
D
ra
ft

RANSAC for Dummies
With examples using the RANSAC toolbox for Matlab™ & Octave and more. . .

Marco Zuliani
marco.zuliani@gmail.com

vision.ece.ucsb.edu/~zuliani

©2008–2010

July 4, 2014

marco.zuliani@gmail.com
vision.ece.ucsb.edu/~zuliani

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

To all the free thinkers,

who freely share their ideas.

2

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Copyright © 2008 Marco Zuliani. Permission is granted to copy,

distribute and/or modify this document under the terms of the GNU Free

Documentation License, Version 1.2 or any later version published by the

Free Software Foundation; with no Invariant Sections, no Front-Cover

Texts, and no Back-Cover Texts. A copy of the license is included in the

appendix entitled “GNU Free Documentation License”.

3

D
ra

ft
Contents

1 Introduction 7

2 Parameter Estimation In Presence of Outliers 8

2.1 A Toy Example: Estimating 2D Lines 8

2.1.1 Maximum Likelihood Estimation 9

2.2 Outliers, Bias and Breakdown Point 11

2.2.1 Outliers . 12

2.2.2 Bias . 12

2.2.3 Breakdown Point . 13

2.3 The Breakdown Point for a 2D Line Least Squares Estimator 13

3 RANdom Sample And Consensus 15

3.1 Introduction . 15

3.2 Preliminaries . 16

3.3 RANSAC Overview . 18

3.3.1 How many iterations? . 19

3.3.2 Constructing the MSSs and Calculating q 20

3.3.3 Ranking the Consensus Set 23

3.4 Computational Complexity . 25

3.4.1 Hypothesize Step . 25

3.4.2 Test Step . 25

3.4.3 Overall Complexity . 25

3.5 Other RANSAC Flavors . 25

4

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

4 RANSAC at Work 28

4.1 The RANSAC Toolbox for Matlab™ & Octave 28

4.1.1 RANSAC.m . 28

4.2 Some Examples Using the RANSAC Toolbox 32

4.2.1 Estimating Lines . 32

4.2.2 Estimating Planes . 35

4.2.3 Estimating a Rotation Scaling and Translation 36

4.2.4 Estimating an Affine Transformation 40

4.2.5 Estimating Homographies . 40

4.2.6 Estimating the Fundamental Matrix 43

4.3 Frequently Asked Questions . 44

4.3.1 What is the “right” value of σ? 44

4.3.2 I want to estimate the parameters of my favourite model. What

should I do? . 44

4.3.3 How do I use the toolbox for image registration purposes? . . 44

4.3.4 Why the behaviour of RANSAC is not repeatable? 45

4.3.5 What should I do if I find a bug in the toolbox? 45

4.3.6 Are there any other RANSAC routines for Matlab? 45

A Notation 46

B Some Linear Algebra Facts 47

B.1 The Singular Value Decomposition 47

B.2 Relation Between the SVD Decomposition and the Eigen Decomposition 48

B.3 Fast Diagonalization of Symmetric 2× 2 Matrices 49

B.4 Least Square Problems Solved via SVD 50

B.4.1 Solving Aθ = b . 50

B.4.2 Solving Aθ = 0 subject to ‖θ‖ = 1 51

C The Normalized Direct Linear Transform (nDLT) Algorithm 53

C.1 Introduction . 53

C.2 Point Normalization . 54

C.3 A Numerical Example . 58

C.4 Concluding Remarks About the Normalized DLT Algorithm 60

5

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

D Some Code from the RANSAC Toolbox 65

D.1 Function Templates . 65

D.1.1 MSS Validation . 65

D.1.2 Parameter Estimation . 66

D.1.3 Parameter Validation . 68

D.1.4 Fitting Error . 69

D.2 Source Code for the Examples . 71

D.2.1 Line Estimation . 71

D.2.2 Plane Estimation . 74

D.2.3 RST Estimation . 78

D.2.4 Homography Estimation . 83

E GNU Free Documentation License 94

1. APPLICABILITY AND DEFINITIONS 94

2. VERBATIM COPYING . 95

3. COPYING IN QUANTITY . 95

4. MODIFICATIONS . 95

5. COMBINING DOCUMENTS . 96

6. COLLECTIONS OF DOCUMENTS . 97

7. AGGREGATION WITH INDEPENDENT WORKS 97

8. TRANSLATION . 97

9. TERMINATION . 97

10. FUTURE REVISIONS OF THIS LICENSE 97

ADDENDUM: How to use this License for your documents 97

References . 98

6

D
ra
ft

1
Introduction

This tutorial and the toolbox for Matlab™ & Octave were mostly written during my

spare time (with the loving disapproval of my wife), starting from some routines and

some scattered notes that I reorganized and expanded after my Ph.D. years. Both

the tutorial and the toolbox are supposed to provide a simple and quick way to start

experimenting the RANSAC algorithm utilizing Matlab™ & Octave .

The notes may seem somewhat heterogeneous, but they collect some theoretical

discussions and practical considerations that are all connected to the topic of robust

estimation, more specifically utilizing the RANSAC algorithm.

Despite the fact that several users tested this package and sent me their invaluable

feedback, it is possible (actually very probable) that these notes still contain typos

or even plain mistakes. Similarly, the RANSAC toolbox may contain all sorts of

bugs. This is why I really look forward to receive your comments: compatibly with

my other commitments I will try to improve the quality of this little contribution in

the fervent hope that somebody might find it useful.

I want to thank you here all the persons that have been intensively using the

toolbox and provided me with precious suggestions, in particular Dong Li, Tamar

Back, Frederico Lopes, Jayanth Nayak, David Portabella Clotet, Chris Volpe, Zhe

Zang, Ali Kalihili, George Polchin.

Los Gatos, CA

November 2011

Marco Zuliani

7

D
ra
ft

2
Parameter Estimation In Presence of Outliers

This chapter introduces the problem of parameter estimation when the measurements

are contaminated by outliers. To motivate the results that will be presented in the

next chapters and to understand the power of RANSAC, we will study a simple

problem: fitting a 2D line to a set of points on the plane. Despite its simplicity,

this problem retains all the challenges that are encountered when the models used

to explain the measurements are more complex.

2.1 A Toy Example: Estimating 2D Lines

!
1
x
1
"!

2
x
2
"!

3
=0

d

e #d ,!$

d

Figure 2.1: Line fitting example.

Consider a set of N points D = {d1, . . . ,dN} ⊂
R2 and suppose we want to estimate the best line

that fits such points.1 For each point we wish to

minimize a monotonically increasing function of

the absolute value of the signed error:

eM(d;θ) =
θ1x1 + θ2x2 + θ3√

θ2
1 + θ2

2

(2.1)

The sign of the error (2.1) accounts for the fact

that the point lies either on the left or on the

right semi-plane determined by the line. The pa-

rameter vector θ ∈ R2 describes the line accord-

ing the implicit representation θ1x1 +θ2x2 +θ3 = 0 (this is the modelM that we will

1Further details regarding the estimation of 2D lines can be found in Section 4.2.1.

8

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

use to fit the measurements). Note that the length of θ is immaterial. This type of

fitting is also known as orthogonal regression, since the distances of the sample points

from the line are evaluated computing the orthogonal projection of the measurements

on the line itself. Other type of regression can also be used, e.g. minimizing the

distance of the projection of the measurements along the y axis (however such an

approach produces an estimate of the parameters that is not invariant with respect

a rotation of the coordinate system).

2.1.1 Maximum Likelihood Estimation

Imagine that the fitting error is modeled as a Gaussian random variable with zero

mean and standard deviation ση, i.e. eM(d;θ) ∼ N (0, ση). The maximum likelihood

approach aims at finding the parameter vector that maximizes the likelihood of the

joint error distribution defined as: L(θ)
def
= p [eM(d1;θ), . . . , eM(dN ;θ)]. In the

previous expression, p indicates the joint probability distribution function (pdf) of

the errors. Intuitively, we are trying to find the parameter vector that maximizes

the probability of observing the signed errors eM(di;θ). Therefore we would like to

calculate the estimate:

θ̂ = argmax
θ
L(θ)

To simplify this maximization problem, we assume that the errors are independent

(an assumption that should be made with some caution, especially in real life scenar-

ios. . .) and we consider the log-likelihood L∗(θ)
def
= logL(θ). This trick allows us to

simplify some calculations without affecting the final result, since the logarithm is a

monotonically increasing function (and therefore the maximizer remains the same).

Under the previous assumptions we can write:

L∗(θ) = log
N∏

i=1

p[eM(di;θ)] =
N∑

i=1

log p[eM(di;θ)] =
N∑

i=1

(
log

1

ZG
− 1

2

(
eM(di;θ)

ση

)2
)

where ZG =
√

2πση is the normalization constant for the Gaussian distribution.

Therefore the maximum likelihood estimate of the parameter vector is given by:

θ̂ = argmax
θ

N∑

i=1

(
log

1

ZG
− 1

2

(
eM(di;θ)

ση

)2
)

= argmin
θ

N∑

i=1

1

2

(
eM(di;θ)

ση

)2

(2.2)

9

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

The function to be minimized is convex2 with respect to θ. and therefore the

minimizer can be determined utilizing traditional iterative descent methods [Ber99,

Lue03] (see Figure 2.2(a) for a numeric example and Section 4.2.1 for further details

regarding the calculations). Note that (2.2) is nothing but the familiar least square

estimator. This is a very well known results: for a more extensive treatment of this

subject refer to [Men95].

We want to emphasize that the assumption of (independent) Gaussian errors

implies that the probability of finding a point that supports the model with a residual

larger than 3ση is less than 0.3%. We may be interested in finding the expression

of the maximum likelihood estimate when the pdf of the error is not Gaussian. In

particular we will focus our attention on the Cauchy–Lorentz distribution:

p [eM(di;θ)] =
1

ZC

1

1 + 1
2

(
eM(di;θ)

ση

)2

where ZC =
√

2πση is the normalization factor. The notation used in the previous

formula should not be misleading : for this distribution the mean, the variance (or

the higher moments) are not defined. The value for the so called scale parameter

has been chosen to be consistent with the expression obtained in the Gaussian case.

It is important to observe that the Cauchy–Lorentz distribution is characterized

by heavier tails than the Gaussian distribution. Intuitively, this implies that the

probability of finding a “large” error is higher if the distribution is Cauchy–Lorentz

than if the distribution is Gaussian (see Figure 2.2(b)). If we derive the maximum

likelihood estimate for this distribution we obtain:

θ̂ = argmax
θ

N∑

i=1

(
log

1

ZC
− log

(
1 +

1

2

(
eM(di;θ)

ση

)2
))

=

argmin
θ

N∑

i=1

log

(
1 +

1

2

(
eM(di;θ)

ση

)2
)

(2.3)

Also in this case the function to be minimized is convex with respect to θ and there-

fore the minimizer can be computed utilizing traditional iterative descent methods.

2A functionf : R → R is convex if its graph between x1 and x2 lies below any segment that
connects f(x1) to f(x2). Formally speaking, if ∀λ ∈ [0, 1] we have that f(λx1 + (1 − λ)x2) ≤
λf(x1) + (1− λ)f(x2). This notion generalizes straightforwardly for vector functions (whose graph
essentially looks like a cereal bowl).

10

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Maximum Likelihood Line Fitting

x

y

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ση = 1

x

p

Gaussian

Cauchy−Lorentz

(a) (b)

Figure 2.2: (a) Maximum likelihood line estimate assuming a Gaussian error distri-
bution (ση = 0.05). (b) Comparison between the Gaussian and the Cauchy–Lorentz
distribution for ση = 1. Note that the Cauchy–Lorentz distribution has “heavier
tails” than the Gaussian distribution.

If we compare expression (2.2) with (2.3) we can readily see that they are struc-

turally very similar. Indeed if we introduce the function ρ we can write:

θ̂ = argmin
θ

N∑

i=1

ρ(eM(di;θ)) (2.4)

Figure 2.3 compares the ρ function associated to the classical least square estimator

(2.2) and to the maximum likelihood estimator based on the Cauchy–Lorentz distri-

bution (2.3). From the plots it is clear that large errors contribute less to the sum

of the residuals in the Cauchy–Lorentz case.

The family of estimators that can be written as in (2.4) are called M-estimators

and often times they are considered robust alternatives to classical least square esti-

mators. We will dig more into the issue of robustness in the next section.

2.2 Outliers, Bias and Breakdown Point

This section will introduce three important concepts that will outline the limita-

tions of traditional least square estimation approaches and that will motivate the

discussion of RANSAC in Chapter 3.

11

D
ra

ft

Copyright of Marco Zuliani 2008–2011 Draft

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

10

12

14

x

ρ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

10

12

14

x

ρ

(a) (b)

Figure 2.3: The comparison of the ρ function for the (a) least square case and for
the (b) Cauchy–Lorentz case. In both cases ση = 1.

2.2.1 Outliers

To the best of my knowledge, there does not exist a formal definition of outlier. My

attempt to provide a definition which is general enough but still reasonably formal

is the following:

A datum is considered to be an outlier if it will not fit the “true” model

instantiated by the “true”set of parameters within some error threshold

that defines the maximum deviation attributable to the effects of noise.

Here we assume that there exists a model and a set of parameters (the “true” ones)

that can exactly generate the observed measurements if they were observed in absence

of noise. We also assume that we have a knowledge of the so called noise scale, i.e.

we know what is the maximum perturbation of an observed valid measurement (i.e.

produced by the true model, instantiated with the true parameters and measured in

presence of noise).

2.2.2 Bias

To define the bias we follow quite closely the definition provided by Rousseeuw and

Leroy [RL87]. Let DI ⊂ D be a set of inliers and let DI/O(m) be the previous set

after m inliers have been replaced by outliers. As usualM indicates the model that

we are considering.

12

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Definition 1. The bias associated to the model M and to sets DI and DI/O(m) is

defined as:

biasM(m;DI)
def
= sup

DI/O(m)

distM
(
θ(DI),θ(DI/O(m))

)
(2.5)

This quantity measures the maximum perturbation that can be caused to a pa-

rameter vector first estimated only using inliers, and then when m of such inliers are

replaced by outliers. The function distM measures the distance between the param-

eter vectors. An appropriate choice for such function is crucial and often times the

simple Euclidean norm is not suitable.3

2.2.3 Breakdown Point

Intuitively, the breakdown point of an estimator represents the minimum fraction of

outliers that are sufficient to produce an arbitrary large bias:

Definition 2. The breakdown point associated to the model M and to the set DI is

defined as:

BPM(DI)
def
= min

{
m

|DI |
: biasM(m;DI) =∞

}
(2.6)

Quite often the bias does not depend on a particular set of points, but it is instead

just related to the properties of the considered model and of the associated estimator.

2.3 The Breakdown Point for a 2D Line Least

Squares Estimator

In the 2D line example considered in this chapter it is possible to show that the

presence of one single outlier can arbitrarily bias the estimate of the parameters of

the line. Intuitively we can arbitrarily modify the estimate of the line introducing an

outlier and moving it around on the 2D plane (see Figure 2.4). Therefore the least

square estimators breakdown point is 0%. Even if it is possible to build M-estimators

such that BPM(DI) > 0, this does not necessarily mean that they can be considered

3This constitutes the main difference between our definition of bias and Rousseeuw and Leroy’s
one [RL87]. If we consider the parameter vector that defines a 2D line, its length is immaterial
and the only information that matters is its direction. Thus, taking the Euclidean distance (or any
other p–norm based distance between two of such vectors) does not provide a meaningful measure
of “how close” the two models are.

13

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

−1 −0.5 0 0.5 1

−0.5

0

0.5

x

y

−20 −10 0 10 20

−20

−15

−10

−5

0

5

10

15

20

x

y

Figure 2.4: These figures describe the effect of one outlier (red dot) on the least
square estimation of the parameters of a 2D line.

robust for practical purposes. Certainly we can obtain some improvements if we have

more information regarding the error statistics, but in practical scenarios we seek for

robustness exactly when this type of information is lacking: robustness in presence

of non–modeled distributions! Moreover, even if the bias stays bounded, the outliers

will still affect the estimate, which will differ from the “true value” of the parameter

vector.

Despite the very intuitive and qualitative character of the previous considerations

and the simplicity of the 2D line estimation example, we believe that it is now clear

why the estimation of the parameters of a model in presence of outliers constitutes

a very tricky and challenging problem. RANSAC is an effective algorithm to cope

with these types of problems.

