
THE RANDOM ORACLE MODEL: A TWENTY-YEAR

RETROSPECTIVE

NEAL KOBLITZ AND ALFRED J. MENEZES

Abstract. It has been roughly two decades since the random oracle
model for security reductions was introduced and one decade since we
first discussed the controversy that had arisen concerning its use. In this
retrospective we argue that there is no evidence that the need for the
random oracle assumption in a proof indicates the presence of a real-
world security weakness in the corresponding protocol. We give several
examples of attempts to avoid random oracles that have led to protocols
that have security weaknesses that were not present in the original ones
whose proofs required random oracles. We also argue that the willing-
ness to use random oracles gives one the flexibility to modify certain
protocols so as to reduce dependence on potentially vulnerable pseudo-
random bit generators. Finally, we discuss a modified version of ECDSA,
which we call ECDSA+, that may have better real-world security than
standard ECDSA, and compare it with a modified Schnorr signature. If
one is willing to use the random oracle model (and the analogous generic
group model), then various security reductions are known for these two
schemes. If one shuns these models, then no provable security result is
known for them.

1. Introduction

The random oracle model is a powerful tool introduced by Bellare and
Rogaway in [8] in order to make it possible to give rigorous “proofs of se-
curity” for certain basic cryptographic protocols, such as Full Domain Hash
signatures [8] and OAEP encryption [9]. Typically it is a hash function that
is modeled by a random oracle. Informally speaking, this means that one
regards the hash function H as a black box that responds to a query for the
hash value of a bitstring M by giving a random value. For each query the
oracle makes an independent random choice, except that it keeps a record
of its responses H(M) and repeats the same response if M is queried again.

To say thatH(·) can be modeled by a random oracle is a much stronger as-
sumption than collision-resistance, preimage resistance, the pseudorandom
function property, and other properties that are commonly assumed to hold
for hash functions in various applications. It is natural to wonder whether
maybe the random oracle assumption is too strong — whether the use of
such a powerful model might cause some “provably secure” protocols to be

Date: February 19, 2015; updated on February 25, 2015.
Key words and phrases. Cryptography, public key, random oracle.

1

2 NEAL KOBLITZ AND ALFRED J. MENEZES

insecure when implemented with a concrete hash function such as SHA-256.
We will have more to say about this controversy in later sections.

To give background for this controversy, let us start by recalling the defi-
nition of the Full Domain Hash (FDH) signature scheme [8], which is one of
the simplest and most elegant constructions in cryptography. We then use
the random oracle assumption to give a very informal proof that a success-
ful chosen-message attack is equivalent to inverting the trapdoor one-way
function, e.g., in the case of RSA-FDH this means inverting the function
f(x) = xe mod N , where (N, e) is the public key.

Let f : S → S be a permutation of a finite set S. We assume f to be
a trapdoor one-way function. In other words, using public information any
randomized algorithm has negligible probability (taken over the elements of
S and the sets of coin tosses in executing the algorithm) of finding f−1(y)
in a reasonable amount of time. Using secret information, f can easily be
inverted.

Let H be a hash function — a function from message strings of arbitrary
length to the set S — whose values range uniformly over the entire set S.
(This is what “full domain” means.)

The basic signature scheme works as follows. The signer Alice possesses
a secret key that allows her to invert f . To sign a message M , she finds
H(M) and then s = f−1(H(M)), which is her signature. After receiving M
and s, Bob verifies the signature by checking that f(s) = H(M). That’s all
there is to it.

Here is an informal proof of security of FDH. Suppose that Chris is an
(existential) chosen-message forger. This means that he can ask for the
signatures of a set of messages Mi of his choice, and then is able to produce
the signature of some message M ′ that’s not in the set. Chris queries the
random oracle to get the hash values hi = H(Mi) and h′ = H(M ′), and for
each i he queries Alice to get her signature si for the message Mi. Because
of the assumption regarding randomness of the hash function, the choice of
messages Mi is irrelevant. What the forger has to work with is a random
sequence of values hi along with the corresponding si = f−1(hi), and the
forger is required to produce f−1 of a random h′. The security claim is that
this is no easier than producing f−1 of a random h′ ∈ S without having the
sequence of pairs (hi, si). The informal proof amounts to the rather trivial
observation that, since both the hi and the si are randomly distributed over
S, you can obtain an equally good sequence of pairs (hi, si) by starting
with the random si and finding hi = f(si); and the latter process requires
only publicly known information. In other words, a sequence of random
(hi, f

−1(hi)) is indistinguishable from a sequence of random (f(si), si). It
makes no difference whether you look at your sequence of pairs left-to-right
or right-to-left. Thus, the proof boils down to the following tautology: the
problem of solving an equation is equivalent to the problem of solving the
equation in the presence of some additional data (hi, si) that are irrelevant
to the problem and that anyone can easily generate.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 3

This informal argument might be convincing, but it is not a formal proof.
The latter constructs an actual reduction from the problem of inverting the
one-way function to the forger’s task. In §3 of [44] we discuss the formal
proof, especially the tightness issue that arises in the reduction.

Could this argument be replaced by one that does not use random oracles?
In [33] Dodis, Oliveira, and Pietrzak gave a negative answer to this question
“generically.” That is, they proved that security of FDH cannot be proved
without random oracles if the trapdoor permutation f is treated as a black
box, i.e., if no special properties of its construction are used in the proof.

We shall use the term “ROM-protocol” to mean that the protocol has
a security reduction in the random oracle model but no known security
reduction without random oracles. The tradition in the provable security
literature is to employ the term standard model to refer to any set of prop-
erties and hardness assumptions that do not include random oracles. This
leads to some questionable uses of the word “standard” (see [47]). We prefer
the more neutral term “non-ROM protocol” to refer to a protocol that was
constructed so as to have a security reduction without random oracles.

2. The Bronze Serpent Controversy

The first major assault on the validity of the random oracle model was the
widely-cited paper [25] by Canetti, Goldreich, and Halevi, who constructed a
ROM-protocol that’s insecure with any concrete hash function. By their own
admission, their construction was contrived and bizarre from the standpoint
of real-world cryptography. Nevertheless, two of the three authors arrived at
some extremely strong conclusions based on the result. First, according to
Canetti (§6.1 of [25]), “This leaves us no choice but concluding that, in spite
of its apparent successes, the Random Oracle model is a bad abstraction of
protocols for the purpose of analyzing security.” Goldreich (§6.2 of [25]) was
equally blunt:

Bottom-line: It should be clear that the Random Oracle
Methodology is not sound; that is, the mere fact that a
scheme is secure in the Random Oracle Model cannot be
taken as evidence (or indication) to the security of (possi-
ble) implementations of this scheme. Does this mean that
the Random Oracle Model is useless? Not necessarily: it
may be useful as a test-bed (or as a sanity check). Indeed,
if the scheme does not perform well on the test-bed (resp.,
fails the sanity check) then it should be dumped. But one
should not draw wrong conclusions from the mere fact that a
scheme performs well on the test-bed (resp., passes the san-
ity check). In summary, the Random Oracle Methodology is
actually a method for ruling out some insecure designs, but
this method is not “complete” (i.e., it may fail to rule out
insecure designs).

4 NEAL KOBLITZ AND ALFRED J. MENEZES

(Halevi’s conclusions in §6.3 of [25] were more moderate and balanced.)
In our first paper in the “Another look” series [44] (posted in 2004), we

discussed the random oracle model as part of our attempt to evaluate the
strengths and weaknesses of the proofs of security of well-known protocols.
In addition to the construction in [25], we looked at the two other most
frequently cited examples of failure of the random oracle model (see [6, 39]).
In all three cases we found that the constructions relied in essential ways on
violations of basic principles of sound cryptographic practice. For instance,
a certain message triggers the release of the secret key, or a verification step
from one part of a hybrid protocol is inserted into another part. Although
the examples might be clever and of theoretical interest, they were no cause
of concern for practitioners.

Remark 1. The same comment applies to recent efforts to undermine the
random oracle model. For example, in [41] the authors show that if indistin-
guishability obfuscation exists, then there exists a bit-encryption protocol
that is secure in the random oracle model but is insecure when the random
oracle is instantiated by any concrete function. They do this by modifying
a scheme so that, when presented with certain pairs (xi,H(xi)), it outputs
the secret key.

In [44] we went further, arguing that the inability of some of the top
researchers in cryptography — the authors of [25, 6, 39, 55] — to come
up with a convincing example of any real danger in using ROM-protocols
should in and of itself serve as an argument in their favor:

...if one of the world’s leading specialists in provable security
(and coauthor of the first systematic study of the random
oracle model [8]) puts forth his best effort to undermine the
validity for practical cryptography of the random oracle as-
sumption, and if the flawed construction in [6] is the best he
can do, then perhaps there is more reason than ever to have
confidence in the random oracle model.

