
Stochastic Processes
A very simple introduction

Péter Medvegyev

2009, January

Medvegyev (CEU) Stochastic Processes 2009, January 1 / 54



Summary from measure theory

De�nition
(X ,A) is a measurable space if A 6= ? is a set of subsets of X such that

1 if A 2 A, then Ac 2 A,
2 if (An) is a countable sequence of sets of A, then [nAn 2 A,
3 if (An) is a countable sequence of sets of A, then \nAn 2 A.

The set of sets A is called σ-algebra, the sets in A are the measurable sets.
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Measurable functions and random variables

De�nition
If (X ,A) and (Y ,B) are measurable spaces a mapping f : X ! Y is
called measurable if for every B 2 B

f �1 (B) $ fx 2 X j f (x) 2 Bg 2 A.

If Y = R then B is always the set of Borel measurable sets which is the
smallest σ-algebra containing the intervals. If the image space is the set of
real numbers we are talking about measurable functions. If (Ω,A,P) is a
probability space then the random variables are the measurable (extended
real valued) functions. We say that two random variables ξ1 and ξ2 are
equivalent or indistinguishable if

P (ξ1 6= ξ2) = 0.
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Measurable functions and random variables

De�nition
If s = ∑k ckχAk then s is a step function. If the sets Ak are measurable
then s is a measurable step function.

Theorem
If f � 0 is a measurable function then there is a sequence of measurable
step functions (sn) such that 0 � sn % f .
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Measurable functions and random variables

Theorem
Let (X ,A) be a measurable space.

1 If f and g are measurable functions then f + g , f � g , f /g are
measurable. (Of course only when they are well-de�ned.) If λ is a real
number and f is a measurable function then λf is also measurable.

2 If (fn) is a sequence of measurable functions then

sup
n
fn, inf

n
fn, lim sup

n!∞
fn, lim inf

n!∞
fn

are measurable.
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Measurable functions and random variables

Theorem
If (fn) is a sequence of measurable functions and the limit

f (x) $ lim
n!∞

fn (x)

exists on a set A then

g (x) $
�
f (x) if x 2 A
0 if x /2 A

is also measurable.
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Integral and expected value

De�nition
The integral of a step function s � 0 isZ

X
sdµ $ ∑

k

ckµ (Ak ) .

The integral of a measurable function f � 0 isZ
X
fdµ $ sup

0�s�f

Z
X
sdµ

where s � 0 is a measurable step function. If f is arbitrary thenZ
X
fdµ $

Z
X
f +dµ�

Z
X
f �dµ

assuming that the sum is not of the form ∞�∞. A function f is
integrable if the integral is �nite.
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Integral and expected value

De�nition
If µ is a probability measure then

E (ξ) $
Z

Ω
ξdP.
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Integral and expected value

Theorem
If f and g are measurable functions thenZ

X
(f + g) dµ =

Z
X
fdµ+

Z
X
gdµ

assuming that all the three integrals exists. If two exist then one can prove
that the third also exits.
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Integral and expected value

Theorem (Monotone convergence)

If 0 � fn % f are measurable functions thenZ
X
fndµ %

Z
X
fdµ

Theorem (Dominated convergence)

If (fn) are measurable functions and fn ! f and there is an integrable
function g such that jfn j � g theZ

X
fndµ !

Z
X
fdµ

and Z
X
jfn � f j dµ ! 0
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Banach space of integrable functions

De�nition
If p � 1 and jf jp is integrable then we say that f 2 Lp .

Theorem
The equivalence classes of integrable functions Lp with the norm

kf kp $ p

rZ
X
jf jp dµ

is a Banach space, that is a complete normed space.
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Conditional expectation

De�nition
Let ξ be a random variable F � A is a sub σ-algebra. Assume that E (ξ)
exists. The conditional expectation E (ξ j F ) is an F -measurable random
variable such thatZ

F
ξdP =

Z
F
E (ξ j F ) dP, 8F 2 F .

P (A j F ) $ E (χA j F ) .

Example
If F = f∅,Ωg then

E (ξ j F ) = E (ξ) .
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Theorem
Assume that all variables below are integrable.

If ξ and F are independent, then E (ξ j F ) = E (ξ) . Specially if
F = f∅,Ωg , then E (ξ j F ) = E (ξ) .
If ξ is F -measurable and the conditional expectation E (ξ j F ) exists,
then E (ξ j F ) = ξ.

