustic nestings is accessible using statistics. Anticipating aspects of 
research done by Bourke (e1998), Kononov (e1998), Foote and Cooper (2001), and 
Paulus and Klapuri (2006), the proposal of Church and Helfman (1992) focuses on 
nesting of information in general, within a function space. Like other exploration and 
emulation tools derived from biology and organic chemistry,361 the dotplot developed 
by Church and Helfman is based on a relatively simple statistical method, whose 
operation can be systematized in complex dynamics: 

Dotplot has been developed for browsing millions of lines of text and source code, using 
an approach borrowed from biology for studying self-similarity in DNA sequences. With 
conventional browsing tools such as a screen editor, it is difficult to identify structures 
that are too big to fit on the screen. In contrast, with dotplots we find that many of these 
structures show up as diagonals, squares, textures and other visually recognizable features 
(Church and Helfman, op. cit.:58) 

The dotplot is obtained from a simple principle of data distribution: for instance, if 
the analyzed information consists of twelve elements with similar distributional 
properties (e.g. the chromatic set), such elements must be allotted by intervals 
reflecting a reciprocal affinity on a diagonal dividing the analytic square viewer. 
Perfect symmetry drawn along the diagonal reflects the identity of the overall 
relationship.362 If, in particular, what is analyzed is an alphabet (i.e. a finite repertoire 
of symbols), then the more the analytical sequences are coordinated beside or on the 
diagonal, the greater their distributive–qualitative affinity; or—conversely—the more 
they are in asymmetry with the diagonal, the greater their mutual differences. 

The first results using dotplots were displayed in a monochrome grid; later 
colours were added, associated with data distribution patterns. A detailed 
explanation of this kind of analysis occupies the following section, devoted to Visual 
Recurrence Analysis (VRA). Rather, this section points out how Wattenberg (2002) 
modified the dotplot technique using a simple comparison by rows. This 
modification ignores textures that are statistically useful in VRA, but instead it 

                                                 
361 These tools include projection of population in a logistic map, and L-systems. Due to their 

musical use, these concepts are explained in subchapters 6.2. and 6.5., respectively. 
362 This example matches with what is shown in the chart ◊524 (top left), on page 236. 
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helps—in a simple fashion—to visualize hierarchies and the overall strata in a text or 
a data sample with musical attributes. Wattenberg’s method consists basically of 
connecting elements, or related data chains, showing their frequencies (i.e. 
repetitions) by the use of arcs. The result of this analysis with simple Markov chains, 
such as those shown in ◊520 or ◊522 is not very useful, as they only show what is 
already clear: that original order is gradually lost for each recursion of a chain. 
However, on the other hand, if it is used to describe what occurs in a text with 
allocated repetitions, then the arcs system is eloquent about the quality of what is 
repeated (see ◊541). The same method is useful for analyzing a sequence or group of 
musical relations, in order to see how functional hierarchies and strata—if any—are 
organized. In essence this method of analysis is prior to Wattenberg. For example, 
François-Bernard Mâche (1983:179–180) uses it to indicate inner coherence of a text 
or a musical segment, as well as to summarize the overall relationship in each case 
study. 

The arcs diagram in ◊552 shows not only the inner organization of the text and 
its strategic repetitions, but also the actions related to it, and the images produced in 
the reader’s memory. The example in ◊553 suggests an analogous diagram showing 
the typical structural consistency of a musical piece (in Wattenberg 2002, there are 
more specific musical examples). A system becomes more visible, thus implementing 
direct comparisons of functional relationships between music and verbal language. 
Nesting in music samples occurs, however, through a consistency of layers within 
layers that are more complex than in a sample of written language. As suggested in 
Chapter 4, the surface of a musical system is actually tied to deeper relationships of 
self-similarity at various levels. This happens, for example, when the distribution of 
the harmonic components of timbre is connected with a likened distribution at the 
metric–harmonic macrostructure; or—even in a more subtle way—when a 
physiological pattern (e.g. heart beat, breathing periodicity) affects and determines 
crucial aspects of the instrumental performance. 
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◊552. Arcs diagram encompassing the first sentences of Salvador Elizondo’s poem The 
Graphographer (1972)—the same segment appears translated into English at the 
beginning of subchapter 3.6., as an example of literary self-reference. In this diagram 
the arcs’ thickness denotes syntactic hierarchy. Amplitude reflects constructive strata, 
in which the conjugation of the verb to write in first person singular, is very 
noticeable. Isolated words like Mentalmente, puedo, recuerdo, ya, are also easily seen, 
playing their own structural function within the text’s varying tensions. 

 

 
 

◊553. Arcs diagram typical of a harmonic recurrence analysis. The shorter arcs represent 
basic cycles of a same function. Different sizes reflect segmental hierarchical 
structuring. When extended, the higher hierarchies take up a broader space and 
become more visible. The lower half mirrors the top half in inverted symmetry, in 
order to make obvious a correspondence among temporal relations as a whole 
(horizontal displacement). The notional grounds of this analysis, developed by 
Wattenberg (2002), can actually be traced to Schenker’s (1932) and Salzer’s (1952) 
strata classification and prolongational analysis. 
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This kind of analysis and visual representation of music is compatible with 
Schenker’s (1932) theory of strata and structural prolongations. Moreover, for both 
examples in 541 and ◊542, the classical topics of Schenkerian analysis can be 
implemented as layer or level Schicht (Schicht), fundamental structure (Ursatz), 
interruption (Unterbrechung), surface or foreground (Vordergrund), and hidden 

repetitions (verborgene Wiederholung), among others. Accordingly—as Wattenberg 
suggests—Schenkerian analysis can be complemented using arc diagrams. 

 
Holistic sound visualization: 2. Visual Recurrence Analysis (VRA) 

VRA is a software for the qualitative examination of frequencies and non-parametric 
prediction of non-linear/chaotic time series. Recurrence patterns in VRA show the 
behaviour of a nonstationary series. In a stationary system the recurrence plot tends 
to be homogeneous along the diagonal, indicating levels of aperiodicity which can 
also be interpreted as degrees of self-similarity, i.e. degrees of relative periodicity 
within other consecutive periodicities. Its use was originally proposed by Eckmann et 
al. (1987:973), as a “A new graphical tool for measuring the time constancy of 
dynamical systems”. 

VRA allows detection of hidden patterns and deterministic structures in time 
series by using the ‘recurrence plot’ tool, which is essentially a graphical 
representation of the integral correlation, so that dependence on time in the system 
under study is prevalent, appearing in a multidimensional scaling. VRA first expands 
a given series of unidimensional time into a broader space within which the 
underlying generator develops (see Bourke e1998). 

As a referential scale, VRA emphasizes the data orientation, instead of a specific 
location. If data time transformation can be decomposed into isometries through a 
diagonal matrix, then a differential directional scaling is obtained on the diagonal 
values, which are the scale factors in perpendicular directions. Bourke’s (ibid.) 
formalization is actually useful in completing this explanation in the following terms. 
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Consider a series x with n terms: 

x0, x1, x2, x3, x4, x5, ... xi, ... xn–1 , 

for all vectors yi of dimension (length) D with lag (delay) d, so that 

yi = ( xi , xi+d , xi+2d , ...) 
D > = 2, d > = 1. 

According to Bourke (ibid.) this is commonly referred to as embedding x in 

dimension D with lag d. The recurrence plot is formed by comparing all embedded 
vectors with each other, and drawing points when the distance between two vectors is 
below some threshold. A coordinate (i, j) displays a point where and if the 
embedding of vectors of cardinality i and cardinality j are less than distance r. For 
example, a point emerges if 

||yi – yj|| < r . 

Then i is plotted along the horizontal axis, and j on the vertical axis. Both (i, j) 

represent ‘time series’: “therefore [the] recurrence plot describes natural time 
correlation information” (Eckmann et al., 1987:973). If the recurrence plot presents at 
the same time a homogenous and irregular distribution of points then the series is 
‘more’ stochastic: for a random series of 1/f 0 noise with mean = 0, and standard 

deviation = 1, the recurrence plot is as shown in ◊560a, corresponding to d = 2, h = 1, 
r = 0.05. 

The meaning of VRA plots lies not only in their statistical projection; most 
notably it lies in their ability to show aesthetic aspects of the contents analyzed. Their 
geometric patterns are a product of the information qualities processed. In this 
context, colour options are also implemented to make visible the relationships 
between frequencies analyzed in several dimensions, integrating an intersemiotic 
complex made of direct analogies between sound and image. Taking these qualities 
into account, Kononov (e1998) characterizes VRA as a tool for comparative studies 
in musicology and linguistics.363 

                                                 
363 The examples included in ◊560 were created by the author of this study, using Kononov’s 

(e1998) free software. Exceptions are: 1/f 0 noise example (a), adapted from Bourke (e1998); 
example ( f ) corresponds to number 3 in Dual-tone multi-frequency signaling (DTMF), used for 
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All examples, from (a) to (l), are accompanied by a header that represents their 
corresponding waveform, indicating frequency, length, and amplitude in the usual 
way. Noise samples (a) and (b) visually confirm what is stated in theory: that 1/f 0 
noise is a random process of signals with equal power within a fixed bandwidth at any 
centre frequency, and without tendency to self-similarity in any of its parts.364 In this 
context, according to Molchanov (2005:248, 255): 

If X does not contain fixed points, then X cannot be self-similar, which immediately 
simplifies the arguments used to characterise union-stable sets. […] The characterisation 
theorem of union-stable sets relies on the fact that a union-stable random set cannot be 
self-similar. 

Examples (c) and (d) are useful for explaining VRA aesthetic-informative value. In 
both cases the plotted signal appears in the VRA box as a regular texture. Whereas 
the bidimensional heading can be characterized as a pattern along a horizon of 
frequencies (ordinate) and durations (abscissa), VRA reveals patterns of similarity 
and relative consistency in a multidimensional chart. Differences between (a)–(b) 
and (c)–(d) are evident. In the first two cases the signal is randomly scattered with a 

null code content (irrelevant information as a system). In contrast, in (c)–(d) 
information is somehow organized: it tends towards stability in (c), and stabilizes in 

(d) with a codifiable signal. 

In (e) there is a slight modification of harmonic components of the original 
stable signal (d). Quite differently, ( f ) shows a DTMF signal corresponding to the 
harmonic tone of number three in digital telephony, as a texture that clearly shows 
the dual composition of the multi-frequency. The regular tiling of this pattern 
reflects timbre homogeneity, with an emission of its harmonic components 
distributed symmetrically. 

 

                                                                                                                              
telecommunication signaling over analogue telephone lines in the voice-frequency band; and, as 
indicated in situ, the beginning of Beethoven’s Fifth Symphony, which forms part of the original 
sample collection created by Kononov (e1998). This last example was included because of the 
easy access to this music as a commonplace in Western culture’s collective memory. 

364 See the definition of 1/f 0 noise on pages 241. 
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◊560. Visual Recurrence Analysis (VRA) examples. 

 

a)   1/f 0 noise 

 

b)   1/f 0 noise (filtered) 

 
 

c)  Sinusoid with noise 

 

 
d)   Sinusoid (pure tone) 
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◊560. (continuation) 

e)   Sinusoid (filtered pure tone) 

 

f )   DTMF 3 Signal 

 

 
g)   A 220.00 Hz with harmonics 1-4 

       (electronic synthesis) 

 

 
h)  Verbal expression 
      (Linus Torvalds voice) 
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◊560. VRA: Exploring self-similar patterns. 
 

i)  D# (155.56 Hz), crescendo 
     (bass flute) 

 

j ) Bell beat 
     (electronic synthesis with Lyapunov’s function) 
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◊560. VRA: Exploring self-similar patterns (continuation). 

k) Threnody of Manuela Gómez 
     (ritual mourning from the Batsil Winik’Otik people, Chiapas, Mexico) 

 

l) Beethoven, Fifth Symphony 
     (bars 01–58) 

 
 



 

 
 295 

In (g), for the same reasons which apply to the previous example, timbre 
homogeneity is also evident. There are differences from ( f ), however, in the 
abundance of harmonics with a more ‘hierarchical’ distribution: timbre gets richer as 
it is reflected by an increasing pattern of correlation.365 

Example (h) corresponds to a segment of a recorded interview with Linus 
Torvalds.366 Specificity of the source is trivial in this case. What is meaningful in this 
example, is the fact that the verbal utterance is built by signals variating in frequency 
and amplitude, distributed along the duration parameter. This is radically different in 
comparison with the previous examples. Both the waveform and the adjacent VRA 
show this distribution as a rhythm—the rhythm of speech—with segments of varying 
intensity and intonational richness, corresponding to syntactic structure units 
(words). Verbal language information is encapsulated in physically differentiated 
acoustic chunks, in irregular recursive patterns that nourish the expressive and 
symbolic variety of speech. A little later in this section, this case will be summarized, 
by comparison with example (k). 

Examples (i) to (l) consist of two VRA levels of enlargement: one at ‘medium’ 
scale (box to the right) and another at ‘microscopic’ scale (top right rectangle). The 
waveform in (i) corresponds to ten seconds of a D# (approximately 155 Hz) 
recorded from a bass flute. An increasingly richer production of harmonics results 
from the instrument’s form and materials, and from the amplitude growing. In the 
box to the right of the example (intermediate level), round symmetry simultaneously 
recalls the production of stable tonal frequencies (compare with examples c and d), 
and similarity—more a congruence than a coincidence—associating the sound wave 
with the instrument’s mouthpiece. Waveform similarity in example d may be 
compared, by proportional analogy, with the periodic vibration of a string. 

Example (j) corresponds to the electronic synthesis of a bronze-bell sound, 
showing a tone generator with a large amount of harmonics. The apparently 
homogeneous plot at the first level of VRA actually contains complex patterns in its 

                                                 
365 This autocorrelation is observable in the image of a deterministic periodicity made of sub-

periodicities with structural features that are similar to the general pattern. 
366  Digital recording available in http://www.freeinfosociety.com/media.php?id=50, file 

“Torvalds, Linus: Operating Systems” (website consulted on September 1, 2007). Torvalds is a 
software engineer best known for being the chief architect of Linux, a free and open source 
software. The selection of the audio file is arbitrary. 
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medium and micro levels, with a self-similar behaviour comparable to Lindenmayer 
system self-organizing curves within a Hilbert space. This example contrasts with (i), 
which has a more limited harmonic composition and lesser interferences from 
resonances. This comparison suggests the variety of harmonic textures (i.e. timbre) of 
various musical instruments and other objects of sound production, as isospectral 
manifolds in Hilbert spaces. Subchapter 6.4., on tessellations and brocades, resumes 
this issue within a context of constructive symmetry. 

The following example (k) comes from a field recording with the voice of 
Manuela Gómez, a mourner woman and healer from the Batsil Winik’Otik people 
(Chiapas, Mexico).367 There are some obvious similarities with the previous verbal 
example (h), although here the enlargement boxes show the similarity plots in the 
voice harmonic spectrum. Both vocalisation examples (h and k), extracted from 
cultural contexts which are quite different, and articulated by two individuals of 
different age, sex and ethnical origin, reveals coherent affinity under the same 
principle of harmonic and rhythmic generation. This feature reinforces the notion 
suggested in this study, of the relative homogeneity of human voice forming the same 
family of musical instruments, with timbral and prosodic variety originating in 
psychophysiological and cultural variety.368 Whereas human voice (sound) can be 
described by analogy with a family of musical instruments, speech (language) can be 
described as the articulated natural repertoire of the same family.369 

Example (l), like (c) and (d ), is adapted from the files included in Kononov’s 
(e1998) software package. (l) represents the starting segment of Beethoven’s Fifth 
Symphony (bars 01 to 58), and suggests some similarities with respect to verbal 
                                                 

367  Recording included in the compact disc Sistema de Radiodifusoras Culturales Indigenistas. 
Testimonio musical del trabajo radiofónico, Instituto Nacional Indigenista, INI-RAD-I-5, Mexico, DF, 
1995. Also kown as Tzotzil, the Batsil Winik’Otik are an indigenous Maya people of the central 
Chiapas highlands in southern Mexico. 

368 This notion is expressed in subchapters 4.4. to 4.6. More precisely, Pareyon (2006) suggests 
conceiving culture as a choir and language as phonological texture: a linkage of individual songs. 
Following this game of paradigmatic analogies, the history of culture can be described as a choir 
made of choirs, forming an overall noise at the macro level, with songs and textures articulating 
patterns defined at the micro level. 

369 This relationship of acoustic aspects of music and speech cannot be extended, however, to 
all theoretical perspectives. It is quite obvious that music and speech differ greatly in their uses 
and their ways of encoding and representation. This issue, which needs further discussion, is 
developed in subchapters 4.7. and 4.8., especially for its involvement with the concepts of 
grammar, style, idiolect, ecolect, and translatability. 
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language: the whole organization of information shows segmental accumulation of 
acoustic material in a form comparable to that observed in the verbal examples (h) 
and (k), with a correlated outline of semantic and syntactic value (although not 
lexical, in the case of music). The waveform of (l) represents a minor segment of the 
Symphony first movement. The complete movement waveform can be compared 
with segments of the vocal waveforms in (h) and (k): in the waveform of (l) there are 
five large sub-segments, comparable to five chunks of a continuous verbal expression, 
or to five groups of sentences or words contextually agglutinated. This encapsulation, 
common among systems of acoustic information, represents one of the greatest 
similarities between music and verbal language.370 

Example (k), with Gómez’s voice, corresponds to the utterance “oh, jt’tzön mbal 
mbe”, in Tzotzil language. Torvlads’ voice corresponds to the utterance “to kind of 
explain”, in English. By contrast, example (l) belongs to a piece of symphonic music. 
Nonetheless, despite their obvious contextual differences, all three cases have in 
common the same kind of information encapsulation. 371 All of them show 
tendencies to a similar type of agglutination, forming nodes separated by quietening 
intervals, in a spread distribution of intensities, with acoustic contours that are not 
found in samples of random distribution of frequencies—1/f 0 noise, for instance; nor 
in relatively stable periodic signals, with simple or complex harmonic textures, as in 
examples (i) and ( j). In these cases (h, k, l) there is a recursive coordination taking 
place in an intermediate state between random distribution and periodic repetition 
of similarities. Whereas randomization tends to a widespread difference, and 
continuous periodicity produces a monotony of similarities, the examples of music 
and verbal language tend to self-similarity, mirroring patterns of recursion and self-
reference as signs of variation and operational consistency.372 

                                                 
370 On the structural similarities and differences between music and speech, see subchapter 2.4. 
371 Since examples (h), (k) and (l) correspond to systems of sound organization in a temporal 

and hierarchical distribution of codes, it is obvious that they keep generalized aspects of 
structural similarity, like information encapsulation in the forms of phrasing and hierarchical 
chunking. For an explanation regarding the latter, see subchapter 2.5. 

372 Other statistical methods used for the measurement of musical self-similarity are widely 
discussed in Beran and Mazzola (1999a–b), Bigerelle and Iost (2000), and Beran (2004). The 
Gabor function, associated with the Fast Fourier Transform, and which proceeds from a 
Gaussian frequency and a wave in the complex plane, is also useful for analyzing self-similar 
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The universe is, 
in all its macro- and micro-aspects, 

determinate and indeterminate.  

Stockhausen, 1977:96 

5.5. Determinism and indeterminism in cooperation 

There is a practical implementation for the opposition absolute fractal versus natural 
fractal. This includes the distinction between deterministic fractal (strictly a self-
similar object or process in which fractal dimension is the same for a part than for its 
whole), and stochastic fractal (for instance, Brownian motion; or noises from plasmas 
and diffusion patterns in which fractal dimension is not the same for the part than for 
the whole). This view allows a finer scrutiny of the causal arguments for self-
similarity, beyond the obscurity—and excessive generality—of the concepts absolute 
fractal and natural fractal. 

The deterministic fractal can be roughly defined as the self-similar set whose 
axioms, initial conditions, and rules of operation and production are objectively 
representable (i.e. Cartesianly acceptable as extensions of a system), with general 
relationships representative and valid for all the parts of the whole. By contrast, the 
stochastic fractal can be defined as the self-similar set whose axioms, initial conditions, 
and rules are partially representable, with relations that characterize only a statistical 
sample, and which are valid for a specific segment of the whole (e.g. a Lévy flight 
segment). Both types of axiomatics can be implemented as compositional systems 
within different layers of recurrence and self-similarity, with grammatical or 
pragmatic character (see Xenakis 1992:266, 292–293; Bolognesi 1983:31–36). This 
implementation is also possible thanks to a negotiation between determinism and 
indeterminism. From this viewpoint, Biles (e1998) notes that: 

Some composers use algorithmic techniques only for generating low-level details, like 
pitches and/or lengths of specific notes, within tight constraints that they set. These 

                                                                                                                              
patterns in the study of sound granulation, as suggested by Rocha Iturbide (1999) and Roads 
(2004). 
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composers determine the deep structure of the piece, make most of the larger-scale 
decisions, and use the algorithm only to generate the surface structure. Other composers 
may use algorithms that generate sequences that exhibit their own deep structure, which 
can allow the algorithm a more comprehensive role in creating the composition. The 
composer still makes plenty of compositional decisions, but these decisions are more 
collaborative in nature and often serve to emphasize the deep structure inherent in the 
sequence produced by the algorithm. 

In this context, consideration of a functional co-presence of deterministic and 
stochastic (pseudo)fractals in music, may contribute to understanding in each case 
the boundaries of rigidity and flexibility of a musical system. Assuming this 
negotiation, Oliver’s (1992:172) remark becomes relevant: 

Fractals do not necessarily offer hope that we can control elusive phenomena [observable 
in nature]. On the contrary, we are just beginning to understand that chaos and 
unpredictability are more deeply embedded in nature than we ever imagined. Fractals do, 
however, provide powerful tools for modelling and visualizing nonlinear systems. 

The chaos referred to by Oliver corresponds with the traditional concept of chaos 
laid out by Henri Poincaré in 1890, studying the Three-body problem. This problem is 
related to the difficulty of determining the relative position of three bodies in their 
mutual attraction, with known initial positions and velocities. The major 
complication in this problem arises from the fact that a minimum variable in the 
system’s initial conditions can quickly produce huge differences. Let’s consider the 
case of a Lindenmayer system whose initial conditions are influenced by another 
system; the first data strings obtained will reflect a disturbance that grows 
logarithmically to infinity, in very few steps. Other similar examples can be excerpted 
from Chapters 5 and 6, as the chaotic fluctuations in the logistic mappings. This 
notion of chaos is also explained by Vázquez (2006:403), within the frame of musical 
analysis, referring specifically to Ligeti’s Étude 1: Désordre (1986), for the piano: 

‘Chaos theory deals not with the completely random, but with systems displaying 
apparently irregular or unpredictable behaviour yet which obey hidden, purely 
deterministic laws.’ […] The different mechanisms that introduced ‘chaos’ in the work 
[Désordre] display a highly organized behaviour, most of them operating within a 
framework of stable patterns in sequence. The three main sections […] for the metric-
rhythmic organization of the piece reveal a highly organized structure. 
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In Désordre, as in the movement IV of Ligeti’s Piano Concerto (1985–88), musical 
structures do not constitute fractals but “highly organized” processes with relative 
self-similarity. In this context Beran (2004) prefers the concept stochastic fractal, to 
interpret that the relationships of a musical system (in any of its parameters) can start 
from specific conditions (order model) and derivate in a set of relatively or absolutely 
unpredictable variables (by entropy or tendency to disorder in discrepancy with 
initial conditions). Each scheme of entropy in a set of intervals characterizes, thus, 
specific information content that can be classified by local variability. This means 
that information from entropy may also reflect a process of self-similarity on a 
specific identity, by tonality and modality; form of sequence or linkage of chords; 
form of rhythmic and metrical changes and transitions; idiomatic gestures of the 
instrument or voices; and agogic or tempo curves in performance. In all these cases, a 
higher entropy indicates a more uniform mixture in a local set of relationships, and a 
more homogeneously distributed self-similarity (see Beran op. cit.:93–96).373 
 
Fractal dimension: An issue of pertinence 

Fractal dimension, usually represented by capital letter D, is a statistical index that 
reflects the way an object or process fills its space. With integers, the topological 
dimension of a tridimensional object is 3; that of a bidimensional object is 2; that of 
an object with one dimension is 1. According to the Euclidean tradition, the point 
has null dimension, 0. Fractal dimension, instead, refers to filling the space in a 
‘fractured’ mode, that is, not using an intuitive base of integers (1, 2, 3 dimensions), 
but using a base according to the intrinsic properties of the object or process that can 
be described with a fractal dimension, for instance, between 2 and 3, or between 1 
and 2.374 In the context of sound as information, Bigerelle and Iost (2000:2191) 
summarize the criteria of fractal dimension in the following terms: “fractal dimension 
becomes a number that quantifies the acoustic space occupation; when fractal 

                                                 
373 On the definition of distributive self-similarity in a stochastic process, see subchapter 5.2. 
374 Schroeder’s (1991) study on power laws and self-similarity is also a didactic introduction to 

fractal dimension, including a variety of statistical applications, many of them of interest to 
music theory. 
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dimension increases, the sound power versus time becomes more chaotic.” In other 
words, a signal’s entropy is proportional to the increasing of D. 

There is a variety of theoretical approaches to D, including the dimensions of 
Minkowski/Bouligand, of Rényi, and of Hausdorff or Hausdorff/Besicovitch, among 
which the latter is the most common for the fractal dimension.375 Hausdorff 
dimension is not only useful for obtaining the fractal dimension of specific geometric 
objects, but is also used as a statistical index of a process distributed in time, which 
can be represented as geometric development or as time series.376 Since music fits this 
serial analysis well, it is relevant to investigate its fractal dimension by (sub)sets of a 
given universe, in order to know how can music fill its time and space. 

Methods to approximate the fractal dimension of a set of musical relationships 
are subtle tools that require combination with other statistical resources, in order to 
obtain, beyond a data bulk, meaningful results as a complement—for or against—of 
what classical theories of music and aesthetics suggest. As Beran (2004:92–93) 
acknowledges, the correlation and convergence of statistical values in music has 
much greater significance than the sole fractal dimension in a music sample. 

Dagdug et al. (2007) provide an example of how to employ the fractal dimension 
to investigate degrees of correlation and consistency between the sections of a score. 
Their exploration finds out how a specific piece of music, the Scherzo-Duetto, K-73x, 
of W.A. Mozart, for two violins, tends towards structural consistency and statistical 
self-similarity in hidden correlations. The score was chosen for its evident features of 
functional correlation in its motivic, melodic and harmonic layers. Dagdug et al. draw 
special attention to a variety of symmetrical relationships between the two 
instrumental parts, some of which function as palindromes. They note that for 
relatively short distances between neighbouring notes, the overall correlation 
approaches 1/f noise. As the distance between neighbouring notes decreases, the 
long-term correlations decrease as well. They also note that, for some intersections of 
                                                 

375 For a detailed methodology to obtain the fractal dimension of a musical segment, see the 
quoted research of Bigerelle and Iost (2000). 

376 Any point x of a metric space E can be associated with an integer or with ∞, called 
dimension of E in x (dimxE). At the same time E can be related to another integer or ∞, called 
its dimension (dim E). In this representation, a time series (T ) appear as a points relationship (x) 
within a metric space. The series corresponds to the universe of points that integrate T. 
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the piece, the correlation tends towards zero, following a behaviour comparable to 
1/f 0 noise.377 This form of combination of consistency and structural irregularity, 
typical of self-similar relations systems, is complemented by the result obtained with a 
fractal dimension. 

Following a similar methodology, Su and Wu (2006) represent the melody and 
the rhythm of a piece of music in individual sets distributed along a straight line. The 
structure of the musical composition is expressed as the plot of local segments of a 
points sequence measured by its fractal dimension, as fluctuations of the Hurst 
exponent.378 Su and Wu (2006) suggest that the shape and opening width of the 
multifractal spectrum plot can be used to distinguish different styles of music.379 In 
addition, a characteristic curve is obtained by mapping the point sequences 
converted from the melody and rhythm of a musical work into a two-dimensional 
graph. According to these authors, each piece of music has its own unique 
characteristic curve that exhibits a fractal trait, “unveiling the intrinsic structure of 
music.” 380 This confirms Bigerelle and Iost’s (2000:2179) notion, on what “musics 
could be classified by their fractal dimensions”, transforming the traditional 
classification of musical repertoire by styles. It must be stressed, however, in 
agreement with what is stated in section 1.3.4., that the fractal dimension of a musical 
object or process, does not constitute ‘fractal music’ itself. 

As rule of measurement, in counterpart, fractal dimension is another way to 
introduce noise into the music that is analyzed: any analysis involves segmentation 

                                                 
377 Chapters 5.1. to 5.4. define both types of noise, with examples. 
378  Hurst exponent or Hurst-Hölder exponent, represented by H, indicates the relative 

tendency of a time series, or a regression to the mean or a cluster in any direction. The exponent 
H is closely related to fractal dimension D. 

379 On the concept ‘multifractal’ see subchapter 4.2. (especially pages 147–148). 
380 Pareyon (2007c:1302) suggests that such a (multi)fractal trait is also a feature of speech, 

whose correlation dimension is constantly changing: “As every linguistic complex in use has an 
irregular continuum surface, there is a particular dimension for every complex, that should be 
measurable considering the different constructive parameters of each linguistic object. As the 
linguistic matter is dynamic, it is very plausible that the fractal dimension of languages is 
constantly changing.” Hypothetically, random samples of recorded verbal utterances, may fall 
into a space that ranges from 1/f 0 noise (random distribution) to 1/f  noise (self-structuring 
recursiveness), with a variety of fractal dimensions along this range. In addition, Das and Das 
(2006) suggest that instrumental music tends to a higher fractal dimension than songs and 
inflected speech forms, at least for the samples of Indian music they examine. 
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and interference from rulers on the measured objects or processes, as described at the 
beginning of subchapter 5.4. The analysis that Bigerelle and Iost (2000) conceive thus 
illuminates a local aspect of information distribution, whilst other aspects remain 
opaque, such as those related to (trans)cultural self-similarity, or those related to 
recursiveness in idiolects, ecolects and grammars.381 

Bigerelle and Iost (2000:2180) state that “music has to be analyzed as a whole and 
not in parts.” This idea, however, raises many questions about the concepts and 
methodology to be used, which fully complies with solving some aspects of sound 
engineering, but also leaves many gaps in the theory and philosophy of music: How 
can a whole be analyzed without distinguishing its parts? (indeed, the etymology of 
the word analysis relates to the segmentation or decomposition of a total). What is 
intended here by ‘whole’? Does it mean the globality of the parameters of a musical 
system as implemented in a pre-established pattern of analysis? If so, how does this 
scheme include aspects such as the subtleties of musical interpretation, as a 
manifestation of culture? Is the fractal dimension of the recording of a piece of music 
equal to the fractal dimension of the ‘same’ piece displayed in a score? Or is it equal to 
a second or an n-th interpretation of the same piece, by the same performer? Is the 
‘wholeness’ of music the wholeness of just one performance, or of just one score, or of 
all the musical pieces belonging to a historical period and a regional style? The 
interplay between these questions and the several answers to them, reveals that the 
fractal dimension, as theorized by Hsü and Hsü (1991), Hsü (1993), Bigerelle and 
Iost (2000), Su and Wu (2006), and Dagdug et al. (2007), is useful as a first statistical 
approach to a certain measurable phenomenon, but it says very little—or nothing—
about the other modes of simultaneous musical self-similarity, referred to throughout 
Chapters 4 to 6. 

 

                                                 
381 See subchapter 4.6. 
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Common misconceptions 

Many modern texts on music theory devote paragraphs or entire chapters to the 
relationship between music and mathematics. It is difficult to find a view that denies 
such a relationship in an absolute way. On the contrary, literature contains all sorts of 
mathematical justifications of music. Some of them are indefensible: “Nature is 
amazingly mathematical […] Mathematics is the basis of sound” (Smith Brindle 
1987:42–43). These assumptions are due to a misunderstanding: mathematics is not 
‘reality’ in itself, but just a part of human reality. Mathematics is neither Nature, and 

nor does it live independently from nature, but instead it reflects a human-readable 
nature. Mathematics is real insofar as it is intelligible and it can be used and 
transformed in a way similar to how language participates modelling reality. 
Mathematical symbols, functions and algebraic representations, much narrower and 
exact than words from common vocabulary, are not exempt, however, from 
requirements of use, context, congruency, correlation and flexibility (see O’Halloran 
2008). 

Hsü and Hsü (1991), in the abstract of their article on the comparison of 1/f 
noise with music, note that “Suggestions have been made that computer musicians 
should attempt to compose fractal music, and questions have been raised whether 
there is such a thing as fractal music.” The work of Hsü and Hsü has a strictly 
statistical approach to its subject matter, and its purpose is “to demonstrate the self-
similarity of music and to explore its implications” (ibid.). Although the main goal is 
achieved, the authors avoid a straight standardization of the concept ‘fractal music’. 
They only suggest—correctly, from this study’s viewpoint—that fractal elaborations 
can contribute to a method to approximate a range of aspects of musical synthesis 
and analysis. This mathematical approach to music occurs—as in other similar cases 
of functional and symbolic adaptation—not as an absolute and effective substitution 
of relations, but within the frame of an intersemiotic translation.382 

Confusion and disorientation on the fractal concept usage in combination with 
music theory has been stimulated by Mandelbrot himself (2002:28,193), in his desire 

                                                 
382 See section 3.8.1. 
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to bring his ideas to all disciplines, making a direct transfer from mathematics. To 
this end, Mandelbrot (2002:193) refers to Wuorinen and Ligeti’s musical intuition, 
without giving any explanation of the compositional context: 

[I]ndependently of each other and of Voss and Clarke, at least two composers reported 
that reading about fractals led to identify fractality in music. Both Charles Wuorinen and 
György Ligeti concluded that a sequence of sounds that is not fractal is ‘plain noise’; only 
fractal sound sequences can be perceived as musical. In a way, fractality lies more deeply 
than musicality because it does not distinguish good music from bad. 

This quotation contains several errors and ambiguities that, instead of promoting a 
better understanding of the topic in question, introduces obscurity, making almost 
unintelligible the relationship between fractals and music. Findings by Voss and 
Clarke (1975, 1978), enriched by results obtained by Hsü and Hsü (1991), Carey and 
Clampitt (1996), and Bigerelle and Iost (2000), provide sufficient information to 
consider that the relationships of musical coherence and structuring are deeply 
influenced by physical relations of periodicity, correlation and self-similarity, as well 
as by biological relationships of recursion and self-reference. They do not conclude, 
however, that music consists of a specific set of fractal objects or fractal processes, 
neither of a particular fractal dimension, necessary for the existence of music. The 1/f 
self-similarity feature is, indeed, a general trait in a wide range of music samples, as 
Zipf’s law is pervasive in a broad range of speech samples.383 What this indicates, in 
principle, is that selective repetition—the economy of iteration and recursive poiesis, 
are functional and operational aspects, basic for music and language in general. But 
repetition and its economies are not music and language themselves: it is necessary 
therefore to consider aspects such as context, intentionality, idiosyncrasy and 
idiolectal traits, in order to obtain a more complete picture of music as language. 

Mandelbrot’s statement “only fractal sound sequences can be perceived as 
musical” is inaccurate and excessive: a pure 1/f noise sample, even if considered as 
‘beautiful’ in a subjective experience, should not necessarily be recognized as ‘music’ 
within any cultural context. Obviously, music appreciation requires the concerted 
participation of culture, including relationships between collective assessment, 
apprenticeship, and individual appropriation.  
                                                 

383 See subchapter 5.1. 
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Correspondingly, a cultural contextualization of 1/f 0 or 1/f 2 noises, or of any 
form of non-self-similar noise, can be introduced within a musical idiom as filter, 
synthesis, generative algorithm, or instrumental resonance, which, in fact, occurs in a 
variety of musical instruments with residual noise; in the listening experience in a 
concert hall with a public; as well as in the human voice.384 In agreement with 
Hegarty (2007), in all human manifestations, noise, like silence, can have or not 
aesthetic and musical attributes in different human communities. 

Mandelbrot’s quotation (2002:193) ends with a major misunderstanding, 
asserting that “fractality lies more deeply than musicality because it does not 
distinguish good music from bad.” This amounts to saying that geometry is superior 
to music “because it does not distinguish between good and bad.” This criterion       
—with an almost religious intentionality—permits to trace within the Pythagorean 
doctrine, the ethical and aesthetic gaps of fractal theory, as anticipated in the 
Introduction. The alleged purity and neutrality that Mandelbrot assumes for fractal 
geometry, reminds us, at the same time, of the purist axiology in Plato’s moral 
geometry (Timaeus and Republic), and Spinoza’s Ethics (1677), which conceives the 

Euclidean argument as the tabula rasa for ethics and aesthetics. Mandelbrot implies 
that such ‘neutrality’ can serve to give music its site, regardless of culture and 
experiential individuation. No matter the interpretations or idiosyncratic 
discrepancies; the predictable order of data and codes, and the structural consistency 
under a deterministic plan, is the privileged issue. 

The expression “fractality lies more deeply than musicality” reminds us also of the 
myth of pure language, which Eco (2003:173–175) refers to as an essential aspect of 

the Pentecost. In this myth—comparable to the modern myth of fractal language—
an enlightened congregation receives the pure, universal language lost in Babel (see 
also Eco 1971). The analogous concept of pure music, defended by thinkers such as 
Vasconcelos (1951), and by musicians such as Stravinsky (see Maine 1922:93), is 
pondered by Dahlhaus (1978:7–23) who, first of all, understands it as ästhetisches 

                                                 
384 This ubiquity of noise in music draws the attention of Ingarden (1962:47): “Every individual 

musical work is a formation consisting of various phases, in which tonal or sonic qualities, as 
well as noise qualities, constitute the fundamental moments of the work.” 
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Paradigma—precisely, a paradigmatic analogy. In this context, Ingarden (1962:12–
22, 83–85) acknowledges a necessary coordination between ‘objective’ and 
‘subjective’ values, evident in a breadth of basic musical aspects as well as in aesthetic 
values that are also present in literature, architecture, painting and film (see Ingarden, 
op. cit.). As ‘pure’ music, the alleged ‘fractal’ music becomes reduced in any case to an 
imaginary product from the human bias to abstract key references between model 
and comparison—again, a basic process of paradigmatic analogy, also directly related 
to Peircean abduction (Peirce CP 7:219).385 Thus it is possible to imagine the circle or 
the perfect equilateral triangle, and the axioms that define them. However, the 
absolute perfection of these imaginary objects—such as the perfection of fractals—
becomes irrelevant to their musical implementation as a language.386 

 
A (chimerical) fractal language 

There are essentially two ways of understanding fractal geometry as a language: as a 
prescriptive-descriptive system reading nature, and as a pure language, as mentioned in 
the previous section. The former is of an open kind—that is, it accepts unlimited 
modifications—according to what Jürgens, Peitgen and Saupe (1990) suggest by the 
metaphor “The Language of Fractals”. The latter, in contrast, is of a closed kind—as 
it does not allow modifications or adaptations; instead of it, the fractal concept is 
placed in the centre of all references. In short, the first kind constitutes a system of 
analogies and comparisons with the world, whilst absolute ‘fractality’ is presumably 
intended to constitute the world.387 

                                                 
385 On the definition of paradigmatic analogy, see subchapter 3.1. On the ‘central references’ of 

cognitive processes, see Introduction (pages 16–17, Lakoff and Fauconnier’s mental spaces). See 
also subchapters 2.1. and 3.5., on the perceived as grouped into categories that facilitate the 
classification of relations by affinity or equality. The adaptation of Peircean semiotics within this 
framework is explained in subchapters 3.8. and 3.9. 

386 It is necessary, however, to take into account what is discussed in subchapter 3.3., on the 
relation of actual and potential in a musical context; and in subchapter 2.3., on basic concepts of 
musical symmetry. 

387 Unfortunately, this notion was adopted by Devaney, at least in an informal statement (see 
Devaney 2004:39): “It now seems to be painfully obvious that just about everything around 
me—in nature as well as dynamical systems—is a subset of fractal geometry.” 
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The study by Hsü (1993), on the “fractal geometry of music”, suggest a neo-
Darwinian evolution of music oriented by a fractal guideline.388 Accordingly, Benny 
Shanon (1993:105–106) believes that fractal geometry of language is latent in the 
correlation of different physical layers: “Fractal structures are noted in natural 
language […] patterns similar to those encountered in the physical domain are also 
noted in language.” And Wu and Sun (2008:232) conclude that “it is very convenient 
and feasible to use the fractal language to describe the rich and colorful appearance of 
nature.” Roughly speaking, this corresponds with chapters 4–6 of this study, 
suggesting an empathy between musical form and (deep) content. However, fractal 
geometry as pure language—assuming that fractals constitute a language by 

themselves—creates too high expectations; e.g. Moisset de Espanés (1999:122) 
asserts that “Language generated by fractals allows us to think new thoughts and new 
ideas: complexity, infinity, growth, movement, expansion, articulation, totality, 
spatial richness, ambiguity.” According to this belief, a sort of newer or more perfect 
musical language would be produced by simply converting the Mandelbrot set into 
sounding parameters. In practice, this is not the case even in Robert Greenhouse 
(e1995), Phil Thompson (e1997) or Paul Whalley’s (e1999) attempts to create music 
implementing fractal algorithms. 

In contrast, fractal geometry as open language, permits to consider that 
mathematical schemata are also product of human language, emotion, experience 
and culture, which, in search of ‘new’ possibilities, scroll through a whirling 
succession of models, trends and styles (suggested as Peircean synechism in 
subchapters 3.8.–3.9. and 4.7.–4.8.). From this perspective, what generates the 
languages of self-similarity is not fractals, but a much broader framework in relation to 

a symbolic, dynamic context. Thus, musical self-similarity is not the meaning of any 

musical expression by itself; rather, musical self-similarity is a sign of search-for-
searching, i.e. building coherence through relationships of self-reference, recursion 
and synecdochic intersemiosis. Roads (1999:879) offers some valuable clues about 
the nature of this coherence, as a “probabilistic tendency” in an open system that is 
influenced by culture, idiolect, perception and emotion. Equally, Amozurrutia 
                                                 

388 See especially Hsü, 1993:34–38. 
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(1997:14) acknowledges that the apparently new fractal geometry, for its better 
understanding, must be valued and compared with the ancient myths and their 
implicated intersemiosis.389 

Dodge and Bahn’s (1986:185) assertion, on that “mathematical formulas can 
produce musical as well as graphic fractals”, transmits the enthusiasm of a discovery, 
but lacks the rigor to face the consequences of an alleged pure music.390 For the 
present study it is quite clear that a mathematical formula does not suffice to create 
music—and would not anyway constitute an intersemiosis between mathematics and 
music, but a mere homology. Instead, it seems more appropriate to note that the 
fractal equations and graphics contribute to the theory and practice of music, as do 
other tools of mathematics. According to what Borthwick (2000:662) observes in his 
critical review of Madden (1999), 

[T]he metaphorical use of mathematics must once again be stressed. Although there is 
nothing in principle to prevent any kind of mathematics from being used to generate 
some sort of music, very little music (if any) that currently exists can be explained entirely 
in terms of mathematics. The presence of the culturally-situated mind guarantees this 
non-commutative relationship. 

Koblyakov (1995:297) concurs with this criticism, noting that, regarding music, 
“methods of mathematics state only the result, fixing its quantitative side. [...] But 
modern music theory does not either describe the sense and semantics of these 
processes [of musical self-similarity]”. Hsü and Hsü (1991), at least partially aware of 
this complexity, use a descriptive subtlety when referring to “1/f noise called music”: 

they do not make an equivalence between 1/f  fractal spectrum, and music, in its most 
general sense. They do not assume that 1/f  is equivalent to music, but conceive it as 
an analogy. Without paying sufficient attention to this subtlety, Bigerelle and Iost 
(2000) assert that “fractal music can be created using this fractal spectra: 1/f 
spectrum is generated and the audio signal is obtained using the Inverse Fast Fourier 

                                                 
389 Amozurrutia (ibid.) notes that “The conscious use of myths and fractals allows for a broader 

dialogue between two or more creators or ‘doers’, a broader conjunction and harmony of the 
contents, whatever their field of work or instrument of creation, and therefore a greater impact 
on the attentive spectator.” This interdiscipline involves the theories of self-similarity and 
intersemiotic translation, addressed during the present study. 

390 This concerns the recent discussion, on pages 306–307. 
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Transform”. This is correct, except that the spectrum of 1/f noise or other fractional 
noises related, do not constitute music: they do not create, truly, a musical language. 
A musical language—unlike 1/f  spectrum or a fractal object—does not require much 
of automated-iterative generation, as emphatically do cycles of interpretation with 
deviations and corrections in different functional layers, as explained in subchapters 
4.7. and 4.8. 

Therefore, the rigor of the fractal music concept is trivial, for there is not any 
music able to be associated with the strict definition of fractal (see section 1.3.4.). 
This observation also encompasses Amiot’s (2008:158) “musically interesting notion 
of autosimilarity, just like the famous fractals”. Such a notion can only be obtained by 
Peircean abduction and cognitive domain criss-crossing. So, music is never “just like 
the famous fractals”. 

The equation proposed by Miramontes (1999:10) is also subject to such 
condition: 

1 1 1 1 
g ( b f )

( b f )a 
 = 

ba f 
a 

=
ba 

 g ( f ) 

Inspired on Schroeder’s (1991:96–99) formalization, this equation is based on the 
fact that power spectral density, directly proportional to 1/f β, can reproduce the 
same distribution of information by frequency doubling (something related to the 
scale invariance property of the Weierstrass function, mentioned in subchapter 
5.3.).391 According to Miramontes (1999:10): 

Multiplying the abscissæ by b is equivalent to stretching them by this factor. The previous 
equalities [see equation above] is telling us that, if we stretch the ordinate by a factor 1/ba, 
then the plotting of the function g ( f ) looks exactly like that of g (b f ). This, however 
simple it may seem, is extraordinary. Since we have time represented in the horizontal axis, 
and the vertical axis represents pitch, then, if we play a disc at twice its normal speed (b = 
½) enough to double up the volume (1/b = 1/1/2 = 2) to hear exactly the same music! 
The musical pieces having this virtue are called fractal songs. 

However, what Miramontes calls ‘fractal songs’ is limited to 1/f noise in an electronic 
emulation. In practice, singing or playing on the piano a translation of this form of 

                                                 
391 See pages 253–254. 
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noise does not make a ‘musical fractal’. If it was, it would be the articulation of a 
musical idea from an imaginary fractal. This happens also when playing Roger N. 
Shepard’s (1964) ‘infinite scale’ on a musical instrument.392 The ultimate sense of this 
act is oriented, in any case, by the sorts of negotiation explained in the previous 
subchapter (5.4.): a negotiation in which the absolute determinism of fractals is 
subordinate to intuitive and aesthetic priorities. Thus the fractal object, in 
synecdochic intersemiosis, becomes musical analogy; or “poetic metaphor” according 
to Borthwick (2000:662): 

Self-similarity—the property of objects to contain copies of themselves, just as a 
cauliflower head contains a number of self-similar florets—provides a useful mathematical 
tool for analysing the relationships between structural levels conceived in Schenkerian 
terms. However, whether this amounts to much more than the kind of poetic metaphor 
familiar to nineteenth-century musicologists immersed in a world evolutionary theory, 
flora and fauna remains to be seen. […] The intervention of the human mind can always 
disrupt a pattern that nature itself is often powerless to resist. 

Echoing this critical view, the two-dimensional pictures representing a fractal in a 
book or a screen are rather analogies promoted by a necessity—shared by physiology 
and culture—of stereotyping (see Popper 1979, 1988). Such pictures are aesthetic 
descriptions, in the sense that they are meant to be perceived as an imaginary 
representation of an elusive, although conjecturable object.393 The “magnificent 
computer-generated images” (Steinitz 1996a:14) considered as fractals, are not 
actually fractals, as the drawing of a sphere is not the sphere, but just a representation 
of a geometric concept. The specific case of Steinitz’s (1996a–b) analysis of the music 
of Ligeti, is an example among others in which the word fractal occupies a space that 
should be fulfilled by the concepts of self-similarity and synecdochic intersemiosis, 

                                                 
392 See example ◊642a, page 412. 
393 This idea corresponds to the notion of picture or spatial imitation that Foucault (1966:19–22) 

points out in his operative definition of similarity. Congruently, this concept of picture must be 
taken in a philosophical sense, as found in Première communion de jeunes filles chlorotiques par un temps 
de neige (1893), by Alphonse Allais (1854–1905), which graphically represents—with a blank 
paper—a piece of the culture of the viewer through her/his own expectations. This is the case, 
as well, with René Magritte’s (1898–1967) painting La trahison des images (1929), with the 
inscription “Ceci n’est pas une pipe”. Magritte himself launches the stereotypical mental 
operation of self-similarity, explicitly, with a later painting: Les deux mystères (1966). This issue is 
also analyzed in detail by Foucault (1973). 
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much more relevant to the case study. It is clear that in this example, as in any other 
similar cases concerning musical analysis, the concept of self-similar object or process 
is not equivalent to that of fractal. From this viewpoint, it is interesting that David 
Lewin (1987) was sufficiently careful to avoid associating his transformational theory, 
with fractals—even though he widely uses mathematical terminology, intimately 
linked to the study of self-similar relationships (e.g. nesting, recursion, invariance, and 
mapping from a set to itself). 

However, Steinitz’s (1996a–b) descriptive research on Ligeti’s music particularly 
contributes to unveiling an idealism in which mathematics, science and art, replace 
the magic values of an allegorical tradition.394 There is no sufficiently clear difference 
between this modern exercise of musical imagination, in respect of the Pythagorean 
doctrine and ancient numerology. “The unity of science and art” (Steinitz, op. cit.:14) 

finds, for the same reason, a functional obstruction: scientific determinism is of a 

different quality than artistic determinism (see Backus 1960, Borthwick 2000). The 
former looks for absolute proofs and formulates universal laws; for the second the 
search, and not the definitive finding, is the essential factor. Indeterminism in science 
can—and often must—be reduced to a minimum. For music, instead, indeterminism 
is necessary, desirable and useful: “musical practice shows [that] deviations are 
accepted and desired expressive properties of music” (Knopoff and Hutchinson 
1981:19).395 

Music requires the establishment of rules, usages and hierarchies, in a similar way 
to grammars for languages. But it is impossible to achieve this through 
comprehensive deterministic procedures, as with physics. Langer (1953:105–107) 
states—this time in agreement with current theories on music cognition—that music 
cannot abandon the sensible and immediate, ignoring its many aspects of perception 
and performance. Musical sound, silence, loudness, pulsations, countings, intervals in 

                                                 
394 This view coincides with the anthropological notion of language as “magic power”, present 

throughout the investigations of Lévi-Strauss (1964, 1971). It is found also, mixed with music 
and song, in Carpentier’s ‘musicological novel’ The Lost Steps (Los pasos perdidos, 1953). 

395 A brief outline of the history of this concept in Western cultures should also include the 
arguments of Meyer (1956:202), on the function of the “artistic deviation from the pure, the 
true, the exact…”, and the concepts of Ingarden (1962:13–15) on the relevance of the differences 
in the interpretation of a ‘musical work’. 
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general, have fuzzy edges and, at the same time, characteristic thresholds. Unlike 
general physics or fractal objects, musical practice does not have qualities that are not 
available to or connected to the senses and intuition. In this context Meyer 
(1967:246) notes that: 

It is an inexcusable error to equate acoustical phenomena with qualitative experiences. 
The former are abstract scientific concepts, the latter are psychological representations. 
One measures frequency [for example] but one perceives pitch. 