We concluded our discussion by saying that “Our confidence in the random
oracle assumption is unshaken.”1

In response to [44], Goldreich wrote an opinion piece [38] in which he
accused us of post-modernism and had especially harsh words for our defense

1It has long been known that one has to use the random oracle assumption carefully if
the protocol uses an iterated hash function, because of the extension attack (see example
9.64 in [53]). That is, the random oracle assumption essentially says that a deterministic
function H(K,M) behaves like a random function to someone who does not know the key
K. However, if a message is obtained by adding a suffix to a queried message, then the
hash of the whole message is the hash of the suffix with known key, and so the random
oracle assumption does not apply. It is because of this extension attack that prefix-MAC,
defined by H(K,M), is insecure. Despite the need for caution, in fact this potential pitfall
has never, to the best of our knowledge, led anyone to a fallacious proof. In particular, no
one ever claimed a security result for prefix-MAC under the random oracle model.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 5

of the random oracle model, which he likened to worship of the Bronze
Serpent:

Indeed, what happened with the Random Oracle Model re-
minds us of the biblical story of the Bronze Serpent, repro-
duced next. (See Numbers (21:4-8) and 2 Kings (18:4).)
During the journey of the People of Israel in the dessert [sic],
the prophet-leader Moses was instructed by the Lord to make
a “fiery serpent” as a symbolic mean [sic] for curing people
that have been bitten by snakes (which were previously sent
by the Lord as a punishment for some prior sin). Several
hundred years later, the bronze serpent made by Moses has
become an object of idol worship. This led the righteous
King Hezekiah (son of Ahaz) to issue an order for breaking
this bronze serpent to pieces. Let us stress that the king’s
order was to destroy an object that was constructed by di-
rect instruction of the Lord, because this object has become
a fetish. Furthermore, this object no longer served the pur-
pose for which it was constructed. This story illustrates the
process by which a good thing may become a fetish, and
what to do in such a case.... [G]iven the sour state of affairs,
it seems good to us to abolish the Random Oracle Model.
(emphasis in original)

Goldreich is not the only researcher who uses strong words to disparage
any protocol whose proof relies on the random oracle model. The choice
of title of the paper [33], for example, would suggest to the casual observer
that the authors had found an insecurity in Full Domain Hash. However,
that is not the case — showing the impossibility of a generic non-ROM
proof is very different from actually finding a security weakness. In fact, in
the twenty years since the security analysis of FDH in [8] no one has found
any actual insecurity, generic or otherwise, related to the use of the random
oracle model in the proof.

* * *

The purpose of this paper is to reflect upon how things stand roughly
a decade after the controversy described above. First, it should be noted
that no real-world protocol failures have been found that result from the use
of random oracles; people are still citing the same four theoretical papers
[25, 6, 39, 55] to explain why they feel the need to replace ROM-protocols.
With this in mind one can only marvel at the extraordinary amount of
work that’s been devoted to constructing non-ROM replacements for these
protocols. In [7] Bellare, Hoang, and Keelveedhi comment:

There is a large body of work on cryptography without ran-
dom oracles. (A Google Scholar search shows 286 papers
with the phrase “without random oracles” in the title, and

6 NEAL KOBLITZ AND ALFRED J. MENEZES

3,640 with this phrase somewhere in the paper, as of June 6,
2013.)

Our purpose is not to comment on 286 papers. Rather, we examine three
of the most important efforts to construct replacements for ROM-protocols
(see [35, 14, 42]) and find that all of the non-ROM constructions have poten-
tial security weaknesses that were not present in the original ROM-versions.
Following [26], we also describe a remarkable fact about pairing-based pro-
tocols: essentially the only ones that are known to be directly vulnera-
ble to induced-fault side-channel attacks on pairing computations are those
that were constructed specifically as non-ROM alternatives to earlier ROM-
protocols. This is not accidental — the very same feature of the protocol
accounts for both the non-ROM proof and the susceptibility to induced fault
attacks. This is a case where a tremendous effort devoted to developing a
way around what appears to be only a theoretical problem has resulted
in greatly increased vulnerability to what in some settings is a significant
real-world threat.

Finally, we argue that if one is willing to use random oracles, then some
important protocols can be modified so as to avoid or reduce dependence
on pseudorandom bit generators without losing reductionist security guar-
antees. In particular, we discuss provable security of ECDSA+, which is
arguably an improvement over standard ECDSA from a real-world security
standpoint, and of a modified version of Schnorr signatures. If one is willing
to use random oracles (and generic groups), then these signature schemes
have several reductionist security properties; if not, then, as far as we know,
they have none.

3. Gennaro–Halevi–Rabin Signatures

The Gennaro–Halevi–Rabin (GHR) signature scheme [35] is an interesting
variant on RSA signatures that allowed the authors to prove existential
unforgeability against chosen-message attack without using random oracles.
It works as follows. Suppose that Alice wants to sign a message M . Her
public key consists of an RSA modulus N and a random integer t; here
N = pq is chosen so that p and q are “safe” primes (that is, (p − 1)/2 and
(q−1)/2 are prime). Let h = H(M) be the hash value, where we assume that
the hash function H takes odd values (so that there is negligible probability

that h has a common factor with p−1 or q−1). Alice now computes h̃ such

that h̃h ≡ 1 (mod p−1) and (mod q−1). Her signature s is th̃ mod N . Bob
verifies Alice’s signature by computing h and then sh mod N , which should
equal t.

Unfortunately, while the GHR scheme is provably secure in the usual
Goldwasser–Micali–Rivest [40] security model for signatures, it easily suc-
cumbs to a certain type of attack that is outside that model.

The Duplicate Signature Key Selection (DSKS) attack. In a
DSKS attack [13] we suppose that Alice, whose public key is accompanied

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 7

by a certificate, has sent Bob her signature s on a message M . A successful
DSKS attacker Chris is able to produce a certified public key of his own un-
der which the same signature s verifies as his signature on the same message
M . We are not interested in the trivial attack where Chris simply claims
Alice’s public key as his own, and so we shall suppose that the certification
authority demands a proof of knowledge of the corresponding private key
before granting a certificate for the public key.

As discussed in §2 of [48], although a DSKS attack falls outside the stan-
dard Goldwasser–Micali–Rivest security model (which asks only for security
against adaptive chosen-message forgers), it can have serious consequences
in certain applications of signatures, such as lotteries, coupon redemption
systems, and so on.

Following [13], we note that it is easy to mount a DSKS attack on the
Gennaro–Halevi–Rabin signature scheme. Suppose that an adversary Chris
wants to carry out such an attack. That is, he wants to find N ′ and t′ such
that sh ≡ t′ (mod N ′). But this is simple. He can take an arbitrary RSA
modulus N ′ with N ′ > N and then just set t′ = sh mod N ′. Notice how
little computation is needed — Chris expends no more computational effort
than a legitimate user.

In [35] the main motive for introducing Gennaro–Halevi–Rabin signatures
was to avoid the use of random oracles. The ease of carrying out a DSKS
attack on GHR illustrates a danger in redesigning protocols so as not to need
random oracles in a proof — doing so might open up new vulnerabilities to
attacks that are outside the security model used in the proof.

4. Boneh-Boyen Signatures

In [16] Boneh, Lynn, and Shacham constructed pairing-based short sig-
natures that they showed to be secure in the random oracle model assuming
intractability of the Computational Diffie–Hellman (CDH) problem. Three
years later Boneh and Boyen [14] proposed a new variant of the signature
scheme that they designed with the objective of obtaining a security reduc-
tion without using random oracles. There was a price to be paid for avoid-
ing the random oracle assumption. First of all, a Boneh–Boyen signature
is about twice as long as a Boneh–Lynn–Shacham signature. In the second
place, the assumption about CDH is replaced by what Boneh and Boyen call
the Strong Diffie–Hellman (SDH) assumption, which has been much less ex-
tensively studied than the CDH and is presumably a stronger assumption.
In the third place, in order to gain confidence in the intractability of this
possibly easier SDH problem, in §5 of [14] they derive a lower bound on the
computational complexity of SDH in a generic group — that is, they prove
security under the generic group assumption.

The m-SDH problem in a group G of prime order q is the problem, given

group elements g, gx, gx
2

, . . . , gx
m

(where x is an unknown integer mod q),
of constructing a pair (c, h) such that hx+c = g (where c is a nonzero integer

8 NEAL KOBLITZ AND ALFRED J. MENEZES

mod q and h is a group element). The difficulty of this problem can be
shown to be less than or equal to that of the CDH problem (which requires
the construction of gxy given g, gx, and gy). In §5 of [14] the authors prove
that m-SDH in a generic group with a pairing cannot be solved in fewer
than (roughly)

√
q/m operations.

The group G that is used in the type of cryptosystem in [16] and [14]
is called a Gap Diffie–Hellman group [16]. It must have an efficiently com-
putable bilinear pairing e : G×G → GT . (More generally, one might have
two groups G1 and G2 with a pairing e : G1 ×G2 → GT ; for simplicity, we
are supposing that G1 = G2.) The existence of such a pairing implies that
the Decision Diffie–Hellman (DDH) problem (this is the problem, given g,
gx, gy , and gz , of determining whether or not z ≡ xy (mod q)) is efficiently
solvable. Informally speaking, the Gap Diffie–Hellman property means that
computational problems such as the Discrete Log Problem and the Compu-
tational Diffie–Hellman problem are much harder than the DDH — that is,
in the inequalities DDH≤CDH≤DLP the first is a strict inequality with a
large “gap” in difficulty.

The security of a pairing-based protocol rests on the hope that there’s a
big gap between the DDH and the problem underlying the protocol (and
that, in practice, there is no faster way to solve this underlying problem
than to solve the DLP in G or in GT). For the signature scheme in [14]
the underlying problem is m-SDH, where m is a bound on the number of
signature queries allowed in a chosen-message attack.

The conjectured gap between Decision Diffie–Hellman andm-SDH is hard
to analyze. Strictly speaking, it is not even accurate to speak of a “gap”,
since in a general group we do not know that DDH≤ m-SDH — that is, we
do not know how to use an oracle for m-SDH in order to efficiently solve
DDH. While it is reasonable to conjecture that m-SDH is hard in the groups
G that are used in pairing-based cryptography, the fact that we cannot even
say for sure that m-SDH≥DDH might be a cause for concern.

It was because of the difficulty of analyzing the m-SDH assumption that
the authors of [14] felt the need to resort to the generic group model. Thus,
in order to avoid using random oracles, they used generic groups — even
though, as pointed out in [46], the generic model for groups is arguably a
much weaker reflection of reality than is the random oracle model for hash
functions.

Moreover, a more serious difficulty with the provable security result for
the signature scheme in [14] soon came to light. The Boneh–Boyen lower

bound
√

q/m for the difficulty of m-SDH is weaker by a factor of
√
m than

the lower bound
√
q for the difficulty of CDH in the generic group model.

