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Abstract

System interconnect is a key determiner of the cost, performance,
and reliability of large cache-coherent, shared-memory multiproces-
sors. Interconnect implementations have to accommodate ever
greater numbers of ever faster processors. This paper describes the
Sun™ Fireplane two-level cache-coherency protocol, and its use in
the medium and large-sized UltraSPARC-III-based Sun Fire™ serv-
ers.

1. Introduction

Large cache-coherent, shared-memory servers have become a big
business. Sales of shared-memory systems with a capacity for more
than eight processors have more than doubled over the past five years
to over $16 billion in 2000 [1]. This was 27% of the $60 billion-a-
year total server market. In the $29 billion Unix subset of the server
market, systems with room for more than eight processors account
for 40% of the revenue. Figure 1 shows the sales trends of large
shared-memory servers over the most recent five years.
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Figure 1. Sales of large shared-memory servers
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Several vendors now offer large shared-memory servers. SPARC/
Solaris systems have scaled to 64 processors since 1993. The IBM
pSeries 680 [2] scales to 24 processors, the Compaq AlphaServer
GS-series [3] scales to 32 processors, the HP Superdome [4] scales
to 64 processors, and the SGI Origin 3000 [5] scales to 512 proces-
sors. These are all Unix systems with RISC processors.

1.1 Cache coherency

The choice of a cache-coherency scheme is the most important
design decision for a coherent shared-memory interconnect. Com-
pared to maintaining cache coherency, moving data is easy.

The cache-coherency protocol keeps each processor’s view of mem-
ory consistent. Coherency is maintained on aligned blocks of mem-
ory, called cache lines, which are typically between 32 and 128 bytes
wide. Sun currently uses a 64-byte cache block.

Cache misses are satisfied from memory, unless a system device
(processor or I/O controller) has modified the cache line. To do a
write, a processor has to become the owner of the cache line. All
other system devices invalidate any shared copies they have cached,
and the current owner supplies the data. Henceforth, when other
processors request to share a read-only copy of the data, the owning
processor, not memory, will supply the data. Memory becomes the
owner again when the owning processor needs to make room in its
cache for new data, and it victimizes the cache line by writing it back
to memory.

1.2 Cache coherency types

There are two basic types of cache coherency: broadcast, and point-
to-point.

1.2.1 Broadcast (snoopy) coherency. All addresses are sent to all
system devices. Each device examines (snoops) the state of the
requested cache line in its local cache, and the system determines
global snoop result a few cycles later. Broadcast coherency provides
the lowest possible latency, especially for the cache-to-cache trans-
fers that are common in transaction processing. The data bandwidth
of a snoopy system is limited by the snoop bandwidth to:

Bandwidth = Cache line width x Bus clock / Clocks per snoop

1.2.2 Point-to-point (directory) coherency. Each address is sent
only to those system devices that are known to be interested in that
cache line. The hardware keeps a directory in memory or in special
RAM to track which system devices share or own each cache line.
Since every address is not sent everywhere, the total bandwidth can
be much higher than with broadcast coherency. However, the
latency is longer and more variable, due to the more complicated
protocol. Directory coherency is usually used only in large systems,
where more bandwidth is needed than snooping can provide.



See chapters 6 and 8 of [6] for more on these two cache-coherency

mechanisms.

Table 1. Sun system interconnect generations

System interconnect generation 1. MBus [7] 2. XDBus [7] 3. Ultra %’S;tls?gl]litecture 4. Sun Fireplane
First mid-size system shipments 1991 1993 1996 2001
Processor Cypress SPARC SuperSPARC UltraSPARC-I/IT UltraSPARC-III
Maximum processors in a system 4 64 64 >64
Processor clock 40 MHz 40-60 MHz 167-400 MHz >750 MHz
System clock 40 MHz 50-55 MHz 80-100 MHz 150 MHz
Cache-coherency mechanism Broadcast Broadcast + point-to-point

Packet protocol

Circuit switched

Packet switched

Address and data Multiplexed on same wires Separate wires
Cache coherency line size 32 bytes 64 bytes
System clocks per snoop 16 11 2 1
Max snoop rate per address bus 2.5 million/sec 4.5-5 million/sec 40-50 million/sec 150 million/sec
Max data bandwidth per address bus 0.08 GBps 0.29-0.32 GBps 2.5-3.2 GBps 9.6 GBps
Max number of address buses 1 4 4 18
Max address-limited data bandwidth 0.08 GBps 1.28 GBps 12.8 GBps 172 GBps
Datapath width 8 bytes 16 bytes 32 bytes
Interconnect implementation Bus Buses Hﬁgﬂ:éi?%ﬁ?gﬁ& Switches

Note: 1 GBps (gigabyte per second) = 10° bytes per second

40
[

4. Fireplane

—_
o

3. UPA

Doubling
every 18
months

2. XDBus

1. MBus
%

0.04 T T T T T T
1990 1992 1994 1996 1998 2000 2002

Year of first shipment in medium-sized servers

Broadcast-bus bandwidth (GBps)

©
—

Figure 2. Bandwidth of a broadcast bus in Sun’s four
interconnect generations

2. Sun system interconnect generations

Sun Microsystems has been shipping shared-memory multiproces-
sors since the early 1990s, as summarized in Table 1. The Fireplane

interconnect described in this paper is Sun’s fourth generation of
shared-memory system interconnect. Every three to four years Sun
has introduced a new SPARC processor core together with a new
system-interconnect architecture.