Meyer (ibid.) particularly targets fetishism of the concept-in-itself, as a tautology that 
overshadows its musical significance. But, on the other hand, restricting music only 
to what is immediately or easily apparent, brings an incomplete picture of music and 
the human experiencing involved. Subchapter 3.3. of this study explains how finite 
and infinite are not necessarily opposed or in contradiction, within a same musical 
context. 396  Similarly—as stated in the Introduction, theory and imagination, 
schemata and practice, are not oppositions that require to be in irreconcilable 
conflict. In Meyer’s (1967:246) conceptualizing, neither the “abstract scientific 
concepts” nor their “psychological representations” are total oppositions rejecting 
any possible coexistence or cooperation. Nor do their mutual association constitute 
“an inexcusable error”, but a probability’s error depending on the descriptive or 
prescriptive system adopted. In short—and contradicting Meyer—psychological 
representations can lead to scientific concepts, and scientific concepts can lead to 
psychological representations. They are, indeed, functionally interrelated. As the very 
qualities of music, neither do they consist of an absolute self-reference, nor are they a 
set of objective values that can fully explain their own relationships. For this they 
need unstable interpretation—such as language and aesthetic manifestations do—
through exchange between idiosyncrasies and cultures in fertile opposition, i.e. within a 
creative contrast. 
 

                                                 
396 See pages 66–69. 
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Relativity of the self-reference 

Unlike a fractal abstraction, musical self-referential systems are never completely 
devoid of correlation and influence to and from other systems. This is clear, for 
example, for the idiosyncratic developments and the contacts between idiolectal and 
ecolectal strata.397 Similarly to what happens in speech, music’s self-similar features 
are subject to a condition of functional openness.398 In music as in language, an 
ontology that is absolutely significant in-itself, escapes to the elementary relations of 
music and language. The following quotation from Rhees (1968:274), that includes 
notions of self-reference, measurement and consistency—common to music and 
language—helps to explain the principle of ‘non-absolute self-referentiality’: 

I could not add [say]: “If I say there is such a function—if I write this down—then there 
must be such a function, for I have written it as a paradigm in my expression.” The 
paradigm shows what I am saying. But here I seem to be treating it both as a paradigm and 
as something for which it is a paradigm. It is like saying that the presence of the standard 
meter rod in Paris shows that there is something which is exactly one meter long. It is the 
same with confusions about the grammar of ostensive definition when we speak of private 
experiences and sense data. 

This quotation is especially meaningful in that—in contrast to the operation of 
analogy as proportion—it clarifies the operation mode of analogy as paradigm: Rhees 
provides the case of writing a mathematical function. The same can be done, 
however, writing a melody or a chord sequence in a score, followed by its 
interpretation with a musical instrument. In this operation the elaboration of a 
paradigm prevails as an automatic stereotype of a cognitive system (see Givón 
2002:40–41). Such a paradigm consists of an imaginary, rigid model—ideally 
perfect—on which processes derived from conjecture and interpretation are 
developed. In this fashion, paraphrasing Ockham (see Leff 1975:355), practical 
conclusions can be resolved into speculative principles.399 Conjectures that are 

                                                 
397 This notion complements what is stated in subchapter 5.1. on the always rich source of music 

as a system of probabilities. 
398 Such condition of ‘openness’ is explained in subchapter 3.7. as a condition for creative 

recursion. 
399 See page 326. 
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generalized from the use of a paradigm, and in general, the processes involving 
Peircean abduction as the intuition of self-similarity, heavily depend on this notion.400 

Avoiding the fallacy of a ‘fractal music’—comparable to the fallacy of the 
standard measurement that Rhees notes in the quote above—Beran (2004:92) states 
that “In music, the idea of fractals was used by some contemporary composers, 
though mainly as a conceptual inspiration rather than an exact algorithm (e.g. Harri 
Vuori, György Ligeti)”. Beran consequently offers a methodology to pay more 
attention to stochastic self-similarity relations within music, than to fractal objects.401 

The characterization of the (mis)called ‘fractal music’ as descriptive music, 
matches what Ingarden (1962:51) identifies as ‘pure music’ with that which cannot 
lead to anything but “essentially musical”. Since certain relationships are fundamental 
to fractal geometry, and cannot be introduced directly into music—strict scaling and 
absolute-simultaneous self-reference between detail and wholeness; and since for 
music there are essential relations that do not necessarily transpose into fractal 
geometry—e.g. feelings and memories directly associated with sound, then any 
alleged ‘fractal music’ serves as descriptive music or program music: as analogy or 
metaphor of an object taken for intersemiotic translation, in which necessarily 
something essential “is lost” or “altogether transformed”; although “something 
remains” (see Jakobson 1980:89–90).402 In this sense, Stockhausen’s (see Felder 
1977:89) observations on intersemiotic translation seem relevant: 

Xenakis is a complete latecomer as a musician, and in a true sense he is no musician at 
all—I really doubt what he can hear, not only with the inner ear. Nevertheless, he is able to 
contribute something we find in all the sciences and arts; by transposition from one field 
to another, you transpose something from architecture to music, you learn the respective 
parameters, the limits of the instruments, and translate points on the paper to sound. 
Certainly something interesting comes out of it. If the method is quite unusual in the field 
of music you can be sure that something new, something that hasn’t been done the same 
way before, will occur. 

Regarding the concept of ‘pure music’, defended by Ingarden (1962:48–51), the 
same principle of ‘non-absolute self-reference’ is applicable. From this view, ‘pure 

                                                 
400 On the concept of abduction, formulated by Ch. S. Peirce, see pages 23 and 459. 
401 See section ‘Fractal dimension: An issue of pertinence’, pages 300–303. 
402 For a discussion of this quotation from Jakobson, see pages 104–105. 
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music’ is fallacious just as ‘fractal music’ is fallacious: both can be explained as 
imaginary models, paradigmatic and cultural sources within a mental space adapted 
for musical elaborations—that, sensu stricto, are neither ‘pure’, nor they are ‘fractal’. 

Ingarden’s (op. cit.) arguments on a pure music, are based on the Cartesian ideal of 
separation between mind and brain, characterized as the divorce between “real world” 
(realen Welt) and “not belonging to this world” (Nicht-zu-dieser-Welt-Gehörens). 
Ingarden (ibid.) believes that the “connection” with the real world is only possible 
through the tangible and spatial qualities of matter: “The connection of the 
architectural work with the real world is much more profound [in comparison to 
music]; it follows from its ‘inner’ (essential) structure. It has, for example, 
‘foundations’ that connect it with the ground”.403 This argument is untenable: it is 
clear that music, existing as sound, has physical ‘foundations’ similar to those of a 
building, subject to the same power laws.404 Neither can music from this perspective 
be an absolute self-reference, but a self-reference in context. 

 
Prolongation of structuralism 

Among the prominent features identifying the structuralist thought are the binary 
oppositions, that—as in De Saussure’s doctrine—serve to characterize a system of 
meaning construction. Such a binarism still exists in the deterministic-rationalist 
discourse on self-similarity, as well as in its conceptual apparatus, supporting its 
function by pairs: fractal set/natural fractal, deterministic fractal/stochastic fractal, 
chaotic process/random process, real infinite/potential infinite, and—as pragmatic 
implementation—digital/analogous. The Cartesian opposition infinite/indefinite 
can be added to make even more obvious the links of rationalism with structuralist 
binarism. Nevertheless, these hinges can simply be surpassed by the interpretation 
that some of these concepts are not true oppositions, but rather partial states of an 
epistemological continuity, through systems of analogies (as suggested by the IC 
theory, introduced in sections 3.8.1. to 3.8.3.). 
                                                 

403  In the original text (Ingarden, 1962:49): “Der Zusammenhang des architektonischen 
Werkes mit der realen Welt ist ein viel tiefergreifender, es fließt aus seinem „inneren“ 
(wesensmäßigen) Bau. Es hat z.B. „Fundamente“, die es mit dem Boden verbinden.” 

404 See section 3.9.5., pages 122–124. 
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The continuity of concepts such as stochastic fractal–deterministic fractal or 

random process–chaotic process, contributes to understanding that there are gradations 
in the construction of knowledge about a dynamical system behaviour, insofar as it 
constitutes a self-sufficient metalanguage that describes this relationship. Poincaré 
(1886/1956:1380) characterizes chance as “only the measure of our ignorance”. The 
discrepancy between order and chaos, and between similarity and difference, is 
attached to this notion. 

On the other hand, as Campbell (1982:219–220) notes, human knowledge 
requires a structure to be developed and transformed. If the primary system making 
knowledge possible (the brain and nervous system in general, assumed within its 
Umwelt-niche contextualization) has the characteristics of a specific structure, it is 
not surprising that knowledge itself also exhibits the characteristics of a related, 
consistent structure—at least in a primitive stage of consciousness, during the 
formation and linkage of ideas and insights. Therefore it is doubtful that post-
structuralism has made a substantial progress in understanding the configuration of 
language (and music), regardless of structure. The most significant advance of post-
structuralism lies rather in its ability to assimilate, within the structure, the 
transformational vulnerability of the structure itself. 

In short, modern analytical thinking, but also the creative process that involve the 
usage of codes and message processing, are linked to the structure, as the message is 
linked to the form.405 Consequently, both the discourse on musical self-similarity 
(including its terminology), and attitudes regarding music as a self-similar process 
(including its methodology), are extensions of structuralism. 

Taking into account the arguments discussed in this study, one may conclude 
that music cannot prescind from structure. But music is able to moderate the 
structure for a more complete understanding of music as a ‘living language’, 
constantly changing. This implies that there is no a pure structure containing, like a 

                                                 
405 For an introduction on this concept, see subchapter 3.5. 
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perfect seed, the quiddity of the musical substance.406 Karl R. Popper’s (1988:127) 
argumentation against Laplacian determinism must, therefore, be considered: 

[T]here is every reason to regard man at least partly free. The opposite view—that of 
Laplace—leads to predestination. It leads to the view that billions of years ago, the 
elementary particles of [a first] World contained the poetry of Homer, the philosophy of 
Plato, and the symphonies of Beethoven as a seed contains a plant. 

Rather, there are fixed structures, humanly conceived as deterministic forms, 
around to which analogies continuously vary. The continuous interaction between 
these forms and their relatively flexible analogies produces the minimum instability 
necessary for the multiplicity of interpretations and—finally—for removing and 
replacing the so-called fixed structures. This interaction allows us to recognize, 
within the notions of self-similarity and self-structuring, a renewal in which the 
iteration of simple relations can trigger an immense variety of structures. From this 
perspective, the self-similar musical discourse is an open and indeterminate form, 
flexible within the openness that allows its variety. This holds true especially if we 
accept that music self-similarity—embedded in synecdochic semiosis in general—
tends to the plurality of forms.407 

                                                 
406 This notion contrasts with Goethe’s conceptualization of the ‘Primeval Plant’ as “the most 

wonderful creature in the world” (see page 432). Thus, such an Urpflanze has a potential meaning 
as musical implementation (here the superlative determiner ‘most’ is rather undetermined, with a 
metaphorical function). Such a plant would be, in any case, an operative model: the paradigm 
that allows establishment of a starting point for understanding, as a system of references. 

407 Ingarden (1962:217) conceptualizes that, within the intersemiotic relations of the arts, a 
system of akin relationships amidst diversity (with its characteristic plurality) is much more 
relevant, rather than a set of processes or objects perceived by their similarly and equality. 



 

 
  

 
Chapter 6 

Self-similarity as proportion 

This chapter’s main goal is to analyze the major implications of what Prusinkiewicz 
(1986, 1992) identifies in terms of proportion in self-organizing systems—the golden 
ratio in particular—as self-referential relationships. For this purpose the notions of 
point, line, and mass are revised, together with their constructive usage.408 

Prusinkiewicz (op. cit.) and Prusinkiewicz and Lindenmayer (1990) consider the 
concept of proportion as self-similarity nesting. They propose that the recursion of a 
set of axioms and simple rules, including basic rules of proportion, can generate 
medium to long term highly complex self-similar structures, analogous to self 
organized structures observed in natural phenomena. Studying statistical correlations 
in a variety of chemical and biological processes, Mandelbrot (1977, 1982) notes the 
close link between self-organization and structural economy based on the recursion 
of proportional relationships. Employing statistical approximation to describe these 
relationships, Mandelbrot formulates the concept of fractal dimension, which 
represents the set that it refers to as a logarithmic characterization.409 The proportion 
log4/log3, for example, represents Koch’s curve (see ◊333) consistency. In short, a 
proportion implies the consistency of a relationship into another one. Accordingly, 
the concept of proportion is extremely useful for the intuitive approach to self-
similarity as consistency of relationships in aesthetic phenomena.410 

                                                 
408 This subchapter considers the distinction made in subchapter 5.4., between set and group: the 

former made of elements, and the latter made of relations. However, this distinction is attenuated in 
a general context of analogies. For example, Stockhausen (1989:38,48) does not emphasize this 
distinction, but assumes a direct analogy between set and group. 

409 On the concept of ‘fractal dimension’, see the independent section on pages 300–303. 
410  Bigerelle and Iost (2000:2191) come to the astonishing conclusion that “the fractal 

dimension of a randomly construct triadic Cantor set is equal to the Golden Mean”. This notion 
could contribute to a deeper explanation of the relationship between stochastic distribution and 
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In general terms, structural proportion operates as synecdoche, provided that the 
part can be defined or recognized in relation to the whole. For instance, the golden 
segment—explained at 4.3.—only makes sense for its relation to a larger body of 
geometry, with which it forms its distinctive proportion. As defined in 3.1., in the 
strict sense of the term ἀναλογία, proportion means analogy. Szabó (1978:151) also 
notes that the word ἀνάλογον refers to equality of arithmetic ratios. In this context 
the term λόγος does not refer so much to the concept of word, but it refers more 
exactly to the concept of ratio—as it is found in the origin of the term logarithm. It is 

also noteworthy that in this case the preposition ἀνά means equality. Ἀναλογία, 

translated into Latin as proportio, is nothing else but the equality of numerical ratios 
or geometric proportions (see Szabó, ibid.). 

 
Proportion as aesthetic trend 

The proportion a : b = φ is one of the best characterized phenomena in natural 
geometry, because of the universality of its ratio as a/b = φ (≈ 1.6180339…), and is 
found as general trend, for instance, in the anatomy of animals—including humans; 
as well as in many plants, especially in a large variety of phanerogams. The golden 
ratio appears in an enormous diversity of human expressions—in conscious or 
unconscious usages—through many forms of written language, visual design, 
painting, sculpture, architecture and music. Most of authors who have studied this 
topic, including Ghyka (1927, 1931), Huntley (1970), Doczi (1981), Schroeder 
(1991) and Livio (2002), also explain aspects of structural proportion in terms of 
characteristic constructivism in organic and inorganic forms, and even as a core issue 
in crystallography, after one of the first modern treatises on the subject, published by 
J.D. Bernal (1926). 

According to the classical literature on architecture and design, from ancient 
Greece to Le Corbusier (1950, 1955), the balanced proportion of the forms is the 
means to achieve harmony in space and in the human use of such space. As Borwick 
(1925:12) notes, “The word proportion [...] speaks of measure and fair spacing, of 
                                                                                                                              
Golden ratio, as an aesthetic trait of a universe of musical objects and processes, as outlined in 
this chapter. 
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order, correspondence, harmony, of the relation of part to part.” Moreover, Borwick 
suggests that the notion of rhythm depends on a certain proportion in time: 
“Rhythm can come to being only if time-values are absolute and time-elements 
strictly related and proportioned” (op. cit.:13). Stockhausen (1989:37) acknowledges 
that for music as for the general relationships between time and space, proportion 
generates the notion of series as basic principle of constructivism: 

[A] lot could be said about relationships between our [musical] work and the Modulor of 
Le Corbusier, who tried to lay the foundation of a new method of architecture based on 
the blue and red series of proportional measures. The word ‘series’ in a context of 
structural design comes up again in architecture and other fields of constructivist art. 

The constructive implementation of a harmonic series—as happen for instance with 
the serial techniques of music composition—co-participates in the development of a 
prescriptive grammar and, consequently, of a grammatical logic. The logic of series 
and proportions is connected to the notion of musical grammar. As Beran (2004:1) 
notes, “logical construction is an inherent part of composition. For instance, the 
forms of sonata and symphony were developed based on reflections about well 
balanced proportions.” From a statistical perspective, this notion corresponds with 
the traditional concept of harmony as accepted by Copland (1939:50): “A beautiful 
melody, like a piece of music in its entirety, should be of satisfying proportions.” 

The question here is how the concepts of harmony and proportion can be 
mutually related within such different worlds, one in the light and space, as referred 
to by Ghyka (1927, 1931), Le Corbusier (1950, 1955) and Huntley (1970), and the 
other in sound and time, as referred to by Copland (1939), Stockhausen (1989) and 
Beran (2004). Borissavlievitch (1958) suggests that visual preference for golden ratio 
is due to the fact that the visual field is not parallel, but intersects around a golden 
segment. This does not explain, however, why the golden ratio is found analogously 
in music, in poetry or in drama.411 

The answer, according to authors such as Huntley (1970), Hofstadter (1979, 
1995) and Livio (2002), must be sought in the human cognitive qualities; in the 

                                                 
411  Howat (1977:292) suggests, for instance, that “The idea of important events being 

strategically placed with relation to the development of a plot and sub-plots is an underlying 
principle of any drama.” 
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universal modes of cultural elaboration, and in the relationships between body and 
context.412 A hypothetical cultural universalism of the golden ratio should be linked, 
for these reasons, to other cognitive principles, such as those allegedly found in the 
configuration of language from Zipf’s law, as stated in the previous chapter. 
Conceiving the harmonic proportion and the golden ratio as self-referential 
phenomena, correlated to power laws and Zipf’s law, it can be understood that such 
phenomena are part of human physiology, which is not isolated from other 
relationships of functional self-similarity and recursion, common to basic organic 
principles. 

Obviously, proportion is not all in musical structure, neither in its formal 
precepts. By itself, there is no structural proportion that constitutes the sum of a 
musical tradition. On the contrary, traditions, in their diversity, adopt proportions as 
part of their methods for recreating musical and aesthetic relationships in a broad 
sense (i.e. not really in the ‘absolute’ form claimed by Borwick, 1925:13). This equally 
applies to verbal and written language: no synecdoche is enough to create literature or 
oral culture; rather formulae recursion in context, within which the synecdoche has a 
very important role, contribute to language consistency—but also alters such a 
consistency through diversity, according to what is explained in subchapter 4.8. This 
note is valid for almost all authors studying the significance of proportion in music. 
As Howat (1983b:21) admits: 

Proportional structure is only one of many ways of ensuring good formal balance, and 
even then only if it is well matched to the musical content; it could do little to help music 
that is deficient in its basic material or other forming processes. 

The first modern authors that produced texts on golden ratio in music, include 
Webster (1950), Norden (1964, 1972), Nørgård (1970), Lendvai (1971) and Kramer 
(1973). They recover the Pythagorean notion of harmony without involving the 
concepts of self-similarity and self-reference. Thus, when the initial findings of 
authors such as Prusinkiewicz (1986), Hsü (1993) and Koblyakov (1995) were 

                                                 
412 This issue is discussed more extensively in other sections of the present study. See especially 

subchapters 3.6. and 4.6. 



 

 
 323 

published, the association proportion–self-referentiality–recursiveness–self-organization–
self-similarity, barely pointed to a general outline for a new theory. 

Roads’ (1999:878–893) treatise on electronic music includes a section that 
encompasses the concepts of Markov chains, noise, fractals, chaos, self-similarity and 

grammar; it omits, however, the concepts of proportion, self-reference and Lindenmayer 

systems. Beran’s (2004) study on music statistics does not include the concept of 
proportion; nor does it offer anything particular on Lindenmayer systems. This 
omission also occurs in Yadegari’s (2004) dissertation. Probably the first text that 
stresses the musical connection between golden ratio, recursiveness and self-
similarity, is the corresponding chapter in Madden (2007:67–96); however, it does 
not devote special attention to Lindenmayer systems either, ignoring their ties with 
systems of constructive self-similarity.413 

The relationship between proportion and structural self-similarity, as can be seen 
in this introduction, are still far from being fully covered by musicology, in what is a 
relatively new field of study with many aspects open to exploration and discussion. 
This chapter provides only a summary of the current thinking on the issue, as well as 
some progress and possible directions for further study. 

 
Proportion as mediation 

Ghyka (1927), when defining the concept of proportion at the beginning of his 
Esthétique des proportions (1927), recalls Plato’s Timaeus: “two things cannot be 
rightly put together without a third; there must be some bond union between them. 
And the fairest bond is that which makes the most complete fusion of itself and the 
things which it combines; and proportion is best adapted to effect such a union.” 
This definition is similar in substance to the definition of translation that Ricoeur 
makes (2004:14) on the figure of mediation: “les deux textes de départ et d’arrivée 
devraient, dans une bonne traduction, être mesurés par un troisième texte”. Benjamin 

                                                 
413 In contrast, the first work concentrating on musical Lindenmayer systems, by Manousakis 

(2006), focuses on their operational implementation, without going deeper into the relationship 
between music grammar and aesthetics, and without a general theory on musical self-similarity. 
Manousakis’ objectives are, thus, the ‘engineering’ of music and the ‘resolution’ of problems, as 
outlined in the Introduction of the present study. 
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(1923/2000: 82–83) calls this mediation as “interlinear version” between two texts or 
between two symbols; he compares such a mediation with an “infinitely small point” 
in which two diverging symbols make contact; and he concludes that “Where a text is 
identical with truth or dogma, the text is unconditionally translatable.” Proportion, 
as translation and analogy, depends on the consistency of one thing into another: this 
is the elementary connection between firstness and secondness, that results into 
generalized derivation or abstraction as thirdness, according to Peircean semiotics 
(Peirce 1903b, 1903d).414 

In short, proportion amounts to an intrinsic combination of a whole for its parts. 
This description makes clear that proportion is a form of self-reference—of one thing 
mirrored by another. Ghyka (1927) analyses the relationships between points in a 
line that bring them together. Using this idea he defines the line itself and the 
concepts of continuous and discontinuous. The ‘link’ of this rule should be, 
according to Ghyka, a line, whilst the ‘things’—the minimal ones—are points. Such a 
relationship is ultimately characterized, as observed by Wittgenstein (1953), as a 
‘game’ of representations; or as suggested by Bateson (1972), Lakoff and Johnson 
(1980), and Fauconnier (1985, 1997), as an environmental system of mappings of the 
mind/brain, embedded in culture. In music, such a system provides both, 
‘representational games’ and ‘environmental mappings’ for knowledge and reality 
creation. The latter is related to the general notion of ‘what happens’ (see Damásio 
2000) between references, as Stockhausen (1989:38,48) notes: 

I use the words ‘point’, ‘group’, and ‘mass’ in order to generalize what is happening in 
music, and to make it clear that each is a particular manifestation of a larger trend. […] In 
most of my works I have composed points in a determinate way, or groups, or masses. 
What does that mean? It means that one can hear very clearly the intervals which make 
the proportions, the duration of the individual points, the shapes of the individual groups 
and masses. 

Selecting the notions of point, group and proportion, one following the other, is part 
of an analytical conception of space, common to geometry, architecture, the visual 
arts and music. When talking about these concepts, Stockhausen perceives the idea 

                                                 
414 See section 3.8.3. 
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of self-similarity by referring to consistency as a particular tendency within “a larger 
trend”. 

The notions of point, group and mass, listed in that order by Stockhausen, also 

correspond to cognitive foundations associated with the basic abstractions of one, 
various and many, present in all human languages (see Sapir 1921, Swadesh 1966, 
Gelman and Brenneman 1994). On these simple notions more complex concepts are 
progressively developed. In music there are many examples of this development, for 
example, between tone, chord and noise; or between pulse, rhythm and texture; or 
between acoustic grain, clustering and cloud—Xenakis (1963/1992:12) and Roads 
(2004:14–16) use the concept of cloud in this context. In all these cases one can find 
modalities of proportion having a function of mediation, e.g. in a chord, a rhythm, a 
motif, a melody, a pitch interval, a sound texture, or a musical form. 

6.1. Dot and plot: basic analogies 

The basic statement on the point as a representation of the elementary sound particle 
is made in this investigation in subchapter 4.1. What is said there must be taken into 
account in the context of the present subchapter. In particular, this subchapter 
emphasizes the analogous nature of the concepts of point and set of points. 

The formalizing of the debate about the quiddity of the point is at least as old as 
the Pythagoreans, and evolves into a first period of discussions after Euclid’s Elements, 
whose initial definition (ό̉ροι) in Book I states that “A point is that which has no part” 
(Σημεῖόν ἐστιν, οὗ μέρος οὐθέν.). Also in the Elements, the fifth of the ‘common 

notions’ (κοιναι ̀ έ̉ννοιαι) asserts that “the whole is bigger than the part” (τὸ ὄλον τοὗ 
μέρους μεῖζόν [ἐστιν].) 

The controversy over the Euclidean notions of point as undivided integrity, and 

of total as parts’ wholeness, reached its peak in the treatises of medieval philosophers. 
Roger Bacon, in Opus Majus (1267, part V), under the aegis of the Elements and the 
Platonic tradition, denies the infinity of an infinite atomic universe, arguing that the 
acceptance of an infinity of successive smaller scales leads to the assertion that the 
part is greater than the whole—which goes against the basic intuition of space. 
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However William of Ockham, in his Questiones in quator libros sententiarum (Lyons 
1495) reveals that: 

It is not incompatible that the part is equal or not minor than its whole; this happens 
every time that a part of the whole is infinite. This is verifiable also in a discrete quantity or 
in any multiplicity whose part has units not minor than those contained in the whole. So 
in the whole Universe there are not more points than in a bean, as a bean is made of 
infinite parts. So the principle that the whole is greater than its parts is valid only for the 
things composed of finite integral parts. 

This reasoning, which transcends Platonic atomism that indicates the existence of an 
indivisible minimal unit from which the universe is formed,415 settles the idea of an 
endless universe, both in the colossal as in the smaller, at scales in which, the more the 
distance extends between its edges, the more evident its correspondences and 
similarities. This idea can be traced in the history of thought, and specifically in the 
history of the concept of self-similarity, abridged here in the Introduction, and 
explicitly defended by thinkers as diverse as Swedenborg (1734), Parsegian (1968) or 
Mandelbrot (1982). 

This debate cannot be ignored in music, especially because of its relationship 
with the theory of proportions. The quest for universal harmony thus becomes a 
central issue for theorists who seek a logical and constructive dialogue between the 
parts and the whole. In this context, Jacob of Liège (ca.1340) combines Pythagorean 
harmony with its application to Aristotelian-Ptolemaic stellar mechanics, in order to 
explain the harmonic proportions of the monochord; and Johannes Kepler (1619) 
arrives at the study of the Platonic solids’ proportions—placing them one within 
another—to make a descriptive analogy of what he considers a set of proportions, 
common to music and to the distribution of the celestial bodies. 

 

                                                 
415 Notice that the precise word that Euclid uses to refer to ‘point’, is σημεῖόν, actually related 

to the concepts of ‘sign’ or ‘trace’. The ideal ‘minimal point’ or atom in Aristotelian scholasticism 
is equal to such an indivisible minimal unity, a ‘milestone’ (Demosthenes 932.14) from which the 
universe is formed. 
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◊610. (Above). Proportion between dissonance and consonance in Jacob of Liège’s treatise, 
Speculum Musicae (ca.1340), characterizing ratios and distributions in a circular orbit, 
followed on the right by their musical representation. This approach was made based on 
the study of the monochord’s seven harmonic intervals. 
(Below). Harmonic proportions of the celestial bodies as musical symbolization, 
according to Kepler’s treatise Harmonice Mundi (1619), including Saturn, Jupiter, Mars, 
Earth, Venus, Mercury and the Moon (the Latin utterance Hic locum habet etiam, means 
that the Moon always ‘has the same position’). 

 

In the heyday of rationalism, Leibniz’s monadology (1714), centred on a theory 
of maximum and minimum, provides the basis for the modern calculus of variations 
in a stable system. In this doctrine, monads are nothing but the characteristic 
essences of a set in equilibrium, between the homogeneous and heterogeneous. What 
Leibniz proposes, in short, is the estimate of the divergent properties of a system, 
through the general features of the whole in which they are embedded. Gustav 
Fechner (1801–1887) carries this principle to the realm of aesthetics, although 
without formalizing its study e.g. by investigating the nature of the repetitions, 
rhythms and proportions in an aesthetic system (see Fechner 1876). Ossowski 
(1966/1978: 60) claims the failure of this theory: 
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The old principle which Fechner, following in the steps of Aristotle, Descartes, 
Hemsterhuis and Leibniz, called the principle of joining divergences into unity (Prinzip 
der einheitlichen Verknüpfung des Mannigfaltigen), a principle which has become 
widespread in many versions in all of aesthetic literature, does not provide any criteria in 
its generalized formulation which would make it possible to test it empirically. 

This methodological objection against Fechner will be discussed few paragraphs 
below. For now, it is necessary to highlight that Platonic atomism gained credibility 
not only with Leibniz’s monadology, but especially with Kant’s observation on that 
“Every composite substance in the world consists of simple parts”.416 This statement 
consolidates the analytical (mis)belief that “there exists nothing that is not either 
itself simple, or composed of simple parts” (ibid.). However, Kant himself 
acknowledges that ‘parts’ cannot exist out of a self-referential space: “space does not 
consist of simple parts, but of spaces” (ibid.). How to explain, then, consistency 
between part and whole, and coordination between simplicity and complexity, that 
seem pervasive in the universe? 

Actualizing Platonic-Kantian atomism, Russell (1900) rejects the logic of the 
monads, judging that Leibniz’ theory is grounded in the wrong idea that reality is a 
property attributed to a substance. Russell argues—in a critique that recalls Voltaire’s 
objections against monadology—that Leibniz’ doctrine leads to an absurd idealism. 
In such a way Russell formulates his theory of “external relationships” with which he 
tries, unsuccessfully, to sustain a claim about the pluralism of things, and about the 
Kantian assertion that wholes consist of relationships between simple things. From 
this was born the first phase of Russell’s philosophy called “logical atomism”, which 
eventually overextended its assumptions about language generalizations. 

The next tour de force in this account is the emergence of fractal geometry,417 a 
new paradigm that facilitates the conception of a specific identity for each point of an 

                                                 
416 Kritik der reinen Vernunft (1781), “Zweite Abteilung. Die transzendentale Dialektik” (Zweites 

Buch. 2: Zweiter Widerstreit der transzendentalen Ideen). 
417 This summary does not diminish the relevance of what Searle (1972) calls “Chomskyan 

revolution”, referring to the paradigm shift in the study of language. What is at issue in this 
summary is to characterize the larger steps towards documenting a theory that involves the basic 
notions of proportion and self-similarity, and its role in music. On the influence of Chomskyan 
models in musicology, see subchapter 4.4. For exhaustive analysis on this subject, see Lerdahl 
and Jackendoff (1983). 
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infinite set, instead of assuming an abstract minimum or simple particle, as in Leibniz 
and Kant-Russell’s different versions of atomism. This perspective reopens the 
discussion on the alleged elementary constituent of a self-referring set, vaguely 
suggested by the medieval speculations on the correlation between infinite scales, and 
somehow recovered by Fechner’s principle. On the one hand, fractal geometry makes 
real Ockham’s speculation, and transcends the Euclidean intuition on that ‘the whole 
is greater than its part’; indeed, in fractal geometry the part is equal to or greater than 
the whole. On the other hand it offers—for the first time—logical and aesthetic 
arguments to counterbalance what Ossowski (cited above) sees as lack of criteria “in 
[a] generalized formulation”. 

Obviously, it is absurd to extend a sense of absolute self-similar minimalism to all 
relationships; nor is it possible to extend the relation of proportion to all sorts of 
relationships. In this context, the assertion of Devaney—an advocate of a rigorous 
notion of the fractal concept—on that “everything” is a subset of fractal geometry, is 
mysterious: “It now seems to be painfully obvious that just about everything around 
me—in nature as well as dynamical systems—is a subset of fractal geometry” 
(Devaney 2004:39). This statement equals to a monism or a generalized and extreme 
Pythagoreanism, suggesting that “everything is a set of points”. 418  Such a 
conceptualization rather follows a system of analogies drawn by intersemiotic 
mappings featuring self-referential cognitive circuits (see subchapters 3.5.–3.8.). 
Accordingly, Ossowski (1966/1978:24) perceives a variety of configurations in these 
mappings, interpreting them as aesthetic configurations, and anticipates the idea of 
self-similar correlation between the notions of point, set and harmonious whole, that 
he calls ‘organized whole’: 

Spatial configurations with which aesthetics deals are configurations of the most varied 
types. These may be simple forms, i.e., when such whole elements are only geometrical 
points; and they may be complex configurations, configuration of the second or third 
degree, i.e., such in which the elements are configurations of simpler elements. In this case 
we are dealing with the organization of organized wholes. These may be closed 

                                                 
418 This criticism can be extended to other authors who consider the so-called ‘fractals’ as 

universal ubiquity. For example, from a mathematical perspective in Michael Barnsley (1988), or 
from a musical perspective in Charles Madden (1999/2007) and Hwakyu Lee (2004). An 
extended development of this criticism is found in subchapter 5.5. 
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configurations, for example, the configuration of forms on a Persian carpet, or they may 
be unlimited configurations in two directions, or they may be also unlimited 
configurations in all directions. 

In cognitive terms, such an ‘organized whole’ is available as aesthetic experience and 
logical structure, through the mechanisms of stereotype and abduction. In this sort of 
experience, as happens in music, self-similar infiniteness is not essential. What is 
essential is merely its conjecturability. A musical process-mapping analogous to a 
cartographic projection based on spatial conjectures, “implies a choice, that retains 
some relationships and excludes others; expressing in a reflected idea the results of a 
research that is not independent of hypotheses and the interpretation of facts” 
(Dainville 1986:394).419 
 
Point made of points; line made of lines 

According to the dialectical tradition, to analyze is to segment a whole into parts for 
its description and systematic study. This tradition, rooted in the teachings of 
Democritus, Euclid and Plato, indoctrinates how the world can be understood by the 
ways in which the atoms integrate matter, how points produce forms, or how 
spherical shapes make up the cosmos. Modern philosophy inherits and transforms 
these old ideas. For example, in Kantian or Russellian doctrines on a self-referential 
universe (mentioned in the previous section); or in the contrasting denial of the 
absoluteness of the simple part, in favour of the implicate order (see Bohm 1980), the 
rapports de coordination (Foucault 1966:130, 156), or the rhizome (see Deleuze and 
Guattari 1980:13). 

From the view of aesthetic philosophy, before speaking of lines, planes and 
bodies, Kandinsky (1926:29–46) undertakes the analysis of the ‘most simple’ forms 
by studying the point, from a Kantian perspective: 

[T]he whole ‘world’ can be looked upon as a self-contained cosmic composition which, in 
turn, is composed of endless number of independent compositions, always self-contained 

                                                 
419 Dainville (loc. cit.) refers to a map of synthesis and correlation: “Une telle carte implique un 

choix, qui retient certaines relations et en écarte d’autres. Elle exprime une idée réfléchie, les 
résultats d’une recherche qui n’est pas indépendante d’hypothèses; elle est l’interpretations des 
faits […]”. 
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even when getting smaller and smaller. In the final analysis, all of these—large or small, 
have been originated from points, to which point—in its original geometric essence—
everything returns. (Kandinsky op. cit.:30–31). 

According to the Platonic-Kantian tradition, the masses, clouds, or clusters of 
clusters, can form dense points, thus forming an infinite connection between minor 
and major, composing the ‘map within the map’ as suggested by Peirce (CP 8.122; see 
also Pareyon 2010b:35). The best illustration of such a point made of points—in turn 
made of points, again and again—is provided by Kandinsky himself (op. cit.: 45) 
[◊611, left.], denoting correspondence and self-similarity between physical universe 
and physical quantum. In this conceptualization, Kandinsky exchanges influences 
with the scientific and philosophical theories of his time. He also ventures into the 
analogy of a ‘basic point’ as a generator of musical sound, providing several graphic 
examples included in his book Punkt und Linie zu Fläche (1926). 

 

  

◊611. Left: Wassily Kandinsky (1926:45), “Large point made of small points”. Along 
with this design, the author presents other analogous figures: a photograph of a stellar 
nebula, and a microscopic photograph picturing the formation of a nitrite, 
resembling sets made of points. 

Right: Phase analysis of Kandinsky’s drawing (left), scanned and processed as a 
system of acoustic relationships. This analysis shows local (probable) relations as a 
whole, in which lines are made of lines (compare with figure ◊658). The pattern 
obtained is comparable to a 1/f 0 Gaussian noise sampling, and is a typical example of 
intersemiotic translation between image and sound. The rectangular shape 
(essentially irrelevant in terms of the analysis) corresponds to the computer screen 
used for obtaining the result. 
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Even today, the notion of point as the origin of a minimal relationship continues 
to be used in music theory. Typically, Ockelford uses two points to refer to a 
similarity between two musical minimums. When he theorizes about E.T. Cone’s 
classical scheme, in which two basic elements are represented as x, y, where y derives 
from x as a primal musical similarity, Ockelford summarizes the relationship x → y as a 
relationship between two points, one succeeding the other (see Cone 1968, 1987:237; 
Ockelford 2005:21). Moreover, this relationship between points is usually 
represented by a second element: a line segment that, according to the Euclidean 
tradition, forms “a point continuum” (Euclid, Elements, Book 1, defs.3,4). This idea 
draws on a first level of the concept of line as isomorphous structure made of 
repetitions. According to Scholfield’s (1958) aesthetic theory, proportions 
contribute to create order through repetition, or by the sum of “dominant shapes” 
and by “patterns of mathematical relationships” (see Bucher 1959:526). 

By a Euclidean logic, after the point of dimension 0, follows the line of dimension 
1. This seems to be valid for music, as for a variety of abstract expressions: “The 
straight line segment, determined by two points is, in geometry, mechanics and 
architecture, the simplest element to which the ideas of measurement, comparison 
and relationship can be implemented” (Ghyka 1927:24). In this view, with which 
Ghyka opens his text on proportion, he assumes the Euclidean principle stating that a 
line is formed of points. As it is also usual in the analytical tradition of music, Ghyka 
uses the straight line as a continuum of points, in order to develop a theory of 
measure and similarity, representing the relationships that characterize rhythm and 
harmony. In contrast to this conceptualization, and according to a self-similar logic, 
one finds the notion that a line is not made of points, but of lines, by analogy with the 
concept of point made of points, as suggested in graphic ◊611. Precisely, Peirce 
(1903a, 1903c) promotes this self-similar assumption,420 musically articulated in 
Iannis Xenakis’ Pithoprakta (1956).421 

                                                 
420 If in some aspect Ch. S. Peirce’s mathematics revolutionizes Euclidean geometry it is in this 

one: the point is not anymore the generator of all things, but rather things come out from the 
recursion of their own self-structuring parts: “On a continuous line there are not really any 
points at all” (CP 3.388); “Breaking grains of sand more and more will only make the sand more 
broken. It will not weld the grains into unbroken continuity.” (CP 6.168). This notion is 
developed, clearly, upon the Aristotelian De Lineis Insecabilibus (Book II, in particular); 
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Two complementary concepts of harmony 

In music theory there are two interrelated concepts of harmony. One refers to the 
physical, hierarchical, configuration of pitches, by contrast to the homogeneous 
distribution of frequencies in 1/f 0 noise, or in stochastic distribution in different 
forms of noise. The second one refers to the well-formedness function in the 
implementation of a musical grammar, based on the physics of sound structuring. 
Examples of the latter are the methods of harmony, such as the Tratado de glosas 
(1553) by Diego Ortiz; Traité de l’harmonie reduite à ses principes naturels (1722) by 
Jean-Philippe Rameau; Учебник гармоний (1886) by Nikolai Rimsky-Korsakov; 
Harmonielehre (1911) by Arnold Schoenberg; or Aufgaben für Harmonieschüler 
(1949) by Paul Hindemith. Rameau’s treatise is particularly relevant, since it 
introduces the foundations of modern musical harmony as proportional theory. A 
subsequent treatise by Rameau is his Nouveau système de musique théorique et pratique 
(1726), in which he coins the term ‘subdominant’, and describes a proportional 
reciprocity in the tonal system: the root of the subdominant is to the root of the tonic 
the same as the root of the tonic is to the root of the dominant. Under this 
proportional conceptualization Rameau develops his constructive theory of triads—
typical of the Western tonal system—and establishes the organization of the system 
of diatonic scales. 

Both concepts, or rather both sets of concepts referred to as harmony of sinusoids, 
and harmony of proportions, can be summarized as follows: 
(1) Harmony of sinusoids forming a frequency (pitch or tone). It is traditionally defined 

as the relationship between a generator tone and the degrees of its associated series. 
After Fourier analysis, which decomposes a function into a series of overlapping 
frequency sinusoids from a ‘fundamental’, it is possible to extend this relationship to 
smaller harmonic intervals completing the sound frequency spectrum setting both, 
tone and timbre. Under this consideration, the usual term of ‘harmonic oscillation’ 
denotes the sinusoids related at a frequency, as Fourier series. This concept of 

                                                                                                                              
nonetheless, Peirce’s conclusions are closer to the concept of topologic continuity, than to 
Aristotelian algebra and arithmetic. 

421 See graphic ◊656, on page 452. 
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harmony is the one used in the extraction of a tone’s harmonic spectrum by 
electronic synthesis (as summarized in subchapter 4.2.). As suggested by Fagarazzi 
(1988), this method also permits the implementation of timbral, textural and 
durational functions. 

 

◊612. Harmonic spectrum of C6 played in a violin (1st string). The staff represents 
traditional pitch notation, whilst the frequency graph shows its complexity as 
vibrating system. The highest peak corresponds to the ‘fundamental’ frequency of 
C6 (in this case tuned to 1033 hertz), and the following hierarchies represent 
harmonic tones associated with the harmonic complex (numbers in brackets 
represent their frequencies). A relatively stable region is noticeable at the system’s 
beginning (i.e. leftmost area in the waveform), whose maximum hierarchies ratios 
are close to 2 and 1.5 (see upper horizontal line), followed by a less stable region. 
Stability decreases as ratios approach 1, in a region that tends to noise at higher 
frequencies (approximately after 10kHertz), to a lesser amplitude. The symbol φ 
denotes an ideal point of the process bifurcation between hierarchical order and 
the same order fading out. 

(2) Harmony of proportions. This concept, as a modern version of the Pythagorean 
and Platonic notions of harmony, extends into stereotyped geometric relationships 
in pitch sets and intervals selection (proportions of scales and chords), whilst 
associated with durations. This stereotyped concept of harmony is usual in the 
analysis of structural patterns in music, especially in durations of medium and long 
range (such as phrases, sections, movements or whole pieces). 
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Harmony of proportions is usually represented in a projective line, through the 
so-called harmonic range. Also known under the name of harmonic system of points 
(Hardy 1908:99,106) the harmonic range forms on the relationship between points 
A, B, C, D: 

 

where AD = 1,  AB = 1/2 , AC = 1/3  and CB = 1/6 . So that AD:AB = AC:CB. It is then 
said that ABCD form a harmonic range (see Durell 1928:65–67). This is useful to 
represent, in a musical segment, the harmony of proportions in the horizontal 
coordinate of durations, and to represent their vertical distribution in simultaneous 
harmonic functions, whilst enforcing a relationship analogous to 1:1/2  � 1/3 :1/6  (read 
the symbol � as “proportional to”) or, more generally, whilst the overall proportional 
relationship follows the so-called harmonic progression: 
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This infinite series corresponds to the progression of the aliquot divisions of a system 
of periodic oscillations, as shown in ◊421, from a fundamental frequency with perfect 
harmonic series, represented by 1/2 , 1/3 , 1/4 … as regular periods of a vibrating system. 

In short, one may say that a proportion does not depend on points or lines, but 
on the relationship between two variables: given two variables x and y, where y is 

directly proportional to x if there is a constant k not being equal to zero, so that           

y = kx. This relationship is represented as y ∝ x. The constant ratio k = y : x is called 

constant proportionality or proportionality of the relationship of proportion. Constant 
proportionality is a generalized phenomenon in music;422 it often appears together 

                                                 
422 Fractions used in musical metre represent a proportion between metric unit and music 

measure. Fractions expressing harmonic intervals also represent a proportion of frequencies, 
corresponding to the degrees of a scale or the pitches of a tuning. In each of these cases, 
numerator (x) and denominator (y) are related as y ∝ x. There are, however, other types of 
relationships that do not host any proportion and cannot therefore be represented as a simple 
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with self-referential operations in a system whose total exists as a function of its parts, 
whilst the parts are correlated as a function of the total, laying the foundations for a 
general notion of consistency. This mode of self-reference incorporates such a notion 
of consistency or harmony within a larger system in which the same fundamental 
principle applies to self-similar distribution of language systems in general, following 
Zipf’s law (see Chapter 5). This includes generalized distribution of 1/ f  noise, and 
proportional self-reference as constructive operation. Such forms of reflexive 
constructivism obey the same basic principle of self-reference, since its development 
corresponds to a consecutive row from the unit, as the series 1, 1/2 , 1/3 , 1/4 … This self-
referentiality involves, as well, self-organization processes in organic patterns, and 
aesthetic operations in a wide variety of modes of self-structuring proportions, as 
described in this chapter. 

6.2. Transition: from simplicity to complexity 

Hodges (2003:105) analyzes the cognitive operation that allows the transformation 
of a point into a basic sequence of points, and such a sequence into an infinite system. 
He characterizes this idea in the following manner: ● = finite unit, ●● = replication 
or basic symmetry of the finite unit, ●●● = basic sequence, extendable to an infinite 
isometry, with infinite relationships of symmetry.423 Hodges notes that this simple 
process is sufficient to lay out an infinite pattern, and provides several examples of 
musical literature, in which this pattern works as an analogy of ellipsis in written 
language. Hodges wonders if such horizontal representation of this mental process is 
necessary, and he answers “yes and no”: yes, because this representation corresponds 
with general intuition and a convention of writing; no, because it is necessary to 
include the feasibility of affine transformations that change the spatial relationships of 
a system, without changing the intrinsic relations of the system itself. 

                                                                                                                              
relationship between numerator and denominator. These relationships, the so-called irrational 
intervals, coexist in music with simple notions of proportion. 

423 Subchapter 2.3. introduces the notion of ‘isometry’ (see pages 45–47). 
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The idea of developing complexity from a simple ‘starting point’, is stimulated by 
the observation of biological processes in which, from a sign (the Euclidean σημεῖόν) 
carrying a basic material with its intrinsic rules, a major structure is elaborated, with 
increasingly specialized polymorphisms and functions. Subchapter 6.5., dealing with 
self-replacement strings, presents this idea in the context of Lindenmayer systems. 

The notion of ‘starting point’ in a complex system also appears in stellar physics, 
under the concept of ‘singularity’, whereby the entire universe would be formed from 
a first originating point, in which all matter/energy was initially concentrated (see 
Friedmann 1922). By the mid-twentieth century, most branches of physics opened 
the discussion on fundamental particles in a great variety of possible ways. Gabor 
(1947), for example, suggests an acoustic world made from a basic ‘grain’ of vibration: 
an infinitesimal point vibrating in space by a self-referential expansion, originating a 
self-similar sound complexity. Stockhausen (1989:37) summarizes this idea, also as 
part of an aesthetic debate: “There was similar thinking everywhere: reduction of the 
process of forming to the smallest possible element”. This reductionism, but also its 
pragmatic implications in sound synthesis, are evident in modern theories of sound 
granulation (Ames 1989, Clarke et al. 1996, Rocha Iturbide 1999, Roads 2004), as 
well as in theoretical revisions on musical cognition and generativism (see especially 
Ockelford 2005). One of the central aspects of generativism in music theory is 
precisely the investigation of axioms and basic rules in musical constructivism, in 
order to describe how the more complex structures of music are originated in 
‘starting points’ basis. 424 Clearly, this topic is too broad, so it must be constricted 
within the main subject of the present study, to a specific case; for instance, in the 
example of the aggregate patterns as explained below. 

 
 

                                                 
424 This conceptualization is schematically related to subchapter 4.4. See especially pages 165–

166. 
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Aa) 

 

Ab) 

 

Ba) 

 

Bb) 

 

Ca) 

 

Cb) 

 
 

◊620. Aggregate pattern developed as audible forms. The six bars of this scheme (Aa – Cb) 
represent transformations of the same pattern. Suffixes a denote the numeric-geometric 
form of the pattern. Suffixes b denote the bit-maps rendered for each example (a) as 
harmonic spectrum, where the abscissa (x) represents time series, and the ordinate (y) 
represents pitches in Hertz (20 Hz to 20 kHz). Aa represents the original pattern, whose 
vertical relationships are growing as a series of natural numbers starting from 1 (= point). 
Ba is a multiplication and transformation of Aa; and Ca is a multiplication and 
transformation of Ba. 
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Aggregate patterns 

Subchapter 4.4., which introduces the basic patterns of pragmatic self-similarity in 
language, introduces an aggregate pattern set by the ordering of the infinite sequence 
1010101010… : 1201201201… : 1230123012… A segment of this sequence is 
represented in ◊442b by a first dashed line made of equal dots, according to the 
organizing principle employed by Hodges (2003:105), where the figure ●●● 
symbolizes a basic sequence extendable to an infinite succession. This structure 
reappears in ◊620Aa, accompanied by the acoustic rendering of its bitmaps, 

represented by its harmonic spectrum (Ab). 
This scheme highlights the transition, in a few operations of affine 

transformation, from the basic sequence (1010101010...) to a complex plot (see 
◊620Ca–Cb). A following, consistent overlapping, necessarily approaches—because 
of the many clustered similarities—a noise pattern. As a whole, these relationship 
follow the transition proportion → self-similarity → chaos,425 due to the accumulation of 
affine transformations, as continuous recursion. 

 
Noise and isotropy 

Isotropy is the statistical uniformity in all parts of a system. As stated in Chapter 5, 
measures such as 1/f 0, 1/f , 1/f 2, 1/f 3… represent continuous proportions of energy 
distribution in a frequency spectrum. Some of these proportions contain inherent 
relationships of self-similarity and correlation (specifically 1/f , and relatively 1/f 2), 
whilst others just have a tendency to isotropic disorder: lack of order under the same 

tendency in all its parts, as happens in the stochastic signal of 1/f 0 noise, or in Lévy 
flight (see Bolognesi 1983:31). Nevertheless, this disorder can also be ‘organized’ by 
adjacent hierarchies with self-similar trends in layered isotropies. 

Xenakis (1963, 1992) allocates hierarchies to the ways of linking sound events in 
minor sets, with sound events in major sets; such as the immersion of subsets within 
sets with structural similarities. Harley (1995:221) notes that Xenakis uses stochastic 

                                                 
425 This transition, typical of dynamical systems, has been introduced in subchapters 3.3. and 

5.2. A connection with the Peircean trichotomy is also explained in section 3.8.3. 
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functions to organize, through probability distributions, the general characteristics of 
sound ‘masses’, connecting them to their own microelements. This principle of design 
is based on proportion and functional self-similarity as sound features, implementing 
generalized isotropies as systems of scalar correlation. The crucial role of isotropies in 
Xenakis’ constructive strategies is due precisely to the use of homogeneity of sound 
events, in a stochastic system that follows the same type of motion at various scales, 
simultaneously (see Xenakis 1992:13–14). 

In broad terms one can say that the different modes of noise with self-similar 
patterns are characterized by their different layered isotropies; by their own way of 
repeating similar intervals and distributions at different scales. This includes patterns 
as diverse as the local perturbations in a turbulent system in a wind instrument; in 
self-organizing biases in systems related to 1/f  noise; or in pseudofractal sound 
synthesis from systems such as the Weierstrass function.426 

Besides self-similar distribution of energy in a frequency spectrum—which in 
musical terms can be translated as a correlation between pitch, amplitude and form 
of encapsulation (i.e. point, line, mass; tone, chord, noise; gesture, motif, phrase; 
etc.)—Xenakis (1992:13–14) also conceives the distribution of speeds between 
articulated points of sound, and defines three “hypotheses” of isotropy for the speeds 
within a homogeneous mass: (1) the density of speed-animated sound is constant, 
which means that the sound proportion tends to be the same for each segment of the 
pitch range; (2) the mean quadratic speed of mobile sounds is the same in the 
different registers; and (3) the absolute value of the speeds is uniformly distributed, 
which means that there is an equal number of sounds ascending and descending 
within a group of glissandi. 