If ξ � η, then E (ξ j F ) � E (η j F ) ,specially

0 � P (A j F ) � 1,
jE (ξ j F )j � E (jξj j F ) .

E (ξ + η j F ) = E (ξ j F ) + E (η j F ) . If A and B are disjoint sets,
then

P (A[ B j F ) = P (A j F ) +P (B j F ) ,
P (B n A j F ) = P (B j F )�P (A j F ) , A � B.
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Tower laws

Theorem
If G � F , then

E (E (ξ j F ) j G) = E (ξ j G) .

Specially
E (E (ξ j F )) = E (ξ) .

If G � F , then

E (E (ξ j G) j F ) = E (ξ j G) .
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Monotone convergence

Theorem
The monotone convergence theorem is satis�ed, that is, if ξn � 0, and
ξn % ξ,then

E (ξn j F )
.
% E (ξ j F ) .

Specially, if An % A, then

P (An j F )
.
% P (A j F ) .

If ξn � 0, then
∞

∑
n=1

E (ξn j F ) = E
 

∞

∑
n=1

ξn j F
!
.

If the sets (An) are disjoint and A = [nAn, then
∞

∑
n=1

P (An j F ) = P (A j F ) .
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Dominated convergence

Theorem
The dominated convergence theorem is satis�ed, that is if

lim
n!∞

ξn = ξ, and jξn j � η,

where E (η) < ∞, then

lim
n!∞

E (jξn � ξj j F ) = 0, lim
n!∞

E (ξn j F ) = E (ξ j F ) .

Specially, if An & A, then

lim
n!∞

P (An j F ) = P (A j F ) .
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Homogeneity

Theorem
If variable η is F -measurable, and E (ξ) and E (η � ξ) are �nite, then

E (η � ξ j F ) = η � E (ξ j F ) .

It is also true, if η and ξ are nonnegative.
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De�nition of Stochastic Processes

Let us �x a probability space (Ω,A,P). As in probability theory we refer
to the set of real-valued (Ω,A)-measurable functions as random variables.
In the theory of stochastic processes random variables very often have
in�nite value. Hence the image space of the measurable functions is not R

but the set of extended real numbers R $ [�∞,∞]. The most important
examples of random variables with in�nite value are stopping times.
Stopping times give the random time of the occurrence of observable
events. If for a certain outcome ω the event never occurs it is reasonable
to say that the value of the stopping time for this ω is +∞. In the most
general sense stochastic processes are such functions X (t,ω) that for any
�xed parameter t the mappings ω 7! X (t,ω) are random variables on
(Ω,A,P).
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De�nition of Stochastic Processes

The set of possible time parameters Θ is some subset of the extended real
numbers. In the theory of continuous-time stochastic processes Θ is an
interval, generally Θ = R+ $ [0,∞), but sometimes Θ = [0,∞] and
Θ = (0,∞) is also possible. If we do not say explicitly what the domain of
de�nition of the stochastic process is, then Θ is R+.
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De�nition of Stochastic Processes

It is very important to append some remarks to this de�nition. In
probability theory the random variables are equivalence classes which
means that the random variables X (t) are de�ned up to measure zero
sets. This means that in general X (t,ω) is meaningless for a �xed ω. If
the possible values of the time parameter t are countable then we can
select from the equivalence classes X (t) one element and we can �x a
measure zero set and outside of this set the expressions X (t,ω) are
meaningful. But this is impossible if Θ is not countable. Therefore we
shall always assume that X (t) is a function already carefully selected from
its equivalence class. To put it in another way: when one de�nes a
stochastic process, one should �x the space of possible trajectories and the
stochastic processes are function-valued random variables which are
de�ned on the space (Ω,A,P).
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De�nition of Stochastic Processes

De�nition
Let us �x the probability space (Ω,A,P) and the set of possible time
parameters Θ. The function X de�ned on Θ�Ω is a stochastic process
over Θ�Ω if for every t 2 Θ it is measurable on (Ω,A,P) in its second
variable.