14

D
ra
ft

3
RANdom Sample And Consensus

This chapter is structured as follows. First we will briefly introduce the RANSAC

algorithm in Section 3.1. In Section 3.2 we will present the notation and provide some

definitions that will facilitate the discussion of the technical details of the algorithm

(Section 3.3 and 3.4). Finally we will present related works in the literature in Section

3.5.

3.1 Introduction

The RANSAC algorithm (RANdom Sample And Consensus) was first introduced

by Fischler and Bolles [FB81] in 1981, as a method to estimate the parameters

of a certain model1 starting from a set of data contaminated by large amounts of

outliers. In this tutorial, following the definition given in Section 2.2, a datum is

considered to be an outlier if it will not fit the “true” model instantiated by the

“true”’ set of parameters within some error threshold that defines the maximum

deviation attributable to the effect of noise. The percentage of outliers which can

be handled by RANSAC can be larger than 50% of the entire data set. Such a per-

centage, know also as the breakdown point, is commonly assumed to be the practical

limit for many other commonly used techniques for parameter estimation (such as

all the least squares flavors or robust techniques like the least median of squares

[Hub81, RL87, Men95, Zha97, Ste99]). We want to mention here a robust estimator

proposed by Stewart called MINPRAN [Ste95], capable of estimating the parameters

1Fischler and Bolles used RANSAC to solve the Location Determination Problem (LDP), where
the goal is to determine the points in the space that project onto an image into a set of landmarks
with known locations.

15

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

of a model using datasets containing more than 50% of outliers.

Despite many modifications, the RANSAC algorithm is essentially composed of

two steps that are repeated in an iterative fashion (hypothesize–and–test framework):

• Hypothesize. First minimal sample sets (MSSs) are randomly selected from

the input dataset and the model parameters are computed using only the el-

ements of the MSS. The cardinality of the MSS is the smallest sufficient to

determine the model parameters2 (as opposed to other approaches, such as

least squares, where the parameters are estimated using all the data available,

possibly with appropriate weights).

• Test. In the second step RANSAC checks which elements of the entire dataset

are consistent with the model instantiated with the parameters estimated in

the first step. The set of such elements is called consensus set (CS).

RANSAC terminates when the probability of finding a better ranked CS drops be-

low a certain threshold. In the original formulation the ranking of the CS was its

cardinality (i.e. CSs that contain more elements are ranked better than CSs that

contain fewer elements).

3.2 Preliminaries

To facilitate the discussion that follows, it is convenient to introduce a suitable

formalism to describe the steps for the estimation of the model parameters and for

the construction of the CS. As usual we will denote vectors with boldface letters

and the superscript (h) will indicate the hth iteration. The symbol x̂ indicates the

estimated value of the quantity x. The input dataset, which is composed of N

elements, is indicated by D = {d1, . . . ,dN} and we will indicate a MSS with the

letter s. Let θ ({d1, . . . ,dh}) be the parameter vector estimated using the set of

data {d1, . . . ,dh}, where h ≥ k and k is the cardinality of the MSS. The model space

M is defined as:

M(θ)
def
=
{
d ∈ Rd : fM(d;θ) = 0

}

where θ is a parameter vector and fM is a smooth function whose zero level set

contains all the points that fit the modelM instantiated with the parameter vector

2Suppose we want to estimate a line: in this case the cardinality of the MSS is 2, since at least
two distinct points are needed to uniquely define a line.

16

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

θ. We define the error associated with the datum d with respect to the model space

as the distance from d to M(θ):

eM(d,θ)
def
= min
d′∈M(θ)

dist(d,d′)

where dist(·, ·) is an appropriate distance function. Using this error metric, we define

the CS as:

S (θ)
def
= {d ∈ D : eM(d;θ) ≤ δ} (3.1)

where δ is a threshold that can either be inferred from the nature of the problem

or, under certain hypothesis, estimated automatically [WS04] (see Figure 3.1 for a

pictorial representation of the previous definitions). In the former case, if we wantD
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

more than 50% of outliers.

Despite many modifications, the RANSAC algorithm is essentially composed of

two steps that are repeated in an iterative fashion (hypothesize–and–test framework):

• Hypothesize. First minimal sample sets (MSSs) are randomly selected from

the input dataset and the model parameters are computed using only the el-

ements of the MSS. The cardinality of the MSS is the smallest sufficient to

determine the model parameters2 (as opposed to other approaches, such as

least squares, where the parameters are estimated using all the data available,

possibly with appropriate weights).

• Test. In the second step RANSAC checks which elements of the entire dataset

are consistent with the model instantiated with the parameters estimated in

the first step. The set of such elements is called consensus set (CS).

RANSAC terminates when the probability of finding a better ranked CS drops be-

low a certain threshold. In the original formulation the ranking of the CS was its

cardinality (i.e. CSs that contain more elements are ranked better than CSs that

contain fewer elements).

3.2 Preliminaries

To facilitate the discussion that follows, it is convenient to introduce a suitable

formalism to describe the steps for the estimation of the model parameters and for the

construction of the CS. As usual we will denote vectors with boldface letters and the

superscript (h) will indicate the hth iteration. The symbol x̂ indicates the estimated

value of the quantity x. The input dataset which is composed of N elements is

indicated by D = {d1, . . . , dN} and we will indicate a MSS with the letter s. Let

θ ({d1, . . . , dh}) be the parameter vector estimated using the set of data {d1, . . . , dh},

where h ≥ k and k is the cardinality of the MSS. The model space M is defined as:

M(θ)
def
=
�
d ∈ Rd : fM(d;θ) = 0

�

where θ is a parameter vector and fM is a smooth function whose zero level set

contains all the points that fit the model M instantiated with the parameter vector

2Suppose we want to estimate a line: in this case the cardinality of the MSS is 2, since at least
two distinct points are needed to uniquely define a line.

16

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

more than 50% of outliers.

Despite many modifications, the RANSAC algorithm is essentially composed of

two steps that are repeated in an iterative fashion (hypothesize–and–test framework):

• Hypothesize. First minimal sample sets (MSSs) are randomly selected from

the input dataset and the model parameters are computed using only the el-

ements of the MSS. The cardinality of the MSS is the smallest sufficient to

determine the model parameters2 (as opposed to other approaches, such as

least squares, where the parameters are estimated using all the data available,

possibly with appropriate weights).

• Test. In the second step RANSAC checks which elements of the entire dataset

are consistent with the model instantiated with the parameters estimated in

the first step. The set of such elements is called consensus set (CS).

RANSAC terminates when the probability of finding a better ranked CS drops be-

low a certain threshold. In the original formulation the ranking of the CS was its

cardinality (i.e. CSs that contain more elements are ranked better than CSs that

contain fewer elements).

3.2 Preliminaries

To facilitate the discussion that follows, it is convenient to introduce a suitable

formalism to describe the steps for the estimation of the model parameters and for the

construction of the CS. As usual we will denote vectors with boldface letters and the

superscript (h) will indicate the hth iteration. The symbol x̂ indicates the estimated

value of the quantity x. The input dataset which is composed of N elements is

indicated by D = {d1, . . . , dN} and we will indicate a MSS with the letter s. Let

θ ({d1, . . . , dh}) be the parameter vector estimated using the set of data {d1, . . . , dh},

where h ≥ k and k is the cardinality of the MSS. The model space M is defined as:

M(θ)
def
=
�
d ∈ Rd : fM(d;θ) = 0

�

where θ is a parameter vector and fM is a smooth function whose zero level set

contains all the points that fit the model M instantiated with the parameter vector

2Suppose we want to estimate a line: in this case the cardinality of the MSS is 2, since at least
two distinct points are needed to uniquely define a line.

16

Figure 3.1: This figure pictorially displays the model spaceM as a green surface (the
locus for which fM(d;θ) = 0). The yellow surfaces represent the boundaries for a
datum to be considered an inlier (imagine that the distance function is the Euclidean
distance, hence the smallest distance between any two points on the yellow surface
and green surface is δ). Note that the structure of the green surface is both defined
by the model M and by the parameter vector θ. The inliers, represented as blue
dots, lie in between the two yellow “crusts”.

to relate the value of δ to the statistics of the noise that affects the data and the

distance function is the Euclidean norm, we can write:

eM(d,θ) = min
d′∈M(θ)

√√√√
n∑

i=1

(di − d′i)2 =

√√√√
n∑

i=1

(di − d∗i)2

17

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

where d∗ is the orthogonal projection of d onto the model spaceM(θ). Now suppose

that the datum d is affected by Gaussian noise η ∼ N (0, σηI) so that η = d − d∗.
Our goal is to calculate the value of δ that bounds, with a given probability Pinlier,

the error generated by a true inlier contaminated with Gaussian noise. More formally

we want to find the value δ such that:

P [eM(d,θ) ≤ δ] = Pinlier (3.2)

Following [HZ03], p. 118, we can write the following chain of equations:

P [eM(d,θ) ≤ δ] = P

[
n∑

i=1

η2
i ≤ δ2

]
= P

[
n∑

i=1

(
ηi
ση

)2

≤ δ2

σ2
η

]

and since ηi/ση ∼ N (0, 1), the random variable
∑n

i=1

(
ηi
ση

)2

has a χ2
n distribution.

Hence:

δ = ση

√
F−1
χ2
n

(Pinlier) (3.3)

where F−1
χ2
n

is the inverse cumulative distribution function associated with a χ2
n ran-

dom variable. Figure 3.2(a) displays the function F−1
χ2
n

for different values of n. Note

that when Pinlier tends to one (i.e. we want to pick an error threshold such that all

the inliers will be considered) the value of F−1
χ2
n

diverges to infinity. Values of Pinlier

close to one will return a large threshold with the risk of including some outliers as

well. On the other hand, too small values of Pinlier will generate a value for δ which

is too tight, and possibly some inliers will be discarded.

3.3 RANSAC Overview

A pictorial representation of the RANSAC fundamental iteration together with

the notation just introduced is shown in Figure 3.3. As mentioned before, the

RANSAC algorithm is composed of two steps that are repeated in an iterative fashion

(hypothesize-and-test framework). First a MSS s(h) is selected from the input dataset

and the model parameters θ(h) are computed using only the elements of the selected

MSS. Then, in the second step, RANSAC checks which elements in the dataset D

are consistent with the model instantiated with the estimated parameters and, if it is

the case, it updates the current best CS S∗ (which, in the original Fischler and Bolles

18

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

0.5 0.6 0.7 0.8 0.9 1100

101

102

P

F
−

1
χ

2

n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8

0.9 0.92 0.94 0.96 0.98 12.5

3

3.5

4

4.5

5

P

δ σ
η

Normalized Error Threshold

(a) (b)

Figure 3.2: Figure (a) shows the function F−1
χ2
n

for different values of n. Note

that the vertical axis values are logarithmically spaced). Figure (b) displays the
normalized error threshold for the symmetric transfer error of planar correspondences
(n = 2 + 2 = 4).

formulation, is the CS with the largest cardinality). The algorithm terminates when

the probability of finding a better CS drops below a certain threshold. In the next

paragraphs we will discuss how to estimate the number of iterations that RANSAC

is supposed to perform and other approaches to rank the CSs.

3.3.1 How many iterations?

Let q be the probability of sampling from the dataset D a MSS s that produces an

accurate estimate of the model parameters. Consequently, the probability of picking

a MSS containing at least one outlier (i.e. a MSS that produces a biased estimate of

the true model parameter vector) is 1− q. If we construct h different MSSs, then the

probability that all of them are contaminated by outliers is (1− q)h (this quantity

tends to zero for h going to infinity: sooner or later we will pick something good!).

We would like to pick h (i.e. the number of iterations) large enough so that the

probability (1− q)h is smaller or equal than a certain probability threshold ε (often

called alarm rate), i.e. (1− q)h ≤ ε. The previous relation can be inverted so that

we can write:

h ≥
⌈

log ε

log (1− q)

⌉

19

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Build MSSBuild MSS
Estimate

parameter
vector

Estimate
parameter

vector
Build the CSBuild the CS

ModelModelBias strategyBias strategy

Termination
criterion

Termination
criterion

Noise
scale

Noise
scale

D s(h) θ(h)

T̂
(h)
iter S(h)

S∗

θ∗

RANSAC hth iteration (keep the best CS)

Figure 3.3: Pictorial representation of the fundamental RANSAC iteration.

where dxe denotes the smallest integer larger than x. Therefore we can set the

threshold for the iterations to:

T̂iter =

⌈
log ε

log (1− q)

⌉
(3.4)

3.3.2 Constructing the MSSs and Calculating q

If we imagine that the inliers inside the dataset D are noise free, then any MSS

entirely composed of inliers will generate the “true” value of the parameter vector.3

If all the elements in the dataset have the same probability of being selected, then the

probability of obtaining a MSS composed only of inliers is:

q =

(
NI
k

)
(
N
k

) =
NI !(N − k)!

N !(NI − k)!
=

k−1∏

i=0

NI − i
N − i (3.5)

3This statement is not completely true. In real life applications it is not possible to disregard
numerical approximations or to pick the noise threshold δ to be an arbitrarily small positive number.
Therefore there exist configurations of inliers such that the estimate of the parameter vector can
still be biased (see [TM05] for further insights regarding this issue).

20

D
ra

ft

Copyright of Marco Zuliani 2008–2011 Draft

where NI is the total number of inliers. Note that if N,NI � k, then q is approxi-

mately equivalent to the probability of picking for k times an inlier from the dataset

(with re-insertion). In fact:

q =
k−1∏

i=0

NI − i
N − i ≈

(
NI

N

)k
(3.6)

Unfortunately, to compute q we should know NI , which is generally not known a

priori. However it is easy to verify that for any N̂I ≤ NI we have q(N̂I) ≤ q(NI) and

consequently (1− q(NI))
h ≥

(
1− q(N̂I)

)h
(where we made explicit the dependency

of q on the number of inliers). Therefore we can estimate the maximum number

of iterations using the cardinality of the largest set of inliers found so far (call this

N̂I), which can be regarded as a conservative estimate of NI . Hence, the iteration

threshold can be fixed to:

T̂iter =

log ε

log
(

1− q(N̂I)
)

(3.7)

Note however that some researchers (for example Tordoff et al. [TM05]) consider

this threshold on the number of the iterations to be over-optimistic, since in presence

of noisy data it is not enough to generate a MSS composed only of inliers to obtain

a reliable estimate of the parameters of the model. This observation motivates some

of the considerations that will be outlined in the next section.

Remark 1. Sometimes there exists some a priori information regarding the proba-

bility that a datum is an inlier or an outlier. This information can be used to guide

the sampling procedure in a more principled manner (see also [VL01, KK04, CM05,

TM05]). In the biased sampling case the probability of picking the element dj at the

lth draw will be denoted as:

P (dj|D \ {di(1) , . . . ,di(l−1)}) (3.8)

where i(l) denotes the index of the element in the dataset D obtained at the lth draw.

The probability (3.8) is determined by the bias ω(d) ∈ R+, which incorporates the a

priori information regarding the likelihood of an element to be an inlier. In an ideal

case, the weight of any inlier is larger than the weight of any outlier, but in real life

21

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

scenarios this hypothesis does not necessarily hold true (otherwise the detection of the

inliers versus the outlier would be greatly simplified: we would just have to identify

the correct threshold for the weights). Clearly, the computation of the probability of

obtaining a MSS composed only of inliers is complicated by the fact that the order in

which the elements are sampled matters: the element picked at the lth draw modifies

the probability of picking a certain element at the (l+ 1)th draw. Thus the probability

of sampling k inliers in the order specified by the indices i1, . . . , ik is:

P (di1 , . . . ,dik) =

(1th draw) P (di1 ∈ DI)·
(2nd draw) P (di2 ∈ DI \ {di1})·

...

(kth draw) P (dik ∈ DI \ {di1 , . . . ,dik−1
})

(3.9)

The previous expression confirms what was anticipated earlier, i.e. that the computa-

tion of q is complicated by the fact that the order of selection of the elements matters.

To compute q we need to enumerate all the possible permutations of k inliers (recall

that k is the cardinality of a MSS), which turn out to be:

Number of permutations of the inliers =
NI !

(NI − k)!
=

k−1∏

i=0

(NI − i)

If I is the set of all the permutations of k indices of inliers then we can write:

q =
∑

{i1,...,ik}∈I
P (di1 , . . . ,dik) (3.10)

where the elements of the sums can be expanded using (3.10). This expression can

be used to design a function that updates the probability every time the number of

inliers is updated. However this is not a trivial task, since the number of the terms

of the summation can be extremely large4.