This notion of isotropy is consistent with the examples displayed in graphic 
◊611, with Kandinsky’s image of a point made of points, and with its intersemiotic 
translation as Gaussian noise. Xenakis (1992:13) himself validates this conversion 
with “arguments” about “logical poems which the human intelligence creates in order 
to trap the superficial incoherencies of physical phenomena, and which can serve, on 
                                                 

426 The Weierstrass function, with an introduction to its musical applications, is mentioned in 
subchapter 5.3. (see pages 253–255). The issue of turbulences in wind instruments is presented 
in subchapter 4.2. (see pages 145–148). 
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the rebound, as a point of departure for building abstract entities, and then 
incarnations of these entities in sound or light.” Thus, Xenakis conceives isotropy 
and scalebound as means for musical coherence, contributing to structural sense by 
the systematization of self-similarity. 

 
Harmony and noise in prime numbers 

The connection between the sieve of Eratosthenes and Riemann zeta function is one 
of the most eloquent examples in mathematics, as a transition from simplicity to 
complexity.427 In other words, obtaining the first numbers that are divided only by 1 
and by themselves, is a relatively simple task; but comprehending the overall 
behaviour of these numbers represents a major conundrum for mathematics.428 

In the mathematical study of dynamical systems, short-term behaviour is much 
less relevant than long-term behaviour. In contrast, for music, short-term tends to be 
more relevant than long-term behaviour—a trait conditioned by human short-term 
memory, particularly influential in music cognition.429 For different reasons, this is 
also true in isolating a musical appearance in the initial sequence of prime numbers. 
For example in the bounded sequence: 

{℘⏐℘ ∈ [℘1,℘22]}, 

where 1 corresponds to the first prime number and 22 corresponds to the twenty-
second prime number, in consecutive order. Assuming this subset as a series of 
adjacent factors, b/a, c/b, d/c…, the first division is 3/2 (i.e. the sesquialtera value, which  

                                                 
427 Riemann zeta function is named in honour of mathematician Bernhard Riemann (1826–

1866), not to be confused with music theorist Hugo Riemann (1849–1919), several times quoted 
in this study. 

428 Literature on this subject is abundant, ranging from the discussion of strictly analytical 
issues, as in G.J.O. Jameson (The Prime Number Theorem, Cambridge University Press, Cambridge, 
2003), and its aesthetic-mathematical view in Du Sautoy (The Music of the Primes, Harper, New 
York, 2004), to its poetic and philosophical interpretation in a narrative perspective (A. 
Doxiadis, Uncle Petros and Goldbach’s Conjecture, Bloomsbury, 2001). 

429 However, the growing influence of mass data processing, from a statistical argument that 
extends in current musicology, should not be overlooked. From this perspective, quantitative 
analysis determines the qualitative interpretation, as happens for example in stylometry, as 
explained in subchapter 5.2. 
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is the most common ratio in musical metre and harmony), the second division is 5/3, 
the third division is 7/5, and so on. Thus, the following graph of ratios is obtained: 

 ◊621a. 
 
If the series of divisions are made with consecutive terms a/b, b/c, c/d, and so on, then 
the following ratios are obtained: 

 ◊621b. 
 
The latter graph, seen as a series of frequencies associated with the previous 
figure (◊621a), remains as follows: 

 ◊621c. 
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In order to emphasize symmetry in this representation, the same data can be 
displayed together with their inversion, as horizontal radial symmetry: 

 ◊621d. 
 

This sinusoidal structure can accept attributions of harmony in both senses, 
geometric and musical: geometric if one conceives a golden segment formed 
approximately between r(1,9) and r(10,22); specifically divided by 22/φ. This segment 
also keeps outstanding relationships of harmony between its first ten ratios. At the 
same time, they may be of musical interest if one assumes that the ratios correspond 
to an ordered pitch scale: 

 

The same, ordered by quotients: 

 

◊622. Analogies of {℘⏐℘ ∈ [℘1, ℘10]} displayed as pitch scale. 

3/2 5/3 7/5 11/7 13/11 17/13 19/17 23/19 29/23 31/29 

1.5 1.666 1.4 1.5714 1.1818 1.3076 1.1176 1.2105 1.2608 1.0689 

I II III IV V VI VII VIII IX X 

31/29 19/17 13/11 23/19 29/23 17/13 7/5 3/2 11/7 5/3 

1.0689 1.1176 1.1818 1.2105 1.2608 1.3076 1.4 1.5 1.5714 1.666 
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harmony   similarity noise 
(proportion) (approximate self-similarity) 

 

 

 

 

 

◊623. Above: visualization of {℘⏐℘ ∈ [℘1, ℘54]} as sinusoid in transition: from a 
harmonic spectrum (tone) to a stochastic distribution of intervals closing to 1 (noise) 
with relative self-similarity in an intermediate segment. In musical terms, this initial 
segment of the prime numbers series represents a ‘harmonic’ region, directly 
translatable into scales and chords and even into a prescriptive grammar. A 
subsequent region can be embedded as intervallic correlation within the former (i.e. 
relative self-similarity); whilst a third, ‘chaotic’ region (i.e. gradually less suitable for 
musical practice) is comparable to an infinite noisy coda. 

Below: visualization of the same set as multidimensional projection with radial 
symmetry, as quasi-harmonic system based on data from the previous example. The 
result is a sound object with relative self-similarity. 

 

Whether the prime numbers series has harmonic features is, hence, an intriguing 
question. The answer cannot be univocal, since the example given is part of an 
infinite set, progressively less related to a paradigm of proportions. Such a series, 
apparently proportional and self-similar at the beginning, increasingly departs from 
any notion of consistency, proportion and self-similarity, getting lost amidst a 
growing irregularity (or, from the opposite point of view, a growing regularity 
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tending to 1). In a larger sample of frequencies {℘⏐℘ ∈ [℘1, ℘54]}, the limits of 
this model also become ambiguous between harmonic proportion, self-similarity, 
and distribution of less predictable events, comparable—under a first glance—to the 
stochastic distribution of frequencies in generalized noise (see ◊623). 

The essay written by Du Sautoy (2004), on the history and mathematical 
meaning of prime numbers, employs the concept of music as a metaphor to suggest 
that a harmonious order exists in the prime numbers infinite series; but, even when 
he uses an explicit and promising title such as The Music of the Primes, he does not pay 

attention to the harmony of the initial segment (characterized in ◊622), nor to its 

transition to noise (pictured in ◊623). Nonetheless, his mathematical approach is of 
interest to music theory because it delves into the long-term pattern of prime 
numbers and their absolute behaviour, which, according to the Riemann zeta 
function, should reflect a general harmony in which the intervals are balanced as 
global form, although with clear differences among local forms. 

Du Sautoy’s (2004) central argumentation is that Riemann zeta function 
operates on the infinite harmonic series (i.e. the harmonic progression is described in 
6.1.). In fact, the mathematical principle that gives rise to the Riemann zeta function 
is the Euler function, defined in real numbers as harmonic infinite recursion. 
Synthesizing the infinite sum of its terms, this function allows characterization of 
such terms on the conjectural base that, for all prime numbers, every even number 
greater than 2 is the sum of two primes.430 

Du Sautoy (op. cit.:93–96) also notes that Fourier analysis, employed for the 
decomposition of any wave in an infinite series of harmonics,431 is compatible with 
the Riemann zeta function, since each of the segments of the Euler function on real 
numbers can be decomposed into primes by the Riemann zeta function. In short, the 
Riemann zeta function converts prime numbers into wave functions: “these waves are 
not just abstract music, but can be translated into physical sounds that anyone can 
listen” (Du Sautoy, op. cit.:278). The question arises, therefore, whether this ‘music’ 

                                                 
430 This hypothesis is known as Goldbach’s conjecture. In 1923, Hardy and Littlewood showed 

that, assuming the generalized Riemann hypothesis, Goldbach’s conjecture is valid for all odd 
numbers that are sufficiently large. 

431 The concept of Fourier analysis is introduced in a special section, on pages 143–145. 
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or infinite set of frequencies tends towards 1/f 0 noise as random distribution, or it 

rather tends (at least partially) towards 1/f  noise and self-similar distribution. This 
question, deeply connecting music with the aesthetics of mathematics, and with 
acoustics and general physics (given the nature of fractional noises involved), is 
crucial to understanding the limits—if they indeed exist—between harmony, self-
similarity and noise in the prime numbers set. 

Besides prime numbers, a wide variety of dynamical phenomena present the 
transition harmony → similarity → noise.432 In this general sense, the concept of self-
similarity can be understood as the group of (a)symmetrical transitions in a 
dynamical system. For instance, Chapter 5 shows the diagonalization of frequencies 
and durations (see ◊525), following this behaviour. Another example is the 
bifurcation diagram of the logistic map, as described below. 

 
Bifurcation diagram of the logistic map 

The mathematical concept of map—also called function—can be particularly useful 

in music theory if we conceive a numerical value on ℝ (i.e. in one dimension), that can 
be musically mapped into two dimensions (e.g. pitch and length).433 The purpose of 
this analogy is to display some similarities between music theory and the dynamics in 

the real map (i.e. ℝ), as suggested in the following pages. 
A bifurcation diagram of possible long-term values in a group of periodic orbits 

in a map, characterizes a dynamical system in terms of a bifurcation parameter 
inherent in the system. The bifurcation diagram is common to represent stable 
solutions with a solid line and unstable solutions as dotted lines. A specific case is the 
logistic function: 

xn+1 = rxn(1–xn) 

                                                 
432 This concept has been introduced in subchapters 3.3. and 5.2. A connection with the 

Peircean trichotomy, as an epistemological model, is also explained in section 3.8.3. 
433 In mathematics, the term map or mapping is a synonym for mathematical function, denoted by f . 

Maps are systems of correspondences between specific objects within a set. Thus, a map f : A → 
B from A to B is a function f such that for every a in A, there is a specific object f (a) in B. 
Historicaly, most of function theory in dynamical systems is based on Weierstrass (1880) and 
Poincaré (1886). For an introduction to modern function theory, related with topics mentioned 
in this subchapter, see Bak (1982), Klebanoff and Rickert (1998) and Demidov (e2006). 
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where 0 < r ≤ 4. By iterating the equation, for each new value of x, the previous value 

of x is multiplied by its scaling factor. For 0 ≤ r ≤ 1 all iterations converge to fixed 
point 0. For 1 < r < 3, a fixed limit of 1 – 1r attracts all initial values of x. For r ≥ 3, the 
fixed point continues in principle, but its displacement becomes unstable, splitting in 
a first bifurcation that corresponds to a first alternation of values. In r = 3.449499 the 

bifurcation in two cycles splits in a bifurcation in four cycles. From r = 3.54409 to r = 
3.569946, the four cycles bifurcate in eight, then sixteen, and so on. 
 

 

◊624. Bifurcation diagram of the logistic map for the values r from 2.9 to 4. Originally 
described by R.M. May (1974, 1976), this diagram corresponds to the function of r as 
series of values for x n starting with a random value x 0 and iterating it many times. 
Numbers in the left column (x) represent the final states of the function. Gleick 
(1988:71) explains that bifurcations starting between 3.0 and 3.45 occur in the same 
way between 3.8 and 3.9, and then extend into the entire plot, and densely within the 
graph’s chaotic regions. 

In graph ◊624 the bifurcation parameter r is shown on the abscissa, whilst the 
ordinate shows the possible long-term value of the population of the logistic 
function. The bifurcation diagram shows the bifurcation of the possible periods of 
stable orbits 1 to 2 to 4 to 8, etc. Each of these points corresponds to a period 
doubling bifurcation. The length relationship of successive intervals between the 
values of r, for which the bifurcation occurs, converges to the first Feigenbaum 
constant (explained below). 
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Interpreting this function as an audio signal unveils the transition from periodic 
behaviour (r [2.9, 3.44]), to relatively periodic behaviour (r [3.45, 3.54]), to a quasi-

periodic chaos (r [3.54, 4]), and finally to infinite chaos (r [4, +∞]). This process is 
analogous to a transition from echo (long length and broad pitch intervals) to 
reverberation (progressively shorter delays and closer pitch intervals). Slater 
(1998:13–17) implements a modular music synthesizer coupled to an oscilloscope 
with an output impulse that produces this chaotic pattern; the spectrum and the 
impulse response of this signal systematically splits to set up a doubling periods 
torrent, resulting in a cascade of harmonics that can have multiple usages in music. 
Jedrzejewski (2006:172) employs a similar procedure for scalar design, using the first 
Feigenbaum constant as a source for musical tuning with self-similar features. 

The bifurcation diagram of the logistic map is analogous to the periodic growth 
transition of a population, until its relative stability, and then, until absolute 
instability occurs (May 1974, 1976). This scheme is also analogous to allometric 
configuration in example ◊430b, and is the most studied model of chaos in systems of 
proportion and functional self-similarity in organic relationships. In this context, it is 
also related to Fibonacci sequences, golden ratio, and Lindenmayer systems, all of 
them currently used as resources for musical structuring.434 

Slater (1998:16) suggests that any modular analogue synthesizer can be used to 
produce chaotic synthesis for musical purposes. This is proven by Polotti and 
Evangelista (2001), Sapp (e2003), Milotti (e2007), and Brothers (e2009), among 
many others. J.R. Salter (2009) devotes much of his doctoral dissertation to the study 
of the logistic function by its possible applications to music; moreover, his study 
concludes with a piece entitled Chaos drumming, for four percussionists, as evidence 
of his proposal. Madden (2007:52, 133) also reports a musical piece composed by Ian 
Stewart (1944– ), using the logistic function as an example of “a deterministic chaotic 
process” implemented for sound production. This is also an example in which self-
similarity of all intervals is not correlated to local figurative self-similarity; the parts of 
the whole are self-similar only in terms of their generalized distribution, but not by 
the rigorous scaling of a fundamental structure. 

                                                 
434 See subchapters 6.3.–6.5. 
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Feigenbaum constant 

The (first) Feigenbaum constant is a universal constant for functions approaching 
chaos by periodic doublings. It was discovered by physicist M.J. Feigenbaum in 1975 
(formalized in Feigenbaum 1979), when investigating the fixed points for the iterated 
function 

f (x) = 1–r |x |r, 

where f is a real function, defined positive and three times differentiable on [0,1], 
without relative maximum value over this interval, and which characterizes the 
approximation of the bifurcation parameter whilst its limit value r increases for the 
fixed point x. The diagram shown in ◊624 corresponds to several thousand iterations 

of this function in r = 2 for a discrete series, but with spaced r values, discarding the 
first hundred points or less, before the iteration defined for its fixed points, and then 
plotting the remaining points. After obtaining this plot, Feigenbaum calculated the 
increase (i) of parameter (Δ) for each bifurcation in r, as division of the following 
terms: 

Δi ri – ri–1 

Δi + 1 
= 

ri+1 – ri 

Whilst i increases, the division converges to a specific value, known as the first 
Feigenbaum constant, which is represented as 

lim Δi 
      δ  = 

i→∞ Δi + 1
  = 4.669201609102… 

The value of δ corresponds to the convergence rate of the bifurcations of nonlinear 
quadratic equations, so it is found in a variety of chaotic dynamical systems from an 
initial period of bifurcations. Klebanoff and Rickert (1998) associate it, for example, 
with diagrams of divergence in tent maps and the Cantor set, whose transitions are 
similar. In many cases, especially with emerging features of turbulence, the rate of 
convergence of the bifurcations is not constant, but quickly approximates to the 



 

 
 350 

Feigenbaum constant as limit. On this basis, the prediction of the first bifurcations is 
beyond the limit by a statistically insignificant margin; the rest of the iterative 
behaviour of the function converges to the same rate limit δ, provided that the 
immediate proximity of the absolute maximum of the original function is a quadratic 
relationship—what Klebanoff and Rickert (cit.) explain in detail, for the cited cases. 
This requirement is met, for instance, in the arc at the edge of a circle; in the top of a 
parabola, or in the crest of a sine wave. Some illustrative examples of this are given in 
graphs ◊625 and ◊626, in a following section (see page 353). 
 
About the concepts ‘attraction’ and ‘attractor’ in music 

An attractor is a pole, a point, or a set of points in which the relationships of a 
dynamical system converge, partially or totally. Behaviour of parts within this system 
also reflects, a trend biased toward the attractor. Consequently, and according to the 
Riemann conjecture, 1 is the characteristic attractor in the series of adjacent divisors 
in the prime numbers set, as φ is the characteristic attractor in the series of adjacent 
divisors in the set of numbers forming the Fibonacci sequence. 

The Feigenbaum attractor (i.e. the set of points generated by successive iterations 

of the logistic function for the critical value of parameter r = 3.57, where the doubling 
period is infinite) is a well-studied case of converging self-similarity, with many 
applications in different areas. Other dynamic processes based on self-reference and 
iteration of functions, with a variety of structural attractors, chaotic or not, are also of 
interest for music, as explained in the following pages. 

The notions of ‘attraction’ and ‘attractor’, as physical processes, are noticeable in 
modern musical thought. For instance, Hindemith (1941:57) and Stravinsky 
(1947:31–37) agree that tonal relations in general can be described as relations of 
attraction and repulsion, similar to the relationships that occur in electromagnetic 
and gravitational systems. According to Edward T. Cone (1968:26–27), the 
transition from one pitch to another, in a melody or chord, within a system of 
musical harmony, is analogous to the displacement of an object in space, between a 
point of origin and a point of attraction, under specific laws of action, movement and 
rest, comparable to the physical laws of attraction and repulsion between two bodies. 
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For Steve Larson (1997:101–102) this analogy is also useful in explaining 
relationships of ‘atonal’ music, in which attractors correspond to statistical biases of 
repetition, symmetry, proportion, convergence, correlation and self-similarity. In a 
context of ‘expressive meaning’, i.e. the “quality experienced in music that allows it to 
suggest feelings, actions, or motion”, Larson explores the relationships between what 
he conceives as musical forces. According to him (op. cit.:102), such musical forces are: 
gravity, or the tendency of an unstable note to descend; magnetism, or the tendency of 
an unstable note to move to the nearest stable pitch, “a tendency that grows stronger 
the closer we get to a goal”, and inertia, or the tendency of a pattern of musical 
motion to continue in the ‘same’ fashion, strongly depending upon the Gestalt 
interpretation of a musical pattern.435 In short (Larson, ibid.), “Musical motion is thus 
heard as a mapping of physical gesture onto musical space—as purposeful action 
within a dynamic field of these musical forces.” 

‘Mapping’ as described by Larson is intuitively useful because it justifies a 
deterministic method for intersemiotic translation, between perception of musical 
relationships, and recursiveness of what he calls ‘musical forces’, attached to a system 
consolidated by the ordering function of the code,436 and the power laws governing 
analogies of gravity, magnetism and inertia. This form of structural validation applies 
also to the analogy of chaotic systems, with respect to the dynamic processes between 
‘musical forces’. Acoustic turbulence patterns described in subchapter 4.2. are an 
example of this relationship, well-documented after Feigenbaum (1980).437 Methods 
for implementing the Duffing equation and other dynamical systems and chaotic 
attractors, as quasi-fractal generators, organizational models for timbre, and musical 
tessellations, also fit this description.438 Relative self-similarity and chaos also occur at 
musical micro-levels of sound production: as Popp and Stelter (1990) note, self-

                                                 
435 See subchapter 3.5. 
436 This concept is introduced on pages 208–210. 
437 Bader (2005) analyzes chaotic turbulences in flute-like musical instruments with beveled 

embouchuresa. This topic is part of subchapter 4.2. 
438 The Duffing equation is a non-linear second-order differential equation. It is one of the 

more in-detail studied cases of dynamical systems, and its solution is a typical example of chaotic 
behaviour (see Bourke e1998). The equation describes the motion of a forced oscillator with 
periodicity more complicated than in a harmonic simple system. It can model e.g. patterns of 
quasi-periodicity in a perturbed vibrating string. 
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similar processes tending to chaos are found in bowed instruments’ noise, particularly 
when playing molto sul ponticello. This phenomenon is directly linked with forced 
oscillators in general, and with quasi-periodic forced functions describing deviations 
from Cantor-like mappings (see Cantor function, below). 

Another type of example of chaotic transition in music, is the style 
transformation occurring between subtle steps in the relationship between musical 
idiolect and ecolect, on a grammar rigid in the short term, but relatively flexible in 
larger cycles of transformation.439 According to what is suggested in Chapter 4, the 
enormous diversity of processes of attraction and structural transformation is also 
evident in the context of chaotic attractors. A special case of the latter are the 
attractors in real maps as explained in the following section. 

 
Chaos in real maps 

Demidov (e2006) describes the general behaviour of iterations in the logistic map by 
the gradual divergence from a point x = 0 in the regular period for c, that represents 
the mode of iteration phase, and finds the tangential bifurcation point approaching 
the value c = –1.7495. For example, in ◊625 the parameter c is 1, resulting in the 
square of the iteration of x; instead, in ◊626c–d the parameter c comes near to –φ 
(~1.6180339…), close to the value Demidov indicates. Such a bifurcation results in a 
tendency towards chaotic behaviour within the function. Consequently, the lengths 
of the regular phase regions grow as they approach the bifurcation point c. According 
to Hanssen and Wilcox (1999) the length of the regular phase is proportional to          
c (–c)–1/2, thus, the length of the regular phase increases twice when c (–c) decreased 
four times. Demidov (e2006) also describes how regular and chaotic phases may 
alternate in a behaviour called intermittency. From the standpoint of music theory, 
this concept is useful in describing an analogous behaviour in transitions between 
harmonic regular phases and chaotic phases, and in relationships between harmonic 
sets and noise sets. An example of this is the transition from a source of logistic chaos, 
to a convergent sequence representable by rational numbers. Demidov’s (e2006) 

                                                 
439 This issue is discussed in subchapter 4.8. 
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interactive page, that served to prepare examples ◊625 and ◊626, can also be 
implemented to generate a sound basis for synthesis processing after a waveform, 
plotting the iterations of the function on the same waveform (see ◊626). 

 

 

◊625. Iteration of the point x0 in the logistic map. x0 is the starting point and x1 is the 
value obtained when mapping x0. i is the identity (diagonal) denoting the 
correspondence between x1 and x2 (symmetrical correspondence, in this case, which 
does not occur for all mappings). The leftmost box (a) shows the parabola base of the 
map’s period (in other example the parabola may have a quite different length, with 
different mappings). The following box (b) shows the linear graph of the function’s 
second iteration. The next one (c) shows the fourth iteration, and the rightmost (d) 
shows the fortieth iteration. The general behaviour of these iterations is periodic 
(non-chaotic). 

 

◊626. Iteration of a point in the logistic map. The parabola’s period has twice the value 
than in example ◊625. Iteration phase in (a) is close to –φ, whilst in the former 
example is 1. The next box (b) shows the linear graph of the function’s second 
iteration. In (c) the same function appears in its 28th iteration, and (d) shows its phase 
plot. Unlike the previous example, here the function’s behaviour is chaotic (i.e. the 
phase plot changes unpredictably along the following iterations). 
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The iteration of functions in the logistic map commonly produces systems of 
relationships with statistical self-similarity in a similar way to the bifurcation diagram 
shown in ◊624. Each step of iterations in the two-dimensional space can be read as 
sound image, for example at coordinates x = length, y = pitch, integrating patterns of 
noise, timbre, and rhythms at different rates of correlation. This form of production 
can also be attached to a system of structural self-similarity, for example, associating 
micro-rhythms, mini-rhythms, meso-rhythms and macro-rhythms within a self-
similar set, according to Xenakis’ (1992:226) original proposal. 

 

◊626 (continuation). Sequentiation of phase graph in ◊626d as audio signal, typically at 
coordinates x = length, and y = pitch. It is clear that information in this scheme can 
also be employed to abstract other musical parameters such as rhythm, by the 
repetition of duration intervals, or timbre, by compression of these intervals in a 
harmonic system. The overall consistency of different musical parameters based on 
the same statistical source can be called sound integration—by an ‘ad hoc’ analogy 
with parametric consistency in integral serialism. 

Cantor function 

In mathematics, the Cantor function is the best known case of a real function that is 
continuous—i.e. that is uniformly continuous, and at the same time is not absolutely 
continuous. In its own fashion, this feature resembles the Weierstrass function 
mentioned in subchapter 5.3. 

There are different methods to approach the Cantor function, among which is 
the two-dimension graphic expression of x in base 3. This can be represented by the 
infinite tripartite subdivision of a straight line segment, as shown in ◊332 (see page 
74), as well as by the infinite subdivision of bars in the so-called devil’s staircase (see 
◊627 on pages 355–357). 
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After the pioneering work of Georg Cantor (1845–1918) and Giuseppe Vitali 
(1875–1932), many mathematicians have explored various aspects of this function, 
particularly with respect to its self-similarity. Like the Koch curve or the Mandelbrot 
set, the devil’s staircase also has drawn the attention of composers such as Charles 
Dodge (Profile, 1984) and György Ligeti (L’escalier du diable, 1993), because of its 
hierarchical self-structuring in a continuous proportional subdivision, that recalls 
aspects of music harmony and hierarchical distribution. 

The usual definition of the standard Cantor function involves the classic ‘middle- 
thirds’ description of the standard Cantor set, “the most basic fractal of all” according 
to Devaney (1992:4). This can be visualized along the devil’s staircase construction, 
as follows: 

  
 

 

step 0 step 1 step 2 step 3… …step 7 

 ◊627a. First steps in building the devil’s staircase.  

The clearest way to start building this description is using a square of sides of length 
1, divided into 9 equal squares. Then the whole shape is horizontally divided by 2 (see 
dashed line in step 0). In this example each minor square has the area 1/3 ; thus the 
distance [0, 1] can be represented as [1/3, 2/3, 3/3]. In step 1, a solid column represents 

the middle third [1/3, 2/3] of the base side of the square, with height 1/2. In step 2, a 
smaller solid column—analogous to the first column—represents the middle third 
[1/9, 2/9] of the base left-square [0, 1/3], with height 1/4. In step 3, a higher column       
—also analogous to the first column—represents the middle third [7/9, 8/9] of the 
base right-square [2/3, 3/3], with height 3/4. Accordingly, successive steps should 
produce columns with heights 1/8, 3/8, 5/8, 7/8, and in the kth step there will be columns 

of heights 1/2
k, 3/2

k,…, (2k – 1) / 2k. Analogies continuing in this manner form a ‘ladder’ 
with infinite ‘steps’, corresponding to the rational intervals that characterize the 
devil’s staircase (see schematic approximations in ◊627b–d). Peitgen, Jürgens and 
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Saupe (2004:213–214) concludes that the Cantor set corresponds to the “density as 
height of the bars in each generation [of the devil’s staircase]” i.e. the Cantor function 

is not precisely expressed by the shape in ◊627b, but by the density of the infinitely 
sharp line represented in ◊627c. 
 

 
◊627b. 

In this schematic view (◊627b), initial intervals [1/9, 2/9], [1/3, 2/3], [7/9, 8/9] clearly 
prevail, together with smaller intervals, symmetricaly shrinking in their width, and 
with their height approaching 0 at the left limit, and to 1 at the right limit. In the 
limit of the infinite construction steps—the endless iteration of the initial generative 
process—the whole square is symmetrically divided into two identical parts: the 
upper half in white and the lower half in black. Strictly speaking, the ‘staircase’ 
corresponds to the infinitely sharp line dividing the square: 

 
◊627c. 
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1) 

 

 2) 

3) 

 

 4) 

 

◊627d. Different construction stages of the devil’s staircase. The ordinate q shows the 
inverse period or wave vector as a function of the parameter x, that represents the 
sequence of rational numbers between 0 and 1. The result is a ‘ladder’ in which simpler 
rational numbers correspond to longer steps. This can be associated with the notion of 
musical harmony, given that, as suggested by Helmholtz (1863), the simplest rational 
numbers are also consistent with the most prominent harmonic grades. As a whole 
curve, the devil’s staircase is non-absolutely self-similar (since it is a finite curve), 
although it is commonly said that it is a ‘fractal’ with fractal dimension of 1.0. (Figures 
are adapted from the original work of Per Bak, 1982). 

1) Staircase formed by the first four iterations of the function. 
2) Evolving to the n iteration of the function: points on vertical subsets represent dense 

spaces ‘emerging’ as iterations continue, producing infinitely smaller intervals known in 
mathematics as ‘Cantor dust’. 

3) Staircase formed by the first 34 iterations of the function, with its main steps between 
rational intervals indicated as ratios. 

4) Continuous mapping of [0,1] in [0,1] is constant everywhere except on the resulting 
Cantor set. 
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In this shape (◊627), the relative widths of the steps are hierarchically organized 
from bigger ratios that represent more ‘visible’ or locally dominant ‘plateaux’, to 
smaller and less intuitive ratios. Another interesting property of this shape is that the 
strucural segments of the staircase symmetrically correspond to larger and/or smaller 
segments, forming a relatively self-similar curve with length equal to 2, and fractal 
(Hausdorff/Besicovitch) dimension equal to 1. Since the staircase has a differential 
shrinking scale between 1/3 for the width and 1/4 for the height, it is said that its 
geometry is non-absolutely self-similar: its zoom cannot be constantly proportional; 
it should, for it, follow a same shrinking scale of width and height. 

The approach to Cantor function from music theory has seen just first steps 
toward a new aesthetics. Charles Dodge’s Profile (1984) was composed after meeting 
Benoît B. Mandelbrot, who acted as an advisor during the compositional process (see 
Dodge 1988:10). Dodge’s initial goal was to create a stochastic algorithm from a 
collection of pre-selected pitches, following a schedule of refining-production that is 
intuitively comparable to the interval’s refining-production process employed at the 
first steps of the devil’s staircase generation. As a matter of fact, Dodge’s (op. cit.:13–
14) pitch segments written on the conventional staff, are vaguely reminiscent of this 
process. According to the composer himself (ibid.), 

The goal in writing the composition was to create a pleasing piece of music with a 
computer program through the recursive application of some simple rules. The plan was 
to use a time-filling fractal form for the structure of the piece and 1/f noise to choose all 
the musical detail of pitch, rhythm, and amplitude. The world of fractal geometry is very 
diverse and this musical analogy touches on but a small, simple corner of it. 

This work plan reflects a basic principle of self-similar structuring in which a set of 
base notes (pitches with specific durations) is used to generate a subset of higher and 
shorter notes, which in turn serves to generate a third set of higher and shorter 
notes.440 Dodge’s emphasis on generative grammar principles, as well as his idiolectal 

                                                 
440 The functional correlation between duration and intonation was formulated theoretically by 

Olivier Messiaen (1908–1992) for his Livre d’orgue (1952), according to his concept of ‘chromatic 
durations’, associating shorter lengths to higher pitches. This correlation has a natural basis in 
the configuration of the bioacoustic codes (see Sotavalta 1953, 1963), pointing out that, 
proportionally, a ‘small’ organism emits a frequency higher than the common vibration of 
another organism, relatively larger. This principle is connected with the Weber-Fechner law, 
mentioned on page 212. 
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notion of “pleasing piece of music”, reveal key aspects of his method and his 
intentionality for an intersemiotic translation of a self-similar set into another, 
analogous one, albeit with ontological and operative features completely different. 

In the case of Ligeti’s last part of his second book of Études for piano (1988–93), 
under the explicit title of L’escalier du diable (1993), Cantor function is approached 
with craftsmanship—and under the advice of mathematician Heinz-Otto Peitgen. 
Nevertheless, Ligeti’s method and results also correspond, as in Dodge’s case, not to a 
strict analogy, but to an intersemiotic translation. As Steinitz (1996a:19) notes: 

Ligeti constructs his musical staircase using his own numerical system. But it, too, exhibits 
recursive qualities, whilst its hemiola rhythmic cells of 2 to 3 recall the binary-ternary 
geometry of the devil’s staircase. The piece starts softly but ominously with energetic, 
additive rhythms based on a ‘metrical model’ containing ‘subgroups’ of seven, nine, eleven 
and nine quavers. After a bar-and-a-half’s false start, this metrical model is presented in 
full, and then repeated over and over, always subdivided into cells of 2+2+3 / 2+2+2+3 / 
2+2+2+2+3 / 2+2+2+3 / 2+2+3 / 2+2+2+3 etc. The elongated ‘step’ of three quavers, 
emphasised by legato phrasing, makes a small plateau, whilst the unequal but orderly 
progression of the subgroups recalls the irregular staircase of the graphic image. The study 
also exhibits a ‘pitch model’ starting on the first note, so immediately out of 
synchronisation with the rhythmic model. As for its structure, the first note of each cell 
starts progressively higher, following a 12-note chromatic scale from B up to A sharp. 

The intersemiotic translation that Ligeti makes of the mathematical devil’s staircase, is 

confirmed by the similar operation the composer employs in the last of his Études, 
XIV, Infinite column. This score constitutes the intersemiotic translation of a 
sculpture created in 1937 by Constantin Brancusi in the town of Tirgu Jiu, Romania. 
The sculpture, a vertical modular structure of 29 meters high, stands in the open-air, 
with a steel skeleton covered with bronze plates, forming truncated pyramids placed 
alternately one above the other, closing base against base and vertex to vertex.441 Ligeti 
translates this structure into music, taking into account the qualitative aspects of the 

                                                 
441 The content of footnote 6 (see page 2) must be highlighted here, on the paronomasia of the 

term ‘fractal’, coined by Mandelbrot (1977, 1982), with respect to the ancient Greek verb 
φρακτόσ, from φράσσω or φράζω, “to tighten the one against the other, spear against spear, 
shield against shield” (M. A. Bailly, 1894:609). This coincidence provides material for a history 
of the aesthetic conceptualization of self-similarity, as suggested, incipiently, in subchapter 6.1. It 
is clear that the main mechanism activating the translation, in the case Ligeti-Brancusi, implies a 
synecdochic intersemiosis. 
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column, with its 161/2 modules, each of them symbolyzed in the piano’s low register, 
gradually ascending with upward movements in meandering form. The same 
freedom that characterizes Ligeti’s translation of L’escalier du diable, reappears as part 
of his compositional method, creating a completely new structure.442 

A more strict conceptualization of the mathematical devil’s staircase, as a source 
for harmonic constructiveness, has recently suggested by Cartwright, González and 
Piro (2009). These authors are particularly concerned with periodically forced 
nonlinear oscillators, which “can exhibit an extremely rich variety of [acoustic] 
responses” (op. cit.:171). They include multi-frequency quasiperiodic and chaotic 
responses, and employ the devil’s staircase as the “skeleton for the layout of the 
resonances in parameter space as Arnold tongues”, somehow as the Farey tree (see 
section below) has been used as a source of musical harmony and (quasi-)periodicity. 

An interesting topic suggested by Cartwright, González and Piro (2009), is their 
“nonlinear theory for the residue”, structurally adapting the devil’s staircase iterative 
approach, to the auditory system i.e. distinguishing a neo-Pythagorean notion of the 
harmonic hierarchies, from the actual phenomenon of human hearing. Finally, they 
connect their findings to their own idea of the role of the golden mean as an aesthetic 
and structural feature in music, associated with the self-referential character of the 
Cantor function—a relationship developed in the following subchapter, under the 
concepts of synecdoche and self-similarity. 

 
Musicological interpretation of the Cantor function 

Within the Pythagorean tradition, and particularly after Helmholtz (1863) 
theorizing, sound intervals are conceived as ‘consonant’ when they correspond to 
‘intuitive’ or large ratios, and ‘less consonant’ or ‘dissonant’ when they become 
smaller or less intuitive. Congruently, hierarchical distribution in the devil’s staircase 
has been associated with ‘stability’ in musical harmony (see Cartwright, González and 
Piro 2009). This is somehow related to the Weber-Fechner law (“the smallest 
discernible change in the magnitude of a stimulus is proportional to the magnitude of 

                                                 
442 The process of translation of a sculpture into music is discussed in subchapter 3.8. (see 

especially pages 101 and 107–108). 
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the stimulus”); as well as to Zipf’s law or law of least effort in typical processes of 
language and music.443 The devil’s staircase is thus an extremely valuable resource for 
investigating structural self-similarity and synecdochic intersemiosis in music, since it 
analogously conjugates mathematical usefulness, aesthetic content, and fundamental 
principles of cognition, as explained below. 

Reality, particularly because of its aesthetic components, is attainable as an 
elaboration of the mind, thanks to the automated relationship between primary, 
secondary and tertiary epistemes, in which primary categories pre-define most of the 
subsequent categories (see Peirce 1903a). Generalization and stereotype, as very 
elementary devices of cognition, depend on the principle of comparing secondary 
and tertiary epistemes with models or main sources.444 This relationship is analogous 
in the devil’s staircase, in which subsequent segments—progresively less dominant 
epistemes—depend on the first relationship established between main (logical, 
symmetric) source and its first derivation. As Kramer (1981:579) conceives for the 
essence of the logical thougth, 

We can [generalize] because we know the essential characteristic that each individual has 
if he belongs to [a] group, and that he lacks, if he does not. So it is with infinite aggregates. 
They may be known by their characteristics even though we cannot complete the task of 
counting them, one by one. 

Thus, the logical relationship between ‘essential characteristic’ and (finite or infinite) 
‘aggregates’ implies a form of extension, that may receive a number of cognitive 
functions—in the form of synecdoche, analogy or proportion, for instance. The 
devil’s staircase pictures quite properly this relationship. Furthermore, it contributes 
to solve Plato’s paradox: “we cannot learn anything unless we already know it” (see 
Chomsky 1966:11). The answer to this paradox is ‘guessing’, as it is already 
postulated by the Peircean doctrine of synechism and abduction (see Peirce 1893, 
1903a–b).445 Of course, this does not mean randomly guessing, but guessing 
thirdnesses from the evidence of primary and secondary necessarily interrelated 

                                                 
443 The Weber-Fechner law and Zipf’s law are introduced on pages 212 and 216, respectively. 
444 This subject is developed in subchapters 4.2. to 4.4. 
445 An introduction to these concepts is provided in subchapters 3.2. and 3.8. 
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epistemes. This is the essential mechanism of the devil’s staircase construction as a 
cognitive process. 

Fractal (or pseudo-fractal) features of verbal language are suggested by Benny 
Shanon (1993) and Luděk Hřebíček (1994), because of language’s typical 
relationship between word and sentence, and between sentence and its aggregates.446 
Pareyon (2007c:1304) also suggests that a ‘symbolic coordination’ between implicate 
and subordinate, in cycles of information at different rates and layers of self-
organization under the same power laws, may be “responsible of self-similarity in 
language [and] in several scales of biological construction.” Such a relationship 
should happen under the preponderance of few salient qualities-quantities, over a 
progressive dependence of—equally—gradually more abundant particularities. 

Of course, the Cantor function is not the only self-organized system laying out 
hierarchical relationships between primary, secondary and subsequent categories, 
comparable to linguistic and musical structuring. As Devaney (1987:110) suggests, 
the Cantor function is a particular case of a devil’s staircase. In mathematics, as well as 
in language and in music, there is a variety of staircases that can be meaningful 
according to a specific variety of rules affecting the aggregates.447 

Somehow, the aim of musicological analysis is to identify the relationships 
between main and subsequent categories (statements and aggregates, antecedents 
and consequents, and so on). These relationships do not occur because music 
mandatorily requires establishing hierarchies, but because human perception of 
sound as figure, requires abbreviation and stereotyping based on the causal 

                                                 
446 This conceptualization is introduced on pages 168–169. One may note that another parallel 

between linguistic and musical organization, with the devil’s staircase, is relative self-similarity. 
Speech, music and the devil’s staircase can be represented as pseudo-fractal curves, since 
although they can have fractal dimension and apparent fractal consistency (see Pareyon 2007c), 
actually they have relative self-similarity. As Peitgen, Jürgens and Saupe (2004:212) point out, 
“the devil’s staircase looks [absolutely] self-similar at first glance, but is not.” Obviously, there 
are many differences separating this model from instability in music and in language cycles, for 
instance, in the stylistic loops studied in subchapters 4.7.–4.8. In practice, musical and linguistic 
systems are chaotic as whole systems; instead “the devil’s staircase consists of commensurate 
states only and no chaotic states” (Bak 1982:621). 

447 See Cartwright, González and Piro (2009:172) for the specific case of a devil’s staircase for 
the forced Van der Pol oscillator. For a more general, mathematical introduction to the 
dynamics of the maps in devil’s staircases, see Devaney (1987:110–112). 
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relationship between main and accessory—something that in tonal and post-tonal 
music has already been theorized by authors such as Schenker (1932), Salzer (1952), 
Cone (1968), Lerdahl and Jackendoff (1983), Lewin (1987), Lerdahl (2001), 
Ockelford (2005), Vázquez (2006), and Ilomäki (2008), among many others. From 
this perspective, the nuances of similarity between the ‘essential’ and what depends 
‘on the essential’, determine crucial aspects of identity of the former on the latter. 
Thus, approximate self-similarity is also nested in the bare naked perception of a 
great number of aesthetic elaborations. Musicology needs, therefore, to distinguish 
between the bias to self-similarity in music as causal phenomenology, and the tendency 
to self-similarity as perceptual self-completeness; besides, it is clear that in aesthetics 
both sorts of self-similarity are closely intertwined within a same complex system. 

 
Circle maps and the Arnold tongues 

From the physical and mathematical point of view, Per Bak’s (1982) introduces a 
plethora of structural aspects of the devil’s staircase, associating them with models of 
radiation, magnetism, energy distribution and vibrational systems involved in 
acoustic patterns and sound’s behaviour affected by power laws. This is closely 
related to the thematic structure of Chapter 4, suggesting that specific biological 
relationships result from physical interactions that are power-law consistent, and 
therefore exhibit relative self-similarity. In this context, Bak’s research is useful as a 
physical support for the granular theories of sound that have implicit aspects of self-
similarity, at least from atomic and molecular layers. 

Bak’s study starts with the description of a set of ‘atoms’ which are interrelated as 
oscillatory systems. These atoms are represented by solid dots or correlated masses, 
connected among them by harmonic springs. In their turn, these springs behave by 
specific wave periods, according to a model first put forward by Poincaré (1886, 
1907). Despite its extreme simplicity, this model is sufficient to support a thorough 
investigation on the Fourier series’ periodic potential, considering quasi-periodic 
oscillators in modulated structures, as suggested by Bak (1982). Such a mechanical 
model, generalized for studying the relationships between particles and waves, can 
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also be associated with systems of fractons and phonons in Gabor’s granular 
theory.448 

Oscillators studied by Bak (1982) depend upon the differential calculus of their 
periodic potential cycles. The calculus is based on the circle map that translates its 

family of ratios into a differential equation mapping the rational numbers in ℝ (i.e. 
the real numbers usually represented as points on an infinitely long, continuous line). 

According to Devaney (1987:102), “dynamics of maps [in the circle] are 

somewhat different from maps of ℝ since the circle is bounded.” At least partially, this 

is why circle maps are so useful, ‘collecting’ huge sets of points of ℝ within a bounded 
space. For musicological purposes, mapping a collection of rationals in the circle may 
be therefore practical, for example, to study the relationship of intervals within a 
harmonic family of ratios (e.g. from a devil’s staircase). 

The circle map—which basically consists of ‘translating’ a function of ℝ within 
the circle—is a method originally proposed by Kolmogorov (1933) as a simplified 
model of mechanical rotors. Currently it has a wide variety of applications in the 
study of electronic circuits and electromechanical systems. These systems include the 
cardiac pulsation and many other endorhythms associated with cellular potentials 
and the spatio-temporal configuration of cognitive systems.449 

The Cantor function in the devil’s staircase, as well as other ‘staircases’ generated 
by circle maps-like boundaries in phase mode, are also of great interest for music 
theory—with analytic and compositional consequentes—, because of their 
systematic correlation. Consequently, the Arnold tongues, a kind of structural 
skeleton of the devil’s staircase,450 can be adopted in music as symbolic self-similar 

                                                 
448 For a historical introduction to this matter, see Gabor 1947 (abridged here in subchapter 

4.1.). In connection with phonons and fractons, see Schroeder 1991:43; M. Clarke et al. 
1996:212; Rocha Iturbide 1999: Ch.I; and Roads 2004:34–35. Specifically, on the mechanical 
model of points or ‘masses’ united by harmonic springs, related to acoustics and music theory, 
see E.R. Miranda 2002:80–99, and Dodge and Jerse 1997:283–287. 

449 See subchapters 4.1.–4.3. Congruently, subchapter 5.3. (see especially page 251) describes 
‘flicker noise’ under this conceptualization. Such a ‘spatio-temporal configuration’ is also implied 
within the previous section, on the musicological interpretation of the Cantor function. 

450 Named after mathematician Vladimir Arnold (1937–2010), best known for formulating the 
Kolmogorov–Arnold–Moser theorem, crucial for the study of quasi-periodic motions under 
small perturbations in dynamical systems. 
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constructions with their typical ratios and transitions between harmony and chaos, 
depending on the mapping qualities.451 

 

◊628. Arnold tongues in the phase diagram for the continuous model proposed by 
Aubry (1979), based on a differential equation. The ordinate corresponds to the 
intensity measure of the model’s periodic potential; and the abscissa corresponds to 
the family of ratios obtained by the function. (For a detailed explanation see Bak 
1982:612). Like in the devil’s staircase, here the simplest ratios fill larger or more 
stable spaces—properly the ‘tongues’ or spaces between sigmoids. The inset shows 
the structure of an amplified segment of the system, suggesting the self-similar 
composition of the whole. 

                                                 
451 Considering the growing literature linking music with dynamical systems, one may say that 

this rich field of experimental musicology, although being in its formative period, yet promises 
significant results for music theory in a short future. 
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There are some aspects that immediately arouse musical interest in a first 
approximation to recurrence patterns in the circle map and its rotation numbers.452 
One of the best examples of this is the so-called Arnold tongues, which appear in 
some regions of parameters of the mapping, where the limit values are set for the 
recurrence frequencies—phase locking or mode locking in the language of electronic 
circuits. Arnold tongues, thoroughly investigated by Aubry (1979), Bak (1982), 
MacKay and Tresser (1985), Boyland (1986), and McGuinness and Hong (2004), 
among many others, are defined by Rasband (1990:130–131, 217) as “resonance 
zones emanating out from rational numbers in a two-dimensional parameter space of 
variables.” 

Arnold tongues (example in ◊628) emerge from mode locking regions (commonly 

symbolized by Ω), showing the rational multiples of n which behave chaotically 
towards smaller scales. Rasband (1990:218) defines mode locking as “the nonlinear 
interaction of a dynamical system to produce periodic behavior that persists for a 
range of parameters.” Depending on the type of equation employed, for each 
mapping of the circle there is a special family of ratios corresponding to an Arnold 
tongues group with a specific mode locking. There is also a general tendency, shared 
with the devil’s staircases, where simplest ratios match with larger spaces. As 
suggested before, this physical-mathematical behaviour is comparable to Helmholtz’s 
(1863) harmonic theory, distinguishing stable hierarchies in terms of ‘consonant’ 
ratios, from smaller, unstable hierarchies or ‘dissonant’ ratios.453 

Interestingly, although Helmholtz theory (cit.) is historically and culturally 
limited to the study of the Western concept of harmony, the boundary relationship 
in Arnold tongues’ phase locking, seems to point out a more general, biosemiotic 
pattern, within a more general concept of harmony and music. For example, Vaughn 
(1990:116–118) suggests that in non-Western shamanic traditions of ritual 
vocalization, acoustic and nervous-psychological behaviour in climax situations is 

                                                 
452 According to Devaney (1987:103), “The most important invariant associated to a circle map 

is its rotation number. This number, between 0 and 1, essentially measures the average amount 
points are rotated by an iteration of the map.” 

453 The possibility of a comparative model remains open, associating the general criteria of a 
phase diagram in the mapping circle, with Helmholtz’s (1863) generalized results. 
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analogous to Arnold tongues’ phase locking. Again, this relationship seems to point 
out the association of self-similarity in music as causal phenomenology, with perceptual 
self-completeness, as explained in the previous section. Pervasiveness of this relationship 
in a multicultural environment is further developed in subchapter 6.3., within the 
contex of the golden mean and the Fibonacci sequences. 

 
Farey tree 

The Farey tree454 consists of a self-structured sequence of proportions, associated 
with the distribution of spaces in Arnold tongues. Milne et al. (2007:22) define it as 
follows: “A Farey sequence of order n is the set of irreducible fractions between 0 and 1 

with denominators less than n, arranged in increasing order.” The tree contains all 
the combinations between the numbers of the sequence. Thus, if the order is 4, the 
following sequence is generated 

0⁄0, 0⁄1, 0⁄2, 0⁄3, 0⁄4, 1⁄0, 1⁄1, 1⁄2, 1⁄3, 1⁄4, 2⁄0, 2⁄1, 2⁄2, 2⁄3, 2⁄4, 3⁄0, 3⁄1, 3⁄2, 3⁄3, 3⁄4, 4⁄0, 4⁄1, 4⁄2, 4⁄3, 4⁄4. 

The magnitude of the coefficients’ quotients defines the order of appearance in the 
sequence, distributed from lower to higher and from left to right. Because some of 
these fractions have no real value, e.g. 0⁄0 or 4⁄0, and others are equivalent, e.g. 1⁄1, 2⁄2, 3⁄3 
and 4⁄4, the sequence can be simplified as follows: 

0⁄1, 1⁄1, 1⁄2, 1⁄3, 1⁄4, 2⁄1, 2⁄3, 3⁄1, 3⁄2, 3⁄4, 4⁄1, 4⁄2, 4⁄3. 

Since the value of the fractions must be between 0 and 1, fractions above 1 must be 
eliminated; i.e. those whose numerator is greater than its denominator: 

0⁄1, 1⁄1, 1⁄2, 1⁄3, 1⁄4, 2⁄3, 3⁄4. 

                                                 
454 Farey tree and sequence are named in honor of geologist John Farey (1766–1826), who in 

1816, in a letter published in the Philosophical Magazine, of London, proposed a new hierarchical 
classification of fractions. Farey made the assumption that each new term in the expansion of 
the sequence corresponds to their neighbors ‘mediant’ or half step. However, Farey did not 
prove this property. The proof is attributed to A.-L. Cauchy, who read the letter of Farey and 
published his findings in his Exercices d’analyse et de physique mathematique (1840–47). 
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In ordering the fractions from largest to smallest and distributing them 
hierarchically, respect to the first and last ones, within the interval [0,1], there is the 
distance from 

1⁄4 to 3⁄4 

which serves to build the following hierarchical tree: 

   0⁄1    1⁄1 
     1⁄2 

    
1⁄3  2⁄3 

         
    1⁄4              3⁄4 

 
If instead of 4, the order is 5, then the standard Farey tree is obtained: 

   0⁄1    1⁄1 
     1⁄2 

    
1⁄3    2⁄3 

               
1⁄4                  

2⁄5            
3⁄5            3⁄4 

 
If instead of 5, the order is 8, the tree continues: 

   0⁄1    1⁄1 
     1⁄2 

    
1⁄3  2⁄3 

           
1⁄4                   

2⁄5           
3⁄5          3⁄4 

    1⁄5    2⁄7                      
3⁄8    

3⁄7     
4⁄7    

5⁄8                  
5⁄7     

4⁄5 
 
This development corresponds with a model for the analysis of rational numbers 
within the Cantor function, which, according to Rasband (1990:133), can also be 
described as a set of Arnold tongues, from a differential equation. According to 
Schroeder (1991:336) “Farey tree is a kind of mathematical skeleton of the Arnold 
tongues” (see ◊628). 
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◊629. Above: Farey tree represented with Ford circles. The overall statistical self-
similarity is evident, associated with the symmetry of fractal objects resulting from 
maps of two-folded periods. 
Below: Details of the same set, showing fractional values of its major elements, 
corresponding to the Farey tree. 