De�nition
If we �x an outcome ω 2 Ω then the function t 7! X (t,ω) de�ned over
Θ is the trajectory or realization of X corresponding to the outcome ω. If
all the trajectories of the process X have a certain property then we say
that the process itself has this property. For example if all the trajectories
of X are continuous then we say that X is continuous, if all the trajectories
of X have �nite variation then we say that X has �nite variation, etc.
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When do stochastic process be equal?

De�nition
Let X and Y be two stochastic processes on the probability space
(Ω,A,P).

1 The process X is a modi�cation of the process Y if for all t 2 Θ the
variables X (t) and Y (t) are almost surely equal, that is for all t 2 Θ

P (X (t) = Y (t)) $ P (fω : X (t,ω) = Y (t,ω)g) = 1.

By this de�nition, the set of outcomes ω where X (t,ω) 6= Y (t,ω),
can depend on t 2 Θ.

2 The processes X and Y are indistinguishable if there is a set N � Ω
which has probability zero, and whenever ω /2 N then
X (ω) = Y (ω) , that is X (t,ω) = Y (t,ω) for all t 2 Θ and ω /2 N.
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When do stochastic process be equal?

De�nition
Let X and Y be two stochastic processes on the probability space
(Ω,A,P). X = Y means that X and Y are indistinguishable, that is the
trajectories are almost surely equal.
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Filtration, usual conditions

De�nition
If (Ft )t is a monotone increasing set of σ-algebras, then F = (Ft )t is
called �ltration, that is F is a �ltration if for s < t Fs � Ft . The
stochastic process X is called adapted, if X (t) is Ft measurable for all t.

De�nition
The �ltration (Ω,A,P,F )satis�es the usual conditions if

1 A is complete, that is if N � M, and P (M) = 0, then N 2 A.
2 Ft for all t contains the measure zero sets,
3 the �ltration F is right-continuous, that is for all t
Ft = Ft+ $ \s>tFs .

We will always assume, that the usual conditions are satis�ed. We
will also assume that every process is adapted to the given �ltration.

Medvegyev (CEU) Stochastic Processes 2009, January 24 / 54



Filtration, usual conditions

The usual interpretation of the σ-algebra Ft is that it contains the events
which occurred up to time t, that is Ft contains the information which is
available at moment t.

As Ft is the information at moment t one can interpret Ft+ as the
information available in�nitesimally just after t. If a process has "speed",
then one can foresee the future in�nitesimally as by de�nition in this case
the right and left derivatives are equal and one knows the left derivative at
time t. The stochastic processes are very often non-di¤erentiable. Even in
this case one should assume this "in�nitesimal wisdom". The trick is that
one should add the measure zero sets to the �ltration anyway, and
surprisingly it makes the �ltrations right-continuous. We will return to this
later.
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Generated �ltration

It is a quite natural question how one can de�ne a �ltration F?

De�nition
Let X be a stochastic process that is let X be a function of two variables.
.Let us de�ne the σ-algebras FXt � A generated by the sets

fX (t1) 2 I1, . . . ,X (tn) 2 Ing

where t1, . . . , tn � t are arbitrary elements in Θ and I1, . . . , In are arbitrary
intervals. Obviously if s < t then FXs � FXt , hence FX is really a
�ltration. FX is called the �ltration generated by X .

There is no guarantee that FX satis�es the usual conditions. Very often if
we add to FX the measure zero sets the new �ltration is right-continuous
and the usual conditions hold.
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Martingales

De�nition
The stochastic process X is a martingale relative to a �ltration F , if

1 E (jX (t)j) < ∞, for all t,
2 if s < t, then E (X (t) j Fs ) = X (s) ,
3 the trajectories are right-continuous, and have limits from the left.

De�nition
The L2-bounded martingales are denoted by H2.

It is trivial from the assumptions that every martingale is adapted.
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Wiener processes

De�nition
The process w called Wiener process, if

1 w (0) = 0,
2 w has stationary and independent increments,
3 w has continuous trajectories,
4 w (t) ' N (0, t) (= N

�
0, σ2

�
).

5 w is adapted.
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Wiener processes on �nite intervals

Example

On any �nite interval Wiener processes are in H2, on in�nite intervals the
Wiener processes are just martingales.

Only the second condition is not trivial.

E (w (t) j Fs ) = E (w (s) + w (t)� w (s) j Fs ) =
= E (w (s) j Fs ) + E (w (t)� w (s) j Fs ) =
= w (s) + E (w (t)� w (s)) = w (s) .
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Generated �ltration of Wiener processes

Let
A $ fω : w (ω) is zero for some interval [0, δ (ω)]g .