At first it seemed that the factor
√
m was not a cause for concern, and that

the true difficulty of the m-SDH problem was probably
√
q as in the case of

CDH. However, at Eurocrypt 2006 Cheon [28], using the same attack that
had been described earlier in a different setting by Brown and Gallant [22],

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 9

showed that m-SDH can be solved — and in fact the discrete logarithm x
can be found — in

√
q/m0 operations ifm0 ≤ m divides q−1 andm0 < q1/3.

A little later Jao and Yoshida [43] showed that the m-SDH problem is
actually equivalent to the forging problem for Boneh–Boyen signatures, and
hence the Cheon–Brown–Gallant attack on the m-SDH problem leads to
an actual attack on Boneh–Boyen signatures. Jao and Yoshida described
an algorithm that for most pairing-friendly curves is able to recover private
keys in roughly q2/5 time using roughly q1/5 signature queries. Thus, given
current knowledge, the non-ROM Boneh–Boyen signature scheme in fact
has significantly lower security than the ROM-protocol of Boneh–Lynn–
Shacham that it replaced. The price of avoiding random oracles was quite
steep.

5. Fault Attacks on Pairing-Based Protocols

In a fault attack [15] the adversary causes an error in a cryptographic
device that’s performing an operation with a secret key. The adversary
uses the incorrect output, perhaps with other available data, to obtain some
information about the secret key. Starting with [57], a number of authors
have developed fault attacks on pairing-based protocols. The purpose of
the recent paper [26] is for the first time to consider which of the many
pairing-based protocols in the literature would actually succumb to any of
these fault attacks. It turned out that only a few would be vulnerable.

As in the previous section, let e : G1 × G2 −→ GT be a bilinear pairing,
where G1, G2, and GT are groups of prime order q. Suppose that P ∈ G1

is a publicly known point, and Alice has a secret point Q ∈ G2. Suppose
that the pairing value e(P,Q) is transmitted during the protocol or is easy
to determine from the transmitted values. During a later execution of the
same protocol with the same computation of e(P,Q) the adversary induces
a fault that causes Alice to compute e′(P,Q). In some circumstances the
adversary can use the correct and erroneous values together to compute Q.

Typically G1 and G2 are elliptic curve groups, and the pairing is computed
by a series of iterations of “Miller operations” involving a linear function
L(Q). If the adversary is able to cause a certain kind of sign error [66]
or a premature termination [57], then a comparison between the correct
and incorrect pairing values leads to equations that can be solved for the
coordinates of Q.

A necessary condition for this type of fault attack to provide useful infor-
mation to the adversary is that the protocol must transmit pairing values
(or ratios of pairing values) for a pair of points one of which is public and the
other secret. And it must transmit the values themselves rather than hashes
of the pairing values. The authors of [26] found three protocols that succumb
to these attacks — a public-key encryption scheme [18], an identity-based
encryption scheme [36], and an oblivious transfer protocol [24].

10 NEAL KOBLITZ AND ALFRED J. MENEZES

All three of those protocols had been designed specifically so as to have
a security reduction that did not require the random oracle assumption. In
all cases a crucial feature that made it possible to avoid random oracles was
that actual pairing values rather than their hashes were used; it was this
feature that made the protocol vulnerable to the fault attacks in [57, 66].

6. Full Domain Hash

In defiance of the impossibility result in [33], Hohenberger, Sahai, and
Waters [42] were able to achieve chosen-message security of Full Domain
Hash signatures without using the random oracle model. Of course, the
hash function had to be constructed in a special way in order to accomplish
this. Nevertheless, it was an impressive and unexpected result.

The authors of [42] describe their hash function as simply a replacement
that preserves the essential nature of the FDH protocol:

However, [earlier] schemes proven secure without random or-
acles required changing the underlying cryptographic scheme
in addition to instantiating the random oracle with a con-
crete hash function.... In other words, can we achieve se-
curity without changing the underlying cryptographic scheme
at all, but only by replacing the random oracle with a spe-
cific family of hash functions? In this work, we give the first
positive answer to this question.... Our first result is cre-
ating a replacement hash function for the oracle H(·) and
developing a security proof without relying on the random
oracle heuristic. To keep with our original goals, our only
modifications will be to H(·) and we will use the signature
scheme construction as is, with no changes to the underlying
trapdoor permutation family. (emphasis in original)

It turns out, however, that the hash function construction in [42] has
certain features which, although in no sense invalidating the results of the
paper, nevertheless are a cause of concern. After describing the construction,
we’ll discuss the properties that under certain circumstances may lead to
security weaknesses.

In the version of RSA-FDH in [42], the construction of the hash function
depends on the particular user Alice who needs to sign messages. Sup-
pose that Alice has an RSA public key (N, e) and knows the factorization
N = pq and decryption exponent d. One also supposes that there is a (pub-
licly known) encoding that maps the message space2 to a code that has a
certain required minimum Hamming distance between the encodings of dis-
tinct messages (see §3.4 of [34] and §5 of [51]); this is needed for the proof
of adaptive security in [42]. We let M ′ denote the encoding of M .

2This assumes that the message space is bounded; in [42] it is suggested that if one
wants to allow messages of arbitrary length, one should first hash the message using a
collision-resistant hash function.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 11

Alice randomly chooses a constant v prime to N and a sequence of ex-
ponents ai,b, b = 0, 1, i = 1, . . . , n, where n is the bitlength of M ′. Given
an input M whose encoding M ′ has bits M ′

i , the hash value is defined to

be vπ(M
′) mod N , where π(M ′) =

∏
ai,M ′

i
. The hash function H(·) is then

an obfuscation of the program that computes this. Roughly speaking, that
means that H(·) is a program that computes the same values, but examining
the obfuscated program reveals no information about the process that com-
putes the values. In other words, H(·) acts like a black box, although the
entire program is publicly available for inspection. More precisely, the ob-
fuscation process is assumed to have the indistinguishability property, which
is weaker than the black-box property [2]: Given two possible programs of
the same size that produce the same outputs such that one of them was used
to produce the obfuscated program, an outsider cannot determine which of
the two programs it was with non-negligible advantage.

6.1. Some concerns. We now describe some issues that arise with this
hash function.

6.1.1. Image of the hash function has skewed distribution. In RSA Full Do-
main Hash as described in §1, a basic requirement is that the hash function
maps to all of Z/NZ and does so uniformly. In contrast, the image of the
hash function in [42] is contained in the cyclic subgroup of (Z/NZ)∗ that is
generated by v; this is always a proper subgroup S ⊂ (Z/NZ)∗, since the
maximum possible order of v is ϕ(N)/gcd(p − 1, q − 1) ≤ ϕ(N)/2. Thus,
the non-ROM version of RSA-FDH that is constructed in [42] is not really
“Full Domain” Hash.

Moreover, the proper subgroups S′ ⊂ S will generally be hit by the hash
function with much greater probability than 1/[S : S′] (which is the expected
probability when the image is uniformly distributed). The exact distribution
depends on the random n-tuple of pairs of exponents (ai,0, ai,1), as well as
on the factorization of p− 1 and q − 1.

For example, suppose that we are using 3072-bit RSA with a modulus
N such that ϕ(N) is divisible by t distinct primes pj ≈ 2048; let us also
suppose that all of these primes divide the order of v (which is likely for
randomly chosen v), and we are hashing 256-bit messages M with 1024-
bit encodings M ′. Let S′ be the subgroup of S of index p1 · · · pt. We would
expect that for each j exactly one of the 211 randomly chosen ai,b is divisible
by pj . Suppose that pj|aij ,bj and pj does not divide any of the other 2047
exponents, j = 1, . . . , t. (Also suppose that ij 6= ij′ for j 6= j′.) In this case
the hash value of M will be in S′ if and only if the ij-th bit of M ′ coincides
with bj , j = 1, . . . , t. Thus, the hash values will be spread more thickly on S′

than in the case of a uniform map roughly by a factor of 2−tp1 · · · pt ≈ 210t.

6.1.2. The hash function is partially invertible if the RSA secret key is re-
vealed. A consequence of the skewed distribution is that if the RSA secret
key is known, then the hash function can be partially inverted, in the sense

12 NEAL KOBLITZ AND ALFRED J. MENEZES

that in the above setting the exact order of H(M)k in the group (Z/NZ)∗,
where k = ϕ(N)/(p1 · · · pt), reveals the ij-th bit of M ′ for all j = 1, . . . , t.
(Note that after finding p1, . . . , pt the adversary can readily determine the
set of pairs (ij , bj) by computing the exact order of H(M)k for test-messages
M .3) Although only the encoding M 7→ M ′ is assumed to be publicly effi-
ciently computable, for a linear error-correcting code as in [51] the decoding
M ′ 7→ M is also likely to be. In that case the partial recovery of M ′ may
lead to significant information about the message M , although how much
information depends on the details of the encoding.

As far as we can tell, this partial invertibility does not compromise the
actual security of the application to FDH-type signatures. That is, there is
no problem as long as Alice uses the hash function only in the way stipulated
in [42].

However, in general it is not very good cryptographic practice to use
features from one part of a protocol in another part, particularly if knowledge
of the private key for the former causes a weakening of the latter. For
example, suppose that Alice’s RSA private key is stolen. At that point she
gets a new key and has the certificate for the stolen key revoked. Her earlier
signatures should still, however, be valid (and non-repudiable). And if she
injudiciously used her hash function for other purposes unrelated to signing,
ideally one would hope that no harm would come. But in the case of the
hash function in [42], if she used it to store passwords, then the theft of
her RSA signing key could have dire consequences because of the partial
invertibility property. This is not, of course, the fault of the authors of [42].
Rather, the conclusion is that if a hash function of the type described in
[42] is ever deployed, it must be accompanied by a sternly worded warning
never to use it as a general-purpose hash function. The security proof for
the hash function in combination with FDH-type signatures says nothing at
all about security of the hash function in other uses.