Rasch (1988) observes that the Farey tree’s hierarchical distribution is akin to the 
notion of hierarchical harmony in music, in that major or ‘more consonant’ intervals 
correspond to simple ratios (according to Helmholtz 1863). Rasch employs the Farey 
tree to define ‘new’ sets of intervals, as an alternative to equal temperament tuning. 

Carey and Clampitt (1989:187, 206) also conceive of a consistent relationship 
between a set of traditional music scales, under the notion of well-formedness:455 “The 
same structure underlies the tonic-subdominant-dominant relationship, the 17-tone 
Arabic and 53-tone Chinese theoretical systems, and other pitch collections in non-
Western music.” Essentially, this assumption concerns the structural ‘coherence’ of 
scales by their proportional affinity. This notion of consistency is closely related to 
the three-gap theorem. 

                                                 
455 See independent section on pages 60–62. 
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The three-gap theorem or Steinhaus conjecture, formulated by mathematician   
Vera T. Sós (1930– ), states that for any irrational number mapped in the circle, 
points segment the circle as arcs or intervals, at least in two different lengths and 
maximum at three different lengths or steps. Clearly, by this definition, the theorem 
relates the circle mapping, as explained on pages 363–367, with the Cantor function. 
Carey and Clampitt (1996) associate it also with the pitch classes structured 
according to well-formedness rules: “The proof of the three-gap theorem 
demonstrates that when the set yields three step sizes, the largest step size, call it x, is 

the sum of the smaller two step sizes, y and z.” They conclude that the circle mapping 
yields meaningful information on any pitch set generated by the same interval. This 
includes natural numbers mappings. Continued fractions obtained by this 
procedure—i.e. its mapping circle—are directly related to the Farey sequence, too. 

In this context, Agmon (1989, 1995) studies the “chromatic and enharmonic 
consequences” of the Farey tree, as well as its distributional properties contributing to 
structural coherence in the diatonic scale. Agmon (1996:45) defines ‘coherence’ or 
‘lack of contradiction’, in terms associated with the notions of invariance and self-
similarity: 

Definition: Coherence. Given a set of integer pairs {(u, v)}, 0 ≤ u ≤ a – l ,  0 ≤ v ≤ b – l 
[where a and b are steps of a tonal scale] we shall say that the set is coherent if for any pair 
of integer pair (u, v) and (u', v ') in the given set such that u > u' , the relation v '≥ v ' holds. 
Corollary: Given a coherent set of integer pairs {(u, v)}, for any pair of integer pairs (u, v) 
and (u', v ') in the coherent set such that v > v ', the relation u ≥ u' holds. 
Definition: Coherent Scalar System. We shall say that a scalar system SS(a, b) is coherent if 
{(u, v)} = I(S(a, b)) is coherent [where I is the set of diatonic intervals]. 

Carey and Clampitt (1989:188–190) complement this analytical approach of the 
diatonic scale, highlighting its two-dimensional spatial projection as mapping circle. 
They employ the heptagon inscribed in the circle to represent the seven diatonic 
pitches consecutively arranged to yield six identical perfect fifth intervals. Then they 
compare this mapping with the mapping circle of other simple polygons, regular and 
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irregular, representing scales with different pitch collections.456 The conclusions they 
obtain with this method—consistent with the characterization by Mazzola (1990), of 
tonal perspectives as (a)symmetric mappings—lead to the establishment of direct links 
between properties of invariance identified by pitch-class set theory,457 with notions 
of consistency and structural consistency settled by the theories of self-similarity and 
recursiveness. 

It is worth noting that the Farey tree, with its analytical and compositional traits 
associated with music, is also related to the notions of harmony and spatial 
proportion, in terms of the Fibonacci sequence and the golden mean: zigzagging 
down in the Farey tree, the following sequence is obtained: 1⁄1, 1⁄2, 2⁄3, 3⁄5, 5⁄8…, whose 
numerators and denominators correspond to the Fibonacci sequence, and its 
consecutive division tends towards the golden mean. This subject develops in the 
next subchapter. 

The systematic usage of the Farey tree’s self-similar features, with its properties 
connected with self-referential proportional sets, as the Fibonacci sequence and the 
golden mean, permits a more clear definition of any deterministic intersemiotic 
translation process based on intrinsic relations between translation source and 
destination, by contrast with indeterministic intersemiotic translation, as seen in the 
examples given by Dodge (1984) and Ligeti (1993). Congruently, self-similar features 
classification according to Rasch (1988), Carey and Clampitt (1989), and Agmon 
(1989, 1995), provide substantial resources for understanding how both modes of 
intersemiotic translation, deterministic and indeterministic, interact. 

                                                 
456  Subchapter 6.4. provides a basic introduction to pitch class mappings as self-similar 

polygons and tessellations. The example given in ◊642a–b corresponds to a whole-tone hexagon 
and its self-similar mapping as projection of combined divisors. 

457 See subchapter 3.4., on invariance. 
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6.3. Golden mean 

A straight line’s segment is divided by the so-called golden mean, if the largest 
subsegment B is related to smallest subsegment C, exactly in the same way that the 
largest segment A is related to subsegment B: 

 
This type of relationship is known as golden ratio. As happens with other types of 
proportion, according to the Euclidean definition of ἀναλογία (see subchapter 3.3.), 
the golden ratio operates as a self-referential system, provided that what is related as 
A:B, is equally related as B:C. 

If the segment A has a length equal to 1, and the largest subsegment B has a 
length equal to x, then 

x 1
1– x 

= 
x

. 

Thus x is the solution to the quadratic equation 

x2 = 1 – x . 

This equation has two solutions: 

–1 + √5 –1 – √5 x1 =
2 

≈ 0.618 x2 = 
2 

≈  –1.618  . 

Since sub-segment B is not related to C in a subtractive, but additive form, the final 
result must be positive. This result (x) is conventionally denoted by the symbol φ: 

1 + √5 φ (x) =
2 

. 

The numerical value of φ is represented by the approximation  

1 + √5 φ =
2 

≈ 1.6180339… 
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This number (1. 6180339…), historically known as golden number, can be estimated 
more exactly by recurrence of the formula φ = 1 + 1/φ : 

 , 

and its reciprocal: 

 

(Fenn 2001:22–24). 

Congruently, the equation φ2 = 1 + φ corresponds to the 
recursion of square roots: 

 
(Walser 2001:91–93). 

If this demonstrates the relationship of recurrence between golden ratio and golden 

number, the self-similarity of the whole system can be observed using again the 

proportional relationship A:B:C, as consistency of {a 1 :b 1 :c 1 } ∈ {A:B:C}, 

  , 
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and then, of {a 2 :b 2 :c 2 } ∈ {a 1 :b 1 :c 1 } ∈ {A:B:C}, and so on: 

  . 

This infinite sequence of proportional relationships shows why, as suggested by 
Yadegari (1992:69), “self-similarity should be thought of as a portrait of a self-
referential entity.” The same principle can be applied to the Fibonacci sequence. 
 
Fibonacci sequence 

Godrèche and Luck (1990:3774) state that “The Fibonacci sequence is perhaps the 
simplest of all self-similar structures.” The general definition of Fibonacci sequence is 
as an infinite set of consecutive integers, in which the sum of the first number with 
the second number equals the third number in the sequence; the sum of the second 
with the third equals to the fourth number of the sequence, and so on. Thus, the 
Fibonacci sequence can be summarized in the following recursive, self-referential 
relationship: 

k n  = k n – 1 + k n + 2 , 

where kn represents the nth number in the sequence, whilst k0 is the first number of the 

sequence, and k1 is the second number of the sequence. In the case of natural 
numbers this sequence is called Fibonacci (Fib), in which the sum of the first term 
with the same first term (1+1 = 2), is added to the result of the sum of the last two 
terms (1+2 = 3), then added to the result of the sum of the last two terms (2+3 = 5), 
and so on, obtaining: 

Fib = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…∞ 
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This sequence is peculiar in that the division of any part thereof, between the 
previous consecutive number, approaches the golden number (φ), inasmuch as the 
divided numbers are larger. The linear projection of this sequence corresponds to the 
golden mean, as shown in the examples with straight line’s segments, and as the 
recurrence of the formula φ = 1 + 1/φ converges to the continued fractions 1, 2, 3/2, 5/3, 
8/5, 13/8, … , or 1, 1/2, 2/3, 3/5, 5/8, 8/13, … . 
 
Constructive organicism 

Hilbert and Cohn-Vossen (1932/1952), Mandelbrot (1967, 1977, 1982), Rasband 
(1990), Schroeder (1991), and Hahn (1998), among other authors, demonstrate how 
basic relations of symmetry are found in almost all constructive aspects of organic 
chemistry and biology, as well as in human aesthetic appreciation. Within these 
aspects, the golden ratio plays an outstanding role.458 

Natural symmetry shows analogous ways for structural distribution of living 
tissues, in plants and animals, as a tendency to information consistency in biological 
patterns (see Livio 2002:109–119). As Campbell (1982:238) notes, “Asymmetry is 
not the safest strategy for evolution to adopt”.459 Consistency is achieved, thus, via 
patterns recursion, ‘simple’ in principle, and made up of few elements and few rules of 
association. This initial austerity explains the formative self-reference of inorganic 
constructive processes, with their operational consequences in organic forms. Among 
the most pervasive effects of this relationship, is structural self-similarity. 

Some of the best known forms of golden ratio are self-similar biological 
structures. A common example is the Nautilus’ spiral anatomy, reproduced in most 
textbooks on organic proportion (see Thompson 1917, Ghyka 1927, Pickover 1988, 
among many others), and which serves as a model for basic constructivism, drawing a 

                                                 
458 In this context, the word ‘organicism’ must be taken according to the first meaning given by 

the current edition of the Oxford Dictionary of English (2010): “the doctrine that everything in 
nature has an organic basis or is part of an organic whole.” Therefore, ‘organicism’ is a 
synecdochic doctrine. 

459 Nevertheless, the productive interaction between symmetry and asymmetry, remarkable in 
music and in biological systems, is the main issue of subchapter 6.6. 
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spiral axis within a compact and eccentric sequence of squares, whose length matches 
with the numbers of the Fibonacci sequence: 

 

  

◊630. Left: initial segment 1–8 of the so-called Fibonacci standard fractal. Right: 
drawing of the logarithmic spiral, as growth axis with subsequent segment 1–55. 
The fractal, with infinite exact self-similarity, corresponds to the sum  

∑
∞

=1
)(

s
sk  

where ks + 1 /ks ≈ φ (k is a number of the sequence, and s  is a subscript starting at 1 
and going to infinity). 

This example illustrates a self-similar development from a first square (with value 1), 
with its spiral axis logarithmically growing in a harmonious relationship evolving 
from its point of origin (the atomic centre of the first square). The sequence of squares 
and its associated spiral generates a fractal with exact and infinite self-similarity. 
Authors such as Zeising (1854), Borwick (1925), Hadow (1926), Ghyka (1927), 
Borissavlievitch (1958), Scholfield (1958) and Huntley (1970), consider that the 
most remarkable aspect of this figure—both in its constructivist and aesthetic sides—
is the golden mean. However, later works by Rasband (1990), Schroeder (1991) and 
Walser (2001), explain that this and other proportions characterizing organic and 
inorganic compositions, as well as human elaborations with analogous aesthetic 
attributes are, more explicitly, the product of self-referential systems. In short, 
economy and autopoietic functionalism are the basis of the golden ratio as it is found 
in nature; the opposite of what theorists such as Zeising, emphasize as the effect 
above the generating relationship. 
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◊631. Two examples of constructive organicism, with radial symmetry in several 

levels, mimicking functional branchings with the Fibonacci sequence and golden 
ratio: 
Left: Fibonacci tree made after a first straight, vertical line (the longest line, in the 
centre), with 377 units, forming a T with a first horizontal line of 233 units, 
coupled to successive T’s, with lengths of 144, 89, 55, 34 and 21 units, doubling 
smaller segments at every constructive step. 
Right: Another Fibonacci tree made with the same construction rules as above, this 
time including a 45-degree affine transformation for each sequence, with nine 
instead of seven iterations. In this form of recursive construction, the initial motif’s 
minimum variations result in a very different final structure. 

 
The principle of self-replacement in the Fibonacci sequence and golden ratio is easily 
associated with recursive tasks and organismic self-organization, due to its own trend 
towards self-similarity and consistency, characterizing the initial steps of the self-
replacement process. For this reason, Carey and Clampitt (1996:62) believe that 
“Notions of self-similarity have often been invoked in organicist explanations of the 
evolution and unity of musical compositions.” According to Mandelbrot (2002:28; 
with no further reference on the original source), when he refers to the music of 
György Ligeti, this concept is clearly identified in the composer’s work: 

Ligeti [...] described fractals as ‘the most complex ornaments ever, in all the arts, like the 
Book of Kells or the Alhambra. They provide exactly what I want to discover in my own 
music, a kind of organic development.’ 

One of the motivations shaping the second chapter of the present study is precisely 
the transcendental analogy mentioned therein, which attempts to capture the 
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structural, functional and symbolic empathy of the power laws expressed in physics 
and chemistry, regarding biology and biologic epiphenomena such as music and 
language. 
 
Symbolism and (mis)interpretation 

Golden mean, latent in a wide variety of phenomena, and permeating formative 
aspects of cultures, became a universal symbol of constructive relationships, partially 
hidden to human intellect. In this cultural development, Dench (1984:30) finds some 
‘advantages’ of the golden mean, above other constructivist symbols: 

Golden section had several obvious advantages over a cabbalistic, gematric numerology, 
or any other of the esoteric choices. Firstly, it is symmetrical, within limits Fibonacci 
patterns map on to themselves; secondly, the golden section ratio occurs in nature 
bewilderingly frequently, in phyllotaxy, plant petal numbers, water movements (Debussy’s 
beloved logarithmic spiral), etc.; thirdly, the psychological sovereignty of golden section 
proportions had been held from time immemorial. 

In consequence, and as noted by Spitzer (1963), Huntley (1970) and Livio (2002), 
golden ratio’s persistence in a considerable amount of aesthetic theories, may be 
imbued with a strong mystical and religious content.460 Even the term ‘golden’ 
indicates an Apollonian or Christian context in that geometry, music and 
mathematics are intertwined with the divine. Mystical ascription, made by human 
enculturation of the golden mean, explains—at least partly—the radical beliefs about 
its alleged universalism, as Adolf Zeising (1854) attempted to justify as a positivistic 
notion: 

The Golden mean is a universal law […] in which is contained the ground-principle of all 
formative striving for beauty and completeness in the realms of both nature and art, and 
which permeates, as a paramount spiritual ideal, all structures, forms and proportions, 

                                                 
460 Although Spitzer (op. cit.) emphasizes the association of the so-called divine proportion or golden 

ratio, with Christianity (by association of the golden god, Apollo, with Christ, and with the 
Platonic ideal of beauty), the discovery of the golden ratio’s systematic usage in non-European 
cultures in Africa, Southeast Asia and Mesoamerica, suggests that this mythical content of 
Christianity is not unique, but extends to a variety of manifestations of nature, which, observed 
by humans, acquires magical properties. (This is a central issue in Carpentier’s musicological 
fiction, The Lost Steps, 1953). 
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whether cosmic or individual, organic or inorganic, acoustic or optical; which finds its 
fullest realization, however, in the human form. 

This idea misinterprets a specific case (the golden mean) of a power law (under 
which self-reference occurs in dynamical systems), deeming it as a universal law in 
itself. It also reveals a willingness to place the humanity in the centre of the cosmos: a 
recurring ideal in the history of religions (see Spitzer 1963:66). 

Once Zeising’s theory is falsified, a radical skepticism denies almost all aesthetic 
qualities of the golden mean, developing new substitution hypotheses. For instance, 
Webster (1950:247) believed he had discovered that “The Golden mean is not a form 
of universal range, as [Adolf] Zeising (1854) thought, but limited in music almost 
entirely to sonata form—though partially present in some examples of other forms.” 
In this fashion, the golden mean changed, from absolute universalism, to a biased 
partiality: the fallacious belief that the golden mean is a phenomenon almost 
exclusive to the sonata form. 

In this pendular movement of speculations about the golden mean, some balance 
seems to be reached when placing self-reference in the centre of autopoietic systems. 
So each musical process (or form), depending on its potential for constructive 
recurrence, repeats, in successive scales and with varying degrees of exactness, the 
original relationships of a more general system. The golden mean would be, then, a 
specific case of a wider range of relationships of self-similarity, musical or not. 

 
Golden mean as musicological description 

Literature about golden mean in music covers more than fifty years of research, 
including works by Webster (1950), Norden (1964, 1972), Nørgård (1970), Lendvai 
(1971, 1984), Kramer (1973, 1988), Larson (1978), Bachmann and Bachmann 
(1979), Howat (1983a–b), Biles (e1998), Madden (1999/2007, 2005), Cuen (2000), 
Livio (2002) and Hofman-Jablan (e2007), among many others. Most of this research 
is devoted to statistical calculation and comparing models of symmetry. 

Norden, Biles and Livio (cit.), for example, note that many musical instruments 
are built following the golden ratio and Fibonacci numbers as physical and 
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operational features.461 This relationship between instrumental traits and tonal 
music, seems to be oriented by the same human tendency that seeks for a 
transcendental analogy between physiology and mechanics (and general physics), 

which in the case of Western tonal tradition adopts the form of just intonation. 
Lendvai, Nørgård, Larson, Bachmann and Bachmann, Howat, Cuen and 

Madden (cit.), pay more attention to the structural function of the golden mean in 
scores and recordings from a selection of music of different eras, although mainly 
from European tradition. They especially consider time units (seconds and minutes) 
and archetypal musical figures (notes, motifs, periods, phrases, sections, whole 
pieces), observing changes in instrumental palette and including transitions of 
timbre, intensity, rhythm and structural function of silences. Much less common is 
the study of fluctuations in local/global tempi, vertical and transversal relations of 
harmony, and pitch and scales generation from the golden mean and Fibonacci 
numbers.462 

Larson (1978) notes that the golden mean is a structural feature in the Kyrie of 
the Liber Usualis, in Gregorian chant, setting the length of melismas and phrasing. 
Madden (2005:76–78) extends this approach to composers of the Renaissance and 
Baroque periods, up to recent times, and concludes that the golden mean is widely 
used in Western music. 

                                                 
461 The piano is the most cited case, with black keys distributed in the range of one or two 

white keys. Then the black keys are grouped into subsets of two and three. Number five appears 
as a set of black keys per octave, as well as within the basic relationship of harmonic triad (e.g. 
from C to G, then from A to E). Number eight appears as the set of white keys completing the 
octave, and number thirteen as a total of keys completing the chromatic octave. Then 21 
appears as a set of white keys that complete the following octave—that is, completing exactly 
three octaves. 

462 For example, Madden (2005:xi) states that “The use of Fibonacci numbers and the golden 
proportion […] to establish temporal structure will be discussed in this book, while their use in 
tonal structure will be discussed elsewhere” (however, Madden does not suggest any source or 
direction). 
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◊632. Howat (1977:287): proportional scheme of Béla Bartók’s Music for Strings, 
Percussion and Celesta (1936), movement I in B�. Golden section falls in measure 55, 
corresponding to climax ( fff ), with pitch A polarized with respect to the initial A. 
Horizontal lines represent the piece’s bars: a) shows Lendvai’s (1971) idealized 
proportions as Fibonacci sequence, b) displays the actual proportions of the piece, 
according to Howat (ibid.). Numbers in brackets denote the extension of each 
structural segment. Small gaps between a and b in this example are similar to lags in 
many biological analogies of the Fibonacci sequence. 

 
Lendvai (1971), in his study on Bartók’s music, notes that “from stylistic analysis of 
the music of Bartók, we conclude that the main characteristic of his chromatic 
technique is obedience to the laws of the golden section.” Thus, in his analysis of the 
fugue of the Music for Strings, Percussion and Celesta (1936), he explains that the 89 
measures of the movement are divided into two parts, one of 55 bars, and the second 
of 34 bars, whose division is coupled by the instrumental climax. Other sections of 
the fugue are also identified by terms corresponding to the Fibonacci sequence. As 
seen in this type of analysis, the number of elements, classification of relationships 
and geometric dissections are the common ways to describe a musical pattern. 

Howat (1983b) asserts that the golden mean and Fibonacci numbers have also a 
functional significance in the works of Debussy. For example, in Reflets dans l’eau, an 

integral part of Images (1913) piano solo, the first reexposure of the rondo occurs 
after bar 34 with structural sums of 8, 13 and 21 measures. The proportional 
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structure of this piece presents a generalized radial symmetry, as happens in Il canto 
sospeso (1956) by Luigi Nono (1924–1990), with two golden segments at the edges.463 

In many of the cases analyzed by this method, it is evident that the use of the 
golden mean and the Fibonacci sequence are rather theoretical ascriptions from 
analysis itself, which in any case reveal a psychological tendency in the original 
relationships, from which information is distributed in a self-referential scheme. As 
Smith Brindle (1987:47) notes “Subconsciously, man needs to work in orderly 
patterns or proportions, and perhaps in sound as equally in vision, these proportions 
are determining creative factors.” Necessity of order in music reflects a preference for 
arrangements based on reference and similarity, and for structural negotiations 
between symmetry and asymmetry, leading to harmony or consistency of 
proportions. 

A proof of this generalized trend is the evidence of golden mean in functions and 
structures in musical repertoires from non-Western traditions, as found in a variety 
of rhythmic examples from the gamelan music of Bali, Indonesia (see Canright 
1990); in the traditional proportion 12/20 ~φ of the zanza, in the rhythm gàdà, from 
Central Africa (see Arom 1991:627); as well as in the rhythmic foots of traditional 
music of India, based on the ancient poetic versifying in Sanskrit. This example is 
documented in the history of Indian mathematics, music and poetry, taking into 
account methods as old as those developed by Virahanka (around 700 AD), Gopala 
(around 1135 AD) and Hemachandra Suri (1089–1172 AD), which explicitly 
mention the sequence 1, 1, 2, 3, 5, 8, 13, 21, 55... and its approximate common divisor 
in the form of proportion (see Singh 1985). 

Whether all the examples mentioned, of traditional use of the golden mean and 
the Fibonacci sequence, derive from the same, hypothetical, original source in a 
specific culture, its presence in other cultures, with no direct relationship with the 
Indo-European ethno-linguistic stem, or any African ethnic group, encourages the 
notion that the golden mean and the Fibonacci sequence are rather ubiquitous 
aspects of the human cognition, related to the human appreciation of natural cycles 
and rhythms. This notion is strengthened by the analysis of the ritual songs of the 

                                                 
463 See Pareyon 2007a. 
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K’miai people of Baja California, Mexico (Pareyon 2002). In this case, the 
permutation of utterances is carefully accomplished by the Fibonacci sequence (see 
table ◊633). Moreover, as Martínez del Sobral (2000) suggests, the golden mean is an 
astonishing tendency of Mesoamerican classic architecture and design, with a massive 
production of objects of ritual and everyday use. 

 
Case study: traditional songs of the K’miai people 

The K’miai people are natives of the northern portion of Baja California, primarily 
grouped in three communities: Juntas de Neji and El Álamo, in the municipality of 
Tecate, and San José de la Zorra, in the municipality of Ensenada (Ochoa 1994:9). 
The K’miai language belongs to the Uto-Aztecan family, and speakers constitute one 
of the five native peoples surviving in the region, along with the Cochimee, Koo-Kah-
Pah, Kiliwa and Pai-Pai; like other peoples of northern Mexico, they have a wide 
repertoire of music connected with native ceremonies, evidently from non-Western 
origin. 

Currently, the K’miai people have less than a hundred members and it is 
estimated that their culture, including their language, poetry and music, will 
disappear by 2010 (see Jiménez 2005). The most important genre of K’miai music is 
formed by songs and ritual dance music, interpreted by a shaman, or together with a 
dancer, or a group of participants under the shaman’s guidance. Often the shaman 
accompanies his songs with her/his feet tapping, hands clapping, or with a rattle, 
playing regular pulses. The meaning of lyrics usually integrates elements of sky, land 
and sea. The text, usually very short, is repeated many times; these repetitions, along 
with the sobriety of music and outsiders’ difficulty in understanding the texts, 
contribute to a rather poor study and knowledge of this repertoire, beyond its 
original practice. 

In traditional K’miai songs, the repetitions of phrases form structures that were 
transmitted orally by shamans, from generation to generation. For example, the ritual 
song Ña yohap mäshuña, ña yohap mäshuña, ña yohap mikewe (which in English can 
be translated as “At sunset, at sunset, we see the sunlight rays”) is composed of two 
phrases that are repeated 57 times, in 18 paragraphs subdivided into two kinds of 
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recurring paragraphs and one unusual paragraph, plus a final figure (“ha-ha-ha” [58]), 
which serves as a conclusion.464 The specific criteria in the two phrases alternation is 
unknown, but the self-reference of the sentences is clear, developing a sequence that 
reveals a constructive usage of the golden mean and the Fibonacci sequence: the song 
starts with the repetition of an identical element (1,1), followed by a complement (2) 
and a second repetition of the original element (3). This relationship completes a first 
paragraph, as noted in table ◊633 as 1a (x, x, y, x), where the number corresponds to 
each subset enumeration, ordered in this case with the elements x, x, y, x. The next 
subset is completed in 5, and the next literal repetition of the last repetition of phrases 
(x, x) starts at 8. The next analogous iteration (x, x) ends at 13. The last relationship 

(x, x, x) reappears in a similar way, at 21. The most prominent relationship of the set 
happens in line 34, marking the last paragraph change (following paragraphs are just 
repetitions of previous models). Finally, the last occurrence of alternate phrase (y) 
appears in 55. Rattle beats are subtly slower than the voice’s prosody, in a proportion 
of 4:6 (see musical transcription in ◊633-continuation). 

The conclusions of this section would be meaningless if there were not solid 
evidence suggesting that other K’miai songs have similar structures. For example, in 
the song Wha mi yai matiña kuakuri (“He cries because he goes away”), a single 
sentence is articulated into three distinct forms, which in turn produces 18 
paragraphs (the first one is actually a complement to the latter), containing 55 lines. 
The first sentence is replaced by eight rattle strokes, at the end of which the singer 
connects four phonemes ’ɑ, as a conclusion. 

                                                 
464 The description of this song corresponds to the compact disc’s contents presented by 

Ochoa (1994), including five ritual songs of the K’miai: U u mi jat pa mi (Owl and Coyote cry), 
Wha mi yai matiña kuakuri (He cries because he goes away), Amj me yawen yangui, wi yango shimey 
kakap (I want to go, I am looking for the exit), Ña yohap mäshuña (At sunset) and Jay mi tiña miya 
home wara (I woke up crying in the darkness) [with texts translated into Spanish by Gregorio 
Montes Castañeda]. 
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1 Ña yohap mäshuña 29 Ña yohap mäshuña 
1 Ña yohap mäshuña 30 Ña yohap mäshuña 
2 Ña yohap mikewe 31 Ña yohap mikewe 
3 Ña yohap mäshuña 

1a (x, x, y, x) 
32 Ña yohap mäshuña 

1c (x, x, y, x) 
4 Ña yohap mikewe 33 Ña yohap mikewe φ 
5 Ña yohap mikewe 

2a (y, y) 
34 Ña yohap mäshuña 

8 (y, x) 
6 Ña yohap mäshuña 35 Ña yohap mäshuña 
7 Ña yohap mäshuña 36 Ña yohap mäshuña 
8 Ña yohap mikewe 37 Ña yohap mäshuña 
9 Ña yohap mikewe 

3 (x, x, y, y) 
38 Ña yohap mäshuña 

7b (x, x, x, x) 
10 Ña yohap mäshuña 39 Ña yohap mikewe 
11 Ña yohap mäshuña 

4 (x, x) 
40 Ña yohap mikewe 

2c (y, y) 
12 Ña yohap mikewe 41 Ña yohap mäshuña 
13 Ña yohap mikewe 42 Ña yohap mäshuña 
14 Ña yohap mikewe 43 Ña yohap mikewe 
15 Ña yohap mäshuña 

5 (y, y, x, x) 
44 Ña yohap mäshuña 

1d (x, x, y, x) 
16 Ña yohap mäshuña 45 Ña yohap mikewe 
17 Ña yohap mäshuña 
18 Ña yohap mikewe 

46 Ña yohap mikewe 
2d (y, y) 

47 Ña yohap mäshuña 19 Ña yohap mäshuña 
1b (x, x, y, x) 48 Ña yohap mäshuña 

20 Ña yohap mikewe 49 Ña yohap mäshuña 
21 Ña yohap mikewe 50 Ña yohap mäshuña 

7c (x, x, x, x) 
22 Ña yohap mikewe 

6 (y, y, y) 
51 Ña yohap mikewe 

23 Ña yohap mäshuña 
24 Ña yohap mäshuña 

52 Ña yohap mikewe 
2e (y, y) 

25 Ña yohap mäshuña 53 Ña yohap mäshuña 
54 Ña yohap mäshuña 26 Ña yohap mäshuña 

7a (x, x, x, x) 55 Ña yohap mikewe 
27 Ña yohap mikewe 56 Ña yohap mäshuña 

1e (x, x, y, x) 28 Ña yohap mikewe 
2b (y, y) 57 ’ɑ ’ɑ ’ɑ 

◊633. Pareyon (2002): schematic view of sentences and paragraphs of the traditional K’miai song 
Ña yohap mäshuña, ña yohap mäshuña, ña yohap mikewe (“At sunset, at sunset, we see the 
sunlight rays”). The two constituent phrases are symbolized by x, y; paragraphs are indicated by 
numbers and a letter, expressing the modes of alternations (e.g. 2b is a recurrence of 2a). 
Golden mean and Fibonacci sequence numbers (in bold characters) have a structural function 
in this example. 
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◊633. (continuation) Transcription of the K’miai song Ña yohap mäshuña, ña yohap 
mäshuña, ña yohap mikewe. The part of the rattle is played by the singer himself, 
traditionally a shaman. The fragment corresponds to sentences 1—11, paragraphs 
1a—4. N.B.: accidentals preceding a musical note are valid for the following notes 
in the same position, within the same measure. 

The possibility that the usage of the golden ratio and the Fibonacci sequence is 
deliberate in these examples is documented in Pareyon (2002) as a result of a 
relationship between the pentacimal system in K’miai numeration—usual in many 
other groups native to North and Central America—along with a culture of 
observing the lunar cycles (i.e. cycles of seven days in a year of 52 weeks). The number 
zero between the Kiliwa—K’miai’s cousins—is called Nyiew halah, “Black Moon”, 
and is represented with a closed fist (see Ochoa Zazueta, 1978). Thus, following the 
association of lunar cycles with the pentacimal system, numbers such as 52 or 57 (i.e. 
52+5) would be more relevant than the 55 of the Fibonacci sequence. However, the 
emphasis of the sequence 5, 8, 13, 21, 34, 55 in K’miai songs, remains to be 
investigated more thoroughly. 
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Compositional theory after Debussy and Bartók 

For some authors, the selection and musical adaptation of an abstract relationship, 
for example, of numeric, geometric or algebraic kind, is not part of any compositional 
method, but of a ‘pre-compositional’ method. Dench (1984:29–30) claims, thus, that 
Howat’s (1983b) study on golden ratio in Debussy’s music, 

is an investigation, not of Debussy’s compositional thought, but of what has become 
known as his pre-compositional method. [...] What Howat is concerned with in his book 
is a pre-compositional system, which distinguishes it from the compositional systems of, 
for example, Schoenberg or Messiaen. 

However, the distinction between the pre-compositional and compositional method or 
system, is not entirely clear. Dench, using such a distinction, seems to refer more to 
an explicit system, implemented by composers such as Schoenberg or Messiaen, by 
contrast with other, implicit (tacit) systems, as implemented by Debussy. What is 
relevant here is consideration of a lesser or greater degree of awareness and 
explicitness of Gestaltic relationships of the musical sound, in order to consistently 
identify a greater or lesser degree of tension between grammar and style—according 
to what is stated in subchapter 4.7. of this study. This relationship must be 
considered the same for the processes of composing and performance, rather than for 
systematic musicology. 

Joseph Schillinger (1895–1943) is known for being one of the first theoreticians 
who proposed a formalized employment of golden mean and Fibonacci sequence, for 
determining all the parameters of a musical composition. His compositional ‘system’ 
(1946) is comparable—by constructivist goals, but not by aesthetic development—
with Webern’s integral serialism. Schillinger elaborates routines and mechanisms of 
structural symmetry and scales formation, as shown in ◊634d—that Nono partially 

used in Il canto sospeso (1956), as an independent development of Schoenberg’s serial 
theory. Schillinger, pursuing the same constructivist goals that he initially tried to 
establish, eventually used different versions of the Fibonacci sequence, mainly the 
Lucas sequence or Lucasian series (2, 1, 3, 4, 7, 11, 18...) inverting the first relationship 
of sum in the sequence (2, 1 instead of 1, 2). Although Backus (1960:232) believes 
that Schillinger’s numerical conceptualization is a “fraud” [sic], in the sense that it has 
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“no scientific or mathematical foundation”, the work of Schillinger must be judged 
rather in the light of the ‘naturalist’ tradition (see subchapter 4.1.), in search of a 
transcendent metaphor that places musical determinism and indeterminism within a 
broad framework of negotiation, as suggested here, in subchapter 4.8. In this context, 
Schillinger also contributes to the rational and structural usage of antiproportion, as 
explained in subchapter 6.6. 

Schillinger’s theoretical work, developed from 1920 to 1940, fruitfully occupied a 
generation of scholars, particularly from the 1950s well into the 1980s. This includes 
Backus’ article (cit.), entitled “Pseudo-science in music”, which criticizes the lack of 
care with which Schillinger mixes musical ideas with acoustics and mathematics (e.g. 
confusing concepts such as loudness, of psychoacoustic kind, with amplitude, of a 
physical-mathematical character; or confusing series with sequence). Backus also notes 
Schillinger’s over-enthusiasm for numerology, subsumed under mathematical 
inaccuracy. However, and despite these errors, Schillinger’s work marks a first step in 
trying to understand interrelated aspects of physics and mathematics from modern 
musicology. 

In addition to Nono, Stockhausen and Ligeti, other twentieth-century European 
composers, following a tradition laid out by Debussy and Bartók, used the golden 
mean and the Fibonacci sequence to shape their works. Among them, Hugo Norden 
(1909–1986), professor of composition at Boston University, and Per Nørgård 
(1932–  ), one of the most active Danish composers of his generation, meaningfully 
contributed to improving Schillinger’s theory, with explicit methods for 
implementing these resources as mathematical transformations, which include 
sequence modulation from numerical remainders, and affine transformation from 
geometric progressions. In this way, the transition between ‘pre-compositional’ and 
‘compositional’ systems, using Dench’s (1984:29–30) criteria, becomes more clear. 

Norden (1964, 1968, 1972), who includes these issues as central topics in his 
lessons on composition and analysis, also published literature on the employment of 
the golden mean in a musicological perspective, including examples from J.S. Bach 
(see comparative summary in Madden 2005), and stressing the relationship between 
compositional thought and the implementation of these tools, leading to a 
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reassessment of Schillinger’s theories—accessible to musical intuition, although, as 
criticized by Backus (1960), often with a lack of conceptual neatness. 

Nørgård, for his part, developed his idea of ‘infinite series’ (Uendelighedsrækken in 

Danish), to serialize pitch, harmony and rhythm in his Second Symphony (1970). This 
method takes its name from the recursive operation that generates intervals 
simultaneously in pitch scales and time series. The first terms of its simple form are 0, 
1, −1, 2, 1, 0, −2, 3…, a variant of the Fibonacci sequence, which also produces 
patterns of self-similarity whilst combining its different methods of implementation. 

Kevin Jones (1981, 2000) continues this development by combining probability 
and statistical self-generation methods, using sequences of numbers, geometric series 
and Fibonacci trees. More recently, Haek (2008) explains his technique for using 
cyclic remainders of Fibonacci sequences in modulo m, as a method of serial 
composition—considering a variety of musical parameters from Norden (1964, 1968, 
1972, 1976) and Nørgård (1970, 1987). 

Schemes ◊632 and ◊634 summarizes some of the most common operations of 
extension and time distribution; configuration of sections of a musical structure, and 
construction of musical scales, under the golden mean and Fibonacci numbers. 
However, the variety of applications and extensions of this theory is currently so 
wide, that Atanassov et al. (2001:39) believe that “the formidable quantity and quality 
of research in this mathematical area generate one world!” Such a ‘world’ is originated 
in a basic principle: the fact that the standard additive relationship of the Fibonacci 
sequence can ‘translate’ into families of associated relationships of numbers—as 
evidenced by Nørgård (1970), in a first example with ‘infinite series’. Although the 
main objective of Atanassov et al. is mathematical development, many of the topics 
included in their treatise have immediate or potential relevance for music theory. 
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a) 

 
b) 

 
c) 

φ = bar 68 (end of period 
IX, beginning of period 
X; change of tempo, 
instrumentation and 
dynamics, from ppp to 
fff). 

d) 

 

◊634. Proportional analysis of Luigi Nono’s, Il canto sospeso (1956): 

a) General structure by metrical units (i.e. semiquavers). 
b) General structure by number of measures. 
c) Symmetry of the first movement (orchestral introduction) by measures: 

major structure (a–b) encompasses minor structure (c) under the same 
system of proportions. 

d) Counting semitones model, based on Schillinger’s (1946), with 
chromatic intervals as Fibonacci sequence. 

(From Pareyon 2007a:71–72). 
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Generation of scales and intervals 

The generation of intervallic systems based on Fibonacci sequences reaches a wide 
range of possibilities, from the simplest geometric structuring of these sequences (as 
suggested in ◊635), to the progression of Fibonacci words—variants of the standard 
sequence—including self-replacement of strings as explained in subchapter 6.5., and 
the usage of modular remainders from the sequences (see Haek 2008), such as the 
remainders from a golden tessellation.465 As an example of a first case, let the following 
geometric structure (see ◊630-left) be the representation of a starting isometry 1/1, 
with subsequent divisions of the length of the squares (1/2, 1/3, 1/5, 1/8…) by a constant 
proportion ~φ. Unlike series of squares gradually increasing their length, in this case 
the lengths decrease, allowing to control the interrelationship of elements within a 
limited grammar. 
 

 

pitches:

harmonic
ratios:

durations:  

◊635. Left: Golden succession of squares as consecutive division of lengths of each side 
of an element (represented as n/n), according to the Fibonacci sequence. Gray boxes 
suggest overlapping areas in subsequent division, as segmentation of a self-similar 
sequence (a pattern useful for grammar self-structuring in music). 
Right: Golden sequence of squares as harmonic scale, approximately represented in 
the staff, with a group of associated durations. 

In principle, many data may be taken from these sequences, to become part of 
musical expressiveness. The musical usefulness of such data greatly depends on how 
sequences are bounded into a minimum of basic relationships, establishing a 

                                                 
465 See subchapter 6.4. 
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relatively simple method likely to be associated with a musical message. In a similar 
way a code elaborates information within a limited repertoire of symbols producing 
meaning in speech, a code of sounding symbols based on a first relation of proportion 
and self-similarity, can lead to a pre-musical ordering, as occurs in ◊635. 

Furthermore, the arithmetic properties of the first terms of the Fibonacci 
sequence are also useful for musical systems of distances and intervals, and scales. In 
particular, number 144 has interesting qualities for self-constructivism: this number 
is—at least within a very large ‘initial sample’ of the Fibonacci sequence—the only 
one with a perfect square root (see table ◊636), and has close relationships with 
significant cardinalities 96, 48, 32, 16, 12, 8, 6, 4 and 3, typically associated with the 
algebra of neo-Riemannian operators (see Cohn 1997). 

 
12 (= √144)  Chromatic scale (and its harmonic perspectives). 

144/128 = 1.125 Size of whole tone (9/8). 

144 – 16 = 128 (128/16 = 8)  Double of a frequency divided by eight 
(the ‘octave’, in conventional terms). 

144/16 = 18, 18/12 = 3/2
 Relationship of a frequency plus its half (‘perfect fifth’, in 

conventional terms). 
144/96 = 3/2  ‘Perfect fifth’. 

12√144 ‘Fifth’. 
128/96 = 4/3  ‘Perfect fourth’. 

144 – 96 = 48 Eighths of tone within a doubled frequency or ‘octave’. 

96/8 = 12 (96) Sixteenths of tone within a doubled frequency (8) or 
within a chromatic scale (12). 

144/8 = 18 (18/144 → 5/4) Relationship of a frequency adding the half of its half 
(‘major third’, in conventional terms). 

144 = 72 + 72 
Perspectives of tonal empathy. The ratio 144/2 refers to 72 
‘consonances’ and 72 ‘dissonances’ of tonal harmony (see 
Mazzola 1990). 

log 144 = 2.15836 = 
(log 12) × 2 = (1.07918) × 2 

log 12 ≈ great limma 27/25 (1.08), between Pythagorean 
double sharp 1125/1024 and apotome 2187/2048 . 

◊636. Some constructive self-referential properties of Fibonacci number 144, in 
relation to the chromatic scale and other harmonic intervals, from Pythagorean and 
just intonation. 
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Modular bounding 

The Fibonacci sequence is characterized by starting with the sum of two integers. 
This has structural relevance, since sequential self-structuring comes from its initial 
sum, originally under the recursion, a + b, b + b. However, other versions of the 

standard sequence can start with any pair of integers x, y so that one can create an 
infinite variety of Fibonacci sequences. Consider a few examples: 

standard Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377… 
Lucasian sequence:  2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322… 
Evangelist sequence:  3, 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343… 
9φ sequence:   9, 14, 23, 37, 60, 97, 157, 254, 411… 
31φ sequence:  31, 52, 83, 135, 218, 353, 571… 

Consistently, other sequences starting not with the sum of two integers, but with the 
sum of three, can also be arranged: 

 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705… 

as well as other sequences starting with the sum of four integers: 

 0, 0, 0, 1, 1, 1, 3, 6, 11, 21, 41, 79, 152, 293, 565, 1089, 2099… . 

Following the same logic, other sequences starting with the sum of n integers are 
possible. Also, for the sake of richness in the treatment of these sequences, all of them 
can be considered as invertible: any fn Fibonacci sequence modulo m can be inverted 

to form an m ( fn modulo m) sequence conserving initial properties of self-reference 
and proportion (see mathematical proof of this proposition in Mongoven e2004:13). 
This property of invertibility is also important because permits forming musical 
series that can be (re)processed according to the four basic operations of symmetry 
(see subchapter 1.3.). 

An obvious problem in using these numerical sets arises with the difficulty of 
giving musical meaning to intervals such as [a, b], when a, b are numerals with more 
than three digits. Given the additive properties inherent in their own build-up, after a 
few steps starting a Fibonacci sequence, very large numbers (i.e. hardly accessible to 
memory and intuition) may appear; conversely, in musical practice there is always 
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more preference for simple numbers—for example, to express relationships of metre, 
rhythm or harmony (see Helmholtz 1863, Barlow 2001). In this context, the use of 
remainders modulo m is the most productive method in the generation of 
operational intervals and functional scales, by virtue of shifting the criterion of 
bounding infinite series, into a manageable ‘window’ (a practicable field of intervals). 

A very simple example, useful as a primary method of modular bounding or 
reduction, is the translation of the standard Fibonacci sequence (0, 1, 1, 2, 3, 5, 8…) 
into a binary modulo (0, 1): 

Fibonacci sequence (bin): 0, 1, 1, 10, 11, 101, 1000, 1101, 10101… 
This sequence makes it clear that the same information can easily be 
(deterministically) intersemiotically translated, as rhythmic pattern: 

 

This example shows that numbers such as 13 and 21, become represented as a 
sequence of four articulated pulses (the last four quavers of the sample), instead of 
forming subsets of 13 or 21 items. There are obviously other methods of modular 
reduction and many other musical applications related to them. For instance, Wilcox 
(1992) and Mongoven (e2004) emphasize the possibility to generate Fibonacci 
sequences modulo m being adapted from pitch-class set theory—i.e. treating the 
modular remainders as ordered pairs and pitch classes. Haek (2008), in his turn, 
selects specific options to enrich serial techniques, and states that “it is indispensable 
(and productive and rewarding) to consider the Fibonacci numbers in light to 
traditional serial techniques. By doing so, I hope to (re)introduce serial research and 
compositional practice to the avid energy of mathematical Fibonacci research” 
(Haek, op. cit.:34; brackets in this quotation are the author’s own). 

Due to typical recurrences of self-referent systems, Fibonacci sequences modulo 
m intrinsically complete a certain cyclic remainder, and a numerical pattern reappears 
over and over again. In general, each Fibonacci sequence, as self-referential chain 
developing from a first set of integers, can form a sequence of integers whose 
remainders constitute an ordered class of remainders (Haek, op. cit.: 36). For example, 
the first twelve digits of the Fibonacci sequence modulo 8 are: [0, 1, 1, 2, 3, 5, 0, 5, 5, 
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2, 7, 1], whose ordered class of remainders is [0, 1, 2, 3, 5, 7]. The ordered class of 
remainders of a Fibonacci sequence is always a structural summary of the sequence. 
So, in this example, numbers 4 and 6 of set [0, …, 8] are excluded. Insofar as the 
elements of the series increase, the terms of the ordered class of remainders decrease 
proportionally. This means that a very large collection of terms can be characterized 
by an ordered class of remainders, much less extensive than the number of terms in 
the sequence itself. Haek (op. cit.) employs this feature to show how the number of 
remainder cycles associated with each modulo, proportionally decrease each time a 
segment adds to the total of counted cycles. Haek, motivated by a renewal of the 
serial techniques, connect operations of permutation, partition, transposition, 
inversion and rotation of series, as a means of structural development. 

Haek (2008), investigating the intrinsic properties of recurrence and self-
similarity of the Fibonacci sequence modulo m, also discovers a family of qualities in 
the remainder cycles, such as the emergence of internal ‘rhythms’ of numbers—or 
numerical words—characterized by the recurrence of a digit; or as self-generation of 
numerical palindromes, synecdoches and chiasmi. According to Haek (op. cit.: 52), 
these qualities offer a limitless supply of new perspectives for a renascence of serial 
techniques. It also favours—one may add—an enrichment of the analytical 
techniques related to the basic operations of musical symmetry. 

 
Biles–PGA scale 

John A. Biles (e1998), adapts an idea of Peter G. Anderson (PGA),466 to use the 
Fibonacci sequence for generating a musical scale, developing the Nørgård’s concept 
of ‘infinite series’ or Uendelighedsrækken (see Nørgård 1970, 1987). Biles employs the 

so-called Fibonacci ‘partition function’, vj, that computes the number of forms in 

                                                 
466  Both Biles and Anderson are researchers at the Rochester Institute of Technology, 

Rochester, New York. 
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which a non-negative integer j can be represented as the sum of distinct Fibonacci 
numbers. This sequence is defined as the coefficients 

v0, v1, ..., vFn + 2 –2 , 
such that 
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where Fn is a Fibonacci number, and 

Fn + 2 – 2 = F2 + F3 + ... + Fn 
is the derivation of the corresponding sequence. This version of the Fibonacci 
sequence also starts 1, 1, 2, followed by 1. Then each of the previous elements is 
added to 1, which makes 1+1, 1+1, 2+1, 1+1 = 2, 2, 3, 2. A following element 1 is 
inserted in the middle of the collection: 2, 2, 1, 3, 2. Taking this segment as a second 
segment of the sequence (the previous one was 1, 1, 2, 1), the sequence results 1, 1, 2, 
1, 2, 2, 1, 3, 2. The next step applies the same production algorithm, adding 1 to the 
second digit, instead of inserting it (*moving by |1| intervals distributed for each new 
segment) and setting the previous subsegment, that for each step includes 4×n digits 
(8, 12, 16, etc.): 1, 2, 1, 2, 2, 1, 3, 2. For this case: 1+1, 2+1, 1+1, 2+1, 2+1, 1+1, 3+1, 
2+1, makes 2, 3, 1, 3, 3, 2, 4, 2. By adding this result to the initial segment, the second 
part of the sequence is obtained: 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2. In order for 
obtaining the third part, the same algorithm is invoked (this time with 12 numbers), 
obtaining (*applies again): 
1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 3, 3, 5, 2, 4, 4, 2, 5, 3, 3, 4, 1… 
whose first 140 digits correspond to this plotting: 

 
◊637. Pitch scale created by John A. Biles (e1998), based on the Fibonacci sequence. 

Each new segment of the scale copies the previous segment, moving one bit 
upwards for each step, and placing a copy in the middle of the latter segment, also 
moving one bit upwards for each step. The whole scale completes a self-similar 
structure (example from Knott e2009). 
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As Knott (e2009) notes, in this scale, each section begins and ends with a copy of the 
previous section, moving by |1| intervals distributed for each new step, and adding 
for each segment a copy of the last segment, moving upwards again. The ending of 
each aggregation is identified by structural | 1 | setting along the sequence. 

Biles (e1998) theoretical proposal is accompanied by a musical motivation: “One 
goal of the algorithmic composer is to make mathematical self-similarity musically 
meaningful.” Biles associates preset pitch-classes to form an initial hexatonic scale (six 
elements per octave, skipping the fourth grade) to develop a consecutive series of 
three notes for each half of the scale. The projection of this formula, the beginning of 
a specific musical structure—in this case an experimental work of Biles—results in a 
repetition of a primary form, product of a first modular bounding (if the sequence 
shown in ◊637 is applied directly to music, the result would be too simplistic, on the 
one hand, but also impractical, on the other, because of the increasingly open 
intervals). Such a bounding is basically determined by the author’s choice, on 
instrumental decisions similar to any other of the compositional implementing 
processes. At the same time, subject to the evolution of the geometric progression, 
primary form is gradually extended in each cycle, increasing speed and counterpoint 
values (in fact, Biles simultaneously implements a variant of the scale, to develop a 
melodic counterpoint with the original form. In parallel, Biles creates a succession of 
harmonic relationships, ranging from modal ambiguity to a classical major tonality, 
which then gradually transforms into a texture through minor and pentatonic scales, 
which in turn are dispersed in a growing atonality. “Finally—Biles says—the tension 
is released by returning to a major tonality for the final elaboration of the form.” 
(Biles, ibid.). 

This summary makes evident that algorithmic tools arising from the golden 
mean and the Fibonacci sequence, depend upon the same universal principles of 
rigidity of the code and flexibility of the message. The composer, thus, acts as 
mediator between his own production (rigid) model, and additional structural 
decisions—as in this case of adaptation of a plan for contrapuntal and harmonic 
transitions. 
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Bohlen 833 scale 

Although originally formulated on a combinatorial approach of pitches, the Bohlen 
833 scale (Bohlen and Pierce e2009) has geometric properties related to the golden 
mean and the Fibonacci sequence. It contains a network of harmonic relationships 
with the property to match harmonic intervals cycles of 833 cents. For every ten steps 
in the scale there is also a coincidence with the octave respecting the base-pitch, and, 
at the same time, with the golden mean in the third step. By using this scale, 
harmonic series as multiples of 833 can be easily built, obtaining sound complexities 
within a palette of timbral resources. 
 

step proportion cents’ value cents’ step 
0 1.0000 0 – 
1 1.0590 99.27 99.27 
2 1.1459 235.77 136.50 
3 1.2361 366.91 131.14 
4 1.3090 466.18 99.27 
5 1.4120 597.32 131.14 
6 1.5279 733.82 136.50 
7 1.6180 833.09 99.27 

◊638. Bohlen 833 scale (after Bohlen and Pierce e2009), combining a harmonic 
distribution for each tone of the scale, with the golden mean in a generalized 
relationship of self-similarity, both between scale units and between successive 
octaves. 