Sun has emphasized the bandwidth of broadcast coherency. In each
of Sun’s system generations, a single broadcast address bus has been
the foundation for Sun’s small and medium-sized servers.

Figure 2 shows the bandwidth of a single broadcast bus in Sun’s
four interconnect generations. Sun has increased its broadcast-
coherency bandwidth from 0.08 GBps to 9.6 GBps over the last ten
years — a scaling rate about the same as Moore’s Law (2x every 18
months). This has been accomplished by a combination of factors:
3.7x faster system clock, 2x wider cache lines, and 11x more effi-
cient coherency transactions.

To provide more system bandwidth than one broadcast bus can sup-
ply, Sun has put multiple snoopy buses into its largest systems since
1993: four in the XDBus and UPA generations, and 18 in the Fire-
plane generation.

3. Fireplane coherency protocol overview

The Sun Fireplane protocol is used by all systems built from the
UltraSPARC-III processor. The Fireplane interconnect is an
enhancement of the previous-generation Ultra Port Architecture
(UPA) [8]. Like the UPA, the Fireplane architecture has a separate
address and data interconnect to keep address and data transfers from



interfering with each other. The address interconnect disseminates
read and write requests, and maintains cache coherency. The data
interconnect moves 64-byte blocks from source to destination.

The major new feature of the Fireplane interconnect protocol is two
levels of cache coherency: broadcast and point-to-point (see
Figure 3). Logic is built into the UltraSPARC-III processor chip and
I/O controller ASICs to handle both levels of the Fireplane coher-
ency protocol. Using both types of coherency, Sun can build a wide
range of system sizes from the same CPU/Memory board and same
I/O controller ASIC:

* Mid-sized Fireplane systems use a single snooping coherence
domain, which spans all the devices connected to one Fireplane
address bus. Snoopy coherency gives the 24-processor Sun Fire
6800 quite low memory latency for a mid-sized system. Other
recent server families (Compaq GS-series [3], HP Superdome

[4], and SGI Origin 3000 [5]) all use directory coherency for
their mid-sized servers.

¢ Large Fireplane systems (with >24 processors) use multiple
snooping coherence domains. This protocol is called Scalable
Shared Memory (SSM), since it is how large shared-memory
systems are implemented in the Fireplane generation. Large sys-
tems retain the low latency of snoopy coherency for local mem-
ory accesses, and still have the bandwidth scalability provided
by directory coherency.

This paper describes SSM as it is used in a large single-cabinet
system, where the SSM transactions are implemented by wide paths
across an active centerplane. This system is scheduled to be
announced in the fall of 2001, after this paper has gone to press. The
SSM protocol could also be used with other interconnect implemen-
tations.
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Figure 3. Two-level coherency protocol

4. Fireplane broadcast coherency

All Fireplane systems have at least one snooping coherence domain.
Within a snooping coherence domain, transactions are snooped by
all devices. Snoop results are output by the devices five cycles after
they receive an address. The overall snoop result is combined by
ASICs on each board, and is sent back to the devices four cycles later.

4.1 Address bus implementation

The address bus is implemented using a two-level bidirectional tree-
structure of Address Repeater ASICs, as shown in Figure 4. CPU 0
issues an outgoing request (indicated by the solid red arrows) in
cycle 0 to its board Address Repeater (AR0). Assuming that the bus
to the top-level Address Repeater is available, the outgoing request
is sent up in cycle 2. In cycle 3, the top-level Address Repeater
arbitrates between requests, and selects this request to send back
down to the board-level Address Repeaters.

In this example, the request is physically transmitted (indicated by
a dashed green arrow) only to ARI, since ARO sent the original
request and kept a copy of it, so it only needs to be told when to use
the copy. Thus, in cycle 4 the ARO to AR2 bus is not physically used
(indicated by the dotted green arrow). In cycle 6 all the system
devices see the same transaction. CPU 0 sent the original request
and therefore does not need a physical re-transmission of the address
(indicated by the dotted green arrow). The incoming path length

(green dashed or dotted) is a fixed length for all devices on the bus.
The outgoing path (red) may hold queued transactions.
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Figure 4. Address bus implementation

The board-level Address Repeaters use a distributed arbitration
scheme among themselves to “mirror” the arbitration algorithm used
by the top-level Address Repeater.




4.2 Snoop signals
There are three snoop-result signals: shared, owned and mapped:

* Shared is asserted by a system device that has a copy of the
data. If the line is not shared, then the requesting device may
place the line in a state that allows the device to write to it.

* Owned is asserted by a system device that “owns” the data, and
may have modified it. It indicates that the data obtained from
memory is not valid.

* Mapped is asserted by a memory or I/O controller to indicate

that the request is directed to a valid memory address or I/O
device.

These snoop-out signals are combined for the entire snooping coher-
ence domain by the Data Switch ASICs on each board, and returned
back to the system devices four cycles later as snoop-in signals.