6.1.3. A user’s hash function must be certified. It is a bit odd for the set-
up of a hash function to vary from one user to another, as it does in [42].
Because of the unusual nature of the set-up, users have a special burden if
they want to avoid some obvious problems. In particular, the entire obfus-
cated program is part of Alice’s public key and must be certified along with
(N, e). Otherwise, an adversary can easily forge the signatures s of arbitrary
messages M ; he merely chooses an arbitrary function that for each such M
takes M ′ to se mod N and then constructs a plausible “obfuscation” of the
program that evaluates this function.

3Suppose you find the exact order of H(M)k for each of 50 random messages. The
subset of messages M for which this order is divisible by pj will all have the same bit bj
occurring as the ij-th bit of the corresponding encodings. Any other bit of those encodings
will have both 0’s and 1’s (except with negligible probability). Thus, you can easily spot
(ij , bj).

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 13

6.1.4. The scheme is highly vulnerable to DSKS attacks. Although the au-
thors of [42] say that they have modified FDH “without changing the under-
lying cryptographic scheme at all,” it should be noted that in the usual FDH
everyone uses the same hash function, whereas in the scheme in [42] each
user has her own hash function. This leaves the door open for Duplicate
Signature Key Selection (DSKS) attacks.

The obfuscated program for the hash function is part of Alice’s key and
must be certified; however, the steps Alice went through in order to construct
it are known only to her. For everyone else it functions as a black box. This
makes the task of a DSKS attacker very easy.

Suppose, for example, that Alice obtains a list of several million lottery
numbers ℓ along with the signatures sℓ of the rightful holders of the lot-
tery numbers. Before the drawing, she constructs an arbitrary function H
such that H(ℓ) = f(sℓ) for all ℓ, where f is her own trapdoor function (i.e.,
f(sℓ) = seℓ mod N if (N, e) is her public RSA-key; here N must be chosen
larger than all the sℓ). Alice certifies a plausible “obfuscation” of the pro-
gram for H along with her keys. As soon as the winning lottery number
is announced, she can immediately claim the winnings, since the winner’s
signature verifies under her certified key. Notice how general this attack is
— it doesn’t depend on any particular properties of the trapdoor function.
In contrast, in the ROM-version of RSA-FDH with a fixed encryption ex-
ponent (i.e., e = 3 or e = 216 + 1) to the best of our knowledge no DSKS
attack is possible (see §2.2.2 of [48]).

6.1.5. The hash function is prohibitively inefficient. The construction in [42]
that allows a non-ROM proof of adaptive security of RSA-FDH requires
the signer to perform n multiplications modulo the order of v, where n
is the bit-length of the encoding M ′ of a message M . To hash a 256-bit
message suppose we take n = 1024. The verifier must use the obfuscated
hash program, which must be part of Alice’s certified public key. As we
shall see, this means that the storage space for the public key, the task
of the certification authority, and the running time for verification are all
prohibitively large.

The most efficient way known to compute obfuscations uses the method
of multilinear pairings in [30]. The complexity of the method grows rapidly
with the “level” of the pairing. The construction uses a modulus x0, which
is a product of secret primes. In §3.1.3 of [1] it is shown that the bitlength
of x0 is at least 4k2λ2 log2(λ), where k is the level of the pairing and λ is
the security parameter.

Suppose that we want a 128-bit security level. Then the RSA modulus N
should have bitlength 3072. Let ℓ be the order of v mod N ; since it is likely
that ℓ ≥ ϕ(N)/4 (this is virtually certain if N is the product of two primes
of the form 2r+1 with r prime), we shall suppose that ℓ has bitlength 3070.
The exponents ai,b should also be assumed to have this bitlength.

14 NEAL KOBLITZ AND ALFRED J. MENEZES

The hash program that’s obfuscated first computes the 1024-bit encod-
ing M ′ of the message M , then finds the product π(M ′) mod ℓ of the 1024

exponents ai,M ′

i
, and finally computes vπ(M

′) modN . The most efficient con-
struction that satisfies the required indistinguishability obfuscation property
is due to J. Zimmerman (Appendix to [68]). In that construction the multi-
linearity level k is of order 2d, and the number of ring operations modulo x0
is of order s, where d denotes the depth and s the size of the circuit that’s
obfuscated. Neglecting the reduction steps mod ℓ and mod N and also the
exponentiation,4 let’s compute the depth and size of a circuit that multi-
plies together the 3070-bit integers. For simplicity we shall assume that the
circuit has a single output bit — this is the type of circuit to which the ob-
fuscation constructions apply — and ignore the extension that’s necessary
to handle a circuit with 3072 output bits.

First let’s consider an algorithm that is fairly efficient in terms of circuit
size s but not depth d. We note that a circuit with a single output bit
satisfies s ≤ 2d.

Suppose that each multiplication of 3070-bit integers requires a circuit of
depth ⌈log2(3070)⌉ = 12. Since the 1023 multiplications can be performed
in a binary-tree structure with 10 levels, the resulting circuit has depth
12 · 10 = 120. This leads to the estimate k > 2d = 2120 for the level of
multilinearity. Since 4k2λ2 log2(λ) ≈ 2259, we find that x0 ≈ 22

259

in this
case.

In an effort to get a more reasonable bound on k (and on the bitlength
of x0 and the running time), let’s consider a more complicated algorithm
whose circuit has greater size but much lower depth. In [4] Beame, Cooke,
and Hoover constructed an algorithm with logarithmic-depth circuit for the
iterated product problem. If m denotes the bitlength of the integers being
multiplied, their circuit has depth O(log2(m)) and size O(m5 log22(m)). In
our case let’s set m = 212 and set the constant in the big-O size estimate
equal to 1. Then s ≈ 267. Since s ≤ 2d, we also have d ≥ 67. This gives a
better bound for k — namely, 267 rather than 2120 — but (because of the
much greater circuit size) a higher bound s ≈ 267 for the number of ring
operations. Note that the bitlength of x0 is at least 4k2λ2 log2(λ) ≈ 2153.

Thus, each of the 267 ring operations is modulo an integer x0 ≫ 22
153

.
Some caveats are in order. Some of the estimates we have used could

perhaps be substantially improved. For example, the estimates in [1] for the
bitlength of x0 were obtained by considering known attacks on multilinear
pairings when used to implement the Coron–Lepoint–Tibouchi protocol for
one-round multi-party key exchange [30]; it is possible that smaller x0 can
be employed when multilinear pairings are used for code obfuscation. In

4Remark 1 of [42] suggests that in the exponentiation, rather than first computing
π(M ′), “it might be more efficient to incrementally raise an accumulated value to each
ai,M′

i
.” However, such a highly sequential algorithm would have circuit depth in the

thousands, and hence its obfuscation would have a multilinearity level whose bitlength is
also in the thousands.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 15

addition, in our case the iterated product problem has a special type of
input: each integer is taken from a fixed pair (ai,0, ai,1) according to the
i-th bit of M ′. Hence it might be possible to design simpler circuits for
this subproblem of the iterated product problem. On the other hand, we
have made optimistic choices for big-O constants, and we have neglected
the modular exponentiations. We have also neglected to account for the
extension one needs to use obfuscation for a circuit that has 3072 output
bits rather than just 1. In any case, even after substantial improvement in
the estimates, the bitlength of x0 and the running time are likely to remain
way above the practical range.

It should also be noted that Zimmerman’s results [68] are proved in a cer-
tain generic model of the multilinear maps — under an assumption that is
similar to the generic group assumption that’s used in some security reduc-
tions for Diffie-Hellman and elliptic curve protocols (see [46] and §7 below).
It is open to question whether one should use such a construction to im-
plement the obfuscation for the Full Domain Hash in [42], since the whole
purpose of that paper was to avoid the random oracle model, and one can-
not plausibly claim that the generic model for multilinear maps rests on
more solid ground than the random oracle model. That is, it doesn’t seem
prudent to rely on the generic model for multilinear maps in order to avoid
the random oracle model for hash functions. But if one uses the construc-
tions that predate [68], all of which use matrix branching programs, one gets
much worse estimates than in [68].

Recall that the obfuscation — including the value x0 — is part of the
public key and must be certified by the CA, and signature verification in-
volves arithmetic modulo x0. Clearly none of this is remotely possible in
practice. In particular, factoring the RSA modulus N (by the number field
sieve), thereby completely breaking the system, is far easier than verifying
a signature.

The word “practical” in the title of [30] is justified by the application to
one-round ℓ-party Diffie–Hellman key exchange, for which timings are given
in §6.4 for ℓ = 7. In that case one needs one application of a 6-linear pairing,
and the implementers found that a key exchange at the 80-bit security level
requires roughly 20 seconds. However, if we extrapolate to enormous levels
of multilinearity — as in the case of RSA-FDH with 128-bit security — we
obtain humongous running times.

Many commentators have noted that cryptographic research is charac-
terized by a particularly sharp divide between theory and practice; for an
interesting perspective on this issue, see Bellare’s invited talk at Crypto 2014
[5]. Reading the obfuscation literature, even those of us who are accustomed
to this gap are startled when we encounter the vast chasm that separates
obfuscation theory from cryptographic practice.

Remark 2. An obfuscated program for evaluating a punctured PRF is used
in [63] to get a signature scheme with short signatures and fast signature

16 NEAL KOBLITZ AND ALFRED J. MENEZES

generation that can be proved secure without random oracles. However,
signature verification is prohibitively slow, as the authors acknowledge. In
addition, the public key is huge, since it contains the obfuscated program.
This is a very high price to pay for slightly shorter and faster signatures and
no random oracles.

Remark 3. For evidence of the impracticality of indistinguishability obfus-
cation, see [1]. The authors implemented an obfuscation of a 16-bit point
function at the 52-bit security level. Using a 32-core machine, the time for
evaluating the obfuscated circuit was 3 hours, and the size of the obfuscated
program was 31 gigabytes. More recently, Bernstein et al. [12] presented
several techniques for evaluating obfuscated programs, which yield a more
than 50-fold speedup in the evaluation of the obfuscation circuit for the
16-bit point function [10]. In practice one would need a far more elaborate
function to evaluate H(·) with a 3072-bit modulus N , for instance; and one
would want at least a 128-bit security level.