4If the number of inliers is NI = 100 and the cardinality of the MMS is k = 4 the number of
terms in the summation (3.10) is almost four millions.

22

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

3.3.3 Ranking the Consensus Set

In the original formulation of RANSAC, the ranking r of a consensus set was nothing

but its cardinality:

r(CS)
def
= |CS|

In other words CSs that are larger are ranked higher. Thus RANSAC can be seen

as an optimization algorithm [TZ00] that minimizes the cost function:

CM(D;θ) =
N∑

i=1

ρ(di,M(θ)) (3.11)

where:

ρ(d,M(θ)) =

0 |eM(d,θ)| ≤ δ

1 otherwise
(3.12)

This observation leads immediately to an approach based on M-estimators [Hub81,

RL87, Zha97], the idea being to substitute the function ρ with a more sensible one.

The first function that we consider is the following:

ρ(d,M(θ)) =

eM(d,θ) eM(d,θ) ≤ δ

δ otherwise

Using this re-descending M-estimator, the inliers are scored according to their fitness

to the model, while the outilers are given a constant weight. Torr et al. refer to

this modification of the original RANSAC algorithm with the name MSAC, i.e.

M-estimator SAmple and Consensus. We agree with their claim:

The implementation of this new method yields a modest to hefty benefit

to all robust estimations with absolutely no additional computational

burden. Once this is understood there is no reason to use RANSAC in

preference to this method.

A further improvement can be obtained modifying RANSAC in order to maximize the

likelihood of the solution. This is the approach implemented by MLESAC [TZ00], a

variation of RANSAC that evaluates the likelihood of the hypothesis by representing

the error distribution as a mixture model. More precisely, the probability distribution

of the error for entire dataset (comprising both the iniers and outliers) can be modeled

23

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

as the mixture of two distributions (one taking into account the inliers, tho other

the outliers) so that the likelihood can be expressed as:

p[e(D,M(θ))|θ] =

N∏

i=1

(
γp
[
e(di,M(θ)|the ith element is an inlier

]
+

(1− γ)p
[
e(di,M(θ)|the ith element is an outlier

])

A common practice is to maximize the log-likelihood, which is given by:

L∗[e(D,M(θ))|θ] =

N∑

i=1

log
(
γp
[
e(di,M(θ))|the ith element is an inlier

]
+

(1− γ)p
[
e(di,M(θ))|the ith element is an outlier

])

Often times the error distributions for the inliers is modeled with a Gaussian distri-

bution:

p
[
e(di,M(θ))|the ith element is an inlier

]
=

1

Z
exp

(
−e(di,M(θ)2

2σ2
η

)

where Z is the appropriate normalization constant and ση indicates the noise stan-

dard deviation (see also equation (3.3)). The error statistics for the outliers is de-

scribed by a uniform distribution:

p
[
e(di,M(θ))|the ith element is an outlier

]
=

1
2emax

|e(di,M(θ))| ≤ emax

0 otherwise

where emax represents the largest error which can be possibly induced by the presence

of outliers (an estimate of such quantity can be obtained from the context the data

are drawn from). Note that in this case we need to estimate two quantities: the

parameter θ that maximizes the likelihood and the mixture coefficient γ. This is

traditionally done using the expectation maximization approach.5

5A good practical reference with Matlab™ & Octave code to perform this task can be found in
[Nab03]

24

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

3.4 Computational Complexity

In this section we will briefly discuss the computational complexity associated to

RANSAC.

3.4.1 Hypothesize Step

At each iteration we need to compute the parameters of the model starting from the

MSS (whose cardinality is k). Let’s define the cost of this operation to be Cestimate(k).

3.4.2 Test Step

Once the parameters have been estimated we need to evaluate how many data fit the

model. If the cost associated to compute the fitting of one single element is Cfitting,

then the overall cost is NCfitting. Note that the approach by Chum et al. [CM02]

aims at reducing the complexity of this stage.

3.4.3 Overall Complexity

Putting together the cost of the hypothesize and test steps, the overall complexity

of the algorithm in the worst case scenario is:

Complexity = O (Titer(Cestimate(k) +NCfitting)) (3.13)

3.5 Other RANSAC Flavors

Since 1981 RANSAC has become a fundamental tool in the computer vision and

image processing community. In 2006, for the 25th anniversary of the algorithm, a

workshop was organized at the International Conference on Computer Vision and

Pattern Recognition (CVPR) to summarize the most recent contributions and varia-

tions to the original algorithm, mostly meant to improve the speed of the algorithm,

the robustness and accuracy of the estimated solution and to decrease the depen-

dency from user defined constants. We regard with amusement the effort of the

researchers in finding colorful variations to the name of the original algorithm. Some

of these approaches (with their relative names) will be described in the following

paragraphs.

25

http://cmp.felk.cvut.cz/ransac-cvpr2006/

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

As pointed out by Torr et al. , RANSAC can be sensitive to the choice of the

correct noise threshold that defines which data points fit a model instantiated with

a certain set of parameters. If such threshold is too large, then all the hypotheses

tend to be ranked equally (good). On the other hand, when the noise threshold is

too small, the estimated parameters tend to be unstable (i.e. by simply adding or

removing a datum to the set of inliers, the estimate of the parameters may fluctu-

ate). To partially compensate for this undesirable effect, Torr et al. proposed two

modification of RANSAC called MSAC (M-estimator SAmple and Consensus) and

MLESAC (Maximum Likelihood Estimation SAmple and Consensus) [TZ00]. The

main idea is to evaluate the quality of the consensus set (i.e. the data that fit a

model and a certain set of parameters) calculating its likelihood (whereas in the

original formulation by Fischler and Bolles the rank was the cardinality of such set).

More details have been provided in Section 3.3.3. An extension to MLESAC which

keeps into account the prior probabilities associated to the input dataset is proposed

by Tordoff et al. in [TM05]. The resulting algorithm is dubbed Guided-MLESAC.

Along similar lines, Chum proposed to guide the sampling procedure if some a priori

information regarding the input data is known, i.e. whether a datum is likely to

be an inlier or an outlier. The proposed approach is called PROSAC, PROgressive

SAmple Consensus [CM05].

Chum et al. also proposed a randomized version of RANSAC called R-RANSAC

[CM02] to reduce the computational burden to identify a good CS. The basic idea

is to initially evaluate the goodness of the currently instantiated model using only a

reduced set of points instead of the entire dataset. A sound strategy will tell with

high confidence when it is the case to evaluate the fitting of the entire dataset or

when the model can be readily discarded. It is reasonable to think that the impact of

this approach is more relevant in cases where the percentage of inliers is large. The

type of strategy proposed by Chum et al. is called preemption scheme. In [Nis03],

Nistér proposed a paradigm called Preemptive RANSAC that allows real time robust

estimation of the structure of a scene and of the motion of the camera. The core

idea of the approach consists in generating a fixed number of hypothesis so that the

comparison happens with respect to the quality of the generated hypothesis rather

than against some absolute quality metric.

Other researchers tried to cope with difficult situations where the noise scale is

not know and/or multiple model instances are present. The first problem has been

tackled in the the work by Wang and Suter [WS04]. Some solutions for the second

26

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

problem where instead proposed in [ZKM05] and more recently in [TF08]. More

specifically, Toldo et al. represent each datum with the characteristic function of the

set of random models that fit the point. Then multiple models are revealed as clus-

ters which group the points supporting the same model. The clustering algorithm,

called J-linkage, does not require prior specification of the number of models, nor it

necessitate manual parameters tuning.

RANSAC has also been tailored for recursive state estimation applications, where

the input measurements are corrupted by outliers and Kalman filter approaches,

which rely on a Gaussian distribution of the measurement error, are doomed to fail.

Such an approach, dubbed KALMANSAC, is presented in [VJFS05].

27

D
ra
ft

4
RANSAC at Work

In this chapter we will describe some simple applications of RANSAC. To facilitate

the discussion we will utilize the RANSAC Toolbox for Matlab™ & Octave .

4.1 The RANSAC Toolbox for Matlab™ & Octave

In this section we briefly introduce the RANSAC Toolbox for Matlab™ & Octave .

This toolbox is highly customizable and it is designed to be a flexible research/didac-

tic resource. The toolbox is now hosted on Github. Just follow the previous link and

you wil be able to pull from the repository the latest version of the package. For those

who have git running on their machine just type from the command shell prompt the

command git clone git://github.com/RANSAC/RANSAC-Toolbox.git to clone the

repository in the current directory (note that a folder RANSAC-Toolbox will be gen-

erated).

The sub–directory Examples contains some example scripts to estimate the pa-

rameters of lines and planes as well as rotation, scaling and translations (RST) and

homographic transformations. Each example will be described in some more detail

in the next sections.

4.1.1 RANSAC.m

This is the driver function that implements the RANSAC algorithm. Here we will

describe in detail the options that are accessible to the user and that can be listed

issuing the usual command help RANSAC.

28

https://github.com/RANSAC/RANSAC-Toolbox

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Input Parameters

• X: this matrix collects the input dataset. Its dimensions are d×N and the ith

column contains the datum di.

• options: this structure collects the options for the algorithm. If an option

is not specified the function will either use a default value or issue an error

message (if a default value for the desired option does not exist).

– sigma: scalar value of the noise standard deviation under the assumption

that the components of the input are corrupted by Gaussian noise with

covariance matrix σηI. See the discussion in Section 3.2 and Equation

(3.3).

– P inlier: the probability that a point whose fitting error is less or equal

than δ is actually an inlier (see Equation (3.2)). Default value Pinlier =

0.99.

– T noise squared: when this value is provided, it will force the error

threshold to be equal to δ2. If this value is provided, the calculation

of the threshold using the value of ση (see Equation (3.3)) is overridden.

– epsilon: False alarm rate, i.e. the probability that the algorithm through-

out all the iterations will never sample a MSS containing only inliers (see

Section 3.3.1). Default value ε = 0.001.

– Ps: Probability mass distribution to bias the sampling: Ps(i) = P (di is sampled).

Note that Ps ∈ RN
+ must be normalized so that

∑N
i=1 P (di is sampled) =

1. The default value is a uniform distribution, i.e. P (di is sampled) = 1
N

.

– ind tabu: logical array that identifies the elements that should not be

selected to construct the MSSs during the sampling (default is empty).

– validateMSS fun: function that validates the MSS sampled from the

dataset (see 4.2.5). A typical template for this function is found in Ap-

pendix D.1.1.

– est fun: function that returns the estimate of the parameter vector start-

ing from a set of data. A typical template for this function is found in

Appendix D.1.2.

29

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

– validateTheta fun: function that validates the parameter vector esti-

mated from the MSS. A typical template for this function is found in

Appendix D.1.3.

– man fun: function that returns the fitting error of the data. A typical

template for this function is found in Appendix D.1.4.

– parameters: a structure that is passed to all the estimation, validation

and error functions containing data to be used by such functions (e.g.

parameters.alpha)

– mode: A string that specifies the algorithm flavour, specifically the raking

of the CS, as described in see Section 3.3.3 (default = MSAC):

∗ ’RANSAC’: original Fischler and Bolles formulation [FB81], the rank-

ing of the CS is its cardinality (see (3.11))

∗ ’MSAC’: Torr and Zisserman MSAC formulation [TZ00], the ranking

of the CS is based on a M-estimator (see (3.12))

∗ ’MLESAC’: Torr and Zisserman MLESAC formulation [TZ00], the

ranking of the CS is based on a M-estimator (see Section (3.3.3))

– max iters: maximum number of iterations allowed (overrides the thresh-

old (3.4), default = ∞)

– min iters: minimum number of iterations required (overrides the thresh-

old (3.4), default = 0)

– max no updates: maximum number of iterations with no updates (default

= 0)

– reestimate: true to resestimate the parameter vector using all the de-

tected inliers (default = false)

– fix seed: set to true to fix the seed of the random number generator so

that the results on the same dataset are repeatable (default = false)

– verbose: true for verbose output (default = true)

– notify iters: if the verbose output is enabled this parameter specifies

the maximim number of iterations that will occur before a progress mes-

sages is displayed (default is empty).

30

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Output Parameters

• results: a structure containing the results of the estimation. Its fields are the

following:

– Theta: The vector of the estimates of the parameters of the model (see

Section 3.2).

– E: A 1×N vector containing the fitting error for each data point calculated

using the function man fun.

– CS: A 1×N logical vector whose entries are true for the data points that

have been labelled as inliers.

– J: Overall ranking of the solution (see Section 3.3.3).

– iter: Number of iterations performed by RANSAC before converging.

• results: this structure collects the options for the algorithm, after the default

values have been set.

31

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

4.2 Some Examples Using the RANSAC Toolbox

4.2.1 Estimating Lines

In this section we will describe how to estimate a line that fits a set of 2D points in

presence of outliers utilizing RANSAC. We will approach the problem in two different

ways. The first one, called algebraic regression, aims at minimizing an algebraic

constraint, whereas the second approach, called orthogonal regression provides the

maximum likelihood estimate of the parameters (see the introductory Section 2.1.1).

Parameter Estimation (Algebraic Regression)

The implicit model of a line is θ1x1 + θx2 + θ3 = 0. The scaling of the parameter

vector θ is immaterial, therefore we just need two equations (in other words two

points will suffice to estimate a line, i.e. the cardinality of the MSS is 2). In case we

are dealing with N points the following equation must hold:

N∑

j=1

(
θ1x

(j)
1 + θ2x

(j)
2 + θ3

)2

= 0

This implies that:

θ3 = − 1

N

N∑

j=1

(
θ1x

(j)
1 + θ2x

(j)
2

)
= −θ1x̄− θ2ȳ (4.1)

where the barred quantities indicate the sample means. If we define:

∆(j) def
= θ1x

(j)
1 + θ2x

(j)
2 + θ3 = θ1x̃

(j)
1 + θ2x̃

(j)
2

(where the tilde denotes the corresponding quantities after the mean value has been

removed) in order to estimate the line of interest we can minimize the cost function:

J =
N∑

j=1

(
∆(j)

)2
(4.2)

32

D
ra

ft

Copyright of Marco Zuliani 2008–2011 Draft

To avoid the trivial solution given by θ1 = θ2 = 0 we can perform the minimization

subject to the constraint θ2
1 + θ2

2 = 1. If we construct the following matrix:

A
def
=

x̃
(1)
1 x̃

(1)
2

...
...

x̃
(N)
1 x̃

(N)
2

 (4.3)

the minimization problem can be rewritten in matrix form as:

ψ∗ = argmin
θ1,θ2∈R
θ2
1+θ2

2=1

J = argmin
ψ∈R2

‖ψ‖=1

‖Aψ‖2 (4.4)

where:

ψ
def
=

[
θ1

θ2

]

This type of problems can be readily solved using the SVD decomposition of A (see

Appendix B.4.2). Note that once we estimate ψ we can immediately recover θ3 from

(4.1). If we are willing to sacrifice some accuracy in the estimation of the parameters,

we can solve the previous problem in closed form. The SVD decomposition of the

matrix A is related to the eigen decomposition of ATA as stated in Lemma 1. There-

fore the solution of the problem is obtained calculating the eigenvector corresponding

to the smallest eigenvalue. A quick way to compute these quantities is described in

Appendix B.3. The source code that implements the line parameter estimation is

listed in Appendix D.2.1.

Remark 2. The least square problem to estimate the parameters of the line can be

set up in a different manner. If we define the matrix A to be:

A
def
=

x
(1)
1 x

(1)
2 1

...
...

x
(N)
1 x

(N)
2 1

then we need to solve the new constrained minimization problem:

θ∗ = argmin
θ∈R3

‖θ‖=1

‖Aθ‖2

33

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

This formulation is thoretically equivalent to (4.4), however practically it is not nu-

merically sound. Without digging too much into the analytical details, the quantities

that appear in A are not well scaled, more specifically the presence of ones in the

last column (a quantity known with no error uncertainty) is likely to have a different

order of magnitude than the remaining components of the matrix (the measurements

affected by noise).

Parameter Estimation (Orthogonal Regression)

This method returns the maximum likelihood estimate of the parameters of the line.