As Fw0 = f∅,Ωg obviously A /2 Fw0 . On the other hand A 2 Fw1/n for
every n > 0 as for every n > 0 we know that A holds or not. Hence
A 2 \nFw1/n = Fw0+. Hence Fw is not right-continuous.
One can prove that if Ft $ σ (Fwt ,N ) where N is the set of events with
probability zero, then F satis�es the usual conditions. Very often F is
generated by some �nite number of Wiener processes, that is

Ft $ σ (Fw1t , . . . ,Fwnt ,N ) .
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Poisson processes

De�nition
The process π called Poisson process, if

1 π (0) = 0,
2 the trajectories are continuous from the right and have limits from the
left and have pure jumps of height one,

3 π (t) ' P (λt) , that is P (π (t) = n) = (λt)n

n! exp (�λt) .
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Lévy processes

De�nition
An adapted process X is called Lévy process (with respect to F) if

1 X (0) = 0,
2 X has independent increments with respect to F , that is if t > s
then X (t)� X (s) is independent of Fs ,

3 X has stationary increments,
4 the trajectories are continuous from the right and have limits from the
left.
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Martingales and Lévy processes

Example
If the increments of a Lévy process X has zero expected value, then X is a
martingale.

E (X (t) j Fs ) = E (X (s) + X (t)� X (s) j Fs ) =
= E (X (s) j Fs ) + E (X (t)� X (s) j Fs ) =
= X (s) + E (X (t)� X (s)) = X (s) .
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Independence and Fourier transformation

De�nition
If ξ is a vector of random variables then ϕ (u) $ E (exp (i hu, ξi)) is
called the Fourier transform or characteristic function of vector ξ and
L (u) $ E (exp (hu, ξi)) is called the moment generating function of ξ.

Theorem
The Fourier transform determines the distribution of ξ.

Theorem
ξ and η are independent if and only if

ϕ(ξ,η) (u, v) = E (exp (iuξ + ivη)) = E (exp (iuξ))E (exp (ivη)) =

= ϕξ (u) ϕη (v) .
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Independence and Fourier transformation

The easy part is:that if ξ and η are independent then

ϕ(ξ,η) (u, v) = ϕξ (u) ϕη (v) .

By de�nition ξ and η are independent if the generated σ-algebras are
independent, therefore exp (iuξ) and exp (ivη) are independent and the
independent variables are uncorrelated.
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Remarks

1 The moment generating function generally does not determine the
distribution.

2 ϕ (u) is well-de�ned and �nite for every u, but L (u) is not necessarily
�nite for every u.

3 If L is well-de�ned and �nite in a neighborhood of the origin, then L
determines the distribution.

4 If ξ � 0 and
L (s) $ E (exp (�sξ)) , s � 0

then L determines the distribution. (In this case L is the Laplace
transform of ξ.)
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Exponential martingales

Example
If X is a Lévy process, then for every u

M (t, u) $ exp (iuX (t))
ϕt (u)

is a martingale, where ϕt (u) $ E (exp (iu (X (t)))) . Alternatively if
Lt (u) exists for some u then one can de�ne

M (t, u) $ exp (uX (t))
Lt (u)

.
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Exponential martingales

E (M (t, u) j Fs ) = E
�
exp (iuX (t))

ϕt (u)
j Fs

�
=

= E
�
exp (iu [X (s) + X (t)� X (s)])

ϕt (u)
j Fs

�
=

= E
�
exp (iu [X (s) + X (t)� X (s)])

ϕs (u) ϕt�s (u)
j Fs

�
=

= E
�
M (s, u)

exp (iu [X (t)� X (s)])
ϕt�s (u)

j Fs
�
=

=
M (s, u)
ϕt�s (u)

E (exp (iu [X (t)� X (s)]) j Fs ) =

=
M (s, u)
ϕt�s (u)

E (exp (iu [X (t)� X (s)])) = M (s, u) .
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Exponential martingale of Wiener processes

Example
If w is a Wiener process, then for every u

M (t, u) $ exp (iuw (t))
exp (�tu2/2) = exp

�
iuw (t) +

tu2

2

�
M (t, u) $ exp

�
uw (t)� tu

2

2

�
are martingales, called, the exponential martingales of w .
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Exponential martingale of Wiener processes

The second one is easy

E (exp (uw (t))) = E
�
exp

�
u
p
tN (0, 1)

��
= LN (0,1)

�
u
p
t
�
.