Remark 4. In November 2014, several researchers [17, 29, 37] devised
polynomial-time attacks on the multilinear pairing construction in [30] that
recover all of the secret quantities. The authors of [17] and [37] proposed
a modification to the multilinear pairing construction in [30] that appears
to resist the new attacks. However, shortly afterwards these countermea-
sures were shown to be ineffective [31]. While the impact of the attacks on
the security of obfuscation remains to be determined, the attacks serve as
a reminder that a protocol that is excessively complicated is likely to have
subtle vulnerabilities.

6.1.6. All of the obfuscation constructions are very complicated. Construct-
ing a version of FDH using obfuscation is an elaborate process. The ROM-
version of FDH, in contrast, is one of the simplest constructions in cryp-
tography — just hash and apply the trapdoor function. One cannot use a
raw off-the-shelf NIST-standardized hash function, because its output does
not have length equal to that of the full domain of the trapdoor function, as
required. However, it is not hard to make the necessary adjustments, obtain-
ing a protocol all of whose ingredients have been studied and cryptanalyzed
by many people over many years.

6.2. KISS. The famous KISS (keep-it-simple) principle of engineering ap-
plies with special force to cybersecurity. In the first place, formal analysis is,
in general, much more difficult for a complicated system than for a simple
one. When a suite of protocols relies on a whole menagerie of little-studied
complexity assumptions, one is truly entering a “brave new world” that rests
on an untested foundation, as we argued in [47].

Security through obscurity — a once-popular notion that was the an-
tithesis of KISS — was, of course, discredited long ago. But beyond that,
security experts have become increasingly aware of how hard it is to analyze

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 17

and take countermeasures that protect a system that is far more compli-
cated than necessary. In particular, the possible forms that a side-channel
attack could take become multiplied as the protocol construction acquires
layer upon layer of complexity. (We discuss this in §4 of [48].)

Most of the time when protocols are constructed for the purpose of dupli-
cating the functionality of ROM-protocols while avoiding random oracles,
the resulting system is far more complicated than the one it replaces. If
there were any convincing evidence that ROM-protocols have real-world se-
curity weaknesses, then we would have to bite the bullet and do our best to
analyze these new protocols. However, we have not seen any such evidence.
Thus, it does not make much sense to sacrifice either efficiency or true secu-
rity for the sole purpose of getting security proofs without random oracles.
As the popular aphorism says, “If it ain’t broke, don’t fix it!”

7. The Value of Random Oracles: The Example of ECDSA

An underlying premise of this paper is that reductionist security proofs are
of value. If they weren’t, then the whole question of whether or not random
oracles should be used in proofs would be moot. That is, practitioners who
believe that security proofs are worthless — and who adhere to the viewpoint
(attributed to Lars Knudsen) that “if it’s provably secure, then it probably
isn’t” — have no reason to read this paper.

So let’s agree to accept the premise that, as we stated in [49], “security
proofs are useful as a minimal type of assurance.” Once we accept this
premise, it follows that whenever we replace a well-studied cryptographic
protocol by an alternative version that we believe improves on its real-world
security, we would want the reductionist security results to carry over to the
modified version.

Lately the cybersecurity world has become aware of startling security
lapses in commonly used pseudorandom bit generators. At Crypto 2012
A. K. Lenstra reported that many users’ RSA private keys can be easily
revealed because of a faulty implementation of random selection of prime
factors of the modulus (see [50]). In August 2013 it was discovered that a
bug in the Android operating system had been causing a defective implemen-
tation of pseudorandom number generation, resulting in a large-scale theft
of Bitcoins [23], among other things. One month later the public learned
from the Edward Snowden leaks [59] that the NSA had put a backdoor in
the NIST-standardized Dual Elliptic Curve Deterministic Random Bit Gen-
erator (EC DRBG), which was included as the default in RSA’s BSAFE
toolkit. These scandals have made practitioners more aware than ever of
the pitfalls of heavily relying on random number generation.

One of the responses has been to find ways to reduce the dependence
on PRBGs. For instance, the usual version of the Elliptic Curve Digital
Signature Algorithm (ECDSA) not only relies on a random number for key
generation, but also needs a new random value k for each message that is

18 NEAL KOBLITZ AND ALFRED J. MENEZES

signed. The security of ECDSA is particularly sensitive to poor implemen-
tation of pseudorandom generation of k. For example, in [56] it was shown
that if just three bits of k are known for several hundred signatures, then it
is possible to recover the static secret key K. Starting with Barwood [3] and
Wigley [67], a number of people (see [62]) have proposed replacing pseudo-
random generation of k by a deterministic value k = H ′(K,M) obtained
by hashing the message and the static secret key. See also §2 of [11] for a
discussion of the rationale for this modification of ECDSA.

7.1. ECDSA and ECDSA*. Before discussing security of the modified
version of ECDSA, we first recall how Alice signs a message in ECDSA.
Let G be a subgroup of prime order q of the group of points on an elliptic
curve defined over a finite field, where we suppose that it is computationally
infeasible to find discrete logarithms in G. Let P ∈ G be a fixed basepoint.
Alice’s private key is a random integer K mod q, and her public key is the
point Q = KP . Let H be a hash function whose values are integers mod
q. To sign a message M , Alice first randomly selects an ephemeral secret
integer k mod q that must be different for each message she signs. She
computes kP and lets r denote the x-coordinate of kP , regarded mod q.5

She computes s = k−1(H(M)+Kr) mod q; her signature is (r, s). To verify
Alice’s signature, Bob checks that the x-coordinate of s−1H(M)P + s−1rQ
is congruent to r mod q.

We let ECDSA* denote the modified version with k = H ′(K,M), where
H ′ is a hash function (that could be — but doesn’t have to be — the same
hash function that is used in the signing equation). Before replacing ECDSA
by ECDSA* one would want to investigate whether or not the reductionist
security results for the former protocol carry over to the modified version.

7.2. Security reductions. Recall that we say that a signature scheme is
existentially unforgeable against adaptive chosen-message attack if an adver-
sary that is permitted to interact with a signer, getting valid signatures for
a bounded number of messages that the adversary selects during the inter-
action, cannot feasibly produce a valid forgery of any message at all that
was not queried.

The definitive work on provable security for ECDSA was done by Dan
Brown in the early 2000s (see [20]). He proved that in the generic group
model ECDSA is existentially unforgeable against adaptive chosen-message
attack provided that certain conditions are satisfied by the hash function
(collision resistance, a uniformity property, and intractability of finding a
message M with H(M) = 0).6 A natural question to ask about replacing

5This definition of r applies to ECDSA over a prime field; a different method of deter-
mining r from kP is needed for ECDSA over a binary field.

6In [21] Brown also proved unforgeability in the random oracle model for the hash
function but without the generic group assumption. However, he needed to make the
so-called semi-logarithm assumption, which has been little studied and is presumably
stronger than intractability of discrete logs.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 19

the random k in ECDSA by deterministic k = H ′(K,M) is whether Theorem
3 of [20] carries over.

The answer is that it does, provided that one adopts the random oracle
assumption, that is, models the hash function H ′ as a random oracle. In
that case the values of k appear random to an attacker, since no information
at all about k can be predicted by someone who does not know the full secret
key K as well as the message.7

Can one dispense with random oracles in going from ECDSA to ECDSA*?
The result also carries over under the weaker assumption that H ′ is a pseu-
dorandom function (prf), provided that one uses a separate independent
secret key K ′ to generate k. (We give an outline of a proof below.) This
modification is obviously not desirable from a practical standpoint, since it
would mean that each user has to have two static keys (or, equivalently, a
key of twice the length).8 Apparently the only advantage of using different
keys in the signing equation and in the generation of k is that doing so makes
the proof of security go through under the prf assumption rather than the
random oracle assumption.

Let ECDSA** denote the two-key version of ECDSA with k = H ′(K ′,M).
We sketch an informal proof that ECDSA** has the same reductionist secu-
rity as ECDSA (against restricted adversaries, which do not query the same
message more than once) provided that H ′ is a prf. Recall the (informal)
definition of the prf property: Suppose an attacker queries an oracle that
has equal probability of being a random oracle O(M) or of being H ′(K ′,M)
with hidden key K ′. In reasonable time the attacker is unable to guess which
it is with a non-negligible advantage (that is, with probability non-negligibly
greater than 1/2 of being correct).

To prove that ECDSA** has the security properties of ECDSA provided
that H ′ is a prf, we show that an algorithm A that successfully attacks
ECDSA** but not ECDSA could be used to break the prf property of H ′.
Namely, we construct an algorithm B as follows. B is supplied with the
oracle in the definition of the prf property. As it interacts with the algorithm
A, it uses the oracle to produce the ephemeral secret k when it answers
A’s queries by giving either ECDSA signatures (if the oracle is O(M)) or
ECDSA** signatures (if the oracle is H ′(K ′,M) for some hidden K ′). If A
produces a forgery, then B guesses that the oracle is H ′(K ′,M), and if not,
then B guesses that the oracle is O(M). To put it another way, the fact that

7More precisely, in Table 1 of [20] the description of the oracle’s response to a “hint
command” (that is, a signature query) is modified as follows. The input is a message
M rather than a hash value h, and instead of random generation of zm+1 one queries
(K,M) = (z2/z1,M) to the hash oracle. A few minor modifications are then needed in
the proof of Lemma 1 of [20].

8Two-key versions of signature schemes are just as impractical for deployment as are
two-key message authentication codes. See [49] for an analysis of the security theorems
that under suitable conditions enable one to carry over security results from two-key nested
MACs to one-key variants.

20 NEAL KOBLITZ AND ALFRED J. MENEZES

A is successful against ECDSA** and not against ECDSA can be converted
into a test of whether one is being given a random oracle or H ′(K ′,M).