4.3 Snoop tags

Each device has two sets of tags: Dual Tags (Dtags) and Cache Tags
(Ctags). The Cache Tags represent the actual state of the data in the
cache and consequently they transition with the data transfer or data
modification. The Dual Tags are used for snooping and transition
with transaction requests independently of any data transfer associ-
ated with the request.

4.3.1 Cache Tags. The Cache Tags have five states:

* cM: Cache Modified. Line is valid, exclusive, and (potentially)
dirty in cache.

* ¢cO: Cache Owned. Line is valid, (potentially) dirty and (poten-
tially) shared.

cE: Cache Exclusive. Line is valid, exclusive, and clean in
cache.

¢S: Cache Shared. Line is valid, (potentially) shared, and clean
in cache.

e cl: Cache Invalid. Line is invalid in cache.

Valid means that the line contains useful data. Exclusive means that
no other cache has a copy. Dirty means that the data has been mod-
ified.

4.3.2 Dual tags. The Dual Tags have four states:

¢ dS: Dual Shared. Line is valid and clean in cache.

dO: Dual Owned. Line is valid and (potentially) dirty in cache.
Represents the cM, cO and cE states of the CTags.

dT: Dual Temporary. Line is valid, clean and exclusive. This
is a temporary state for read to share (RTS) while waiting for
snoop input. Any intervening transactions to the line between
snoop out and snoop in, or a snoop input of shared, will result in
a final DTag state of dS, otherwise the final DTag state is dM.

¢ dI: Dual Invalid. Line is invalid in cache.

The Dtags do not exist as a separate physical entity, but instead are
combined with the Ctags into a single set of physical tags.

4.4 Cache Tag state transitions

Figure 5 shows the transitions between the five MOESI Cache Tag
states.
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Figure 5. Cache tag state transitions



5. Fireplane point-to-point coherency

Fireplane systems with more than 24 processors are organized into
multiple snooping coherence domains. An SSM agent in each snoop-
ing coherence domain forwards requests for non-local data to the
home SSM agent. Home is where a page of memory is physically
located. The home SSM agent keeps track of which snooping coher-
ence domain any sharers are in, or where the current owner is.

The SSM protocol uses tags stored in memory (Mtags) to specify
the global coherency state of a memory block. The Mtags are stored
in the 8-bytes of error-correcting code (ECC) information that goes
with each 64-byte memory block. The global coherency information
is put in memory because the number of snoop tags that would have
been required to represent all the data cached in other snooping
coherence domains would have been too large to fit in high speed
SRAM. Instead, each SSM agent has a Coherency Directory Cache
(CDC) to give it quicker access to the most recent coherency infor-
mation.

The Mtags have three states:

* gM: Global Modified. Line is valid, exclusive, and (poten-
tially) dirty in this snooping coherence domain. Read and write
operations are allowed.

* gS: Global Shared. Line is valid and clean in this snooping
coherence domain and (potentially) shared by other snooping
coherence domains. Read operations are allowed.

¢ gl: Global Invalid. Line is invalid in this snooping coherent
domain. No operations are allowed.

The Mtag state is in addition to the snoopy MOESI state of a line.
For example, in order to do a write, a processor must have a copy
of the line that is both modified and globalModified. If the line is
globalModified, but not modified, it could be promoted to modified
with a transaction within its snooping coherence domain. If it is not
globalModified, an SSM transaction will have to be done. Opera-
tions that are not permitted by the Mtags are not assigned a place in
the global memory order until the SSM agent re-issues them.

Small and medium sized Fireplane systems that don’t use SSM have
all their Mtags initialized to globalModified, and these never change.
Since globalModified allows both reads and writes, the protocol
reduces to the simple snooping protocol.

6. Fireplane address transactions

These transactions are sent on the Fireplane address bus to initiate
read and write operations. All addresses refer to 64-byte aligned
blocks, except for the 16-byte I/O transactions. Each transaction
contains an address transfer identifier (ATransID) which identifies
the requester and this particular address transaction.

6.1 Requests for local data

These transactions get data from within a snooping coherence
domain.

* ReadToShare (RTS). Obtain a cache line for read access. The
data is returned by the current owner, if one exists, or the home
memory location. Generated by an instruction cache miss, or a
data cache load miss.

* ReadToOwn (RTO). Obtain an exclusive copy of a line in order
to write to the line. It invalidates all other copies of the line.
Generated by a data cache store miss.

* WriteBack (WB). Update memory with a modified cache line.
Generated by a data cache miss when a dirty cache line needs to
be victimized (evicted) to make room.

* ReadStream (RS). Read a coherent copy of the line, and
remove it from the local coherency domain. Generated by a
block load instruction.

* WriteStream (WS). Stores a block to memory. Generated by a
block store instruction.

6.2 Requests for remote data

These transactions request the local SSM agent to get data from
another snooping coherence domain. They are issued for non-local
physical addresses, and for local addresses whose Mtags do not have
the necessary permissions. These transactions do not cause any
changes in the local snoop state.