 
This scale is based on the fact that the orderly distribution of intervals of 833 cents 
within an octave (1200 cents), is analogous to the multiplication of 0.83333 × 12 as 
total of semitones per octave. Simultaneously, the distribution of intervals having this 
hierarchy is also related to Zipf’s distribution, so the Bohlen 833 scale is analogous to 
the system of melodic steps outlined in subchapter 5.4. (see especially graphs ◊548 
and ◊551). 
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Fibonacci asymmetric trees 

Whether Fibonacci trees, such as those shown in graphics ◊631, are quite common 
examples of radial symmetry as a whole and as constructive layers, mathematics also 
conceives asymmetrical Fibonacci trees. These models are commonly used in 
biology—mainly in taxonomy, genealogy and phyllotaxy—to explain asymmetry in 
generative relationships and systems of reproduction, as well as in chemistry and 
physics, to schematize the energy levels of an electron in a hydrogen atom (see 
Huntley 1970:156–163). 

The scheme ◊639 presents an asymmetrical tree with ten horizontal levels. Each 
level corresponds to a Fibonacci number, in this case 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. At 
first glance, it is noticeable that the first derived systems are related to the overall 
aspect of the whole. A closer look also reveals that the numerical and distributional 
properties are linked to other, typical relationships of the Fibonacci sequence. For 
example, for each level, the number of black pieces corresponds to a Fibonacci 
number, whilst the number of white pieces corresponds to the preceding Fibonacci 
number. 

Walser (2001:69–71) investigates the close relationship of this tree with the 
golden ratio, and he finds that, for the nth stratification there will be an black pieces 
and an –1 white pieces. Proportion between black and white pieces tends, in (Fibn, …, 

∞) to φ = 1/ρ, where φ is the golden number (1.6180339…) and ρ represents the 

difference between φ and √5. 
Fibonacci asymmetric trees are evident in various aspects of music, including 

stylistic probability systems, systems of recursion and harmonic hierarchy, and 
relationships of consistency and asymmetry in rhythm and metre. A very general 
example of this is the probabilistic trees studied at the beginning of Chapter 5 
(especially the model shown in ◊511). 
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◊639. Fibonacci tree with ten horizontal levels, each of which may have one or two 

branches. Each level corresponds to a Fibonacci number, in this case 1, 1, 2, 3, 5, 8, 
13, 21, 34, 55. The whole tree is asymmetrical and self-similar. In this case two types 
of metric values were chosen (white pneumas as long, and black pneumas as short). 
The longer set by level has 55 elements, and extends asymmetry and proportion 
from previous levels. Jones (2000:5) suggests that this type of metrical organization 
is common to music and poetry in some of their most predictable cases (within a 
variety of Western traditions, at least). 

 
Lerdahl and Jackendoff (1983:214) also use a branching model to represent a 

musical recursion, explaining the structural subordination to a main stem, of other 
secondary systems. Asymmetry in this simple model (see ◊441d) is analogous to the 
asymmetry observed in ◊639, in a more extensive schematization. Moreover, Jones 
(2000) suggests that self-similarity and asymmetry in these systems, are also common 
to metrical models in traditional versification and in vocal and instrumental music.467 
Jones (op. cit.:8) also refers to the constructive relationship between Fibonacci 
asymmetric trees and symmetric prolatio (see ◊545), suggesting that avoidance of the 
‘binarism’—too obvious in body symmetry and in many aspects of musical practice 
(see Chávez 1961:34), constitutes a ‘subversive’ trend, basic for a creative developing 
of styles and repertoires. Jones (op. cit.) adapts the metaphors ‘safe’ and ‘dangerous’ to, 

respectively, refer to such a binarism, and to Fibonacci asymmetry, formulating a 

                                                 
467 The examples given by Jones include metrical structures of limericks, as well as Scott 

Joplin’s Maple Leaf Rag, for piano. The structural similarities with the Fibonacci asymmetric tree 
are remarkable. 
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hypothesis on the intuitive coordination of these two notions. The same concept of 
balance between symmetry and asymmetry can be attached to the link between rigid 

and flexible, and to the operational bonding between tension and relaxation, as the 
main engine of musical systems. 

 
Absence of golden ratio 

Lanza (2006:82), when criticizing Madden’s book (2005) on golden ratio ‘in musical 
form’, notes that “the writer has focused more on discussing examples where the 
[golden] proportion is not used, or even not approximated.” Madden’s purpose is to 
show how, in a selection of examples from European classical music, there may or 
may not be a tendency to use the Fibonacci sequences and the golden ratio. This 
notion is excessively general.468 

Tovey (1935:I, 19) suggests that “there are so many ways of taking [the] sections 
[of a musical piece] that I doubt whether any musical composition can avoid golden 
ones somewhere.” Conceiving the self-referential nature of the harmonic series—a 
nature also evident in the golden mean and the Fibonacci sequences—it is clear that 
many structural aspects of music follow similar relationships, affecting musical 
structures and processes, without strict necessity for ubiquity of the golden mean or 
the Fibonacci sequences, over more general aspects of musical self-similarity. 

As self-referential systems, systems of proportions are unavoidable in most of 
musical construction processes. In this generality, the golden ratio is one of the most 
noticeable systems, but—taking into account the abundance of possibilities to lay out 
a first generative self-reference in a musical system—cannot be the only form of 
structuring musical proportion. Demaree’s thesis (1973) presents one of the many 
solid arguments that confirm this condition; Demaree reports a variety of 
                                                 

468  Reading Madden’s (2005) book, one infers that the author is aware of this 
oversimplification; his goal is to demonstrate that, in music, there is indeed a structural tendency 
to employ the golden ratio and the Fibonacci sequence, albeit with numerous exceptions. The 
problem in Madden’s statistical challenge, is that he imposes his own idea of such employment: 
the usage of the golden ratio and the Fibonacci sequence appears as more important than the 
recursions and the self-referential constructive processes of the music he analyses. This 
analytical method—inadequate in the light of its results—is discussed in the Introduction of the 
present study, as the weakness of a musical investigation from the ‘engineering’ perspective, only 
interested in structural pseudo-problems. 
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proportions in string quartets by Haydn, though none of them connected exactly 
with the golden ratio (see Demaree 1973:19; something that, partially, has already 
been noticed by Webster 1950:241–242). In conclusion, not all music requires nor 
provides a golden ratio. In Kramer’s (1988:320) words: 

Not all music uses the golden ratio, and a considerable number of pieces, even those that 
strike us intuitively as well balanced, seem to have no consistent proportional schemes at 
all. What does such music tell us? That proportions are, after all, irrelevant? Surely not, for 
all music has proportions of some sort, whether representable by simple and consistent 
ratios or not. We do react to proportions that seem just right, and to proportions that 
seem wrong. 

Therefore, for the study of the signs in music as language, self-structuring processes, 
resulting from functional self-referentiality, are more relevant over any preset ratio. 
The general possibilities for the golden mean depends on the same functional self- 
referentiality, in that the reference of the unit with the unit iself (i.e. a repeated 
element or relationship), plus the recurrence of the reference, turns into a 
constructive succession with potential self-similarity. 

Constructivist self-referential processes in music are also diverse. They can be 
established from any succession of prime numbers as a reference from themselves and 
from the unit, to generate an analogous sequence, with or without a convergent 
divisor (see Barlow 1987). They can also emerge from the repetition of any geometric 
relationship and from the development of affine transformations (see Amiot 2003); 
or even from the accumulation of random values in a chaotic process in which a state 
x can be explained only by the immediately previous state, and not by the common 
source of their relationships—something that happens in Brownian motion or Lévy 
flight types of music, explored in Chapter 5. 
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6.4. Tessellations and brocades 

The word ‘tessellation’ denotes “an arrangement of shapes closely fitted together, 
especially of polygons in a repeated pattern without gaps or overlapping”.469 A clear 
example is the Sierpiński triangle (see ◊330a), also a typical case of spatial self-
similarity.470 Scientific applications, however, may conceive a tessellation also as a 
geometrical method, including prescriptive, comparative and descriptive 
grammatical features. 

David Lidov (1941– ), composer, music theoretician and author of research on 
the relationships between language and music, conceives that tessellations are 
somehow comparable to language in its broadest sense, in terms of form, expression 
and sign organization (see Lidov 1999:206): 

A mosaic allows an analysis similar to language. A first articulation divides the work into 
figures (like morphemes). The second articulation is the tessellation with ‘meaningless’ 
stones or tiles (standing in for meaningless phonemes). It may be that just half a dozen or 
fewer types of tiles account for the whole work. [...] The analogy between the articulatory 
structures of mosaic pictures and language is not perfect but holds in some depth. 

The first systematic explanation of the set of mosaics known as Archimedean 
tessellation, composed of regular polygons which can form up to eleven different 
cases, is attributed to Johannes Kepler (1571–1630)—mentioned throughout this 
study for his theories of proportion and harmony. Kepler’s book, Harmonice Mundi 
(1619), presents one of such eleven cases. In particular, this tessellation is composed 
of four shapes, all of them related to the golden mean by the relationship with 
number 5, with √5, or by multiples of 5, forming pentagons, pentagrams, decagons 
and double decagons. For Kepler, this is a manifestation of harmony, which he 
relates—at the same time—to music as aesthetic phenomenon, to the geometric 
description of music, and to the spatial properties of a natural geometry (see e.g. Livio 
2002:155–156; also Bailey e2005). 

                                                 
469 Source: Oxford Dictionary of English (2010). 
470 For a discussion on the aesthetic properties of the Sierpiński gasket, see Pickover 1990. 



 

 
 404 

  

◊640. Left: Johannes Kepler’s Harmonice Mundi (1619): tessellation with regular 
polygons, coupling pentagons, pentagrams, decagons and double decagons. 

Right: The same figure highlighting its most obvious repetitions and internal 
symmetries. The five eccentric circles indicate isomorphisms through the 
relationship of sets of five equally spaced elements, each within the other (i.e. 
automorphisms as described on page 48). 

Kepler’s tessellation (◊640) synthesizes several of the distinctive aspects of his 
harmonic-astronomical theory, as noted by its numerology: This model involves 
arithmetic relations of 2, 3, 5, 8, 9, 10, 12, 14, 15 and 16. The first intervals recall the 
beginning of the Fibonacci sequence. In the perfect intonation scale, 3/2 is equivalent to 
the fifth or diapente; and 5/3 is equivalent to the major sixth—according to Huntley 
(1970:24) “there is a connection between the major sixth and the golden section”. 
The remaining elements of the sequence (9 to 16) are related to the principles of 
musical harmony according to Kepler himself: 8/12 or 2/3 as the diapente reciprocal; 
9/8 as the whole tone interval; 10/9 as deep tone or interval between grades ii–iii and    
v–vi. The inversion of the major seventh (15/8) is a minor second (16/15 or 15/14), or 
diatonic semitone. Kepler believed that the maximum angular velocity of the Earth, 
measured in relationship to the Sun, varies in the proportion 16/15, from E to F, 
between aphelion and perihelion. The ratio 16/14 (1.142), close to the whole tone 
(1.125), also appears in Kepler’s tessellation as harmony between the double decagon 
(with 16 sides) and the number of pentagons inscribed within its perimeter (14 
figures). One may consider, in conclusion, that Kepler conceives a universe where the 
major relationships between the celestial bodies mirror the minor relationships 
hidden in musical harmony and the atomic organization of matter—a notion later 
developed by Emanuel Swedenborg (1688–1772).471 

                                                 
471 See the beginning of Chapter 4. 
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Another historical example of the mathematical study and the aesthetic impact 
of tessellations, is the decoration of the Alhambra palace in Granada, that inspired 
musical modernism from Debussy to Ligeti (see Lesure 1982:106; Mandelbrot 
2002:28). The geometricians of Alhambra—whose mathematical work very possibly 
influenced Kepler—explores all the possibilities of tessellation as isometries in the 
plane, finding 17 ways to combine regular tiles.472 However, it must be stressed that 
most of the musical implementation of these relationships consists of an 
indeterminate intersemiotic translation—as happens in both the cases of Debussy 
and Ligeti, in which the mathematical properties of the system to be translated are 
less relevant than the manner they are suggested in the context of a musical tradition. 

Musical works developing forms and methods of tessellation analysis, synthesis 
and transformation, under deterministic methods, are more recent. Most of these 
works take into account two types of basic aspects: the fundamental relationships of 
symmetry in the polygons, and their affine transformation, whose products can be 
described as remainders of a modulo m. As explained below, these two basic aspects 
are closely intertwined. 

In music, most of the relationships of structural repetition correspond to groups 
of cyclic or affine symmetry related to Zn, where Z is a set of remainders modulo m 
for n ≥ 2 (Fripertinger 2002:2). One may say, then, that basic musical symmetries 
regularly follow intuitive criteria such as ‘up’ or ‘down’, ‘before’ or ‘after’, and ‘right’ 
or ‘left’, as described in subchapter 2.3. For a geometric projection it is said that these 
basic symmetries are dihedral relationships. This is also consistent with basic self-
structuring of Lindenmayer systems described in 6.5., and with the steps described in 
5.4.—for example, in structuring melodic recursiveness. 

The domain of Zn is very useful for understanding the relationships of musical 
symmetry as tessellations bridging geometric description (graphic or algebraic) with 
their musical interpretation (as sound and graphic representation). Assuming that 
the set U, embedding the basic geometry of a tessellation, exceeds the projective space 
of a group of musical relationships (e.g. a metrical scheme, or a group of tonal 

                                                 
472  The mathematical proof of these 17 typologies, as well as the study of their affine 

transformations, appears in Montesinos (1985). 
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intervals), then Zn is the dimension of the relationships of U in the modulo m of the 

musical relationships M. In other words, U is mapped into M, using the remainders 
of Z modulo m. This equates representing in a window (Z) the relationships that, for 

their breadth, cannot be seen in the original set (U). An analogy of this operation is 

the binary representation of a natural number n, in modulo 10. In this case, as in the 
musical bounding within Zn, the superficial appearance of the numerical relationship 

changes, but the basic content of the message remains the same, in terms of an 
homeomorphism.473 As Fripertinger (2002) notes, different objects built on Zn are 
considered as equivalent if there is a symmetry motivated by music, transforming an 
object into another one, by cyclic or affine symmetry. This equivalence can be seen in 
simple examples shown in ◊644; although it can also be found in more complicated 
forms, as in the mosaic-fractal shown in ◊645. 

 
The Tonnetz: harmonic-modulation theory as tessellation 

In search for a mathematical conciliation between the two asymmetric parts of the 
octave (i.e. the third and the fifth), Leonhard Euler (1707–1783) proposed a musical 

lattice or Tonnetz (German for ‘tone-network’) that situates “justly tuned versions of 
the twelve pitch classes on a bounded 4×3 matrix whose axes are generated by 
acoustically pure fifths and major thirds” (Cohn 1997:7). Such a lattice, adapted and 
developed by Hugo Riemann (1849–1919), pictures the pitch space by its form of 
organizing the harmonic motion between chords and modulation between keys. 

Using the Tonnetz, Riemann explored the typical relationships between pitches 
(elements) and their associative steps (intervals between elements) described by rows 
of successive perfect fifths and major thirds, functionally connected with their 
inversions (i.e. perfect fourths and minor thirds). In this fashion, the former spiral or 
continuous cycles of fifths—defended by theoreticians such as Athanasius Kircher—
was embedded into a two-dimension lattice with isometric and homeomorphic 

                                                 
473 The term homeomorphism (ὄμοιος, similar; μορφή, form) is introduced in the context of 

statistical linguistics, in subchapter 4.4. It is also closely related to the concept isomorphism (ισός, 
same; μορφή, form), introduced in the context of musical self-similarity, at the end of subchapter 
2.3., on musical symmetry. 
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properties, due to the general arrangement between harmonic steps. Accordingly, 
Riemann settled the basis for an algebra to characterize these properties, generalizing 
them as a homogeneous system. 

After Riemann (1873, 1877), many authors revisited the Tonnetz, adding 
algebraic operators (see Lewin 1987, Cohn 1997, Klumpenhouwer 1998) and 
implementing three-dimensional vectors (see Lubin 1974, Tymoczko 2006) in order 
to spatially arrange the just intonation of the 12-scale rows, characterizing their tonal 
bonds in terms of (geometric) functional harmony with—simultaneously—
‘consonant’ and ‘dissonant’ perspectives. Such a pitch space allows to conceive of a 
tonal-modulatory space that exists independently of individual pieces in the tonal 
Western tradition (an idea first put forward by Lubin, 1974). From this viewpoint, 
musical pieces—in their turn pieces made of pieces of pieces—emerge as partial 
components populating a broader, cyclical space, as suggested here in subchapters 
4.4. to 4.8. 

The Tonnetz has aspects in common with Kepler’s tiling (see ◊640), as well as 
with other (pre)self-similar tilings; namely: spatial contiguity (i.e. tiles are distributed 

in the same space without any gap among them), variety (i.e. the tessellation admits 
several endomorphisms), invariance (i.e. the overall structure is invariant to octave 

transposition), periodicity (i.e. structural relationships reappear cyclically) and 
harmonic consistency (i.e. intervals between the elements are ‘proportional’). 
Furthermore, the isometries in the Tonnetz’ distances between elements and steps 
are preserved at least in four levels (i.e. in a fourth-order self-similarity). See, for 
instance, examples in ◊641, which, at different distances of the same Tonnetz, there 
are the same isomorphisms (i.e. isochords) preserving the same kind of geometric 
transformations. Any harmonic progression inscribed within this grid can be 
interpreted as a walk within the Tonnetz, at different step-intervals and step-
orientations.474 Here, self-similarity guarantees grammatical consistency in the sense 
proposed along subchapters 2.4.–2.5. and 4.4.–4.5. 

                                                 
474 Note that this form of continous tonal correlation has a direct analogy in melody. For 

instance, any melody within a well-defined scale can be interpreted as a walk within a Hilbert-like 
curve in three dimensions (for a brief description of the Hilbert curve in two dimensions, see 
pages 447–448). 
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1) 

 

 2) 

3) 

 

 4) 

 

◊641. Different construction stages of the Tonnetz. 

1) Lattice based on Euler (1739), showing tone rows associated by functional intervals. The 
tones are represented by dots and the periodic intervals are represented by lines: solid 
horizontal lines denote fifths and fourths (actually and arrangement of the circle of 
fifths); thin horizontal dotted lines denote whole tones between dots vertically related; 
thin vertical dotted lines denote minor thirds segmentation between fifths; dashed 
diagonals denote sixths or thirds, connected to fifths and fourths (e.g. as employed in 
classical trichords); and solid thin diagonals denote minor seconds or Major sevenths. 

2) Typical Riemannian Tonnetz, as expansion of the previous model. Now the diagonals 
accentuate the third-fifth connection and the operational periodicity emphasizes the 
chromaticism of the whole tiling, that Riemann (1877) originally assumed as infinitely 
extensible on all sides (currently, after Lubin 1974, it is conventionally accepted that the 
Tonnetz can be represented in a cyclical three-dimensional surface: a torus). 

3) Symmetrical skeleton of the Euler–Riemann lattice. 
4) An abstract representation of the Euler–Riemann Tonnetz before converting into a 

flexible surface; a sheet that can be rolled forming a cylinder, in its turn convertible into a 
torus or donut-shape surface. The torus-Tonnetz presents the circle of fifths and the 
Major and minor thirds as continuously connected into spirals around the donut. This 
representation is useful for understanding the general symmetry-asymmetry and cyclical 
transitivity of harmonic-tonal models. 
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It is interesting to note that, echoing the study of Lubin (1974), on harmonic 
periodicity, Amiot (2008) suggests that the same logic used for bulding the Tonnetz 
in cycles of operational flows, can be implemented for the analysis/elaboration of self-
similar melodies and self-similar ‘rhythmic canons’. Actually, just like Lubin (cit.) 
proposes modelling the Tonnetz on the surface of a donut (i.e. a torus), Amiot (cit.) 
suggest using the same concept for representing self-similar canons, provided that, in 
general terms, music (at least its harmonic, melodic and rhythmic components 
considered in this case) is commonly characterized by recursive loops, representable 
by the geometric properties of a specific tessellation.475 

Tonal harmony and beyond: 
M.C. Escher by analogy with J.S. Bach 

Before the last third of the twentieth century, few composers made explicit references 
to the polyphonic texture as a tessellation. An exception is Gerhart Muench (1907–
1988), author of the collection of instrumental pieces titled Tessellata Tacambarensia 
(1964–1976), most of them for piano, plus one for piano with percussion, and 
another one for piano, percussion, and violin, intuitively developed as processes of 
rhythmic-harmonic tessellation. Although the constructive-discursive treatment of 
these pieces departs from conventions of contemporary atonal music, the explicit use 
of the concept ‘tessellation’ is rather uncommon for this historical period. In this 
sense, it is possible that Muench, before his exile in Mexico, was directly influenced 
by Hindemith’s theories—especially by his book Unterweisung im Tonsatz (1937), 
where he discusses in depth the relationship between pulse, rhythm, proportion and 
harmony, in terms of sound tessellation and organization, explaining spatial 
analogies. Hindemith (e.g. 1937/1941:57) recovers fundamental concepts of Kepler, 
such as the relationship between spatiality and harmony: 

If we think of the series of tones grouped around the parent tone C as a planetary system, 
then C is in the sun, surrounded by its descendant tones as the sun is surrounded by its 
planets. As the distance increases, the warmth, light, and power of the sun diminish, and 
the tones lose their closeness of relationship. [...] In their ‘melodic’ function, the two 

                                                 
475 Therefore, the shape of a torus is useful for representing the cyclical, periodic arrangements 

of a diversity of parameters within a musical tessellation. 
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successive tones of an interval are like two planets at different points in their orbits, while 
the formation of a chord is like a geometric figure formed by connecting various planets at 
a given instant. 

The analogy between the ‘atomic’ notion of sound, continuously referred to in this 
study, and the ‘stellar’ concept of harmony, as found in musical notions of composers 
such as Hindemith, Messiaen, Nono, Stockhausen and Xenakis, finally corresponds 
to an intuition of consistency between phenomena perceived at different scales. 
Consistently, as Ojala (2009:397) observes, 

It seems natural that the same factors behind the process of tessellations of space and 
other divisions of space into category regions are also operative in attempts to process the 
temporal folding and unfolding of situations into intermediate and large-scale hierarchical 
structures [...] And detours and returns toward already more or less familiar situations do 
seem to account for the natural processing into hierarchical large-scale structures [...] In 
terms of conceptual spaces, the hierarchical structures of sound objects can be conceived 
as nested objects. 

As a matter of fact, Hofstadter (1995:2–3) begins his inquiry on analogies between 
models of fluids, using the image of a changing tessellation—what he calls flickering 
cluster or ‘fluctuating cluster’ of hydrogen molecules. Although he emphasizes the 
structural instability of these molecules, he also states that “thanks to this unstable, 
dynamic, stochastic substrate, the familiar and utterly stable-seeming properties of 
wateriness emerge” (ibid.:3). This concept, which conveys the idea of disorder nesting 
(i.e. ‘unstable substrate’) within a harmonious appearance (i.e. stable properties of 

water), also contains the image of a fluctuating tessellation (oxymoron and synecdoche 
at the same time). Consequently, for this and other functional analogies, the spatial 
and temporal divisions—including the hierarchies and ‘category regions’ mentioned 
by Ojala (2009:397)—are based on the assumption of a quiescent, knowable image, 
attributed by Peircean abduction to the generality of the flow concept. This 
assumption affects equally the concept of regions and hierarchies in infinite 
tessellations, as happens in the descriptive-analytic treatments of aperiodic Penrose 
and Ammann-Beenker tilings, explained in the context of the scheme ◊643. 
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When Hofstadter (1979) finds the analogy of M.C. Escher’s ‘spatial thought’, 
expressed in self-similar tilings, and related to J.S. Bach’s ‘musical thought’, he seeks 
to identify the cognitive processes of adjacent categories that enable the intersemiotic 
mapping which converts the spatial (or temporal) notion into music or image. In this 
context, the notion of ‘infinite edges’—as found in Escher’s designs—becomes 
comprehensible as patterns that, by abduction, can be assumed as infinite without 
the necessity of any explicit, causal justification. Analogously, this relationship also 
occurs in many conventional concepts of classical music, such as perdendosi, morendo 

or al niente, or such as the baroque expression contrapunto alla mente, refined in the 
musical ideas of Luigi Nono, as contrapunto dialettico alla mente.476 

The musical example given by Hofstadter (1979:717) compares the notion of 
‘infinite loop’ in Escher and Bach, a hexagonal tile representing an endless cycle of 
whole-tones: 

 

This hexagon represents the modular skeleton of Bach’s Musikalisches Opfer, working 
like an infinite-loop scale generator. Obviously, for every seventh step, beginning at 
any of its angles {C, D, E, F#, G#, A#}, the scale ascends an octave; i.e. twice the initial 
frequency. However, if Shepard’s cyclic system of scales is adapted to this model (see 
Shepard 1964), then the loop is closed, starting always with the same pitch in which 
the scale starts. Shepard’s system consists, simply, of cycles of parallel octaves, 
differentiated from each other by shades of intensity: insofar as the scale ascends, its 
                                                 

476 More than a title of a specific score (i.e. Contrapunto dialettico alla mente, composed by Nono 
in 1968), this notion symbolizes a precise locus in the musical cognitive domain. In a 
corresponding domain, analogous conventional symbols in mathematical language are 

expressions such as infinite sequence (…), countably infinite set (n∞), infinite sum (
∞

=
∑

1n
) or aleph-null set 

 The aesthetic content of both, musical and mathematical symbolization, is affected and .(0א)
validated by the same principle of abduction. 
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loudness decreases proportionally, until in the last step the sound ‘disappears’ (al 
niente). Simultaneously, insofar as the ‘original’ scale ascends, the same scale (its 
‘shadow’ or ‘reflection’) begins an octave lower, increasing its intensity proportionally 
(dal niente), until becoming the ‘original’ scale: 

 

 
◊642a. ‘Infinite looping’ of a hexatonic scale with its own ‘reflection’ in 

different shades of loudness (based on Shepard 1964; commented 
and explained in Hofstadter 1979:717–719). 

 
Assuming that the hexagon–scale {C, D, E, F#, G#, A#} is just a case of a larger set of 
hexagon-scales [0,5], then the whole set can be represented as a tessellation made of 
infinite loops. The structure of each of these cycles is comparable to the effect that 
Lotman (1988/1994:383) describes as intertextual specularity: “whatever appears to be 
a real object turns out to be only the deformed reflection of something that was itself 
a reflection […] where the text and its frame are interwoven, so that both frame and 
text are framed.” 

The tessellation of an infinite set of hexatonic scales with absolute self-similarity 
cannot be expressed, however, as an ensemble of contiguous hexagons (see ◊642b-i). 
This goal requires implementing a self-similar assembly of hexagons, not exactly 
composed of hexagons, but of pseudo-hexagonal curves filling the plane (see ◊642b-
iii). According to Schroeder (1991:14), although adjacent regular hexagons make a 
tiling, this is not a self-similar tessellation, because a hexagon surrounded by six 
hexagons does not make a bigger hexagon. 
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i ) 

 

ii ) 

 

iii ) 

 

◊642b. Transition from a tessellation of regular hexagons, to a self-similar tessellation of 
pseudo-hexagons with infinite bendings (Gosper tessellation). The middle strip (ii) shows 
the steps from the regular hexagon, with levels of pre-self-similarity and relative self-
similarity, going to absolute self-similarity (fractal suggested with suspension points). 
Numbers in the figures indicate quantity of sides, equivalent to the steps of a musical 
system (for example, the isometry 1/1 subdivided into 1/6, 1/18, 1/54, 1/162 or 1/486). The 
process generating the self-similar curve—and not the graphic itself—is what is interesting 
for music, because of similar reasons in associating music with the Cantor function (see 
pages 354–363). As suggested in ◊333, the first layers of the transition may be associated 
with structural and musical criteria of motif, phrase and period, or as subdivisions of a 
hexatonic scale with self-similar trend. Note that the following subchapter presents an 
introduction to the rendering of quasi-fractal curves, as a generation of musical pitch-
classes, from specific examples using Hilbert and Peano curves. 
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This generative procedure requires a congruent segmentation of the pitch scale, 
at intervals corresponding to the whole self-similarity levels (transitions in ◊642b-ii). 
In this case the scaling factor corresponds to √7 at all levels. A first step in the self-
similar segmentation for a hexatonic scale, produces, for example, 18 ‘microtones’ for 
the whole-tone hexatonic scale. This implies that for each gap between pitches, there 
are three internal intervals in proportion of 3:2 for the traditional semitone. In short, 
while in the chromatic scale the whole tone corresponds to the segment {0, 1, 2}, for 
the pre-self-similarity level in ◊ 641b-ii, the segment {0, 1, 2, 3} is obtained, where the 
absolute value |0,1| decreases at a proportion of 3:2. With this procedure it is possible 
to get a first approximation to the Gosper tiling, shown in ◊642b-iii.477 

 
Compatibility between mental categories 

Hofstadter (1995:49–62) suggests that the primary mental operations in geometry, 
arithmetic and mathematics generally, are nested in music analogously such as the 
basic mental operations of music are nested in mathematics: 

Having played the piano for many years and composed a number of small pieces as well, I 
was intimately familiar with the basic building-blocks of melody in tonal music […] Thus 
in the stripped-down sequence world there where clusters (and clusters of clusters, etc.) 
analogous to short groups of notes, full measures, and phrases made of several measures 
[…] Thus while I was bidding farewell to the patterned world of mathematics, I was 
ushering in the equally deeply patterned world of music. (Hofstadter op. cit.:49) 

This notion supports the hypothesis put forward here, on intersemiotic 
translatability and synecdochic intersemiosis, as fundamental operations in music, 
assuming that this translatability occurs in a wide space between determinism and 
indeterminism. In order to reinforce this hypothesis, the discussion on atomism and 
musical self-similarity—already developed in subchapters 4.1. and 6.1.—, continues 
here in the specific field of musical tessellations. 
 

                                                 
477 Although this approximation is technically possible, many questions arise as to the aesthetic 

value of this type of operation. This ‘conflict’ is discussed in subchapter 5.5. 
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Aperiodic tessellations: finite and infinite 

According to what is stated in the context of graph ◊640, Kepler seems to note that 
the pentagonal symmetry in his model, leads to a pattern of consistent relationships 
whose repetitions do not occur at regular intervals. Therefore it is clear that Kepler 
provides an initial insight in the investigation of aperiodic tessellations, in which tiles 
are repeated in a form in which their boundaries are not always the same. Following 
Kepler, more mathematicians found other aperiodic tessellations with symmetric 
properties that are also found in music, as explained below. 

Around 1975 physicist Roger Penrose discovered two geometric bi-dimensional 
figures, which form the so-called Penrose tiling, and have very peculiar properties:  
(1) they can fit in the same plane without any gap or overlapping, with infinite copies 
of both figures, in infinite combinations; (2) none of the obtained tiles is periodic;  
(3) any finite region of the tessellation happens endlessly, and often within one 
another, which entails a relationship of deterministic self-similarity (see Ceccherini-
Silberstein et al. 2004:102). 

Grünbaum and Shephard (1986) note that the binary Fibonacci sequence is a 
one-dimensional (exact) analogy of the bi-dimensional Penrose tiling. Most of the 
recent sources that associate the golden mean and the Fibonacci sequence with 
tilings, also mention this correlation in the context of a powerful system of aesthetic 
properties, inherent to many of the examples presented in the present chapter.478 
Consistently, the musical implications of the Penrose tiling do not go unnoticed: 
Carey and Clampitt (1996) observe that the structural relationships of this tiling are 
analogies of “musical sequences”, by the fact that they are constituted as self-
referential harmonic systems, correlating the parts and the whole. These authors, 
making a rhythmic interpretation of this system, distinguish a pattern of 
characteristic ‘accents’, comparable to the asymmetrical tree with which Kevin Jones 
(2000) describes prosody in traditional versification, as well as in the generation of 
musical metre.479 

                                                 
478 See particularly subchapter 6.3. 
479 See example ◊639. 
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◊643. Fragment of Penrose tiling. Any region in the tiling is aperiodic, which means that 
it lacks any translational symmetry (i.e. its transformations are not invariant), and any 
of its finite regions reappears infinitely in the whole tiling. It should be noted that 
straight lines top-down crossing the design, are not part of the tiling, but represent 
the nesting of the Ammann bars. Ammann bars are formed by five sets of parallel 
lines, typical of Penrose tilings, and classified as thick and thin. Ammann bars are 
analogous to the self-similar distribution of quasicrystals (see Schroeder 1991, Caspar 
and Fontano 1996, Kindermann e1999), and are closely related to the Ammann-
Beenken tiling. The overall relationship between thick and thin Ammann bars is 
proportional to ~ φ. 

 

Another example of tessellation with similar characteristics is the tiling of Ammann-
Beenken, generated by an aperiodic set of proto-tiles. The set is unusual in that all its 
arrangements are obtained with aperiodic parts (see Grünbaum and Shephard 1986), 
in a form of organization which has structural similarities to the Penrose tiling: given 
that tiles are aperiodic, they do not have translational symmetries—unlike the 
polyaboloes shown in ◊644b—and any finite region of the tiling infinitely reappears 
in the whole tessellation. 
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The Ammann-Beenker tiling has a close relationship to the silver ratio (1 + √2) 
and the Pell sequence,480 which make of it an ideal candidate for implementing, along 
with the golden ratio, Fibonacci tilings and Penrose tilings, a deterministic context 
for music analysis, synthesis and transformation. It should also be noted that the 
square root of 2—equal to the length of the hypotenuse of a right triangle with legs of 
length 1—is “the irrational number determining a rational division of the octave into 
equal-tempered intervals” (Maconie 1997:163), but also constitutes the basis of 
tuning systems alternative to the just intonation system or the Pythagorean system, 
especially in the interval system of Julián Carrillo (1875–1965), based on the 
sequence 6√2, 12√2, 18√2, 24√2, 30√2, 36√2, 42√2, 48√2… (Carrillo 1956, 1957).481 

 
Tessellation and atomism after D. Hilbert and J. D. Bernal 

In music the concepts of tessellation and atomic organization are often 
complementary. This contributes to explain the structural empathy between notions 
of order and constructive self-similarity, analogously shared by music theory (e.g. 
Wilcox 1992, Fripertinger 2002, Mongoven e2004, Haek 2008) and crystallography, 
defined in physics as the study of interrelated systems of points, representing the 
structural organization of atoms and molecules (see Bravais 1848, Bernal 1926, 
Hilbert and Cohn-Vossen 1932/1952, Ceccherini-Silberstein et al. 2004).482 

                                                 
480 In mathematics, Pell numbers correspond to the denominators of an infinite sequence of 

ratios that serve as approximations to the square root of 2. The sequence starts with 0, 1/1, 3/2, 
7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378,…, so that, for n = 0, 1,… the first eleven 
Pell numbers are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, ... (Sloane e2006). 

481 Carrillo’s theoretical and aesthetic program is also a landmark in the history of the musical 
application of the concept of ‘worlds within worlds’ (see pages 98, 111, 127, 457), considering 
the notion of scales nested within other scales, following generalized proportional laws. This is 
particularly evident in Carrillo’s treatises Leyes de metamorfósis musicales [Laws of musical 
metamorphosis] (1927/1949) and El infinito en las escalas y los acordes [The infinity in the scales and 
chords] (1957). 

482  In a first approach to this issue, it seems clear that the ‘atom’ is a physical, not a 
mathematical concept. However, Euclid (Elements, Book 1, first definition) mathematically 
defines the ‘point’ (σημεῖόν) in terms of an atom: “A point is that which has no part” (see page 
325). 
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Hilbert and Cohn-Vossen (cit.:52) offer a general approach to the symmetrical 
principles of crystallography, in a pioneering text on the modern representation of 
the atomic bonds: 

The crudest picture we may form of an atom is as a point with a number of ‘arms’ [i.e. 
lines] equal to the valence of the atom. In this model we assume that the arms representing 
the valence bonds are arranged in space as symmetrically as possible, as long as no special 
reason exists for them to deviate from this symmetry. The combination of individual 
atoms to form a molecule is then represented by letting two arms of different atoms 
coincide. 

Congruently, the ‘crudest picture’ of a crystal—an atomic assembly expressing a basic 
symmetry—corresponds to a set of atoms mapped in a one-dimensional space (a 
straight line segment), taking into account the periodic distribution of atoms in a 
one-dimensional crystal. Schroeder (1991:311–312) explains how such a periodic 
distribution matches with the golden string or rabbit sequence (defined in the next 
subchapter), whose segments are interrelated by the proportion 1/φ. The result of 
this mapping also reflects the aperiodic property of the set of atoms, structured in 
form of an aperiodic tessellation: since the period φ corresponds to an irrational 
number, the intervals mapped in the line should be aperiodic. 

According to Schroeder (op. cit.:311), in a grid made up with golden string 
intervals, and representing every atom of the grid by a Dirac delta function, one 
obtains the Fourier transform: 

⎟
⎠
⎞

⎜
⎝
⎛ += mfCSnm 5
 sin  

for frequencies 

mnfnm −=
5

. 

The square root of 5, which so commonly appears in this chapter due to its 
relationship to the golden ratio (φ ≈ 1+√5 / 2), reappears here in the context of the 
symmetry of a quasicrystal. This relationship corresponds with what Roads (2004:34) 
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perceives as a structurally-consistent convergence, between a process of optical energy 
and systems of mechanical vibration, including acoustics. 

Quasicrystals, discovered and described originally by Dan Shechtman in April 
1982, are structures formed by elementary particles,483 whose distribution is based on 
the golden mean, as three-dimensional versions of the Penrose tiling (◊643). Unlike 
periodic crystals, quasicrystals are structural forms that are both ordered and 
nonperiodic. Kindermann (e1999) emphasizes the aspect of self-organization that 
conducts their simultaneous order and aperiodicity, suggesting that the same power 
laws also govern the notions of consistency and inconsistency in a variety of acoustic 
and musical facts, as suggested by Gabor (1947), Rocha Iturbide (1999) and Roads 
(2004), from the atomistic perspective of sound.484 
 
Periodic tessellations and frieze patterns 

The research done by Hodges (2003) and Hofman-Jablan (e2007), on the 
foundations of musical geometry, present examples of structural fragments taken 
from different styles of music, with repetition of motifs, scales, arpeggios, tremolos 
and trills, in upward and downward movements. Most of these examples can be 
identified as frieze patterns, especially in monodic lines; as polyphonic brocades in 
instrumental textures; or as tessellations in harmonic relationships.485 Such frieze 
patterns, brocades and tessellations meet in music a structural role analogous to the 
relationship between detail and totality in many self-organizing systems. For instance, 
the musical concept of ornamentation—perfected in the Baroque era and reassessed in 
the second half of the twentieth century by composers like Luciano Berio and Franco 
Donatoni—is functionally and structurally related to an analogous concept in 
architecture and design. For similar reasons, generalized for common ways of 
                                                 

483 This topic is introduced in subchapter 4.1. 
484 An extension of this principle, regarding negotiations of musical grammar and musical style, 

is introduced in subchapter 4.8. 
485 The word ‘brocade’ commonly refers to a fabric with fibers of one or more materials that 

are woven into a symmetrical pattern repeated across a strip. The term ‘frieze pattern’ concerns, 
however, the rhythmic patterns of architecture, placed as decorative strips in facades or indoors. 
This study uses both terms in analogy with the cyclical patterns of music, for example in the 
ritornello of a melody; in cycles of two or more contrapuntal melodies; or in an iterative bass line 
(a typical case of the latter is the Alberti bass). 
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structuring in different logical–aesthetic expressions, ornamentation has a crucial 
role in music, especially when establishing a function of the ornamental figure, as a 
relationship of (pre-)self-similarity, with respect to a musical period, a phrase, or a 
larger musical structure.486 It is said, then, that the ornament, the fragment to which it 
belongs, and the whole coordinating all ornaments and fragments, are all in 
harmonious relationship. 

The spatial representation of musical relationships in the form of frieze patterns, 
brocades and tessellations is not necessarily arbitrary, since many forms of repetition 
and symmetry in metre, rhythm, harmony, timbre, melody and musical motifs can be 
interpreted as spatial patterns, by strict (i.e. deterministic) proportional analogies. In 
return, a variety of spatial patterns can be interpreted as musical relationships. To 
illustrate this reciprocity, examples in ◊644a show the deterministic intersemiotic 
translation between some of the simplest and most common ratios of musical metre, 
and their possible re-interpretation, simple as well, employing mosaics made of equal 
right-angled triangles. The way to assemble these tiles can have two or more varieties, 
such as the varieties of prosody characterizing distinct metres. These varieties can be 
descriptive grammars—as in this case—or, prescriptive grammars, as in the case of 
polyaboloes related to a pattern of rhythm, metre or timbre (harmonic spectrum), as 
explained below. 

A polyabolo is a figure composed of n isosceles right triangles joined along edges 
of the same length (see Weisstein e2008). It is said that two or more polyaboloes are 
equivalent if they share the same form of their internal adjacency; for example, the 
following figures are equivalent to the first cases shown in ◊644b (leftmost figures), in 
triaboloes and tetraboloes, respectively: 

 

 

                                                 
486 This musical perspective has an almost direct connection with rhetoric and the poetic 

language. Mayoral (2004:23) characterizes the concept of ornament “as one the concepts of 
greater value and significance in the doctrine of rhetoric and poetry, as legacy of classical 
thought. [...] On this concept is based, from Aristotle and throughout the classical tradition, the 
concept of discourse”. 
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time signature 
(articulation) 

tessellation examples 
(prosodic varieties) 

time signature 
(articulation) 

tessellation examples 
(prosodic varieties) 

 [1]        
double  

 [0.75]      
triple  

 [0.5]      
double 

  [0.75]       
double  

 [1]         
quadruple  

 [1.5]          
quadruple  

  

◊644a. Periodic tessellations as analogies of musical metre. Examples to the 
right of the metrical model suggest a possibility among others, forming 
the prosody for each case. 

 

◊644b. Polyaboloes showing their first four groups of isometries (based on 
Weisstein e2008). In acoustics, some of these polyaboloes are 
vibration systems of plates and membranes, as described here in 
subchapter 4.2. (see page 141). 
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The number of fixed non-equivalent polyaboloes composed of n triangles form the 
sequence 1, 3, 4, 14, 30, 107, 318, 1116, 3743, 13240, 46476, 166358… . Sloane and 
Ploufe (1995) and Sloane (e2006) describe the same sequence as the number of 
different figures that can be formed with halves of n-squares; they then map the 

sequence as points in ℝ, by their ordinality (1 → 1, 2 → 3, 3 → 4, 4 → 14, 5 → 30… 12 → 
166358); for each ordinal number, a pitch is mapped into its corresponding ordinate. 
Using this method, Sloane and Ploufe (1995) and Sloane (e2006) produce a 
collection of 12-points starting with narrow intervals (ordinals 1, 2, 3) that quickly 
run apart (ordinals 4, 5, 6, 7… 12). Finally, they produce an audible representation of 
the sequence, in a range logarithmically modulated from C3 to C6, as shown in graph 
◊644c. In this way, they limit the greater intervals in the sequence, using a narrow 
window. Because of its heterogeneous distribution, the result resembles a twelve-tone 
sequence: 

 

◊644c. Pitch-class mapping obtained from the numerical sequentiation of fixed non-
equivalent polyaboloes, composed of halves of n squares (1, 3, 4, 14, 30, 107, 318, 
1116, 3743, 13240, 46476, 166358). The map, in modulo 12, is distributed into the 
ordered pitch-space from C3 to C6. Example based on Sloane (e2006). 

Clearly, Sloane and Ploufe’s (1995) method is based on mapping the remainders 
modulo m, as pitch-classes. Essentially, this method is the same as the one used by 
Haek (2008), with cyclic remainders from Fibonacci sequences, also implemented to 
generate serial systems. However, it should be noted that the mere mapping of 
remainders in a limited window implies a loss of original information. For example, 
the number succession of fixed polyaboloes does not reflect the symmetrical qualities 
of polyaboloes, nor their systematic re-tessellations. In order to build a consistent 
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system of brocades and tessellations—in an idiomatic sense—a more balanced 
relationship between information and redundancy is required, simultaneously using 
different properties and parameters—for example by combining metrical 
distribution and shape of a rhythm, with the pitches obtained as a logarithmic 
distribution in a coordinated system. Richness, possibility and necessity of such a 
combination, for the sake of intersemiotic consistency between geometric 
representation and musical content, confirm that descriptive and prescriptive 
grammars are not models in radical opposition, but they can be coherently associated 
within the same operating system, as complementary functions. 
 
Tessellations made of tessellations 

The notions of frieze pattern and tessellation reach virtually all musical parameters, 
and are reflected in a variety of applications in rhythm, metre, melody, harmony, 
dynamics and timbre. Amiot (2003:1) emphasizes the concept of ‘rhythmic canon’, 
for example, as a form of autorepetition, and defines it as tessellation: “A rhythmic 
canon is a tile (a purely rhythmic motif) repeated in several voices (for instance with 

several different instruments) with different offbeats, so that two distinct notes never 
fall on the same beat.” In this context, Amiot (op. cit.) highlights the typical properties 
of tessellations, as properties of musical organization: repetition, affine transformation, 
reduction and equal-distribution, which he uses to formulate canonical and poly-
canonical rhythms. 

The notion of tessellation as a system of proportions in the physical 
configuration of sound, particularly in timbral textures, is a common feature of the 
spectral analysis-synthesis of music (see Truax 1982, Waschka and Kurepa 1989, 
Kappraff 2000, Polotti and Evangelista 2001). In principle, the idea of mosaic made 
of mosaics, is compatible with the general notion of Fourier analysis (Godrèche and 
Luck 1990:3774–3776). In this context, certain patterns of VRA may clarify this 
form of analytical representation, as addressed here, in Chapter 5.487 Subchapter 4.2., 
dealing with mechanical self-similarity, exposes the intimate relationship between 

                                                 
487 See pages 288–290, especially. 
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timbral configuration in plates and membranes, and the isospectral manifolds 
formed by polyaboloes.488 The reappearance of the same form of tessellation in 
different complexities of the same musical system (e.g. levels of timbre, harmony, 
meter, rhythm or melody) obviously constitutes a relationship of self-similarity. 

In counterpart, from the viewpoint of musical synthesis, self-similar tessellations 
made by a regular relationship between part and total, may also be useful for creating 
musical structures such as rhythmic sequences, pitch sequences, and—by increasing 
the time parameter—timbral tilings. One of the most illustrative examples of this 
generative procedure is the ‘chair’ tiling, based on continuous partitions and 
multiplication of squares, as shown below. 

 
Generation of scales using ‘chair’ tilings 

The continuous construction of a square made of converging rectangles, as shown in 
the following example, is an early example of scalar construction as recurrence and 
self-reference with embedded parts, forming the shape of a ‘chair’ or L: 

 

In this example the squares arranged on the diagonal of the system, a/φ, b/φ, c/φ, 
d/φ… form an identical sequence to that shown in ◊635-left, producing a musical 
scale analogous to ◊635-right. Instead, the assembly of squares by halves or doubles 
(as shown below as the series 1, 1/2 , 1/4…), is analogous to the prolatio system as 
shown in ◊545. 

 

                                                 
488 See subchapter 4.2. 
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◊645a. Pre-self-similarity stage during the chair tiling construction. In this example the 
construction process is adapted to the generation of a musical scale: primary cells 
(three equal squares assembled in the shape L) are related to corresponding values, in 
this specific case musical tones written next to each cell. Four different cells are used to 
form a basic ‘chair’ (α) in a first order self-similar structure, whose values are read 
consecutively, following the diagonal shown in β, and always reading from left to right 
for the adjacent squares. Thus, the first three tones are D, G, A, according to the white 
cell. Obviously, the initial values of the scale may vary, as shown in the following 
example (below), where the numbers written next to each cell represent pitches of the 
chromatic scale (C = 0, C# = 1, D = 2, and so on). In consequence, a different scale is 
produced: 

 

 

 

 

◊645b. Chair tiling at different constructive stages. Examples from Wright (e1997), and 
Blackaller, Buza and Mazzola-Paluska (e2007). 
Left: tiling from an initial cell, as shown in the example above (◊645a). Cells are 

grouped in a self-similar lattice in the shape of X’s juxtaposed at various scales. In this 
case the original chair keeps the same scale at each step of aggregation. 

Right: The same process of construction shown as a scale reduction. In both cases the 
consecutive results can be used to generate self-similar music patterns (e.g. in the 
form of arpeggios, scales, melodies or timbres), as suggested in ◊645a. 
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Chair embedding around successive chair embeddings produce, however, a different 
type of result that may require a different form of interpretation. This is the case of 
the chair tiling (see Gähler and Klitzing 2010:165–167), a two-dimensional limit-
periodic tiling that consists of one tile (the ‘chair’) rotating in four different basic 
symmetries, useful for musical purposes. A possible intersemiotic translation of the 
chair tiling into music should convert, for instance, its four symmetries into four 
different pitch orientations; its spatial articulation into rhythmic articulation; and its 
rotations and typical angles, into melodic motifs. A simple exercise suffices to 
produce musical scales through the diagonal interpretation of each primary subset of 
the tiling (see ◊645b), as a seed for algorithmic self-structuring. 
 
Simple sieves with Fibonacci sequences 

A first approach to simple sieves using Fibonacci sequences, may be a case in which a 
row of equal elements—e.g. regular squares—matches with a finite segment of the 
Fibonacci sequence (let be [a, j] = [1, 34]). Then, parallel to this segment, let be the 

same segment, but in its opposite direction (see ◊646a–top). By repeating this 

parallel-row operation, making the length [a, j] equal to its height, a square of squares 
is obtained, whose overlapping at 90° (◊646a) results in a brocade with relationships 
from the original sequence, along with other ‘new’ relationships. 

The first result of this experiment contains repeated rows and rows with the 
original sequence, or other sequences with different intervals (e.g. 1, 14, 22, 27, 30, 32, 
33, 34), corresponding to inner sums and subtractions of the original sequence. The 
diagonal linking two corners of the whole set presents the sequence 1, 2, 3, 5, 8, 13, 
limited by an axis (corresponding to 14), forming a palindrome. Subsets in secondary 
diagonals, perpendicular to the main one, also include fragments of the original 
sequence, along with other intervals (e.g. 1, 2, 5, 13, 14, 18, 21, 22, 24, 25; inversion: 1, 
3, 4, 5, 8, 12, 13, 21, 23, 25). 

The central white figure, with 48 elements, has a dislocated symmetry, in which, 
counting unit by unit, one finds the same type of distribution between the original 
relationships and their own withdrawal; for example, counting from the edges toward 
the centre in any direction, element 21 always appear next to the main diagonal; at 
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the same time, the original sequence is asymmetrically distributed and incomplete 
along the account. Interestingly, the pattern obtained as a whole is, at once, self-
referential and self-dissimilar in various regions, something which in practice occurs 
in many musical examples, as described in more detail within subchapter 6.6., in the 
context of a theory of musical asymmetry and anti-proportion. 

These results, rather than comparison to a tessellation, can be compared to a 
sieve, or to certain noise filters (as suggested in Chapter 5), in which the association 
of an original sequence with the same sequence, creates structural consistency and 
interference, simultaneously. This concept of sieve may be useful from several 
perspectives. Nono, in Il canto sospeso (1956), for solo voices, choir and orchestra, 
employs a similar sieve or matrix, in order to produce global and local symmetries 
and antisymmetries (see ◊660, for an analytical summary of the first movement). 
Under this notion of functional contrast-complement, the sieve’s cells work as spaces 
that determine the rhythm of instructions or actions taken in music: a sort of 
counterpoint of algorithms in which the properties of proportion and sequentiation 
are only partially given by a basic self-reference—since the information inserted in 
each cell can vary greatly, and the sieve’s cell only indicates a ‘place’ for 
implementation. Xenakis (1992:268–288) uses the concept of sieve, in a way that is 
familiar to this example: 

In music, the question of symmetries (spatial identities) or of periodicities (identities in 
time) plays a fundamental role at all levels: from sample in sound synthesis by computers, 
to the architecture of a piece. It is thus necessary to formulate a theory permitting the 
construction of symmetries which are as complex as one might want, and inversely, to 
retrieve from a given series of events or objects in space or time the symmetries that 
constitute the series. We shall call these series ‘sieves’. (Xenakis, op. cit.:268). 