This proof breaks down for ECDSA* because the party giving ECDSA*
signatures has to know the key for H ′ in order to produce the signing equa-
tion. In other words, the prf property of H ′ only gives randomness from the
perspective of someone who has no information at all about the key. The
signer has complete knowledge of the key, and the attacker, although he
doesn’t know the key, has some indirect information about it (since it was
used twice in the signing equation, including its appearance in the formula
for k). Most likely this distinction between ECDSA* and ECDSA** has no
significance for security in practice, but in theory (that is, in carrying out a
formal proof) it makes a big difference.

Remark 5. One could get a proof without random oracles that ECDSA* is
as secure as ECDSA** by making the assumption that the hash function and
the elliptic curve group satisfy the following 1-key/2-key condition: Some-
one who can ask queries of the signer cannot determine with non-negligible
advantage whether k = H ′(K,M) or k = H ′(K ′,M), where K is the static
key used in the signing equation and K ′ is another static key that is inde-
pendent of K. In other words, one could simply assume that ECDSA* and
ECDSA** are indistinguishable from one another. However, as we argued
in [47], a security proof is of questionable value if it relies upon an unnatu-
ral and unstudied assumption that is tailor-made for a given protocol and
causes the security reduction to become an exercise in circular reasoning.
Such an approach is not, in our view, preferable to the use of the random
oracle model, which leads to more substantive results.

7.3. A further modification of ECDSA. 9 In §5 of [44] we discussed
security reductions for the Schnorr signature scheme [64] and compared that
scheme to DSA. Informally speaking, the security of both schemes is based
on intractability of the discrete log problem in a finite field. However, the
security reductions for Schnorr signatures in the random oracle model [60,
61] were lost in going from Schnorr to DSA. We commented that one could
retain some reductionist security in DSA if instead of simply hashing the
message M in the signing equation one hashes both M and a value that
depends on the ephemeral key k. Since ECDSA was modeled on DSA and
not on Schnorr signatures, the same remark applies to ECDSA.

Intuitively, the reason why hashing only M in the signing equation gives
more power to the forger than hashing bothM and a value that depends on k

9A somewhat similar modification of ECDSA was proposed by NIST in [32]. The
NIST modification randomizes the message by combining it with an ECDSA signature
component; however, the procedure for generating ephemeral secret keys is the same as in
ECDSA. The NIST modification appears not to be sufficient for obtaining the reductionist
security result we want.

We also note that Brickell et al. [19] obtained several security results for modifications
of DSA, that is, for a broad class of signature schemes based on the discrete log problem
in a finite field.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 21

is that in the latter case the hash computation requires prior knowledge of k,
whereas in the former case the forger can wait to choose the ephemeral key k
until after seeing the hash value H(M). Note, by the way, that even though
legitimate ECDSA* signers determine k deterministically as k = H ′(K,M),
any choice of k will lead to a signature that satisfies the verifier, who has
no way of knowing whether k was computed deterministically, randomly, or
in some other way. So of course one cannot assume that the forger’s k is
H ′(K,M).10

Thus, suppose we further modify ECDSA* by replacingH(M) byH(kP,M)
in the signing equation and define the signature to be (kP, s); let ECDSA+

denote the resulting scheme.11

We note that for greater efficiency one doesn’t have to hash both co-
ordinates of kP , and one doesn’t have to include both coordinates in the
signature. One can take just the x-coordinate along with a single bit that
indicates which of two possible y-coordinates is the y-coordinate of kP .

Hence, in ECDSA+ Alice signs a message as follows. As before, P ∈ G is
a fixed basepoint in the subgroup of prime order q of the group of points on
an elliptic curve. Alice’s private key is a random integer K mod q, and her
public key is the point Q = KP . Let H and H ′ be hash functions whose
values are integers mod q. To sign a message M , Alice sets k = H ′(K,M)
and computes R = kP . Let r denote the x-coordinate of R, regarded as an

integer mod q; and let R̃ denote a bitstring that includes the x-coordinate
of R along with an additional bit that indicates which of two possibilities is

the y-coordinate of R. Alice computes s = k−1(H(R̃,M) +Kr) mod q; her

signature is (R̃, s). To verify Alice’s signature, Bob extracts r from R̃ and

then checks that s−1H(R̃,M)P + s−1rQ is the point R.
It is not hard to see that Theorem 3 of [20] carries over to ECDSA+.

That is, our first claim is that ECDSA+ is existentially unforgeable against
adaptive chosen-message attack under the generic group assumption on G,
the random oracle assumption on H ′, and the conditions on H (collision-
resistance, a uniformity property, and intractability of finding a preimage of
0) that are given in [20].

In addition, a version of the security result proved for Schnorr signatures
can also be proved for ECDSA+. Unlike Brown’s results, these proofs need
only intractability of discrete logs rather than the much stronger generic
group assumption. Thus, our second claim is that ECDSA+ is existentially

10Strictly speaking, one cannot even assume that the forger has selected a k at all,
since all that is required of a forger is a message and signature that satisfy the verification
algorithm. The preceding discussion is intended to be informal and intuitive; it is not a
formal argument.

11A very similar version was considered in [52], where it was denoted ECDSA III. The
version of Malone-Lee and Smart differs from ECDSA+ in just two respects: the ephemeral
key k is random rather than given by H ′(K,M), and in the signing equation instead of
kP (that is, the x-coordinate along with an additional bit to indicate y) they hash the
sum of the x- and y-coordinates along with M .

22 NEAL KOBLITZ AND ALFRED J. MENEZES

unforgeable if the discrete log problem in G is intractable and the hash func-
tions H and H ′ are modeled by random oracles. Following [60, 61], we now
give an informal proof of this claim.

Informal proof. Suppose we wish to find the discrete logarithm K of Q
to the base P : Q = KP . We use the forger to forge ECDSA+-signatures
with public key Q. Whenever the forger needs an H-value or H ′-value, we
simulate an oracle that gives random values in response to the forger’s hash
queries (except that the same value is returned if the forger makes the same
query a second time). Notice that k is determined before the forger asks

for H(R̃,M), where R = kP ; this is a crucial distinction between ECDSA+

and ECDSA*.
We also need to simulate a signing oracle that responds to the forger’s

signature queries. Whenever the forger requests a signature on a message
M , we randomly choose two integers u and v mod q and set R = uP + vQ
and s = v−1r mod q (where r is the x-coordinate of R; if r = 0 we change

our choice of u and v). We return the signature (R̃, s). In order to verify the

signature the forger has to ask for h = H(R̃,M), and in response to that
hash query we send h = us mod q. Since s−1(hP + rQ) = uP + vQ = R,
the signature verifies. It should be noted that in order for this to be a
valid simulation, one has to check that h is independent of R and random,
but this is an easy consequence of the fact that the pairs (u, v) for which
uP + vQ = R form a line in the uv-plane mod q, and h ranges through the
integers mod q along that line.

Let qH be a bound on the number of queries for an H-value. We choose a

random index j ≤ qH and hope that the j-th queried valueH(R̃,M) happens

to be the one the forger uses to produce a signature (R̃, s) on the message
M . Let ǫ be the forger’s success probability, and let ǫj be the probability
that the j-th H-value leads to the forged signature; then

∑
j ǫj = ǫ.

We use two copies of the forger. We give both forgers the public key Q,
the same sequence of random bits, and the same random answers to their
hash queries until they both make the same j-th H-query. At that point
we give two independent random answers h1 and h2,

12 and from then on we
give the two forgers different sequences of random bits and different random
function values. That is, our interaction with the forgers “forks” after the
j-th H-query.

We hope that both forgers produce signatures corresponding to the same

M and R̃. If they do not (or if we’re unable to proceed because no j-th
H-query is made), then we start over again. If the two forgers do output

signatures (R̃, s1) and (R̃, s2), then we have the following two congruences
mod q:

ks1 ≡ h1 + rK and ks2 ≡ h2 + rK.

12We shall ignore the possibility that the j-th H-query repeats an earlier query, in
which case we need to choose a different j, and also the (negligible) probability that
h1 = h2.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 23

Since k (which is unknown to us) is the same in both equations, we can solve
for K in terms of known values: K = −r−1(s2h1 − s1h2)/(s2 − s1) mod q.

We need to know that there’s a non-negligible probability that this will
all work out as we hope. The bounding of this probability from below is
called the “forking lemma” ([60, 61]). Let S denote the set of all possible
sequences of random bits and random hash responses during the course of
the above procedure. Let A be the set of possible sequences of random bits
and random hash values until the forgers’ j-th H-query, and let B be the set
of sequences of random bits and random hash values after that. Suppose that
there are a elements in A, b elements in B, and ab elements in S = A× B.

For ǫjab values in S the forger produces a valid signature with R̃ and M
from the j-th H-query. Applying the “splitting lemma,”13 we can say that
there are at least ǫja/2 elements of A that have the following property: the
remaining part of the forgery algorithm (starting with the j-th H-query)
has probability at least ǫj/2 of leading to the desired signature. For each
such element of A the probability that both copies of the forger lead to
such signatures is at least (ǫj/2)

2. Thus, the probability that an element of

A× (B×B) will lead to two different signatures with the same R̃ and M is
at least (ǫj/2)

3.
Since j is chosen uniformly at random from {1, 2, . . . , qH}, the probability

that the above procedure leads to two signatures of the same message is at
least 1

8qH

∑
ǫ3j . The minimum of this sum subject to the condition that∑

ǫj = ǫ is achieved when all the ǫj are equal, that is, when ǫj = ǫ/qH for
all j. Thus, the probability of success in one iteration of the above algorithm
is at least 1

8qH
·qH ·(ǫ/qH)3 = (ǫ/2qH)3. This gives us a non-negligible success

probability, although with a very large tightness gap. �

Remark 6. Because of the tightness gap, Theorem 3 of [20] can be viewed
as much superior. On the other hand, Brown’s result uses the generic group
assumption, which is much stronger than intractability of the discrete log
problem. So having a second security reduction based on the discrete log
problem is perhaps worthwhile.