* Remote_ReadToShare (R_RTS). Request the local SSM agent
to get a ReadToShare done in another snooping coherence
domain.

* Remote_ReadToOwn (R_RTO). Request the local SSM agent
to get a ReadToOwn done in another snooping coherence
domain.

* Remote_WriteBack (R_WB). Request the local SSM agent to
get a WriteBack done in another snooping coherence domain.

* Remote_ReadStream (R_RS). Request the local SSM agent to
get a ReadStream done in another snooping coherence domain.

* Remote_WriteStream (R_WS). Request the local SSM agent
to get a WriteStream done in another snooping coherence
domain.

6.3 Get data for a remote requester

These transactions are used by an SSM agent to get local data on
behalf of a remote requester.

* ReadToShareMtag (RTSM). This transaction is issued by an
SSM agent to obtain a read copy of the line for another snooping
coherence domain. RTSM is similar to ReadToOwn except that
instead of invalidating the line in all other devices, the line is
marked shared with the Mtags changed to globalShared.

* ReadStreamRemote (RSR). This transaction is used by the
SSM agent to provide data in response to a
Remote_ReadStream.

6.4 Re-issue remote reads

These transactions are used by an SSM agent to supply the original
requester with data obtained from another snooping coherence
domain.

* ReadToShareRemote (RTSR). This transaction is used by an
SSM agent to re-issue a Remote_ReadToShare transaction. This
supplies the data to the original requester, which becomes the



new owner, and transitions to modified or owned. All other local
devices transition to shared.

* ReadToOwnRemote (RTOR). This transaction is used by an
SSM agent to re-issue a Remote_ReadToOwn transaction. This
supplies the data to the original requester, which becomes the
new owner, and transitions to modified or owned. All other local
devices transition to invalid.

6.5 I/0 transactions

These transactions do operations to I/O devices.

* ReadlO (RIO). Read 16-byte block of I/O space.

* WritelO (WIO). Write 16-byte block of I/O space.

* ReadBlockIO (RBIO). Read 64-byte block of I/O space.

* WriteBlockIO (WBIO). Write a 64-byte block of 1/O space.
¢ Interrupt (INT). Send an interrupt.

7. Fireplane data transfers

Data packets are transferred in response to an address transaction.
The ATransID is used to match the response to the request. For a
read transaction, the response is one or two data packets that have a
matching data transfer identifier (DTransld). For a write transac-
tion, the response is a matching target transaction identifier
(TTranslId).

7.1 Read data transfers

For read data transfers, the source of the data first sends the
DTransld, followed two cycles later by the data and ECC. The
requester must be able to accept this data when it arrives.

7.2 Write data transfers

For write data transfers, the destination for the data sends a TTransId
and a rarget identifier (Targld) to the sender when it is ready to
accept the data. The sender then uses the Targld to send the
DTransld, followed two cycles later by the data.

7.3 Data packets

Datais organized into 128-bit sub-blocks. Associated with each sub-
block is a 9-bit ECC, a 3-bit MTag and a 4-bit Mtag ECC. There are
two datapath widths, with a total width (Data + Mtag + ECC + Mtag
ECC) of 288 bits (wide path) and 144 bits (narrow path).

A 64-byte data transfer consists of two 32-byte packets for wide
devices, and four 16-bytes packets for narrow devices. ReadlO and
WritelO commands transfer 16 bytes, which takes one transfer pack-
ets for both datapath widths.

The DTransld for all data packets associated with the same transac-
tion is the same, so the data packet order determines the position of
the data in the block.

8. Example Fireplane interconnect operation

This section describes the steps used to implement a coherent read-
to-share from memory. This is done to satisfy an instruction-cache
miss or a data-cache load miss. These transaction sequences assume

that the data is currently unmodified in memory, rather then having
been modified (owned) in a system device’s cache. The diagrams
portray the actual interconnect topology, which can be also be seen
in more detail in Figure 9.

8.1 Transfer inside a snooping coherence domain

This is the case where the target memory location is in the same
snooping coherence domain as the requester. The address is broad-
cast on the local address bus, and the system devices snoop their
caches. The 64-byte data block is transferred over the data switch
from memory to the requester.

See Figure 6 for the block diagram showing these operation steps:

@ Address request (cycle 0-2). The requesting CPU makes a
ReadToShare request to its board Address Repeater, which
sends the request up to the top-level Address Repeater.

@ Broadcast address (cycle 3-6). The top-level Address
Repeater chooses this request to broadcast throughout the
snooping coherence domain. It sends the request back down to
the board-level Address Repeaters. Every system device gets
the address on cycle 6.

<3> Snoop (cycle 7-15). Each system device examines its coher-
ency tags to determine the state of the cache line. There are
three snoop-state signals: shared, owned, or mapped. Each
device sends its snoop-out result to its Board Data Switch on
cycle 11.

Each Board Data Switch ORs its local snoop results, and sends
them to every other Board Data Switch. Each Board Data
Switch computes the global snoop result, and sends the snoop-
in result to its system devices on cycle 15.

If the snoop result had been a hit, then a cache-to-cache transfer
would have been initiated on cycle 16 by the owning device.
In that case, the memory cycle would have been ignored.