As explained in Section 2.1.1, the final goal is to solve the non linear optimization

problem:

θ̂ = argmin
θ

J(θ) = argmin
θ

N∑

i=1

ρ (eM(xi;θ))

The solution can be obtained via an iterative descent method [Lue03, Ber99]. Most of

these methods require the computation of the gradient. One possibility is to evaluate

the gradient numerically, but the results are usually more accurate if the expression

of the gradient is computed in closed form. Because of the chain rule we can write:

∂J

∂θj
(θ) =

N∑

i=1

∂ρ

∂eM
(eM(xi;θ))

∂eM
∂θj

(xi;θ)

Since eM(x;θ) = θ1x1+θ2x2+θ3√
θ2
1+θ2

1

, after some simple algebra, we have:

∂eM
∂θ1

(x;θ) =
x1√
θ2

1 + θ2
2

− θ1

θ2
1 + θ2

2

eM(x;θ)

∂eM
∂θ2

(x;θ) =
x2√
θ2

1 + θ2
2

− θ2

θ2
1 + θ2

2

eM(x;θ)

∂eM
∂θ3

(x;θ) =
1√

θ2
1 + θ2

2

The values of the gradient of estimator ρ associated to the Gaussian error distribution

is:
∂ρ

∂eM
(eM(xi;θ)) =

eM(xi;θ)

σ2
η

34

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

whereas for the Cauchy–Lorentz distribution is:

∂ρ

∂eM
(eM(xi;θ)) =

eM(xi;θ)
ση

1 + 1
2

(
eM(xi;θ)

ση

)2

Error Estimation

The fitting error is defined as the squared signed distance between the point x and

the line M(θ):

eM(x;θ)2 =
(θ1x1 + θ2x2 + θ3)2

θ2
1 + θ2

2

If we assume that the point x is affected by Gaussian noise, then eM(x;θ)2 is χ2
2

distributed. The function that computes the fitting error of the data is listed in

Appendix D.2.1.

4.2.2 Estimating Planes

We will describe how it is possible to utilize RANSAC to identify points in R3

that belong to a plane in the space (i.e. to an affine linear manifold in R3) and

simultaneously estimate the parameters of such manifold.

Parameter Estimation

The implicit model of the plane containing the points x(1), . . . ,x(NI) can be described

by a system of linear equations:

θ1x
(1)
1 + θ2x

(1)
2 + θ3x

(1)
3 + θ4 = 0

...
...

...

θ1x
(N)
1 + θ2x

(N)
2 + θ3x

(N)
3 + θ4 = 0

It is convenient to group these equations in matrix form, so that we can write:

(
x(1)

)T
1

...
...(

x(N)
)T

1

θ = Aθ = 0 (4.5)

35

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Therefore the parameter vector that instantiates the plane containing the points

x(1), . . . ,x(NI) is given by:

θ∗ = argmin
θ∈R4

‖θ‖=1

‖Aθ‖2 (4.6)

Note that the model has only three degrees of freedom, since the length of the

parameter vector is immaterial. The solution of (4.6) can be readily obtained using

the SVD decomposition of A (see Appendix B.4.2). Since a plane is uniquely defined

at least by three points, the cardinality of the MSS is k = 3. Therefore, using the

notation introduced in Section 3.2, the model manifold (i.e. an affine space) can be

expressed as:

M(θ)
def
=
{
x ∈ R3 :

[
xT 1

]
θ = 0

}

The Matlab™ & Octave function that implements the parameter estimation routine

is listed in Appendix D.2.2.

Error Estimation

The fitting error is defined as the distance between the point x and the manifold

M(θ). For each data point x the unique solution of argminx′∈M(θ) ‖x − x′‖2 can

be obtained using the method of the Lagrange multipliers. The squared distance

between x and its orthogonal projection onto M(θ) (i.e. the plane) is given by the

well know Line expression:

e(x,M(θ))2 =

([
xT 1

]
θ
)2

‖θ1:3‖2

If we assume that the point x is affected by Gaussian noise, then e(x,M(θ))2 is

χ2
3 distributed. The function that computes the fitting error of the data is listed in

Appendix D.2.2.

4.2.3 Estimating a Rotation Scaling and Translation

We will describe how it is possible to utilize RANSAC to identify points in R2 that

are related via a rotation, a scaling and a translation (RST) and simultaneously

estimate the parameters of such transformation. The functional form of the RST

36

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

transformation (in Euclidean coordinates) is given by:

Tθ(y) = s

[
cosφ − sinφ

sinφ cosφ

]
y +

[
t1

t2

]
(4.7)

The parameter vector is θ =
[
θ1 θ2 θ3 θ4

]T
=
[
s cosφ s sinφ t1 t2

]T
.

Parameter Estimation

The parameters of an RST transformation can be estimated in a least square sense

after reordering (4.7) as:

Tθ(y)︸ ︷︷ ︸
b

=

[
y1 −y2 1 0

y2 y1 0 1

]

︸ ︷︷ ︸
A

θ =
[
S I

]
θ (4.8)

where S is skew symmetric and I is the identity. Each point correspondence con-

tributes for two equations and since the total number of parameters is four we need

at least two point correspondences. Thus the cardinality of the MSS is k = 2. To

estimate the parameter models starting from the MSS we need to solve a system in

four equations and four unknowns. In principle we could use the same least square

approach1 used to solve the overdetermined linear system obtained from more than

two corresponding point pairs.

However the parameter estimation using solely the elements in the MSS should

be as fast as possible since it needs to be performed in every iteration of RANSAC, as

shown by equation (3.13) (whereas the estimation starting from the CS is in general

performed only at the end). We will demonstrate how a more careful analysis of the

previous equations can lead to a relevant improvement in the performance. Grouping

the equations (4.8) obtained using two point correspondences we can write:

[
Tθ(y(1))

Tθ(y(2))

]
=

[
S(1) I

S(2) I

]
θ

If we define the matrix M
def
= S(1)−S(2) (which is nothing but the Schur complement

1Least squares can be solved efficiently via Gaussian elimination. This is implemented in Mat-
lab™ & Octave using the compact notation x=A\b;. See also Appendix B.4.1.

37

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

of the bottom left identity), we can decompose the previous equation as:

[
Tθ(y(1))

Tθ(y(2))

]
=

[
I I

0 I

][
M 0

0 I

][
I 0

S(2) I

]
θ =

[
M I

0 I

][
I 0

S(2) I

]
θ

Bringing the matrices that multiply the parameter vector on the left hand side of

the previous equality we get:

[
I 0

−S(2) I

][
M−1 −M−1

0 I

][
Tθ(y(1))

Tθ(y(2))

]
=

=

[
I 0

−S(2) I

][
M−1

(
Tθ(y(1))− Tθ(y(2))

)

Tθ(y(2))

]
=

[
θ1:2

θ3:4

]

Thus we can recover the parameter vector via simple algebraic operations and back

substitutions, first computing θ1:2 = M−1
(
Tθ(y(1))− Tθ(y(2))

)
and then θ3:4 =

−S(2)θ1:2 + Tθ(y(2)). Note that M−1 = 1
|M |M

T and |M | = M2
1,1 + M2

1,2. The total

count of basic algebraic operations is listed in Table 4.1. The parameter vector can

be estimated performing 12 multiplications and 11 additions. The time unit column

shows at which stage the operation can be performed (assuming that the operations

for each single task can be executed in parallel). The overall estimation will require

just 6 clock cycles (on modern CPUs capable of streamed operations). The Matlab™
& Octave function that computes the parameter vector (estimate RST.m) is listed

in Appendix D.2.3.

Table 4.1: Counting operations for the RST parameter estimation using the MSS

Task Multiplications Additions Time Unit

M 0 2 1
|M | 2 1 2
M−1 2 0 3
Tθ(y(1))− Tθ(y(2)) 0 2 1
θ1:2 4 2 4
−S(2)θ1:2 4 2 5
θ3:4 0 2 6

12 11

38

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Note that the normalization procedure described in Section C.22 allows us to

greatly simplify the estimation of the parameters also when the number of points

is larger than two (i.e. the cardinality of the MSS). Let’s first recall the following

definition:

dav
def
=

1

N

N∑

i=1

‖y(i) − yc‖

and let’s set s
def
=

√
2

dav
so that ȳ(i) def

= s
(
y(i) − yc

)
. Mutatis mutandis, the normal

equations originated from (4.8) are:

(
ĀT Ā

)
θ = ĀTb

where the bar indicates that the coordinates have been normalized. To simplify the

notation for the next formula let’s define p(i) = ȳ(i) and q(i) = Tθ(y(i)). Because of

the normalization, simple algebra is enough to reveal the diagonal structure of the

normal matrix:

ĀT Ā =

a 0 0 0

0 a 0 0

0 0 N 0

0 0 0 N

where a =
∑N

i=1

(
(p

(i)
1)2 + (p

(i)
2)2

)
. Hence:

θ1 =
1

a

N∑

i=1

p
(i)
1 q

(i)
1 + p

(i)
2 q

(i)
2

θ2 =
1

a

N∑

i=1

−p(i)
2 q

(i)
1 + p

(i)
1 q

(i)
2

θ3 = 0

θ4 = 0

Note that θ3 = θ4 = 0, since they express the translation in the normalized coordi-

nate frame. The last step consist in removing the effect of the normalization from

the parameters (refer to equation (C.3) for more details). The procedure just illus-

trated is clearly more efficient (in terms of computational complexity) than solving an

2The discussion is related to the estimation of homographies, but the procedure is valid in more
general contexts.

39

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

overdetermined linear system (either via QR factorization or SVD decomposition).

4.2.4 Estimating an Affine Transformation

TO BE FINISHED 1: Add Affine Estimation Discussion

4.2.5 Estimating Homographies

In this section we will study in more detail the design of a RANSAC algorithm

to estimate the parameters of an homography given a set of point correspondences

(of course, possibly contaminated by outliers). Before continuing we recall that an

homography is a linear transformation in the projective space that relates two views

of a planar scene obtained via an ideal pin-hole camera. The functional form of the

homographic transformation (in Euclidean coordinates) is given by the nonlinear

relation:

Tθ(y) =

[
θ1y1+θ4y2+θ7
θ3y1+θ6y2+θ9
θ2y1+θ5y2+θ8
θ3y1+θ6y2+θ9

]

We also recall that an homography is parameterized by nine numbers but it only has

eight degrees of freedom, since scaling in the projective space is immaterial.

Parameter Estimation

The parameters of the homography can be estimated via the normalized DLT al-

gorithm, which is discussed in some more detail in Appendix C. The Matlab™ &

Octave function that implements the parameter estimation routine is listed in Ap-

pendix D.2.4.

The Sideness Constraint

As we saw in Section 3.4 the complexity of RANSAC depends also on the effort

needed to estimate the parameters starting from the MSS (see Equation(3.13)). It

should be noticed that certain configurations of the points that compose the MSS are

not “physically” meaningful even though they would yield mathematically acceptable

estimates of the parameters. Sometimes detecting this pathological configurations is

computationally cheap if compared to the effort of estimating the parameters from

40

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

x
1

x
h

x
k

x
l

left semiplane

right semiplane

x'
1

x'
h

x'
k

x'
l

left semiplane

right semiplane

x'
1

x'
h

x'
k

x'
l

left semiplane

right semiplane

x'
1

x'
h

x'
k

x'
l

left semiplane

right semiplane

Figure 4.1: The top left figure displays the arrangements of the points composing
the MSS in the first image and the line used to compute the sideness constraint. The
remaining figures show possible configurations of the corresponding points where the
sidness constraint is violated.

the MSS. In this section we will present a constraint that must be satisfied in order

to produce meaningful homographies3.

Consider a MSS formed by the following 4 point correspondences:

MSS =

{[
x1

x′1

]
, . . . ,

[
x4

x′4

]}

Consider the line passing through the points x1 and xl such that the points xh and

xk lie in different semi-planes (as long as there do not exist collinear triplets it is

always possible to find an arrangement of the distinct indices l, h and k in {2, 3, 4}
such that the previous condition is satisfied). The fundamental observation is that

3Note that the only requirement for an homography is to be non-singular. Here we refer to the
fact that an homography should represent a valid transformation between images.

41

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

the points x′h and x′k must lie with respect to the line passing trough x′1 and x′l on the

corresponding semi-planes containing the points xh and xk. This also implies that the

polygon formed by the properly oriented sequence of vertexes must remain convex.

Figure 4.1 describes pictorially the previous condition and displays cases when it

is violated. The test for the sideness constraint is quite simple. First we need to

identify the line passing through the points x1 and xl so that xh and xk belong to two

different semi-planes. Then we compute a vector orthogonal to such line. A vector

that will serve to this purpose is given by n1,l =
[
xl,2 − x1,2 x1,1 − xl,1

]T
. To check

on which semi-plane the points xh and xk lie we just need to evaluate the sign of the

expressions nT1,l(xh − x1) and nT1,l(xk − x1) and the analogous expressions for the

corresponding points. If the signs remain consistent then the MSS is acceptable. Note

that in the worst case scenario 32 summations and 16 multiplications are needed. In

general the cost of these operations is less than the cost of estimating the homography

via the nDLT algorithm. Again, we want to emphasize that this approach can save a

lot of computations if it possible to develop a validation test which is (much) faster

than the estimation of the parameters utilizing the elements in the MSS. The code

that validates the MSS based on the sidenes constraint can be found in Appendix

D.2.4.

Error Estimation

The correspondence error between the ith pair of points related by an homography

can be expressed using the symmetric transfer error :

e2
i

def
= ‖x′i − Tθ(xi)‖2 + ‖xi − T−1

θ (x′i)‖2 (4.9)

Assuming that the errors η = ‖xi − T−1
θ (x′i)‖ and η′ = ‖x′i − Tθ(xi)‖ can be mod-

eled as Gaussian random vectors whose components are independent and identically

distributed N (0, σηI), then the distribution of e2
i is a Chi-square distribution with

4 degrees of freedom (each error contributing for two degrees of freedom). There-

fore, from (3.3), we have that δ = ση
√
F−1
χ2

4
(Pinlier). Figure 3.2(b) displays the error

threshold for different values of Pinlier. As expected from the previous discussion,

the larger is the probability to find all the inliers, the larger is the error threshold.

The function that computes the fitting error of the data is listed in Appendix D.2.4:

42

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Maximum Number of Iterations

As we saw in equation (3.7), the total number of iterations is essentially proportional

to the ratio of the number of inliers over the number of outliers, once the cardinality

of the minimum sample set is fixed. For the nDLT algorithm, the caridnality of the

MSS is 4: i.e. we need at least four good point correspondences to estimate the

homography. Figure ?? displays the number of iterations for differnt value of the

false alarm rate ε and different values of the ratio NI
N

. TO BE FINISHED 2: Add

figure.

4.2.6 Estimating the Fundamental Matrix

TO BE FINISHED 3: Add Fundamental Matrix Estimation Discussion

43

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

4.3 Frequently Asked Questions

4.3.1 What is the “right” value of σ?

There is no general answer for this question. The value of σ is used to derive the

threshold that discriminates between inliers and outliers if the noise affecting the

inliers is Gaussian. Thus the “right” value of σ depends on the nature of the data

you are dealing with. Sometimes you may want to set directly the noise threshold:

to this purpose you may want to use the option T noise squared.

4.3.2 I want to estimate the parameters of my favourite

model. What should I do?

In general there are two main aspects that one needs to consider:

• the model parametrization should be minimal, in the sense that the parameters

should not be dependent on each other and,

• it should be easy enough to produce a relation that maps the input data con-

tained in the MSS to the model parameters. Note that this operation needs

to be repeated a large number of times (see Section 3.4) and therefore has a

major impact on the performance of RANSAC.

4.3.3 How do I use the toolbox for image registration pur-

poses?

The toolbox and more specifically the RST and homography estimation routines can

be used for registration purposes in order to refine a set of image correspondences.

The toolbox itself does not provide the routines to detect/describe the features and

to establish preliminary matches. This can be done using two packages which can

be freely downloaded and which are based on the SIFT framework developed by

Dr. Lowe. The original implementation can be found at http://www.cs.ubc.ca/

~lowe/keypoints/. An excellent implementation with source code developed by

Dr. Vedaldi can be obtained from http://vision.ucla.edu/~vedaldi/code/sift/

sift.html.

44

http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cs.ubc.ca/~lowe/keypoints/
http://vision.ucla.edu/~vedaldi/code/sift/sift.html
http://vision.ucla.edu/~vedaldi/code/sift/sift.html

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

4.3.4 Why the behaviour of RANSAC is not repeatable?

Because of the intrinsic nature of the algorithm itself. RANSAC draws the elements

composing the MSS randomly (with or without the a bias) from the entire dataset.

Therefore at each run the behaviour might change. To obtain repeatable performance

you should fix the seed of the internal random number generator. To accomplish this

task set the option fix seed to true.