LN (0,1) (u) =
1p
2π

Z ∞

�∞
exp

�
�1
2
x2
�
exp (ux) dx =

=
1p
2π

Z ∞

�∞
exp

�
�x

2 � 2ux
2

�
dx =

=
1p
2π

Z ∞

�∞
exp

�
�x

2 � 2ux + u2
2

+
u2

2

�
dx =

= exp
�
u2

2

�
1p
2π

Z ∞

�∞
exp

 
� (x � u)

2

2

!
dx = exp

�
u2

2

�
.
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Exponential martingale of Wiener processes

Also

E (exp (iuw (t))) = E
�
exp

�
iu
p
tN (0, 1)

��
= ϕN (0,1)

�
u
p
t
�
.

ϕN (0,1) (u) =
1p
2π

Z ∞

�∞
exp

�
�1
2
x2
�
exp (iux) dx =

=
1p
2π

Z ∞

�∞
exp

�
�1
2
x2
�
(cos ux + i sin ux) dx =

=
1p
2π

Z ∞

�∞
exp

�
�1
2
x2
�
cos uxdx .

Medvegyev (CEU) Stochastic Processes 2009, January 41 / 54



Exponential martingale of Wiener processes

Di¤erentiating and integrating by parts

d
du

ϕN (0,1) (u) =
1p
2π

Z ∞

�∞
exp

�
�1
2
x2
�
d
du
cos uxdx =

=
1p
2π

Z ∞

�∞
(�x) exp

�
�1
2
x2
�
sin uxdx =

=

�
exp

�
�1
2
x2
�
sin ux

�∞

�∞
� 1p

2π
u
Z ∞

�∞
exp

�
�1
2
x2
�
cos uxdx =

= 0� 1p
2π
u
Z ∞

�∞
exp

�
�1
2
x2
�
cos uxdx = �uϕ (u) .

As ϕ (0) = 1 the solution of this di¤erential equation is
ϕ (u) = exp

�
�u2/2

�
.
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Compensated Poisson processes

Example

The compensated Poisson process π (t)� λt is a martingale.

π (t)� λt is a Lévy process with expected value zero.
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Compensated square of Wiener processes

Example

If w is Wiener process, then N (t) $ w2 (t)� t is a martingale.

E (N (t) j Fs ) = E
�
w2 (t)� t j Fs

�
=

= E
�
(w (s) + w (t)� w (s))2 � t j Fs

�
.

E
�
(w (t)� w (s))2 j Fs

�
= E

�
(w (t)� w (s))2

�
=

= E
�
N2 (0, t � s)

�
= t � s.

E (w (s) (w (t)� w (s)) j Fs ) = w (s)E ((w (t)� w (s)) j Fs ) = 0.
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Stopping times

De�nition
A random variable 0 � τ � ∞ is called stopping time, if fτ � tg 2 Ft for
all t This is the same as τ ^ t is Ft -measurable for every t that is τ ^ t is
"observable" for every t.

Theorem
If the trajectories of the adapted stochastic process X are right- or
left-continuous, or the process is measurable with respect to the σ-algebra
generated by the class of the adapted right-continuous processes, then for
any Borel set B the hitting time

τ $ inf ft : X (t) 2 Bg

is a stopping time.
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Stopped process, stopped variable

De�nition
Let X be a stochastic process, and let τ be a stopping time.

1 By a stopped or truncated process we mean the process

X τ(t,ω) $ X (τ (ω) ^ t,ω) .

2 We shall call the random variable

Xτ (ω) $ X (τ (ω) ,ω)

a stopped variable.
3 The stopped σ-algebra Fτ is the set of events A 2 A for which for all
t

A\ fτ � tg 2 Ft .
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Stopped process, stopped variable

Instead of Xτ we shall very often use the more readable notation X (τ).
Observe that the de�nition of stopped variable is not entirely correct as X
is generally not de�ned on the set fτ = ∞g and it is not clear what the
de�nition of Xτ on this set is. If τ (ω) /2 Θ then one can use the de�nition

Xτ (ω) $ 0.