A Read from memory (cycle 7-22). The target memory control-
ler (which is inside a CPU) recognizes that the request is in its
address range, and initiates a read cycle in its memory unit. In
cycle 22, the data block is sent from the DIMMs to the local
Dual CPU Data Switch.

@ Transfer data (cycle 23-36). The data block is moved through
the Board Data Switch, the System Data Switch, the requester’s
Board Data Switch, and the Dual CPU Data Switch. The four
18-byte portions of the data block arrive on the wires into the
requesting CPU in cycles 33-36.

The address interconnect takes 15 system cycles (150 ns) to obtain
the global snoop result and send it to the system devices. The DRAM
access is started partway through the snoop process, and takes an
additional 7 cycles (47 ns) after the snooping is finished. These two
latencies have a fixed minimum time.

The data transfer takes a variable number of clocks, depending upon
how many data switch levels are between data source and destina-
tion. It takes 14 cycles (93 ns) when they are on different boards, 9
cycles (60 ns) when they are on the same board, and 5 cycles (33
ns) when they are on the same CPU.
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Figure 6. Read to share operation within a snooping coherence domain

Memory is usually interleaved across the 16 banks on each board,
so the average pin-to-pin latency (from address out of the CPU to
all of the data into the CPU) is 197 ns when memory is on the same
board, and 240 ns when memory is on a different board.

Back-to-back memory latency, such as would be measured by a
pointer-chasing latency benchmark like /mbench [10], is typically
about 40 ns more than these pin-to-pin latencies.

8.2 Transfer between snooping coherence domains

This is the case where the target memory location is in a different
snooping coherence domain from the requester. The SSM agent on
the requester’s local address bus forwards the request to the SSM
agent in the home snooping coherence domain via the address cross-
bar. The home SSM agent broadcasts the request on the home
address bus. Either memory or a local cache supplies the data. The
data block is transferred through the home data switch, the data
crossbar, and the requester’s data switch to reach the requester.

See Figure 7 for the block diagram showing these operation steps:

@ Address request (cycle 0-2). The requesting CPU determines
from its Local Physical Address (LPA) registers that the
desired location is not in this snooping coherence domain. It
makes a Remote_ReadToShare request to its board Address
Repeater, which in turn sends the request to the top-level
Address Repeater.

@ Send address to home SSM agent (cycle 3-8). The Address
Repeater arbitrates for the local address bus. When it gets the
bus, it broadcasts the Remote_ReadToShare transaction on the
local bus. The local CPUs and I/O controllers ignore this trans-
action. The requester’s SSM agent determines the home board
from the physical address. It sends the Remote_ReadToShare
across the address crossbar to the SSM agent for the home
board.

@ Lock line and check coherency (cycle 9-11). The home SSM
agent locks the line, so that no other transaction can be made
to this cache line. It checks its coherency directory cache. In
this case, we assume a hit that indicates that the requested loca-
tion is not owned. If the coherency directory cache had missed,
then the home SSM agent would have had to wait an extra 16
system cycles (106 ns) for the Mtags to arrive from memory.

@ Send expected responses. The home SSM agent sends the
number of slave responses to be expected (in this case 0) across
the response crossbar to the requesting SSM agent. The home
SSM agent tells the home data agent to be ready to forward the
data to the requester.

@ Broadcast address on home bus (cycle 12-14). The home
SSM agent arbitrates for the home address bus. When it gets
the bus, it broadcasts a ReadToShareMtag.

<6> Snoop on home bus (cycle 15-23). Each system device exam-
ines its coherency tags to determine the state of the cache line.
If there is a hit, the owning cache supplies the data, and the
memory cycle is ignored.

A Read data from memory (cycle 15-30). The memory con-
troller for the requested location (which is inside a CPU) rec-
ognizes that the request is in its address range, and does a read
cycle in its memory unit. The data is sent to its local CPU Data
Switch.

Transfer data to home data agent (cycle 31-34). The data
block is sent to the home data agent.

@ Move data across centerplane (cycle 35-41). The home data
agent saves the data block for possible Mtag update. It arbi-
trates for the system data crossbar. It sends the data across the
data crossbar to the requesting data agent, with Mtags set to
globalShared.
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Figure 7. Read to share operation between snooping coherence domains

@ Transfer data to requester (cycle 42-50). The requesting
data agent buffers the data until the local datapath is available.
It notifies the requester’s SSM agent that data has arrived. It
arbitrates for the local datapath, and sends the data to the
requesting CPU. The requesting SSM agent arbitrates for the
local address bus, and reruns the request as a ReadToShare-
Remote.

Count responses. The requesting SSM agent counts expected
responses (in this case, one from the home SSM agent). It looks
for data arrival notification from the requesting data agent.

@ Unlock line. The requesting SSM agent tells the home SSM
agent via the response crossbar to unlock line. The home agent
unlocks line.

@ @& Update the Mtags. If the previous home Mtag state was
not globalShared, the Mtags need to be rewritten. The home
agent arbitrates for the home address bus, and broadcasts a
WriteStream. The Home data agent writes the data block to
memory.