4.3.5 What should I do if I find a bug in the toolbox?

Please contact me at marco.zuliani@gmail.com sending me an email with a brief

description of the bug, the options that you are using and the data that generates

the bug. I’ll try to get back to you as soon as possible.

4.3.6 Are there any other RANSAC routines for Matlab?

Yes. Here is a list:

• P. Kovesi has an implementation of RANSAC and some routines to estimate

an homography and the fundamental matrix: http://www.csse.uwa.edu.au/

~pk/Research/MatlabFns/.

• K. Marinichev wrote the GML RANSAC Matlab Toolbox: http://research.

graphicon.ru/machine-learning/gml-ransac-matlab-toolbox-2.html.

• P. Torr developed the Structure and Motion Toolkit for Matlab which contains

some implementations of RANSAC: http://www.mathworks.com/matlabcentral/

fileexchange/4576.

45

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
http://research.graphicon.ru/machine-learning/gml-ransac-matlab-toolbox-2.html
http://research.graphicon.ru/machine-learning/gml-ransac-matlab-toolbox-2.html
http://www.mathworks.com/matlabcentral/fileexchange/4576
http://www.mathworks.com/matlabcentral/fileexchange/4576

D
ra
ft

A
Notation

• Bold letters indicate vectors, e.g. x ∈ Rn. Unless otherwise stated, vector

components are indicated with the same non bold letter indexed starting from

1, i.e. x =
[
x1 . . . xn

]T
. By default vectors are column vectors.

• The hat over a variable indicates the estimate of such variable, e.g. θ̂ is the

estimate of the vector θ.

• To indicate portions of matrices and/or vectors Matlab™ & Octave is used. For

example A1:p,1:q indicates the sub-matrix obtained retaining the firs p rows and

the first q columns of A.

46

D
ra

ft
B

Some Linear Algebra Facts

The results contained in this section are presented in a very accessible way in

[Str88, Mey01] and analyzed in greater details in [GV96, HJ99]. Good references

for optimization are [Lue03, Ber99] and [Kel99, BV08] which can be downloaded re-

spectively from http://www.siam.org/books/kelley/fr18/index.php and http:

//www.stanford.edu/~boyd/cvxbook/. Here we will provide a list of some basic

results that have been tailored for the the applications described in the previous

chapters.

B.1 The Singular Value Decomposition

Theorem 1 (SVD Decomposition). Let A ∈ Rm×n be a matrix of rank r. Then

there exist matrices U ∈ Rm×m, V ∈ Rn×n and Σ1 ∈ Rr×r such that:

• V is a unitary matrix whose columns form a complete orthonormal basis of

eigenvectors of ATA. V can be partitioned as
[
V1 V2

]
, where V1 ∈ Rn×r, so

that:

– R(V1) = R(AT) and the columns of V1 form an orthonormal basis of

R(AT)

– R(V2) = N (A) and the columns of V2 form an orthonormal basis of N (A)

• U is a unitary matrix whose columns form a complete orthonormal basis of

eigenvectors of AAT . U can be partitioned as
[
U1 U2

]
, where U1 ∈ Rm×r,

so that:

47

http://www.siam.org/books/kelley/fr18/index.php
http://www.stanford.edu/~boyd/cvxbook/
http://www.stanford.edu/~boyd/cvxbook/

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

– R(U1) = R(A) and the columns of U1 form an orthonormal basis of R(A)

– R(U2) = N (AT) and the columns of U2 form an orthonormal basis of

N (AT)

• Σr = diag(σ1, σ2, . . . , σr) ∈ Rr×r such that σ1 ≥ σ2 ≥ . . . ≥ σr > 0. The scalars

σi are called singular values of A.

– A has a dyadic expansion:

A = U1Σ1V1 =
r∑

i=1

σiuiv
T
i

– A has a singular value decomposition:

A = UΣV T = U

[
Σr 0

0 0

]
V T

B.2 Relation Between the SVD Decomposition and

the Eigen Decomposition

Lemma 1. Consider a matrix A ∈ Rm×n with m ≥ n. Then the squared singular

values of A coincide with the eigenvalues of ATA and the right singular vectors of A

coincide with the eigenvectors of ATA.

Proof. Consider the SVD decomposition A = UΣV T . Then, because of the orthog-

onality of U , the following chain of equations hold:

ATA =
(
UΣV T

)T
UΣV T = V ΣTΣV T

The previous chain of equations proves the claim regarding the relation between

eigenvectors and singular vectors, whereas the relation between eignevalues and sin-

gular values is established observing that ΣΣT = diag{σ2
1, . . . , σ

2
n}.

48

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

B.3 Fast Diagonalization of Symmetric 2 × 2 Ma-

trices

Consider a real symmetric matrix A =

[
a b

b c

]
. We want to diagonalize A using

the least number of operations, so that:

A = UΛUT =

[
C −S
S C

][
λ1 0

0 λ2

][
C S

−S C

]

where C = cosφ and S = sinφ. The eigenvalues can be computed computing the

roots of the characteristic polynomial P (λ) = λ2− (a− c)λ+ (ac− b2) first defining:

α
def
= a+ c

β
def
= (a− c)2

γ
def
= 4b2

δ
def
=

√
β + γ

and then letting:

λ1 = 0.5(α + δ)

λ2 = 0.5(α− δ)

for a total number of 5 additions, 5 multiplications and the extraction of a square

root.1 Finally the angle φ that defines the eigenvectors univocally (modulo a reflec-

tion about the origin) can be obtained recalling the definition of eigenvector:

(A− λ1I)u =

[
a− λ1 b

b c− λ1

][
C

S

]
= 0

Since (λ1 − a)C = bS then:

φ = arctan
λ1 − a
b

The angle φ is the angle formed by the eigenvector corresponding to the largest

eigenvalue with the positive x axis. Interestingly enough, the angle can also be

1As expected, if b = 0 then λi = 1
2 (a+ c+ |a− c|) which returns the diagonal elements of the

matrix a and c.

49

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

expressed just in terms of the matrix entries,2 without requiring the computation of

the eigenvalues:

φ = −1

2
arctan

2b

c− a
As a side note, we observe that we can easily compute the 2-norm condition

number of A, which is defined as the ratio of the largest singular value of A to the

smallest:

κ(A) =
α + δ

α− δ
Large condition numbers indicate a nearly singular matrix.

B.4 Least Square Problems Solved via SVD

As we saw in the examples in Section 4.2, RANSAC depends on the solution of

least square problems of the form Aθ = b, where the matrix A and the vector b are

obtained from noisy measurements. If b happens to be the null vector it is a common

practice to constrain the norm of θ in order to avoid trivial solutions. In the next

sections we will informally discuss how both problems can be solved using the SVD

decomposition described in Section B.1.

B.4.1 Solving Aθ = b

Let’s assume that the matrix A ∈ Rm×n, with m ≥ n, is full rank. Since the number

of equations in larger than the number of unknowns the solution must be intended

in a least square sense, i.e. we are seeking for the vector θ∗ such that:

θ∗ = argmin
θ∈Rn

‖Aθ − b‖2 (B.2)

The function ‖Aθ−b‖2 is convex [BV08] and since ‖x‖2 = xTx, we need to find the

point where the gradient of θTATAθ − 2θTATb + bTb is zero. This happens when

2The proof requires some algebra and here we will just outline the main steps. First observe
that tan θ = c−a+δ

2b . Then, because of the double angle tangent identity, observe that:

tan 2θ =
2 tan θ

1− (tan θ)2
=

4b(c− a+ δ)

4b2 − [(c− a) + δ)]
2

It is also true that δ2 = 4b2 + (c − a)2 and therefore the denominator of the previous equation,
by adding and subtracting (c− a)2 simplifies to −2(c− a)(c− a+ δ), which allows to immediately
prove the result.

50

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

θ satisfies the expression ATAθ = ATb. Since we assumed that the matrix A is full

rank, ATA is full rank too, its inverse exists and we can write:

θ∗ = (ATA)−1ATb = A†b (B.3)

The matrix A† is called pseudo-inverse (or Moore-Penrose inverse) of A for obvious

reasons. If we plug in (B.3) the SVD decomposition of A and recall that the inverse

of a unitary matrix coincides with its transpose, we obtain that:

θ∗ = V Σ−1
1:n,1:nU

Tb

In Matlab™ & Octave the previous expression can be quickly computed either using

the function pinv (i.e. theta = pinv(A)*b;) or the operator \ (i.e. theta = A\b;).

When m ≥ n and A is full rank the solution is the same (but only in this case).

B.4.2 Solving Aθ = 0 subject to ‖θ‖ = 1

Let’s assume that the matrix A ∈ Rm×n, with m ≥ n, has rank n− 1 (if the rank is

smaller similar considerations hold). In this case we are seeking for the vector that

solves the optimization problem:

θ∗ = argmin
θ∈Rn such that ‖θ‖=1

‖Aθ‖2 (B.4)

Since we assumed that the rank of A is n− 1, the right null space of the matrix has

at most dimension 1. Therefore the SVD of such matrix can be written as:

A = UΣV T =
n∑

i=1

σiuiv
T
j =

[
u1 . . . un−1 un

]

σ1 . . . 0 0
...

. . .
...

...

0 . . . σn−1 0

0 . . . 0 0

vT1
...

vTn−1

vTn

where σi denotes the ith singular value and ui and vi are the corresponding left and

right singular vectors. We conclude that the non-trivial solution is given by θ∗ = vn

(i.e. the basis for the right null space of A), in fact ‖Aθ∗‖2 = ‖Avn‖2 = 0.

But what happens if the matrix A is obtained from noisy measurements? Most

likely the matrix will become full rank and then we should expect ‖Aθ∗‖ > 0. How-

51

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

ever the solution still coincides with the right singular vector corresponding to the

smallest singular value (in fact now σn > 0). To understand why let’s consider again

the minimization problem (B.4). We need to minimize ‖UΣV Tθ‖2 or equivalently

‖ΣV Tθ‖2, since orthogonal matrices do not modify the 2-norm of a vector (intu-

itively rotating or reflecting a vector does not modify its length). Because of this we

can also write that ‖V Tφ‖2 = ‖φ‖2. Hence if we let φ = V Tθ, the minimization

problem in (C.2) can be rewritten as:

φ∗ = argmin
φ∈Rn such that ‖φ‖=1

‖Σφ‖2

But Σ is a diagonal matrix with its entries sorted in decreasing order. Hence the

solution is φ =
[

0 . . . 0 1
]T

. Since φ = V Tθ, this is equivalent to pick again

the last column of the matrix V , i.e. the right singular vector corresponding to the

smallest singular value.

52

D
ra
ft

C
The Normalized Direct Linear Transform (nDLT)

Algorithm

C.1 Introduction

In the ideal case we would like to estimate the parameter vector θ̂ such that for

every point i the following homographic relation (expressed in Euclidean coordinates)

holds:

x′i = Tθ̂(xi) =

[
θ1x1,i+θ4x2,i+θ7
θ3x1,i+θ6x2,i+θ9
θ2x1,i+θ5x2,i+θ8
θ3x1,i+θ6x2,i+θ9

]

Expanding the previous equation we obtain two equations that are linear in the

parameter components:

(θ3x1,i + θ6x2,i + θ9)x′1,i = θ1x1,i + θ4x2,i + θ7

(θ3x1,i + θ6x2,i + θ9)x′2,i = θ2x1,i + θ5x2,i + θ8

The previous equations can be rearranged in matrix form as:

[
x1,i 0 −x1,ix

′
1,i x2,i 0 −x2,ix

′
1,i 1 0 −x′1,i

0 x1,i −x1,ix
′
2,i 0 x2,i −x2,ix

′
2,i 0 1 −x′2,i

]
θ = A(xi,x

′
i)θ = 0

(C.1)

Thus we have two equations for nine unknowns (which have just 8 degrees of freedom

since the scaling for an homography is immaterial). If we stack one upon the other

the matrices A(xi,x
′
i) we obtain the over-determined (i.e. more equations than

53

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

unknowns) homogeneous (i.e. the right hand side is zero) linear system:

A(x1,x
′
1)

...

A(xN ,x
′
N)

θ = Aθ = 0

Hence one valid solution is obtained solving:

θ̂ = argmin
θ∈R9 such that ‖θ‖=1

‖Aθ‖2 (C.2)

This previous minimization problem can be solved using the singular value decom-

position (SVD) as explained in Section B.4.2. The algorithm just illustrated is know

as Direct Linear Transform.

Remark 3. The cross product of a vector with itself is zero. In a noise free case

we can write x × Tθ(x) = 0. Starting from this observation, we can develop an

alternative version of the DLT algorithm1. The solution boils down again to the

minimization of an homogeneous over-determined linear system: B(xi,x
′
i)θ = 0.

The computation of the entries of the matrix B is trivial, however the details can be

found in [HZ03].

C.2 Point Normalization

In this paragraph we will try to intuitively assess the problem of numerical stability of

the DLT algorithm. The interested reader is referred to [Har97] for a more thorough

treatment of the subject, which requires some advanced concepts of numerical linear

algebra2. The numerical stability of the algorithm refers to its behavior in presence

of noise affecting the point position.

Quantitatively, the numerical stability of a problem (or, equivalently, of the algo-

rithm used to solve the problem) is measured by the condition number. Such quantity

is a measure of that problem’s suitability to digital computation. A problem with

a small condition number is said to be well-conditioned, while a problem with a

1These two different formulations are selected in the function HomographyDLT by appropriately
setting the parameter mode.

2An excellent overview of what every computer scientist should know regarding floating-point
arithmetic can be found at the following link: http://docs.sun.com/source/806-3568/ncg_

goldberg.html.

54

http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://docs.sun.com/source/806-3568/ncg_goldberg.html

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

large condition number is said to be ill-conditioned. In the case of the homography

estimation, the condition number associated to the problem corresponds to the con-

dition number of the matrix A, which can be defined as the ratio between the largest

eigenvalue to the smallest one.

κ(A) =
σmax(A)

σmin(A)

The reason behind this fact is summarized in a well known result from perturbation

theory that examines how the solution of a least square problem is affected by per-

turbations in the coefficient matrix (and possibly in the vector of measurements).

For a more general treatment of the subject refer to [GV96], p. 242.

The major reason for the poor condition of the matrix A is the fact that its entries

may differ of several orders of magnitude. For our simple analysis it is convenient to

consider the matrix ATA ∈ R9×9. It is easy to prove that the eigenvectors of ATA

coincide with the right singular vectors of A and the relation between eigenvalues

and singular values is given by λi = σ2
i . Thus we can write:

κ(A) =

√
λmax(ATA)

λmin(ATA)

Our goal is now to obtain a rough estimate on the bounds for the condition number.

Following [Har97], let’s denote byXr the the r×r principal submatrix (i.e. the matrix

obtained retaining only the first r rows and columns) of ATA. Since X9 = ATA, then:

κ(A) =

√
λmax(X9)

λmin(X9)

A very important result of matrix analysis is the interlacing property of the eigen-

values (see [GV96], p. 396). This theorem states that the when we remove a row/-

column from X, the eigenvalues of the original matrix X and of the reduced matrix

Xr interlace, i.e. :

λ9(X9) ≤ λ8(X8) ≤ λ8(X9) ≤ . . . ≤ λ2(X9) ≤ λ1(A8) ≤ λ1(X9)

If we iterate the removal process the interlacing pattern of the eigenvalues is depicted

in Figure C.1(a). Now let’s consider the coordinates of a point in a typical digital

55

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

0 2 4 6 8 100

2

4

6

8

10

12

14

i

σ
i

AnDLT

(a) (b)

Figure C.1: Figure (a) shows the interlacing pattern of the eigenvalues for a sym-
metric matrix. The black dots represent the position of the eigenvalues on the real
line and the red vertical lines indicate the bounds on their location when we progres-
sively remove one row and one column from the initial matrix. Figure (b) shows the
singular values of the matrix AnDLT for the example in Section C.3. Note that the
dynamic range of the singular values is reasonably small and that the ninth one is
much smaller than the eighth one (σ8 ≈ 3.7457 v.s. σ9 ≈ 0.0448, as expected since
the matrix rank is 8).

image: they have an order of magnitude of 102. Thus the order of magnitude of the

components of the diagonal of the matrix A(xi,x
′
i)
TA(xi,x

′
i) is:

[
102 102 104 102 102 104 1 1 102

]

Note that the matrix ATA is obtained summing all the matrices for the different point

correspondences (thus the order of magnitude of the coefficients on the diagonal of

ATA does not vary significantly for the purpose of our analysis). It follows that the

order of magnitude of the coefficients of the diagonal of X2 is 102. Since the trace of

a matrix is the sum of the eigenvalues we conclude that trace(X2) = λ1(X2)+λ2(X2)

has approximately an order of magnitude of 102 and since the eigenvalues are always

positive (the matrix ATA is positive semidefinite by construction) because of the

interlacing property we can write:

λ9(X9) ≤ λ2(X2) ≤ 102

Moreover the largest eigenvalue of ATA must be not less than the largest diagonal

56

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

entry of ATA. This immediately follows from the interlacing properties of the singular

values. We just need to notice that there exist a permutation matrix that leaves the

spectrum of ATA unaltered and moves the largest diagonal entry at the beginning

of the diagonal. If, with a little abuse of notation, we consider X1 to be the 1 × 1

matrix containing the largest diagonal entry of ATA, indeed (from Figure C.1) the

largest eigenvalue of ATA (i.e. of X9) must be not less than the largest diagonal

entry of ATA. The order of magnitude of the latter is 104 and therefore:

λ1(X9) ≥ 104

Therefore the bound that we can set for the condition number is:

κ(A) =

√
λmax(X9)

λmin(X9)
≥
√

104

102
= 10

which is approximately the square root of the order of magnitude of the coordinates

of the points.