7.4. Schnorr signatures. We modify the Schnorr signature scheme in [64]
by using an elliptic curve group and also by determining the ephemeral
key k deterministically rather than randomly. We call the resulting scheme
ECSchnorr*. Thus, Alice signs a message as follows. As before, her private
key is a random integer K mod q, and her public key is Q = KP , where P
is the basepoint; and H and H ′ are hash functions whose values are integers
mod q. To sign a message M , Alice sets k = H ′(K,M) and computes

13The splitting lemma [60, 61], which is proved by a simple counting argument, says the
following. Suppose we have two sets A and B containing a and b elements, respectively.
Suppose that a pair (α, β) ∈ A×B has probability ≥ ǫ of having a certain property, that
is, there are at least ǫab such “good” pairs. Let A0 ⊂ A be the set such that α0 ∈ A0 if
at least ǫb/2 pairs (α0, β) (β ∈ B) are “good.” The splitting lemma says that there are at
least ǫa/2 elements in A0.

24 NEAL KOBLITZ AND ALFRED J. MENEZES

R = kP . Let R̃ denote a bitstring that includes the x-coordinate of R
and an additional bit indicating the y-coordinate of R. Alice computes

h = H(R̃,M) and sets s = k + hK mod q; her signature is (h, s). To verify

the signature Bob computes the point S = sP −hQ and then H(S̃,M), and
accepts the signature if this hash value is equal to h.

There are two main positive results about the security of Schnorr sig-
natures, both of which carry over to ECSchnorr* under the random oracle
assumption for H ′:

• Pointcheval and Stern [60, 61] proved unforgeability under chosen-
message attack, assuming intractability of the discrete log problem
(DLP) and the random oracle model for the hash function H. Their
result (even after subsequent improvements) has a large tightness
gap, however.

• Neven, Smart, and Warinschi [54], working in the generic group
model, proved existential unforgeability under chosen-message at-
tack if the hash function H is preimage-resistant in certain senses
(this is a weaker condition than collision-resistance). Their reduction
is tight.14

There are also two negative results due to Paillier and Vergnaud [58]; see
also [65]. Informally speaking, they showed that it is unlikely that a reduc-
tion from the DLP to unforgeability of Schnorr signatures exists under a
“standard” assumption (meaning that the hash function cannot be modeled
by a random oracle, and the elliptic curve group cannot be modeled by a
generic group), and even in the random oracle model it is unlikely that a
tight reduction exists. In [45] we ask

What do we make of the circumstance that, apparently, no
tight reduction from the DLP to forgery is possible in the
random oracle model, and no reduction at all is likely in a
standard model? As usual, several interpretations are pos-
sible. Perhaps this shows that reductions in the random
oracle model are dangerous, because they lead to security
results that cannot be achieved in a standard model. On the
other hand, perhaps we can conclude that the random oracle
model should be used, because it can often come closer to
achieving what our intuition suggests should be possible.

Based on the two types of security results listed above, in [54] Neven,
Smart, and Warinschi contrast Schnorr with ECDSA, arguing in favor of
the former:

14Tightness issues arise in [54] if one wants to use short hash values, which would give
a 25% reduction in signature length compared with ECDSA and compared with Schnorr
with full-length hash.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 25

The proof [by Brown for ECDSA] is quite involved and re-
duces the security of EC-DSA to a set of non-standard prop-
erties of the hash function and the “conversion function.” We
feel our result for Schnorr is cleaner, and the associated hash
function properties are more natural. Combining our results
in the generic group model with the advantage of additionally
having a security proof in the random oracle model, we feel
that Schnorr signatures are to be preferred over EC-DSA.

However, whether Schnorr signatures have a significant reductionist se-
curity advantage over ECDSA is debatable, because of the tightness issue.
In the generic group model both schemes have tight security results. The
result for Schnorr signatures in [54] makes milder assumptions on the hash
function H than Brown’s Theorem 3 in [20]. Because collision-resistance is
not needed, in principle one can shorten hash lengths by a factor of two.
However, that causes a loss of tightness in the reduction in [54]. In [54]
the tightness issue is discussed in this connection and in connection with
the Pointcheval–Stern results, but it is considered to be of secondary im-
portance. The authors point out that no attack is known that exploits
the tightness gaps, and that practitioners rarely modify their parameters
to take non-tightness into account. In other words, even if the concrete se-
curity guarantee with the chosen parameters that results from the security
reduction turns out to be meaningless, that should not be a cause of great
concern.

We discussed this issue at length in [45] — see also [27] — and we don’t
find this argument convincing. If one believes that rigorous security reduc-
tions are of some importance as part of an evaluation of a scheme — and
we accepted this premise at the beginning of this section — then one would
hope that the actual concrete guarantee given by the proof would be taken
seriously.

In the random oracle model the Pointcheval–Stern results for Schnorr are
comparable to the corresponding results for ECDSA (Theorem II.10 of [21])
or ECDSA+ (our claim and informal proof in §7.3). Brown’s Theorem II.10
not only has a tightness gap of qH , but assumes intractability of an unnatural
and little studied problem (semi-logarithms) that is possibly easier than the
DLP and in fact is similar to the forgery problem itself. Our result for
ECDSA+ gives a reduction to the DLP, but it is very non-tight.

It is not clear to us which of ECDSA+ and ECSchnorr* is better from
a “provable security” standpoint. But one thing that is clear is that if one
shuns the random oracle model and the analogous generic group model,
then no security reduction is known for either scheme. If one accepts those
“non-standard” models, then formal security analysis is possible in both
cases.

* * *

26 NEAL KOBLITZ AND ALFRED J. MENEZES

In their seminal paper [8] Bellare and Rogaway succinctly summarized the
value of the random oracle model as follows: “Goals which are possible but
impractical in the standard setting become practical in the random oracle
setting.” Over twenty years later this is still the case, as shown by the
elliptic curve signature schemes ECDSA*, ECDSA+, and ECSchnorr*.

Acknowledgments

We would like to thank Dan Brown for valuable discussions of security
reductions for ECDSA, Kenwrick Mayo for useful discussions of obfuscation
constructions, Sanjit Chatterjee for thoughtful comments on an earlier draft,
and Ann Hibner Koblitz for helpful editorial suggestions. We would also
like to thank Dan Bernstein for informing us of the work [12] and Francisco
Rodŕıguez-Henŕıquez for bringing the paper [52] to our attention.

References

[1] D. Apon, Y. Huang, J. Katz, and A. Malozemoff, Implementing cryptographic pro-
gram obfuscation, Crypto 2014 rump session, http://eprint.iacr.org/2014/779.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang, On the (im)possibility of obfuscating programs, J. ACM, 59 (2012).

[3] G. Barwood, Digital signatures using elliptic curves, http://groups.google.com/
group/sci.crypt/msg/b28aba37180dd6c6, 1997.

[4] P. W. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and
related problems, SIAM J. Computing, 15 (1986), 994-1003.

[5] M. Bellare, Caught in between theory and practice, Crypto 2014 IACR Distinguished
Lecture, https://www.youtube.com/watch?v=SPVWSG7-i E.

[6] M. Bellare, A. Boldyreva, and A. Palacio, An uninstantiable random-oracle-model
scheme for a hybrid-encryption problem, Advances in Cryptology – Eurocrypt 2004,
LNCS 3027, Springer-Verlag, 2004, pp. 171-188.

[7] M. Bellare, V. T. Hoang, and S. Keelveedhi, Instantiating random oracles via UCEs,
Advances in Cryptology – Crypto 2013 (Part II), LNCS 8042, Springer-Verlag, 2013,
pp. 398-415; full version available at http://eprint.iacr.org/2013/424.

[8] M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for design-
ing efficient protocols, Proc. First Annual Conf. Computer and Communications

Security, ACM, 1993, pp. 62-73.
[9] M. Bellare and P. Rogaway, Optimal asymmetric encryption — how to encrypt with

RSA, Advances in Cryptology – Eurocrypt ’94, LNCS 950, Springer-Verlag, 1994,
pp. 92-111.

[10] D. Bernstein, personal communication, 23 February 2015.
[11] D. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, High-speed high-

security signatures, J. Cryptographic Engineering, 2 (2012), pp. 77-89.
[12] D. Bernstein, A. Hülsing, T. Lange, and R. Niederhagen, Bad directions in crypto-

graphic hash functions, preprint, 2015; available at http://obviouscation.cr.yp.to/
obviouscation-20150223.pdf.

[13] S. Blake-Wilson and A. Menezes, Unknown key-share attacks on the station-
to-station (STS) protocol, Public Key Cryptography — PKC 1999, LNCS 1560,
Springer-Verlag, 1999, pp. 156-170.

[14] D. Boneh and X. Boyen, Short signatures without random oracles, Advances in

Cryptology – Eurocrypt 2004, LNCS 3027, Springer-Verlag, 2004, pp. 56-73.
[15] D. Boneh, R. DeMillo, and R. Lipton, On the importance of checking cryptographic

protocols for faults, J. Cryptology, 14 (2001), pp. 101–119.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 27

[16] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing, Ad-
vances in Cryptology – Asiacrypt 2001, LNCS 2248, Springer-Verlag, 2001, pp. 514-
532.

[17] D. Boneh, D. Wu, and W. Zimmerman, Immunizing multilinear maps against ze-
roizing attacks, available at http://eprint.iacr.org/2014/930.

[18] X. Boyen, Q. Mei, and B. Waters, Direct chosen ciphertext security from identity-
based techniques, 12th ACM Conf. Computer and Communications Security – CCS

’05, ACM Press, pp. 320-329.
[19] E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung, Design validations for dis-

crete logarithm based signature schemes, Public Key Cryptography — PKC 2000,
LNCS 1751, Springer-Verlag, 2000, pp. 276-292.

[20] D. Brown, Generic groups, collision resistance, and ECDSA, Designs, Codes and

Cryptography, 35 (2005), pp. 119-152.
[21] D. Brown, On the provable security of ECDSA, in I. Blake, G. Seroussi, and

N. Smart, eds., Advances in Elliptic Curve Cryptography, Cambridge University
Press, 2005, pp. 21-40.

[22] D. Brown and R. Gallant, The static Diffie–Hellman problem, http://eprint.iacr.
org/2004/306.