A load from memory between snooping coherence domains does
four local address bus transactions, one SSM request, and two SSM
replies. It takes 14 more system cycles (93 ns) than a transfer
between boards inside a snooping coherence domain. This 38%
increase in pin-to-pin memory latency for SSM versus snooping

allows the peak bandwidths of SSM systems to scale up at a rate of
9.6 GBps per snooping coherence domains.

8.3 Cache-to-cache transfers

This is the case when data is owned (modified) in a cache.

8.3.1 Inside a snooping coherence domain. The owning system
device asserts a snoop result of owned, and sends the data directly
to the requester. The memory cycle is ignored. The pin-to-pin
latency is increased by 11 system clocks (73 ns) over the time
required to do a load from memory.

8.3.2 Between snooping coherence domains. A three-way trans-
fer is done. The coherency directory cache entry of the home SSM
agent tells it which snooping coherency domain currently owns the
data. The home SSM agent sends the owning SSM agent a Read-
ToShareMtag. The owning SSM agent runs the transaction on its
local address bus, and supplies the data directly to the requesting
data agent. The latency is 21 system clocks (140 ns) more than for
an unowned SSM transfer, and 24 system clocks (160 ns) more than
for a cache-to-cache transfer in a non-SSM system.



9. Fireplane interconnect implementation

9.1 UltraSPARC-III processor

The UltraSPARC-III processor [9] shown in Figure 8 is used by all
Fireplane-generation systems. It does in-order execution of up to
four instructions per clock, with out-of-order completion. To reduce
chip count and latency, the external cache tags, the Fireplane coher-
ency controller, and the DRAM controller are all integrated onto the
processor chip.

9.1.1 Fireplane system interface. The Fireplane coherency con-
troller can do a snoop of the processor’s five caches every system
clock. The processor can have up to 15 outstanding Fireplane trans-
actions, including up to: 1 instruction-cache miss, 1 data-cache miss,
8 prefetches, and 4 writebacks or block stores. The outstanding trans-
actions can complete out of order with respect to the original request
order.

9.1.2 Memory controller. The memory unit consists of two
groups of four dual-banked 144-bit-wide SDRAM DIMMs. An indi-
vidual memory bank has a peak bandwidth of approximately 0.8
GBps. The peak bandwidth of all four memory banks is 2.4 GBps.
The maximum DIMM size is currently 1 GB.

9.1.3 Processor error protection. The major on-chip SRAM
structures (instruction cache, data cache, and external cache tags)
all have parity or error correcting code (ECC) error protection, as
shown by the symbols @ [J in Figure 8. The parity protection on
the two internal caches causes the data to be automatically refetched
from the external cache, and the instruction to be re-executed. The
external cache is protected by ECC.

The system interface generates ECC bits when a data block is sent
out of the processor. The ECC bits are stored in memory, and
checked and corrected when the data block is read back into a pro-
cessor.
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Figure 8. UltraSPARC-III processor
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9.2 CPU/Memory board

The CPU/Memory board block diagram is shown in the upper right
of Figure 9, and the physical board layout is shown in Figure 10.
This board is used by all mid and high-end Sun Fire servers.

Figure 9. Snooping coherence domain block diagram

The board-level Address Repeater collects address requests from
the four processors on the board, and forwards them to a top-level
Address Repeater on the switch boards. It also disseminates
addresses back to the processors so they can snoop them against
their cache contents.



A CPU and its associated memory unit each have a 2.4 GBps path
to a 3x3 crossbar in their half of a Dual CPU Data Switch. Both
CPU/memory pairs share a 4.8 GBps path to the Board Data Switch.
The Board Data Switch is a 3x3 crossbar that connects the two halves
of the board to the off-board 4.8 GBps Fireplane switch port. If all
memory accesses from each of the four CPUs were to each CPU’s

own local memory, then the peak memory bandwidth of a board
would be 9.6 GBps. However, memory is usually 16-way inter-
leaved across the memory banks of all four processors. In this case,
the path between the two Dual CPU Data Switches and the Board
Data Switch limits the peak memory bandwidth of a board to 6.4
GBps.
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Figure 10. CPU/Memory board physical layout

9.3 PCI I/O assemblies

The PCI assemblies for the mid and large-sized Sun Fire systems all
share the same architecture, which is shown in the lower right of
Figure 9. The board-level Address Repeater collects address
requests from the two PCI Controllers on the PCI assembly, and
forwards them to a top-level Address Repeater on the switch boards.
Each PCI Controller provides one 33 MHz PCI bus and one 66 MHz
PCI bus. The two PCI Controllers connect to the Board Data Switch,
which in turn connects to a 2.4 GBps Fireplane switch port.

There are several physically different implementations of the PCI
assembly to accommodate small versus large cabinets, and PCI ver-
sus CompactPCI form factors. All PCI assemblies have two 66 MHz
PCI slots, and from two to six 33 MHz PCI slots.

9.4 Inter-board interconnect

The logic of the interconnect between the boards of a snooping
coherence domain is shown on the left-hand side of Figure 9. There
is a top-level Address Repeater, and a top-level data crossbar. A
CPU/Memory board has a 4.8 GBps (32-byte-wide bidirectional)
data connection, and an I/O assembly has a 2.4 GBps (16-byte-wide
bidirectional) connection.