To make the DLT algorithm more stable we will lower the condition number by

a normalization procedure (also known as preconditioning by the numerical analysis

community). The idea consist in transforming the point coordinates before applying

the DLT algorithm (i.e. before constructing the matrix A) by centering them about

the centroid xc
def
= 1

N

∑N
i=1 xi and then scaling them so that their average distance

from the origin is approximately equal to a small constant (in [HZ03] it is suggested

to pick such constant equal to
√

2). This can be done by computing the average

distance:

dav
def
=

1

N

N∑

i=1

‖xi − xc‖

and finally setting s
def
=

√
2

dav
so that x̄i

def
= s (xi − xc). Once the points have been

normalized the DLT algorithm is applied and finally the resulting homography is

denormalized (in order to go establish a correct mapping between the non normalized

original points). More specifically, if H̄ is the homography estimated using the

normalized points, the denormalization procedure is implemented by the following

57

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

cascade of linear transformations in the projective space:

H = T ′−1H̄T =

1
s′

0 x′c,1
0 1

s′
x′c,2

0 0 1

 H̄

s 0 −sxc,1
0 s −sxc,2
0 0 1

 (C.3)

Once again note that the normalization procedure is meant to reduce the dynamic

range of the entries of the matrix A and consequently, as we discussed before, to

improve the conditioning of such matrix. The DLT algorithm plus the normalization

procedure is known as normalizaed DLT algorithm.

C.3 A Numerical Example

We will illustrate what has been discussed in the previous sections using a numerical

example. Suppose that the ground truth homography that describes the mapping

between a set of points is given by:

H =

0.57458 −0.00125 −3.16022

0.09153 0.65266 −2.48508

−0.00014 −0.00025 0.52426

We now generate a set of N = 32 points uniformly randomly distributed in the

interval [−500, 500]×[−500, 500]. The point correspondences are formed by mapping

the first set via the homography H and then by perturbing the mapped set with

Gaussian noise with zero mean and standard deviation ση = 3. We now estimate the

homographies using first the DLT algorithm:

HDLT =

0.09147 −0.00036 −0.55467

0.01463 0.10341 −0.81616

−0.00002 −0.00004 0.08338

and then the normalized DLT algorithm, obtaining:

HnDLT =

−0.63883 0.00216 2.78957

−0.10245 −0.72486 3.53780

0.00016 0.00028 −0.58282

58

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

The condition number of the matrices A is respectively κ(ADLT) ≈ 412940 and

κ(AnDLT) ≈ 295. As expected the condition number after the normalization is much

smaller. The singular values of AnDLT are shown in Figure C.1(b). Note that the

dynamic range of the singular values is reasonably small and that the ninth one is

much smaller than the eighth one (σ8 ≈ 3.7457 v.s. σ9 ≈ 0.0448, as expected since

the matrix rank is 8). The better performance obtained via the normalization is also

confirmed by the value of the symmetric transfer error, which is eDLT ≈ 1749 in the

first case and enDLT ≈ 1098 in the second. The forward and backward mapping is

illustrated in Figure C.2.

−400 −200 0 200 400

−400

−300

−200

−100

0

100

200

300

400

y

x

X1 vs X1 reprojected (backward mapping)

−400 −200 0 200 400 600 800

−500

0

500

y

x
X2 vs X2 reprojected (forward mapping)

Figure C.2: The figure displays the forward and backward mapping via the homog-
raphy HnDLT . The crosses represent the original points whereas the squares represent
the mapped points.

As a concluding remark, we want to emphasize that the normalization proce-

dure does not always have such a big impact in the accuracy of the estimation of the

homography, but for sure it will never cause any harm, so it is very important to nor-

malize the points in any case (given also the fact that the additional computational

complexity is not too relevant).

59

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

C.4 Concluding Remarks About the Normalized

DLT Algorithm

The (normalized) DLT algorithm minimizes an algebraic quantity (C.2) that does

not have an immediate correspondence with the geometry of the problem. It can be

shown that this happens when the homography represents a 2D affine transforma-

tion. In the general case a common practice is to minimize the symmetric transfer

error (4.9) utilizing iterative descent techniques once an initial estimate of the ho-

mography is obtained using the normalized DLT algorithm. In general this approach

provides an increased accuracy (especially if the assumption regarding the contami-

nation of Gaussian noise for the point coordinates holds true) at the expense of an

increased computational complexity, of the necessity of having an initial estimate of

the optimum and of the selection of a stopping criterion that is not always trivial.

A desirable property of the algorithm used to estimate the parameters of the

homographic transformation is to be invariant with respect to certain class of trans-

formations of the point correspondences. More specifically consider two linear trans-

formations in the projective space, such that:

p̄ = Tp

p̄′ = T ′p′

and suppose that the points p and p′ are related via an homography: p′ ∼ Hp. It

follows immediately that the transformed points are related via a new homography

H̄:

p̄′ ∼ T ′−1HT−1
︸ ︷︷ ︸

H̄

p̄

We are now interested in answering the following question: if we estimate both the

homography H and the homography H̄ (for the transformed points) using the DLT

algorithm, will we obtain the same result? Unfortunately the answer is no. To show

why this is not true is a little bit involved: more details can be found in [HZ03], p.

105. However the good news is that the minimizer of the symmetric transfer error

is invariant under similarity transformations. To minimize the symmetric transfer

error usually people resort to some iterative descent algorithm. The interest reader

is once again referred to [HZ03] for more information. Here we suggest the reader to

visit the site of Dr. Lourakis for a fast implementation (which can also be called from

60

http://www.ics.forth.gr/~lourakis/homest/

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Matlab™ & Octave) of the non linear refinement procedure based on the Levenberg-

Marquardt algorithm.

A Matlab™ & Octave function that implements the normalized DLT algorithm is

listed below:

1 function [H A] = HomographyDLT(X1, X2, mode, normalization)

2

3 % [H A] = HomographyDLT(X1, X2, mode, normalization)

4 %

5 % DESC:

6 % computes the homography between the point pairs X1, X2

7 %

8 % AUTHOR

9 % Marco Zuliani − marco.zuliani@gmail.com

10 %

11 % VERSION:

12 % 1.0.1

13 %

14 % INPUT:

15 % X1, X2 = point matches (cartesian coordinates)

16 % mode = 'HZ' −> Hartley Zisserman formulation

17 % 'MZ' −> Zuliani formulation (default)

18 % normalization = true (default) or false to enable/disable point

19 % normalzation

20 %

21 % OUTPUT:

22 % H = homography

23 % A = homogenous linear system matrix

24

25 % HISTORY

26 % 1.0.0 ??/??/04 − intial version

27 % 1.0.1 07/22/04 − small improvements

28

29 if (nargin < 3)

30 mode = 'MZ';

31 end;

32

33 if (nargin < 4)

34 normalization = true;

35 end;

61

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

36

37 N = size(X1, 2);

38

39 %%%

40 % checks

41 %%%

42 if (size(X2, 2) 6= N)

43 error('HomographyDLT:inputError', ...

44 'The set of input points should have the same cardinality')

45 end;

46 if N < 4

47 error('HomographyDLT:inputError', ...

48 'At least 4 point correspondences are needed')

49 end;

50

51 %%%

52 % normalize the input

53 %%%

54 if normalization

55 % fprintf('\nNormalizing...')
56 [X1, T1] = normalize points(X1);

57 [X2, T2] = normalize points(X2);

58 end;

59

60 % compute h

61 switch mode

62 case 'HZ'

63 A = get A HZ(X1, X2);

64 case 'MZ'

65 A = get A MZ(X1, X2);

66 end;

67

68 [U S V] = svd(A);

69

70 h = V(:, 9);

71

72 % reshape the output

73 switch mode

74 case 'HZ'

75 H = [h(1:3)'; h(4:6)'; h(7:9)'];

76 case 'MZ'

77 H = reshape(h, 3, 3);

62

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

78 end;

79

80 %%%

81 % de−normalize the parameters

82 %%%

83 if normalization

84 H = T2\H*T1;
85 end;

86

87 %%%

88 % re−normalize the homography

89 %%%

90 H = H/norm(H(:));

91

92 return

93

94 %%%

95 % Matrix construction routine

96 %%%

97

98 % Hartley Zisserman formulation

99 function A = get A HZ(X1, X2)

100

101 X1 = cart2homo(X1);

102 X2 = cart2homo(X2);

103

104 N = size(X1, 2);

105

106 A = zeros(2*N, 9);

107 zero = [0; 0; 0];

108

109 row = 1;

110 for h = 1:N

111

112 a = X2(3,h)*X1(:,h)';

113 b = X2(2,h)*X1(:,h)';

114 c = X2(1,h)*X1(:,h)';

115 A(row, :) = [zero' −a b];

116 A(row+1, :) = [a zero' −c];
117

118 row = row + 2;

119

63

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

120 end;

121

122 % Zuliani's formulation

123 function A = get A MZ(X1, X2)

124

125 N = size(X1, 2);

126

127 A = zeros(2*N, 9);

128

129 row = 1;

130 for h = 1:N

131

132 A(row, :) = [...

133 X1(1,h) 0 −X1(1,h)*X2(1,h) ...

134 X1(2,h) 0 −X1(2,h)*X2(1,h) ...

135 1 0 −X2(1,h) ...

136];

137 A(row+1, :) = [...

138 0 X1(1,h) −X1(1,h)*X2(2,h) ...

139 0 X1(2,h) −X1(2,h)*X2(2,h) ...

140 0 1 −X2(2,h) ...

141];

142

143 row = row + 2;

144

145 end;

146

147 return

64

D
ra
ft

D
Some Code from the RANSAC Toolbox

D.1 Function Templates

D.1.1 MSS Validation

1 function flag = validateMSS foo(X, s)

2

3 % flag = validateMSS foo(X, s)

4 %

5 % DESC:

6 % Validates the MSS obtained via the sampling of the data before computing

7 % the parameter vector Theta

8 %

9 % INPUT:

10 % X = samples on the manifold

11 % s = indices of the MSS

12 %

13 % OUTPUT:

14 % flag = true if the MSS is valid

15

16 % perform here the check on the MSS

17

18 return;

65

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

D.1.2 Parameter Estimation

1 function [Theta, k] = estimate foo(X, s, parameters)

2

3 % [Theta k] = estimate foo(X, s)

4 %

5 % DESC:

6 % Template for the estimation function to be used inside RANSAC

7 %

8 % INPUT:

9 % X = 2D point correspondences

10 % s = indices of the points used to estimate the

11 % parameter vector. If empty all the points

12 % are used

13 % parameters = a structure of parameters to be used by the function

14 %

15 % OUTPUT:

16 % Theta = estimated parameter vector Theta = H(:). If

17 % the estimation is not successful return an

18 % empty vector. i.e. Theta = [];

19 % k = dimension of the minimal subset

20

21 % here we define the size of the MSS

22 k = ;

23

24 % check if the input parameters are valid

25 if (nargin == 0) | | isempty(X)

26 Theta = [];

27 return;

28 end;

29

30 % select the points to estimate the parameter vector

31 if (nargin ≥ 2) && ¬isempty(s)
32 X = X(:, s);

33 end;

34

35 % check if we have enough points

36 N = size(X, 2);

37 if (N < k)

38 error('estimate foo:inputError', ...

66

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

39 'At least k point correspondences are required');

40 end;

41

42 % call the estimation function foo

43 Theta = foo(X, parameters);

44

45 % here you may want to check if the results are meaningful.

46 % If not return an empty vector

47

48 return;

67

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

D.1.3 Parameter Validation

1 function flag = validateTheta foo(X, Theta, s)

2

3 % flag = validateMSS foo(X, Theta, s)

4 %

5 % DESC:

6 % Validates the parameter vector

7 %

8 % INPUT:

9 % X = samples on the manifold

10 % Theta = parameter vector

11 % s = indices of the MSS

12 %

13 % OUTPUT:

14 % flag = true if the MSS is valid

15

16 % perform here the check on the parameter vector Theta

17

18

19 return

68

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

D.1.4 Fitting Error

1 function [E, T noise squared, d] = error foo(Theta, X, sigma, P inlier, parameters)

2

3 % [E T noise squared d] = error foo(Theta, X, sigma, P inlier, parameters)

4 %

5 % DESC:

6 % Template to estimate the error due to the foo constraint. To

7 % return only the error threshold the function call should be:

8 %

9 % [dummy T noise d] = error foo([], [], sigma, P inlier, parameters);

10 %

11 % INPUT:

12 % Theta = foo parameter vector

13 % X = samples on the manifold

14 % sigma = noise std

15 % P inlier = Chi squared probability threshold for inliers

16 % If 0 then use directly sigma.

17 % parameters = the parameters used by the functions

18 %

19 % OUTPUT:

20 % E = squared error

21 % T noise squared = squared noise threshold

22 % d = degrees of freedom of the error distribution

23

24 % compute the error obtained by the orthogonal projection of

25 % the data points X onto the model manifold instantiated with the

26 % parameters Theta

27 E = [];

28 if ¬isempty(Theta) && ¬isempty(X)
29

30 % error computation

31

32 end;

33

34 % compute the error threshold

35 if (nargout > 1)

36

37 if (P inlier == 0)

38 % in this case the parameter sigma coincides with the noise

69

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

39 % threshold

40 T noise squared = sigma;

41 else

42 % otherwise we compute the error threshold given the standard

43 % deviation of the noise assuming that the errors are normally

44 % distributed. Hence the sum of their squares is Chi2

45 % distributed with d degrees of freedom

46 d = ;

47

48 % compute the inverse probability

49 T noise squared = sigmaˆ2 * chi2inv LUT(P inlier, d);

50

51 end;

52

53 end;

54

55 return;

70

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

D.2 Source Code for the Examples

D.2.1 Line Estimation

Parameter Estimation

1 function [Theta, k] = estimate line(X, s)

2

3 % [Theta k] = estimate line(X, s)

4 %

5 % DESC:

6 % estimate the parameters of a 2D line given the pairs [x, y]ˆT

7 % Theta = [a; b; c] where a*x+b*yc = 0

8 %

9 % AUTHOR

10 % Marco Zuliani − marco.zuliani@gmail.com

11 %

12 % VERSION:

13 % 1.0.0

14 %

15 % INPUT:

16 % X = 2D points

17 % s = indices of the points used to estimate the parameter

18 % vector. If empty all the points are used

19 %

20 % OUTPUT:

21 % Theta = estimated parameter vector Theta = [a; b; c]

22 % k = dimension of the minimal subset

23

24 % HISTORY:

25 % 1.0.0 = 01/26/08 − initial version

26

27 % cardinality of the MSS

28 k = 2;

29

30 if (nargin == 0) | | isempty(X)

31 Theta = [];

32 return;

33 end;

34

71

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

35 if (nargin == 2) && ¬isempty(s)
36 X = X(:, s);

37 end;

38

39 % check if we have enough points

40 N = size(X, 2);

41 if (N < k)

42 error('estimate line:inputError', ...