If one uses the convention that the product of an unde�ned value with
zero is zero, then one can write the de�nition of the stopped variable Xτ in
the following way:

Xτ (ω) $ X (τ (ω) ,ω) χ (τ 2 Θ) (ω) .
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Optional Sampling Theorem

Theorem
If M is a martingale and τ is a stopping time, then the stopped process
Mτ is also a martingale.

Theorem
An adapted process M is a martingale if and only if, the trajectories of M
are right-continuous and they have limits from the left and for any
bounded stopping time τ

E (Mτ) = E (M (0)) ,

where as above Mτ (ω) $ M (τ (ω) ,ω) .
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Uniformly integrable martingales

When can one drop the condition that τ is bounded? For any T obviously
τ ^ T is bounded so E (M (τ ^ T )) = E (M (0)) . Can we take the limit
T ! ∞ under the integral sign:

E (M (τ)) = E
�
lim
T!∞

M (τ ^ T )
�
= lim

T!∞
E (M (τ ^ T )) = E (M (0))?

If τ < ∞ and M has an integrable majorant, that is jM (t)j � ξ 2 L1 (Ω)
then the answer is certainly yes. There is a generalization. There is a
special concept, called "uniformly integrable" martingale which generalizes
the mentioned situation.
An important case when M is uniformly integrable but there is no
integrable majorant is when M 2 H2.
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Uniformly integrable martingales

Example
If w is a Wiener process and

τa $ inf (t : w (t) � a)

then as w is continuous and as w is unbounded τa < ∞ and w (τa) = a.
Hence if a 6= 0

E (w (τa)) = E (a) = a 6= E (w (0)) = 0.

Observe that
w (∞) $ lim

t!∞
w (t)

is not well-de�ned. Observe that w is in H2 on any �nite interval but
w /2 H2 on R+.
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Optional Sampling Theorem for uniformly integrable
martingales

Theorem
If M is a uniformly integrable martingale, then

1 one can extend M from [0,∞) to [0,∞] ,
2 the extended process remains a martingale and
3 E (M (τ)) = E (M (0)) holds for any stopping time τ.
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Ruin probabilities

Example
If a < 0 < b and τa and τb are the respective �rst passage times of some
Wiener process w , then

P (τa < τb) =
b

b� a , P (τb < τa) =
�a
b� a .

With probability one the trajectories of w are unbounded. Therefore as w
starts from the origin the trajectories of w �nally leave the interval [a, b].
So

P (τa < τb) +P (τb < τa) = 1.

If τ $ τa ^ τb then w τ is a bounded martingale. Hence one can use the
Optional Sampling Theorem. Obviously w τ

τ is ether a or b, hence

E (w τ
τ ) = aP (τa < τb) + bP (τb < τa) = E (w τ (0)) = 0.

We have two equations with two unknowns. Solving this system of linear
equations, one can easily deduce the formulas above.
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Energy Equality

Theorem
If M 2 H2, then

E
�
(M (t)�M (s))2

�
= E

�
M2 (t)

�
� E

�
M2 (s)

�
By the properties of the conditional expectation for

∆ $ 2 � E (M (s) (M (s)�M (t)))

the di¤erence of the two sides

∆ $ 2 � E (M (s) � (M (s)�M (t))) =
= 2 � E (M (s) � E (M (s)�M (t) j Fs )) =
= 2 � E (M (s) � 0) = 0.
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Energy Equality and the Uniform Integrability

Recall that M 2 H2 if kM (t)k2 � K . By the Energy Equality the
function t 7! kM (t)k is increasing. As it is bounded it is convergent.
Hence for any ε > 0

kM (t)�M (s)k � jkM (t)k � kM (s)kj < ε

it t, s � N (ε) . Hence (M (t))t is a Cauchy sequence in L2 (Ω) . As
L2 (Ω) is complete it is convergent, that is M (t)! M (∞) and the
convergence holds in L2 (Ω) . As M is a martingale

E (M (t) j Fs ) = M (s) .

If t ! ∞, then as convergence in L2 (Ω) implies convergence in L1 (Ω)

E (M (∞) j Fs ) = E
�
lim
t!∞

M (t) j Fs
�
= lim

t!∞
E (M (t) j Fs ) =

= lim
t!∞

M (s) = M (s) .
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