9.4.1 One snooping coherence domain. Figure 11 shows the
mid-size server cabinets, which all have one snooping coherence

domain. The inter-board interconnect of the Sun Fire 4800-6800 is
packaged on Fireplane switch boards. Two switch boards are used
in 12-processor systems, and four switch boards are used in 24-
processor systems. Each switch board has one Address Repeater
ASIC and two Data Switch ASICs.

The switch boards can be hot-swapped out to replace failed compo-
nents. In the eight-processor Sun Fire 3800, the Fireplane address
and data ASICs are mounted on an active backplane to save the space
that would have been required for separate switch boards.

In the 12 processor systems, one system-level Address Repeater
ASIC accepts address requests from three CPU/Memory boards and
two I/O assemblies, and broadcasts the address transactions back to
the boards. In 24-processor systems, two system-level Address
Repeaters work in tandem to handle six CPU/Memory boards and
four I/O assemblies. The peak system bandwidth is determined by
the snoop rate of 150 MHz x 64-byte cache line width = 9.6 GBps.
The system-level data interconnect is a 4x4, 5x5 or 10x10 32-byte-
wide crossbar, which is bit-sliced across the switch boards.

9.4.2 Multiple snooping coherence domains. Each snooping
coherence domain consists of one CPU/memory board and one I/O
assembly, which are connected together by a switch board called an
expander board. This board provides the system-level Address
Repeater and Data Switch logic required of any snooping coherence




domain. In addition, there is SSM address logic and data logic to
implement transfers between the snooping coherence domains.

When all transfers are to locations inside the same snooping coher-
ence domain, the peak data bandwidth is 9.6 GBps per snooping

coherence domain. When all accesses are to non-local snooping
coherence domains, then the peak data bandwidth is limited by the
Fireplane datapath to 2.4 GBps per snooping coherence domain
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Figure 11. Mid and high-end Sun Fireplane servers

9.5 Interconnect error protection

9.5.1 Addresses. The Fireplane address bus has three parity error
bits, which separately cover: 60 bits of command, address, byte
mask, and address transaction ID; 12 bits of state information; and
38 bits of transaction ID. This is denoted by the symbol @ in
Figure 9.

The SSM address and response transactions are protected by ECC,
which is denoted by the symbol @ in Figure 9.

9.5.2 Data. The end-to-end data path is protected by ECC, which
is denoted by the symbol | in Figure 9.

Two additional checks are made to help isolate the cause of datapath
errors:

¢ Individual point-to-point connections are covered by parity.
This is denoted by the symbol [ in Figure 9.

* ECC is checked as it enters or leaves a CPU/memory pair or an
I/O controller by the Board Data Switch. This is denoted by the
by the symbol [[g in Figure 9.

The ECC checks that are done by the Board Data Switches can
identify the source of ECC errors in most cases.

A particularly hard case for detecting the cause of ECC errors is
when a device writes bad ECC into memory. These get detected
much later by other devices reading these locations. Since the bad
writer may have written bad ECC to many locations, and these may
be read by many devices, the errors appear to be in many memory
locations, while the real culprit may have been a single bad writer.
Since the Board Data Switch checks ECC for all data entering or
leaving each device from other devices, the original source of errors
can be isolated.

10. System performance

The mid-range Sun Fire servers have set six world records between
their introduction in March and July 2001. These records were set



using 750 MHz processors with 8 MB caches running Solaris 8
update 4. In the continual process of benchmark leapfrogging, the
two SPEC records have been exceeded by later results.

10.1 SPECweb99 benchmark

SPECweb99 [11] measures web serving speed. It reflects real-world
usage where the server supports home pages for a number of differ-
ent organizations. Certain files within the home page are more pop-
ular than others. The workload simulates dynamic operations such
as “rotating” advertisements on a web page, customized web page
creation, and user registration.

In April 2001, a 12-processor Sun Fire 4800 set a record of 8,739
simultaneous connections. This was 5% more than the previous
record, which was set by a 12-processor IBM p680. The Sun Fire
benchmark system had 44 GB of memory, and 320 GB of storage
in two Sun StorEdge™ T3 disk array trays (9 drives X 18 GB each).
Networking was done on 12 gigabit Ethernets. The server software
was iPlanet Web Server 6.0, which is an enterprise-class web serving
solution.

10.2 SPECjbb2000 benchmark

SPECjbb2000 [12] is a Java server-side benchmark that emulates a
3-tier system, with emphasis on the middle tier. Random input selec-
tion represents the first tier user interface. SPECjbb2000 fully imple-
ments the middle-tier business logic. The third tier database is
replaced by binary trees in memory. SPECjbb2000 is inspired by
the TPC-C benchmark and loosely follows the TPC-C specification
for its schema, input generation, and transaction profile. The bench-
mark runs from memory, and so does no disk or network I/0.

In March 2001, a 24-processor Sun Fire 6800 set a record of 109,146
SPEC JBB operations/sec. This was 36% faster than the previous
record set by a 24-processor IBM AS-400.