43 'At least 2 points are required');

44 end;

45

46 % compute the mean

47 mu = mean(X, 2);

48 % center the points

49 Xn = X − repmat(mu, 1, N);

50

51 % populate the matrix ATA =

[
a b

b c

]

52 a = dot(Xn(1, :), Xn(1, :));

53 b = dot(Xn(1, :), Xn(2, :));

54 c = dot(Xn(2, :), Xn(2, :));

55

56 % Sacrifice accuracy for speed: compute the eigendecomposition of ATA

57 alpha = a+c;

58 temp = a−c;
59 beta = temp*temp;

60 gamma = 4*b*b;

61 ∆ = sqrt(beta + gamma);

62 lambda = 0.5*(alpha+∆);

63 phi = atan2(lambda−a,b);
64

65 % Get the eigenvector corresponding to the smallest eigenvalue

66 Theta(1,1) = −sin(phi);
67 Theta(2,1) = cos(phi);

68 Theta(3,1) = −Theta(1)*mu(1) − Theta(2)*mu(2);

69

70 return;

72

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Error Estimation

1 function [E T noise squared d] = error line(Theta, X, sigma, P inlier)

2

3 % [E T noise squared d] = error line(Theta, X, sigma, P inlier)

4 %

5 % DESC:

6 % estimate the squared fitting error for a line expresed in cartesian form

7 % ax + by + c =0

8 %

9 % AUTHOR

10 % Marco Zuliani − marco.zuliani@gmail.com

11 %

12 % VERSION:

13 % 1.0.0

14 %

15 % INPUT:

16 % Theta = line parameter vector

17 % X = samples on the manifold

18 % sigma = noise std

19 % P inlier = Chi squared probability threshold for inliers

20 % If 0 then use directly sigma.

21 %

22 % OUTPUT:

23 % E = squared error

24 % T noise squared = noise threshold

25 % d = degrees of freedom of the error distribution

26

27 % HISTORY

28 %

29 % 1.0.0 − 01/26/08 initial version

30 % 1.0.1 − 02/22/09 updated error threshold

31

32 % compute the squared error

33 E = [];

34 if ¬isempty(Theta) && ¬isempty(X)
35

36 den = Theta(1)ˆ2 + Theta(2)ˆ2;

37

38 E = (Theta(1)*X(1,:) + Theta(2)*X(2,:) + Theta(3)).ˆ2 / den;

73

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

39

40 end;

41

42 % compute the error threshold

43 if (nargout > 1)

44

45 if (P inlier == 0)

46 T noise = sigma;

47 else

48 % Assumes the errors are normally distributed. Hence the sum of

49 % their squares is Chi distributed (with 2 DOF since we are

50 % computing the distance of a 2D point to a line)

51 d = 2;

52

53 % compute the inverse probability

54 T noise squared = sigmaˆ2 * chi2inv LUT(P inlier, d);

55

56 end;

57

58 end;

59

60 return;

D.2.2 Plane Estimation

Parameter Estimation

1 function [Theta, k] = estimate plane(X, s)

2

3 % [Theta k] = estimate plane(X)

4 %

5 % DESC:

6 % estimate the parameters of a 3D plane given the pairs [x, y, z]ˆT

7 % Theta = [a; b; c; d] where:

8 %

9 % a*x1+b*y1+c*z1+d = 0

10 % a*x2+b*y2+c*z2+d = 0

11 % a*x3+b*y3+c*z3+d = 0

12 %

13 % AUTHOR

14 % Marco Zuliani − marco.zuliani@gmail.com

74

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

15 %

16 % VERSION:

17 % 1.0.0

18 %

19 % INPUT:

20 % X = 3D points

21 % s = indices of the points used to estimate the parameter

22 % vector. If empty all the points are used

23 %

24 % OUTPUT:

25 % Theta = estimated parameter vector Theta = [a; b; c; d]

26 % k = dimension of the minimal subset

27

28 % HISTORY:

29 % 1.0.0 = 07/05/08 − initial version

30

31 % cardinality of the MSS

32 k = 3;

33

34 if (nargin == 0) | | isempty(X)

35 Theta = [];

36 return;

37 end;

38

39 if (nargin == 2) && ¬isempty(s)
40 X = X(:, s);

41 end;

42

43 % check if we have enough points

44 N = size(X, 2);

45 if (N < k)

46 error('estimate plane:inputError', ...

47 'At least 3 points are required');

48 end;

49

50 A = [transpose(X(1, :)) transpose(X(2, :)) transpose(X(3, :)) ones(N, 1)];

51 [U S V] = svd(A);

52 Theta = V(:, 4);

53

54 return;

75

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Error Estimation

1 function [E T noise squared d] = error plane(Theta, X, sigma, P inlier)

2

3 % [E T noise squared d] = error plane(Theta, X, sigma, P inlier)

4 %

5 % DESC:

6 % estimate the squared fitting error for a plane expresed in cartesian form

7 %

8 % a*x1+b*y1+c*z1+d = 0

9 % a*x2+b*y2+c*z2+d = 0

10 % a*x3+b*y3+c*z3+d = 0

11 %

12 % AUTHOR

13 % Marco Zuliani − marco.zuliani@gmail.com

14 %

15 % VERSION:

16 % 1.0.1

17 %

18 % INPUT:

19 % Theta = plane parameter vector

20 % X = samples on the manifold

21 % sigma = noise std

22 % P inlier = Chi squared probability threshold for inliers

23 % If 0 then use directly sigma.

24 %

25 % OUTPUT:

26 % E = squared symmetric reprojection error

27 % T noise squared = squared noise threshold

28 % d = degrees of freedom of the error distribution

29

30 % HISTORY

31 %

32 % 1.0.0 − 07/05/08 initial version

33 % 1.0.1 − 02/22/09 updated error threshold

34

35 % compute the squared error

36 E = [];

37 if ¬isempty(Theta) && ¬isempty(X)
38

76

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

39 den = Theta(1)ˆ2 + Theta(2)ˆ2 + Theta(3)ˆ2;

40

41 E = (...

42 Theta(1)*X(1,:) + ...

43 Theta(2)*X(2,:) + ...

44 Theta(3)*X(3,:) + ...

45 Theta(4)...

46).ˆ2 / den;

47

48 end;

49

50 % compute the error threshold

51 if (nargout > 1)

52

53 if (P inlier == 0)

54 T noise squared = sigma;

55 else

56 % Assumes the errors are normally distributed. Hence the sum of

57 % their squares is Chi distributed (with 3 DOF since we are

58 % computing the distance of a 3D point to a plane)

59 d = 3;

60

61 % compute the inverse probability

62 T noise squared = sigmaˆ2 * chi2inv LUT(P inlier, d);

63

64 end;

65

66 end;

67

68 return;

77

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

D.2.3 RST Estimation

Parameter Estimation

1 function [H s phi T] = RSTLS(X1, X2, normalization)

2

3 % [H s phi T] = RSTLS(X1, X2, normalization)

4 %

5 % DESC:

6 % computes the RST transformation between the point pairs X1, X2

7 %

8 % VERSION:

9 % 1.0.1

10 %

11 % INPUT:

12 % X1, X2 = point matches (cartesian coordinates)

13 % normalization = true (default) or false to enable/disable point

14 % normalzation

15 %

16 % OUTPUT:

17 % H = homography representing the RST transformation

18 % s = scaling

19 % phi = rotation angle

20 % T = translation vector

21

22

23 % AUTHOR:

24 % Marco Zuliani, email: marco.zuliani@gmail.com

25 % Copyright (C) 2011 by Marco Zuliani

26 %

27 % LICENSE:

28 % This toolbox is distributed under the terms of the GNU GPL.

29 % Please refer to the files COPYING.txt for more information.

30

31

32 % HISTORY

33 % 1.0.0 08/27/08 − intial version

34 % 1.0.1 06/09/09 − implemented closed form for the LS estimation

35 % routines

36

37 if (nargin < 3)

78

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

38 normalization = true;

39 end;

40

41 N = size(X1, 2);

42

43 %%%

44 % checks

45 %%%

46 if (size(X2, 2) 6= N)

47 error('RSTLS:inputError', ...

48 'The set of input points should have the same cardinality')

49 end;

50 if N < 2

51 error('RSTLS:inputError', ...

52 'At least 2 point correspondences are needed')

53 end;

54

55 %%%

56 % normalize the input

57 %%%

58 if (normalization) && (N > 2)

59 % fprintf('\nNormalizing...')
60 [X1, T1] = normalize points(X1);

61 [X2, T2] = normalize points(X2);

62 end;

63

64 %%%

65 % estimation

66 %%%

67 if (N == 2)

68

69 % fast estimation

70 Theta = zeros(4,1);

71

72 % MM
def
= M:,1 = y(1) − y(2) =

[
y
(1)
1 − y

(2)
1

y
(1)
2 − y

(2)
2

]

73 % 2 additions

74 MM = X1(:,1) − X1(:,2);

75 % detMM
def
= |M |

76 % 1 additions, 2 multiplication

77 detMM = MM(1)*MM(1) + MM(2)*MM(2);

79

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

78 % MMi
def
=

[[
M−1

]
1,1

−
[
M−1

]
2,1

]

79 % 2 multiplications

80 MMi = MM / detMM;

81

82 % Delta
def
= Tθ(y(1))− Tθ(y(2))

83 % 2 additions

84 Delta = X2(:,1) − X2(:,2);

85

86 % Theta(1:2) = M−1
(
Tθ(y(1))− Tθ(y(2))

)

87 % 1 additions, 2 multiplications

88 Theta(1) = MMi(1)*Delta(1) + MMi(2)*Delta(2);

89 % 1 additions, 2 multiplications

90 Theta(2) = MMi(1)*Delta(2) − MMi(2)*Delta(1);

91 % Theta(3:4) = −S(2)θ1:2 + Tθ(y(2))

92 % 2 additions, 2 multiplications

93

94 Theta(3) = X2(1,2) − Theta(1)*X1(1,2) + Theta(2)*X1(2,2);

95 % 2 additions, 2 multiplications

96 Theta(4) = X2(2,2) − Theta(1)*X1(2,2) − Theta(2)*X1(1,2);

97

98 % total: 11 additions, 12 multiplications

99 else

100

101 % Closed form LS solution. Using the tutorial notation.

102

103 % Notation semplification:

104 % p(i) = ȳ(i) and q(i) = Tθ(y(i))

105 % a =
∑N
i=1

(
(p

(i)
1)2 + (p

(i)
2)2

)

106 a = sum(X1(:).ˆ2);

107

108 % Explicit LS expansion:

109 % θ1 = 1
a

∑N
i=1 p

(i)
1 q

(i)
1 + p

(i)
2 q

(i)
2

110 % θ2 = 1
a

∑N
i=1−p

(i)
2 q

(i)
1 + p

(i)
1 q

(i)
2

111 % θ3 = 0

112 % θ4 = 0

113 Theta(1) = sum(X1(1, :).*X2(1, :) + X1(2, :).*X2(2, :)) / a;

114 Theta(2) = sum(−X1(2, :).*X2(1, :) + X1(1, :).*X2(2, :)) / a;

115 Theta(3) = 0;

116 Theta(4) = 0;

117

80

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

118 % Traditional LS

119 %

120 % A = zeros(2*N, 4);

121 % b = zeros(2*N, 1);

122 %

123 % ind = 1:2;

124 % for n = 1:N

125 %

126 % A(ind, 1:2) = [X1(1,n) −X1(2,n); X1(2,n) X1(1,n)];

127 % A(ind, 3:4) = eye(2);

128 %

129 % b(ind) = X2(1:2, n);

130 %

131 % ind = ind + 2;

132 %

133 % end;

134 %

135 % % solve the linear system in a least square sense

136 % Theta = A\b;
137

138 end;

139

140 % compute the corresponding homography

141 H = [Theta(1) −Theta(2) Theta(3); Theta(2) Theta(1) Theta(4); 0 0 1];

142

143 %%%

144 % de−normalize the parameters

145 %%%

146 if (normalization) && (N > 2)

147 H = T2\H*T1;
148 end;

149 H = H/H(9);

150

151 % prepare the output

152 if nargout > 1

153

154 s = sqrt(H(1,1)*H(1,1) + H(2,1)*H(2,1));

155 phi = atan2(H(2,1), H(1,1));

156 T = H(1:2, 3);

157

158 end;

159

81

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

160 return

82

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

D.2.4 Homography Estimation

Parameter Estimation

1 function [Theta, k] = estimate homography(X, s)

2

3 % [Theta k] = estimate homography(X, s)

4 %

5 % DESC:

6 % estimate the parameters of an homography using the normalized

7 % DLT algorithm. Note that Theta = H(:)

8 %

9 % AUTHOR

10 % Marco Zuliani − marco.zuliani@gmail.com

11 %

12 % VERSION:

13 % 1.0.1

14 %

15 % INPUT:

16 % X = 2D point correspondences

17 % s = indices of the points used to estimate the parameter

18 % vector. If empty all the points are used

19 %

20 % OUTPUT:

21 % Theta = estimated parameter vector Theta = H(:)

22 % k = dimension of the minimal subset

23

24 % HISTORY:

25 % 1.0.0 = ??/??/05 − initial version

26 % 1.0.1 = 27/08/08 − minor improvements

27

28 % cardinality of the MSS

29 k = 4;

30

31 if (nargin == 0) | | isempty(X)

32 Theta = [];

33 return;

34 end;

35

36 if (nargin == 2) && ¬isempty(s)
37 X = X(:, s);

83

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

38 end;

39

40 % check if we have enough points

41 N = size(X, 2);

42 if (N < k)

43 error('estimate homography:inputError', ...

44 'At least 4 point correspondences are required');

45 end;

46

47 H = HomographyDLT(X(1:2, :), X(3:4, :));

48 Theta = H(:);

49

50 return;

1 function [H A] = HomographyDLT(X1, X2, mode, normalization)

2

3 % [H A] = HomographyDLT(X1, X2, mode, normalization)

4 %

5 % DESC:

6 % computes the homography between the point pairs X1, X2

7 %

8 % AUTHOR

9 % Marco Zuliani − marco.zuliani@gmail.com

10 %

11 % VERSION:

12 % 1.0.1

13 %

14 % INPUT:

15 % X1, X2 = point matches (cartesian coordinates)

16 % mode = 'HZ' −> Hartley Zisserman formulation

17 % 'MZ' −> Zuliani formulation (default)

18 % normalization = true (default) or false to enable/disable point

19 % normalzation

20 %

21 % OUTPUT:

22 % H = homography

23 % A = homogenous linear system matrix

24

25 % HISTORY

26 % 1.0.0 ??/??/04 − intial version

27 % 1.0.1 07/22/04 − small improvements

84

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

28

29 if (nargin < 3)

30 mode = 'MZ';

31 end;

32

33 if (nargin < 4)

34 normalization = true;

35 end;

36

37 N = size(X1, 2);

38

39 %%%

40 % checks

41 %%%

42 if (size(X2, 2) 6= N)

43 error('HomographyDLT:inputError', ...

44 'The set of input points should have the same cardinality')

45 end;

46 if N < 4

47 error('HomographyDLT:inputError', ...

48 'At least 4 point correspondences are needed')

49 end;

50

51 %%%

52 % normalize the input

53 %%%

54 if normalization

55 % fprintf('\nNormalizing...')
56 [X1, T1] = normalize points(X1);

57 [X2, T2] = normalize points(X2);

58 end;

59

60 % compute h

61 switch mode

62 case 'HZ'

63 A = get A HZ(X1, X2);

64 case 'MZ'

65 A = get A MZ(X1, X2);

66 end;

67

68 [U S V] = svd(A);

69

85

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

70 h = V(:, 9);

71

72 % reshape the output

73 switch mode

74 case 'HZ'

75 H = [h(1:3)'; h(4:6)'; h(7:9)'];

76 case 'MZ'

77 H = reshape(h, 3, 3);

78 end;

79

80 %%%

81 % de−normalize the parameters

82 %%%

83 if normalization

84 H = T2\H*T1;
85 end;

86

87 %%%

88 % re−normalize the homography

89 %%%

90 H = H/norm(H(:));

91

92 return

93

94 %%%

95 % Matrix construction routine

96 %%%

97

98 % Hartley Zisserman formulation

99 function A = get A HZ(X1, X2)

100

101 X1 = cart2homo(X1);

102 X2 = cart2homo(X2);

103

104 N = size(X1, 2);

105

106 A = zeros(2*N, 9);

107 zero = [0; 0; 0];

108

109 row = 1;

110 for h = 1:N

111

86

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

112 a = X2(3,h)*X1(:,h)';

113 b = X2(2,h)*X1(:,h)';

114 c = X2(1,h)*X1(:,h)';

115 A(row, :) = [zero' −a b];

116 A(row+1, :) = [a zero' −c];
117

118 row = row + 2;

119

120 end;

121

122 % Zuliani's formulation

123 function A = get A MZ(X1, X2)

124

125 N = size(X1, 2);

126

127 A = zeros(2*N, 9);

128

129 row = 1;

130 for h = 1:N

131

132 A(row, :) = [...

133 X1(1,h) 0 −X1(1,h)*X2(1,h) ...

134 X1(2,h) 0 −X1(2,h)*X2(1,h) ...

135 1 0 −X2(1,h) ...