[23] V. Buterin, Critical vulnerability found in Android wallets, http://bitcoinmagazine.
com/6251/critical-vulnerability-found-in-android-wallets/, August 11, 2013.

[24] J. Camenisch, G. Neven, and A. Shelat, Simulatable adaptive oblivious transfer, Ad-
vances in Cryptology – Eurocrypt 2007, LNCS 4515, Springer-Verlag, 2007, pp. 573-
590.

[25] R. Canetti, O. Goldreich, and S. Halevi, The random oracle model, revisited,
Proc. 30th Annual Symp. Theory of Computing, ACM, 1998, pp. 209-218; full version
available at http://eprint.iacr.org/1998/011.

[26] S. Chatterjee, K. Karabina, and A. Menezes, Fault attacks on pairing-based pro-
tocols revisited, IEEE Transactions on Computers, to appear; available at http:
//eprint.iacr.org/2014/492.

[27] S. Chatterjee, A. Menezes, and P. Sarkar, Another look at tightness, Selected Ar-

eas in Cryptography – SAC 2011, LNCS 7118, Springer-Verlag, 2012, pp. 293-319;
available at http://anotherlook.ca.

[28] J. Cheon, Security analysis of the Strong Diffie–Hellman problem, Advances in Cryp-

tology – Eurocrypt 2006, LNCS 4004, Springer-Verlag, 2006, pp. 1-11.
[29] J. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehlé, Cryptanalysis of the multilinear

map over the integers, available at: http://eprint.iacr.org/2014/906.
[30] J.-S. Coron, T. Lepoint, and M. Tibouchi, Practical multilinear maps over the in-

tegers, Advances in Cryptology – Crypto 2013, LNCS 8042, Springer-Verlag, 2013,
pp. 476-493; full version available at http://eprint.iacr.org/2013/183.

[31] J.-S. Coron, T. Lepoint and M. Tibouchi, Cryptanalysis of two candidate fixes of
multilinear maps over the integers, available at http://eprint.iacr.org/2014/975.

[32] Q. Dang, Randomized hashing for digital signatures, NIST Special Pub. 800-106,
http://csrc.nist.gov/publications/nistpubs/800-106/NIST-SP-800-106.pdf.

[33] Y. Dodis, R. Oliveira, and K. Pietrzak, On the generic insecurity of the full domain
hash, Advances in Cryptology – Crypto 2005, LNCS 3621, Springer-Verlag, 2005,
pp. 449-466.

[34] E. Freire, D. Hofheinz, K. Paterson, and C. Striecks, Programmable hash functions
in the multilinear setting, Advances in Cryptology — Crypto 2013, LNCS 8042,
Springer-Verlag, 2013, pp. 513-530; full version available at http://eprint.iacr.org/
2013/354.

[35] R. Gennaro, S. Halevi, and T. Rabin, Secure hash-and-sign signatures without the
random oracle, Advances in Cryptology — Eurocrypt ’99, LNCS 1592, Springer-
Verlag, 1999, pp. 123-139.

28 NEAL KOBLITZ AND ALFRED J. MENEZES

[36] C. Gentry, Practical identity-based encryption without random oracles, Advances in

Cryptology — Eurocrypt 2006, LNCS 4004, Springer-Verlag, 2006, pp. 445-464.
[37] C. Gentry, S. Halevi, H. Maji and A. Sahai, Zeroizing without zeroes: Cryptanalyz-

ing multilinear maps without encodings of zero, available at http://eprint.iacr.org/
2014/929.

[38] O. Goldreich, On post-modern cryptography, http://eprint.iacr.org/2006/461.
[39] S. Goldwasser and Y. Tauman Kalai, On the (in)security of the Fiat–Shamir par-

adigm, Proc. 44th Annual Symp. Foundations of Computer Science, IEEE, 2003,
pp. 102-113; full version available at http://eprint.iacr.org/2003/034.

[40] S. Goldwasser, S. Micali, and R. Rivest, A “paradoxical” solution to the signature
problem, Proc. 25th Annual IEEE Symposium on the Foundations of Computer

Science, 1984, pp. 441-448.
[41] M. Green, J. Katz, A. Malozemoff, and H.-S. Zhou, A unified approach to idealized

model separations via indistinguishability obfuscation, available at: http://eprint.
iacr.org/2014/863.

[42] S. Hohenberger, A. Sahai, and B. Waters, Replacing a random oracle: Full Domain
Hash from indistinguishability obfuscation, Advances in Cryptology — Eurocrypt

2014, LNCS 8441, Springer-Verlag, 2014, pp. 201-220.
[43] D. Jao and K. Yoshida, Boneh–Boyen signatures and the strong Diffie–Hellman

problem, Pairing-Based Cryptography – Pairing 2009, LNCS 5671, Springer-Verlag,
2009, pp. 1-16; full version available at http://eprint.iacr.org/2009/221.

[44] N. Koblitz and A. Menezes, Another look at “provable security,” J. Cryptology, 20
(2007), pp. 3-37; available at http://anotherlook.ca.

[45] N. Koblitz and A. Menezes, Another look at “provable security.” II, Progress in

Cryptology – Indocrypt 2006, LNCS 4329, Springer-Verlag, 2006, pp. 148-175; avail-
able at http://anotherlook.ca.

[46] N. Koblitz and A. Menezes, Another look at generic groups, Advances Math. Com-

munications, 1 (2007), pp. 13-28; available at http://anotherlook.ca.
[47] N. Koblitz and A. Menezes, The brave new world of bodacious assumptions in

cryptography, Notices of the Amer. Math. Society, 57 (2010), pp. 357-365; available
at http://anotherlook.ca.

[48] N. Koblitz and A. Menezes, Another look at security definitions, Advances

Math. Communications, 7 (2013), pp. 1-38; available at http://anotherlook.ca.
[49] N. Koblitz and A. Menezes, Another look at security theorems for 1-key nested

MACs, Open Problems in Mathematics and Computational Science, Springer-Verlag,
to appear; available at http://anotherlook.ca.

[50] A. K. Lenstra, J. P. Hughes, M. Augier, J. Bos, T. Kleinjung, and C. Wachter,
Public keys, Advances in Cryptology – Crypto 2012, LNCS 7417, Springer-Verlag,
2012, pp. 626-642.

[51] A. Lysyanskaya, Unique signatures and verifiable random functions from the DH-
DDH separation, Advances in Cryptology – Crypto 2002, LNCS 2442, Springer-
Verlag, 2002, pp. 597-612.

[52] J. Malone-Lee and N. Smart, Modifications of ECDSA, Selected Areas in Cryptog-

raphy — SAC 2002, LNCS 2595, Springer-Verlag, 2003, pp. 1-12.
[53] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,

CRC Press, 1996.
[54] G. Neven, N. Smart, and B. Warinschi, Hash function requirements for Schnorr

signatures, J. Math. Cryptology, 3 (2009), pp. 69-87.
[55] J. B. Nielsen, Separating random oracle proofs from complexity theoretic proofs:

The non-committing encryption case, Advances in Cryptology – Crypto 2002, LNCS
2442, Springer-Verlag, 2002, pp. 111-126.

THE RANDOM ORACLE MODEL: A TWENTY-YEAR RETROSPECTIVE 29

[56] P. Nguyen and I. Shparlinski, The insecurity of the elliptic curve digital signature
algorithm with partially known nonces, Designs, Codes and Cryptography, 30 (2003),
pp. 201-217.

[57] D. Page and F. Vercauteren, A fault attack on pairing-based cryptography, IEEE
Transactions on Computers, 55 (2006), pp. 1075-1080.

[58] P. Paillier and D. Vergnaud, Discrete-log-based signatures may not be equivalent to
discrete log, Advances in Cryptology – Asiacrypt 2005, LNCS 3788, Springer-Verlag,
2005, pp. 1-20.

[59] N. Perlroth, J. Larson, and S. Shane, N.S.A. able to foil basic safeguards of privacy
on web, The New York Times, 5 Sept. 2013.

[60] D. Pointcheval and J. Stern, Security proofs for signature schemes, Advances in

Cryptology – Eurocrypt ’96, LNCS 1070, Springer-Verlag, 1996, pp. 387-398.
[61] D. Pointcheval and J. Stern, Security arguments for digital signatures and blind

signatures, J. Cryptology, 13 (2000), pp. 361-396.
[62] T. Pornin, Deterministic usage of the Digital Signature Algorithm (DSA) and Ellip-

tic Curve Digital Signature Algorithm (ECDSA), RFC 6979, IETF, August 2013.
[63] K. Ramchen and B. Waters, Fully secure and fast signing from obfuscation, http:

//eprint.iacr.org/2014/523.
[64] C. P. Schnorr, Efficient signature generation for smart cards, J. Cryptology, 4 (1991),

pp. 161-174.
[65] Y. Seurin, On the exact security of Schnorr-type signatures in the random oracle

model, Advances in Cryptology – Eurocrypt 2012, LNCS 7237, Springer-Varlag, 2012,
pp. 554-571.

[66] C. Whelan and M. Scott, The importance of the final exponentiation in pairings
when considering fault attacks, Pairing-Based Cryptography – Pairing 2007, LNCS
4575, Springer-Verlag, 2007, pp. 225-246.

[67] J. Wigley, Removing need for rng in signatures, http://groups.google.com/group/
sci.cryp/msg/a6da45bcc8939a89, 1997.

[68] J. Zimmerman, How to obfuscate programs directly, http://eprint.iacr.org/2014/
776.

Department of Mathematics, Box 354350, University of Washington, Seat-

tle, WA 98195 U.S.A.

E-mail address: koblitz@uw.edu

Department of Combinatorics & Optimization, University of Waterloo, Wa-

terloo, Ontario N2L 3G1 Canada

E-mail address: ajmeneze@uwaterloo.ca