Xenakis (ibid.:274–275) also speaks of inversions of sieves, convertible into modulo m, 
along with their associated partitions, reductions and transformations—something 

that Xenakis prefers to call metabolae—in three different possibilities: a) by a change 
of the indices of the moduli; b) by transformation of the logical operations (in the 

case given in ◊646a, by changing the operation of the embedded algorithms for each 

cell of the sieve); and c) by transformation of the operative units, for example, from 
tones to semitones, or from semitones to quarter-tones, and so on (a procedure 
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already suggested by Julián Carrillo, 1957). This third possibility also allows 
intersemiotic translation resources, such as making a range of pitches systematically 
correspond to a range of durations; or making a range of durations correspond to a 
range of intensities. 

Table ◊646a presents three sieves produced with three different sequences of 
numbers: Fibonacci standard, Lucasian, and Evangelist. Musical patterns obtained 
have their own characteristics, correspondingly to each of the sequences. Example 
◊646b suggests how to produce a musical system with pitches and lengths, taking a 
segment from the sieve as an operational preset. For the system generation, the 
correspondences for each filled cell (black cells in ◊646a) are marked with a symbol 
that represents a specific length and pitch. In this case the reading of cells is executed 
in descending diagonals, starting from the bottom leftmost cell, that corresponds to 
0; the two following cells correspond to 1 and 9, and the next three, to 2, 1, 0, and so 
on, until completing the segment with the ultimate symbol θ, equivalent to pitch and 
duration C5, with the shorter duration in the table of predetermined durations. 

The same production rules employed in this example can be implemented to 
produce relationships of intensity, timbre, prosody and/or articulation. The 
production process can also feed its input by other segments from different sequences 
of numbers, along with the transformations or metabolae suggested by Xenakis (cit.). 
Orientation and order of the sequence’s reading can be organized in distinct ways, 
obtaining very different outputs. Moreover, each cell of the sieve can be associated 
with a specific set of instructions, including, for example, values of instrumentation 
and formal structure. A more sophisticated method of production by ‘paragraphs’ of 
instructions (i.e. algorithms) then comes into action, as opposed to using isolated 
values (such as pitches or durations). In this context, the sieve, as organizer of musical 
expression, becomes analogous to what Rynin (1949:383) primitively called “the sieve 
of significance”, in grammatical terms—i.e. in terms of well-formedness rules. 

Conversely, decoding the ‘paragraphs’ of instructions for each cell in the sieve, 
this method—converted into an analytic device—can unveil the grammar in a 
musical piece composed through a systematic juxtaposition of Fibonacci sequences 
for all parameters. This is particularly useful in explaining and interpreting the 
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relationship between detail and wholeness in Il canto sospeso (1956), by Luigi Nono 
(in this specific case each cell is matched with each measure of the analyzed work). 
This method, combined with an initial segment of the sequence of prime numbers, 
that serve as a counterbalance of the well-formed structure, allows the analysis 
presented in table ◊660 (see pages 465–468 for full explanation). 

 
 

i) 

 
 

  

 
ii) 

 
 

  

 
◊646a. See continuation on next page.
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iii) 
 

 

  

◊646a. Three different brocades made of rows with equal squares, elaborated from a self-
referential proportional counting (~φ). The frieze pattern on the top of each example 
represents the counting source, with its radial inversion below. The squares of squares on 
the left, collect successive copies of the same pattern. The squares of squares on the right, 
contain a juxtaposition of the same pattern with itself, rotated to 90 degrees. From top to 
bottom, examples correspond to (i) standard Fibonacci sequence, (ii) Lucas sequence, 
(iii) Evangelist sequence. 

i) 

 
(0 = Do) 

ii) 

      
◊646b. See continuation on next page. 
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6.5. Self-replacement strings 

Goethe wrote in a letter to Herder, copied in a note in his diary, dated May 17, 1787, 
the following statement: 

The ‘Primeval Plant’ (Urpflanze) would be the most wonderful creature in the world […] 
With this model and the key to it, one could invent plants ad infinitum, even if, knowing 
that they do not exist, could exist not as picturesque or poetic shadows and illusions, but 

as the inner truth and necessity they have.489 

This idea, assimilated into music by Anton Webern and explicitly developed by him 
in his text Der Weg zur neuen Musik (posth. 1960:53–55), summarizes the concept 
that, knowing the bases of certain key patterns, with adequate implementation, the 
creation of a primary organic structure is possible. From such a primary structure, 
other structures can emerge in a subsequent, derivative self-similarity. Thus, Webern 
suggests that musical structures are analogies of such organizational structures and, 
therefore, they follow similar patterns and relationships. This conceptualization also 
implies a synecdoche, in which any structure resulting from a replicating process is 
part of the ‘primary structure’, whilst the process itself is reflected in its derivations. 

Aristid Lindenmayer (1968) implements this idea as a strict analogy, by applying 
a simple two-dimensional algorithm with few directional instructions, to emulate the 
growth and development of a primary plant, that, in turn, can produce other plants. 
By intersemiosis—and according to what Webern (1960) suggests—this generative 
concept is compatible with the ideas of musical growth and development, in empathy 
with generalized cases of the golden ratio and the Fibonacci sequence (explained in 

                                                 
489 “Die Urpflanze wird das wunderlichste Geschöpf von der Welt [...] Mit diesem Modell und 

dem Schlüssel dazu kann man alsdann noch Pflanzen ins Unendliche erfinden, die konsequent 
sein müßen, das heißt: die, wenn sie auch nicht existieren, doch existieren könnten und nicht 
etwa malerische oder dichterische Schatten und Scheine sind, sondern eine innerliche Wahrheit 
und Notwendigkeit haben”. J. W. Goethe (incl. in Die italienische Reise, Gedenkausgabe der Werke, 
Briefe und Gesprache 11, ed. Ernst Beutler, Artemis-Verlag, Zürich, 1949; p. 413). This notion is 
complementary to Leibniz’ aphorism §37 in his Monadologie (ms. 1714, original in French), 
published until 1840: “Chaque portion de la matière peut être conçue, comme un jardin plein de 
plantes, et comme un étang plein de poissons. Mais chaque rameau de la plante, chaque membre 
de l’animal, chaque goutte de ses humeurs est encore un tel jardin, ou un tel étang.” Both 
concepts, Urpflanze in Goethe, and synecdochic plant in Leibniz, are empathically related in the 
context of self-replacement strings. 
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6.3.), and with processes described in subchapter 4.3. In short, these relationships 
follow a same self-organizing principle. As J.H.D. Webster (1950:248) states: 

[A]rt forms, in music as elsewhere, are similar to and spring instinctively out of natural 
forms of growth, in life, and in much of the inorganic world as well. Man and nature seem 
to be one in more ways than hitherto realized. 

Self-replacement strings reflect Goethe’s (1787) elementary notion, for developing a 
fundamental organic structure, by the systematization of organic growth, represented 
by a developing algorithm, as proposed by Lindenmayer (1968), Prusinkiewicz and 
Lindenmayer (1990), Prusinkiewicz and Hanan (1992), and Meinhardt (1998). 
Accordingly, under the analogy of the iterative relationship seed-development-
replication, authors such as Prusinkiewicz (1986), Prusinkiewicz, Krithivasan and 
Vijayanarayana (1989), Mason and Saffle (1994), Jones (2000), Sharp (e2001), 
Worth and Stepney (2005), Manousakis (2006), and Lourenço, Ralha and Brandão 
(2009), implement various models of self-replacement strings for musical synthesis 
and analysis. 

Self-replacement strings—and as part of them, the so called Lindenmayer 
systems—are essentially of intersemiotic character, as it is evident in the evolution of 
the concept of structural self-replication. This is relevant, since such strings operate 
as self-referential systems within a broader self-referential framework. So, a self-
replacement string in particular may be a uniform system of self-similarity in manifold 
complexes of self-similarity. This statement basically concurs with what Salomaa and 
Rozenberg (1980:ix) recognize as an “interdisciplinary” character, at the beginning of 
their mathematical study on Lindenmayer (henceforth L-systems). Such a notion of 
‘interdiscipline’ (in this case also an intersemiosis) also holds in self-replacement 
strings, translatable into musical systems. 

 
Simple strings: a basic definition 

Self replacement strings include a wide variety of generative grammars which, from 
few elements and extremely simple rules of application, can produce progressively 
more complex patterns for each iteration of the generating system, originally 
intended as a generative seed. 
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A self-replacement string consists of a recursive method for generating sequences 
of symbols from an alphabet and an initial axiom, in combination with a limited set of 
production rules for each symbol contained in the alphabet.490 The application of a 
simple rule produces a simple string, unless the original axiom contains instructions 
triggering a systemic complexity from the first iterations of the system. 

For the simplest case of a self-replacement string, each symbol of the alphabet is 
replaced by a short string; then, each string is replaced by a longer string; then, the 
substitution process iterates until forming a string of symbols long enough to be used 
as an operational string. Assuming that the initial set is A, and its production rule is 

A. A[BBA]B[ABB] , 

then, rule R1 indicates that, for example, symbol A must be replaced by the same 
string. Thus, the first substitution results in 

A1. A[BBA]B[ABB][BBA]B[ABB]. 

But, since the initial string already contains more than one A, all of them must also be 
replaced, starting from the second A in the initial string. Furthermore, a second rule 
R1 may indicate that brackets cannot remain open or isolated, but can only contain 
non-empty sets and subsets. Thus, the second substitution results in 

A2. A[BBA[BBA]B[ABB]]B[ABB][BBA]B[ABB]. 

The string replacement may continue further, or accept a third rule for symbol B, as 
well as other rules for the subsets enclosed in brackets. A further set of rules can be 
introduced, for example, to replace symbols A and B by notes in a one-line staff (i.e. 
with two different lengths forming a rhythm), interpreting the bracketed subsets as 
specific dynamic values. This method produces a first, simple string of rhythmic 
articulation that can be combined with other strings. Clearly, with a small number of 
substitutions the system tends to grow rapidly. Depending on the rules implemented, 
the iterations may produce sequences with internal symmetries based on the 
reappearance of symbols A, B, [, ]. The repetition of similar subsets within other 
similar sets, finally produces a statistically self-similar structure. 

                                                 
490 “An alphabet is a set of abstract symbols” (Salomaa and Rozenberg 1980:1). 
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The rabbit sequence 

A self-replacement string that is frequently cited in the literature, and commonly 
used to produce musical sequences, is the rabbit sequence, also known as Fibonacci 
word or golden string. A rabbit sequence is a specific binary string with symbols 0 and 
1 (or with symbols from any alphabet of two elements), whose elements are self-
added using the same rule used for concatenation in the Fibonacci sequence.491 
Equally, the rule produces a sequence in which each word (i.e. alphabetic 
combination) is infinitely repeated for the previous word, adding the second last term 
for each recursion: 

 
◊650. Golden string or rabbit sequence, also known as Fibonacci word. 

This self-referential sequence presents a growing pattern of self-similarity in which 
each term contains a number of digits whose distribution corresponds to the 
Fibonacci sequence. Also, as shown in ◊650, the synecdochic relationship of each 
particular length, respecting the length of the previous subsets, is equivalent to the 
golden ratio. Schroeder (1991:311–312) explains how this periodic distribution 
matches with the typical distribution of a quasicrystal, in an ordered group of atoms 
at aperiodic intervals, similar to the aperiodic intervals that Jones (2000) describes as 
models of irregular prosody in versification and musical metre492, and which Biles 
(e1988) also uses to produce the pitch scale shown in example ◊637.493 

                                                 
491 See page 374. 
492 See page 400. 
493 See pages 395–396. 
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Prusinkiewicz and Hanan (1992) found that the rabbit sequence results from 
grammatical restrictions, considered by analogy with organic processes, with the 
following self-replacement characteristics, in terms of an L-system: 

start: A 
variables: A B 
rules: (A → B), (B → AB) 

which produces the sequence: 
n0: A 
n1: B 
n2: AB 
n3: BAB 
n4: ABBAB 
n5: BABABBAB 
n6: ABBABBABABBAB 
n7: BABABBABABBABBABABBAB 
n8: ABBABBABABBABBABABBABABBABBABABBAB 

According to Prusinkiewicz and Hanan (op. cit.), this version of the rabbit sequence is 
directly linked to notions of production, growth and synthesis, that can be found 
analogously in cell interactions within plant development. Prusinkiewicz (1986) also 
suggests that similar processes characterize musical systems as grammatical patterns, 
combining fixed axioms and rules, with options of functional flexibility, by the 
alternation with new, simple rules (as explained in the following pages). 

Thue–Morse sequence 

In mathematics and information sciences, the Thue-Morse sequence is a binary 
sequence that begins with the words 
0 1 10 1001 1001 0110 1001011001101001 ... . 

Any ordered pair of symbols can be used instead of 0 and 1, since—as in the 
rabbit sequence—the logical structure of the Thue-Morse sequence does not depend 
on the symbols used to represent it. As an L-system, the sequence can be symbolized 
by the following instructions: 

start:   0  
variables:   0, 1 
rules:   (0 → 01), (1 → 10) 
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Allouche and Johnson (1995), and Kindermann (e1999), among many others, 
suggests to employ the Thue-Morse sequence as random numerical generator for 
sound synthesis. Additionally, Godrèche and Luck (1990:3788–3791) observe a 
variety of properties of self-similarity in the Thue-Morse sequence, including a 
multifractal resonance spectrum and the emergence of ‘essential singularities’ in its 
Fourier transform analysis. Adapting these properties to musical production rules     
—analogous to those implemented in the case of Fibonacci sequences and periodic 
and aperiodic tilings—can produce a great variety of rhythmic patterns, harmonic 
spectra, and audible textures.494 

Musical L-systems 

Within a plethora of possibilities of self-replacement strings (the previous examples 
are just a few among many others), the Lindenmayer systems or L-systems are the 
best studied formal grammars which, by their recursive nature, tend to produce self-
similar patterns.495 As happens with self-replacement strings in general, L-systems 
generate symbolic sequences from a restricted set of axioms and basic rules. 

According to Salomaa and Rozenberg (1980:10–11), the simplest L-systems are 
‘context-free’. It is said that an L-system is context-free (shortened as 0L-system) if 
the replacement of its symbols is independent of the symbolic environment. Once 
these simple systems are associated with a given set of production rules, they become 
D0L systems (i.e. deterministic context-free L-systems). Salomaa and Rozenberg 
(ibid.) define D0L systems as a tripartite system 

G = (Σ, h, ω), 
where Σ is an alphabet, h is an endomorphism defined on Σ, and ω, referred to as the 

axiom, is an element of Σ. The word sequence E(G) generated by G consists of the 
words 

h0(ω) = ω, h(ω), h2(ω), h3(ω), … 
                                                 

494 Obviously, this implies boundaries and thresholds imposed by sonological and perceptual 
conditions. This issue is discussed in subchapter 5.5. 

495 As mentioned earlier in this subchapter, L-systems were originally designed to model the 
structural growing of plants, emulating their developmental process. The initial work of 
Lindenmayer (1968) was continued by Prusinkiewicz, founder of the International Workshop on 
Functional-Structural Plant Modelling, who in 1986 also published the first formalization of L-
systems as a musical grammar. 
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According to these authors (see Salomaa and Rozenberg op. cit.:ix), the fact that the 
rewriting processes of D0L systems allow simultaneous rewriting, is significant in 
terms of the modes of the strings’ growth. In this regard, L-systems are dynamic 
(since they are built as time series), self-structuring and sequential, since only one part 
of the string is rewritten for every recursion of the system: “L-systems are models of 
parallel rewriting: at each step of the process all letters of the word considered have to 
be rewritten.” 

An important aspect of the linkage of L-systems with music, is the relationship 
between function and economy of resources that Prusinkiewicz and Lindenmayer 
(1990) and Meinhardt (1998) call ‘algorithmic beauty’, coupling conventions of 
aesthetics, symmetry and formal grammar.496 In the case of music, it is clear that even 
for the simplest self-replacement strings, this concept of ‘beauty’ depends heavily on 
context-free and context-sensitive relationships, which determine the operability of a 
musical grammar: within a D0L system structural and generative freedom is such that 
it allows all kinds of translations of symbolic strings into music (as suggested in a 
section below, in the adaptation of self-similar curves for the generation of pitch 
scales and melodies). Instead, in a context-sensitive L-system, the implementation of 
a set of rules depends on the environment in which symbols are replaced. The 
difference between both types of L-systems is radical in the sense that they yield 
completely different results, conditioned by their recursive properties. 

After Nelson’s pioneering work, first put forward in 1974 with his programming 
system APL (A Programming Language; see Nelson 1992:5), other composers have 
used L-systems to associate self-replacement strings with specific musical elements 
(symbols) and production relationships (rules), usually limited to pitches with 
specific duration and intensity, or to sound pauses with specific duration, within a 
restricted set of rules and modes of combination. Since these methods imply self-
organizing a musical structure by the recursion of a limited set of symbols and rules, 
the outcome is commonly (partially or totally) self-similar, usually with progressive 
variations within a self-similar whole. 

                                                 
496 An important precedent of this association is the study of D’Arcy Thompson (1917), in 

which the role of aesthetics is highlighted as an intuitive means of structural analysis. 
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In a first period of implementation, the trend of using L-systems to produce 
music was limited to tonal structures, using the most basic concepts of Western 
tonality and quite fundamental rhythmic formulae. However, since 1990, L-systems 
began to be employed to produce musical structures with intervals smaller than the 
semitone, and with increasingly intricate rhythmic figures. Prusinkiewicz, Krithivasan 
and Vijayanarayana (1989) also adapted specific L-systems outside the Western 
cultural context, to emulate traditional graphic patterns and melodic patterns of 
South India (Karnataka). 

The study of Stelios Manousakis (2006) encompasses a wide overview on “micro-
composition” techniques, related to a variety of musical parameters. Manousakis, as 
well as Nierhaus (2008:139–144), also distinguish between different methods of 
implementation, using context-free and context-sensitive L-systems, deterministic or 
stochastic L-systems, and parametric and non-parametric L-systems. In a parametric 
L-system, the rewriting of rules can be restricted to self-regulation conditions, such as 
changing the values associated with the symbols along the process of substitution, or 
involving a substitution process with a direct dependence on another system-L. The 
programming of L-systems can also be manipulated so that the number of symbols 
does not necessarily increase for each substitution; for instance, adding a boundary 
rule for each new string produced. Congruently, for such operational adjustments, 
Manousakis (2006) distinguishes three types of rules in musical L-systems: (1) 
production rules, (2) decomposition rules, and (3) interpretation rules. 

 
Context-sensitive L-systems 

Contextual sensitivity of L-systems allows different strains to be obtained from the 
same seed, depending on the elements surrounding the first applications of the rule. 
A short list of conditioned values <S > can serve as a set of rules, where S is a symbol  

 



 

 
 440 

that can be replaced or not, depending on the symbol that precedes it (marked with 
<), or follows it (marked with >), as in this example: 

axiom: F1F1F1 
 
rules: 
P1  0<0>0 → 0 
P2  0<0>1 → 1[+F1F1] 
P3  0<1>0 → 1 
P4  0<1>1 → 1 
P5  1<0>0 → 0 
P6  1<0>1 → 1F1 
P7  1<1>0 → 0 
P8  1<1>1 → 0 
P9  + → – 
P10  – → + 

angle (δ):   22.5º 
direction:   90º 
iterations:   30 

The two-dimension graph produced with these instructions elaborates a self-similar 
‘tree’. Worth and Stepney (2005) employ this tree to illustrate a musical system that, 
after a process of systematic elaboration, reaches a climax at the end of its first part; a 
second part then begins, gradually consolidating the appearance of the whole 
structure—by analogy, one can find plenty of musical examples, in a variety of styles, 
with similar self-structuring. A plausible interpretation of this tree can have a variety 
of musical shapes and styles, depending on how the rules of the context-sensitive 
grammar are converted into rules of a specific musical system. Worth and Stepney 
(ibid.) obtain a syncopated melody which, like many tunes, “repeat the main motif, 
sometimes transposed.” These authors believe that this kind of repetition “reflects 
how music is composed or improvised.” More precisely, it should be noted that in 
elaborating a musical structure with context-sensitive L-systems, the generating 
string itself is relevant in the same quantity as the choice of musical elements and 
rules with which the string is related. Far from delivering a musical form fully 
completed, L-systems complete only half of the task considered as ‘musical’: the rest 
must be covered by the criteria and actions that are chosen to achieve the conversion 
of a series of algorithms into significant musical content. The dialectic between these 
two aspects is characterized in subchapter 5.5 as the ‘negotiation between 
determinism and indeterminism’. 
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Stochastic L-systems 

A string in which the initial axiom is associated with a specific rule, or to another rule, 
with one of the two options chosen by probability, is the seed of a stochastic L-
system. It is worth recalling that a process whose behaviour is at least partially 
predictable, is a stochastic process. A process whose overall relationships are 

unpredictable (as in the case of white noise) is a random process; and a process whose 
relationships are well known and predictable, is a deterministic process. Moreover, a 
chaotic process can result from a deterministic process, with initial conditions that 
are well known, but unpredictable successive bifurcations, due to high sensitivity and 
an exponential growth of perturbations in initial conditions. 

Many stochastic processes are associable with different forms of L-systems. In 
fact, the examples given above are deterministic ones, since their initial conditions are 
well known, i.e. their axioms, rules and first applications. Nevertheless, many other 
musical self-similar structures can be produced from a relatively controlled system, 
generating self-replacement strings within a stochastic environment. 

Assuming that there is an initial axiom and rules related to two equally possible 
options, one of the two options can be chosen at random (e.g. throwing a coin). Each 
rule then has a probability of ½ , to be chosen: 

 

F 
 

 

P1

0: F → ½ 
1: F-F-F+F 
2: FF-F-F-F+F-F+F 

 
angle:    δ= 90º 
direction = 90º 

 
 
 

P2

0: F → ½ 
1: F+F+F-F 
2: FF-F-F-F+F+F-F 

 
angle:    δ= 60º 
direction = 90º 

 
If instead of having two initial options, there are three, four or five sets of rules to be 
elected, then the chances are divided into 1/3, 1/4 or 1/5, respectively, gradually opening 
a margin for variations produced by the stochastic system itself—especially if one 
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conceives that subsequent recursions can also feed back to the same stochastic 
system. 

Worth and Stepney (2005) make an important statement regarding the iterative 
use of stochastic rules in L-systems applied to the generation of musical structures: 
they observe that applying such rules does not suffice to establish the principles of a 
grammatical context; these principles must be previously established. For this reason, 
the musical examples they offer are designed to meet in some way the Schenkerian 
formalization by structural levels, in order to produce results within the margin of 
this formalization associated with tonal music and its harmonic principles. This filter 

chosen by Worth and Stepney—and which they call Schenkerian rendering—is, 
however, equally susceptible to modifications and substitutions, in the same way that 
other algorithms and production rules can be modified to meet an original plan for 
musical synthesis or analysis. 

 
About hidden L-systems 

Webster’s (1950) epigraph, borrowed from W.H. Hadow (1926), suggests that “The 
history of music is not different from that of organic nature.” Much has been 
discussed about the naturalistic notion of music, and some authors, including 
Webster himself (op. cit.:238) and Borthwick (2000:662), claim major lacunae 
regarding a systematic relationship between biology and music. L-systems, along with 
other tools that facilitate the study of constructive self-reference, help to cover such 
lacunae, at least from formal, symbolic, and generativist perspectives.497 

It is clear that many self-organizing processes observable in nature, cannot be 
interpreted by direct analogy with L-systems or a specific system of proportional 
iteration. However, as suggested by Durand et al. (2005), at least a substantial portion 
of these processes are due to overlapping or juxtaposed systems, whose rates of 
excitation and inhibition, along with their recursive structuring, follow particular 
‘versions’ based on the same organizational principles—including hidden L-systems. 
By analogy, this observation is also valid in musicology, in that the analytical tools are 

                                                 
497  Other aspects, however, remain to be considered. This motivates a discussion in 

subchapters 4.7. and 4.8. 
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often appropriate for a specific case study, although it is necessary to adjust the 
descriptive methods employed, in order to match the shape of the analytical 
approach, with the rhythms and patterns that are truly meaningful in the case study. 
Since many organic forms already existing before analysis or emulation with               
L-systems are resistant to complete mirroring or reproduction by these means, 
computer science applied to biology constantly seeks more accurate systems of 
analogies—in order to better understand the rhythms and patterns of organic 
development. Equally, a corpus of written or recorded music cannot be automatically 
mirrored or reproduced by similar implementations, without first understanding 
which are the symbolic values and relationships to be considered relevant as self-
replacement systems. 

 
Turtle graphics 

Originally, Lindenmayer’s (1968) self-replacement model did not generate any 
automatic graphic representation. It was only in 1984 that Alvin Smith adapted        
L-systems for generating graphics using turtle graphics, a method of vector graphics 
in Logo programming language, developed by Seymour Papert in about 1969. Turtle 
graphics works using a relative cursor (the ‘turtle’) upon a Cartesian plane, and 
consists of four basic movement operations, represented by symbols F, f, + and –, in 
which means (F) ‘move forward a step of length δ’, (f) ‘move forward a step of length 
d’, (+) ‘turn left by angle δ’, and (–) ‘turn right by angle δ’. In this fashion, L-systems 
interpreted in turtle graphics combine the simplest notions of symmetry and affine 
transformation, with formal grammars graphically expressed. 

The simplest example provided by Prusinkiewicz and Lindenmayer (1990), has 
the following characteristics: 

ω: X p1: X → F[+X][–X]FX p2: F → FF 
where ω is the initial point corresponding to the axiom, and p is the associated rule. 
Its generation instructions are: 

start:  X 
variables: F[+X][–X]FX 
rules:  FF[+F[+X][–X]FX][–F[+X][–X]FX]FFF[+X][–X]FX 
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By interpreting brackets as ‘beginning’ ( [ ) and ‘ending’ ( ] ) of a line, and X as ‘hinge’ 
linking lines, a tree-like graphic is plotted on the computer screen—where each ‘step’ 
in the turtle graphic is interpreted as a pixel. After five iterations of the algorithm, this 
L-system produces a self-similar tree, such as that used by Worth and Stepney (2005) 
for the analogy of a musical structure with parameters pitch and length. These are 
similar to Fibonacci trees, such as those presented in examples ◊631 and ◊639.498 If 
the Thue–Morse sequence is associated with the same algorithm, programming the 
following instructions, 

    (a) if t (n) = 0, move upward a step, 

    (b) if t (n) = 1, rotate counterclockwise by π/3 radians, 
this sequence converges into the Koch curve (see partial representation in ◊333). 
This example allows visualization of the close relationship between the Thue–Morse 
sequence implemented as turtle graphics, and its potential capacity as a fractal engine. 
Moreover, it is clear that turtle graphics can be adapted to user-defined functions, 
defining local properties of the environment; this is particularly meaningful in terms 
of intersemiotically translating graphic positions and vectors, into sound sequences 
logically arranged by the user (and automatically developed by the algorithm). For 
example, Mason and Saffle (1994), Sharp (e2001), and Worth and Stepney (2005) 
pass turtle graphics into musical sequences, distributing time values in the abscissa, 
and pitch values in the ordinate. Sharp (op. cit.) also adds programming variations 
including trills and accents, as well as boundaries for the branching function, and 
instructions for systematically returning to a specific melodic motif. 

A first example of turtle graphics conversion into a musical L-system, can be 
displayed using a generator (a real-time software such as Lyndyhop can be used; see 
Elmiger e2005), to replace a graphic network from a pixel or a point on a coordinate, 
with pitch-duration values in the same coordinate. This exercise makes sense 
assuming that points, lines and groups in the plane have a self-structuring 
distribution, characteristic of both, L-systems and organic-like processes in music. 
For practical purposes, the system can be represented in a grid on which the parts of 

                                                 
498 See pages 377 and 400, respectively. 
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the structure are analogously distributed. For this case, let the following be the 
characteristics of a specific L-system: 

 
start:   F 
variables:  F–F–F+F 
rules:   FF–F–F–F+F–F+F 

angles (δ):  = 90º 
direction:  = 90º 

 
The turtle graphic corresponding to the first iteration follows here, along with its 
interpretation as pitch-length system in the diatonic scale with semiquavers: 
 

 
 

 

 
◊651a 

 

   
 

 

◊651b. Translation of the upper design, as monodic sequence of pitches in the diatonic 
scale. The conversion is done by reading the pixels from left to right and from 
bottom to top, articulating the filled boxes as sequential order. 
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This first example, although quite simple, shows that even at an early stage, the 
system can produce pre-self-similar cells, useful for the generation of musical motifs. 
The second iteration of this turtle graphic appears in ◊651b, followed by its 
interpretation, equally as a pitch-duration system in the diatonic scale, using 
semiquavers. 
 
Schillinger curves as D0L systems 

Schillinger (1946:I, 2) proposes interpreting a regular sequence of horizontal and 
vertical segments, as a ‘square curve’ (see below) convertible into a musical code, 
giving durational value to the horizontal segments, and pitch value to the vertical 
segments, from a predetermined starting pitch: 499 

 

Accordingly, this shape can be interpreted in the 
following way: 
 
 

 
Then, using the same rules, a more  
complex musical system can be generated, 
with a more elaborated system of lines: 

 

 

 

                                                 
499  Backus (1960) considers that this representation, proposed by Schillinger, is absurd. 

However, Schillinger’s idea is taken up by Prusinkiewicz (1986), in a fruitful rediscovery of an 
algorithmic method for generating music. In more recent years, as seen in the works of Nelson 
(1992), Mason and Saffle (1994), Jones (2000), Worth and Stepney (2005), Manousakis (2006), 
Snyders (e2008), and Lourenço, Ralha and Brandão (2009), this method is one of the most 
widespread applications of musical L-systems. 
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In this example, as well as in the previous one, the base-pitch is C, and the durational 
unit is the semiquaver; the curves are read starting from the bottom-left, moving to 
top-right, using the diatonic scale, from which the following motif results:  

 

Obviously, production rules can be modified using the same generative system. For 
example, instead of starting at C, the pattern can start at any other pitch; instead of 
using the diatonic scale, one can use the chromatic or another scale; instead of using 
the semiquaver as a unit, a different metric unit can be employed; and rather than 
starting to read from bottom to top and left to right, the reading movement can run 
from top to bottom and from right to left—for example. In short, the musical 
interpretation of a Schillinger curve can be very flexible, adjusting a variety of 
parameters. Interestingly, some ‘square curves’, such as Hilbert and Peano curves, can 
transmit to music their characteristics of iteration, self-similarity and structural 
consistency. 
 
Hilbert and Peano curves 

Piston (1947:13) claims that “The word curve is useful to suggest the essential quality 
of continuity, and to emphasize that minor decorations and indentations do not 
affect the main course of the melodic line.” In its essence, this notion is still valid for 
musical L-systems and self-replacement strings in general; though, from a perspective 
of musical self-similarity, the “minor decorations and indentations” can also have 
deep and strict significance in all musical parameters. 

A Hilbert curve is a fractal continuous curve—absolutely and exactly self- 
similarly—filling the plane. Given that the nth generation of the Hilbert curve consists 
of 22n, its Hausdorff dimension in the limit n → ∞ is 2, which reflects the quality of the  
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curves covering its area (see Schroeder 1991:10). Hn is the nth approximation to the 

curve in its limit values, whilst the Euclidian length of Hn is 

n
n

2
12 − . 

This means that the curve grows exponentially with n, to infinity, whilst at the same 
time it is limited by a square with a finite area. 

The Hilbert curve can be described by the L-system algorithm: 
    alphabet: L, R (left, right) 
    constants: A, +, − 
    axiom: L 
    production rules: 
    L   → +RA−LAL−AR+ 
     R → −LA+RAR+AL−  , 

where A means ‘move forward’, + means ‘turn 90° to left’, and − means ‘turn 90° to 
right’. The first suggestion for intersemiotically translating this system into music 
came from Prusinkiewicz (1986:456): “Suppose that the Hilbert curve is traversed in 
[a specific] direction and the consecutive horizontal line segments are interpreted as 
notes.” 
 

 

◊652. Above: Hilbert curve in its first three iterations (from left to right). Below: 
musical motif obtained from the second iteration, according to the rules set out for 
the previous example. 
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The Peano curve is also a self-similar construction whose limit fills the plane, with 
Hausdorff dimension = 2. As the Hilbert curve, the Peano curve has the geometrical 
property that it never passes the same point twice (a feature that cannot strictly be 
translated intersemiotically into music). 
 
 

 

◊653. Above: Peano curve in its first three iterations (from left to right). Below: 
musical interpretation of the second iteration (shape in the centre), according to the 
rules applied to the previous two examples. As Prusinkiewicz (1986:456) notes, 
“Naturally, any curve consisting of horizontal and vertical segments can be 
interpreted in a similar way.” 

 
 
Some of the earliest examples of musical implementation of such curves in a 
compositional process are found in Gary Lee Nelson’s Summer song (1991), for flute, 

and Goss (1993), for violin. In these musical compositions, pseudo-fractal patterns 
are intersemiotically translated into irregular, sounding patterns with sequential self-
similarity. In addition, Mason and Saffle (1994:31–32) describe the Peano curve in 
terms of a musical L-system, allocated in a context of “anticipation/response models 
of melodic construction and analysis.” These authors also provide a typology of 
melodic figures obtained by rotating the first iteration of the quadratic Gosper curve, 
structurally related to the Peano curve. 
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Glissandi made of glissandi 

Graphics with closed regular areas, such as the examples given in ◊651, or periodic 
maze-like shapes, as the ‘curves’ shown in ◊652 and ◊652, are only a tiny fraction of 
the universe of self-similar structures produced as musical L-systems. Other 
operations create, for example, clusters of straight lines, as in the following pattern, 
obtained with the sixth iteration of the instructions (with nodal rewriting in               
L-systems type C, according to the nomenclature used by Elmiger e2005): 

start:   X 
variables:  X-[[F]+X]+X[+FX]-X 
rules:   FF , 

angle (δ):  22.5º 
direction:  90º 

 
which has the following graphic interpretation, embedded within a sound coordinate 
of pitch (from 10Hz to 10000Hz) and duration: 

 

 
 
 
 
 
 
 

 

◊654a 

The string produced by this chart (◊652a) contains nearly seventy thousand symbols, 
which would fill more than 20 pages in this subchapter. It suffices, however, to 
include the above data for its generation (start, variables, rules, angle and direction) 
to instantly create the same graph in Lyndyhop (Elmiger e2005). The result can be 
situated in a sounding context, assigning pitch continuity (tenuti) to the horizontal 
lines, continuous slides (glissandi) to the diagonals, and pitch clusters to the 
verticals.500 

                                                 
500 The variety of pulses, articulations, intensities, and timbral possibilities in the development 

of a compositional plan from this figure exceeds the scope of this work. It is encouraging, 



 

 
 451 

The intrinsically aesthetic qualities in this example seem to justify the process of 
intersemiotic translation. The arguments in favour of this operation are found in 
abundant literature on the perceived relationships between space, repetition and 
proportion For example, Bucher (1959:525)—when he analyzes the architectural 
theory of Borissavlievitch (1958)—notes that, whether a certain shape is considered 
‘beautiful’ or ‘harmonic’ (i.e. easily grasped and assimilated as a set of proportions), 
“The same form repeated, however, must not be [intuitively] beautiful if it does not 
correspond to at least one of the [two] laws of architectural harmony.” The two basic 
laws suggested by Borissavlievitch are (i) the law of repetition of similar figures, and 
(ii) the law of repetition of the same figure. These laws are operatively the same as the 
laws expressed in Chávez’s (1961) theory of musical repetition, discussed here in 
subchapter 2.2., and which implies a close relation with the Gestalt criteria in musical 
symmetry and distribution—stating that there must be a balance between equality, 
similarity and transformation. 

 
 
 
 

◊654b. Motivic detail from the previous chart. In this design, each pixel 
represents a basic unit in the coordinate pitch (y) – duration (x). In addition, 
the condensation of pixels graphically suggests loudness: the higher the 
concentration of information, a parallel increase in amplitude occurs. 

 
Howard and Longair (1982) consider the feasibility of translation between basic 
criteria of musical harmony, by criteria similar to that in spatial constructivism. In 
principle, assuming that it is possible to intersemiotically translate certain musical 
ideas into spatial ideas, a reciprocal translation of architectural spaces into music 
should be possible. This speculation is solved in Xenakis’ work, as intersemiotic 
translation of his architectural designs for the Philips Pavilion, into a structure of 
sounds made music in his orchestral score Metastasis (1954). 

                                                                                                                              
however, to know that a huge number of geometries with these features await musical 
translation, in the terms suggested by composers such as Ligeti (for example in L’escalier du diable 
and Désordre) or Xenakis (in the examples presented here in ◊655 and ◊656). 
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◊655. Detail from the draft of Metastasis (1954), for orchestra, composed by Iannis Xenakis. 
The design corresponds to the measure 313, with glissandi in cellos and contrabasses, based 
on the architectural sketch of the same author, of the Philips Pavilion proposed for the 
Brussels World Fair, 1958 (see Xenakis 1992:3). 

 
 

 
 

◊656. Measures 210–255 from the sketch of Pithoprakta (1956), composed by Iannis 
Xenakis, for two trombones, xylophone, Chinese box, and 46 string instruments (vni., vle., 
vc., cb.), each independently represented in the score. The title, in Greek, means “action by 
probabilities”. In this work the composer performs an intersemiotic translation of the 
probabilistic behaviour of a set of molecules in a gas, according to the Boltzmann formula: 

f(v) = 
∏a

2
 e–v2/a2 , 

where a is the gas temperature, v is the molecular velocity, and f (v) gives the probability 

that a molecule has the speed v. With this formula Xenakis calculates the probabilities for 
58 different velocities; then, implementing Gaussian distribution, he obtains 1,148 possible 
velocities in a set of molecules in gaseous state, with constant temperature. The result is 
shown in this scheme as pizzicati-glissandi forming glissandi segments, which in turn 
integrate glissandi masses in a process of statistical self-similarity. In short, this 
intersemiotic translation is an analogy strictly proportional, since the angles of each slope 
are proportional (a ∝ 35) to molecular velocities generated according to Boltzmann’s 
kinetic theory of gases (from Xenakis, 1992:15–21). 
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Critical observations 

From the critical perspective of authors like Goehr (1960), Dench (1984), and Bailey 
(1992), self-replacement strings and self-similar tessellations explored in this and the 
previous subchapter, are not compositional, but pre-compositional (sub)systems. 
The debate arising from this notion occupies subchapters 5.5. For now, it is sufficient 
to consider that the creative exchange between different methods for generating 
patterns and structures of music provides abundant evidence throughout history, 
supporting the argumentation for synecdochic intersemiosis in the vortex of musical 
culture. 

Moreover, the exchange between a logic of symmetrical relationships and self-
similar patterns, within a specific musical grammar, significantly precedes musical 
experiments with fractals, L-systems and self-similar tessellations. According to a 
suggestion by Haines et al. (2004:340), based on a study of Giovanni Ciampini 

(1633–1698), Guillaume Dufay’s (ca.1397–1474) musical thought may have been 
influenced by symmetry of tiles in the church of Santa Maria in Trastevere. This 
influence is parallel to that found in the musical works of Xenakis, inspired by the 
representation of a dynamical system of an unstable set of molecules (see ◊656), or of 
Ligeti, inspired by a mathematical model such as the Cantor function (see ◊627). 
This link between different models of organization of aesthetic experiences                
—including abstract elaborations, cannot be a whimsical relationship under a radical 
separation between ‘compositional’ and ‘pre-compositional’ forms. On the contrary, 
as suggested in the Introduction to this study, seemingly opposite notions such as 
‘physicalism’ and tradition, or Pythagoreanism and culture, are actually making part 
of the same human complexity, intertwined in different ways.501 One might conclude, 
following this line of thought, that the pre-compositional matter is also 
compositional in a substantial way. 

To what extent a computational fashion or style can shape music, or how far 
musical tradition is able to mould computer music, is an issue that is also linked to 
the dynamics of the societies involved in the practical employment of these resources. 
Finally, it should be pointed out that computer models are also anthropomorphic 
                                                 

501 See section 1.1.1. 
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models—although it is clear that computer programming cannot encompass or 
replace central aspects of language as tradition. In this sense, a simple self-
replacement string, even turned into melody or a chord sequence, is unable to 
generate idiosyncratic context that allow it to be heard as music. This requires an 
interaction between fixed rule and rule modifying, alongside with the intervention of 
a logic, not necessarily based on the operational performance of a model, but 
rather—and especially—according to the Gestalt qualities perceived in the model, or 
in a deviation from the model towards musical idiolects and ecolects; something 
already emphasized by authors such as Kieran (1996), Reybrouck (1997) and 
Ockelford (2005).502 Also in this respect, fractional noise patterns, Markov chains, 
self-similar tessellations, and L-systems, provide valuable insights into understanding 
the meaning of music, especially for the ways in which these forms are socially 
adopted, adapted and transformed. 
 

                                                 
502 This issue is discussed in subchapters 4.7.–4.8. 



 

 
 455 

This world is all machinations and schemes 
at cross purposes one with the other. 

Don Quixote, II, 29 

6.6. Asymmetry and antiproportion 

When Ossowski (1966/1978:24) states that “The possibility of a multifold 
figurization of Kandinsky’s pictures undoubtedly adds to their charm”, he also takes 
into account possibilities of contrast and obliteration—gradually or radically applied 
within an aesthetic processes. These possibilities are of paramount importance in 
shaping the ways in which an aesthetic complexity ‘makes sense’ by contrasting parts 
with parts, or parts with their corresponding wholes. This kind of contrast and 
obliteration operates in a way analogous to the complementarity between 
relationships of excitation and inhibition in biochemical processes (see West 1990, 
Prusinkiewicz and Hanan 1992, Meinhardt 1998), in which an initial statement—an 
original pattern, for example—is structurally relevant, inasmuch as its operative 
contradiction, limit, or reversion. The initial statement of a generative system ‘must’ 
be exposed to partial recomposition, in order to be creative; this holds true, the same 
in a biochemical environment than in an aesthetic analogy. 

Structural repetition and proportion, both in biology in general, as in language 
and in music in particular, depend on the relative flexibility of a rigid structure; or    
—in other words—on the moderate rigidity of a flexible rule. This implies a bounded 
freedom for the sake of the message’s significance, with a minimum opennes, desirable 
or necessary, to interpret the message, as balanced reciprocity between redundancy 
and information. This concept matches with what Umberto Eco (1968:27) identifies 
as the ‘ordering function of the code’ (funzione ordinatrice del codice).503 

Jakobson (1958:358) emphasizes the role of the poetic function as a language 
generating process in the relationships between syntagma and paradigm: “The poetic 
function projects the principle of equivalence from the axis of selection into the axis 

                                                 
503 See pages 208–210. 
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of combination. […] The selection is produced on the base of equivalence; similarity 
and dissimilarity; synonymity and antonymity.” In empathy with this criteria, 
Schoenberg (see Stein 1975:165) states that “Perfect regularity (symmetry and the 
like) is not suited for music. Rather, coherence is achieved through contrast: 
antiphony, countersubject, comes, secondary theme, dominant, etc.” 

Howat (1977:292) emphasizes that, in music, “The measurement of proportion 
proceeds by the inner pulse of the music, thus absorbing fluctuations of tempo such 
as accelerandi and ritardandi, rather than by time as measured on a clock.” Complete, 
mechanical rigidity, even justified by a proportional rule, is rejected in music and, in 
general, in a variety of aesthetic expressions. An example of this refusal is the 
methodical ‘inconsistency’ of proportion, among some of the Renaissance masters of 
architecture, as happens in Andrea Palladio (1508–1580), according to Howard and 
Longair (1982:136): 

The many anomalies and contradictions arising from the [proportional] analysis are not 
entirely surprising. As in so many other respects, the ideas behind [Palladio’s] Quattro libri 
remain tantalizingly elusive. Despite the apparently consistent tone of the treatise, its 
pages betray no coherent underlying system which could have governed Palladio’s 
principles of design. The subtlety and elusiveness of the Quattro libri are just two reasons 
for the enduring fascination of this very remarkable work. 

Musical examples with analogous features are abundant—following an orientation 
comparable to this example—avoiding the unequivocal application of an aesthetic 
canon. For instance, Madden (2007:90) notes that one of Schillinger’s (1946) 
favourite compositional techniques was to “create patterns by ‘interference’, running 
numerical sequences forward and backward against each other to produce new 
combinations.” This way of musical development is not necessarily arbitrary; on the 
contrary, under a systematic employment, it resembles aspects of deterministic chaos 
as explained in section 3.9.4.504 Precisely, when Xenakis (1992:275–276) speaks of 
“transformation of a sieve”, he intends that this type of operation serves to lay out 
generative relationships between proportion and antiproportion. 

                                                 
504 See also subchapters 5.2.–5.4. and 6.2. 
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Symmetry and asymmetry in the waveforms 

As suggested in subchapters 4.2.–4.3., the self-organization of matter/energy at the 
atomic level, keeps scalar invariance and coordination within chemical and biological 
layers under universal power laws.505 The same scalar invariance has an influence in 
the musical practices established by culture, in coordination with physical principles. 
This is especially valid in terms of acoustic symmetry-asymmetry in the harmonic 
organization of sound, as explained below. 

When a periodic wave is composed of a fundamental ( f ) and only odd 

harmonics ( f, 3f, 5f, 7f, ...)—something common in single-reed woodwinds such as 
the clarinet—then the summed wave is symmetrical: whether the waveform is 
inverted and its phase shifted, the waveform will be exactly the same (see Fletcher and 
Rossing 1998:486–488). If the wave has any even harmonics (0f, 2f, 4f, 6f, ...), then the 
waveform will be asymmetrical; the top half will not be a mirror image of the bottom 
(see Backus 1977:111–118). 

Very often, music is composed by acoustic systems combining odd and even 
series of harmonics (i.e. harmonic non-linearity), resulting in timbral variation and 
instrumental richness. Instrumental nuances in an orchestra, or changes of register 
within a same instrument or family of instruments and/or voices, consist of 
waveform changes producing a diversity of harmonic tilings, as suggested in 
subchapter 6.4. Thus, the interplay between symmetry and asymmetry in the 
mechanical and acoustic worlds, is a precursor of a more complex interplay between 
symmetry and asymmetry in the manifold worlds of tradition, culture, and social 
environment, modelling the variable shapes of music. Here appears, again, the figure 
of ‘worlds within worlds’ as foreseen by Parsegian (1968:589) and Mandelbrot 
(1982:2–4, 150, 209). 

 

                                                 
505 See section 3.9.5. 
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A matter of complementarity 

Hofman-Jablan (e2007), adapting the mathematical theory from crystalographer 
Alexander Mihailovich Zamorzaev (1927–1997), introduces into music theory the 
concepts of asymmetry or simple antisymmetry, multiple antisymmetry, and              
P-symmetry (or permutational symmetry). Hofman-Jablan starts her investigation by 

mentioning the most evident contrasts within typical parameters in music (e.g. 
major–minor, strong–weak, high–low, and so on); she then explains the function of 
structural antisymmetry, as inhibition of sameness and repetition, providing music 
with an equilibrium between predictability and unpredictability. 

Hofman-Jablan also refers to asymmetry or simple antisymmetry as the analogy 
question–answer, conceived in traditional counterpoint; as basic relationship comes–
dux, in fugue; as contrast in harmonic modulation; as elementary notion in metre and 
prosody, by the difference between strong and weak accentuation; and as constructive 

relationship in melodic nuances. In conclusion, for Hofman-Jablan (op. cit.), “all 
structures based on alternation may be considered as asymmetric.” 

An intimate link tying logical inference and music, is the coordinated operation 
of the intuitions of symmetry and asymmetry. Juha Ojala (2009:138–139) suggests 
that this operation is achieved as synecdoche or as chiasmus (i.e. crisscrossing 
relations), of utmost importance in the systems of association and musical 
continuity: 

In symmetrical logic, a part may be equated with the whole, or a member of a set with the 
complete set. Ramifications of these are tremendous. In comparison to asymmetrical 
logic, which tends to create linear chains of ralations along the hierarchical systems of 
nested categories, symmetrical logic easily spawns an infinite network of relationships 
between elements […] The two logics are not hermetically separated, but rather they 
operate together construing a continuum, facets of which are in dialogue of analysis and 
synthesis, in constant dynamic interplay. 

This ‘dialogue’ of analysis and synthesis is, in itself, an example of coordination 
between symmetrical and asymmetrical logic. On the one hand there is the symmetry 
of both terms, as complementary mental processes; on the other is the asymmetry of 
their potentialities and results. This description, familiarized as the dichotomy 
between rigidity and flexibility of musical grammars, as well as with the criteria for 
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musical determinism and indeterminism, leads to the assumption that in general the 
functional similarities of music are also in ‘dynamic exchange’, in balance with their 
implied differences. Therefore, the similarities of a musical system are immersed in an 
ambit of flexibility, a game in which discourse, interpretation, and transformation of 
music have a rich intercourse. 

In music, a relationship of asymmetry does not imply, necessarily, complete lack 
of symmetry; rather, it may signify a symmetry that for structural reasons cannot be 
satisfied. Then asymmetry can be interpreted as an ideal symmetry in absentia. This is 

evident in the avoidance of simple symmetries e.g. doubles or halves in rhythm, 
metre, harmony and melody. The systematic planning of asymmetries for structural 
development is a case of complex antisymmetry. Analogously, if in pursuit of a higher 
organization, a predictable trend of structural proportion is not met, then a case of 
antiproportion occurs. Symmetry, antisymmetry, proportion and antiproportion are 
not, however, types of relationships radically opposing each other; instead, they 
usually are collaborating within a common system of harmonic systems, more or less 
in the fashion that José Vasconcelos (1951:23, 30) suggests: “The world is made of 
asymmetrical compositions, contrary to dispersion in homogeneity. […] The world is 
perennial dynamics, as disparities and asymmetries in concert.” 

Regarding the psychological functioning of the prolongation or breaking of a 
proportion, expected in musical time/space, a play between predictability and 
unexpectedness comes to the foreground. In this context, and assuming the original 
definition of the term abduction, made by Charles S. Peirce (CP 2.270), it is clear that 
antiproportion works upon the same principle: 

Abduction is a method of forming a general prediction without any positive assurance that 
it will succeed either in the special case or usually, its justification being that it is the only 
possible hope of regulating our future conduct rationally, and that Induction from past 
experience gives us strong encouragement to hope that it will be successful in the future. 

This notion indicates the possibility of achieving a link of communication that is 
‘sufficient’—rather than ‘successful’—between musical experience and predictability, 
or between memory and unexpectedness. In this context it is very relevant to note 
that the synecdoche operates as antisymmetry, creatively and efficiently placing the 
well-known part into the whole to-be-known. The quiddity of synecdochic 



 

 
 460 

intersemiosis in the cognitive relationships consists, therefore, of a constant game 
between symmetries (or obviousnesses) and antisymmetries (or variations), with which 

a reality is modelled.506 This is an essential postulate for aesthetics, since the typical 
relations of constructive self-reference (e.g. the golden string, the Fibonacci 
sequences, or the bifurcation diagram of the logistic map) are rather systems of 
antisymmetry. 