136];

137 A(row+1, :) = [...

138 0 X1(1,h) −X1(1,h)*X2(2,h) ...

139 0 X1(2,h) −X1(2,h)*X2(2,h) ...

140 0 1 −X2(2,h) ...

141];

142

143 row = row + 2;

144

145 end;

146

147 return

87

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

MSS Validation

1 function flag = validateMSS homography(X, s)

2

3 % flag = validateMSS homography(X, s)

4 %

5 % DESC:

6 % Validates the MSS obtained sampling the data using the sideness

7 % constraintbefore computing the parameter vector Theta

8 %

9 % INPUT:

10 % X = samples on the manifold

11 % s = indices of the MSS

12 %

13 % OUTPUT:

14 % flag = true if the MSS is valid

15

16 % HISTORY:

17 %

18 % 1.1.0 − 10/12/08 − Initial version

19

20

21 % set this to true to display invalid MSS (just for debug/didactic

22 % purposes)

23 graphic = false;

24

25 % Check if the points are in pathological configurations. Compute the

26 % covariance matrix and see if the determinant is too small (which implies

27 % the point are collinear)

28 ind = [1 2];

29 for h = 1:2

30 mu = mean(X(ind, s), 2);

31 Xzm = X(ind, s) − repmat(mu, 1, length(s));

32 C1 = Xzm(1, :)*transpose(Xzm(1, :));

33 C2 = Xzm(1, :)*transpose(Xzm(2, :));

34 C3 = Xzm(2, :)*transpose(Xzm(2, :));

35 % compute the condition number

36 alpha = C1+C3;

37 temp = C1−C3;
38 beta = temp*temp;

88

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

39 gamma = 4*C2*C2;

40 ∆ = sqrt(beta+gamma);

41 kappa = (alpha+∆)/(alpha−∆);

42 if (kappa > 1e9)

43 flag = false;

44 return;

45 end;

46 ind = ind + 2;

47 end;

48

49 % Generate all the possible pairings for the line that determines the

50 % semi−planes. The anchor point is the first one, i.e. the one with index

51 % 1. Thus the line that defines the semiplanes can be the line passing

52 % through the points:

53 %

54 % (1,2) or

55 % (1,3) or

56 % (1,4)

57 %

58 % The remaining rows define the points that should lie in different

59 % semiplanes

60 ind = s([...

61 2 3 4; ...

62 3 2 2; ...

63 4 4 3]);

64

65 % Setting the flag to false should guard against collinearity

66 flag = false;

67 for l = 1:3

68

69 % compute the normal vector n1,l

70 % 2 summations

71 n(1) = X(2, ind(1,l))−X(2, s(1));

72 n(2) = X(1, s(1))−X(1, ind(1,l));

73

74 % get the projection of the other two points

75 % 6 summations, 4 multiplications

76 p1 = n(1)*(X(1,ind(2,l)) − X(1, s(1))) +...

77 n(2)*(X(2,ind(2,l)) − X(2, s(1)));

78 p2 = n(1)*(X(1,ind(3,l)) − X(1, s(1))) +...

79 n(2)*(X(2,ind(3,l)) − X(2, s(1)));

80

89

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

81 % if they lie on the same side then select next arrangement

82 if sign(p1) == sign(p2)

83 continue;

84 end;

85

86 % compute the normal vector n′1,l for the corresponding

87 % points

88 % 2 summations

89 np(1) = X(4, ind(1,l))−X(4, s(1));

90 np(2) = X(3, s(1))−X(3, ind(1,l));

91

92 % get the projection of the other two corresponding points

93 % 6 summations, 4 multiplications

94 pp1 = np(1)*(X(3,ind(2,l)) − X(3, s(1))) +...

95 np(2)*(X(4,ind(2,l)) − X(4, s(1)));

96 pp2 = np(1)*(X(3,ind(3,l)) − X(3, s(1))) +...

97 np(2)*(X(4,ind(3,l)) − X(4, s(1)));

98

99 % verify the sideness

100 flag = (sign(p1) == sign(pp1)) && (sign(p2)==sign(pp2));

101

102 if (graphic) && (flag == false)

103

104 color = 'gr';

105 d = 16;

106

107 figure;

108

109 offset = 0;

110 for kk = 1:2

111 subplot(1,2,kk)

112 hold on

113 plot(X(1+offset, s), X(2+offset, s), ...

114 'o','MarkerSize', 8, ...

115 'MarkerEdgeColor', 'k', ...

116 'MarkerFaceColor', color(kk))

117 % draw the line that separates the planes

118 plot([X(1+offset, s(1)) X(1+offset, ind(1, l))], ...

119 [X(2+offset, s(1)) X(2+offset, ind(1, l))], '−−k');
120

121 for hh = 1:4

122 text(X(1+offset, s(hh))+d, ...

90

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

123 X(2+offset, s(hh))+d, num2str(hh))

124 end;

125 xlabel('x');

126 ylabel('y');

127 axis equal

128 offset = offset + 2;

129 end;

130

131 pause

132 end;

133

134 break;

135

136 end;

137

138

139 return;

91

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

Error Estimation

1 function [E T noise squared d] = error homography(Theta, X, sigma, P inlier)

2

3 % [E T noise squared d] = error homography(Theta, X, sigma, P inlier)

4 %

5 % DESC:

6 % estimate the squared symmetric transfer error due to the homographic

7 % constraint

8 %

9 % AUTHOR

10 % Marco Zuliani − marco.zuliani@gmail.com

11 %

12 % VERSION:

13 % 1.0.1

14 %

15 % INPUT:

16 % Theta = homography parameter vector

17 % X = samples on the manifold

18 % sigma = noise std

19 % P inlier = Chi squared probability threshold for inliers

20 % If 0 then use directly sigma.

21 %

22 % OUTPUT:

23 % E = squared symmetric transfer error

24 % T noise squared = squared noise threshold

25 % d = degrees of freedom of the error distribution

26

27 % HISTORY

28 %

29 % 1.0.0 − 11/18/06 initial version

30 % 1.0.1 − 02/22/09 updated error threshold

31

32

33 % compute the squared symmetric reprojection error

34 E = [];

35 if ¬isempty(Theta) && ¬isempty(X)
36

37 N = size(X, 2);

38

92

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

39 X12 = zeros(2, N);

40 [X12(1, :) X12(2, :)] = mapping homography(X(1,:), X(2,:), true, Theta);

41

42 X21 = zeros(2, N);

43 [X21(1, :) X21(2, :)] = mapping homography(X(3,:), X(4,:), false, Theta);

44

45 E1 = sum((X(1:2, :)−X21).ˆ2, 1);

46 E2 = sum((X(3:4, :)−X12).ˆ2, 1);

47

48 E = E1 + E2;

49 end;

50

51 % compute the error threshold

52 if (nargout > 1)

53

54 if (P inlier == 0)

55 T noise squared = sigma;

56 else

57 % Assumes the errors are normally distributed. Hence the sum of

58 % their squares is Chi distributed (with 4 DOF since the symmetric

59 % distance contributes for two terms and the dimensionality is 2)

60 d = 4;

61

62 % compute the inverse probability

63 T noise squared = sigmaˆ2 * chi2inv LUT(P inlier, d);

64

65 end;

66

67 end;

68

69 return;

93

D
ra
ft

E
GNU Free Documentation License

Version 1.2, November 2002

Copyright © 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of

freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or

noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being

considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same

sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation:

a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to

software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We

recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying

it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to

use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the

public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring

permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim,

or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relation-

ship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that

could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may

not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters,

or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in

the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then

it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify

any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice

that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may

be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available

to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of

pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters

or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent

94

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not

Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is

called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input

format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human

modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that

can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not

generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes

only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the

material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page”

means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in

parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below,

such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when

you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.

These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties:

any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License,

the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you

add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or

further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute

a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than

100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly,

all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly

and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally

prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as

they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit

reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable

Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the

general network-using public has access to download using public-standard network protocols a complete Transparent copy of the

Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution

of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one

year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of

copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that

you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing

distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the

Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous

versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a

previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the

Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has

fewer than five), unless they release you from this requirement.

95

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version

under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license

notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors,

and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document,

create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and

likewise the network locations given in the Document for previous versions it was based on. These may be placed in the

“History” section. You may omit a network location for a work that was published at least four years before the Document

itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section

all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the

equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no

material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their

titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section

titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by

various parties–for example, statements of peer review or that the text has been approved by an organization as the authoritative

definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to

the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may

be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover,

previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you

may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to

assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above

for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents,

unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their

Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with

a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section

unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique

number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section

Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must

delete all sections Entitled “Endorsements”.

96

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual

copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules

of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert

a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that

document.

7. AGGREGATION WITH INDEPENDENT

WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume

of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the

legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this

License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one

half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or

the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket

the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4.

Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations

of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this

License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English

version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation

and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to

Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any

other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this

License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so

long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time.

Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See

http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered

version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that

specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document

does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software

Foundation.

ADDENDUM: How to use this License for your

documents

97

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

To use this License in a document you have written, include a copy of the License in the document and put the following copyright

and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under

the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is

included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the

Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit

the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your

choice of free software license, such as the GNU General Public License, to permit their use in free software.

98

D
ra
ft
Bibliography

[Ber99] D. P. Bertsekas, Nonlinear programming, second ed., Athena Scientific,

1999.

[BV08] S. Boyd and L. Vandenberghe, Convex optimization, sixth ed., Cambridge

University Press, 2008.

[CM02] O. Chum and J. Matas, Randomized RANSAC with Td,d test, 13th British

Machine Vision Conference, September 2002.

[CM05] , Matching with PROSAC - progressive sample consensus, Proceed-

ings of Conference on Computer Vision and Pattern Recognition (San

Diego), vol. 1, June 2005, pp. 220–226.

[FB81] M. A. Fischler and R. C. Bolles, Random sample consensus: A paradigm

for model fitting with applications to image analysis and automated car-

tography, Communications of the ACM 24 (1981), 381–395.

[GV96] G. H. Golub and C. F. Van Loan, Matrix computations, The John Hopkins

University Press, 1996.

[Har97] R. I. Hartley, In defence of the eight-point algorithm, IEEE Transaction on

Pattern Recognition and Machine Intelligence 16 (1997), no. 6, 580–593.

[HJ99] R. Horn and C. R. Johnson, Matrix analisys, Cambridge University Press,

1999.

[Hub81] P. J. Huber, Robust statistics, Wiley, 1981.

99

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

[HZ03] R. Hartley and A. Zisserman, Multiple view geometry in computer vision,

second ed., Cambridge University Press, 2003.

[Kel99] C. T. Kelley, Iterative methods for optimization, SIAM, 1999.

[KK04] Y. Kanazawa and H. Kawakami, Detection of planar regions with uncal-

ibrated stereo using distribution of feature points, British Machine Vision

Conference (Kingston upon Thames, London), vol. 1, September 2004,

pp. 247–256.

[Lue03] D. G. Luenberger, Linear and nonlinear programming, second ed.,

Addison-Wesley, 2003.

[Men95] J. Mendel, Lessons in estimation theory for signal processing, communi-

cation and control, Prentice-Hall, Englewood-Cliffs, 1995.

[Mey01] C. D. Meyer, Matrix analysis and applied linear algebra, SIAM, 2001.

[Nab03] I. Nabney, Netlab: Algorithms for pattern recognition, Springer, 2003.

[Nis03] D. Nistér, Preemptive RANSAC for live structure and motion estimation,

IEEE International Conference on Computer Vision (Nice, France), Octo-

ber 2003, pp. 199–206.

[RL87] P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier detection,

Wiley, 1987.

[Ste95] C. V. Stewart, MINPRAN: A new robust estimator for computer vi-

sion, IEEE Transactions on Pattern Analysis and Machine Intelligence

17 (1995), no. 10, 925–938.

[Ste99] , Robust parameter estimation in computer vision, SIAM Review

41 (1999), no. 3, 513–537.

[Str88] G. Strang, Linear algebra and its applications, Academic Press, 1988.

[TF08] R. Toldo and A. Fusiello, Robust multiple structures estimation with j-

linkage, European Conference on Computer Vision (Marseille, France),

October 2008, pp. 537–547.

100

D
ra
ft

Copyright of Marco Zuliani 2008–2011 Draft

[TM05] B. J. Tordoff and D. W. Murray, Guided-MLESAC: Faster image trans-

form estimation by using matching priors, IEEE Transactions on Pattern

Analysis and Machine Intelligence 27 (2005), no. 10, 1523–1535.

[TZ00] P.H.S. Torr and A. Zisserman, MLESAC: A new robust estimator with

application to estimating image geometry, Journal of Computer Vision

and Image Understanding 78 (2000), no. 1, 138–156.

[VJFS05] A. Vedaldi, H. Jin, P. Favaro, and S. Soatto, KALMANSAC: Robust fil-

tering by consensus, Proceedings of the International Conference on Com-

puter Vision (ICCV), vol. 1, 2005, pp. 633–640.

[VL01] E. Vincent and R. Laganière, Detecting planar homographies in an image

pair, 2nd International Symposium on Image and Signal Processing and

Analysis (Pula, Croatia), June 2001, pp. 182–187.

[WS04] H. Wang and D. Suter, Robust adaptive-scale parametric model estimation

for computer vision., IEEE Transactions on Pattern Analysis and Machine

Intelligence 26 (2004), no. 11, 1459–1474.

[Zha97] Z. Zhang, Parameter estimation techniques: A tutorial with application

to conic fitting, Image and Vision Computing Journal 25 (1997), no. 1,

59–76.

[ZKM05] M. Zuliani, C. S. Kenney, and B. S. Manjunath, The MultiRANSAC al-

gorithm and its application to detect planar homographies, IEEE Interna-

tional Conference on Image Processing, September 2005.

101

	Introduction
	Parameter Estimation In Presence of Outliers
	A Toy Example: Estimating 2D Lines
	Maximum Likelihood Estimation

	Outliers, Bias and Breakdown Point
	Outliers
	Bias
	Breakdown Point

	The Breakdown Point for a 2D Line Least Squares Estimator

	RANdom Sample And Consensus
	Introduction
	Preliminaries
	RANSAC Overview
	How many iterations?
	Constructing the MSSs and Calculating q
	Ranking the Consensus Set

	Computational Complexity
	Hypothesize Step
	Test Step
	Overall Complexity

	Other RANSAC Flavors

	RANSAC at Work
	The RANSAC Toolbox for Matlab™ & Octave
	RANSAC.m

	Some Examples Using the RANSAC Toolbox
	Estimating Lines
	Estimating Planes
	Estimating a Rotation Scaling and Translation
	Estimating an Affine Transformation
	Estimating Homographies
	Estimating the Fundamental Matrix

	Frequently Asked Questions
	What is the ``right'' value of ?
	I want to estimate the parameters of my favourite model. What should I do?
	How do I use the toolbox for image registration purposes?
	Why the behaviour of RANSAC is not repeatable?
	What should I do if I find a bug in the toolbox?
	Are there any other RANSAC routines for Matlab?

	Notation
	Some Linear Algebra Facts
	The Singular Value Decomposition
	Relation Between the SVD Decomposition and the Eigen Decomposition
	Fast Diagonalization of Symmetric 22 Matrices
	Least Square Problems Solved via SVD
	Solving A=
	Solving A= subject to "026B30D "026B30D =1

	The Normalized Direct Linear Transform (nDLT) Algorithm
	Introduction
	Point Normalization
	A Numerical Example
	Concluding Remarks About the Normalized DLT Algorithm

	Some Code from the RANSAC Toolbox
	Function Templates
	MSS Validation
	Parameter Estimation
	Parameter Validation
	Fitting Error

	Source Code for the Examples
	Line Estimation
	Plane Estimation
	RST Estimation
	Homography Estimation

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents
	References