The Sun Fire benchmark system had 48 GB of memory, and 18 GB
of disk. It used Java 2 Standard Edition (J2SE) 1.3.1, which is a 32-
bit java Virtual Machine (JVM).

Runs were also made using 1, 8, and 12 processors, to show multi-
processor scaling relative to one processor running one warehouse.

Table 2. Sun Fire 6800 SPECjbb scaling

CPUs Warehouses | SPECjbb ops/sec | MP efficiency
8 8 43,353 91%
12 12 62,463 91%
24 24 109,146 80%

10.3 Oracle Applications Standard Benchmark

The Oracle Applications Standard Benchmark [13] measures Enter-
prise Resource Planning (ERP). It simulates a realistic customer
scenario using a selection of the most commonly used Oracle Appli-
cations modules. The transaction mix includes:

* 4 modules from Oracle Financial Applications: accounts pay-
able, accounts receivable, fixed assets, and general ledger.

* 3 modules from Oracle Supply Chain Management Applica-
tions: inventory, order entry, and purchase orders.

* 18 OLTP transactions

* 4 batch jobs representing a substantial part of the overall bench-
mark load

The database is sized to represent a mid-market businesses whose
annual revenues range from $100 to $500 million. There are 9,588
tables.

In March 2001, a 24-processor Sun Fire 6800 set a record of 16,016
benchmark users, with an average response time of 1.01 seconds.
This was 14% more users than the previous record set by a 24-way
IBM S80.

The Sun Fire benchmark system had 72 GB of memory, and 1.2 TB
of storage in eight Sun StorEdge T3 disk array trays (9 drives x 18
GB each). It ran Oracle RDBMS 8.1.7.

10.4 PeopleSoft 8 Financials Online benchmark

The PeopleSoft 8 Financials Online benchmark [14] measures
OLTP performance. It does 17 different transactions on a schema
that contains 12,362 tables, and includes a batch update running in
background.

In March 2001, a 24-processor Sun Fire 6800 set a record of 12,000
concurrent users, with an average response time of 3.99 seconds.
This was 2.4x more users than the previous best, which was set by
an 8-processor Compaq Pentium-III system.

The Sun Fire benchmark system had 24 GB of memory, and 1.2 TB
of storage in eight Sun StorEdge T3 disk array trays (9 drives X 18
GB each). It ran Oracle 8.1.6.

10.5 PeopleSoft8 General Ledger benchmark

The PeopleSoft8 General Ledger (with combination editing) bench-
mark measures large batch runs typical of OLTP workloads during
a mass update.

In May 2001, a 6-processor Sun Fire 6800 set a record of 7,255,139
journal lines per hour. This was 36% more than the previous best,
which was set by a 6-processor IBM p620.

The Sun Fire benchmark system had 16 GB of memory, and 1.2 TB
of storage in eight Sun StorEdge T3 Arrays (9 drives X 18 GB each).
It ran Oracle 8.1.6.

10.6 TPC-H ad-hoc decision support benchmark

TPC-H [15] is a decision-support benchmark with an ad-hoc query-
ing workload. It and TPC-R replaced TPC-D in 1999. TPC-H con-
sists of a suite of business oriented ad-hoc queries and concurrent
data modifications. This benchmark illustrates decision support sys-
tems that examine large volumes of data, execute queries with a high
degree of complexity, and give answers to critical business ques-
tions. TPC-H represents a situation where users don't know which
queries will be executed against a database system; hence, the “ad-
hoc” label. Pre-knowledge of the queries may not be used to optimize
the DBMS system.



In May 2001, a 24-processor Sun Fire 6800 set a record price-per-
formance of 581 $/QphH @ 1000GB. This was 19% better than the
previous best price-performance, which was set by a 128-processor
NCR Worldmark 5250. The Sun Fire result is currently has the best
per-CPU performance.

The Sun Fire benchmark system had 80 GB of memory, and 6 TB
of storage in 16 A5200 disk trays (22 drives x 18 GB each). It ran
the DB2 UDB EEE 7.2 database manager. Table 3 shows the cost
distribution of TPC-H configuration. For this medium-sized data-
base problem, the server hardware represented 36% of the cost, 42%
of the power dissipation, and 27% of the floor space.

Table 3. Sun Fire 6800 TPC-H 1000 GB solution costs

Measured AC
TPC-H cost Floor
Component ($millions) power space
consumption
6800 server $1.10 54 KW 8.8 sq ft.
Disk storage $0.64 7.5 KW 24.4 sq ft.
Software $0.45
> year $0.88
maintenance ’
Total $3.07 129 KW 33.2sq ft.

11. Conclusion

The success of a multiprocessor system interconnect lies in effi-
ciently delivering application performance and throughput from the
processors, disk drives, and DIMMs. The medium-sized Fireplane-
based servers have posted a series of performance records on stan-
dard benchmarks. Results for the high-end system will come after
this paper has gone to press.

Like the preceding interconnect generations, the Sun Fireplane inter-
connect is another step along the path of supporting more and faster
processors in a shared-memory system. Using two types of cache
coherency looks like a promising method of keeping low latency for
small and medium sized systems, and for local accesses in large
systems, while scaling up the bandwidth in large systems.
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