Decision-making procedures—including their ranges of fallibility, in which the 
probabilistic function alters the regular patterns of a rigid system—are part of a code 
of self-vulnerability through local creativity (a connection that subchapters 4.7. and 4.8. 
characterize as the productive relationship between idiolect and ecolect). An example 
of this, analogous to what happens in music, is the alteration and gradual 
transformation of design, in traditional brocades. Situngkir (2008:12), in examining 
these evolutionary changes in the batik from the Indonesian tradition of textiles, 
notes that 

[T]he properties of batik should be seen as a whole process from the decision on its 
material, the mbatik process including the ornamentation, and even to the appreciation on 
how people traditionally used batik. These properties interestingly do not emphasize batik 
on the ornamentation, but the batik crafting process. 

A certain operational range of asymmetry in decision-making procedures are, as in 
this example, central to musical creativity, as Rocha Iturbide (1999) explains: 

In the late forties, the compositional technique of John Cage was to define the overall 
structure of the work with numbers representing the proportions; these proportions were 
used to rigidly define the sections of the work, but on a smaller scale, i.e. at the level of 
measures and beats, the composer enjoyed a certain freedom to make decisions. 

This general relationship between rigid and flexible also operates in the translatability 
of a musical system into another one, or in the intersemiotic mapping between 
adjacent categories. A paradigmatic case is Nelson’s (1992, 1994) interpretation of 
the notions of random walk and dissimilarity, in a musical negotiation between 
structural indeterminism and determinism. Clearly, the operating margins of 
asymmetry are an essential feature in the configuration, transmission, and feedback of 

                                                 
506 This concept of reality is closely related to the notion of Gestalt, as explained in subchapter 

3.5. 
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the message in a self-referential system; for example, as shown in example ◊451, 
comparing the same set of code repertoire, in different interpretations; 
interpretations that may come from the same source, at different times. 
 
Transformation of regular patterns 

The transformation of regular patterns by antisymmetry and antipropotion is a 
widespread phenomenon in aesthetics, common to the structural transformations in 
many tessellations of M.C. Escher, and in musical patterns of J.S. Bach, studied by 
Hofstadter (1979) and mentioned in subchapter 6.4. 

The study by D’Arcy Thompson (1917), on symmetric transformation, also 
presents varied evidence on how biological structures—with specific examples of 
plants and animals—mutate and adapt within a context, resulting in functional 
changes. Thompson emphasizes the aesthetic significance of these changes and 
formalizes structural aspects that later extend to an organicist perspective for 

understanding and interpreting (pre-)musical structures, e.g. in the cases of Mâche 
(1983), Josephson (1995), Head (1997), Alexjander and Deamer (1999), and Peter 
Gena (e1999, e2006).507 

In an abstract form, subchapter 6.2. symbolizes the typical transformations of a 
simple, regular pattern, which can lead to increasing complexity. The scheme ◊620, 
for example, graphically represents the transformation of a regular system of points or 
grains of sound, into acoustic clouds or masses with a completely different aspect, 
with generalized transitions between symmetry–antisymmetry and proportion–
antiproportion. 

 
Antiproportion by juxtaposition 

Xenakis (1992:244) notes that “there is no pattern and form recognition theory, that 
would enable us to translate curves synthesized by means of trigonometric functions 
in the perception of forms or configurations.” This is closely related to what Xenakis 
(op. cit.:245) identifies as “the wrong concept of juxtaposing finite elements”, 

                                                 
507 See subchapters 4.1., 4.3. and 4.6. 
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summarized in the fact that the quantitative manipulation of simple wave segments 
(i.e. sinusoidal functions) may result in the appearance of virtually any desired sound. 
Xenakis believes that such a massive juxtaposition jeopardizes the very quality of the 
constitutive elements of sound. This issue leads to the old discussion about the 
juxtaposition of proportions. 

In his treatise on proportion, Ghyka (1927) states that it is impossible to 
juxtapose the same spatial relationship in various systems of proportion without 
obliterating each one of these proportions as they overlap. However, many 
composers employ this kind of juxtaposition to systematically eliminate typical 
proportions of constructive schemes, creating—by omission or intention—other 
relationships as a result of the juxtaposition in a deterministic system.508 However, 
intuition and indeterminism have also a functional role in this type of equilibrium, 
according to the poetic function proposed by Jakobson (1958). Regarding the theories 
of Schillinger (1946), Kramer (1973:141) sees this form of ‘freedom’, as problematic: 

Schillinger, inspired by the ‘organic’ nature of the golden mean, suggests deriving melodic 
lines from the Fibonacci series (and also from other summation series). He freely makes 
octave transpositions, so that the proportional and additive properties are lost, as is the 
Fibonacci source of the resulting melody […], and, if the resulting lines are in fact 
aesthetically pleasing, I suspect that the Fibonacci series is not the reason. 

Kramer highlights the key point of the antiproportion by omission, since the 
argument of proportion is used as an excuse to get results justified as part of a ‘free 
method’ for musical production, while strong cultural and psychological ties remain 
underlying, prefiguring the audible result. Sometimes this form of antiproportion is a 
conscious process, as found in the works of Nono (Il canto sospeso, 1956), Ligeti (Pièce 
électronique No. 3, 1959–96; Apparitions, 1958–59) or Stockhausen (Klavierstück IX, 
1961; Adieu, 1966; Telemusik, 1966). Toop (1999:68) claims that, in the case of 

                                                 
508 Here the role of the unconsciousness again has a prominent place in the compositional 

process, as in many cases in which, as suggested by Kramer (1973), Howat (1983) and Madden 
(2005), the golden ratio or other type of structural proportions are used. Even when most of a 
prescriptive grammar is properly executed, the decision-making in a range of inexactitude is 
common, similar to composition and music performance. This confirms a close relationship 
between musical determinism and indeterminism. 
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Ligeti, use of the golden ratio and the Fibonacci sequence is “a little more complex” 
than in other composers from his generation, because 

[A]s the musicologist Gianmario Borio later pointed out to him, he made so many small 
adjustments in the process of composition that hardly a single Fibonacci number was left. 
Be that as it may, ever since Apparitions, analysts have hastened to find golden sections and 
Fibonacci proportions [sic] in Ligeti’s work. They may even be there, says Ligeti, but not 
by design: he used this particular kind of conscious numerical structuring once, and only 
once. 

Toop’s explanation is far from being transparent in analyzing why the case of Ligeti is 
“a little more complex” than others, since the same form of antiproportion by 
omission is also found in Debussy, Bartók, Nono, Stockhausen and Boulez, as well as 
in many of their followers. In any case, it is much rarer to find an integral-
proportionalism—in empathy with Webern’s radical serialism—evident in the work of 
a few composers such as Hugo Norden (1909–1986) and Per Nørgård (1932– ). 
Flexibility—not generalized mathematical exactness in proportion—is the common 
feature in these procedures. Toop (1999:201) notes that, for the case of Ligeti, “the 
exactness of the analogy is of secondary interest: what the scientific model offers here is 
inspiration, not legitimation.” However, this claim is controversial, because many 
aspects of different musical traditions are supported by some analogous criterion of 
exactness. A difference is unveiled, therefore, between these criteria and the 
mathematical criteria of exactness: music makes a discretionary use of proportions 
and symmetry.509 Thus, what music finds in mathematics is not just ‘inspiration’, but 
also a certain legitimacy and rationality. Furthermore, such a relationship is 
reciprocal. Mathematicians, from Pythagoras to Mandelbrot, often turn to music in a 
search for intuitive legitimacy. 510  Nevertheless, and according to Koblyakov’s 
conception of the ‘Subject’ as coordination between intellect and idiosyncrasy, “the 
way from music to mathematics (inversion of the traditional strategy of research) is 
more promising because it allows us to include the Subject’s Factor into the 
researched phenomenon.” (Koblyakov, 1995:299). 

                                                 
509 See subchapter 2.3. 
510 This particular subject is discussed by numerous sources that link mathematics to music; a 

summary appears in Fauvel, Flood and Wilson (2003). 
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A case study: Il canto sospeso (1956), of Luigi Nono 

Thanks to a communication from Stockhausen (see Maconie 1989:50), it is known 
that Werner Meyer-Eppler (1913–1960), a physicist-mathematician and linguist, had 
direct influence on the formation of many composers of Darmstadt school’s first 
generation. The structuralist emphasis on the golden ratio and Fibonacci sequence in 
this generation, is due to the influence of Meyer-Eppler and other ‘naturalists’ 
inspired on Adolf Zeising’s doctrine (see Zeising 1854). Among the results obtained 
under this influence, there are two musical works, considered in the core of the 
classical repertoire of the post-war Europe: Klavierstücke IX (1954–61) by 
Stockhausen, and Il canto sospeso (1956) by Luigi Nono. Kramer (1973:126) notes 
that: 

At approximately the time that Stockhausen was composing Klavierstück IX, his 
Darmstadt colleague Luigi Nono was utilizing, in Il canto sospeso, the Fibonacci series in a 
different manner. Nono was apparently less interested in generating formal proportions 
than in determining individual note durations by means of the series. The second 
movement of this large work, which is rather celebrated in analytic literature, is ‘totally’ 
serialized, with the durations of notes generated by Fibonacci numbers 1, 2, 3, 5, 8, 13. 

However, the formal construction of Il canto sospeso also presents aspects involving 
the Fibonacci sequence, in a complex way. In conceiving this work as a succession of 
measures—interpreting each measure as a subset characterized by a set of ‘actions’, 
capable of being registered as groups of algorithms or ‘paragraphs’ of instructions—it 
is clear that, firstly, the relevant measures in terms of succession of actions, literally 
match with the Fibonacci sequence.511 On the other hand, a group of bars with 
contrasting actions corresponds to the initial sequence of prime numbers          

{℘⏐℘ ∈ [2, 107]}, where ℘ is a prime and 107 is the number of measures in the 
first movement of the examined score. This means that the ‘harmonic’ geometry of 
this composition, based on the golden ratio, intersects with a contrasting grid, in 
order to increase the significance of the harmonic structure (see Pareyon 2007a). 

                                                 
511 ‘Literally’ means that the Fibonacci sequence {1, 2, 3, 5, 8, 13, 21, 34, 55, 89} has been 

inserted into a grid of prime numbers {2…, 107}, in order to produce the grid of measures for 
Part I. The serialization of measures also includes the partial sums 5+5, 8+8, 13+13, 21+21, 
34+34, as suggested in table ◊660. 
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This contrast of the proportion emphasizes the aesthetic values intuited in a 
musically organized time series. In a similar way, in drawing, design, and plastic 
compositions, a certain object, a certain texture or set of lines, emphasizes the 
perception of a particular sign that makes sense by an effect of contrast (see Gegensatz 
in Kandinsky 1926:86–87). 

In short, Il canto sospeso is structured in a logic of counterbalances for each action, 
overlapping a harmonic or ‘intuitive’ geometry (represented by Φ in table ◊660) with 

a contrasting or ‘anti-intuitive’ plot (represented by ℘). Unlike the typical 
relationships with the golden ratio, found in many musical examples in which it 
appears ‘naturally’ (see Tatlow 2001), intervals in the prime numbers series are 
perceived as ‘counter-rhythm’; as a form of a counterintuitive distribution, or, as 
Jameson (2003:vii) suggests, as “a very irregular way” of apparent distribution. Such a 
contrast results from a forced association of the Fibonacci sequence (matching with 

Φ), with intervals from a bounded segment of prime numbers (℘). In the specific 
case of Il canto sospeso, this correspondence is too precise to be just an unconscious 
tendency (see ◊660).512 Ultimately, the most important structural feature of this score 
is not the use of the Fibonacci sequence and golden ratio, but the ambiguity and 
unpredictability accomplished by a contrast of ‘opposed’ structures.513 
 

 

                                                 
512 In an interview held in Warsaw in October 2001, with the author of the present study, and 

Włodzimierz Kotoński (1925– ), the Polish composer—friend of Nono and a close co-worker 
in academic projects with him—stated that Nono consciously used the Fibonacci sequence and 
the golden section in Il canto sospeso. When he was asked if Nono equally used the prime numbers 
series, Kotoński answered that he was unaware that Nono had been used them as a 
compositional resource. 

513 The subject of this section is restricted to antiproportion, which is the main concern of this 
subchapter. For a detailed discussion on the use of the Fibonacci sequence in Nono’s Il canto 
sospeso, the study by Kramer (1973) is especially recommended. The article by Poné (1972) also 
deals with important aspects of Gestalt and self-reference in the same work, in a broader 
context. 
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bar source (Fib) 
origin 

action metre tempo dynamics 

1 Φ — 
Part I starts. Period I, beginning of 
subset 1: {1, 5, 7, 9, 11} (collection 
B {7, 9, 11}). 

8
4  ♪ca.92 ppp 

2 Φ, ℘ — Complement collection B 
(collection A {1, 5}). 

idem rall. ppp 

3 Φ, ℘ — Timpani (1): tr (mf > ppp). idem idem mf 

5 Φ, ℘ — 
Ending of period I, beginning of 
period II (beginning of subset 2, et 
ss.). Vni. con sordina + solo. 

4
3  ♪ca.60 ppp 

7 ℘ — Entry of ottavini; trumpet 1 (D♯) 
p < mf . 8

4  ♪ca.92 mf 

8 Φ — 
Ending of period II, beginning of 
period III. 

idem 
rall.–
accel. 

p 

10 Φ 5+5 Timpani (3): tr (mf > ppp). idem — mf 

11 ℘ — 
Ottavini 3, 4; muta in fl.; trp., 
trbn. < mf. 

idem rall. mf 

13 Φ, ℘ — fl., pitch polarization (G), mf. idem ♪ = 92 mf 

16 Φ 8+8 
Ending of period III, beginning of 
period IV. 
Vni. 1: pitch polarization (E♭), p. 

4
3  ♪ = 60 pp 

17 ℘ — Entry of vc., cb. (divisi: pizz. & 
arco). 

idem idem pp 

19 ℘ — 

Ending of period IV, beginning of 
period V. 
Entry of woodwinds and brass 
(mp), strings off. 

8
4  ♪ = 92 mp 

21 Φ — 
Transition between segment ‘a’ 
and ‘b’ of the period V. Timpani 
(2): tr (mf > ppp). 

idem 
rall.–
accel. > < 

23 ℘ — Entry of flute 3 and trumpet 3. idem idem pp 
26 Φ 13+13 Conclusion of segment ‘b’. idem rall. p 

29 ℘ — 
Ending of period V, beginning of 
period VI. Wind instruments off. 
Entry of vni. 2b and vla. 

4
3  ♪ca.72 mp 

31 ℘ — Entry of vc. & cb. (extended to idem idem p 
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measure 32). 

34 Φ — Ending of period VI, beginning of 
period VII. 8

4  idem p > ppp 

37 ℘ — Flute 1, register change; entry of 
bass cl. 

idem →♪= 92 p > ppp 

41 ℘ — 
Ending of period VII, beginning 
of period VIII. Entry of vni., vla.2 
& vc. Wind instruments off.  

8
6 →

4
3  ♪ca.82 p < mf 

42 Φ 21+21 Entry of vla. 1 & cb. 
4
3  idem mf 

43 ℘ — Vni. 1b + vc. E♭ completes the 
series for period VIII. 

idem idem ppp 

47 ℘ — 
Vni. 1a: pitch polarization 
from A♭8 to A♭9. 

idem idem mf 

53 ℘ — 

(49–52 are transition measures). 
Ending of period VIII, beginning 
of period IX. Brass+strings (first 
time); timpani tr (ppp < f ). 

8
4  ♪ca.92 f > 

55 Φ — 
Ottavino (F♯); trp. 1, 3 (accents 
[mf, f > ppp]); 
vni. alla 8va. (ppp < f > ppp). 

idem idem ppp<f>ppp 

59 ℘ — 
Ottavino returns, tr. 1 (mf), 
trbn. (< f ). 

idem idem f > ppp 

61 ℘ — Vni. 1a ( p < f ); vla. 1 (mf > ppp). idem idem f > ppp 

67 ℘ — 
Fl. 1: introduction of new rhythm 
(modifying of figure from measure 
2) [ mf ]; ending of period IX. 

idem idem mf > ppp 

68 Φ 34+34 

Beginning of period X. Gradual 
change of instrumental palette: 
(69) trumpets 3, 2 ( fff ); (70) fl.     
( f ), hrn. 1, 2 ( fff ). 

4
2 →

8
4  ♪ca.60 

♪ca.92 
ppp – fff > 

71 ℘ — 
Entry of trp. 1 (p) + trbn. 1, 2 (p) 
+ timpani (mp). 8

4  ♪ca.92 fff > p 

73 ℘ — 
Winds ensemble fff, f, mf ; 
trombone 3; pedal note (A) 
appears. 

idem idem fff > p 

79 ℘ — ‘Hinge’ measure of period X. idem idem f – mf 
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83 ℘ — Segment C of period X (ending). idem idem mf – ff 

89 Φ, ℘ — 
Ending of period X, beginning of 
period XI. Fl. 1, 2 polarized. Fl. 3 
muta in ottavino. 

idem ♪ca.72 p < mf 

97 ℘ — ‘Hinge’ measure of period XI. 
Cb. appear with accents (B8). 

idem ♪ca.56 mf < p 

101 ℘ — 
Rallentando; woodwinds end 
period XI. 

idem 
rall. 

♪ca.72 
p < mf 

103 ℘ — Ending of period XI, beginning of 
period XII. Viola solo. 

idem ♪ca.60 mp 

107 ℘ — 
Pitch progression in strings. 
Vn. 1b: appears harmonic (A). 
End of part I. 

idem idem p 

 

◊660. Example of antiproportion: Structure by measures of Il canto sospeso (1956), 
part I, composed by Luigi Nono, for solo voices, choir and orchestra. Measures are 
derived from Fibonacci numbers (represented by Φ), in contrast with prime 
numbers (represented by ℘). The label ‘source’, in the second column, denotes 
the origin of each number as constructive reference (including relationships 
obtained by inversion of the original sequences, employing a method similar to 
that used for Fibonacci grids in example ◊646a). See table ◊634 (page 390), for a 
more general view of the whole composition. 
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General concept of self-dissimilarity 

The typical structural dualism, e.g. similar/different, symmetric/antisymmetric or 
proportional/antiproporcional, can also be adapted to the systematic relationship of 
self-similarity/self-dissimilarity. However, this case does not necessarily imply simple 
oppositions; rather it deals with partial states in a certain balance between systems of 
relationships. Kieran (1996) recognizes this balance as the reciprocity between 
musical coherence and incoherence. Accordingly, self-dissimilarity can be defined as 
a scatter factor or entropy in a process whose ordered or quasi-ordered form, tends in 
the direction of discrepancy from its own structural basis. Thus, as suggested by 
Kieran (op. cit.:41) for the cases in which music establishes its significance in self-
dissimilarity, 

[The] value [of] music inheres in the frustration of our attempts to engage with it, 
highlighting cognitive significance through perceptual incoherence. It is important to 
realize that this is not merely to suggest, as one might regarding Chopin’s Polonaise-
Fantaisie or Schoenberg’s Six Little Piano Pieces op. 19 no. 3, that an analytic approach 
encounters difficulties in articulating how or why the piece may be coherent. Rather, it is 
to point out that there are musical pieces that should not and, in some cases, cannot be 
heard as coherent.  

In this context, antiproportion does not mean no-proportion, such as self-
dissimilarity does not mean no-self-similarity. Rather, these terms refer to a 
relationship of reciprocity that can or cannot tend toward equilibrium, in the 
information distribution of a system or process. Absence, contradiction and 
restoration of balance, but not balance itself, are the main structural references of 
music. This is why Schoenberg (1975:123) states that “The method by which balance 
is restored [is] the real idea of the composition.” Therefore, the term ‘self-
dissimilarity’ can be associated with ‘relative self-similarity’, in a comparable way to 
how Beran (2004:83) considers that the term ‘information’ can be associated with 
‘uncertainty’.514 

                                                 
514 A general description of this relationship is given at the beginning of Chapter 5. For an 

intuitive description of ‘relative self-similarity’, see ◊333. 
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The concept of self-dissimilarity is fully compatible with Xenakis’ notion, about 
the sound ‘deformation’, from a periodic pattern or a set of harmonic functions 
(Xenakis 1992:266): 

It is a question of beginning with any form whatsoever of an elementary wave, and with 
each repetition, of having it undergo small deformations according to certain densities of 
probabilities (Gauss, Cauchy, logistic…) appropriately chosen and implemented in the 
form of an abstract black box. The result of these deformations is perceptible on all levels: 
microstructure (= timbre), ministructure (= note), mesostructure (= polyrhythm, melodic 
scales of intensities), macrostructure (= global evolution on the order of some tens of 
minutes). […Then] one would have had an effect of sounding fractals, with a sonorous 
effect which is impossible to predict 

What is important here is Xenakis’ emphasis on gradual deformation, as stochastic 
process. Nonetheless, structural self-dissimilarity can develop from any constructive 
system or process based on derivative recursion and repetition. A parallel example of 
this, in physics, is the successive transformation of periodic patterns into waves’ 
diffraction. According to Schroeder (1991:44): 

A related subject [to fractons and phonons] is the diffraction of waves from fractal 
structures (diffractals). Since far-field or Fraunhofer diffraction is essentially a Fourier 
transform, the self-similarities (deterministic or statistical) of the scattering fractal must 
be fully reflected in the diffraction pattern of the incoming radiation, be it 
electromagnetic, audible, or ultrasound, electrons, neutrons, or neutrinos. […] Clearly, 
wave diffraction is a sensitive tool not only for classical bodies, but for fractal matter too. 

Hence, structural self-dissimilarity is not—and cannot be—opposed to self-
similarity. Within a variety of cases in the behaviour of waves and particles governed 
by the same power laws, self-dissimilarity and self-similarity reflect, instead, an 
association analogous to the coordinative relationship between order and chaos. For 
the same reason, some of the first researchers studying the structural bonds between 
information and entropy—among them Moles (1952, 1958) and Bucher (1959)—
also find an aesthetic link between repetition and difference; between proportion and 
disorder. Furthermore, Bucher (op. cit.:525) looks forward to a first theorization of 
intersemiotic translation, under the notion that “developments in information 
theory, originally applied to the field of music, are beginning to explain some of our 
reactions to repeated or dissimilar architectural forms.” 
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Self-dissimilarity at pitch-class set theory 

The way to explore the connection between self-similarity and self-dissimilarity in 
sets of objects and groups of musical operations—according to Lewin’s (1987) 
general theory of transformations and intervals—, has been drawn in recent years 
with the implementation of the Klumpenhouwer networks.515 In this context, Murphy 
(e2007) introduces the notion of self-dissimilarity into music analysis, within the 
frame of networks’ recursion, and using as a case study the functions of intervals in 
the “Fourths” no. 131 of Bartók’s Mikrokosmos. Murphy concludes that at least five 

analytical categories can be distinguished, from exact self-similarity—in which there is 
a generalized isometry between universe of networks and subsets; to self-
dissimilarity—where the matching between network and hyper-network contrasts 
with exact self-similarity. These categories are compatible with other general criteria 
for measuring self-similar rhythms and symmetries, including fractal or absolute self-
similarity, pseudofractal or quasi-perfect self-similarity, anisotropic self-similarity or 
self-affinity, pre-self-similarity, and self-dissimilarity (see Suppes et al. 1989: I, 161; 
Mandelbrot 2002:50, 85). However, the formalization and implementation of these 
degrees in musical synthesis and analysis, is still in a formative process, as seen in 
recent debates, particularly in pitch-class set theory (see Buchler e2007, reply in 
Murphy e2007, and counter-reply in Buchler e2008). 

The notion of automorphism, extremely useful in transformational relationships 
of music, and defined in subchapter 2.3. (see page 48), also has its counterpart: the 
essential asymmetries of a musical automorphism are anti-automorphisms. Noll 
(2007:129) introduces this conceptualization in the context of linear isomorphisms 
and transformations of musical intervals “by their constitutive role for well-formed 
scales”.516 Such a conceptualization contributes to a possible development of the 
Klumpenhouwer networks theory. 

                                                 
515 The definition of this concept is given on pages 48 and 282–283. 
516 The concept of well-formedness is explained in subchapter 3.2. (see pages 60–62). 



 

 
  

Conclusions 

From cognitive and semiotic perspectives, self-similarity and intersemiotic mapping 
are two kinds of relationship integrating sense, extending from particular to general. 
Evidence of a transversal self-similarity—a system of intersemiotic relations crossing a 
wide self-structuring spectrum, from the genetic code to the configuration of 
messages in society—provides a deep insight into understanding the organicism with 
which, historically, scholars attempted to explain music. Such organicism is 
attributable, at least partially, to physical and biological self-structuring relations, 
analogously found in aesthetic and self-creative aspects of music. This argumentation 
gains more complexity when extending it to the relationship between individuals and 
culture, associating individuals and groups of individuals with their changing 
environment. 

Coordination between culture and environment implies a concur of two forces: 
the unification force, and the dispersion force. This notion, conceived by George K. 
Zipf (1902–1950) as an empirical self-structuring principle for language, has been 
extended in the present study, as a multi-layered orientation in musical, pre-musical 
and meta-musical patterns constituting an interrelated whole. 

The human is capable of multiplying its signs of reality thanks to the operative 
principles of similarity and difference, and—especially—thanks to generalization and 
stereotyping achieved by these principles. By these means the human is able to create 
and expand reality through a social, intersubjective invention of the world; this 
includes the cultural dynamics of music and its contact with an environment of re-
creatable aesthetics. 

Self-similarity is an inherent phenomenon of music because of the redundancy 
characterizing the musical styles. It is also due to the qualities of the musical 
resources: reflecting the physical characteristics of instruments; the interaction 
between grammar and pragmatics; the creative tension between ecolects and 
idiolects; the functioning of the organs of auditory perception; the physical vibrations 
in the acoustic processes; and the cyclical exchange between environment and 
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societies. The signs of self-similarity in music are, therefore, signs elaborating 
complexities in a systematic self-reference; these signs, according to Bolognesi 
(1983:26), embody the most primitive and intuitive structures of music, expanding as 
emerging pattern. 

The contrast of similarities within a music system (i.e. its structural differences) 
responds to an effect of symbolic consolidation, defining values by comparison, or by 
suspension or suppression of such a comparison. Sense intermission and distortion of 
meaning also happen to participate in this contrast, in a similar way that the 
intermission of form and the distortion of symbolic functions are involved in the 
evolutionary processes of adaptation. In this way the conceptualization of musical 
repetition as genotype (see Mâche 1998:160–161) and musical recursion as 
phenotype becomes understandable—analogous, in a dynamical system of music, to 
the difference between style inheritance and individual behaviour of inheritance, closely 
related to the dynamics between musical ecolect and musical idiolect, respectively. 

The fact that self-similarity is a pervasive feature in a wide range of musical signs, 
may also be associated with the cognitive tendency to adjust systems of relations 
partially perceived or processed, with more complete systems, taken as models in 
experience and memory. This relationship converts the synecdoche into a powerful, 
generalized mechanism of reference and recreation. The very fact that analogy and 
synecdoche are widespread hallmarks of human cognition, with a strong presence in 
music, leads to the conclusion that the interpretation of the part for the whole or the 
whole for the part—at different levels of structuring musical ideas—responds to a 
basic system, as a common platform for musical elaborations. Thus, the ‘simple’ 
intuition this forms part of something else, is by no means devoid of deep implications 
for music. Such intuition concentrates many of the operations of musical consistency 
and meaning. 

The cognitive and creative power of synecdoche can be explained, since they are 
the bridge between immediateness and remoteness; between the measurable and the 
immeasurable: a faculty related to the mind’s tendency to associate the particular 
with the general in the appropriation of the unknown, through the stereotype. 
Synecdoche, consisting of one or more operational steps, is directly involved with the 
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two classical modes of analogy (i.e. paradigm and proportion). It satisfies—in the 
same way and for the same reasons that pre-self-similarity does—the primary link 
between the evident and the conjecturable in a system of abduction, giving certainty 
to what would otherwise be lost in a plethora of unconnected points. 

Interpreting self-similarity functions as knowing-what mappings (see Kaipainen 
1994), makes evident the generality of synecdoche in music. The possibility of 
conjecturing self-similarity by a synecdochic stereotype, permits the confirmation of 
the structure itself. The sense of music emerges then as a self-referential recursion 
within a larger system of recursions with operational similarities and differences in 
each of its cycles. Consequently, the margin of error between origin and recursion 
cannot be understood as sterile or empty space, but as a field of musical recreation: an 
environment for the renewal between rigid grammar and flexible ecolect; 
coordination between musical genotype and phenotype as conceptualized by Mâche 
(1998), and margin for the negotiation between the forces of dispersion and 
unification, according to Zipf’s theory (Zipf 1949). 

Self-similarity is an inherent feature of the musical idiolects, due to a basic 
amount of individual self-reference; in a following layer the same relationship occurs 
with the musical ecolects defining collective styles. Moreover, although individual 
experience may be supplied by ‘external’ references, carrying them to its own domain, 
the individual converts them into self-referential relationships. Thus, music has an 
implicit self-referentiality, associable to all things the human can experience, from the 
impulsive and volitional, to the poetic and metaphysical; from the pre-symbolic to 
the synthetic-analytic. Clearly, this includes the ‘pre-musical’ and ‘meta-musical’ 
sources of human experience. As Fremiot (1994:253) suggests, “any material—from a 
gesture to a scientific phenomenon or even an abstraction—is valid encouragement 
for the inception of an artistic idea.” As for the human capacity of bringing the idea to 
the musical language, music can originate from any idea, and consolidate its cultural 
and emotional meaning through cyclical practices. This involves the diversity and 
authenticity with which each culture recreates its own musical traditions, reifying its 
environmental and social experiences. 
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Music is a cultural self-structuring and self-referential phenomenon, open 
however to changes and associations of multiple semiosis, in congruence with what 
Deleuze and Guattari (1980:11–13) suggest for language in its broadest form. 
Sound—or its contingency—is the essential means of music, but it may be 
complemented, justified or having feedback with any kind of semiosis, making 
‘musical’ what at its origin was ‘non-musical’: sonically humanizing what is humanly 
understandable (see Merriam 1964:145, 166; Blacking 1973:101). Making this what 
this was not, as an imaginary transmutation of lead into gold, equates to effectuating 

an intersemiotic translation. The transmutation of the devil’s staircase–mathematical 

object, into the devil’s staircase–musical process, as György Ligeti does with L’escalier 
du diable (1993), is based on this principle. Many more examples fall under this 
conceptualization, including a wide diversity of musical traditions beyond Western 
culture. 

In parallel to what Bateson (1972) and Damásio (1994, 2000) suggest for 
language in general, emotion and intellect are efficiently correlated in music. For 
musicology this conclusion is not trivial, since its descriptive and analytical tools are 
imbued with preferential, intentional, pragmatic and idiosyncratic concerns. Music 
research is also fed—like the analytical protocols and like music itself—by the 
relatively unstable exchange between idiolect and ecolect; between style and 
grammar, and between correctness and preference. Whereas Bateson (1972) claims a 
need for narrowing gaps between human mind and human environment, and 
Damásio (1994, 2000) urges for changing a scientific paradigm—denying the 
Cartesian dualism that splits mind from body, and reason from emotion—, now it 
seems crucial to extend this change of paradigm into a harmonization between inner 
and external semiosis. This means that comprehending the form in which links are 
established between groups of individuals and environment—and accepting the need 
for ecological variety in the context of musical idiolects and ecolects—should 
contribute to a clearer view of the priorities and tasks of musicology. 

Creation, analysis, performance, interpretation, reception, and meta-
referentiality of music are manifestations of the same system of oscillations between 
fixation and substitution of paradigms. All of them are states of the ‘struggle’ between 
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the forces of dispersion and unification theorized by Zipf (1949), characterizing 
human behaviour as entropy. Also in this sense, the social and cultural aspects of 
music lie at a generalized synecdoche somehow mirroring the oscillatory, 
quasiperiodic and chaotic properties of the vibratory systems. 

During the revision of the evidence used to develop the present study, 
incongruity could not pass unnoticed, between a qualitative register on self-
similarity—related to statistical concepts of music as a redundant and hierarchical 
phenomenon—and the initial stage of a philosophy on self-similarity, based on the 
concepts of Gestalt (Ingarden 1962: 55, 107–108), and rhizome, non-centrality and 

non-hierarchy (Deleuze and Guattari 1980). Ingarden (1962:105) conceives a 
“problem” in comparing musical intersubjectivity with the “pure intentional 
objectivities” (rein intentionalen Gegenständlichkeiten), which cannot be solved since 
both consist of radically different epistemologies. Instead, for Deleuze and Guattari 
(1980:3–15) this inconsistency is solved by admitting that the rhizome does not 
contradict hierarchies such as those found in music.517 Deleuze and Guattari rather 
suggest that the musical processes are created by relationships self-contained in 
various or many simultaneous layers, each encompassing others, in modes of 
arrangement between consistency and inconsistency. For this reason the present 
study highlights the fact that self-similarity and self-dissimilarity are coordinated in 
the same way that similarity and difference, or information and entropy, are 
coordinated as physical and aesthetic phenomena (see Vasconcelos 1951:52–53, 56–
57; Campbell 1982:263–265). 

Given the complementarity between information and noise (Shannon 1948; 
Shannon and Weaver 1949; Moles 1952, 1958), and observing the consequences that 
Voss and Clarke’s (1975, 1978) postulates have for music, the Chapter 5 of the 
present study emphasizes the relevance of conceiving noise as a potential and real 
form of music, and music as a reciprocal nesting of noise. This reciprocity is 

                                                 
517  According to Deleuze and Guattari (1980) in the rhizome any element may affect or be 

influenced by any other element in the same environment (op. cit.:13). In formulating this 
concept, the influence of dynamical systems and fractal geometry is evident: within a fractal it 
is not possible to determine the rank or position of a point in respect of another; what is 
possible is to identify and classify its overall relations. 
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considered in terms of a semiotic system nested within another semiotic system: 
intersemiosis is contingent insofar as the germ of a semiotic set proliferates within or 
intersecting another set of signs. The symbolic continuum intertwining noise and 
music comprises a significant part of the universe of the intersemiotic relations that 
occur as a balance between self-similarity and self-dissimilarity. 

The iterated functions of music (i.e. as musical grammars cyclically articulated 
within the same sound-symbolic system) elaborate dynamical maps which are more 
unstable in terms of outcomes, than compared to differential equations. This is why 
it is so difficult to satisfactorily substitute the characteristic variety and instability of 
music, using a mathematical model. Furthermore, the tendency to chaos in music, 
involves at least one period of relative self-similarity, and—on the other hand—
rejects any direct comparison with exact self-similarity. This notion is closely linked 
to processes of assimilation, creativity, interpretation and transformation of musical 
repertoires: chaos, in music, means deterministic consistency within an unlimited 
series of indeterministic variations. 

Since the ubiquity of 1/f noise is commonly observed in the auditory 
phenomena, and Zipf’s distribution is verifiable in general features of music as 
language, such aspects are to be taken into account for a more precise definition of 
the music universals. 518  Whether self-similarity operates as a mechanism of 
preservation of information at a low structural and energetic cost, self-similarity can 
also be understood as a ‘leading thread’ between different forms and layers of a 
universal economy of language. Chapters 4 reveals how the contradiction between 
economy and repetition in music is apparent: music repeats what it is necessary to 
repeat, in order to provide the proper tension between preference and grammar, as 
creative coordination of the musical processes. 

The alleged ubiquity of golden ratio in aesthetics and nature, highlighted by 
authors such as Ghyka (1927), Borissavlievitch (1958), Livio (2002) or Madden 
(2005), must actually be investigated in a context of self-referential systems linked to 
power laws. The analytical characterization of aesthetic systems should be tackled 
without preselecting any particular proportion (i.e. assumed as a pre-existing truth), 

                                                 
518 The concept of music universals is introduced in subchapter 4.6. 
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but rather identifying the self-referential source of such systems. Peirce’s (1903a) 
theorization is congruent with this conclusion, in that it forecasts self-similarity as a 
system of conjecture and creation of reality. Peirce (op. cit.:160–165) anticipates, in 

this fashion, the concept of cognition trees as explained by Kaipainen (1994:94–99) in 

terms of “Knowing-what hierarchies of temporal spans” in recursive branchings.519 
Musical self-similarity emerges in a variety of processes that cannot be expressed 

simply by their linearity, but by the consistency of irregularities at different layers: 
through the form of continuous variations within the myriad possibilities to recreate 
music. Musical style is a phenomenon of stochastic self-similarity and probabilistic 
variation, originated at the tension between grammatical determinism and 
preferential indeterminism. The continuity of the cycles between grammatical 
correctness and stylistic preference, determine—to a significant degree—the 
individual and collective notions of authenticity in the recreation of a musical 
language. 

It must be stressed that the so-called Fibonacci numbers and the golden mean are 
not features unique to Western music; rather they are common traits of self-
reference, developed in manifold expressions of individuals and societies involved in 
Umwelt-niche diversity. In the same way, the Peircean trichotomy,520 as a cognitive 
process—such as the process for the construction of the devil’s staircase paradigm—is 
not culturally exclusive, but pervasive in a wide range of logico-aesthetic elaborations. 

Accordingly, the principle of ‘no absolute self-reference’ challenges the concept 
of ‘pure music’ defended by Ingarden (1962:48–51).521 ‘Pure music’ is, like ‘fractal 
music’, fallacious. Both concepts can be conceived within a Platonic–Cartesian 
radicalism that extends obscurity, instead of providing a satisfactory explanation 
                                                 

519 In these ‘trees’, a number of possibilities extends from a cognitive level to another, finally 
concluding with a single possibility of knowing something. Kaipainen (1994:99) represents this 
relationship as a branch that splits several times into a following level, where a branch splits to 
the next level in a variety of possibilities, of which, one branch extends into another level, and so 
on, in a system of recursions that corresponds to a specific neural network. ‘Level’, in this case, 
“refers to [a] degree of mental abstraction” (Kaipainen ibid.). In general terms, Peirce 
(1903a/1998:162) seems to predict this conceptualization, as suggested in sections 3.8.3. and 4.4. 
of the present study. 

520 See section 3.8.3. (especially page 112), in connection with subchapter 5.5. (particularly on 
pages 354–363). 

521 See discussion on pages 314–316. 
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about music. This study suggests, in contrast, interpreting musical self-similarity as a 
universe of self-organized irregularities and analogous particularities, necessarily 
changing in an entropic environment—and certainly, not evolving to a specific model 
of music. This notion criticizes, thus, the post-modern attitude of aesthetic 
‘globalization’ as ‘unification’ attempting to obliterate musical diversity. 

Conceiving the strata of musical self-similarity under the notions of stereotype 
and abduction—and not under the generalized concept of ‘fractal’—requieres better 
understanding of the Peircean question of the ‘map within the map’ (Peirce CP, 
8.122). The consequences of this idea justify the conceptualization of musical self-
similarity as a problem related to the argument of the ‘house within the house’, which 
strictly concerns to the ecology of music. The present study suggests continuity in 
nested sign systems revealing an axiology (i.e. a plot of links between ethics and 
aesthetics) by identifying the synecdochic relationship of the ‘house within the 
house’, in a complex self-similarity connecting individuals, communities, species and 
contexts. This notion implicates a wholeness in which music—conceived as non-
exclusively human—plays a privileged role for interpreting and recreating the world, 
as a world-within-the-world. 

Among the virtues of thinking in terms of a logic of self-similarity as a strategy for 
musical assessment, is the adaptability of such a logic into what Michel Foucault 
(1966:40) conceives as “the whole volume of the world”—according to which the 
fundamental relations between part and whole are not necessarily subordinated to 
analysis, but oriented by symmetries and asymmetries, sympathies and antipathies.522 
The association of this concept with semiotic perspectives developed in the fields of 
cognitive science and experimental psychology,523 leads to the conclusion that the 
human dwells in a synecdochic world (i.e. created by a human synecdochic 
intersemiosis that makes language’s widest range possible). 

                                                 
522 In the original text (Foucault, loc. cit.): “Tout le volume du monde, tous les voisinages de la 

convenance, tous les échos de l’émulation, tous les enchaînements de l’analogie sont supportés, 
maintenus et doublés par [l’]espace de la sympathie et de l’antipathie”. 

523 Especially within the framework outlined by Bateson (1972), Lakoff (1987), Gelman and 
Brenneman (1994), Frémiot (1994), Fauconnier (1997), Lakoff and Núñez (2000), and 
O’Halloran (2008). 
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Synecdoche can also characterize fundamental relations between individual and 
general processes in biology. For example, the development of an organism from a 
single fertilized egg to an individual’s maturity is synecdochically comparable to the 
hypothetical evolution of the species, from a unicellular organism, to its present state. 
Many other local and general biological processes are synecdochically comparable. 
Moreover, many fundamental physical references are accessible by synecdoche, 
linking macro- with micro-phenomena. In a way, the so-called Plato’s paradox, 
concerning ‘how can we learn so much from knowing so little’ (see Chomsky 
1966:11), is solved by synecdochic intersemiosis, which partly ‘gives’ meaning to a 
total through the particular, and partly ‘recognizes’ its own performance in the power 
laws modelling the shape and functioning of the knowing systems. This 
conceptualization concurs with what Ballantine (1984:5) refers to when he states “the 
musical microcosm replicates the social macrocosm”—although, reciprocally, the 
social macrocosm somehow replicates the musical microcosm. This notion also 
contributes to developing ideas first put forward by Campbell (1982:219–220) and 
Kaipainen (1995:48, 192), in suggesting that social reality partially reflects the 
biological creation of reality. 

The ordering function of the code (Eco 1968:27) and the synecdochic function are 
correlated.524 This means that the limits of the combinatorial possibilities between 
grammatical rules and preferential variations, cooperate—in music as well as in a 
more general symbolic framework—with the limits of the combinatorial possibilities 
between the known parts, with respect to a whole to be known. Correlation of these 
two symbolic functions permits, for example, identifying figural derivation, as 
happens with aposiopesis—the figure in which a part of a musical elaboration is 

omitted in order to emphasize the meaning of the part in absentia. Among the most 
simple cases of this relationship is the syncopation in metre, and the deceptive or 
interrupted cadence, in tonal harmony. Equivalent examples in musical rhetoric, in 
different forms and within different traditions, are countless. In many cases, ‘minor’ 
relationships in absentia, within other, ‘major’ relationships in absentia, also constitute 

                                                 
524 On the synecdochic function see pages 44, 97, 110, introducing notions that are developed on 

pages 230–232, 235–237; on the ordering function of the code, see pages 208–210. 
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semiotic complexities in which the ordering function of the code and the 
synecdochic function are coordinated. 

According to what is explained in subchapters 3.8. and 5.2., the synecdochic 
function is the epistemological surface of the intersemiotic continuum (IC) in which 
music reality emerges as figurativeness.525 From this viewpoint, music is knowable and 
testable as an interplay between similarities and differences; between humanly audible 
paradigms and dissociations.526 

Music never emerges ex nihilo. Moreover, any music ‘translates something’ in the 
sense that it appears by analogy and in difference with ‘something similar’. Even the 
more abstract music reflects, in its own features, some aspects of tradition and 
culture, a certain ethos and a state of mind of individuals, and—congruently—a 
number of bodily characteristics. In this context, music is also similar to language in 
general and to mathematics in particular, since, despite being a cognitive domain in 
itself, it also cooperates in empathy—here ‘empathy’ implies intersemiotic 
translatability—with other domains that recognize the expressive uniqueness of 
music. 

 
Further investigation 

Aspects of experimental psychology can be developed in terms of Roman Ingarden’s 
(1962) axiology. Gestalt relationships of music—an issue pointed out in various 
sections of the present study—can also be studied as experiential processes.527 
However, the link between self-similar intersemiosis, Gestalt and mental spaces  is an 
issue too rich to be exhausted in a single project, as can be inferred, for example, from 

                                                 
525 Unlike pragmatics in language and in applied mathematics, in music the analogy in its forms 

of proportion and paradigm—not the possible materialization of the representamen or the 
signifier—is what prevails as orientation of sense (this is already explained in subchapter 5.5.). 

526  Again, this is related to what Foucault (1966:40) intends by the expression “tous les 
enchaînements de l’analogie sont supportés, maintenus et doublés par [l’]espace de la sympathie 
et de l’antipathie”. 

527  This research contains a brief introduction to Gestalt theory (pages 85–88) as well as 
developments on the concept of mental spaces (pages 16–17, 315–316). For a thorough treatment 
of the latter, see Lakoff and Johnson (1980), Fauconnier (1985, 1997), Lakoff (1987), Lakoff and 
Núñez (2000). 



 

 
 482 

the structure and content of Lewis Rowell’s book (1983), or from the compilation 
edited by Marc Leman (1997) on music and Gestalt. 

The systematic implementation of resources of self-similarity, such as Fibonacci 
sequences modulo m, self-similar tessellations and textures, and Lindenmayer 
systems, as well as implementing pseudofractal filters and generators, already occupy 
a very noticeable place in literature. Obviously, these resources are not exhausted in 
this work, but are included in order to provide a brief overview of musical strategies 
and methods that are currently experiencing rapid development. 

Several examples implemented in this study, covering synthesis and analysis in 
the context of musical composition and performance, can contribute to a renewal of 
music technique and theory. In particular, Arnold tongues and phase locking regions 
in the circle maps, as well as the Farey trees, are sources of great interest for future 
research exploring deterministic chaos and harmony in the context of musical self-
similarity. Whether the Arnold tongues are truly the parameter space for the rational 
resonances of an infinite harmonic self-similarity, then a significant part of the future 
study of harmony will be in debt with the dynamical theory founded by Vladimir 
Arnold (1937–2010). Besides, linking Arnold tongues with musical inference and 
Gestalt figurativism is also a promising line of study, as suggested in the final sections 
of subchapter 6.2. 

Schenkerian terminology—which has been revised and clarified by Pankhurst 
(2008)—and its adaptation into a system of layers (Schichten) as levels of functional 
self-similarity, is a particularly rich field awaiting further development, 
complemented by resources of contextualized statistical analysis.528 Obviously, the 
direct adaptation of Schenker’s tonal theory (1932) to a much broader perspective  
—i.e. beyond classical tonality, may be unjustified. In any case, an adaptation of the 
Schenkerian paradigm should prove compatibility with new forms of analysis of 
atonal music (including post-tonal music) and non-tonal repertoire (including a wide 

                                                 
528 That is, an analysis not only focused on obtaining indices, deviations or averages, but one 

that deals with qualitative correlations, local and overall. 
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variety of noise-music), by the same general criteria of functional stratification and 
figural similarity.529 

Chapter 5 suggests organizing the systematic study of nestings of music within 
noise and noise within music, as a first step in developing an approach which would 
cover the function of the whole in the part, and not only the part or parts as functions 
of an analytic set. From a statistical perspective, the concept of invariance especially 
merits further development in different musical parameters, implementing tools 
from set and group theories.530 Another possible extension of Chapter 5 could be the 
classification of musical repertoire by kinship with fractional noise patterns. This task 
is done incipiently in Hsü and Hsü (1991) and Madden (1999/2007:125–141), but 
needs a more rigorous and extensive methodology, including a much larger collection 
of samples—or at least a collection of samples not only confined to just one style or 
to the same musical tradition. In order to advance in this task, it is obvious that the 
spectral synthesis/analysis of a recording is not enough to produce definitive results. 
A comparative analysis is required between noise’s tendencies or ‘colours’ of noise as 
nested music, combined with strategies of semiotic contextualization—assuming 
that, for instance, the notions of noise and harmony vary depending on culture. This is 
related to the theoretical proposals of Doležel (1969), Hřebíček (1994, 1997), and 
Diederich et al. (2003), associated with speech; Pinkerton (1956), Youngblood 
(1958), Knopoff and Hutchinson (1981), Harley (1995), Beran and Mazzola 
(1999a–b), Bigerelle and Iost (2000), and Beran (2004), related to statistical 
musicology; and very especially Merriam (1964), Blacking (1973), Domínguez Ruiz 
(2007), and Hegarty (2007), among other authors useful for a humanistic 
interpretation of the whole picture of these findings. Interdisciplinary research is 
therefore necessary for a better understanding of musical self-similarity. 

                                                 
529 For example, Murphy (e2007:8) suggests a specific type of structural analogy: “to those 

desiring a comparison between Schenkerian and K-net Schichtenlehren, I recommend embracing 
an analogy with ‘motivic parallelisms’”. 

530 Invariance has been previously studied from the point of view of pitch-class set theory, but 
is rarely found in a specific context of self-reference or self-similarity, which can expand the 
scope of this development. Some topics for this expansion are suggested by Tiits (2002), 
Ockelford (2005), Vázquez (2006:273–276), and Ilomäki (2008:35–53). 
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The relationship between structural economy and energy expense in a variety of 
pre-musical strata, from fundamental physical interactions and general biological 
principles, is an issue that also requires specialized labor by sectors for obtaining an 
overview of significant correlations. It is expected that a better understanding of the 
organic metaphor in music will make sharpen the musical relations reflecting 
consistency of pre-musical structures, onto a variety of cases. An example is the role 
played by power laws in self-structuring forms of carbon in organic chemistry, and its 
relationship with bioacoustics. Suggestions made by authors such as Motchenbacher 
and Flitchen (1973:172), and T. H. Lee (2003:345)—pointing to an association 
between energy release with carbon granules in a microelectronic system, following 
the characteristic shape of residual 1/f noise—could strengthen Voss’ (1987, 1992, 
1993) postulates on physics, biology and music. As Voss (1993:16) notes, “the 
connection between the ubiquitous presence of 1/f noise in both music and DNA 
sequences […] suggests that music is imitating the irregular but scale-independent 
correlations of many natural processes.” The development of these lines of research 
would make more understandable the links between Larmor frequencies, 1/f noise, 
Zipf’s distribution, and musical self-similarity as a phenomenon of perception and 
recreation in the interplay between individuals and societies, and societies and 
environments—what this investigation postulates under the figure of house of the 
house, as a theoretical support for ecomusicology. 
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284, 298; — noise (definition, 239–
241), 78, 246; random walk, 248–250; 
see also Lévy flight. 

canon (music): as polyphony, 31, 84, 108, 
233, 276, 409–410, 419; as symmetry, 

43, 402; as tessellation, 411–413, 424–
425; melodic —, 65–66, 70–72, 77; 
rhythmic —, 72–73, 409, 423; see also 
iteration, recursion. 

Cantor 
— dust, 74, 255, 349, 357; 
— function, 113, 352, 354–360, 453; 
musicological interpretation of the — 
function, 360–371; 
— set, 69, 74–75, 122, 255–256, 269, 
349; related to the golden mean, 319, 
360, 371. 

Cartesian product, 260–268. 
Ceci n’est pas une pipe, 14, 57, 311. 
cell (cellular constructivism), 134, 150–

156, 184, 214, 364, 480; Grundgestalten, 
214. 

cello, 274–275, 277, 452. 
chain, Markov; see Markov chains. 
chaos 

(definition), 120–122; 
— in language systems, 168–169, 171–
172, 362; 
— in music, 120–122, 148, 230–232, 
235–237, 299–300, 323, 339–341, 348, 
351–352, 356, 470, 477, 482; 
— in the real maps, 352–354; 
chaotic process, 119, 148, 169, 172, 177, 
231, 239, 288, 299, 301, 316–317, 349–
366, 402, 441, 470; chaotic system, 220–
222, 231, 347–354, 476; 
deterministic —, 145, 299, 441, 456, 
470, 482; 
intermittency, 147, 352–353; 
self-similar chaos, 150–152, 299–301, 
323, 347, 363–366; 
— transitions, 29, 113, 231, 235–237, 
339, 344, 347–349; see also entropy. 

chiasmus (chiasmi), 106, 200, 395, 458. 



 

 536 

chord 
deictic function of a —, 91–92; 
generating —, 5, 262; 
— grammar, 156; — significance, 156; 
hexachord, 81–82; tetrachord, 3, 82; 
trichord (triad), 4, 70, 81–83, 135, 163, 
254, 261, 264–268, 282, 333, 380, 408; 
— within another chord, 110, 163–
166, 171, 254, 260–268, 280–283, 
415–417; hyperchord, 268, 280–283; 
isochord, 407; 
see also harmony, proportion, Tonnetz. 

circle maps, 363–371. 
circularity, see iteration, recursion, 

redundancy. 
coefficient: binomial —, 261–265; — of 

similarity, 34, 264–265, 395–396; Cn, 
144; φn, 144. 

coherence, 2, 35–39, 60, 64, 68, 86–88, 
98–99, 111, 128, 143, 151, 153–159, 
167, 172–176, 201–202, 205, 241, 270, 
274, 286, 296, 305, 308–309, 341, 351, 
369–370, 423, 456, 459–460, 469, 
473–475; see also discourse, meaning.  

comes–dux, 458. 
consistency, see information, language, 

recursion, redundancy, repetition. 
consonance, 35, 51, 140, 327, 360, 366, 

369, 392, 407. 
context, see ecology, grammar, language, 

niche, Umwelt. 
continuum 

— in a self-similar function, 68, 161, 
230–232, 269–270 (metrical sub-
division); 283 (transdimensional —); 
302; linear —, 332–335, 458; 
probabilistic —, 189, 224–225, 235–
237, 302; 

spatiotemporal —, 35–38, 72; see also 
intersemiotic continuum (IC). 

contrabass (doublebass), 245, 452. 
creativity, 86, 94–95, 120, 158, 165, 173–

175, 186–188, 192–197, 200, 220, 460, 
477; see also poiesis. 

crystals (analogy with musical structures): 
crystallography, 123–126, 133, 136, 
148–149, 211–212, 320, 416–419, 435, 
458; quasicrystal, 416, 419, 435; see also 
tessellation. 

curve 
Brown(ian) —, 51, 249; 
fractal —, 51, 248–249, 253, 256, 296, 
302, 354–360, 412–413, 447–449; 
Gosper —, 413, 449; 
Hilbert —, 20, 296, 407, 447–448; 
Koch —, 75–76, 256, 319, 354, 444; 
melodic —, 124, 302; 
Peano —, 447–449; 
self-similar —, 30, 362, 413, 438, 450, 
461; 
tempo —, 175–176, 300; 
see also Cantor function, Weierstrass 
function. 

deixis, 59, 91–92, 112. 
Désordre (Ligeti), 75, 299–300, 451. 
determinism 

absolute — 62, 298, 306–318 
(criticism); negotiation with 
indeterminism, 60–62, 108–109, 130, 
206, 298–318; 
deterministic chaos, 24, 120–121, 145, 
348, 456, 482 (see also chaos); 
deterministic grammaticality, 109, 477; 
deterministic intersemiotic translation 
(DIT), 124–126, 351, 371, 394, 405, 
420, 437–452, 462, 470, 477, 482; 
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deterministic self-similarity, 68, 166–
167, 174, 246–247, 288, 295, 415, 417, 
456, 462, 470, 482. 

devil’s staircase, 30, 124, 219, 354–366, 
475, 478; see also L’escalier du diable 
(Ligeti). 

dialogism, 17, 102; see also intersemiosis. 
discourse 

as logical elaboration, 101–102, 128, 
159, 165–167, 170–172, 175, 419–420, 
459; as self-referentiality, 210–211; 
coherence in musical —, 37–39, 95–
96, 155–156; 
monovalent vs. polyvalent —, 128; 
— on self-similarity, 316–318; 
see also coherence, grammar, 
intersemiosis, language, meaning, 
speech. 

dissimilarity, 22, 32, 34, 37, 47, 85, 117, 
125–126, 139, 174, 189, 225, 249, 283, 
427, 456, 460, 469–471, 476–477. 

dissonance, 139, 206, 209, 327, 392. 
DNA (deoxyribonucleic acid), 125–126, 

134, 151, 154, 209, 285, 484. 
dotplot, 285–288. 
Droste effect, 63. 
Duffing equation, 351. 
ecolect, 62, 90–91, 97, 101, 117, 162, 172, 

180, 189–202, 296, 303, 314, 352, 454, 
460, 472–475. 

ecology 
broad concept of —, 3, 7, 180, 475–
479; 
ecolinguistics, 171, 180, 198–202; 
ecomusicology, 98–99, 177–202, 484; 
— as a link between ethics and 
aesthetics, 208–210, 306, 475–479; 
— as recursiveness, 98–99; 

Bateson’s ecology of mind, 97–98, 135, 
158–159, 324, 475, 479. 
Kaipainen’s cognitive theory, 50, 91, 
98–99, 474, 478, 480; 
Reybrouck’s ecomusicology, 3, 91, 99, 
155–156, 158–159, 194, 258. 
map within the map, 31, 331, 479; 
worlds within worlds (‘house of the 
house’), 3, 65, 98–99, 111, 127, 186, 417, 
457, 484; 
see also ecolect, ethics, niche, spiral (of 
styles), Umwelt. 

eigenfrequency, 140–141, 145. 
ekphrasis, 103–107. 
emergence (emerging systems) 

emerging complexity, 15–17, 20, 33, 62, 
106, 127, 169–172, 177, 187–188, 192–
195, 200–201, 213, 230–231, 271, 407, 
410, 474, 478, 481; 
emerging pattern, 41, 73, 77–79, 97, 
139, 153, 273–275, 277, 282–283, 289–
298, 349–350, 355–357, 366, 395, 402, 
410–452, 473, 481. 

emotion 
Cartesian dichotomy, 4–6, 475; 
— and language, 17, 33, 94–109, 167–
168, 172–174, 201–202, 308–309, 474–
475; 
— and memory, 20, 35–37, 158–159, 
324–325; 
— as abduction, 110–113, 459–460, 
473–475 (see also abduction); 
— as musical experience, 13–16, 19–21, 
50, 66–69, 98–99, 172–174, 192–193; 
— as musical force, 350–351; 
— as link between pre-musical and 
musical, 15–16, 103, 112–114, 453, 
472–474; 
— related to intersemiosis, 100–109; 
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— role in musical coherence, 35–37, 
98–99, 157–159, 172–174, 201–202, 
308–309, 351, 459–460, 473–475; 
‘feeling of what happens’, 17–20, 324; 
fractal geometry as —, 308–316; 
see also Gestalt. 

endophora, 91. 
endosemiosis, 150–159. 
endosymbiosis, 151, 193–194. 
entropy 

(definition), 221–222; 
at intersemiosis, 124–126, 231; 
at musical performance, 173–175, 
235–236; 
— loss, 62, 75–76, 92–93, 96–97, 127, 
134–136, 150–153, 162–166, 195, 201, 
217 (see also self-organization); 
— and fractal dimension, 300–301; 
— and self-dissimilarity, 469–470; 
human behaviour as —, 475–479; 
in language, 161–166, 194–196; 
in music, 205–297; 
levels of —, 228–231, 236; 
maximal non-symmetric —, 277; 
of a melodic contour, 223–230; 
randomness, 220–221; 
Second law of thermodynamics, 123, 
221; 
see also chaos, emergence, information 
theory, Markov chains, power laws, 
Zipf’s law. 

ethics 
analogy with aesthetics, 115–117, 209, 
306, 479 (see also ecology); 
Baruch Spinoza, 306; 
Platonic —, 4–5, 116, 129–130, 136, 
157, 306, 323, 330, 378; 
rules emergence, 62, 84–88, 94–96, 161–
162, 169 (see also emergence); 
see also grammar, law. 

exaptation, 184. 

exosemiosis, 157. 
expectation 

as musical relationship, 23, 39, 125, 206, 
242, 459–460; 
as cultural phenomenon, 311–312; 
as probability, 224; 
excessive expectations from ‘fractality’, 
202, 217, 256, 308; 
— related to abduction, 459; 
unexpectedness, 29, 459; 
see also abduction, synecdoche. 

Farey (sequence, tree) 255, 360, 367–371, 
482. 

Feigenbaum constant, 347–351. 
Fibonacci [sequence] 

(definition), 374–375; 
— as generalized feature of music, 383–
386, 478; 
— cyclical remainders, 388–398, 405–
406, 422–423; 
— sequence (numbers), 21, 60–61, 114, 
119, 164, 348, 350, 367, 371, 374–401, 
404, 415–417, 422, 426–437, 460, 462–
468, 478; 
— sequence modulo m, 389, 393–395, 
405–406, 422–423, 482; 
— standard fractal, 60, 376; 
— tessellation (or tiling), 417, 426–431, 
437; 
— trees, 377, 389, 399–401, 444; 
— word (or golden string), 435, 460; 
see also golden mean. 

figuration, see Gestalt. 
figure, see rhetoric, geometry, space, 

symmetry. 
film (motion picture), 104–105, 307. 
flute, 31, 145–147, 181, 252, 293, 295, 351, 

449, 466–467.  
Fourier: — analysis, 79, 110, 133, 143–149, 

239, 333, 345, 423; — transform, 131, 
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136, 144–145, 418, 437, 470; fast 
Fourier transform (FFT), 297, 309–
310. 

fractal 
(definition), 2, 29–32; 
(graphic examples), 65, 74, 76, 92, 376–
377, 413, 448–449; 
— aesthetics,  117–119, 298–318, 476–
482 (see also pseudo-fractal geometry of 
music, below in this account); 
— algorithm, 22, 76, 80, 247, 250, 255, 
308, 315, 426, 444; 
— curve, 51, 248–249, 253, 256, 296, 
302, 354–360, 412–413, 447–449; 
— ‘dilemma’ , 2–3, 130; 
— filter, 306, 427, 482; 
— geometry, 29–32, 63–65, 328–329, 
354–360, 448–449; 
—geometry as emotion, 308–316; 
— set, 30–32, 51, 69, 316; 
— (sound) synthesis, see synthesis; 
coastline paradox, 31; 
common misconceptions, 8–9, 21–22, 
65–69, 79, 105, 108, 167, 202, 304–
316, 478–479; 
deterministic, 166–167, 298, 316–317; 
Fibonacci standard —, 60, 376; 
fractality, 114, 305–307; 
multifractals, 148, 249, 302, 437; 
natural —, 51, 75, 168, 241, 298, 316–
317; 
nested —, 256, 283; 
pseudo-fractal geometry of language, 
63, 159–166, 192–218; pseudo-fractal 
geometry of music, 69–79, 108, 125, 
145, 174, 184, 202, 215, 253–256, 269–
270, 299–300, 304–316, 340, 351, 
358–363, 448–449, 470–471; 
stochastic —, 166, 298, 300, 316–317; 
see also abduction, Brownian motion, 
1/f noise, self-similarity, Weierstrass 
function. 

fractal dimension (D) 
(general definition), 2, 300–303; 
Hausdorff or Hausdorff/Besicovitch 
dimension, 30–32, 34, 75, 108, 119, 122, 
253, 298, 300–305, 319, 357–358, 362; 
Hurst exponent, 239, 253, 302; 
pertinence of — in music analysis, 17, 
300–303. 

Fractal Mountains (Nelson), 250. 
fracton, 149, 364, 470; see also atom. 
frequency spectra, 31, 140–141, 232, 238, 

251–252, 333, 339–340; see also 
eigenfrequency, noise. 

frieze pattern, 419–431. 
function [or map] (mathematics) 

(general definition), 49, 346–348; 
Cantor —, 113, 352, 354–370, 453 (see 
also set, Cantor); 
Euler —, 345; 
iteration of a —, 66–68, 94, 121, 247–
249, 256, 260, 310, 347–350, 352–357, 
360, 366, 377; 
logistic —, 25, 346–350; 
probabilistic —, 224, 460 (see also 
probability); 
real —, 349–354; 
Riemann zeta —, 341–345; 
stochastic —, 249, 284; 
Weierstrass —, 253–254. 

function (structuralism), 1–2, 8, 18–23, 28, 
34, 36–37, 40–41, 46–48, 160–161, 225, 
271; see also synecdochic function. 

functional similarity, 18, 47, 49–52, 56, 68, 
83, 111, 127–129, 179, 281–283, 459. 

gamelan, 219, 382. 
gatom, 87–88, 132; see also fracton. 
Gegensatz, 465. 
geometry: see fractal, proportion, symmetry.  
Gestalt 

(definition), 85–88; gatom, 87–88, 132; 



 

 540 

Grundgestalten, 214; musical figuration 
and making-sense, 8, 13, 37, 85–88, 99, 
109, 128, 237, 251, 351, 387, 451, 454, 
460, 465, 476, 481–482; quantum 
analogy of sound, 148–150; see also 
analogy, synecdochic function. 

golden mean [golden proportion, golden  
ratio or golden section, φ] 
(definition), 372–374; 
absence of — in music, 401–402; 
— as intersemiotic universal, 321–322; 
— as musicological description, 379–
390; 
— as pre-compositional tool, 391–401, 
418–419, 432, 435, 460–468; 
— as self-referential phenomenon, 322, 
375–377, 397, 477–478; 
— as synecdoche, 60–61, 375–377; 
golden number, 373–375, 399; 
golden segment, 320, 343; 
golden string, 418–419, 432, 435, 460; 
golden tessellation, 391, 403–404, 
415–417; 
misconceptions on the —, 378–379; 
related to Cantor function, 319, 360, 
371; 
see also α ̉ναλογία, Fibonacci sequence, 
proportion, self-reference. 

grammar 
descriptive —, 197, 420; 
generative —, 154, 219, 247, 358, 433; 
prescriptive —, 175–176, 321, 344, 
420–423, 462; 
grammar-in-action, 13, 191, 197; 
grammatical consistency, 48, 52, 407; 
grammatical correctness, 61, 188, 194–
200, 478; 
grammatical paradigm, 56–58, 81, 85–
88, 90, 108–110, 132, 142, 157, 171, 
199, 225, 280; 
grammatical tension, 192–218; 

grammaticality, 61–62, 101–102, 109, 
225, 235, 477; 
lexicalization, 101; lexical metaphor, 59; 
lack of lexical reference in music, 124–
125, 297; lexical unit, 168, 171; lexicon, 
125, 154, 200; 
morpheme, 154–155, 160, 171, 403; 
preference rules, 52, 219; 
universal —, 18, 86; 
vulnerability of —, 62, 197, 317, 460; 
well-formedness, 48, 60–62, 169, 217–
219, 237, 333, 369–370, 428–429, 471; 
see also law, semantics, style, syntax. 

group 
in Lewin’s theory, 129, 257, 263–264, 
281–283, 471; 
in Stockhausen’s theory, 60, 325; 
see also network, pitch-class set theory. 

guitar (plucked string), 145, 252. 
harmonic 

— interval, 44–45, 57, 264, 327, 333, 
335, 392, 398; 
— pattern, 13, 153, 256; 
— series, 5, 135, 321, 335, 345, 398, 401; 
— spectrum, 27, 140, 141–142, 146, 
246–248, 253, 296, 334, 338–339, 344, 
420, 437; 
— system, 46, 48, 56, 268, 335, 344, 354, 
415, 459; 
‘fundamental’ pitch, 44, 138–146; 
see also analysis, synthesis. 

harmony 
as analogy, 55–58, 138, 350, 333–336, 
341–346, 354–454; 
as proportion, 320–326, 334–454; 
as self-similarity, 15, 63–75, 138–145, 
268, 280–284, 334–454; 
as symmetry, 40–48, 138, 333–454; 
as synecdoche, 59–62, 270, 272, 278, 
280–284, 334–454; 
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as transition to noise, 29, 113, 122, 237, 
255, 341–346, 483; 
— in prime numbers, 341–346; 
Hindemith’s —, 56, 130, 176, 272, 333, 
350, 409–410. 
hyperchord, 268, 280–283; 
Platonic concept of —, 116, 129–130, 
136, 157, 306, 323, 330, 378; 
prescriptive —, 12, 253, 333; 
Pythagorean concept of —, 3, 10, 136, 
205, 237, 257, 306, 312, 322, 325–326, 
329, 334, 360, 392, 417, 453, 463; 
Rameau’s —, 5, 12, 176, 333; 
Riemannian —, 5, 130, 135, 176, 268, 
392, 406–408; 
tonal —, 12, 43, 239, 406–408, 480; 
see also chord, consonance, Fourier, 
harmonic, scale, Tonnetz, Zipf’s law. 

heart (heartbeat, cardiac pulse), 38, 152–
153, 286. 

hierarchy (pitch), see harmony. 
hierarchy, see metre, prosody. 
homeomorphism, 160, 406. 
house of the house (‘worlds within worlds’), 

3, 65, 98–99, 111, 127, 186, 417, 457, 
484; 

hyperchord, 268, 280–283. 
hypermeasure, 95, 271. 
idiolect 

(definition), 91, 97, 172, 192; 
authenticity and identity, 175–176, 
180, 189–202, 210, 225–226; 
idiolectal expresiveness, 109, 170–172; 
idiolectal preference, 174, 189–202; 
negotiation between — and grammar, 
192–202, 271, 358–359; 
— related to ecolect, 62, 90–91, 97, 
101, 170–172, 189–202, 303–308, 314, 
352, 454, 460, 472–475; 
see also ecolect, grammar, style. 

Il canto sospeso (Nono), 382, 387, 390, 427–
429, 462–468. 

indeterminism: negotiation with 
determinism, 60–62, 108–109, 130, 206, 
298–318; see also chaos, determinism. 

infinite self-similarity, see fractal. 
information 

(definition), 207–208; 
information theory or Shannon theory, 
207–231, 258, 470. 

inhibition (of a self-similar process or 
system), 152, 174, 212, 442, 455, 458. 

Innenwelt, 157. 
intentionality, 10, 41, 124–125, 305–306, 

359. 
intermittency, 147, 352–353. 
intersemiosis 

(definition), 100–102; — and power 
laws, 124–126, 150–151, 154, 169, 210, 
217, 231, 251, 320–322; intersemiotic 
continuum (IC), 108, 111–114, 161, 
177–186, 195–202, 230–232, 477, 481; 
intersemiotic mapping, 20, 107, 125–
126, 329, 411, 460, 472; 
intersemiotic synecdoche, 102, 110; 
intersemiotic translation, 1, 8, 14, 19, 
56–57, 65, 69, 75, 102–111 (main 
section), 124–126, 133–134, 147–150, 
251, 254–255, 304, 309, 315, 331, 340, 
351, 359, 371, 394, 405, 414, 420–454, 
470, 475, 481–482; deterministic 
intersemiotic translation (DIT), 124–
126, 351, 371, 394, 405, 420, 437–452, 
462, 470, 477, 482; 
self-similarity as intersemiotic process, 
26, 124–126, 147–150, 251–255, 347–
359–454, 470, 475, 481; 
transition from simple to complex —, 
336–371; 
see also analogy, dialogism, synecdochic 
intersemiosis. 
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intertextuality, 90, 202, 412. 
invariance: 78–84 (main section); further 

development: 45–47, 73–77, 119, 125, 
238, 252–253, 256, 262, 310–312, 
370–371, 407, 457, 483. 

isometry: 45–47 (main section); further 
development: 84, 257–258, 336–339, 
391–392, 405–407, 413, 421, 471. 

isomorphism, 46–48, 111, 332, 404–407, 
471. 

isospectral manifolds, 139–141, 296, 424. 
isotropy, 25, 147, 253, 339–341; 

anisotropic self-similarity, 471. 
iteration 

of a mathematical function, 66–68, 94, 
121, 247–249, 256, 260, 310, 347–350, 
352–357, 360, 366, 377; 
linguistic, 163–165, 305, 318; 
structural, 78, 94–96, 119–121, 384, 
433–434, 440–450; 
see also Alberti bass, canon, chaos, 
recursion. 

Klumpenhouwer networks, 26, 48, 282–
283, 471. 

K’miai people, 11, 383–387. 
k-NN classifiers, 80. 
language 

analogy with music, 34, 38, 159–202, 
219, 361, 403, 455, 474–475; 
fractal —, 34, 306–313; 
languages in contact, 201; 
langue, 190–193, 198–199; 
musical —, 10, 17–18, 50, 100–110, 
127, 135, 186–202, 217, 308–310, 402, 
474, 478; 
‘pure’ —, 34, 39, 113–114, 306–309, 
315–317, 476–478; 
‘pure’ translation, 16; 

Saussurean structuralism, 13, 167, 171, 
190, 193, 198–199, 316;  
see also ecolect, grammar, idiolect, style. 

Larmor frequency, 134, 251, 484. 
law(s) 

conservation —, 211; 
lawlessness, 120; 
Menzerath-Altmann —, 168–169; 
of action (movement and rest), 350; 
of composition (Lewin), 262–263; 
of frequency (as redundancy), 19, 195, 
205–219 (see also redundancy); 
of harmony, 451, 333–336; 
of large numbers, 226; 
of least effort (in language), 212, 217 (see 
also Zipf’s law); 
of redundancy, 19, 195, 205–219 (see 
also redundancy); 
of repetition, 37–40, 451; 
of self-similarity, 29, 63–84; 
of symmetry in music, 40–48, 78–79; 
of the golden section, see golden section; 
power —, see power laws; 
Principle of joining divergences into 
unity, 328; 
proportional —, 319–324, 417 (see also 
golden section); 
purely deterministic —, 299; 
redundancy —, see redundancy; 
Second law of thermodynamics, 123, 
221 (see also entropy); 
Weber-Fechner —, 212, 358, 360; 
Zipf’s — see Zipf’s law; 
see also grammar. 

L’escalier du diable (Ligeti), 11, 355, 359–
360, 451, 475. 

Lévy flight, 248, 252–253, 298, 339, 402. 
lexical, lexicalization, 101; lexical metaphor, 

59; lack of lexical reference in music, 
124–125, 297; lexical unit, 168, 171; 
lexicon, 125, 154, 200. 
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λόγος (linguistic meaning and 
mathematical meaning), 55, 320. 

Lindenmayer systems (or L-systems), 21, 
92, 107, 119, 212, 218, 296, 299, 319, 
323, 337, 348, 405, 432–451, 482. 

Lyndyhop (program), 444, 450–451. 
Menzerath-Altmann law, 168–169. 
map 

as metaphor, 19; 
cartography, 330; 
cognitive —, 16–22, 36, 106, 117–118; 
logistic —, 299, 346–354, 460; 
model of routines, 98; 
motion on a path, 17; 
musical score as a —, 105–107, 352–
363, 450–452, 464–465; 
self-mapping, 36, 66, 69, 82, 235; 
see also function (mathematics). 

map of the map, 3, 23, 63, 69, 90, 99, 111, 
114–117, 142, 187; 
worlds within worlds, 3, 65, 98–99, 111, 
127, 186, 417, 457, 484; 
see also abduction, function. 

mapping, see function. 
Markov chains, 118–119, 226–235, 241–

242, 286, 323, 454; Markovian self-
structuration, 78, 226–235, 241–242, 
252; see also random walk. 

matrix: diagonal — (VRA), 288–297; 
Gabor —, 132; production —, 232–
235, 242–246, 427–431; tonal —, see 
Tonnetz; transition —, 226–227, 232–
235. 

meaning 
as cognitive process, 16–20, 35–54, 
85–88, 111–114; 
‘feeling of what happens’, 17–20, 324; 
lexical —, 59, 101, 124–125, 154, 168, 
171, 200, 297; 

musical —, 4, 10, 34, 37–62, 99, 102–
110, 171, 192–202, 270, 351, 383, 392–
393, 397, 442–444, 454, 473–474, 480; 
see also coherence, intersemiosis, 
language, semantics, speech, symbol. 

metalanguage, 28, 111, 193, 317.  
meta-musical (concepts, processes), 13, 15, 

103, 112, 472–474. 
metaphor 

(definition), 56; 
differences and similarities with analogy, 
27, 56, 69, 109; idem with synecdoche, 
142; 
geometrical —, 2, 14, 17, 21, 29, 118, 
131, 307–315, 345, 375–380; 
grammatical/lexical —, 59; 
intersemiotic —, 101–102; 
map as —, 19, 330; 
metaphorical description of noise, 439; 
metaphorical use of mathematics in 
music theory, 29–32, 307–315, 345, 
375–380; 
— of language as fractal, 75, 170–171, 
307–308; 
— of music as fractal, 29–32, 305–308; 
resonance as —, 123–124, 134–135, 
150–153, 171, 192–193, 360; 
— of music as language, 159–202; 
— of music as organic process, 150–158, 
194–197, 214–215, 484. 

metaphysics, 4, 109, 115, 136, 157–158, 
474. 

Metaphysics (Aristotle), 4, 136. 
Metastasis (Xenakis), 451–452. 
metonymy, 26–27, 106, 179. 
metre 

hypermeasure, 95, 271; 
isometry, 45–47; 
metrical recursion, 271; 
metrical self-similarity, 269–270; 
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sesquialtera, 44, 58, 270, 341; see also 
prosody. 

Mimus polyglottos (tzentzontli), 181. 
modulo 

analytical usage, 219 (see also well-
formedness); 
compositional usage, 84, 389–398, 
405–406, 422, 427; 
cyclical remainders, 405–406; 
Fibonacci sequences in — m, 389–395, 
482; 
modular bounding, 84, 251, 393–395; 
see also tessellation. 

molto sul ponticello (chaotic behaviour in 
bow-string instruments), 352. 

monochord (instrument), 3, 138, 326–
327. 

multifractal, 148, 249, 302, 437. 
nesting 

broad concept of —, 284; 
in Lewin theory, 257, 281–282; 
in pitch-class set theory, 282–283; 
fractal —, 148, 249, 302, 437; 
hierarchical —, 252–253; 
— of music in noise, 238–255; 
— of musical series, 260–270; 
— of noise in music, 256–297; 
noise —, 116; 
proportion of —, 76. 

network(s) 
hyper-networks, 282–283; 
infinite —, 458; 
information —, 212–213; 
Klumpenhouwer —, 26, 48, 282–283, 
471; 
neural —, 16–18, 106, 478; 
probabilistic —, 207–208, 273–277; 
production —, 92, 232–235, 242–246; 
self-similar —, 171; 
Tonnetz, 135, 406–409. 

niche, 98–99, 156, 172, 177–179, 191–192, 
197, 222, 317, 478. 

noise 
1/f (definition), 238–240; 
1/f (graphical representation), 240, 
243–244; 
1/f 0 (definition), 241; 
1/f 2 (definition), 241; 
1/f β, 478; 
bistable noise, 252; 
black —, 250; 
blue —, 250; 
Brownian —, 239–241; 
burst —, 252; 
fractal —, 255; 
fractional —, 25, 61, 107, 116, 231, 239, 
242–243, 310, 346, 454, 483; 
Gaussian —, 331, 340; 
pink —, 239–240; 
quasi-periodic 1/f , 248; 
white or Johnson —, 121, 239–241, 249, 
441. 

number(s) 
Feigenbaum constant, 349; 
Feynman point, 254; 
Fibonacci —, see Fibonacci [sequence]; 
golden —, 372–373, 375, 399; 
integer, 44, 80, 94, 138, 300–301, 370, 
374, 393–396, 422; 
irrational —, 254–255, 269, 336, 370, 
417–418; 
natural —, 94, 138, 165, 218, 265–266, 
338, 370, 374, 406; 
noninteger, 30; 
numerical palindrome, 395; 
Pell —, 417; 
π, 144, 254, 444, 510; 
prime —, 341–346, 350, 402, 429, 464–
468; 
random —, 228, 254, 437; 
real —, 345, 364; 
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silver —, 417; 
√2, 254, 417; 
see also sequence. 

oboe, 147. 
order, see chaos, entropy, harmony, 

proportion, symmetry. 
ordering function of the code, 208–210, 

279–280, 351, 455, 480–481. 
organicism (in music), 125–126, 134–135, 

150–158, 184, 209, 214, 285, 364, 375–
378, 472, 480, 484. 

ornamentation, 419–420, 460. 
ornithomusicology, see bird. 
palindrome, 301, 395, 426; see also 

symmetry. 
paradox 

Ceci n’est pas une pipe, 14, 57, 311; 
coastline —, 31; 
comprehension of infinite self-

similarity, 67–68; 
Frege’s —, 193; 
impossibility of drawing a geometric 

figure, 67; 
Plato’s —, 361, 480. 

pars pro toto, 59. 
phase locking, 366–367, 482. 
phonon, 131, 148–149, 364, 470. 
piano (pianoforte), 75, 82, 108, 137, 185, 

299–300, 310, 359–360, 380–381, 400, 
409, 414, 469. 

pianola (player piano), 73. 
pitch 

pitch-class invariance, 78–84; 
pitch-class set theory, 26, 64, 78–84, 
156–157, 260–283, 371, 394, 471, 483; 
— space, 236, 245, 406–407, 422; 
— structuration, 43–44, 60–62; 
see also harmony, scale, sequence, 
Tonnetz. 

Pithoprakta (Xenakis), 332, 452. 

poiesis 
(definition), 86; 
autopoiesis, 92–93, 172–173, 177, 376, 
379; 
intersemiosis as —, 105; 
musical —, 86, 94, 305; 
sufficient redundancy, 92–93, 127; 
systematic renewal, 195, 200, 318, 474; 
see also creativity. 

point 
aesthetic and philosophical 
considerations about the —, 133–134, 
300–302, 325–332; 
dotplot, 285–288; 
Feynman point, 254; 
fundamental particle, 137; 
grain, 127, 131–132, 165, 325, 337, 461; 
Punkt und Linie zu Fläche, 331; 
Punktuelle Musik, 137; 
see also atom. 

positivism, 79, 157, 167, 378. 
power laws, 21, 114, 122–126, 150, 154, 

210, 231, 251, 300, 316, 351, 362–363, 
378–379, 419, 457, 470, 477, 480, 484. 

power spectral density, 239–241, 310. 
pre-musical (concepts and processes), 2, 

13–15, 103, 112, 392, 472–474, 484. 
pre-self-similarity, 72, 75–78, 140, 231, 260, 

263, 282, 413–414, 425, 446, 471, 474. 
Principle of joining divergences into unity 

(Prinzip der einheitlichen Verknüpfung des 
Mannigfaltigen), 328. 

probability 
freedom of election, 188, 196–197, 
207–208, 438, 455, 460, 462; 
k-nearest neighbourhood, 80; 
probabilistic tree, 207–208, 273–277; 
see also chaos, grammar, information, 
randomness, style, Zipf’s law. 

prolatio (or prolation), 269, 400, 424. 
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proportion 
(main concepts on —), 319–325; 
golden —, see golden mean; 
λόγος, 55, 320; 
silver —, 417; 
see also α ̉ναλογία, antiproportion. 

prosody 
accentuation, 41, 84, 171, 175, 415, 
435, 444, 458; 
as tessellation, 420–421, 428; 
prosodic (a)symmetry, 42, 271, 278, 
384, 420–421, 435, 458; 
prosodic variety, 296, 421; 
versification, 215, 382, 400, 415, 435; 
see also metre. 

Ptolemaicism, 17, 136, 326. 
Punkt und Linie zu Fläche (Kandinsky), 

331. 
Punkte (Stockhausen), 137. 
Pythagoreanism, 2–4, 6, 9–10, 45, 69, 130, 

133, 136, 205, 237, 257, 306, 312, 322, 
325–326, 329, 334, 360, 392, 417, 453, 
463. 

random 
— chaos, 120–121; 
— choice (or freedom of choice), 188, 
196–197, 207–208, 243, 438, 455, 460, 
462; 
— code, 78, 206, 226–235, 241–253; 
— constructionism, 232–235; 
— distribution, 218, 231–237, 241, 
297–302, 346; 
— fluctuation (of style), 189, 224; 
— fluctuation (of voltage), 246–247; 
— numbers, 228, 254, 437; 
— process (general concept), 121–122, 
227, 290, 316–317, 441; 
— series, 289; 
— walk, 22, 25, 78, 241, 248–249, 252–
253, 460; 

see also Brownian motion, chaos, Lévy 
flight, stochastic. 

randomness, 120, 220–222, 254. 
rationalism, 5–6, 110, 151, 257, 316, 327. 
recurrence, 

(definition), 96; 
inverted symmetry, 42–43; 
meaning of —, 39, 135, 157, 165–166, 
171–172, 187, 227, 338, 379, 402; 
systematic —, 80, 90, 165, 227, 242, 
373–375, 385, 394–395, 424; 
— plot, 165, 285–300, 338, 366; 
see also Visual Recurrence Analysis. 

recursion 
(definition), 94–96; 
aggregate patterns, 165–166, 338–339; 
figural recursion, see Gestalt, symmetry; 
harmonic infinite —, 345–346; 
linguistic —, 104, 159–169, 187, 235; 
metrical —, 268–271, 393–400; 
musical —, 91, 109, 158, 170–175, 182–
188, 195–197, 213, 223, 235–237, 262–
297, 305–314, 319–322, 393–400, 438–
442, 470–471, 473–474; 
pitch-class —, 262–268; 
— and ecology, 98–99; 
— and self-organization, 96–97, 114, 
121, 162–166; 
— of a grammar, see grammar; 
rhythm as —, 278–280; 
see also circle maps, coherence, grammar, 
iteration, recurrence, recursiveness, 
repetition. 

recursiveness 
(definition), 96; 
grammatical —, 163–165, 230–232, 
270, 303; 
infinite —, 166; 
musical —, 163–165, 173–177, 184, 
194, 247, 278–281, 405; 
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— as self-structuring process, 163–165, 
173–177, 302, 322–323, 351–352, 371; 
rhythm as rules of —, 278–280; 
sociolinguistic —, 25, 162–163; 
see also entropy, information, recursion. 

redundancy 
(basic concepts related), 227–231; 
as feature of musical style, 173–177, 
196–202, 472 (see also style); 
information —, see information; 
law of —, 19, 195, 205–219; 
— of similarity, 7, 19, 52–54, 242, 455 
(see also recursiveness, repetition, 
symmetry); 
sufficient redundancy, 92–93, 127; 
see also chaos, consistency, emergence, 
entropy, information, language, noise, 
recursion, repetition. 

reference(s) 
construction of —, 17, 104–106, 160, 
174–175, 473; 
mental —, 16–17, 104–106; 
recurrence of the —, see recurrence; 
referentiality, 46, 90, 106, 402; 
relation (basic notion), 35; 
see also self-reference. 

reflection (radial symmetry), 40–43, 48, 
166, 278, 412; deformed —, 115, 412. 

repetition 
(definition), 37–40; 
analysis of —, see recurrence; 
intuition of —, 29, 31, 34, 41, 51–52, 
162, 205, 213, 279 (see also Gestalt); 
Chávez’s theory on —, 38–44, 80, 122, 
135, 161, 270, 400, 451; 
Ockelford’s theory on —, 38–39, 129, 
137, 155, 189–190, 224, 332, 337, 363, 
454, 483; 
see also distribution, recursion, rhythm, 
symmetry. 

Republic (Plato), 4, 116, 136, 306. 

revolution,  
Chomskyan —, 328; 
information —, 8; 
Kuhn’s theory, 199–201. 

rhetoric, 62, 76, 91, 420, 480–481; 
ornamentation, 419–420, 460; 
rhetorical style, 160; see also chiasmus, 
metaphor, metonymy, style, synecdoche. 

rhizome, 14, 330, 476. 
rhythm 

(general definition), 37–38; 
counter-rhythm, 464–468; 
endorhythm, 36, 151–157, 165, 251, 
364; 
— as musical force, 214–217, 351; 
— as proportion in time, 320–321; 
 — as rules of recursiveness, 278–280; 
— imitation, 179–180; 
— of forgetfulness, 123; 
— of number sequences, see number; 
— of speech, 292, 294–296; 
— serialization, 389, 394; 
rhythmic canon, 72–73, 409, 423 (see 
also iteration, recursion); 
rhythmic tessellation, see tessellation; 
self-similar organization of —, 354, 359, 
470–471; 
spatial notion of —, 102–103, 107–108, 
142, 256, 399–400 (see also architecture, 
fractal, geometry, Lindenmayer systems, 
tessellation); 
syncopation, 399–400, 440, 480; 
temporal distribution, 36 (see also time); 
Yeston’s theory, 270, 278–279; 
see also gamelan, metre, periodicity, 
proportion, recursion, repetition, 
symmetry. 

rule 
preference —, 52, 219; 
regulation, 71, 186, 191, 212, 237, 270;  
self-regulation, 439; 
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well-formedness —,48, 60–62, 169, 
217–219, 237, 333, 369–370, 428–429, 
471; see also algorithm, grammar, 
iteration, law, recursion, repetition. 

Satz, 68, 190, 280, 288, 409, 465. 
scale (pitch scale) 

Biles–PGA, 395–396; 
Bohlen 833 scale, 398; 
Carrillo’s microtonal scales, 417; 
chromatic —, 60–61, 81–82, 208, 229, 
236–237, 244, 261, 264, 281, 285, 358–
359, 370, 380–381, 390, 392, 408, 414, 
425, 447; 
diatonic —, 60–62, 81, 181, 184, 237, 
261, 264, 333, 370, 404, 445–447; 
non-Western scales, 174–175, 215, 
302, 366, 369, 382–383; 
prime numbers —, 341–345; 
Pythagorean —, 417; 
see also pitch. 

scale (range of spatial reference) 
scalar invariance, 78–84, 238, 256, 457 
(see also fractal; self-similarity). 

scalebound, 72, 81, 341. 
scaling 

multidimensional —, 288; 
multiscaling, 148; 
noise’s musical scaling, 242–246; 
— object, 17, 72; 
— rules, 80, 220, 237, 315, 347–348, 
414; 
see also fractal, function, map. 

Schichten, 62, 280, 288, 482–483; 
sculpture, 100–101, 107–108, 320, 359–

360. 
self-affinity, 32, 75–76, 249, 271. 
self-correcting process, 187. 
self-dissimilarity, 124–126, 174, 249, 283, 

427, 469–471. 
self-organization, 21–23, 62, 75, 85, 92, 

96–97, 127, 134–136, 151–153, 162–

166, 195, 201, 205, 213, 231, 260–263, 
296, 319, 323, 336, 340, 362, 377, 419, 
433, 442, 457, 479. 

self-reference 
(definition), 89–93; 
absolute —, 128, 313–316, 478; 
as coherence feature, see coherence; 
as grammatical development, 163–166; 
as pre-requisite for fractality, 31; 
as pre-requisite for music, 46, 64, 79, 82, 
84, 89–93, 146–150, 159, 173, 179, 187, 
196, 211–213, 260, 320–337, 350; 
as proportion, see proportion; 
as random (sound) pattern generation, 
234–235, 255, 263–270, 274–277, 287; 
as resonance, 153–154, 192, 218; 
homeomorphism, 160, 406; 
numerical —, see number; 
— in IC theory, see intersemiosis; 
— in Peircean semiotics, 111–114, 117–
118, 142, 187; 
self-referential circuit, 106; 
self-referential code, 124; 
spatial —, see analogy, geometry, 

proportion, symmetry, tessellation; 
temporal —, see metre, rhythm; 
see also isometry, iteration, function, 
recursion, redundancy, reference, 
repetition. 

self-reflection, 61, 106, 112, 115–116. 
self-replacement, 377, 432–454. 
self-replication, 433; see also repetition. 
self-similarity (operative definition), 63–77. 
self-structuring process, 20, 64, 79, 122, 

161, 218, 247, 274, 278–279, 318, 332, 
336–337, 355, 367, 391–393, 402, 426, 
438–440, 444, 472, 475, 484; see also 
fractal, Lindenmayer systems, recursion, 
self-reference. 

semantics 
(basic concepts), 1–8, 16–21, 100–101; 
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in biology, 154–155; 
in language, 171–172, 200, 215; 
in music, 161–162, 172, 196, 200, 215; 
semantics of self-similarity in music 
(Koblyakov’s theorization), 10, 205, 
279–280, 283, 309, 463; 
semantic-syntactic functions, 8, 18, 
134, 225, 297; 
see also grammar, language, meaning. 

semiotics 
basic concepts on musical —, 23, 111–
114, 150–156, 192–202; 
Bateson’s —, 36, 97–98, 135, 158–159, 
324, 475, 479; 
endosemiosis, 150–159; 
exosemiosis, 157; 
Peircean —, 16, 23–24, 29–31, 59, 63, 
66–69, 76, 90, 100–106, 111–118, 128, 
158, 164, 167, 187, 231–232, 258, 307–
310, 315, 324, 331–333, 339, 361, 410, 
459, 478–479; 
semiosis, 100, 113, 318, 475; 
Tarasti’s —, 92–93, 103, 111, 157–158, 
190, 194, 210; 
Umwelt, 3, 98–99, 155–159, 177, 191–
192, 197, 317, 478; 
see also, intersemiosis, language, 
meaning, semantics, symbol. 

sense, see coherence, meaning. 
sequence(s) 

Evangelist —, 393, 428, 430; 
Fibonacci —, see Fibonacci; 
Lucasian —, 387, 393, 428; 
Pell —, 417; 
rabbit —, 418, 435–436; 
Thue-Morse —, 136, 255, 273, 436–
437, 444. 

series 
serial composition, 38, 43, 73, 80, 84, 
165, 215, 354, 387, 432, 463; 
Fourier —, 44, 143–144, 333, 363; 

number —, see number; 
time —, 15, 73–75, 143–148, 157, 165, 
216, 223, 227, 236–237, 240, 246, 249–
250, 255, 288–289, 301–302, 310, 338, 
358, 389, 438, 465; 
Uendelighedsrækken, 389, 395. 

sesquialtera, 44, 58, 270, 341; 
set 

Cantor —, 69, 74–75, 122, 255–256, 
269, 349; 
chromatic —, 60–61, 81–82, 208, 229, 
236–237, 244, 261, 264, 281, 285, 358–
359, 370, 380–381, 390, 392, 408, 414, 
425, 447; 
diatonic —, 60–62, 81, 181, 184, 237, 
261, 264, 333, 370, 404, 445–447; 
fractal —, 51, 248–249, 253, 256, 296, 
302, 354–360, 412–413, 447–449; 
self-similar —, 67, 144, 235, 268–269, 
298, 359; 
transfinite —, 67; 
see also fractal, geometry, measure, pitch-
class set theory, symmetry. 

shamanic tradition (music in —), 366, 
383–386. 

Sierpiński triangle, 31, 64–65, 69, 229, 403. 
signal 

audio —, 131, 141–144, 182–184, 232, 
238, 246–248, 289–297, 309, 348, 354; 
carrier —, 248; 
pure — sound, 257; 
random telegraph —, 252; 
—’s entropy, 301 (see also entropy); 
stochastic —, 339; 
see also Fourier transform, noise. 

similarity 
(basic concepts), 35–54; 
affinity, 50–54, 73, 76, 141, 147, 153, 
174, 176, 211, 242, 285, 296, 307, 369; 
dimensional —, 51; 



 

 550 

empathy, 13, 44, 53, 209, 308, 378, 392, 
417.  
functional —, 18, 47, 49–52, 56, 68, 83, 
111, 127–129, 179, 281–283, 459; 
proportional —, see proportion; 
statistical —, 52–54; 
— between music and language, 100–
114, 159–202, 238–239, 279, 288–297, 
314, 392, 483; 
— measurement, 129, 189, 225; 
sympathy, 49–51, 56, 156, 163, 479, 
481; 
see also analogy, repetition, symmetry. 

space 
pitch-class —, 81, 262–283; 
duration —, see time-span; 
of a function, see function; 
Hilbert —, 296; 
mental —, 16–17, 307, 316, 481; 
spatial semiosis in Juha Ojala’s study, 
410, 458; 
see also ecology, fractal, geometry, map, 
niche, tessellation, Umwelt. 

space within space, see map (within the 
map), worlds within worlds. 

Speculum Musicae (Jacob of Liège), 3, 327. 
speech 

— compared with music, 100–114, 
159–202, 238–239, 279, 288–297, 314, 
392, 483; 
— self-similarity, 168–171; see also 
Zipf’s law; 
see also, ecolect, idiolect, language, 
grammar, style. 

spiral 
golden (logarithmic) —, 376–378; 
linguistic —, 196–197, 200; 
— of styles, 196–202; 
tonal — (circle of fifths), 406–408. 

statistical similarity, 52–54. 

stereotype, 31–32, 44, 50, 65, 69, 161–162, 
213, 245, 271, 275–276, 311, 314, 330, 
334, 361–362, 472–474, 479. 

stochastic 
(basic concepts), 118–119; 
— distribution, 60, 118–119, 121, 145, 
246–254, 284, 289, 315–319, 333, 340, 
344–345, 410, 470; 
— fractal, 166, 298–300, 316–317; 
— generator, 228–235, 254, 358; 
— L-systems, 439, 441–442; 
— process (in music performance), 68–
70, 106–107, 173–175, 190;  
— self-similarity, 62, 68, 78, 166, 176, 
227–228, 235, 241, 246–254, 298–300, 
315–317, 478; 
— signal, 339 (see also noise); 
— similarity, 51. 

structuralism (Saussurean—), 13, 167, 171, 
190, 193, 198–199, 316. 

style 
(definition), 186–191; 
preference rules, 52, 219; 
probabilistic trend, 52, 68, 79, 101, 116, 
117, 181–182, 189–206, 217–219, 224–
225, 231, 236–237, 241–244, 262–279, 
320–325, 339, 350, 377, 382, 459; 
proportion as aesthetic trend, 320–323; 
spiral of styles, 196–202; 
stylistic ambiguity, 175–177, 188, 196, 
225, 235, 397, 465; 
stylistic election (or preference), 98–
111, 165, 188, 196–197, 201, 207–208, 
210, 216, 223–226, 438, 455, 460, 462; 
stylistic endomorphisms, 170–176; 
stylistic self-similarity, 196–202; 
stylistic variation (or probabilistic 
deviation), 62, 75, 170–176, 187–188, 
196–197, 200–201, 207–208, 220–221, 
282, 310, 312, 454, 482; 
stylometry, 63, 216, 222, 223–226 (main 
section), 228, 341; 
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see also, coherence, ecolect, ecology, 
idiolect, language, grammar, recursion, 
well-formedness. 

symbol: pre-simbolic relationships (of 
music), 127–154, 192, 474; 
subsymbolism, 13, 23, 86, 151, 179; see 
also analogy, information, 
intersemiosis, meaning, semiosis, 
symmetry, synecdoche. 

symmetry: (general definition), 40–48; 
basic difference with music —, 32, 44. 

synaesthesia, 102, 106, 111, 251. 
syncopation, 399–400, 440, 480. 
synecdoche 

(general definition), 59–62; 
difference with metonymy, 26–27; 
synecdochic continuum, 
see intersemiosis (IC); 
synecdochic function, 44, 69, 110, 202, 
230–232 (main section), 235–237, 
480–481; 
synecdochic intersemiosis, 110 
(definition), 116, 127, 150, 308, 311, 
359–361, 414, 453, 479–480; 
synechism (Ch. S. Peirce), 3, 59 
(definition), 114, 186, 231, 283, 308, 
361; 
see also analogy, intersemiosis, λόγος, 
proportion. 

syntax 
as organicism, 125–126, 134–135, 
150–158, 184, 209, 214, 285, 364, 375–
378, 472, 480, 484; 
as sound organization, 78, 134, 226–
232–235, 241–246, 252, 427–431 (see 
also Lindenmayer systems); 
sentence —, 35, 61, 66, 89, 94, 155, 
160–170, 172, 258, 287, 297, 362, 384–
386; 
see also grammar, recursiveness. 

synthesis (fractal, pseudo-fractal or self-
similar sound —), 22, 51, 76, 80, 148, 
189, 238–239, 247–256, 296, 302, 308, 
315, 348, 352–360, 412–413, 423–426, 
444, 447–449. 

tessellation 
(definition), 403–405; 
Ammann-Beenker —, 410, 416–417; 
chair fractal-tessellation, 424–426; 
golden —, 391; 
Gosper —, 413; 
Kepler —, 404; 
Penrose —, 416; 
triangle —, see Sierpiński’s triangle; 
see also canon, crystal, symmetry. 

texture: self-similar —, 142–143, 423–424; 
see also timbre. 

threnody (mourning), 294, 296. 
Thue-Morse sequence, 136, 255, 273, 436–

437, 444. 
tiling, see tessellation. 
Timaeus (Plato), 4, 116, 157, 306, 323. 
timbre 

frequency spectra, 31, 116, 140–141, 
232, 238, 251–252, 333, 339–340; 
timbral differentiation, 141, 146, 165, 
171, 296, 457; 
timbral pattern, 68, 77, 220, 235, 334, 
398, 423–424, 450–452; 
see also eigenfrequency, Fourier, fractal, 
noise. 

time 
as biological phenomenon, 36, 152–153; 
as cognitive process, 36, 124, 258, 456; 
as social phenomenon, 178–202; 
finite/infinite —, 66–68; 
music time-span, 37–47, 52–53, 66–84, 
87, 106, 173–174, 247, 259, 271–283, 
456, 459; 
self-similar —, 74, 119, 331, 344, 358, 
380, 383–386, 424, 427, 452; 
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— proportion, see proportion; 
— series, 15, 73–75, 143–148, 157, 
165, 216, 223, 227, 236–237, 240, 246, 
249–250, 255, 288–289, 301–302, 310, 
338, 358, 389, 438, 465; see also entropy, 
power laws. 

Tonnetz, 135, 406–409. 
totum pro parte, 59. 
translation 

Benjamin’s theory on —, 16, 79, 323; 
impossibility for —,  
intersemiotic —, see intersemiosis; 
Jakobson’s theory on —, 100–105, 124, 
192, 315, 455, 462; 
‘pure’ —, 16 
Ricoeur’s theory on —,14, 25, 202, 323; 
Schleiermacher, 193; 
self-translation, 105; 
translatability, 117, 296, 414, 460, 481; 
— of symmetry into music, 32, 44–45; 
see also analogy, Gestalt, intersemiosis, 
invariance, map, synecdoche, 
transposition. 

transmutation, 103, 105, 475. 
transposition 

intersemiotic translation or Jakobson’s 
—, see intersemiosis; 
music —, 84, 263, 280–282, 395, 407, 
462; 
spatial —, 45, 81–82; see also symmetry. 

trombone, 452, 467. 
turbulence, 31, 121, 145–148, 340, 349, 

351. 
turtle graphics, 443–446. 
tzentzontli (Mimus polyglottos), 181. 
Uendelighedsrækken, 389, 395. 
Umwelt, 3, 98–99, 155–159, 177, 191–

192, 197, 317, 478; see also ecology, 
niche, semiosis. 

universal 

golden mean as — symbol, 378–379; 
music universals, 38, 122, 129–130, 136, 
157, 175, 177–179, 184, 219, 235, 326, 
477; 
structural universalism, 159–169, 157, 
175, 184, 213, 219, 235, 306–307, 312, 
322, 329, 397, 477, see also power laws; 
— cause (Aristotle), 116; 
— grammar, 18, 42, 50, 86; 
— vs. particular, 84–85, 110. 

Ursatz, 68, 190, 280, 288. 
verborgene Wiederholung, 62, 288 
viola, 468. 
violin, 106, 110, 141, 149, 170, 301, 334, 

409, 449. 
violoncello, 274–275, 277, 452. 
Visual Recurrence Analysis, 288–297. 
vocalization: bird —, 179–186, 195; 

human —, 15, 174–175, 177, 383–387; 
see also speech. 

wave (sound) 
waveform, 138–146, 152, 240, 248–252, 
290–297, 334, 353, 457; 
wavelength, 133–134; 
wavelet(s), 132, 146, 238, 248; 
see also Fourier analysis, noise. 

Weber-Fechner law, 212, 358, 360. 
well-formedness, 48, 60–62, 169, 217–219, 

237, 333, 369–370, 428–429, 471. 
worlds within worlds, 3, 65, 98–99, 111, 127, 

186, 417, 457, 484. 
xylophone, 219, 452. 
zanza, 382. 
Zipf’s distribution, 220, 239, 246–247, 

274–277, 398, 477, 484. 
Zipf’s law, 61, 212, 216–220, 276–277, 305, 

322, 336, 361; see also power laws. 
zoomusicology, 179–186, 195. 
zubak, 181. 


